WO2013044341A1 - Nanoparticulate magnetic material for thermal applications - Google Patents

Nanoparticulate magnetic material for thermal applications Download PDF

Info

Publication number
WO2013044341A1
WO2013044341A1 PCT/BR2012/000403 BR2012000403W WO2013044341A1 WO 2013044341 A1 WO2013044341 A1 WO 2013044341A1 BR 2012000403 W BR2012000403 W BR 2012000403W WO 2013044341 A1 WO2013044341 A1 WO 2013044341A1
Authority
WO
WIPO (PCT)
Prior art keywords
alloy
magnetic
magnetic material
nanoparticulated
gum
Prior art date
Application number
PCT/BR2012/000403
Other languages
French (fr)
Portuguese (pt)
Inventor
Élio Alberto PÉRIGO
Fernando José Gomes LANDGRAF
Suelanny Carvalho da SILVA
Hidetoshi TAKIISHI
Edésia Martins SOUSA
Anderson Augusto FREITAS
Original Assignee
Instituto De Pesquisas Tecnológicas Do Estado De São Paulo
Fundação De Amparo À Pesquisa Do Estado De São Paulo - Fapesp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Instituto De Pesquisas Tecnológicas Do Estado De São Paulo, Fundação De Amparo À Pesquisa Do Estado De São Paulo - Fapesp filed Critical Instituto De Pesquisas Tecnológicas Do Estado De São Paulo
Publication of WO2013044341A1 publication Critical patent/WO2013044341A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/244Lanthanides; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/22Boron compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K33/00Medicinal preparations containing inorganic active ingredients
    • A61K33/24Heavy metals; Compounds thereof
    • A61K33/26Iron; Compounds thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0002Galenical forms characterised by the drug release technique; Application systems commanded by energy
    • A61K9/0009Galenical forms characterised by the drug release technique; Application systems commanded by energy involving or responsive to electricity, magnetism or acoustic waves; Galenical aspects of sonophoresis, iontophoresis, electroporation or electroosmosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5015Organic compounds, e.g. fats, sugars
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/5115Inorganic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y5/00Nanobiotechnology or nanomedicine, e.g. protein engineering or drug delivery

