WO2013042870A1 - Biodegradable polymer for a suture and method for manufacturing same - Google Patents

Biodegradable polymer for a suture and method for manufacturing same Download PDF

Info

Publication number
WO2013042870A1
WO2013042870A1 PCT/KR2012/006079 KR2012006079W WO2013042870A1 WO 2013042870 A1 WO2013042870 A1 WO 2013042870A1 KR 2012006079 W KR2012006079 W KR 2012006079W WO 2013042870 A1 WO2013042870 A1 WO 2013042870A1
Authority
WO
WIPO (PCT)
Prior art keywords
glycolide
lactide
caprolactone
polymer
suture
Prior art date
Application number
PCT/KR2012/006079
Other languages
French (fr)
Korean (ko)
Inventor
최교창
송승호
백두현
지민호
최송연
박지희
Original Assignee
주식회사 메타바이오메드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 메타바이오메드 filed Critical 주식회사 메타바이오메드
Publication of WO2013042870A1 publication Critical patent/WO2013042870A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L17/00Materials for surgical sutures or for ligaturing blood vessels ; Materials for prostheses or catheters
    • A61L17/06At least partially resorbable materials
    • A61L17/10At least partially resorbable materials containing macromolecular materials
    • A61L17/12Homopolymers or copolymers of glycolic acid or lactic acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/04Surgical instruments, devices or methods, e.g. tourniquets for suturing wounds; Holders or packages for needles or suture materials
    • A61B17/06Needles ; Sutures; Needle-suture combinations; Holders or packages for needles or suture materials
    • A61B17/06166Sutures
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00004(bio)absorbable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00526Methods of manufacturing

Definitions

  • the present invention relates to a biodegradable polymer for suture and a method for manufacturing the same, which can replace the catgut, a natural polymer material having a high decomposition rate, and is faster than conventional poly (glycolide-co- ⁇ -caprolactone). It relates to a method for producing a biodegradable polymer for sutures having a speed.
  • Biodegradable sutures can be classified into natural absorbent sutures and synthetic absorbent sutures.
  • Natural absorbent sutures have been used for a long time with catgut obtained from sheep intestines.
  • Chromium-treated catmic (chromic catgut) is widely used to retard the cataracts because it is too fast to decompose.
  • these fibers are made of heterologous proteins, they may have a weak reaction with biological tissues and a high infection rate.
  • the processability is also very poor compared to the synthetic fiber due to the non-uniformity of the thickness, the amount of use is gradually decreasing.
  • Sutures replacing such catguts include sutures based on polyglycolide (PGA, Poly (glycolide)).
  • polyglycolide has a high strength and a fast decomposition rate when manufactured from monofilaments, but has a disadvantage in that the rigidity is too high and stiff so that sealing and knotting are difficult.
  • polyglycolide is blended or copolymerized with a polymer having high flexibility such as polycaprolactone to prepare PGCL (Poly (glycolide-co- ⁇ -caprolactone)) which is a copolymer of glycolide and caprolactone.
  • PGCL Poly (glycolide-co- ⁇ -caprolactone)
  • Patent Document 1 discloses a technique for preparing a glycolide and an epsilon -caprolactone random copolymer in claim 2 of US Pat. No. 4,700,704 (Patent Document 1).
  • Patent Document 2 discloses a technique for preparing terpolymers of lactide, ⁇ -caprolactone, and glycolide, in which case the lactide content in this technology is at least 60% or more. The very slow rate of degradation leads to limitations in use in the medical field.
  • Patent Document 1 US 4,700,704 (October 20, 1987)
  • Patent Document 2 US 4,145,418 (1977.08.30)
  • Biodegradable polymer and manufacturing method for suture of the present invention is to solve the problems occurring in the prior art as described above, biodegradable polymer having a faster decomposition rate than the suture made of conventional PGCL copolymer while replacing the joists and It is to provide a manufacturing method.
  • glycolide, ⁇ -caprolactone, and lactide are added to a polymerization reactor to prepare a prepolymer by polymerization reaction at a temperature of 50 to 190 ° C. for 5 to 7 hours.
  • ⁇ -caprolactone is added at a time, the glycolide is divided into 10 to 15 divided input, the lactide is divided into two to five pre-polymer preparation step;
  • the glycolide, ⁇ -caprolactone, lactide in the prepolymer manufacturing step is characterized in that the input in a molar ratio of 55 ⁇ 65: 30 ⁇ 20: 15.
  • glycolide, ⁇ -caprolactone, lactide in the final polymer manufacturing step is characterized in that the molar ratio of 75: 15 ⁇ 18: 10 ⁇ 7.
  • glycolide in the prepolymer manufacturing step is divided into 10 to 15 divided input
  • lactide is characterized in that divided into 2 to 5 divided input.
  • the biodegradable polymer for suture use of the present invention is characterized in that it is prepared by any one of the above manufacturing method.
  • a biodegradable polymer having a faster decomposition rate than a suture made of a conventional PGCL copolymer while replacing a joist is provided, and a method of manufacturing the same.
  • 1 is a graph showing the conversion rate of each monomer according to the reaction time when glycolide, ⁇ -caprolactone, lactide.
  • 3 is a graph showing the average block length of the prepolymer according to the composition ratio of ⁇ -caprolactone and lactide.
  • Figure 5 is a graph showing the pH change of the final polymer with decomposition time.
  • 6 is a graph showing the weight change rate of the final polymer according to the decomposition time.
  • Figure 7 is a view showing the shape change with decomposition time.
  • Glycolide used in the present invention has a structure as shown in Formula 1 below, the melting point is 75 °C, the molar mass is 116.07g / mol.
  • Caprolactone ( ⁇ -Caprolactone) used in the present invention has a structure as shown in Formula 2 below, the melting point is -1 °C, the boiling point is 253 °C, the molar mass is 114.14 g / mol.
  • Lactide (L-Lactide) used in the present invention has a structure as shown in Formula 3 below, the melting point is 95 ⁇ 97 °C, the molar mass is 144.13g / mol.
  • the biodegradable polymer production method of suture using the present invention is largely divided into a prepolymer production step and a final polymer production step.
  • Glycolide, ⁇ -caprolactone, lactide was added to the polymerization reactor to prepare a prepolymer by polymerization reaction at a temperature of 50 ⁇ 190 °C for 5 to 7 hours.
  • the ⁇ -caprolactone is added to the polymerization reactor once, the glycolide is divided into 10 to 15 divided into the polymerization reactor, the lactide is divided into 2 to 5 divided into the polymerization reactor.
  • the most preferred number of dividing glycolide is preferably 10 to 15 divisions, and in the case of lactide, 2 to 5 divisions are most preferable.
  • glycolide, ⁇ -caprolactone, lactide in the prepolymer manufacturing step is preferably added in a molar ratio of 55 ⁇ 65: 30 ⁇ 20: 15.
  • Formula 4 shows an embodiment of a polymerization reaction using the ring-opening reaction of glycolide, ⁇ -caprolactone, lactide when preparing the prepolymer.
  • the final polymer is prepared by polymerization reaction at a temperature of 200 to 220 ° C. for 0.5 to 1.5 hours.
  • the glycolide in the preparation step of the final polymer, ⁇ -caprolactone, lactide is preferably added to the glycolide so that the molar ratio of 75: 15 ⁇ 18: 10 ⁇ 7.
  • the final molar ratio in preparing the final polymer is the molar ratio.
  • Formula 5 below shows one embodiment of the formula of the biodegradable polymer of the present invention prepared after the final polymerization.
  • the inventor of the present invention puts the same composition ratio of each monomer into the reactor, and then conducts polymerization for 20 hours, takes a sample for 1 to 2 hours, according to 1 H-NMR according to the reaction time. Reactivity was analyzed through the analysis.
  • FIG. 1 The conversion rate according to the reaction time of each monomer based on the 1 H-NMR analysis results is shown in FIG. 1, and FIG. 2 shows the relative ratios of the unreacted monomers and the converted monomers based on this.
  • the glycolide monomer has a very fast reaction rate compared to ⁇ -caprolactone and lactide monomers, and it can be seen that polymerization takes place at the initial stage of the reaction.
  • ⁇ -caprolactone has the slowest reaction rate
  • lactide has a moderate reactivity between glycolide and ⁇ -caprolactone.
  • lactide shows a conversion rate of about 90% after 3 hours, but since the small amount of unreacted monomer exists after 20 hours of reaction, it can be confirmed that the conversion rate does not reach 100%.
  • the monomers are divided as described above according to various experimental results for reducing the content of unreacted monomers and producing a more random polymer.
  • the inventors of the present invention investigated the composition and chemical structure of the prepolymer according to the number of divided doses of lactide, as shown in Table 1 below.
  • Table 1 Analysis of Composition and Viscosity of Prepolymer with Lactide Split Injection costs Average block length Viscosity (IV) system Temperature (°C) Gp / Cp / Lp / Gm / Cm / Lm L GG L C L LL 1 split 50 55.6 / 24.7 / 16.4 / 0.4 / 2.2 / 0.6 2.09 1.12 3.50 0.956 2 split 50/120 55.2 / 25.5 / 16.5 / 0.3 / 1.8 / 0.7 2.40 1.14 2.88 1.008 3 divisions 50/120/190 54.3 / 28.4 / 15.5 / 0.3 / 0.9 / 0.6 2.33 1.14 2.59 1.012
  • block length of lactide is also shorter and the viscosity is increased.
  • lactide is preferably divided into two to five as shown.
  • the biodegradable polymer of the suture of the present invention configured as described above is relatively lactide and ⁇ - due to the decomposition of glycolide during the initial stage of degradation, that is, during the first week, when the monomer content changes according to the decomposition time of the final polymer.
  • the relative content of caprolactone is increased, and the content of ⁇ -caprolactone is relatively increased as the content of glycolide and lactide decreases after 1 to 2 weeks of decomposition.
  • the CGC sequence is generated by a second transesterification reaction in which ⁇ -caprolactone is activated by a catalyst to attack the glycolide unit.
  • the content of ⁇ -caprolactone is relatively reduced due to the introduction of lactide.
  • DEG an initiator
  • DEG has a structure as shown in Chemical Formula 6 below, a melting point of -10.45 ° C, a boiling point of 253 ° C, and a molar mass of 106.12 g / mol.
  • Stannous octoate a catalyst, has a structure as shown in Formula 7 below, and has a molar mass of 405.1 g / mol.
  • the total amount of ⁇ -caprolactone was initially added, the glycolide was divided into 10 portions, and the lactide was divided into 5 portions.
  • the temperature condition of the reactor was taken to maintain the temperature increase to 50 ⁇ 190 °C.
  • the glycolide was added and maintained for 1 hour while maintaining the temperature condition of the reactor at 198 °C.
  • glycolide was added to the final addition of glycolide to 75: 20: 5 based on the molar ratio.
  • Table 2 shows the average block length of each monomer in the prepolymer and the final polymer in the above examples.
  • the monomer average block length of the final polymer obtained by additional addition of glycolide after the prepolymer synthesis is completed is shown in FIG. 4.
  • the average block length of ⁇ -caprolactone and lactide determined at the beginning of the reaction is almost unchanged over the entire reaction, but is the product of terminal esterification by the activated caproyl and lactidyl sequences. It induces a -CGC- or -LGL- sequence, which greatly affects the average block length of glycolide.
  • the most important factor that determines the chemical structure of the final polymer is the chemical structure of the prepolymer prepared in step 1.
  • Example 1 The final polymer sample of Example 1 was immersed in phosphate buffer solution (PBS) of pH 7.4 and the pH of the PBS solution was examined using a pH meter (ISTEK) over time.
  • PBS phosphate buffer solution
  • ISTEK pH meter
  • the weight reduction of the final polymer due to decomposition is calculated by subtracting the weight of the sample after decomposition by subtracting the weight of the sample after decomposition and dividing by the weight of the sample before decomposition to calculate the percentage reduction.
  • the final polymer prepared by the production method of the present invention can be seen that it maintains a certain strength at the initial stage of decomposition and then decreases rapidly after a certain period of time.
  • the polymer according to the present invention shows a similar decomposition behavior initially with the PGCL copolymer, but it can be seen that it decomposes at a faster rate after a certain period of time.
  • Example 7 is a view showing an image observed by the FE-SEM decomposition of the final polymer sample of Example 1 with time at a temperature of °C.
  • the PCGL on the left is the above-described PGCL
  • the PCGLA on the right is a product manufactured according to Example 1 of the present invention.
  • the glycolide, ⁇ -caprolactone, and lactide are divided into two stages and subjected to a polymerization reaction, and the glycolide and lactide are separately divided and introduced into the preparation process.
  • the final polymer has a much faster decomposition rate than conventional PGCL.
  • the method of producing biodegradable polymer for suture use of the present invention is not limited to the production of suture, and may be applied to the preparation of various biodegradable polymers applied to various surgical procedures.