Definitions

  • the present invention pertaining to the sector of specific uses or applications of nanostructures formed by individual manipulation of groups of atoms or molecules as discrete magnetic units composed of lanthanide group elements, refers to nanoparticulate material coated with organic or inorganic compound or their combinations, for heating or generating localized magnetic characteristics of an object or localized region when exposed to an alternating magnetic field.
  • Hard magnetic materials are often used in electric motors, electronic beam collimators in power microwave valves and magnetic resonance equipment.
  • the hard magnetic material may be exposed to an alternating magnetic field, with a portion of energy dissipated by this material from the interaction of electromagnetic radiation-matter in the form of heat.
  • Such an effect is undesirable in the mentioned cases, although it is, under specific conditions of amplitude and field frequency, a possibility of application in other fields of technology.
  • Magnetic materials that exhibit satisfactory energy dissipation when exposed to an alternating magnetic field have application in situations where localized heating or magnetic characteristics are required, such as healing organic compounds or even treating cancer. The amount of energy dissipated depends on the type of material loss: hysteresis or relaxation.
  • the figure of merit of the materials used for heating or localized magnetic characteristics is called the volumetric absorption rate (TAV) and is defined as the amount of heat released. per unit volume of compound per unit time during exposure to a frequency-defined magnetic field.
  • TAV volumetric absorption rate
  • the heating efficiency or magnetic characteristics of the particles is dictated by a variety of factors, one being the spatial distribution of the magnetic particles within the matrix. The particles should be evenly distributed throughout the matrix to optimize magnetic interactions and to achieve maximum volumetric absorption rate values for each particle.
  • micro- or nanometric-scale particulate magnetic materials for medical applications has been stimulated due to the absence of toxicity associated with the hyperthermia process, which does not occur in chemotherapy and radiotherapy; however, the materials used in the art in question should be evaluated a priori for compatibility.
  • hyperthermia the body must be warmed to the temperature at which diseased cells are destroyed, keeping healthy tissue as unchanged as possible.
  • target tumors For the treatment of hyperthermia to be effective, target tumors must be localized and the heating or magnetic characteristics of the target site maximized while maintaining safe operating limits for the patient.
  • magnetic particles can be directed to the desired tissue by direct injection or intravenous infusion, and an alternating magnetic field generates heat in the particles, thereby causing the tumor temperature to rise to the therapeutic limit.
  • Magnetic field conditions should be such that they do not cause interactions with the tissue, but only with magnetic particles and thus only tissue containing a concentration of magnetic particles will be heated.
  • magnetic particles investigated or tested for hyperthermia consist of an iron oxide (Fe x O y ) with or without the presence of other chemical elements, such as Zn, Ni and Co, and coated with a biocompatible organic or inorganic material. It is common for these iron oxides to be prepared by chemical processes, such as co-precipitation, which require various chemical reagents, tight control of reaction time, temperature and pH, as well as heat treatments and additional steps. surface coating (T. KIKUCHI et al., Preparation of aqueous magnetite dispersion for magnetic fluid hyperthermia, J. Magn. Magn. Mat. 323 (10) (201 1) p.1216; and DL ZHAO et al.
  • Magnetic and inductive heating properties of Fe 3 O 4 / polyethylene glycol composite nanoparticles with core-shell structure J. AH Compd 502 (2) (2010), p 392).
  • the range of intrinsic coercivity is in the range of 8 kAm "1 (approximately 100 Oe) to 24 kAm " 1 (approximately 300 Oe), considered adequate for hyperthermia for technical reasons regarding obtaining such fields
  • Magnetic mass per unit ( s ) is generally less than 60 Am 2 kg “1 (60 emu g " 1 ) without the material coated, which will further reduce this value.
  • the invention provides an improved method for localized and specific treatment of diseased tissue in a patient, comprising the following steps: (i) selecting at least one magnetic material having a magnetic heating efficiency of about 4.10 "8 Jm / Ag when magnetic field conditions are equal to or less than 7.5 x 0 7 A / ms; (ii) transport the magnetic material to the patient's diseased tissue; and (iii) exposing the material inserted into the patient at an alternating magnetic field of a frequency exceeding 10 kHz and a field strength such that the product of the field strength, the frequency and the radius of the exposed region is less than about 7.5.10 7 A / ms to generate warming in diseased tissue
  • steps (i) through (iii) of the above method are repeated until the diseased tissue has been destroyed or treated sufficiently to alleviate the disease.
  • magnetic particles are incorporated into biocompatible microcapsules that are administered so that they concentrate around a tumor vascular network. An external magnetic field is applied and the heat released by the material is conducted to the tumor tissue.
  • the use of properly formulated microcapsules, magnetic field conditions and dosage of these particles ensure that tumors will be heated to lethal temperatures of around 42 ° C while sparing healthy tissue.
  • the material used is magnetic with a coercivity of less than 314 Oe, a heating efficiency of 4.5.10 "8 Jm / Ag and a cyclic magnetic field where the amplitude product and applied field frequency is less than or equal to 5.10 8 A / ms , and the frequency of the applied field is at least 20 kHz.
  • the material used may be a magnetite (Fe 3 0 4 ) or ferric oxide- ⁇ (v-Fe 2 0 3 ) with a crystalline lattice in which some of the atoms of If the substituent atom can be from the cobalt, zinc, nickel, manganese, magnesium, copper, chromium, gallium or cadmium group, the magnetic material must have a cubic or and a diameter between 20 nm and 1 pm.
  • US 11 / 125,488 discloses that heat-generating magnetic nanoparticle compositions have been used in magnetic heating, particularly for magnetic hyperthermia applications in medical treatments, and a composition comprising nanomagnetic particles having a Curie temperature is envisaged. 40 to 46 ° C, preferably 42 ° C.
  • magnetic particles include copper and nickel alloys (71 wt% nickel and 29 wt% copper), ferrite (Zn ferrite, Mn - Zn ferrite, Fe - Zn ferrite) or compositions ( Mn , 5 Zn 0.5 Gd x Fe (2- x) 0 4 , where 0 ⁇ x> 1, 5; Zn x Mn (1-x) Fe 2 0 4 , where 0.6 ⁇ x> 0.8 Fe ( i- x) Zn x Fe 2 0 4 where 0.7 ⁇ x> 0.9, or ZnGd x Fe ( 2- X ) 0 4 where 0.01 ⁇ x> 0.8) and also that in some publications the nanometer particles have an efficient mean diameter between 5 nm and 400 nm, and are coated or dispersed in a material biocompatible polymeric In some cases, the composition further includes at least one medicament.
  • the paper suggests some methods for treating patients requiring the use of the hyperthermia technique, one of which includes administering a composition containing magnetic nanoparticles having a Curie temperature between 40 and 46 ° C and exposing these magnetic particles. to an alternating magnetic field effective to generate the heating. It is emphasized that this composition should be administered to a tumor or other tissue-related diseases of the patient. Magnetic nanoparticles are preferably administered in a pharmaceutically acceptable carrier. Particles of the selected Curie temperature are either mixed in a liquid suspension or encapsulated within microcapsules which may then be mixed with a suitable biocompatible medium. Important properties of these microcapsules are diameter, which determines the proximity of the particle in diseased tissue, and density, which affects the efficiency of particle transport through blood flow.
  • Biocompatible coatings have been used to minimize the metallic interaction of alloy particles with the body's biological components, and for in vivo use the biocompatible polymeric material should preferably be biodegradable.
  • suitable polymers for this function are: ethylcelluloses, polystyrenes, poly (d, 1 - lactic acid) and poly (d, 1 lactic acid co-glycolic acid).
  • Nanoparticles may be obtained by various techniques, such as (a) by melting a material containing at least two different metals and, after solidification, subjecting the particles to a milling process; or (b) by chemical co-precipitation.
  • magnetic particles are polymer-coated iron oxides, such as dextran (polysaccharide). Although such complexes have been used in vitro, any use in vivo has been limited due to the breakdown of the polymeric coating within the body.
  • dextran polysaccharide
  • US 10 / 543,063 discloses a microparticle composition comprising magnetic particles and a matrix which must be have at least one of the following properties: (a) a volumetric absorption rate of at least about 10 W / cm 3 , subject to appropriate field conditions; (b) a density less than or equal to 2.7 g / cm 3 ; or (c) a size in the range 100 nm to 200 pm.
  • the TAV should be at least 10 W / cm 3 when exposed to an alternating magnetic field, preferably between 60 and 120 Oe, and the frequency between about 50 and 300 ° C. kHz.
  • the particles of the compositions of US 10 / 543,063 are superparamagnetic.
  • the term superparamagnetic is intended for magnetic particles that do not have the properties of remnant, coercivity or hysteresis curve.
  • the volumetric heating rates resulting from the microparticle compositions are not the result of the hysteresis heating, but rather a physical mechanism called Néel relaxation.
  • the superparamagnetic particles are preferably nanometer size selected within the group of ferrites with the general formula MO.Fe 2 0 3 where M is a divalent metal such as Fe, Co, Ni Mn, Be, Mg, Ca, Ba, Sr, Cu, Zn, Pt, or oxides of the type M0.6Fe20 3, where M is a large divalent ion such as metallic iron, cobalt or nickel.
  • M is a divalent metal such as Fe, Co, Ni Mn, Be, Mg, Ca, Ba, Sr, Cu, Zn, Pt, or oxides of the type M0.6Fe20 3, where M is a large divalent ion such as metallic iron, cobalt or nickel.
  • These particles may also be of Fe, Ni, Cr or Co or in oxides.
  • US 11 / 235,631 discloses a nanoparticulate material composed of a fatty acid-coated magnetic particle core and surfactant, and method of processing.
  • the core material may be any metal or a combination of metals including iron, cobalt, zinc, cadmium, nickel, gadolinium, chrome, copper, manganese and their oxides, and a magnetic particle may be composed of an alloy with a metal. like gold, platinum, silver or copper.
  • the magnetic particle may be a free metal ion compound, a metal oxide or an insoluble metal compound.
  • Js high saturation polarization
  • Fatty acid has several functions, such as protecting the nucleus of magnetic particles from oxidation and / or hydrolysis in the presence of water, which can significantly reduce magnetization of nanoparticles; stabilize the nanoparticle core; improve biocompatibility; and, serve as an interface for the attachment of surfactant hydrophobic groups.
  • Fatty acid can be applied as a monolayer where the thickness is projected, controlling the length of the chain according to the percentage added to the metal nanoparticles.
  • the amount of fatty acid used is generally 5 to 40% by weight of the magnetic particles. However, high percentages of applied fatty acids are expected to result in multiple coating layers.
  • Various core coatings may also be used, such as alginates, animal gelatin, polyalkanoates and other biopolymers.
  • nanoparticle compositions produced in accordance with the invention may be used in a variety of applications, including the delivery of therapeutic agents for the prevention and treatment of localized diseases, tumor heating by magnetic nanoparticles. , or in contrast for better resolution on magnetic resonance imaging.
  • polymer granules incorporating magnetic particles are known by the state of the art and over the years various processes have been developed for their production.
  • microgel polymeric granules having a polymer matrix with uniformly dispersed magnetic particles, where a steric stabilizer is associated with the particle, the steric stabilizer being a polymeric material that is not part of the polymeric matrix of the particles.
  • beads, and magnetic nanoparticle is formed by iron, nickel, chromium, cobalt or their oxides, preferably magnetite (Fe 3 0 4) or magmita (gamma - Fe 2 03).
  • the product is used as a composition for the treatment of hyperthermia performed at a target site of interest such as cancerous tissue and for biomedical and diagnostic imaging applications using contrasts such as tissue hyperthermia induction for application in immunity assays.
  • the product consists of a particulate material, with or without the presence of an organic and / or inorganic biocompatible coating: fatty acids such as oleic acid, polysaccharides, animal or vegetable protein, chitosan, gums (gum arabic, xanthan gum, guar gum, carrageenan gum, cashew gum, tara gum, tragacanth gum, Karaya gum, gati gum), cellulose derivatives (carboxymethyl cellulose, carboxyethyl cellulose, etc.), polyvinylpyrrolidone, poly (meta) acrylates, poly (meta) acrylamides, polyesters, polyvinylcaprolactams, polyamides, polyvinyl alcohol or blends of such polymers, derived from an alloy composed of at least one element of the lanthanide group (LA), at least one transition metal (MT) and at least one metalloid (ML).
  • fatty acids such as oleic acid, polysaccharides, animal or vegetable protein,
  • This league will be represented by LA-MT-ML.
  • the described material may be obtained by a physical, chemical or a combination of both, and its novelty and inventive activity is to control the heat or magnetic characteristics of the alloy, which may be obtained by mixing pure elements, mixtures. It can be used in applications where localized heating is required, for example in resin and cement cures and in applications for the treatment of cancerous tissues and biomedical and diagnostic imaging applications using contrasts. DESCRIPTION OF DRAWINGS
  • Figure 2 - X-ray diffractograms showing the structural evolution of the particulate material prepared with different milling times.
  • Figure 3 Photographs taken by scanning electron microscope (10,000x) showing particles obtained with different grinding times: (a) 10 minutes and (b) 10 hours.
  • Figure 4 Photographs taken by scanning electron microscope (100,000x) showing particles obtained with different grinding times: (a) 10 minutes and (b) 10 hours.
  • Figure 5 Transmission electron microscope photographs showing particles obtained with grinding time of 10 hours: (a) three particles (b) highlighted in one of the particles shown in (a).
  • Figure 1 1 - Heating profile Powder of nominal composition Pr 8 Fe 86 B 6 processed at 900 rpm for 5 hours.
  • Figure 12 Heating profile Pri2Fe 82 B 6 nominal composition powder processed at 900 rpm for 5 hours.
  • Figure 13 Hysteresis curve of magnetic powder of nominal composition Pri 2 Fe 8 2B6 after grinding at 900 rpm for 5 hours.
  • the nanoscale powder preparation process may involve a physical, chemical process or a combination of both. Below is a physical process and methodology for verifying cytotoxicity.
  • the process can be adopted from discarded industrial sintered magnets, such as the "Magnetic Recovery Nanoparticulate Powder Lanthanide-Metal-Metalloid Alloy Recovery Process", filed on July 1, 2011 under No. 018110024898 at the National Institute of Intellectual Property - INPI (Brazil), with the Institute of Technological Research of the State of S ⁇ o Paulo - IPT as the holder, or from the production of magnetic alloy.
  • industrial sintered magnets such as the "Magnetic Recovery Nanoparticulate Powder Lanthanide-Metal-Metalloid Alloy Recovery Process” filed on July 1, 2011 under No. 018110024898 at the National Institute of Intellectual Property - INPI (Brazil), with the Institute of Technological Research of the State of S ⁇ o Paulo - IPT as the holder, or from the production of magnetic alloy.
  • This process is initiated with heat treatment demagnetization using a temperature higher than that of the Curie temperature of the LA-MT-ML compound, and the heat treatment time should be as long as necessary for temperature stabilization on the parts.
  • the heat treatment atmosphere may be oxidizing or inert.
  • the chemical composition of the alloy used as a starting material should be such that the LA 2 -MTi 4 -ML phase (usually Nd 2 Fe 14 B, but not exclusively) is present in at least 10% of the volume of material used.
  • the surface coating of heat treated parts should be removed using chemical means such as solvents or physical means such as sanding. This second process was used in the present invention.
  • sintered magnets without surface coating should be inserted into a pressurization vessel, which must be connected to a gas line for the insertion of hydrogen or any other gas having hydrogen in its composition, as well as to a gas pumping system such as a mechanical vacuum pump.
  • the pressure vessel must be made of a material that does not absorb any kind of gas. Such a system may be considered an oven, the ends of which may be sealed.
  • hydrogen or any other hydrogen-containing gas should be inserted into its composition, preferably high purity hydrogen.
  • the hydrogen insertion temperature should be between 25 ° C and 180 ° C, preferably 100 ° C, and the initial hydrogen pressure should be between 0.1 atm and 10.0 atm, preferably 2.0 atm.
  • the exposure time of the material to hydrogen is from 10 minutes to 180 minutes, preferably 60 minutes.
  • the final material must have hydrogen in its composition, in addition to the lanthanide, transition metal and metalloid elements, where the amount of hydrogen will depend on the conditions under which the hydrogenation process was performed.
  • the pressurization system After complete absorption of hydrogen by the sintered magnets, the pressurization system must be opened and the resulting material transferred to a milling equipment.
  • the comminution step should occur on any type of grinding equipment, preferably in a planetary ball mill.
  • the mass ratio of the grinding bodies to the material to be ground may range from 1: 1 to 100: 1, preferably from 20: 1, and the grinding bodies may be of any geometric shape, preferably spherical.
  • the mixture of hydrogenated material and grinding bodies must be immersed in a liquid capable of protecting the particulate material from oxidation, so any non-oxygen containing liquid can be used, preferably cyclohexane.
  • a surfactant may also be added to prevent particle welding during the milling step, preferably oleic acid, in the proportion of 0.01% to 10% by weight of particulate material, preferably 0.1% by weight.
  • Grinding time may range from 5 minutes to 50 hours, preferably from 3 hours to 20 hours, more preferably 10 hours.
  • the rotational speed of the milling process may range from 100 to 1200 rpm, preferably 900 rpm. Oleic acid will remain surrounding the particles avoiding oxidation after grinding.
  • the particulate material will heat up and may lead to disproportionate phase LA 2 -MTi -ML. This means that there is a possible separation of the magnetically hard phase, generating as possible new hydride phases of the lanthanide element, Fe2B, FesB and other metastable compounds.
  • nanoscale powder with particle size ranging from 10 to 1000 nm, magnetic moment between 60 Am 2 kg “1 and 130 Am 2 kg “ 1 and intrinsic coercivity between 4 kAm " up to 70 kAm " .
  • the nanometric material obtained shall be exposed to an alternating magnetic field with an intensity between 8 kAm "1 and 55.7 kAm " 1 and a frequency between 10 kHz and 700 kHz.
  • the heating of the described material may be modified from the conditions employed in the preparation of the powder as well as the experimental conditions of the assay.
  • process variables such as milling time, milling pot rotation and the amount of oleic acid can be modified individually or together.
  • MTT is a yellow-colored salt capable of capturing electrons from the electron transport chain in an oxy-reduction reaction. When reduced by metabolically viable cell dehydrogenase enzymes, it forms purple-colored crystals, Formazan. These Formazan crystals are water insoluble and have an absorption peak at 570 nm.
  • Trypan blue is a high molecular weight dye that is only able to enter dead cells or that have increased membrane permeability.
  • the assessment of cell viability by Trypan blue exclusion consists of incubating the cells for 1 minute with this dye and quantifying them with the aid of a Neubauer chamber. Perfectly alive living cells (impermeable membrane) remain colorless and dead cells or with increased membrane permeability are displayed in blue. Viable (colorless) cells were used in the experiments (passage range: 5-20).
  • Human pulmonary fibroblast MRC-5 cells were seeded in 2000 cell / well culture plates, 96-well plate and incubated for 24 hours for adherence. After this time, different concentrations of samples H3 and H10 (200; 100; 50; 10 and 1 Mg / mL) were added to the adhered cells. Then the cells were incubated again for a further 48 hours. After this time, cells were incubated with MTT (0.5 mg / mL) for 4 hours in the dark. Subsequently, the MTT-containing supernatant was removed and 100 ⁇ DMSO were placed in each well to solubilize Formazan crystals. Samples were measured by spectrophotometry on a UV-visible microplate reader at 570 nm.
  • the experiments were done in quadruplicates.
  • the IC 50 value concentration of compound that produced 50% cell death
  • Morphological aspects of MRC-5 cells were analyzed by optical microscopic observation of control cells and those treated with H3 and H 10. Tests were performed in parallel using dimethylsulfoxide (DMSO) as negative control, as H3 and H10 were pre-dissolved in 0.5% DMSO.
  • DMSO dimethylsulfoxide
  • the material consists of iron nanoparticles along with other phases that have in their composition Nd and B.
  • the magnetic particles have a size ranging between 25nm and 100nm, have a magnetic moment per unit mass of the order of 70 Am 2 kg "1 and coercivity. 8 kAm " .
  • Figure 2 shows the X-ray diffractograms of ground materials. After 15 minutes, there is a variation of the present peaks, indicating the existence of the disproportion process, as mentioned above.
  • Figures 3, 4 and 5 show the agglomerates and particles obtained after 10 minutes and 10 hours of milling.
  • a second example was the preparation of a nanoscale magnetic powder whose production process is similar to that described in EXAMPLE 1, only changing the milling time from 10 hours to 3 hours.
  • the particle size is within the range of the present patent as well as its magnetic properties. With regard to heating, this material exhibited a warming lower than that of the material prepared with 10 hours of grinding, as shown in Figure 6.
  • EXAMPLE 3 Preparation of nanometric particles from the mixture of alloys or elemental powders.
  • This process is started from crushing LA-MT-ML type alloys with an average diameter of 0.5 cm.
  • the stoichiometric proportions of each alloying element were in the following ranges: LA - from 1% to 16% of the alloy atoms, MT - from 74% to 98% of the alloy atoms and ML - from 1% to 10% of the alloy atoms. alloy atoms.
  • the alloy pieces were inserted into a pressurization vessel, which should be connected to a gas line. Gas pumping is also required, which can be performed using a vacuum pump connected to the pressure vessel system, which in turn is connected to a gas line.
  • This pressurization vessel must be designed so that it can be inserted into an oven.
  • high purity hydrogen is preferably injected into the system.
  • the initially injected gas pressure may range from 0.1 atm to 10 atm, preferably 1 atm.
  • the system is heated until hydrogenation of the alloy is achieved.
  • the temperature for the occurrence of this phenomenon is between 60 and 120 ° C, preferably 100 ° C, maintaining at this temperature between 15 and 30 minutes, preferably 23 minutes.
  • the system was heated to 770 ° C when hydrogen liberation from the alloy occurs. Alloy disproportion occurs with increasing pressurization vessel temperature between 800 and 900 ° C, preferably 840 ° C.
  • the disproportion and recombination steps of the initially inserted alloy occur at the same temperature as the disproportion under vacuum for a period of from 1 to 180 minutes, preferably 5 minutes and 30 seconds. After this period, the pressurization vessel is cooled.
  • the dust resulting from this heat treatment is removed from the system and transferred to a grinding pot.
  • the milling process can be carried out in any type of high energy mill, preferably in a planetary type ball mill.
  • the mass ratio of the grinding bodies to the material to be milled may range from 1: 1 to 100: 1, preferably from 10: 1.
  • Grinding bodies may be of any geometric shape, preferably spherical.
  • the heat treatment dust and grinding bodies must be immersed in a liquid capable of protecting the particulate material from oxidation. Therefore, any non-oxygen containing liquid in its composition may be used, preferably cyclohexane.
  • a surfactant may also be added to prevent particle welding during the milling step, preferably oleic acid, in the proportion of 0.01% to 10% by weight of particulate material, preferably 0.1% by weight.
  • Grinding time may range from 5 minutes to 50 hours, preferably 5 hours.
  • the rotational speed of the process may range from 100 to 1200 revolutions per minute, preferably 900 revolutions per minute.
  • the last step for obtaining nanoparticulate materials is drying, which can be performed under controlled or uncontrolled atmosphere, preferably in a glovebox containing inert gas inside.
  • the process described above can be carried out not only with commercial alloys but also from alloy mixtures, for example: a Pr 14 Fe 8 oB 6 alloy with Fe- ⁇ and FeB added or by mixing LA powders + MT + LA according to appropriate stoichiometric calculations to obtain a desired desired compound.
  • nanoscale powders with particle size between 10 and 1000 nm can be obtained.
  • the magnetic moment of the material may range from 60 Am 2 kg “1 to 50 Am 2 kg ⁇ 1.
  • Intrinsic coercivity may range from 4 kAm “ 1 to 70 kAm " .
  • the heating of the material can be controlled / modified by varying the chemical composition of the alloy, the milling time, the amount of surfactant added (oleic acid, for example), the speed of rotation, or by changing the frequency of the magnetic field or the amplitude of the external magnetic field applied to the powder.
  • the alloy desorption and recombination steps were performed at the same temperature, at 840 ° C and under vacuum (until it reached 10 "1 mbar) for 5 minutes and 30 seconds. Then, the pressurization vessel was removed from the oven and cooled quickly using a water-cooled copper coil.
  • the resulting material was transferred to a grinding vessel with spherical grinding bodies at a 10: 1 mass ratio. Cyclohexane and oleic acid (0.1% by weight relative to powder) were added. The grinding pot was closed and taken to a planetary ball mill where the process was carried out for 5 hours with the pot rotating at 900 rpm. After grinding, the powder was dried and characterized. The resulting material has a diameter of the order of 10 nm, as shown in Figure 8.
  • the magnetic properties obtained were: 13.3 kAm "1 of coercivity and magnetic saturation moment per mass unit of the order of 118 Am 2 kg " 1 , as shown in Figure 9.

Abstract

The invention, "nanoparticulate magnetic material for thermal applications", pertains to the field of specific uses or applications of nanostructures formed by individual manipulation of groups of atoms or molecules as discrete magnetic units composed of metals of the lanthanide group, and relates to a nanoparticulate material coated with an organic or inorganic compound, or with a combination thereof, for heating a localised point or a localized zone on an object exposed to an alternating magnetic field. The product consists of a particulate material, optionally including a biocompatible, organic and/or inorganic coating made from an alloy composed of at least one element of the lanthanide group (LA), at least one transition metal (MT) and at least one metalloid (ML), and represented by LA-MT-ML. The described material can be produced by a physical or a chemical process, or by a combination thereof, and has the novel and inventive feature of allowing the alloy to be heated in a controlled manner, alloy that can be produced from a mixture of pure elements, a mixture of alloys or by recycling already industrialised products. The product described in this patent can be used in applications requiring localised heating or localised magnetic features, such as resin or cement hardening, and in medical applications for the treatment of tumours or imaging diagnosis by means of contrast agents.

Description

MATERIAL MAGNÉTICO NANOPARTICULADO PARA APLICAÇÕES TÉRMICAS  NANOPARTICULATED MAGNETIC MATERIAL FOR THERMAL APPLICATIONS
A presente invenção, pertencente ao setor de usos específicos ou aplicações de nanoestruturas formadas por manipulação individual de grupos de átomos ou moléculas como unidades discretas magnéticas compostas de elementos do grupo dos lantanídeos, refere-se a material nanoparticulado recoberto por composto orgânico ou inorgânico ou suas combinações, para aquecimento ou geração de características magnéticas localizado de um objeto ou região localizada quando expostos a um campo magnético alternado. The present invention, pertaining to the sector of specific uses or applications of nanostructures formed by individual manipulation of groups of atoms or molecules as discrete magnetic units composed of lanthanide group elements, refers to nanoparticulate material coated with organic or inorganic compound or their combinations, for heating or generating localized magnetic characteristics of an object or localized region when exposed to an alternating magnetic field.
ESTADO DA TÉCNICA TECHNICAL STATE
Materiais magnéticos duros são frequentemente utilizados em motores eiétricos, colimadores de feixes eletrônicos em válvulas de microondas de potência e equipamentos de ressonância magnética. Em algumas aplicações, como no caso dos motores eiétricos, o material magnético duro pode estar exposto a um campo magnético alternado, existindo uma parcela de energia dissipada por este material, a partir da interação radiação eletromagnética- matéria, na forma de calor. Tal efeito é indesejado nos casos mencionados, embora constitua, sob condições específicas de amplitude e frequência de campo, uma possibilidade de aplicação em outros campos da tecnologia. Materiais magnéticos que apresentam uma satisfatória dissipação de energia, quando expostos a um campo magnético alternado, possuem aplicação em situações onde é necessário um aquecimento ou características magnéticas localizado, como na cura de compostos orgânicos ou mesmo no tratamento de câncer. A quantidade de energia dissipada depende do tipo de perda associada ao material: por histerese ou por relaxação. Uma explicação sobre ambos pode ser encontrada em lchiyanagi e colaboradores (Y. ICHIYANAGI et al. Study on increase in temperature of Co-Ti ferrite nanoparticles for magnetic hyperthermia treatment. Therm. Acta, DOI: 10.1016/j.tca.2011.02.012). Hard magnetic materials are often used in electric motors, electronic beam collimators in power microwave valves and magnetic resonance equipment. In some applications, as in the case of electric motors, the hard magnetic material may be exposed to an alternating magnetic field, with a portion of energy dissipated by this material from the interaction of electromagnetic radiation-matter in the form of heat. Such an effect is undesirable in the mentioned cases, although it is, under specific conditions of amplitude and field frequency, a possibility of application in other fields of technology. Magnetic materials that exhibit satisfactory energy dissipation when exposed to an alternating magnetic field have application in situations where localized heating or magnetic characteristics are required, such as healing organic compounds or even treating cancer. The amount of energy dissipated depends on the type of material loss: hysteresis or relaxation. An explanation of both can be found in lchiyanagi et al. (Y. ICHIYANAGI et al. Study on increasing temperature of Co-Ti ferrite nanoparticles for magnetic hyperthermia treatment. Therm. Acta, DOI: 10.1016 / j.tca.2011.02.012) .
A figura de mérito dos materiais empregados para aquecimento ou características magnéticas localizado, em geral na forma de pó, é chamada taxa de absorção volumétrica (TAV) e é definida como a quantidade de calor liberado por uma unidade de volume do composto, por unidade de tempo, durante a exposição a um campo magnético de frequência definida. A eficiência do aquecimento ou características magnéticas das partículas é ditada por uma variedade de fatores, sendo um deles a distribuição espacial das partículas magnéticas dentro da matriz. As partículas devem estar distribuídas uniformemente em toda a matriz para otimizar as interações magnéticas e para alcançar valores da taxa de absorção volumétrica máximos para cada partícula. The figure of merit of the materials used for heating or localized magnetic characteristics, usually in powder form, is called the volumetric absorption rate (TAV) and is defined as the amount of heat released. per unit volume of compound per unit time during exposure to a frequency-defined magnetic field. The heating efficiency or magnetic characteristics of the particles is dictated by a variety of factors, one being the spatial distribution of the magnetic particles within the matrix. The particles should be evenly distributed throughout the matrix to optimize magnetic interactions and to achieve maximum volumetric absorption rate values for each particle.
Com relação às restrições de aplicação, quando o aquecimento de cimentos ou epóxi é necessário para uma cura rápida e sem que haja aquecimento das superfícies ou de objetos próximos, partículas magnéticas são dispersas homogeneamente em todo o material de tal forma que, após aplicação de um campo magnético cíclico, resulte no aquecimento uniforme em todo volume do cimento, ao invés de apenas aquecimento de fora para dentro. Estudos na área de hipertermia, por exemplo, sugerem a existência de um limite do produto H.f, onde H é o campo magnético aplicado e f a frequência de H, ao qual o corpo humano pode ser exposto por questões fisiológicas. With respect to application restrictions, when heating of cement or epoxy is required for rapid curing and without heating of surfaces or nearby objects, magnetic particles are homogeneously dispersed throughout the material such that after application of a cyclic magnetic field results in uniform heating of the entire volume of cement, rather than just heating from the outside in. Studies in the area of hyperthermia, for example, suggest the existence of a limit of the product H.f, where H is the applied magnetic field and f the frequency of H, to which the human body may be exposed for physiological reasons.
De fato, o desenvolvimento de materiais magnéticos particulados em escala micro ou nanométrica para aplicações médicas tem sido estimulado em virtude da ausência de toxicidade associada ao processo de hipertermia, o que não ocorre na quimioterapia e na radioterapia; contudo, os materiais utilizados na técnica em questão devem ser avaliados â priori quanto a sua compatibilidade. Na hipertermia, o organismo deve ser aquecido até a temperatura em que ocorre a destruição das células doentes, mantendo-se o tecido saudável tão inalterado quanto possível. Para que o tratamento de hipertermia seja eficaz, é necessário localizar os tumores alvo e maximizar o aquecimento ou características magnéticas do local de destino, mantendo os limites operacionais de segurança para o paciente. Assim, partículas magnéticas podem ser direcionadas ao tecido desejado por injeção direta ou infusão intravenosa, e um campo magnético alternado gera calor nas partículas, consequentemente fazendo com que a temperatura do tumor se eleve até o limite terapêutico. As condições do campo magnético devem ser de modo a não causar interações com o tecido, mas apenas com as partículas magnéticas e desta forma somente o tecido que contém uma concentração de partículas magnéticas serão aquecidos. In fact, the development of micro- or nanometric-scale particulate magnetic materials for medical applications has been stimulated due to the absence of toxicity associated with the hyperthermia process, which does not occur in chemotherapy and radiotherapy; however, the materials used in the art in question should be evaluated a priori for compatibility. In hyperthermia, the body must be warmed to the temperature at which diseased cells are destroyed, keeping healthy tissue as unchanged as possible. For the treatment of hyperthermia to be effective, target tumors must be localized and the heating or magnetic characteristics of the target site maximized while maintaining safe operating limits for the patient. Thus, magnetic particles can be directed to the desired tissue by direct injection or intravenous infusion, and an alternating magnetic field generates heat in the particles, thereby causing the tumor temperature to rise to the therapeutic limit. Magnetic field conditions should be such that they do not cause interactions with the tissue, but only with magnetic particles and thus only tissue containing a concentration of magnetic particles will be heated.
Em geral, as partículas magnéticas investigadas ou testadas para hipertermia são constituídas por um óxido de ferro (FexOy) com ou sem presença de outros elementos químicos, como Zn, Ni e Co, e recobertas com um material orgânico ou inorgânico biocompatível. É comum que a preparação desses óxidos de ferro seja realizada por meio de processos químicos, tais como de co- precipitação, que necessitam de diversos reagentes químicos, um controle rígido de tempo, temperatura e pH da reação, alem de tratamentos térmicos e etapas adicionais de recobrimento superficial (T. KIKUCHI et al., Preparation of magnetite aqueous dispersion for magnetic fluid hyperthermia, J. Magn. Magn. Mat. 323(10) (201 1 ) p.1216; e D. L. ZHAO et al. Magnetic and inductive heating properties of Fe3O4/polyethylene glycol composite nanoparticles with core-shell structure, J. AH. Compd. 502(2) (2010) p. 392). Ademais, apesar da faixa de coercividade intrínseca situar-se na faixa de 8 kAm"1 (aproximadamente 100 Oe) a 24 kAm"1 (aproximadamente 300 Oe), considerada adequada para hipertermia por questões técnicas referentes a obtenção de tais campos, o momento magnético por unidade de massa (õs) é geralmente inferior a 60 Am2kg"1 (60 emu g"1) sem o material possuir o recobrimento, o que reduzirá ainda mais tal valor. É revelado no documento US 6.167.313 que a invenção proporciona um método aperfeiçoado para tratamento localizado e específico de tecido doente em um paciente, compreendendo as seguintes etapas: (i) selecionar pelo menos um material magnético que tenha uma eficiência magnética de aquecimento de cerca de 4.10"8 J.m/A.g, quando as condições do campo magnético são iguais ou inferiores que 7,5 x 07 A/m.s; (ii) transportar o material magnético até o tecido doente do paciente; e (iii) expondo o material magnético inserido no paciente à um campo magnético alternado com uma frequência superior a 10 kHz e uma intensidade de campo, tais que o produto da intensidade de campo, a frequência e o raio da região exposta seja inferior a cerca de 7.5.107 A/m.s para gerar o aquecimento no tecido doente. Preferivelmente, as etapas de (i) até (iii) do método acima são repetidas até que o tecido doente tenha sido destruído ou tratado de forma suficiente para amenizar a doença. Ainda, que partículas magnéticas são incorporadas a microcápsulas biocompatíveis que sejam administradas de modo que estas se concentrem em torno de uma rede vascular do tumor. Um campo magnético externo é aplicado e o calor liberado pelo material é conduzido ao tecido do tumor. O uso de microcápsulas adequadamente formuladas, as condições do campo magnético e dosagem destas partículas garantem que os tumores serão aquecidos a temperaturas letais, em torno de 42°C, e ao mesmo tempo poupando o tecido saudável. In general, magnetic particles investigated or tested for hyperthermia consist of an iron oxide (Fe x O y ) with or without the presence of other chemical elements, such as Zn, Ni and Co, and coated with a biocompatible organic or inorganic material. It is common for these iron oxides to be prepared by chemical processes, such as co-precipitation, which require various chemical reagents, tight control of reaction time, temperature and pH, as well as heat treatments and additional steps. surface coating (T. KIKUCHI et al., Preparation of aqueous magnetite dispersion for magnetic fluid hyperthermia, J. Magn. Magn. Mat. 323 (10) (201 1) p.1216; and DL ZHAO et al. Magnetic and inductive heating properties of Fe 3 O 4 / polyethylene glycol composite nanoparticles with core-shell structure, J. AH Compd 502 (2) (2010), p 392). Moreover, although the range of intrinsic coercivity is in the range of 8 kAm "1 (approximately 100 Oe) to 24 kAm " 1 (approximately 300 Oe), considered adequate for hyperthermia for technical reasons regarding obtaining such fields, Magnetic mass per unit ( s ) is generally less than 60 Am 2 kg "1 (60 emu g " 1 ) without the material coated, which will further reduce this value. It is disclosed in US 6,167,313 that the invention provides an improved method for localized and specific treatment of diseased tissue in a patient, comprising the following steps: (i) selecting at least one magnetic material having a magnetic heating efficiency of about 4.10 "8 Jm / Ag when magnetic field conditions are equal to or less than 7.5 x 0 7 A / ms; (ii) transport the magnetic material to the patient's diseased tissue; and (iii) exposing the material inserted into the patient at an alternating magnetic field of a frequency exceeding 10 kHz and a field strength such that the product of the field strength, the frequency and the radius of the exposed region is less than about 7.5.10 7 A / ms to generate warming in diseased tissue Preferably, steps (i) through (iii) of the above method are repeated until the diseased tissue has been destroyed or treated sufficiently to alleviate the disease. Further, which magnetic particles are incorporated into biocompatible microcapsules that are administered so that they concentrate around a tumor vascular network. An external magnetic field is applied and the heat released by the material is conducted to the tumor tissue. The use of properly formulated microcapsules, magnetic field conditions and dosage of these particles ensure that tumors will be heated to lethal temperatures of around 42 ° C while sparing healthy tissue.