Abstract

The present invention relates to a biodegradable polymer for a suture, and to a method for manufacturing same. The method for manufacturing a biodegradable polymer for a suture according to the present invention comprises the steps of: preparing a preliminary polymer by inputting glycolide, ε-carprolactone, and lactide into a polymerization reactor and triggering a polymerization reaction at 50-190°C for 5-7 hours, wherein said ε-carprolactone is inputted at one time, said glycolide is dividedly inputted 10 to 15 times, and said lactide is dividedly inputted 2 to 5 times; and additionally inputting glycolide into the polymerization reactor and then triggering a polymerization reaction at 200-220°C for 0.5-1.5 hours to obtain a final polymer.

Description

봉합사용 생분해성 고분자 및 제조 방법Biodegradable Polymer for Suture and Manufacturing Method
본 발명은 봉합사용 생분해성 고분자 및 제조 방법에 관한 것으로, 분해 속도가 빠른 천연 고분자 재료인 장선(腸線, catgut)을 대체할 수 있으면서 기존의 Poly(glycolide-co-ε-caprolactone)에 비해 빠른 분해 속도를 갖는, 봉합사용 생분해성 고분자의 제조 방법에 관한 것이다.The present invention relates to a biodegradable polymer for suture and a method for manufacturing the same, which can replace the catgut, a natural polymer material having a high decomposition rate, and is faster than conventional poly (glycolide-co-ε-caprolactone). It relates to a method for producing a biodegradable polymer for sutures having a speed.
생체분해성 봉합사는 천연 흡수성 봉합사와 합성 흡수성 봉합사로 분류할 수 있다. Biodegradable sutures can be classified into natural absorbent sutures and synthetic absorbent sutures.
천연 흡수성 봉합사는 양의 창자로부터 얻어지는 장선(腸線, catgut)이 오래전부터 사용되어져 왔다. Natural absorbent sutures have been used for a long time with catgut obtained from sheep intestines.
이러한 장선은 분해 속도가 너무 빨라 이를 지연시키기 위해 크롬 처리를 한 크로믹 캣것(chromic catgut)이 널리 사용되고 있으나, 이는 이종의 단백질로 이루어진 섬유이기 때문에 생체조직과의 반응이 강하고 감염률이 높은 단점이 있을 뿐만 아니라 굵기의 불균일성이 있어 가공성 또한 합성섬유에 비해 매우 떨어지는 단점이 있어 그 사용량이 점점 감소하는 추세이다. Chromium-treated catmic (chromic catgut) is widely used to retard the cataracts because it is too fast to decompose. However, since these fibers are made of heterologous proteins, they may have a weak reaction with biological tissues and a high infection rate. In addition, there is a disadvantage that the processability is also very poor compared to the synthetic fiber due to the non-uniformity of the thickness, the amount of use is gradually decreasing.
이러한 장선(catgut)을 대체하고 있는 봉합사에는 폴리글리콜라이드(PGA, Poly(glycolide))를 기반으로 한 봉합사 등이 있다. Sutures replacing such catguts include sutures based on polyglycolide (PGA, Poly (glycolide)).
1970년대 초반 미국 'American Cyanamid'사는 플리글리콜라이드를 사용하여 세계 최초로 상품명 'Dexon'으로 합성 흡수성 봉합사를 상품화하였으며, 1987년부터 일본의 '메디칼서플라이'사가 상품명 'Medifit'을 출시한 바 있으며, 한국의 경우 삼양사가 KIST와의 공동연구로 상품명 'Trisorb'를 2000년부터 상업화하였고 수출도 하고 있다.In the early 1970s, American Cyanamid Inc. commercialized synthetic absorbent sutures under the name Dexon for the first time in the world using polyglycolide.In 1987, Japanese Medical Supply Corp. launched the brand name Medifit. In the case of Samyang Co., Ltd., in collaboration with KIST, the commercialization of the brand name 'Trisorb' has been commercialized since 2000 and exported.
그러나, 폴리글리콜라이드는 모노필라멘트로 제조시 높은 강도와 빠른 분해속도를 가진 반면, 강성이 너무 높고 뻣뻣하여 봉합과 매듭이 어려운 단점이 있다.However, polyglycolide has a high strength and a fast decomposition rate when manufactured from monofilaments, but has a disadvantage in that the rigidity is too high and stiff so that sealing and knotting are difficult.
이러한 단점을 해결하기 위해 폴리글리콜라이드는 높은 유연성을 갖는 폴리카프로락톤 등의 고분자와 블렌딩 또는 공중합하여 글리콜라이드와 카프로락톤의 공중합체인 PGCL(Poly(glycolide-co-ε-caprolactone))을 제조하는 기술이 연구되었으며, 관련 특허로 미국 등록특허 4,700,704호(특허문헌 1)의 7페이지 청구항2항에는 글리콜라이드와 ε-카프로락톤 랜덤공중합체의 제조 기술이 공개되어 있다.In order to solve this drawback, polyglycolide is blended or copolymerized with a polymer having high flexibility such as polycaprolactone to prepare PGCL (Poly (glycolide-co-ε-caprolactone)) which is a copolymer of glycolide and caprolactone. This research has been made, and the related patent discloses a technique for preparing a glycolide and an epsilon -caprolactone random copolymer in claim 2 of US Pat. No. 4,700,704 (Patent Document 1).
그러나, 이러한 기술은 배향성이 낮아 봉합사로의 제조가 극히 어려운 단점이 있었다.However, such a technique has a disadvantage in that it is extremely difficult to manufacture sutures due to low orientation.
이에 미국 등록특허공보 4,045,418호(특허문헌 2)에는 락타이드, ε-카프로락톤, 글리콜라이드의 삼원공중합체 제조 기술이 공개되어 있는데, 이 기술에서의 락타이드 함량이 최소 60% 이상인 바, 이 경우 분해 속도가 매우 느리기 때문에 의료 분야에서의 용도에 제한이 발생하게 된다.Thus, US Patent No. 4,045,418 (Patent Document 2) discloses a technique for preparing terpolymers of lactide, ε-caprolactone, and glycolide, in which case the lactide content in this technology is at least 60% or more. The very slow rate of degradation leads to limitations in use in the medical field.
*선행기술문헌** Prior art literature *
(특허문헌 1) US 4,700,704 (1987.10.20)(Patent Document 1) US 4,700,704 (October 20, 1987)
(특허문헌 2) US 4,145,418 (1977.08.30)(Patent Document 2) US 4,145,418 (1977.08.30)
본 발명의 봉합사용 생분해성 고분자 및 제조 방법은 상기와 같은 종래 기술에서 발생하는 문제점을 해소하기 위한 것으로, 장선을 대체하면서도 기존의 PGCL 공중합체로 제조된 봉합사보다 빠른 분해속도를 갖는 생분해성 고분자 및 제조 방법을 제공하려는 것이다.Biodegradable polymer and manufacturing method for suture of the present invention is to solve the problems occurring in the prior art as described above, biodegradable polymer having a faster decomposition rate than the suture made of conventional PGCL copolymer while replacing the joists and It is to provide a manufacturing method.
본 발명의 봉합사용 생분해성 고분자 제조 방법은, 글리콜라이드, ε-카프로락톤, 락타이드를 중합반응기에 투입하여 50 ~ 190℃의 온도에서 5 ~ 7 시간 동안 중합 반응시켜 예비중합체를 제조하되, 상기 ε-카프로락톤은 1회에 투입하고, 상기 글리콜라이드는 10 ~ 15분할하여 분할 투입하며, 상기 락타이드는 2 ~ 5 분할하여 분할투입하는 예비중합체 제조단계와; 상기 중합반응기에 글리콜라이드를 추가로 투입한 후 200 ~ 220℃의 온도에0.5 ~ 1.5 시간 동안 중합 반응시켜 최종중합체를 제조하는 최종중합체 제조단계;를 포함하여 구성된다.In the method for preparing biodegradable polymer for suture of the present invention, glycolide, ε-caprolactone, and lactide are added to a polymerization reactor to prepare a prepolymer by polymerization reaction at a temperature of 50 to 190 ° C. for 5 to 7 hours. ε-caprolactone is added at a time, the glycolide is divided into 10 to 15 divided input, the lactide is divided into two to five pre-polymer preparation step; After the addition of the glycolide to the polymerization reactor in the polymerization of 0.5 to 1.5 hours at a temperature of 200 ~ 220 ℃ to produce a final polymer to produce a final polymer; comprises a.
이때, 상기 예비중합체 제조단계에서 글리콜라이드, ε-카프로락톤, 락타이드는 55 ~ 65 : 30 ~ 20 : 15의 몰비로 투입되는 것을 특징으로 한다.At this time, the glycolide, ε-caprolactone, lactide in the prepolymer manufacturing step is characterized in that the input in a molar ratio of 55 ~ 65: 30 ~ 20: 15.
또, 상기 최종중합체 제조단계에서 글리콜라이드, ε-카프로락톤, 락타이드는 75 : 15 ~ 18 : 10 ~ 7의 몰비인 것을 특징으로 한다.In addition, the glycolide, ε-caprolactone, lactide in the final polymer manufacturing step is characterized in that the molar ratio of 75: 15 ~ 18: 10 ~ 7.
또, 상기 예비중합체 제조단계에서 상기 글리콜라이드는 10 ~ 15분할하여 분할 투입하고, 상기 락타이드는 2 ~ 5분할하여 분할 투입하는 것을 특징으로 한다.In addition, the glycolide in the prepolymer manufacturing step is divided into 10 to 15 divided input, the lactide is characterized in that divided into 2 to 5 divided input.
본 발명의 봉합사용 생분해성 고분자는 상기 제조방법 중 어느 하나의 제조방법에 의해 제조된 것을 특징으로 한다.The biodegradable polymer for suture use of the present invention is characterized in that it is prepared by any one of the above manufacturing method.
본 발명에 의해, 장선을 대체하면서도 기존의 PGCL 공중합체로 제조된 봉합사보다 빠른 분해속도를 갖는 생분해성 고분자 및 그 제조 방법이 제공된다.According to the present invention, a biodegradable polymer having a faster decomposition rate than a suture made of a conventional PGCL copolymer while replacing a joist is provided, and a method of manufacturing the same.
도 1은 글리콜라이드, ε-카프로락톤, 락타이드를 중합 반응시킬 때 반응 시간에 따른 각 단량체의 전환율을 나타낸 그래프.1 is a graph showing the conversion rate of each monomer according to the reaction time when glycolide, ε-caprolactone, lactide.
도 2는 도 1에 따른 공중합체의 전체 전환율에 대한 각 단량체의 상대적 전환율을 나타낸 그래프.2 is a graph showing the relative conversion of each monomer with respect to the overall conversion of the copolymer according to FIG.
도 3은 ε-카프로락톤과 락타이드의 조성비에 따른 예비중합체의 평균블록길이를 나타낸 그래프.3 is a graph showing the average block length of the prepolymer according to the composition ratio of ε-caprolactone and lactide.
도 4는 ε-카프로락톤과 락타이드의 조성비에 따른 최종중합체의 평균블록길이를 나타낸 그래프.4 is a graph showing the average block length of the final polymer according to the composition ratio of ε-caprolactone and lactide.
도 5는 분해시간에 따른 최종중합체의 pH 변화를 나타낸 그래프.Figure 5 is a graph showing the pH change of the final polymer with decomposition time.
도 6은 분해시간에 따른 최종중합체의 무게변화율 나타낸 그래프.6 is a graph showing the weight change rate of the final polymer according to the decomposition time.
도 7은 분해시간에 따른 형태 변화를 나타낸 그림.Figure 7 is a view showing the shape change with decomposition time.
본 발명의 봉합사용 생분해성 고분자의 제조 방법에 대한 설명에 앞서, 본 발명의 원료 물질에 대해 간략히 설명하기로 한다.Prior to the description of the method for producing the biodegradable polymer for suture use of the present invention, the raw material of the present invention will be briefly described.
본 발명에서 사용되는 글리콜라이드(Glycolide)는 아래 화학식 1과 같은 구조를 가지며, 녹는점이 75℃이며, 몰 질량은 116.07g/mol 이다.Glycolide used in the present invention has a structure as shown in Formula 1 below, the melting point is 75 ℃, the molar mass is 116.07g / mol.
화학식 1
Figure PCTKR2012006079-appb-C000001
Formula 1
Figure PCTKR2012006079-appb-C000001
본 발명에서 사용되는 카프로락톤(ε-Caprolactone)은 아래 화학식 2와 같은 구조를 가지며, 녹는점은 -1℃이며, 끓는점이 253℃이고, 몰 질량은 114.14 g/mol이다.Caprolactone (ε-Caprolactone) used in the present invention has a structure as shown in Formula 2 below, the melting point is -1 ℃, the boiling point is 253 ℃, the molar mass is 114.14 g / mol.
화학식 2
Figure PCTKR2012006079-appb-C000002
Formula 2
Figure PCTKR2012006079-appb-C000002
본 발명에서 사용되는 락타이드(L-Lactide)는 아래 화학식3과 같은 구조를 가지며, 녹는점은 95 ~ 97℃이고, 몰 질량은 144.13g/mol이다.Lactide (L-Lactide) used in the present invention has a structure as shown in Formula 3 below, the melting point is 95 ~ 97 ℃, the molar mass is 144.13g / mol.
화학식 3
Figure PCTKR2012006079-appb-C000003
Formula 3
Figure PCTKR2012006079-appb-C000003
이하, 본 발명의 봉합사용 생분해성 고분자의 제조 방법에 대해 설명하기로 한다.Hereinafter, a method for preparing a biodegradable polymer for suture use of the present invention will be described.
본 발명의 봉합사용 생분해성 고분자 제조 방법은 크게 예비중합체 제조단계와 최종중합체 제조단계로 나뉘어 구성된다.The biodegradable polymer production method of suture using the present invention is largely divided into a prepolymer production step and a final polymer production step.
1. 예비중합체 제조단계1. Prepolymer Preparation
글리콜라이드, ε-카프로락톤, 락타이드를 중합반응기에 투입하여 50 ~ 190℃의 온도에서 5 ~ 7 시간 동안 중합 반응시켜 예비중합체를 제조한다.Glycolide, ε-caprolactone, lactide was added to the polymerization reactor to prepare a prepolymer by polymerization reaction at a temperature of 50 ~ 190 ℃ for 5 to 7 hours.
이때, 상기 ε-카프로락톤은 1회에 걸쳐 중합반응기에 투입하고, 상기 글리콜라이드는 10 ~ 15분할하여 중합반응기에 분할 투입하며, 상기 락타이드는 2 ~ 5 분할하여 중합반응기에 분할 투입한다.At this time, the ε-caprolactone is added to the polymerization reactor once, the glycolide is divided into 10 to 15 divided into the polymerization reactor, the lactide is divided into 2 to 5 divided into the polymerization reactor.
이때, 글리콜라이드의 가장 바람직한 분할 횟수는 10 ~ 15분할이 바람직하며, 락타이드의 경우 2 ~ 5분할 하는 것이 가장 바람직하다.At this time, the most preferred number of dividing glycolide is preferably 10 to 15 divisions, and in the case of lactide, 2 to 5 divisions are most preferable.
또,, 상기 예비중합체 제조단계에서 글리콜라이드, ε-카프로락톤, 락타이드는 55 ~ 65 : 30 ~ 20 : 15의 몰비로 투입되는 것이 바람직하다.In addition, the glycolide, ε-caprolactone, lactide in the prepolymer manufacturing step is preferably added in a molar ratio of 55 ~ 65: 30 ~ 20: 15.
아래 화학식 4는 예비중합체 제조시 글리콜라이드, ε-카프로락톤, 락타이드의 개환반응을 이용한 중합반응의 일 실시예를 나타낸 것이다. Formula 4 below shows an embodiment of a polymerization reaction using the ring-opening reaction of glycolide, ε-caprolactone, lactide when preparing the prepolymer.
화학식 4
Figure PCTKR2012006079-appb-C000004
Formula 4
Figure PCTKR2012006079-appb-C000004
(화학식 1에서 X, Y, Z는 1 이상의 정수임)(Wherein X, Y and Z are integers of 1 or more)
2. 최종중합체 제조단계2. Preparation of Final Polymer
상기 중합반응기에 글리콜라이드를 추가로 투입한 후 200 ~ 220℃의 온도에0.5 ~ 1.5 시간 동안 중합 반응시켜 최종중합체를 제조한다.After additionally adding glycolide to the polymerization reactor, the final polymer is prepared by polymerization reaction at a temperature of 200 to 220 ° C. for 0.5 to 1.5 hours.