O material utilizado é magnético com coercividade menor que 314 Oe, eficiência de aquecimento de 4,5.10"8 J.m/A.g e campo magnético cíclico em que o produto da amplitude e a frequência do campo aplicado seja inferior ou igual a 5.108 A/m.s, e a frequência do campo aplicado seja de pelo menos 20 kHz. O material utilizado pode ser uma magnetita (Fe304) ou óxido férrico-γ (v-Fe203) com uma rede cristalina nas quais alguns dos átomos de ferro tenham sido substituídos por um ou mais átomos de um metal alternativo. Desejavelmente, o átomo substituinte pode ser do grupo cobalto, zinco, níquel, manganês, magnésio, cobre, cromo, gálio ou cádmio, o material magnético deve ter uma morfologia cúbica ou esférica e um diâmetro entre 20 nm e 1 pm. The material used is magnetic with a coercivity of less than 314 Oe, a heating efficiency of 4.5.10 "8 Jm / Ag and a cyclic magnetic field where the amplitude product and applied field frequency is less than or equal to 5.10 8 A / ms , and the frequency of the applied field is at least 20 kHz. The material used may be a magnetite (Fe 3 0 4 ) or ferric oxide-γ (v-Fe 2 0 3 ) with a crystalline lattice in which some of the atoms of If the substituent atom can be from the cobalt, zinc, nickel, manganese, magnesium, copper, chromium, gallium or cadmium group, the magnetic material must have a cubic or and a diameter between 20 nm and 1 pm.
O documento de pedido de patente US 11/125.488 descreve que composições de nanopartículas magnéticas que geram calor têm sido utilizadas em aquecimento magnético, particularmente para aplicações em hipertermia magnética em tratamentos médicos, sendo prevista uma composição que inclua partículas nanomagnéticas que apresentem uma temperatura de Curie entre 40 e 46°C, preferivelmente 42°C. Em alguns experimentos, as partículas magnéticas incluem ligas de cobre e níquel (71 % em peso de níquel e 29% em peso de cobre), ferritas (ferrita de Zn, ferrita de Mn - Zn, Ferrita de Fe - Zn) ou composições (Mno,5Zn0,5GdxFe(2- x)04, onde 0 < x > 1 ,5; ZnxMn(1-x)Fe204, onde 0,6 < x > 0,8; Fe(i-x)ZnxFe204 onde 0,7 < x > 0,9; ou ZnGdxFe(2-X)04 onde 0,01 < x > 0,8) e, também, que em algumas publicações as partículas nanométricas possuem um diâmetro médio eficiente entre 5 nm e 400 nm, e encontram-se revestidas ou dispersas em um material polimérico biocompatível. Em alguns casos, a composição inclui ainda pelo menos um medicamento. US 11 / 125,488 discloses that heat-generating magnetic nanoparticle compositions have been used in magnetic heating, particularly for magnetic hyperthermia applications in medical treatments, and a composition comprising nanomagnetic particles having a Curie temperature is envisaged. 40 to 46 ° C, preferably 42 ° C. In some experiments, magnetic particles include copper and nickel alloys (71 wt% nickel and 29 wt% copper), ferrite (Zn ferrite, Mn - Zn ferrite, Fe - Zn ferrite) or compositions ( Mn , 5 Zn 0.5 Gd x Fe (2- x) 0 4 , where 0 <x> 1, 5; Zn x Mn (1-x) Fe 2 0 4 , where 0.6 <x> 0.8 Fe ( i- x) Zn x Fe 2 0 4 where 0.7 <x> 0.9, or ZnGd x Fe ( 2- X ) 0 4 where 0.01 <x> 0.8) and also that in some publications the nanometer particles have an efficient mean diameter between 5 nm and 400 nm, and are coated or dispersed in a material biocompatible polymeric In some cases, the composition further includes at least one medicament.
O documento sugere alguns métodos para tratamento de pacientes que necessitem do uso da técnica de hipertermia, sendo um deles o que inclui a administração de uma composição contendo nanopartículas magnéticas que possuem uma temperatura de Curie entre 40 e 46 °C e a exposição dessas partículas magnéticas a um campo magnético alternado eficaz para gerar o aquecimento. Ressalta-se que essa composição deve ser administrada a um tumor ou outras doenças relacionadas ao tecido do paciente. As nanopartículas magnéticas são administradas preferivelmente em um veículo farmaceuticamente aceitável. As partículas com a temperatura de Curie selecionada são misturadas numa suspensão líquida ou encapsuladas dentro de microcápsulas que podem então ser misturadas com um meio biocompatível adequado. Importantes propriedades destas microcápsulas são o diâmetro, que determina a proximidade da partícula no tecido doente, e a densidade, que afeta a eficiência do transporte da partícula pelo fluxo sanguíneo. Recobrimentos biocompatíveis têm sido utilizados para minimizar a interação metálica das partículas das ligas com os componentes biológicos do corpo, sendo que para uso in vivo o material polimérico além de biocompatível deve ser preferivelmente biodegradável. Exemplos de polímeros adequados para esta função são: etilceluloses, poliestirenos, poli (d, 1 - ácido lático) e poli (d, 1 ácido lático co- ácido glicólico). The paper suggests some methods for treating patients requiring the use of the hyperthermia technique, one of which includes administering a composition containing magnetic nanoparticles having a Curie temperature between 40 and 46 ° C and exposing these magnetic particles. to an alternating magnetic field effective to generate the heating. It is emphasized that this composition should be administered to a tumor or other tissue-related diseases of the patient. Magnetic nanoparticles are preferably administered in a pharmaceutically acceptable carrier. Particles of the selected Curie temperature are either mixed in a liquid suspension or encapsulated within microcapsules which may then be mixed with a suitable biocompatible medium. Important properties of these microcapsules are diameter, which determines the proximity of the particle in diseased tissue, and density, which affects the efficiency of particle transport through blood flow. Biocompatible coatings have been used to minimize the metallic interaction of alloy particles with the body's biological components, and for in vivo use the biocompatible polymeric material should preferably be biodegradable. Examples of suitable polymers for this function are: ethylcelluloses, polystyrenes, poly (d, 1 - lactic acid) and poly (d, 1 lactic acid co-glycolic acid).
As nanopartículas podem ser obtidas a partir de várias técnicas, como (a) formando por fusão um material que contenha pelo menos dois metais diferentes e, após a solidificação, sujeitando as partículas a um processo de moagem; ou (b) por co-precipitação química. Nanoparticles may be obtained by various techniques, such as (a) by melting a material containing at least two different metals and, after solidification, subjecting the particles to a milling process; or (b) by chemical co-precipitation.
Em geral, as partículas magnéticas são óxidos de ferro recobertos com um polímero, tal como dextran (polissacarídeo). Embora tais complexos tenham sido utilizados in vitro, qualquer utilização in vivo tem sido limitada devido à desagregação do revestimento polimérico dentro do corpo. In general, magnetic particles are polymer-coated iron oxides, such as dextran (polysaccharide). Although such complexes have been used in vitro, any use in vivo has been limited due to the breakdown of the polymeric coating within the body.
O documento US 10/543.063 revela uma composição de micropartículas compreendendo partículas magnéticas e uma matriz, a qual deve possuir ao menos uma das seguintes propriedades: (a) uma taxa de absorção volumétrica ao menos em torno de 10 W/cm3, sujeita às condições de campo apropriado; (b) uma densidade menor ou igual a 2,7 g/cm3; ou (c) um tamanho na faixa de 100 nm até 200 pm. US 10 / 543,063 discloses a microparticle composition comprising magnetic particles and a matrix which must be have at least one of the following properties: (a) a volumetric absorption rate of at least about 10 W / cm 3 , subject to appropriate field conditions; (b) a density less than or equal to 2.7 g / cm 3 ; or (c) a size in the range 100 nm to 200 pm.
Adequadas condições de campo dependerão da natureza do objeto a ser aquecido e do nível da taxa de absorção volumétrica selecionado. No caso das composições de micropartículas para aplicação em terapia humana, a TAV deve ser de pelo menos 10 W/cm3, quando exposto a um campo magnético alternado, preferivelmente, entre 60 e 120 Oe, e a frequência entre cerca de 50 a 300 kHz. Proper field conditions will depend on the nature of the object to be heated and the level of the selected volumetric absorption rate. In the case of microparticle compositions for human therapy application, the TAV should be at least 10 W / cm 3 when exposed to an alternating magnetic field, preferably between 60 and 120 Oe, and the frequency between about 50 and 300 ° C. kHz.
As partículas das composições do documento US 10/543.063 são superparamagnéticas. O termo superparamagnético se destina a partículas magnéticas que não apresentam as propriedades de remanência, coercividade ou curva de histerese. Assim, as taxas de aquecimento volumétricas decorrentes das composições das micropartículas não é resultado do aquecimento da histerese, e sim de um mecanismo físico chamado relaxação de Néel.  The particles of the compositions of US 10 / 543,063 are superparamagnetic. The term superparamagnetic is intended for magnetic particles that do not have the properties of remnant, coercivity or hysteresis curve. Thus, the volumetric heating rates resulting from the microparticle compositions are not the result of the hysteresis heating, but rather a physical mechanism called Néel relaxation.
É conhecido do documento US 10/543.063 que as partículas superparamagnéticas são de preferência de tamanho nanométrico e selecionadas dentro do grupo das ferritas com a fórmula geral MO.Fe203, onde M é um metal bivalente, como: Fe, Co, Ni, Mn, Be, Mg, Ca, Ba, Sr, Cu, Zn, Pt, ou óxidos do tipo M0.6Fe203, onde M é um íon bivalente grande, como ferro metálico, cobalto ou níquel. Estas partículas podem ser ainda, de Fe, Ni, Cr ou Co puros ou em óxidos. It is known from US 10 / 543,063 document that the superparamagnetic particles are preferably nanometer size selected within the group of ferrites with the general formula MO.Fe 2 0 3 where M is a divalent metal such as Fe, Co, Ni Mn, Be, Mg, Ca, Ba, Sr, Cu, Zn, Pt, or oxides of the type M0.6Fe20 3, where M is a large divalent ion such as metallic iron, cobalt or nickel. These particles may also be of Fe, Ni, Cr or Co or in oxides.
O documento US 11/235.631 descreve um material nanoparticulado composto por um núcleo de partículas magnéticas revestidas com um ácido graxo e surfactante, e método de processamento.  US 11 / 235,631 discloses a nanoparticulate material composed of a fatty acid-coated magnetic particle core and surfactant, and method of processing.
O material que forma o núcleo pode ser qualquer metal ou uma combinação de metais incluindo ferro, cobalto, zinco, cádmio, níquel, gadolínio, cromo, cobre, manganês e seus óxidos e, uma partícula magnética pode ser composta de uma liga com um metal como ouro, platina, prata ou cobre. O documento ainda prevê que a partícula magnética pode ser um composto de íon metálico livre, um óxido de metal ou um composto insolúvel do metal. Para preparar partículas magnéticas com alta polarização de saturação (Js), foi empregada uma técnica de condensação por gás-inerte. Nanopartículas à base de ferro produzidas por condensação por gás-inerte exibiram um tamanho médio de 1 1 ,6 nm, enquanto nanopartículas à base de cobalto apresentaram um tamanho médio de 42 nm. The core material may be any metal or a combination of metals including iron, cobalt, zinc, cadmium, nickel, gadolinium, chrome, copper, manganese and their oxides, and a magnetic particle may be composed of an alloy with a metal. like gold, platinum, silver or copper. The document further provides that the magnetic particle may be a free metal ion compound, a metal oxide or an insoluble metal compound. To prepare high saturation polarization (Js) magnetic particles, an inert gas condensation technique was employed. Iron-based nanoparticles produced by inert gas condensation exhibited an average size of 11.6 nm, while cobalt-based nanoparticles had an average size of 42 nm.
O ácido graxo tem várias funções, como a proteção do núcleo de partículas magnéticas da oxidação e / ou hidrólise na presença de água, que pode reduzir significativamente a magnetização das nanopartículas; estabilizar o núcleo de nanopartículas; melhorar a biocompatibilidade; e, servir como uma interface para a fixação dos grupos hidrofóbicos do surfactante. O ácido graxo pode ser aplicado como uma monocamada onde a espessura é projetada, controlando o comprimento da cadeia de acordo com a porcentagem adicionada às nanopartículas metálicas. A quantidade de ácido graxo utilizada, geralmente, é de 5 a 40% em relação ao peso das partículas magnéticas. No entanto, prevê-se que altas porcentagens de ácidos graxos aplicados resultem em múltiplas camadas de recobrimento. Fatty acid has several functions, such as protecting the nucleus of magnetic particles from oxidation and / or hydrolysis in the presence of water, which can significantly reduce magnetization of nanoparticles; stabilize the nanoparticle core; improve biocompatibility; and, serve as an interface for the attachment of surfactant hydrophobic groups. Fatty acid can be applied as a monolayer where the thickness is projected, controlling the length of the chain according to the percentage added to the metal nanoparticles. The amount of fatty acid used is generally 5 to 40% by weight of the magnetic particles. However, high percentages of applied fatty acids are expected to result in multiple coating layers.
Diversos recobrimentos do núcleo também podem ser utilizados, tais como alginatos, gelatina de origem animal, polialcanoatos e outros biopolímeros. Various core coatings may also be used, such as alginates, animal gelatin, polyalkanoates and other biopolymers.