이때, 상기 최종중합체 제조단계에서 글리콜라이드, ε-카프로락톤, 락타이드는 75 : 15 ~ 18 : 10 ~ 7의 몰비가 되도록 글리콜라이드를 투입하는 것이 바람직하다.At this time, the glycolide in the preparation step of the final polymer, ε-caprolactone, lactide is preferably added to the glycolide so that the molar ratio of 75: 15 ~ 18: 10 ~ 7.
즉, 예비중합체 제조단계를 거친 다음 중합반응기에 글리콜라이드가 투입된 후 최종중합체 제조시의 최종 몰비는 상기 몰비가 되는 것이다.That is, after glycolide is added to the polymerization reactor after the prepolymer production step, the final molar ratio in preparing the final polymer is the molar ratio.
아래 화학식 5는 최종중합 후 제조된 본 발명의 생분해성 고분자의 화학식의 일 실시예를 나타낸 것이다. Formula 5 below shows one embodiment of the formula of the biodegradable polymer of the present invention prepared after the final polymerization.
화학식 5
Figure PCTKR2012006079-appb-C000005
Formula 5
Figure PCTKR2012006079-appb-C000005
(화학식 2에서 X, Y, Z, n, m, p는 1 이상의 정수임)(In Formula 2, X, Y, Z, n, m, p are integers of 1 or more.)
본 발명에서 상기와 같이 글리콜라이드와 락타이드의 분할 투입한 이유에 대하여 설명하면 다음과 같다.Referring to the reason for the divided input of glycolide and lactide as described above in the present invention.
본 발명의 발명자는 각 모노머의 반응성을 분석하기 위하여 각 모노머의 조성비를 동일하게 하여 반응기에 투입한 후 20 시간 동안 중합을 시행하여 1 ~ 2 시간 동안 샘플을 채취하여 반응시간에 따른 1H-NMR 분석을 통해 반응성을 분석하였다.In order to analyze the reactivity of each monomer, the inventor of the present invention puts the same composition ratio of each monomer into the reactor, and then conducts polymerization for 20 hours, takes a sample for 1 to 2 hours, according to 1 H-NMR according to the reaction time. Reactivity was analyzed through the analysis.
그 결과 반응 초기에는 미반응 모노머를 확인할 수 있었는데 반응 1시간 이후 글리콜라이드와 락타이드의 미반응 모노머는 소량 존재하며, 글리콜라이드 영역의 피크가 가장 많이 성장했음을 확인하였다.As a result, at the beginning of the reaction, unreacted monomers were identified. After 1 hour, unreacted monomers of glycolide and lactide were present, and the peak of the glycolide region was grown the most.
반면 ε-카프로락톤의 미반응 함량은 반응시간 10시간 후에도 존재하였다.On the other hand, the unreacted content of ε-caprolactone was present even after 10 hours.
이를 통해 모노머 반응성의 순서는 글리콜라이드 > 락타이드 > ε-카프로락톤 임을 확인할 수 있었다.Through this, it was confirmed that the order of monomer reactivity was glycolide> lactide> ε-caprolactone.
이러한 1H-NMR 분석 결과를 토대로 한 각 단량체의 반응시간에 따른 전환율이 도 1에 도시되어 있으며, 도 2에는 이를 토대로 미반응 단량체와 전환이 이루어진 단량체의 상대적인 비율을 도 2에 도시하였다.The conversion rate according to the reaction time of each monomer based on the 1 H-NMR analysis results is shown in FIG. 1, and FIG. 2 shows the relative ratios of the unreacted monomers and the converted monomers based on this.
도시된 바와 같이 글리콜라이드 단량체는 ε-카프로락톤과 락타이드 단량체에 비해 반응속도가 매우 빠르며, 반응 초기에 우선적으로 중합이 일어나는 것을 확인할 수 있다.As shown, the glycolide monomer has a very fast reaction rate compared to ε-caprolactone and lactide monomers, and it can be seen that polymerization takes place at the initial stage of the reaction.
반면, ε-카프로락톤은 반응속도가 가장 느리고 락타이드의 경우 글리콜라이드와 ε-카프로락톤의 중간정도의 반응성을 가진다. On the other hand, ε-caprolactone has the slowest reaction rate, and lactide has a moderate reactivity between glycolide and ε-caprolactone.
반응 3시간 이후 글리콜라이드 단량체는 중합이 대부분 진행되는 반면 ε-카프로락톤은 약 60%의 전환률을 보이며 14시간이 되어야 대부분의 반응이 종결된다.After 3 hours, most of the glycolide monomer was polymerized, whereas ε-caprolactone had a conversion rate of about 60% and most reactions were not completed until 14 hours.
한편 락타이드는 3시간 이후 약 90%의 전환률을 보이는데 20시간 반응 후에도 미반응 모노머가 소량 존재하기 때문에 전환률 100%에 도달하지 못하는 것을 확인할 수 있다.On the other hand, lactide shows a conversion rate of about 90% after 3 hours, but since the small amount of unreacted monomer exists after 20 hours of reaction, it can be confirmed that the conversion rate does not reach 100%.
이처럼 각 단량체의 반응속도가 서로 차이가 있는 경우 단량체를 한번에 투입할 경우 글리콜라이드는 빠른 속도로 반응하는 반면, ε-카프로락톤의 경우 공중합체 내로 도입되지 못하고 미반응 단량체로 존재하게 된다.As such, when the reaction rate of each monomer is different from each other, when the monomer is added at a time, the glycolide reacts at a high speed, whereas ε-caprolactone is not introduced into the copolymer and exists as an unreacted monomer.
이러한 미반응 단량체는 결국 공중합체의 물성을 저하시키고 공정 능력을 떨어뜨리므로 제거될 필요가 있다.These unreacted monomers eventually need to be removed because they lower the copolymer's physical properties and degrade process capability.
즉, 본 발명에서는 미반응 단량체의 함량을 감소키기고 보다 랜덤한 중합체를 제조하기 위한 여러 실험 결과에 따라 상기와 같이 단량체를 분할 투입하게 된 것이다.That is, in the present invention, the monomers are divided as described above according to various experimental results for reducing the content of unreacted monomers and producing a more random polymer.
한편, 본 발명의 발명자는 락타이드의 분할 투입 횟수에 따른 예비중합체의 조성 및 화학적 구조를 조사하였으며, 이를 나타내면 아래 표 1과 같다.On the other hand, the inventors of the present invention investigated the composition and chemical structure of the prepolymer according to the number of divided doses of lactide, as shown in Table 1 below.
표 1 락타이드 분할 투입에 따른 예비중합체의 조성 및 점도 분석 결과
LA분할투입 조성비 평균블록길이 점도(I.V)
방식 온도(℃) Gp / Cp / Lp / Gm / Cm / Lm LGG LC LLL
1분할 50 55.6/24.7/16.4/ 0.4 / 2.2 / 0.6 2.09 1.12 3.50 0.956
2분할 50/120 55.2/25.5/16.5/ 0.3 / 1.8 / 0.7 2.40 1.14 2.88 1.008
3분할 50/120/190 54.3/28.4/15.5/ 0.3 / 0.9 / 0.6 2.33 1.14 2.59 1.012
Table 1 Analysis of Composition and Viscosity of Prepolymer with Lactide Split Injection
LA split injection Creation costs Average block length Viscosity (IV)
system Temperature (℃) Gp / Cp / Lp / Gm / Cm / Lm L GG L C L LL
1 split 50 55.6 / 24.7 / 16.4 / 0.4 / 2.2 / 0.6 2.09 1.12 3.50 0.956
2 split 50/120 55.2 / 25.5 / 16.5 / 0.3 / 1.8 / 0.7 2.40 1.14 2.88 1.008
3 divisions 50/120/190 54.3 / 28.4 / 15.5 / 0.3 / 0.9 / 0.6 2.33 1.14 2.59 1.012
(ε-카프로락톤과 락타이드는 2:1의 몰비일 경우, Gp : 글리콜라이드 폴리머, Cp : ε-카프로락톤 폴리머, Lp : 락타이드 폴리머, Gm : 글리콜라이드 모노머, Cm : ε-카프로락톤 모노머, Lm : 락타이드 모노머, LGG : 글리콜라이드 블록 길이, LC : ε-카프로락톤 블록 길이, LLL : 락타이드 블록 길이)(ε-caprolactone and lactide in a 2: 1 molar ratio, Gp: glycolide polymer, Cp: ε-caprolactone polymer, Lp: lactide polymer, Gm: glycolide monomer, Cm: ε-caprolactone monomer , Lm: lactide monomer, L GG : glycolide block length, L C : ε-caprolactone block length, L LL : lactide block length)
도시된 바와 같이 락타이드를 분할 투입하는 횟수가 증가할 수록 ε-카프로락톤의 미반응 모노머의 함량이 감소되는 것을 알 수 있다.As shown in the drawing, as the number of lactide fractions increases, the content of unreacted monomers of ε-caprolactone decreases.
또한, 락타이드의 블록 길이 또한 더 짧아지고 점도도 증가함을 알 수 있다.It can also be seen that the block length of lactide is also shorter and the viscosity is increased.
따라서, 락타이드는 도시된 바와 같이 2 ~ 5분할하는 것이 바람직하다.Therefore, lactide is preferably divided into two to five as shown.
한편, 상기와 같이 구성된 본 발명의 봉합사용 생분해성 고분자는 최종중합체의 분해시간에 따른 모노머 함량 변화를 살펴볼 때, 분해 최기 즉, 최초 1주간에는 글리콜라이드가 분해되면서 인해 상대적으로 락타이드와 ε-카프로락톤의 상대적 함량이 증가하게 되고, 분해 1 ~ 2주차가 되면 글리콜라이드와 락타이드의 함량이 감소하면서 상대적으로 ε-카프로락톤의 함량이 증가하게 된다.On the other hand, the biodegradable polymer of the suture of the present invention configured as described above is relatively lactide and ε- due to the decomposition of glycolide during the initial stage of degradation, that is, during the first week, when the monomer content changes according to the decomposition time of the final polymer. The relative content of caprolactone is increased, and the content of ε-caprolactone is relatively increased as the content of glycolide and lactide decreases after 1 to 2 weeks of decomposition.
분해 3주 이후에는 글리콜라이드의 상대적 함량이 다시 증가하게 되고, 락타이드와 ε-카프로락톤의 상대적 함량이 다시 감소하게 된다.After 3 weeks of decomposition, the relative content of glycolide increases again, and the relative content of lactide and ε-caprolactone decreases again.
이는, 분해 초기의 글리콜라이드의 함량 감소는 글리콜라이드 비결정영역이 물의 침투가 용이한 관계로 먼저 분해됨에 따른 것으로, 사실상 분해 속도는 글리콜라이드 비결정영역 -> 락타이드 비결정역역 -> ε-카프로락톤 비결정영역 -> 글리콜라이드 결정 영역 순으로 진행되기 때문이다.This is because the decrease in the content of glycolide in the early stage of decomposition is due to the fact that the glycolide amorphous region is easily decomposed due to the easy penetration of water, and in fact, the decomposition rate is glycolide amorphous region-> lactide amorphous region-> ε-caprolactone amorphous. This is because the region proceeds in the order of the region of glycolide crystals.
이러한 과정에서 락타이드는 ε-카프로락톤에 비해 분해 속도가 빠르기 때문에 기존의 PGCL 공중합체보다 훨씬 빠른 분해 속도를 보이게 되는 것이다.In this process, since lactide has a faster decomposition rate than ε-caprolactone, the decomposition rate is much faster than that of the conventional PGCL copolymer.
한편, CGC sequence는 가수분해에 대한 저항성이 강하여 분해가 잘 일어나지 않으므로 CGC sequence의 함량이 적을수록 분해에 유리하다.On the other hand, since the CGC sequence has a strong resistance to hydrolysis, the decomposition does not occur well, so the smaller the content of the CGC sequence is advantageous to the decomposition.
일반적으로 ε-카프로락톤이 촉매에 의해 활성화되어 글리콜라이드 유닛을 공격하는 2차 에스테르교환반응에 의해 CGC sequence가 생성되는데, 본 발명에서는 락타이드의 도입으로 인해 ε-카프로락톤의 함량을 상대적으로 감소시켜 CGC 에스테르교환반응의 빈도수를 낮춰 기존의 PGCL에 비해 CGC의 함량을 줄였고, 이로 인해 빠른 분해 속도를 보이게 된다.In general, the CGC sequence is generated by a second transesterification reaction in which ε-caprolactone is activated by a catalyst to attack the glycolide unit. In the present invention, the content of ε-caprolactone is relatively reduced due to the introduction of lactide. By lowering the frequency of the CGC transesterification reaction to reduce the content of CGC compared to the conventional PGCL, it shows a fast decomposition rate.
이하, 본 발명의 일 실시예에 대하여 설명하면 다음과 같다.Hereinafter, an embodiment of the present invention will be described.
1. 봉합사용 생분해성 고분자의 제조11. Preparation of biodegradable polymer for suture 1
초자반응기를 준비한 후 초자반응기에 글리콜라이드, ε-카프로락톤, 락타이드를 투입하였다.Glycolide, ε-caprolactone, and lactide were added to the reactor.
이때, 글리콜라이드, ε-카프로락톤, 락타이드의 몰비가 55 : 36 : 9가 되도록 하였다.At this time, the molar ratio of glycolide, ε-caprolactone, and lactide was set to 55: 36: 9.
개시제인 DEG는 아래 화학식 6과 같은 구조를 가지며, 녹는점이 -10.45℃이고, 끓는점이 253℃이며, 몰 질량 106.12 g/mol이다.DEG, an initiator, has a structure as shown in Chemical Formula 6 below, a melting point of -10.45 ° C, a boiling point of 253 ° C, and a molar mass of 106.12 g / mol.
촉매제인 Stannous octoate는 아래 화학식 7과 같은 구조를 가지며, 몰 질량이 405.1 g/mol이다.Stannous octoate, a catalyst, has a structure as shown in Formula 7 below, and has a molar mass of 405.1 g / mol.
화학식 6
Figure PCTKR2012006079-appb-C000006
Formula 6
Figure PCTKR2012006079-appb-C000006
화학식 7
Figure PCTKR2012006079-appb-C000007
Formula 7
Figure PCTKR2012006079-appb-C000007
상기 ε-카프로락톤은 최초에 전량을 투입하고, 글리콜라이드는 10분할하여 분할 투입하였으며, 락타이드는 5분할하여 분할 투입하였다.The total amount of ε-caprolactone was initially added, the glycolide was divided into 10 portions, and the lactide was divided into 5 portions.
반응기의 온도 조건은 50 ~ 190℃로 승온하여 유지하는 방식을 취하였다.The temperature condition of the reactor was taken to maintain the temperature increase to 50 ~ 190 ℃.
상기와 같은 과정을 거쳐 예비중합체를 제조한 후 반응기의 온도 조건을 198℃로 유지하면서 글리콜라이드를 추가 투입하여 1시간 동안 유지하였다.After preparing the prepolymer through the above process, the glycolide was added and maintained for 1 hour while maintaining the temperature condition of the reactor at 198 ℃.
글리콜라이드가 추가 투입됨에 따른 글리콜라이드, 카프록락톤 및 락타이드는 몰비를 기준으로 최종적으로 75 : 20 : 5가 되도록 하였다.Glycolide, caprolactone and lactide were added to the final addition of glycolide to 75: 20: 5 based on the molar ratio.
이하, 본 발명에 따른 봉합사용 생분해성 고분자의 제조 방법에 의해 제조된 고분자에 대한 실험예에 대해 설명하기로 한다.Hereinafter, an experimental example of the polymer prepared by the method of manufacturing a biodegradable polymer for suture according to the present invention will be described.
1. 예비중합체와 최종중합체의 조성 및 화학적 구조1. Composition and chemical structure of prepolymer and final polymer
실시예 1에 따른 제조 방법에서 예비중합체와 최종중합체의 화학적 구조를 알아보기 위해 1H-NMR 분석을 통하여 각 공중합체의 사슬구조 변화를 확인하였다.In order to determine the chemical structures of the prepolymer and the final polymer in the production method according to Example 1, the change in the chain structure of each copolymer was confirmed through 1 H-NMR analysis.
표 2 예비중합체 및 최종중합체, PGCL의 조성과 평균블록길이
조성 평균블록길이
LGG LC LLL
예비중합체 2.05 1.20 2.40
최종중합체 3.82 1.20 2.42
TABLE 2 Composition and average block length of prepolymer and final polymer, PGCL
Furtherance Average block length
L GG L C L LL
Prepolymer 2.05 1.20 2.40
Final polymer 3.82 1.20 2.42
표 2는 상기 실시예에서 예비중합체와 최종중합체에서 각 단량체의 평균블록 길이를 나타낸 것이다.Table 2 shows the average block length of each monomer in the prepolymer and the final polymer in the above examples.
한편, 도 3에는 실시예 1과 같이 진행하되, ε-카프로락톤 : 락타이드 조성 비를 다르게 하여 실험하여 이에 따른 예비중합체의 평균 블록 길이를 그래프로 나타내었다.On the other hand, Figure 3, but proceeded as in Example 1, ε- caprolactone: lactide experiment by varying the ratio of the composition is shown in the graph the average block length of the prepolymer accordingly.