De acordo com o documento US 11/235.631 , composições de nanopartículas produzidas em conformidade com a invenção podem ser utilizadas em uma variedade de aplicações, incluindo a distribuição de agentes terapêuticos para prevenção e tratamento de doenças localizadas, aquecimento de tumores por meio de nanopartículas magnéticas, ou em contraste para obtenção de melhor resolução na ressonância magnética por imagem. Como mostrado em WO 2009137889, grânulos de polímeros incorporando partículas magnéticas são conhecidos pelo estado da técnica e ao longo dos anos diversos processos foram desenvolvidos para sua produção. According to US 11 / 235,631, nanoparticle compositions produced in accordance with the invention may be used in a variety of applications, including the delivery of therapeutic agents for the prevention and treatment of localized diseases, tumor heating by magnetic nanoparticles. , or in contrast for better resolution on magnetic resonance imaging. As shown in WO 2009137889, polymer granules incorporating magnetic particles are known by the state of the art and over the years various processes have been developed for their production.
Este documento trata de grânulos poliméricos de microgel tendo uma matriz polimérica com partículas magnéticas uniformemente dispersas, onde um estabilizador estérico é associado com a partícula, sendo o estabilizador estérico um material polimérico que não faz parte da matriz polimérica dos grânulos, e a nanopartícula magnética é formada por ferro, níquel, cromo, cobalto ou seus óxidos, preferivelmente magnetita (Fe304) ou magmita (gama -Fe203). This document deals with microgel polymeric granules having a polymer matrix with uniformly dispersed magnetic particles, where a steric stabilizer is associated with the particle, the steric stabilizer being a polymeric material that is not part of the polymeric matrix of the particles. beads, and magnetic nanoparticle is formed by iron, nickel, chromium, cobalt or their oxides, preferably magnetite (Fe 3 0 4) or magmita (gamma - Fe 2 03).
O produto é utilizado como composição para o tratamento por hipertermia realizada em um local alvo de interesse, tais como tecido canceroso e em aplicações biomédicas e diagnósticos por imagem utilizando contrastes, tais como indução de hipertermia no tecido para aplicação em ensaios de imunidade.  The product is used as a composition for the treatment of hyperthermia performed at a target site of interest such as cancerous tissue and for biomedical and diagnostic imaging applications using contrasts such as tissue hyperthermia induction for application in immunity assays.
"Processo de recuperação de liga lantanídeo-metal-metalóide em pó nanoparticulado com recuperação magnética e produto", protocolado em 01/07/2011 sob n° 018110024898 no Instituto Nacional da Propriedade Intelectual - INPI (Brasil), tendo como titular o Instituto de Pesquisas Tecnológicas do Estado de São Paulo - IPT. Este pedido de patente apresenta o processo utilizado para preparação do material particulado revelado nesta invenção.  "Recovery process of lanthanide-metal-metalloid alloy in nanoparticulate powder with magnetic recovery and product", filed on 07/01/2011 under No. 018110024898 at the National Institute of Intellectual Property - INPI (Brazil), with the Institute of Technological Research of the State of São Paulo - IPT. This patent application discloses the process used for preparing the particulate material disclosed in this invention.
SUMÁRIO DA INVENÇÃO  SUMMARY OF THE INVENTION
O produto consiste em um material particulado, com ou sem a presença de um recobrimento biocompatível orgânico e/ou inorgânico: ácidos graxos, como o ácido oleico, polissacarídeos, proteína de origem animal ou vegetal, quitosana, gomas (goma arábica, goma xantana, goma guar, goma carragena, goma de cajueiro, goma tara, goma tragacante, goma Karaya, goma gati), derivados de celulose (carboximetil celulose, carboxietil celulose, etc), polivinilpirrolidona, poli(meta)acrilatos, poli(meta)acrilamidas, poliésteres, polivinilcaprolactamas, poliamidas, álcool polivinílico ou blendas desses polímeros, proveniente de uma liga composta por pelo menos um elemento do grupo dos lantanídeos (LA), pelo menos um metal de transição (MT) e pelo menos um metalóide (ML). Esta liga será representada por LA-MT-ML. O material descrito pode ser obtido por meio de um processo físico, químico ou uma combinação de ambos, e tem como novidade e atividade inventiva o controle do aquecimento ou características magnéticas da liga, que pode ser obtido a partir da mistura de elementos puros, misturas de ligas ou reciclagem de produtos já industrializados, podendo ser empregado em aplicações onde o aquecimento localizado é necessário como, por exemplo, nas curas de resinas e cimentos e em aplicações para o tratamento de tecidos cancerosos e aplicações biomédicas e diagnósticos por imagem utilizando contrastes. DESCRIÇÃO DOS DESENHOS The product consists of a particulate material, with or without the presence of an organic and / or inorganic biocompatible coating: fatty acids such as oleic acid, polysaccharides, animal or vegetable protein, chitosan, gums (gum arabic, xanthan gum, guar gum, carrageenan gum, cashew gum, tara gum, tragacanth gum, Karaya gum, gati gum), cellulose derivatives (carboxymethyl cellulose, carboxyethyl cellulose, etc.), polyvinylpyrrolidone, poly (meta) acrylates, poly (meta) acrylamides, polyesters, polyvinylcaprolactams, polyamides, polyvinyl alcohol or blends of such polymers, derived from an alloy composed of at least one element of the lanthanide group (LA), at least one transition metal (MT) and at least one metalloid (ML). This league will be represented by LA-MT-ML. The described material may be obtained by a physical, chemical or a combination of both, and its novelty and inventive activity is to control the heat or magnetic characteristics of the alloy, which may be obtained by mixing pure elements, mixtures. It can be used in applications where localized heating is required, for example in resin and cement cures and in applications for the treatment of cancerous tissues and biomedical and diagnostic imaging applications using contrasts. DESCRIPTION OF DRAWINGS
Figura 1 - Gráfico da relação entre as propriedades magnéticas (momento magnético por unidade de massa a μ0Η = 2T e coercividade intrínseca) em função do tempo de moagem. Figura 2 - Difratogramas de raios-X apresentado a evolução estrutural do material particulado preparado com diferentes tempos de moagem. Figure 1 - Graph of the relationship between magnetic properties (magnetic moment per unit mass at μ 0 Η = 2T and intrinsic coercivity) as a function of milling time. Figure 2 - X-ray diffractograms showing the structural evolution of the particulate material prepared with different milling times.
Figura 3 - Fotografias obtidas em microscópio eletrônico de varredura (10.000x) mostrando partículas obtidas com diferentes tempos de moagem: (a) 10 minutos e (b) 10 horas. Figura 4 - Fotografias obtidas em microscópio eletrônico de varredura (100.000x) mostrando partículas obtidas com diferentes tempos de moagem: (a) 10 minutos e (b) 10 horas. Figure 3 - Photographs taken by scanning electron microscope (10,000x) showing particles obtained with different grinding times: (a) 10 minutes and (b) 10 hours. Figure 4 - Photographs taken by scanning electron microscope (100,000x) showing particles obtained with different grinding times: (a) 10 minutes and (b) 10 hours.
Figura 5 - Fotografias obtidas em microscópio eletrônico de transmissão mostrando partículas obtidas com tempo de moagem de 10 horas: (a) três partículas (b) destaque em uma das partículas mostradas em (a). Figure 5 - Transmission electron microscope photographs showing particles obtained with grinding time of 10 hours: (a) three particles (b) highlighted in one of the particles shown in (a).
Figura 6 - Variação do aumento da temperatura em função do tempo de moagem empregado para a obtenção das partículas. Figure 6 - Variation of the temperature increase as a function of the grinding time employed to obtain the particles.
Figura 7 - Gráfico de teste de citotoxicidade em duas amostras. Figure 7 - Graph of cytotoxicity test in two samples.
Figura 8 - Fotografia obtida em microscópio eletrônico de transmissão de uma partícula de Pr8Fe86B6 obtida após moagem de alta energia durante 5 horas. Figure 8 - Photograph taken by transmission electron microscope of a Pr 8 Fe86B6 particle obtained after high energy milling for 5 hours.
Figura 9 - Curva de histerese pó com composição nominal Pr8Fe86B6, após moagem de 900 rpm durante 5 horas. Figure 9 - Curing of hysteresis powder with nominal composition Pr 8 Fe86B 6 , after grinding at 900 rpm for 5 hours.
Figura 10 - Difratogramas de raios X dos pós à base de Pr8Fe86B6 em função do tempo de moagem. Figure 10 - X-ray diffractograms of Pr 8 Fe 86 B6 powders as a function of milling time.
Figura 1 1 - Perfil de aquecimento pó de composição nominal Pr8Fe86B6 processado a 900 rpm durante 5 horas. Figure 1 1 - Heating profile Powder of nominal composition Pr 8 Fe 86 B 6 processed at 900 rpm for 5 hours.
Figura 12 - Perfil de aquecimento pó de composição nominal Pri2Fe82B6 processado a 900 rpm durante 5 horas. Figura 13 - Curva de histerese do pó magnético de composição nominal Pri2Fe82B6, após moagem de 900 rpm durante 5 horas. Figure 12 - Heating profile Pri2Fe 82 B 6 nominal composition powder processed at 900 rpm for 5 hours. Figure 13 - Hysteresis curve of magnetic powder of nominal composition Pri 2 Fe 8 2B6 after grinding at 900 rpm for 5 hours.
DETALHAMENTO DA INVENÇÃO  DETAIL OF THE INVENTION
O processo de preparação do pó em escala nanométrica pode envolver um processo físico, químico ou uma combinação de ambos. Abaixo, é descrito um processo físico e metodologia de verificação de citotoxidade.  The nanoscale powder preparation process may involve a physical, chemical process or a combination of both. Below is a physical process and methodology for verifying cytotoxicity.
A. Preparação de partículas nanométricas a partir de ímãs sinterizados industriais descartados  A. Preparation of Nanometric Particles from Discarded Industrial Sintered Magnets
Dentre os processos existentes no estado da técnica para produção das partículas, pode-se adotar o processo a partir de ímãs sinterizados industriais descartados, como o "Processo de recuperação de liga lantanídeo-metal- metalóide em pó nanoparticulado com recuperação magnética e produto", protocolado em 01/07/2011 sob n° 018110024898 no Instituto Nacional da Propriedade Intelectual - INPI (Brasil), tendo o Instituto de Pesquisas Tecnológicas do Estado de São Paulo - IPT como titular, ou a partir da produção da liga magnética.  Among the state-of-the-art processes for particle production, the process can be adopted from discarded industrial sintered magnets, such as the "Magnetic Recovery Nanoparticulate Powder Lanthanide-Metal-Metalloid Alloy Recovery Process", filed on July 1, 2011 under No. 018110024898 at the National Institute of Intellectual Property - INPI (Brazil), with the Institute of Technological Research of the State of São Paulo - IPT as the holder, or from the production of magnetic alloy.
Este processo é iniciado com a desmagnetização via tratamento térmico, utilizando uma temperatura superior àquela da temperatura de Curie do composto LA-MT-ML, e o tempo do tratamento térmico deve ser tão longo quanto necessário para a estabilização da temperatura nas peças. A atmosfera do tratamento térmico pode ser oxidante ou inerte. A composição química da liga utilizada como material de partida deve ser tal que a fase LA2-MTi4-ML (geralmente Nd2Fe14B, mas não exclusivamente) esteja presente em pelo menos 10% do volume do material utilizado. This process is initiated with heat treatment demagnetization using a temperature higher than that of the Curie temperature of the LA-MT-ML compound, and the heat treatment time should be as long as necessary for temperature stabilization on the parts. The heat treatment atmosphere may be oxidizing or inert. The chemical composition of the alloy used as a starting material should be such that the LA 2 -MTi 4 -ML phase (usually Nd 2 Fe 14 B, but not exclusively) is present in at least 10% of the volume of material used.
Após a etapa de desmagnetização, o recobrimento superficial das peças tratadas termicamente deve ser retirado utilizando meios químicos como, por exemplo, solventes ou físicos como, por exemplo, lixamento. Este segundo processo foi utilizado na presente invenção.  After the demagnetization step, the surface coating of heat treated parts should be removed using chemical means such as solvents or physical means such as sanding. This second process was used in the present invention.
Em seguida, os ímãs sinterizados sem recobrimento superficial devem ser inseridos em um vaso de pressurização, que deve estar conectado a uma linha de gás para a inserção de hidrogénio ou qualquer outro gás de possua hidrogénio em sua composição, bem como a um sistema de bombeamento de gás como, por exemplo, uma bomba de vácuo mecânica. O vaso de pressurização deve ser fabricado com um material que não absorva qualquer tipo de gás. Tal sistema pode ser considerado um forno, cujas extremidades possam ser lacradas. Then sintered magnets without surface coating should be inserted into a pressurization vessel, which must be connected to a gas line for the insertion of hydrogen or any other gas having hydrogen in its composition, as well as to a gas pumping system such as a mechanical vacuum pump. The pressure vessel must be made of a material that does not absorb any kind of gas. Such a system may be considered an oven, the ends of which may be sealed.
Uma vez que o sistema de pressurização esteja lacrado, deve-se inserir hidrogénio ou qualquer outro gás que contenha hidrogénio em sua composição, preferivelmente hidrogénio de alto grau de pureza. A temperatura de inserção de hidrogénio deve ser entre 25 °C e 180 °C, preferivelmente 100 °C, e a pressão inicial de hidrogénio deve estar entre 0,1 atm e 10,0 atm, preferivelmente 2,0 atm. O tempo de exposição do material ao hidrogénio é de 10 minutos a 180 minutos, preferivelmente 60 minutos.  Once the pressurization system is sealed, hydrogen or any other hydrogen-containing gas should be inserted into its composition, preferably high purity hydrogen. The hydrogen insertion temperature should be between 25 ° C and 180 ° C, preferably 100 ° C, and the initial hydrogen pressure should be between 0.1 atm and 10.0 atm, preferably 2.0 atm. The exposure time of the material to hydrogen is from 10 minutes to 180 minutes, preferably 60 minutes.
Após esta etapa, o material final deve apresentar hidrogénio em sua composição, além dos elementos lantanídeo, metal de transição e metaloide, onde a quantidade de hidrogénio dependerá das condições em que o processo de hidrogenação foi realizado. After this step, the final material must have hydrogen in its composition, in addition to the lanthanide, transition metal and metalloid elements, where the amount of hydrogen will depend on the conditions under which the hydrogenation process was performed.
Após a completa absorção de hidrogénio pelos ímãs sinterizados, o sistema de pressurização deve ser aberto e o material resultante deve ser transferido a um equipamento de moagem. A etapa de cominuição deve ocorrer em qualquer tipo de equipamento de moagem, preferivelmente em um moinho de bolas tipo planetário. A relação de massas entre os corpos moedores e o material a ser moído pode variar de 1 : 1 até 100:1 , preferivelmente de 20: 1 , e os corpos moedores podem apresentar qualquer forma geométrica, preferivelmente esférica. A mistura de material hidrogenado e corpos moedores deve estar imersa em um líquido capaz de proteger o material particulado de oxidação, portanto qualquer líquido que não contenha oxigénio em sua composição pode ser utilizado, preferivelmente ciclohexano. Pode-se também adicionar um surfactante de forma a se evitar a soldagem das partículas durante a etapa de moagem, preferivelmente ácido oléico, na proporção de 0,01 % a 10% em massa de material particulado, preferivelmente 0, 1 % em massa. O tempo de moagem pode variar entre 5 minutos e 50 horas, preferivelmente entre 3 horas e 20 horas, mais preferivelmente 10 horas. A velocidade rotacional do processo de moagem pode variar entre 100 e 1200 rpm, preferivelmente 900 rpm. O ácido oléico permanencerá envolvendo as partículas evitando a oxidação após a moagem. After complete absorption of hydrogen by the sintered magnets, the pressurization system must be opened and the resulting material transferred to a milling equipment. The comminution step should occur on any type of grinding equipment, preferably in a planetary ball mill. The mass ratio of the grinding bodies to the material to be ground may range from 1: 1 to 100: 1, preferably from 20: 1, and the grinding bodies may be of any geometric shape, preferably spherical. The mixture of hydrogenated material and grinding bodies must be immersed in a liquid capable of protecting the particulate material from oxidation, so any non-oxygen containing liquid can be used, preferably cyclohexane. A surfactant may also be added to prevent particle welding during the milling step, preferably oleic acid, in the proportion of 0.01% to 10% by weight of particulate material, preferably 0.1% by weight. Grinding time may range from 5 minutes to 50 hours, preferably from 3 hours to 20 hours, more preferably 10 hours. The rotational speed of the milling process may range from 100 to 1200 rpm, preferably 900 rpm. Oleic acid will remain surrounding the particles avoiding oxidation after grinding.
Durante a etapa de moagem ocorrerá o aquecimento do material particulado, podendo ocasionar a desproporção da fase LA2-MTi -ML. Tal fato significa que existe uma possível separação da fase magneticamente dura, gerando como possíveis novas fases hidretos do elemento lantanídeo, Fe2B, FesB e outros compostos metaestáveis. During the grinding stage, the particulate material will heat up and may lead to disproportionate phase LA 2 -MTi -ML. This means that there is a possible separation of the magnetically hard phase, generating as possible new hydride phases of the lanthanide element, Fe2B, FesB and other metastable compounds.
Com base nas condições descritas acima, é possível preparar um pó em escala nanométrica, com tamanho de partícula que varia entre 10 e 1000 nm, momento magnético entre 60 Am2kg"1 e 130 Am2kg"1 e coercividade intrínseca entre 4 kAm" até 70 kAm" . O material nanométrico obtido deve ser exposto a um campo magnético alternado com intensidade entre 8 kAm"1 e 55.7 kAm"1 e frequência entre 10 kHz e 700 kHz. O aquecimento do material descrito pode ser modificado a partir das condições empregadas na preparação do pó, bem como das condições experimentais do ensaio. Com relação ao primeiro caso, pode-se modificar, por exemplo, as variáveis de processo, como o tempo de moagem, a rotação do pote de moagem e a quantidade de ácido oléico, todos individualmente ou em conjunto. Referente ao segundo caso pode-se alterar a amplitude do campo magnético aplicado nas partículas magnéticas ou a frequência do campo magnético. Based on the conditions described above, it is possible to prepare a nanoscale powder with particle size ranging from 10 to 1000 nm, magnetic moment between 60 Am 2 kg "1 and 130 Am 2 kg " 1 and intrinsic coercivity between 4 kAm " up to 70 kAm " . The nanometric material obtained shall be exposed to an alternating magnetic field with an intensity between 8 kAm "1 and 55.7 kAm " 1 and a frequency between 10 kHz and 700 kHz. The heating of the described material may be modified from the conditions employed in the preparation of the powder as well as the experimental conditions of the assay. For the first case, for example, process variables such as milling time, milling pot rotation and the amount of oleic acid can be modified individually or together. Referring to the second case one can change the amplitude of the magnetic field applied to the magnetic particles or the frequency of the magnetic field.
B - Ensaio de Citotoxicidade B - Cytotoxicity Assay
A atividade citotóxica de duas amostras diferentes moídas durante 3 horas ou 10 horas (identificadas como H3 e H10, respectivamente) foram avaliadas através do ensaio com MTT [3-(4,5-dimetyl-2-thiazolyl-2,5-diphenyl-2H- tetrazolium bromide)]. O MTT é um sal de coloração amarela capaz de captar elétrons da cadeia transportadores de elétrons, em uma reação de oxi-redução. Ao ser reduzido por enzimas desidrogenases de células metabolicamente viáveis forma cristais de coloração roxa, o Formazan. Esses cristais Formazan são insolúveis em água e apresentam pico de absorção em 570 nm. Todas as células foram cultivadas em estufa de CO2 (5% CO2 - Cole Parmer) com atmosfera úmida à 37 °C, em meio Essencial de Eagle Modificado por Dubelcco's (DMEM) suplementado com 10% (em volume) de soro fetal bovino (SFB) e 1 % de penicilina/estreptomicina (meio DMEM completo). Ao atingirem 80% de confluência, as células foram tripsinizadas (expansão celular) e a viabilidade celular foi avaliada através da exclusão do azul de Tripan. The cytotoxic activity of two different samples ground for 3 hours or 10 hours (identified as H3 and H10, respectively) was assessed by the MTT [3- (4,5-dimethyl-2-thiazolyl-2,5-diphenyl- 2H-tetrazolium bromide)]. MTT is a yellow-colored salt capable of capturing electrons from the electron transport chain in an oxy-reduction reaction. When reduced by metabolically viable cell dehydrogenase enzymes, it forms purple-colored crystals, Formazan. These Formazan crystals are water insoluble and have an absorption peak at 570 nm. All cells were grown in a CO2 greenhouse (5% CO2 - Cole Parmer) in a humid atmosphere at 37 ° C in Dubelcco's Modified Eagle's Essential Medium (DMEM) supplemented with 10% (by volume) fetal bovine serum (SFB). ) and 1% penicillin / streptomycin (complete DMEM medium). Upon reaching 80% confluence, the cells were trypsinized (cell expansion) and cell viability was assessed by Trypan blue exclusion.
O azul de Tripan é um corante de alto peso molecular que só é capaz de entrar em células mortas ou que possuem a permeabilidade de membrana aumentada. A avaliação da viabilidade celular através da exclusão do azul de Tripan consiste em incubar as células por 1 minuto com este corante e quantificá-las com o auxílio de uma câmara de Neubauer. Células vivas em perfeito estado (membrana impermeável) permanecem incolores e células mortas ou com a permeabilidade de membrana aumentada são visualizadas em azul. As células viáveis (incolores) foram utilizadas nos experimentos (faixa de passagem: 5-20). Trypan blue is a high molecular weight dye that is only able to enter dead cells or that have increased membrane permeability. The assessment of cell viability by Trypan blue exclusion consists of incubating the cells for 1 minute with this dye and quantifying them with the aid of a Neubauer chamber. Perfectly alive living cells (impermeable membrane) remain colorless and dead cells or with increased membrane permeability are displayed in blue. Viable (colorless) cells were used in the experiments (passage range: 5-20).
As células MRC-5 fibroblasto pulmonar humano foram semeadas em placas de cultura de 2000 células/poço, em placa de 96 poços e incubadas por 24 horas para aderência. Decorrido esse tempo, diferentes concentrações das amostras H3 e H10 (200; 100; 50; 10 e 1 Mg/mL), foram adicionadas às células aderidas. Em seguida, as células foram novamente incubadas por mais 48 horas. Após este tempo, as células foram incubadas com o MTT (0,5 mg/mL) durante 4 horas, ao abrigo da luz. Posteriormente, o sobrenadante contendo MTT foi retirado e 100 μΙ de DMSO foram colocados em cada poço para solubilizar os cristais de Formazan. As amostras foram medidas por espectrofotometria em um leitor de microplaca UV-visível a 570 nm. A fração de sobrevivência foi calculada como porcentagem do controle (Absorbância no controle = 100% de sobrevivência). Os experimentos foram feitos em quadruplicatas. O valor do IC50 (concentração do composto que produziu 50% de morte celular) dos compostos Culac, Lac, Lacm, Lacpt, foram determinados graficamente. Os aspectos morforlógicos das células MRC-5 foram analisados pela observação ao microscópio óptico das células controle e das tratadas com as amostras H3 e H 10. Foram realizados, em paralelo, testes usando dimetilsulfóxido (DMSO) como controle negativo, pois H3 e H10 foram pré-dissolvidas em DMSO a 0,5%. Human pulmonary fibroblast MRC-5 cells were seeded in 2000 cell / well culture plates, 96-well plate and incubated for 24 hours for adherence. After this time, different concentrations of samples H3 and H10 (200; 100; 50; 10 and 1 Mg / mL) were added to the adhered cells. Then the cells were incubated again for a further 48 hours. After this time, cells were incubated with MTT (0.5 mg / mL) for 4 hours in the dark. Subsequently, the MTT-containing supernatant was removed and 100 μΙ DMSO were placed in each well to solubilize Formazan crystals. Samples were measured by spectrophotometry on a UV-visible microplate reader at 570 nm. The survival fraction was calculated as a percentage of control (Absorbance in control = 100% survival). The experiments were done in quadruplicates. The IC 50 value (concentration of compound that produced 50% cell death) of Culac, Lac, Lacm, Lacpt compounds were determined graphically. Morphological aspects of MRC-5 cells were analyzed by optical microscopic observation of control cells and those treated with H3 and H 10. Tests were performed in parallel using dimethylsulfoxide (DMSO) as negative control, as H3 and H10 were pre-dissolved in 0.5% DMSO.
EXEMPLO 1 EXAMPLE 1
Dez gramas do composto Ndi4,5Fe79B6,5 foi hidrogenado com pressão inicial de hidrogénio de alta pureza de 2,0 atm em um vaso de pressurização a uma temperatura de 100 °C durante 60 minutos. Encerrada esta etapa, o material foi transferido para um pote de moagem com corpos moedores esféricos na proporção de massas 20:1. Foi adicionado ao conjunto ciciohexano e ácido oléico (este último na proporção 0, 1 % em massa de material particulado). O pote de moagem foi fechado e levado a um moinho de bolas do tipo planetário, onde o processo foi realizado durante 0 horas à 900 rotações por minuto. Ten grams of the compound Ndi 4, 6 5Fe79B 5 was hydrogenated with an initial pressure of high purity hydrogen of 2.0 atm in a pressurized vessel at a temperature of 100 ° C for 60 minutes. At the end of this step, the material was transferred to a grinding pot with spherical grinding bodies at a 20: 1 mass ratio. Cyclohexane and oleic acid (the latter in the proportion 0.1% by weight of particulate material) were added to the pool. The grinding pot was closed and taken to a planetary ball mill where the process was carried out for 0 hours at 900 revolutions per minute.
Em seguida, o material foi seco e caracterizado. Then the material was dried and characterized.
O material consiste de nanopartículas de ferro juntamente com outras fases que apresentam em sua composição Nd e B. As partículas magnéticas tem tamanho variando entre 25nm e 100nm, apresentam um momento magnético por unidade de massa da ordem de 70 Am2kg"1 e coercividade intrínseca da ordem de 8 kAm" . A influência do tempo de moagem sobre as propriedades magnéticas dos pós preparados é mostrada na Figura . Na Figura 2, apresentam-se os difratogramas de raios-X dos materiais moídos. Verifica-se que, após 15 minutos, ocorre uma variação dos picos presentes, indicando a existência do processo de desproporção, conforme mencionado anteriormente. As figuras 3, 4 e 5 apresentam os aglomerados e as partículas obtidas após 10 minutos e 10 horas de moagem. The material consists of iron nanoparticles along with other phases that have in their composition Nd and B. The magnetic particles have a size ranging between 25nm and 100nm, have a magnetic moment per unit mass of the order of 70 Am 2 kg "1 and coercivity. 8 kAm " . The influence of milling time on the magnetic properties of the prepared powders is shown in Figure. Figure 2 shows the X-ray diffractograms of ground materials. After 15 minutes, there is a variation of the present peaks, indicating the existence of the disproportion process, as mentioned above. Figures 3, 4 and 5 show the agglomerates and particles obtained after 10 minutes and 10 hours of milling.
Testes de aquecimento sob um campo magnético aplicado de 3,82 kAm"1 e frequência de 228 kHz: os resultados, apresentados na Figura 6, indicaram uma variação de temperatura da ordem de 45 °C, muito superior a aquela necessária para aplicações de hipertermia para tratamento de tumores. Portanto, as condições podem ser reduzidas, o que possibilita a utilização de uma menor quantidade de material magnético. Testes de toxicidade indicaram que o material preparado sob as condições descritas pode não ser prejudicial ou que a quantidade empregada no teste é insuficiente para causar danos agudos em células isoladas do corpo, como mostrado na Figura 7. Entretanto, não se pode afirmar que os materiais possam ser considerados biocompatíveis, uma vez que o teste de toxicidade in vivo não foi realizado para a análise do material. EXEMPLO 2 Heating tests under an applied magnetic field of 3.82 kAm "1 and a frequency of 228 kHz: the results, shown in Figure 6, indicated a temperature variation of the order of 45 ° C, much higher than that required for hyperthermia applications. Therefore, the conditions may be reduced, which makes it possible to use a smaller amount of magnetic material. Toxicity tests indicated that the material prepared under the conditions described may not be harmful or that the amount employed in the The test is insufficient to cause acute damage to cells isolated from the body, as shown in Figure 7. However, it cannot be stated that the materials can be considered biocompatible since the in vivo toxicity test was not performed for material analysis. . EXAMPLE 2