도시된 바와 같이 락타이드의 함량이 증가함에 따라 예비중합체의 글리콜라이드, 락타이드 평균블록길이가 증가하고, ε-카프로락톤의 블록길이는 일정하게 유지됨을 알 수 있다.As shown, as the content of lactide increases, the average block length of glycolide and lactide of the prepolymer increases, and the block length of ε-caprolactone remains constant.
이처럼 락타이드의 함량이 증가함에 따라 락타이드의 블록길이가 증가하는 동시에, 상대적으로 함량이 감소하는 ε-카프로락톤이 촉매에 의해 활성화되어 글리콜라이드와 락타이드를 공격하는 확률이 낮아지므로 글리콜라이드와 락타이드의 블록길이가 증가하는 것이다. As the content of lactide increases, the block length of lactide increases, and ε-caprolactone, which has a relatively low content, is activated by a catalyst, thereby decreasing the probability of attacking glycolide and lactide. The block length of lactide is increased.
예비중합체 합성이 완료된 후 글리콜라이드를 추가 투입하여 얻은 최종중합체의 단량체 평균블록길이는 도 4에 도시되어 있다.The monomer average block length of the final polymer obtained by additional addition of glycolide after the prepolymer synthesis is completed is shown in FIG. 4.
최종중합체의 화학적 구조를 확인해보면 ε-카프로락톤과 락타이드의 함량에 따른 예비중합체와 매우 유사한 경향성을 나타내는 것을 관찰할 수 있다. If we check the chemical structure of the final polymer, it can be observed that the tendency is very similar to that of the prepolymer depending on the content of ε-caprolactone and lactide.
1단계 반응인 예비중합체 단계에서, 반응초기 결정된 ε-카프로락톤와 락타이드의 평균 블록길이는 전체 반응에 걸쳐 거의 변화가 없지만 활성화 된 카프로일 시퀀스와 락타이딜 시퀀스에 의해 말단 에스테르화반응의 생성물인 -CGC- 또는 -LGL- 시퀀스를 유발하므로 글리콜라이드의 평균블록길이에 큰 영향을 미친다. In the prepolymer stage, which is a one-step reaction, the average block length of ε-caprolactone and lactide determined at the beginning of the reaction is almost unchanged over the entire reaction, but is the product of terminal esterification by the activated caproyl and lactidyl sequences. It induces a -CGC- or -LGL- sequence, which greatly affects the average block length of glycolide.
또한 2단계 반응에서는 글리콜라이드에 의한 동일단량체 성장 반응이 주로 일어나기 때문에 예비중합체 반응 단계에서 결정된 ε-카프로락톤과 락타이드의 평균 블록길이는 거의 변화가 없는 것이다. In addition, in the two-step reaction, since the homomonomer growth reaction mainly occurs by glycolide, the average block length of ε-caprolactone and lactide determined in the prepolymer reaction step is almost unchanged.
이를 통해 최종중합체는 ABA 블록 공중합체 형태로 제조되었음을 알 수 있다. This indicates that the final polymer was prepared in the form of an ABA block copolymer.
그러므로 최종중합체의 화학적 구조를 결정하는 가장 중요한 요소는 1단계에서 제조된 예비중합체의 화학적 구조라고 할 수 있다. Therefore, the most important factor that determines the chemical structure of the final polymer is the chemical structure of the prepolymer prepared in step 1.
2. 최종중합체의 분해 거동 실험2. Decomposition behavior test of final polymer
상기 실시예1의 최종중합체 시료를 pH 7.4의 phosphate buffer solution(PBS)에 침지한 후 PBS 용액의 pH를 시간에 따라 pH meter(ISTEK)를 사용하여 살펴보았다.The final polymer sample of Example 1 was immersed in phosphate buffer solution (PBS) of pH 7.4 and the pH of the PBS solution was examined using a pH meter (ISTEK) over time.
이때, 비교예로 PGCL을 비교 대상으로 하여 살펴보았으며, 그 결과를 도 5에 도시하였다.At this time, as a comparative example, the PGCL was examined as a comparison target, and the results are shown in FIG. 5.
또한, 분해에 따른 최종중합체의 무게 감소를 분해 전 시료의 무게에서 분해 후 시료의 무게를 뺀 후 분해 전 시료의 무게로 나눈 후 백분율하여 감소율을 계산하여 그 결과를 도 6에 도시하였다.In addition, the weight reduction of the final polymer due to decomposition is calculated by subtracting the weight of the sample after decomposition by subtracting the weight of the sample after decomposition and dividing by the weight of the sample before decomposition to calculate the percentage reduction.
이때, 역시 비교예로 PGCL을 비교하였다.At this time, PGCL was also compared as a comparative example.
도시된 바와 같이 본 발명의 제조방법에 의해 제조된 최종중합체는 분해 초기에 일정 강도를 유지하다가 일정 기간 이후 급격히 감소함을 알 수 있다.As shown, the final polymer prepared by the production method of the present invention can be seen that it maintains a certain strength at the initial stage of decomposition and then decreases rapidly after a certain period of time.
즉, 본 발명에 의한 고분자는 PGCL 공중합체와 초기에는 비슷한 분해 거동을 보이나, 일정 기간 이후에는 더 빠른 속도로 분해됨을 알 수 있다.That is, the polymer according to the present invention shows a similar decomposition behavior initially with the PGCL copolymer, but it can be seen that it decomposes at a faster rate after a certain period of time.
3. 분해에 따른 형태 변화 실험3. Experiment of shape change by decomposition
도 7은 상기 실시예 1의 최종중합체 시료를 ℃의 온도에서 시간에 따라 분해되는 현상을 FE-SEM으로 관찰한 이미지를 나타낸 그림이다.7 is a view showing an image observed by the FE-SEM decomposition of the final polymer sample of Example 1 with time at a temperature of ℃.
도면의 표에서 좌측의 PCGL은 상술한 PGCL이며, 오른쪽의 PCGLA는 본 발명의 실시예1에 의해 제조된 제품이다.In the table of the figure, the PCGL on the left is the above-described PGCL, and the PCGLA on the right is a product manufactured according to Example 1 of the present invention.
그림에서 보는 바와 같이 기존 제품에 비해 본 발명에 의해 제조된 최종중합체의 표면이 갈라지는 현상이 더 빠르게 일어나는 것을 볼 수 있다.As shown in the figure, it can be seen that the phenomenon of the surface cracking of the final polymer produced by the present invention occurs more quickly than the existing product.
즉, 실시예1의 제품의 분해 거동이 훨씬 빠르게 일어나는 것이다.In other words, the decomposition behavior of the product of Example 1 occurs much faster.
이상 살펴본 바와 같이 본 발명에서는 글리콜라이드, ε-카프로락톤, 락타이드를 2단계로 나누어 중합 반응시키는 과정과, 글리콜라이드와 락타이드를 각기 다르게 분할하여 투입하는 제조 과정을 거치게 된다.As described above, in the present invention, the glycolide, ε-caprolactone, and lactide are divided into two stages and subjected to a polymerization reaction, and the glycolide and lactide are separately divided and introduced into the preparation process.
이때, 예비중합체와 최종중합체의 화학적 구조를 살펴보면 락타이드의 평균블록길이와 ε-카프로락톤의 평균블록길이 변화는 거의 없는 채 최종중합체 제조시 첨가된 글리콜라이드로 인해 글리콜라이드의 평균블록길이만 증가된 ABA형의 블록 공중합체가 된다.In this case, the chemical structures of the prepolymer and the final polymer showed that the average block length of the lactide and the average block length of the ε-caprolactone were almost unchanged. To a block copolymer of ABA type.
이러한 과정을 거친 최종중합체는 기존의 PGCL에 비해 훨씬 빠른 분해 속도를 가지게 되는 것이다.After this process, the final polymer has a much faster decomposition rate than conventional PGCL.
본 발명의 봉합사용 생분해성 고분자 제조 방법은 봉합사 제조용으로 국한되는 것은 아니며, 각종 외과 수술에 적용되는 다양한 생분해성 고분자의 제조에 적용될 수 있다 할 것이다.The method of producing biodegradable polymer for suture use of the present invention is not limited to the production of suture, and may be applied to the preparation of various biodegradable polymers applied to various surgical procedures.

Claims (2)

  1. 봉합사용 생분해성 고분자의 제조 방법에 있어서,In the method for producing a biodegradable polymer for suture,
    글리콜라이드, ε-카프로락톤, 락타이드를 55 ~ 65 : 30 ~ 20 : 15의 몰비로 중합반응기에 투입하여 50 ~ 190℃의 온도에서 5 ~ 7 시간 동안 중합 반응시켜 예비중합체를 제조하되, 상기 ε-카프로락톤은 1회에 투입하고, 상기 글리콜라이드는 10 ~ 15분할하여 분할 투입하며, 상기 락타이드는 3 분할하여 분할투입하되, 투입 시점이 50℃, 120℃, 190℃의 온도에서 이루어지는 예비중합체 제조단계와;Glycolide, ε-caprolactone, lactide was added to the polymerization reactor at a molar ratio of 55 to 65: 30 to 20: 15 to polymerize for 5 to 7 hours at a temperature of 50 to 190 ℃ to prepare a prepolymer, ε-caprolactone is added at a time, the glycolide is divided into 10 to 15 divided doses, the lactide is divided into three divided doses, the input time is made at a temperature of 50 ℃, 120 ℃, 190 ℃ Preparing a prepolymer;
    글리콜라이드, ε-카프로락톤, 락타이드가 75 : 15 ~ 18 : 10 ~ 7의 몰비가 되도록 상기 중합반응기에 글리콜라이드를 추가로 투입한 후 200 ~ 220℃의 온도에0.5 ~ 1.5 시간 동안 중합 반응시켜 최종중합체를 제조하는 최종중합체 제조단계;를 포함하여 구성된,Glycolide was added to the polymerization reactor such that glycolide, ε-caprolactone, and lactide were 75: 15 to 18: 10 to 7, and then polymerization reaction was performed at a temperature of 200 to 220 ° C for 0.5 to 1.5 hours. Configured to include a final polymer manufacturing step of preparing a final polymer,
    봉합사용 생분해성 고분자의 제조 방법.Method for producing biodegradable polymer for suture.
  2. 봉합사용 고분자에 있어서,In the suture polymer,
    제 1항의 제조방법에 의해 제조되며,It is manufactured by the manufacturing method of claim 1,
    화학식이,Formula is
    Figure PCTKR2012006079-appb-I000001
    Figure PCTKR2012006079-appb-I000001
    이며, 상기 X, Y, Z, n, m, p는 1 이상의 정수로 이루어진 것을 특징으로 하는,X, Y, Z, n, m, p is an integer of 1 or more, characterized in that
    봉합사용 생분해성 고분자.Biodegradable polymer for sutures.
PCT/KR2012/006079 2011-09-23 2012-07-31 Biodegradable polymer for a suture and method for manufacturing same WO2013042870A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0096587 2011-09-23
KR1020110096587A KR101177656B1 (en) 2011-09-23 2011-09-23 Biodegradable polymer for suture and making method of it