Um segundo exemplo consistiu na preparação de um pó magnético em escala nanométrica cujo processo produtivo é semelhante àquele descrito EXEMPLO 1 , alterando-se somente o tempo de moagem de 10 horas para 3 horas. Neste exemplo, o tamanho das partículas se situa na faixa da presente patente, bem como suas propriedades magnéticas. Com relação ao aquecimento, este material apresentou um aquecimento inferior àquele apresentado pelo material preparado com 10 horas de moagem, como mostrado na Figura 6. EXEMPLO 3: Preparação de partículas nanométricas a partir da mistura de ligas ou pós elementares. A second example was the preparation of a nanoscale magnetic powder whose production process is similar to that described in EXAMPLE 1, only changing the milling time from 10 hours to 3 hours. In this example, the particle size is within the range of the present patent as well as its magnetic properties. With regard to heating, this material exhibited a warming lower than that of the material prepared with 10 hours of grinding, as shown in Figure 6. EXAMPLE 3: Preparation of nanometric particles from the mixture of alloys or elemental powders.
Este processo é iniciado a partir da britagem de ligas do tipo LA-MT- ML com diâmetro médio de 0,5 cm. As proporções estequiométricas de cada elemento de liga estavam entre as seguintes faixas: LA - de 1 % a 16% dos átomos da liga, MT - de 74% a 98% dos átomos da liga e, ML - de 1 % a 10% dos átomos da liga. This process is started from crushing LA-MT-ML type alloys with an average diameter of 0.5 cm. The stoichiometric proportions of each alloying element were in the following ranges: LA - from 1% to 16% of the alloy atoms, MT - from 74% to 98% of the alloy atoms and ML - from 1% to 10% of the alloy atoms. alloy atoms.
Os pedaços de liga foram inseridos em um vaso de pressurização, que deve ser conectado a uma linha de gás. É necessário também o bombeamento de gases, que pode ser realizado com a utilização de uma bomba de vácuo conectada ao sistema de vaso de pressurização, que, por sua vez, é conectado a uma linha de gás. Este vaso de pressurização deve ser projetado de forma que possa ser inserido em um forno.  The alloy pieces were inserted into a pressurization vessel, which should be connected to a gas line. Gas pumping is also required, which can be performed using a vacuum pump connected to the pressure vessel system, which in turn is connected to a gas line. This pressurization vessel must be designed so that it can be inserted into an oven.
Uma vez que a liga foi inserida no vaso de pressurização, e este inserido e lacrado no forno, injeta-se preferivelmente hidrogénio de alta pureza no sistema. A pressão de gás injetada inicialmente pode variar entre 0, 1 atm e 10 atm, preferivelmente 1 atm. O sistema é aquecido até se obter a hidrogenação da liga. A temperatura para a ocorrência deste fenómeno encontra-se entre 60 e 120 °C, preferivelmente 100 °C, mantendo-se nesta temperatura entre 15 a 30 minutos, preferivelmente 23 minutos. Após a hidrogenação da liga, o sistema foi aquecido até 770 °C, quando ocorre a liberação de hidrogénio da liga. A desproporção da liga ocorre com o aumento da temperatura do vaso de pressurização entre 800 e 900 °C, preferivelmente 840 °C. Once the alloy has been inserted into the pressurization vessel, and it is inserted and sealed in the oven, high purity hydrogen is preferably injected into the system. The initially injected gas pressure may range from 0.1 atm to 10 atm, preferably 1 atm. The system is heated until hydrogenation of the alloy is achieved. The temperature for the occurrence of this phenomenon is between 60 and 120 ° C, preferably 100 ° C, maintaining at this temperature between 15 and 30 minutes, preferably 23 minutes. After hydrogenation of the alloy, the system was heated to 770 ° C when hydrogen liberation from the alloy occurs. Alloy disproportion occurs with increasing pressurization vessel temperature between 800 and 900 ° C, preferably 840 ° C.
As etapas de desproporção e recombinação da liga inserida inicialmente ocorrem na mesma temperatura da desproporção, sob vácuo, por um período na faixa de 1 a 180 minutos, preferivelmente 5 minutos e 30 segundos. Após este período, o vaso de pressurização é resfriado.  The disproportion and recombination steps of the initially inserted alloy occur at the same temperature as the disproportion under vacuum for a period of from 1 to 180 minutes, preferably 5 minutes and 30 seconds. After this period, the pressurization vessel is cooled.
O pó resultante deste tratamento térmico é retirado do sistema e transferido para um pote de moagem. O processo de moagem pode ser realizado em qualquer tipo de moinho de alta energia, preferivelmente em um moinho de bolas do tipo planetário. A relação de massas entre os corpos moedores e o material a ser moído pode variar de 1 :1 até 100:1 , preferivelmente de 10: 1. Os corpos moedores podem apresentar qualquer forma geométrica, preferivelmente esférica. O pó resultante do tratamento térmico e os corpos moedores devem estar imersos em um líquido capaz de proteger o material particulado de oxidação. Portanto, qualquer líquido que não contenha oxigénio em sua composição pode ser utilizado, preferivelmente ciclohexano. Pode-se também adicionar um surfactante de forma a se evitar a soldagem das partículas durante a etapa de moagem, preferivelmente ácido oléico, na proporção de 0,01 % a 10% em massa de material particulado, preferivelmente 0,1 % em massa. O tempo de moagem pode variar entre 5 minutos e 50 horas, preferivelmente 5 horas. A velocidade rotacional do processo pode variar entre 100 e 1200 rotações por minuto, preferivelmente 900 rotações por minuto.  The dust resulting from this heat treatment is removed from the system and transferred to a grinding pot. The milling process can be carried out in any type of high energy mill, preferably in a planetary type ball mill. The mass ratio of the grinding bodies to the material to be milled may range from 1: 1 to 100: 1, preferably from 10: 1. Grinding bodies may be of any geometric shape, preferably spherical. The heat treatment dust and grinding bodies must be immersed in a liquid capable of protecting the particulate material from oxidation. Therefore, any non-oxygen containing liquid in its composition may be used, preferably cyclohexane. A surfactant may also be added to prevent particle welding during the milling step, preferably oleic acid, in the proportion of 0.01% to 10% by weight of particulate material, preferably 0.1% by weight. Grinding time may range from 5 minutes to 50 hours, preferably 5 hours. The rotational speed of the process may range from 100 to 1200 revolutions per minute, preferably 900 revolutions per minute.
A última etapa para obtenção de materiais nanoparticulados é a secagem, que pode ser realizada sob atmosfera controlada ou não, preferivelmente em uma glovebox contendo gás inerte em seu interior.  The last step for obtaining nanoparticulate materials is drying, which can be performed under controlled or uncontrolled atmosphere, preferably in a glovebox containing inert gas inside.
O processo descrito acima pode ser realizado não somente com ligas comerciais, mas também a partir de misturas de ligas, por exemplo: uma liga de Pr14Fe8oB6 com adição de Fe-α e FeB, ou ainda por meio da mistura de pós de LA + MT + LA, de acordo com cálculos estequiométricos adequados para obtenção de um determinado composto desejado. The process described above can be carried out not only with commercial alloys but also from alloy mixtures, for example: a Pr 14 Fe 8 oB 6 alloy with Fe-α and FeB added or by mixing LA powders + MT + LA according to appropriate stoichiometric calculations to obtain a desired desired compound.
A partir das condições experimentais descritas anteriormente, pode- se obter pós em escala nanométrica com tamanho de partícula entre 10 e 1000 nm. O momento magnético do material pode variar entre 60 Am2kg"1 a 50 Am2kg~1. A coercividade intrínseca pode variar entre 4 kAm"1 até 70 kAm" . From the experimental conditions described above, nanoscale powders with particle size between 10 and 1000 nm can be obtained. The magnetic moment of the material may range from 60 Am 2 kg "1 to 50 Am 2 kg ~ 1. Intrinsic coercivity may range from 4 kAm " 1 to 70 kAm " .
O aquecimento do material pode ser controlado/ modificado a partir da variação da composição química da liga inicial, do tempo de moagem, da quantidade de agente surfactante adicionado (ácido oléico, por exemplo), da velocidade de rotação, ou ainda com a alteração da frequência do campo magnético ou da amplitude do campo magnético externo aplicado no pó. The heating of the material can be controlled / modified by varying the chemical composition of the alloy, the milling time, the amount of surfactant added (oleic acid, for example), the speed of rotation, or by changing the frequency of the magnetic field or the amplitude of the external magnetic field applied to the powder.
Um exemplo de preparação de material nanomagnético é descrito a seguir. An example of preparation of nanomagnetic material is described below.
Dez gramas da liga Pr8Fes6B6 foram submetidas ao tratamento de hidrogenação, desproporção, dessorção e recombinação, de acordo com os seguintes parâmetros: o sistema foi submetido a vácuo à cerca de 10~1 mbar, seguido da adição de 1 atm de hidrogénio de alta pureza. Este sistema foi aquecido a uma taxa de 0 °C/min até atingir 100 °C, onde a liga foi submetida ao estágio de hidrogenação, com patamar de 23 minutos. Após a hidrogenação da liga, o sistema foi aquecido a uma taxa de 15 °C/min, até ocorrer a liberação de hidrogénio a 770 °C (com patamar de 2 minutos), em seguida, foi aquecido a uma taxa de 4 °C/min, até atingir à 840 °C, mantendo-se um patamar de 15 minutos, onde ocorreu a desproporção da liga. Em seguida, foram realizadas as etapas de dessorção e recombinação da liga na mesma temperatura, à 840 °C e sob vácuo (até atingir 10"1 mbar), durante 5 minutos e 30 segundos. Em seguida, o vaso de pressurização foi retirado do forno e resfriado rapidamente com a utilização de uma bobina de cobre refrigerada à água. Ten grams of the Pr 8 Fes6B6 alloy were subjected to hydrogenation, disproportionation, desorption and recombination treatment according to the following parameters: the system was vacuumed at about 10 ~ 1 mbar followed by the addition of 1 atm hydrogen peroxide. high purity. This system was heated at a rate of 0 ° C / min until it reached 100 ° C, where the alloy was subjected to the hydrogenation stage at a 23-minute level. After hydrogenation of the alloy, the system was heated at a rate of 15 ° C / min until hydrogen evolution occurred at 770 ° C (2 min. Level), then heated at a rate of 4 ° C. / min until reaching 840 ° C, maintaining a 15-minute plateau, where the disproportion of the alloy occurred. Then, the alloy desorption and recombination steps were performed at the same temperature, at 840 ° C and under vacuum (until it reached 10 "1 mbar) for 5 minutes and 30 seconds. Then, the pressurization vessel was removed from the oven and cooled quickly using a water-cooled copper coil.
O material resultante foi transferido para um vaso de moagem com corpos moedores esféricos na proporção de massa 10:1. Foi adicionado ciclohexano e ácido oléico (0, 1 % em massa, em relação ao pó). O pote de moagem foi fechado e levado a um moinho de bolas do tipo planetário, onde o processo foi realizado durante 5 horas com o pote rotacionando a 900 rpm. Após a moagem, o pó foi seco e caracterizado. O material resultante possui diâmetro da ordem de 10 nm, como mostrado na Figura 8. As propriedades magnéticas obtidas foram: 13,3 kAm"1 de coercividade e momento magnético de saturação por unidade de massa da ordem de 118 Am2kg"1 , como mostrado na Figura 9. The resulting material was transferred to a grinding vessel with spherical grinding bodies at a 10: 1 mass ratio. Cyclohexane and oleic acid (0.1% by weight relative to powder) were added. The grinding pot was closed and taken to a planetary ball mill where the process was carried out for 5 hours with the pot rotating at 900 rpm. After grinding, the powder was dried and characterized. The resulting material has a diameter of the order of 10 nm, as shown in Figure 8. The magnetic properties obtained were: 13.3 kAm "1 of coercivity and magnetic saturation moment per mass unit of the order of 118 Am 2 kg " 1 , as shown in Figure 9.
A partir das análises de raios X, apresentadas na Figura 10, foram identificadas fases de Pr2Fei4B e Fe-α. Medidas de aquecimento foram realizadas em equipamento que simula o tratamento por hipertermia, utilizando um campo magnético alternado com intensidade de 3,82 kAm"1 e frequência de 228 kHz. O perfil de aquecimento para o pó de composição nominal Pr8Fe86B6 é apresentado na Figura 1 1 e a variação de temperatura foi da ordem de 41 °C. From the X-ray analyzes presented in Figure 10, phases of Pr 2 Fei 4 B and Fe-α were identified. Heating measurements were performed on equipment that simulates hyperthermia treatment using an alternating magnetic field with intensity of 3.82 kAm "1 and frequency of 228 kHz. The heating profile for the powder of nominal composition Pr 8 Fe 8 6B 6 is shown in Figure 11 and the temperature range was around 41 ° C.
Testes de toxicidade in vitro foram realizados e indicaram que o material obtido a partir da rota de processo descrita anteriormente pode não ser prejudicial às células do corpo, ou ainda, a quantidade de material necessária para o tratamento de hipertermia é pequeno de tal forma que seria insuficiente para causar danos agudos em células isoladas do corpo. In vitro toxicity tests were performed and indicated that the material obtained from the process route described above may not be harmful to the body cells, or the amount of material required for the treatment of hyperthermia is small such that insufficient to cause acute damage to isolated body cells.
Alterando a composição da liga do pó magnético como, por exemplo, para a composição Pr^FesaBe, e processada da mesma forma que o exemplo anteriormente descrito, foi obtido uma variação de aquecimento a partir da simulação do tratamento de hipertermia de 34 °C, como mostra a Figura 12. As propriedades magnéticas do referido pó podem ser obtidas a partir de sua curva de histerese (asat = 86 Am2kg"1 e Hc = 6,69 kAm"1), apresentada na Figura 13. By changing the magnetic powder alloy composition, such as for the Pr ^ FesaBe composition, and processed in the same manner as the example described above, a heating variation was obtained from the simulation of the 34 ° C hyperthermia treatment, as shown in Figure 12. The magnetic properties of said powder can be obtained from its hysteresis curve (at sat = 86 Am 2 kg "1 and Hc = 6.69 kAm " 1 ), shown in Figure 13.

Claims

REIVINDICAÇÕES
"MATERIAL MAGNÉTICO NANOPARTICULADO PARA APLICAÇÕES TÉRMICAS", obtido por meio de um processo físico, químico ou uma combinação de ambos, caracterizado por consistir de material microparticulado, constituído por uma liga composta de pelo menos um elemento do grupo dos lantanídeos (LA), pelo menos um metal de transição (MT) e pelo menos um metalóide (ML), obtido a partir da mistura de elementos puros, misturas de ligas ou reciclagem de produtos já industrializados, por ter tamanho de partícula que varia entre 10 e 1000 nm, momento magnético entre 60 Am2kg"1 e 130 Am2kg"1 e coercividade intrínseca entre 4 kAm"1 até 70 kAm"1, e ter sido exposto a um campo magnético alternado com intensidade entre 8 kAm"1 e 55.7 kAm"1 e frequência entre 10 kHz e 700 kHz para geração das condições de controle do aquecimento da liga; utilizado para tratamento por hipertermia realizada em tecidos cancerosos ou em aplicações biomédicas e diagnósticos por imagem utilizando contrastes, curas de resinas e cimentos; "NANOPARTICULATED MAGNETIC MATERIAL FOR THERMAL APPLICATIONS", obtained by a physical, chemical process or a combination of both, consisting of microparticulate material consisting of an alloy composed of at least one element of the lanthanide (LA) group at least at least one transition metal (MT) and at least one metalloid (ML), obtained from the mixing of pure elements, alloy mixtures or recycling of already manufactured products, having particle size ranging from 10 to 1000 nm, momentum between 60 Am 2 kg "1 and 130 Am 2 kg " 1 and intrinsic coercivity between 4 kAm "1 to 70 kAm " 1 , and have been exposed to an alternating magnetic field with intensity between 8 kAm "1 and 55.7 kAm " 1 and frequency between 10 kHz and 700 kHz for generating alloy heat control conditions; used for treatment for hyperthermia performed in cancerous tissues or in biomedical and diagnostic imaging applications using contrasts, resin cures and cements;
"MATERIAL MAGNÉTICO NANOPARTICULADO PARA APLICAÇÕES TÉRMICAS", de acordo com a reivindicação 1 , opcionalmente possuir recobrimento biocompatível orgânico ou inorgânico ou suas combinações; "NANOPARTICULATED MAGNETIC MATERIAL FOR THERMAL APPLICATIONS" according to claim 1, optionally having organic or inorganic biocompatible coating or combinations thereof;
"MATERIAL MAGNÉTICO NANOPARTICULADO PARA APLICAÇÕES TÉRMICAS", de acordo com a reivindicação 1 ou 2, caracterizado por a partícula de material ter recobrimento por ácidos graxos quando não recoberta com recobrimento biocompatível; "NANOPARTICULATED MAGNETIC MATERIAL FOR THERMAL APPLICATIONS" according to Claim 1 or 2, characterized in that the material particle is fatty acid coated when not coated with biocompatible coating;
"MATERIAL MAGNÉTICO NANOPARTICULADO PARA APLICAÇÕES TÉRMICAS", de acordo com a reivindicação 3, caracterizado por um ácido graxo ser o ácido oleico;  "NANOPARTICULATED MAGNETIC MATERIAL FOR THERMAL APPLICATIONS" according to Claim 3, characterized in that a fatty acid is oleic acid;
"MATERIAL MAGNÉTICO NANOPARTICULADO PARA APLICAÇÕES TÉRMICAS", de acordo com a reivindicação 1 ou 2, caracterizado por o recobrimento biocompatível ser polissacarídeos, proteína de origem animal ou vegetal, quitosana, gomas (goma arábica, goma xantana, goma guar, goma carragena, goma de cajueiro, goma tara, goma tragacante, goma Karaya, goma gati), derivados de celulose (carboximetil celulose, carboxietil celulose, etc), polivinilpirrolidona, poli(meta)acrilatos, poli(meta)acrilamidas, poliésteres, polivinilcaprolactamas, poliamidas, álcool polivinílico ou blendas desses polímeros; "NANOPARTICULATED MAGNETIC MATERIAL FOR THERMAL APPLICATIONS" according to Claim 1 or 2, characterized in that the biocompatible coating is polysaccharides, a protein of animal origin. or vegetable, chitosan, gums (gum arabic, xanthan gum, guar gum, carrageenan gum, cashew gum, tara gum, tragacanth gum, karaya gum, gati gum), cellulose derivatives (carboxymethyl cellulose, carboxyethyl cellulose, etc.), polyvinylpyrrolidone poly (meta) acrylates, poly (meta) acrylamides, polyesters, polyvinylcaprolactams, polyamides, polyvinyl alcohol or blends of such polymers;
6. "MATERIAL MAGNÉTICO NANOPARTICULADO PARA APLICAÇÕES TÉRMICAS", de acordo com a reivindicação 1 , caracterizado por a partícula de material, ter como composição LA-MT-ML, onde o teor de LA pode variar de 1 % a 16% dos átomos da liga, o teor de MT pode variar entre de 74% a 98 dos átomos da liga e o teor de ML pode variar entre 1 % a 10% dos átomos da liga;  6. "NANOPARTICULATED MAGNETIC MATERIAL FOR THERMAL APPLICATIONS" according to Claim 1, characterized in that the material particle is LA-MT-ML, where the LA content may vary from 1% to 16% of the atoms of alloy, the MT content may range from 74% to 98% of the alloy atoms and the ML content may range from 1% to 10% of the alloy atoms;
7. "MATERIAL MAGNÉTICO NANOPARTICULADO PARA APLICAÇÕES TÉRMICAS", de acordo com a reivindicação 1 , caracterizado por conter fases de hidretos do elemento lantanídeo, Fe2-3, Fe3B e outros compostos metaestáveis devido ao aquecimento durante o processo de moagem; "NANOPARTICULATED MAGNETIC MATERIAL FOR THERMAL APPLICATIONS" according to claim 1, characterized in that it contains hydride phases of the lanthanide element, Fe 2 -3, Fe 3 B and other metastable compounds due to heating during the grinding process;
8. "MATERIAL MAGNÉTICO NANOPARTICULADO PARA APLICAÇÕES TÉRMICAS", de acordo com a reivindicação 1 , caracterizado por o material ser obtido por meio de um processo físico, químico ou uma combinação de ambos que proveja o controle do aquecimento da liga e seja obtido a partir da mistura de elementos puros, misturas de ligas ou reciclagem de produtos já industrializados;  8. "NANOPARTICULATED MAGNETIC MATERIAL FOR THERMAL APPLICATIONS" according to claim 1, characterized in that the material is obtained by a physical, chemical process or a combination of both which provides control of the heating of the alloy and is obtained from mixing pure elements, mixing alloys or recycling already processed products;
9. "MATERIAL MAGNÉTICO NANOPARTICULADO PARA APLICAÇÕES TÉRMICAS", de acordo com a reivindicação 1 ou 8, caracterizado por ser produzido pelo "Processo de recuperação de liga lantanídeo-metal- metalóide em pó nanoparticulado com recuperação magnética e produto", protocolado em 01/07/2011 sob n° 018110024898 no Instituto Nacional da Propriedade Intelectual - INPI (Brasil), de titularidade do Instituto de Pesquisas Tecnológicas do Estado de São Paulo - IPT.  9. "NANOPARTICULATED MAGNETIC MATERIAL FOR THERMAL APPLICATIONS" according to Claim 1 or 8, characterized in that it is produced by the "Magnetic Recovery Nanoparticulate Powder and Product Recovery Lanthanide-Metalloid Alloy Recovery Process" filed 01/01 07/2011 under number 018110024898 at the National Institute of Intellectual Property - INPI (Brazil), owned by the Institute of Technological Research of the State of São Paulo - IPT.
PCT/BR2012/000403 2011-09-29 2012-10-01 Nanoparticulate magnetic material for thermal applications WO2013044341A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
BRPI1104888-3 2011-09-29
BRPI1104888-3A BRPI1104888B1 (en) 2011-09-29 2011-09-29 nanoparticulate magnetic material for thermal applications

Publications (1)

Publication Number Publication Date
WO2013044341A1 true WO2013044341A1 (en) 2013-04-04

Family

ID=47994049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/BR2012/000403 WO2013044341A1 (en) 2011-09-29 2012-10-01 Nanoparticulate magnetic material for thermal applications

Country Status (2)

Country Link
BR (1) BRPI1104888B1 (en)
WO (1) WO2013044341A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104779026A (en) * 2015-04-30 2015-07-15 安徽百宏达汽车电器有限公司 Neodymium-iron-boron bonded rare earth permanent magnet with strong antioxidant ability

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167313A (en) * 1996-05-10 2000-12-26 Sirtex Medical Limited Targeted hysteresis hyperthermia as a method for treating diseased tissue
US20050249817A1 (en) * 2004-05-10 2005-11-10 Yousef Haik Magnetic particle composition for therapeutic hyperthermia
US20110177153A1 (en) * 2005-10-25 2011-07-21 Hong Zhu targeted nanoparticle drug for magnetic hyperthermia treatment on malignant tumors

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6167313A (en) * 1996-05-10 2000-12-26 Sirtex Medical Limited Targeted hysteresis hyperthermia as a method for treating diseased tissue
US20050249817A1 (en) * 2004-05-10 2005-11-10 Yousef Haik Magnetic particle composition for therapeutic hyperthermia
US20110177153A1 (en) * 2005-10-25 2011-07-21 Hong Zhu targeted nanoparticle drug for magnetic hyperthermia treatment on malignant tumors

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
KIKUCHI TK ET AL.: "Preparation of magnetite aqueous dispersion for magnetic fluid hyperthermia", JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, vol. 2011323, pages 1216 - 1222 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104779026A (en) * 2015-04-30 2015-07-15 安徽百宏达汽车电器有限公司 Neodymium-iron-boron bonded rare earth permanent magnet with strong antioxidant ability

Also Published As

Publication number Publication date
BRPI1104888A2 (en) 2013-10-15
BRPI1104888B1 (en) 2020-12-08

Similar Documents

Publication Publication Date Title
Kwon et al. Large‐scale synthesis and medical applications of uniform‐sized metal oxide nanoparticles
Hedayatnasab et al. Review on magnetic nanoparticles for magnetic nanofluid hyperthermia application
Zhang et al. Graphene oxide-BaGdF5 nanocomposites for multi-modal imaging and photothermal therapy
Song et al. Co9Se8 nanoplates as a new theranostic platform for photoacoustic/magnetic resonance Dual‐Modal‐Imaging‐Guided Chemo‐Photothermal combination therapy
Meidanchi et al. ZnFe2O4 nanoparticles as radiosensitizers in radiotherapy of human prostate cancer cells
Guan et al. “Transformed” Fe 3 S 4 tetragonal nanosheets: a high-efficiency and body-clearable agent for magnetic resonance imaging guided photothermal and chemodynamic synergistic therapy
Hilger et al. Electromagnetic heating of breast tumors in interventional radiology: in vitro and in vivo studies in human cadavers and mice
Jadhav et al. Study of structural and magnetic properties and heat induction of gadolinium-substituted manganese zinc ferrite nanoparticles for in vitro magnetic fluid hyperthermia
Zhong et al. Laser-triggered aggregated cubic α-Fe2O3@ Au nanocomposites for magnetic resonance imaging and photothermal/enhanced radiation synergistic therapy
Solopan et al. Nanohyperthermia of malignant tumors. I. Lanthanum-strontium manganite magnetic fluid as potential inducer of tumor hyperthermia
EP3655042B1 (en) Iron oxide nanoparticles doped with alkali metals or alkali earth metals
Lin et al. Application of nanosized Fe3O4 in anticancer drug carriers with target-orientation and sustained-release properties
Mushtaq et al. Polymer-coated CoFe 2 O 4 nanoassemblies as biocompatible magnetic nanocarriers for anticancer drug delivery
Mishra et al. Increased transverse relaxivity in ultrasmall superparamagnetic iron oxide nanoparticles used as MRI contrast agent for biomedical imaging
Liu et al. Magnetic nanomaterials-mediated cancer diagnosis and therapy
Khan et al. Study of structural, magnetic and radio frequency heating aptitudes of pure and (Fe-III) doped manganite (La1-x SrxMnO3) and their incorporation with Sodium Poly-Styrene Sulfonate (PSS) for magnetic hyperthermia applications
Kaliamurthi et al. Viewing the emphasis on state-of-the-art magnetic nanoparticles: synthesis, physical properties, and applications in cancer theranostics
Shabalkin et al. Multifunctional tunable ZnFe 2 O 4@ MnFe 2 O 4 nanoparticles for dual-mode MRI and combined magnetic hyperthermia with radiotherapy treatment
Syu et al. Co-precipitation synthesis of near-infrared iron oxide nanocrystals on magnetically targeted imaging and photothermal cancer therapy via photoablative protein denature
Nahar et al. Surface-modified CoFe2O4 nanoparticles using Folate-Chitosan for cytotoxicity Studies, hyperthermia applications and Positive/Negative contrast of MRI
Wang et al. Fe-doped copper sulfide nanoparticles for in vivo magnetic resonance imaging and simultaneous photothermal therapy
Espinoza et al. In vivo and in vitro studies of magnetic silica nanocomposites decorated with Pluronic F127 for controlled drug delivery system
Cassim et al. Development of novel magnetic nanoparticles for hyperthermia cancer therapy
Peng et al. Microwave absorbing Fe3O4@ mTiO2 nanoparticles as an intelligent drug carrier for microwave-triggered synergistic cancer therapy
ES2662962T3 (en) Procedure for the production of submicron particles and their therapeutic use in oncology with a specific device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12837553

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12837553

Country of ref document: EP

Kind code of ref document: A1