Publications (1)

Publication Number Publication Date
WO2013042870A1 true WO2013042870A1 (en) 2013-03-28

Family

ID=46887912

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/006079 WO2013042870A1 (en) 2011-09-23 2012-07-31 Biodegradable polymer for a suture and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101177656B1 (en)
WO (1) WO2013042870A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106832234A (en) * 2017-03-06 2017-06-13 山东赛克赛斯生物科技有限公司 A kind of Biodegradable polymeric material and its preparation method and application
CN113881021A (en) * 2021-10-20 2022-01-04 广东粤港澳大湾区黄埔材料研究院 Terpolymer, suture line, preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045418A (en) * 1975-01-28 1977-08-30 Gulf Oil Corporation Copolymers of D,L-lactide and epsilon caprolactone
US6235869B1 (en) * 1998-10-20 2001-05-22 United States Surgical Corporation Absorbable polymers and surgical articles fabricated therefrom
KR20020027887A (en) * 2000-10-06 2002-04-15 오석송 A suture with excellent knot strength
KR20030041636A (en) * 2001-11-21 2003-05-27 한국과학기술연구원 Sequentially Ordered Biodegradable Lactide(Glycolide or Lactide/Glycolide)/ε-Caprolactone Multi-Block Copolymer and Process for the Preparation Thereof
KR101028248B1 (en) * 2010-06-09 2011-04-11 주식회사 메타바이오메드 The method of manufacturing a suture

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4045418A (en) * 1975-01-28 1977-08-30 Gulf Oil Corporation Copolymers of D,L-lactide and epsilon caprolactone
US6235869B1 (en) * 1998-10-20 2001-05-22 United States Surgical Corporation Absorbable polymers and surgical articles fabricated therefrom
KR20020027887A (en) * 2000-10-06 2002-04-15 오석송 A suture with excellent knot strength
KR20030041636A (en) * 2001-11-21 2003-05-27 한국과학기술연구원 Sequentially Ordered Biodegradable Lactide(Glycolide or Lactide/Glycolide)/ε-Caprolactone Multi-Block Copolymer and Process for the Preparation Thereof
KR101028248B1 (en) * 2010-06-09 2011-04-11 주식회사 메타바이오메드 The method of manufacturing a suture

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106832234A (en) * 2017-03-06 2017-06-13 山东赛克赛斯生物科技有限公司 A kind of Biodegradable polymeric material and its preparation method and application
CN106832234B (en) * 2017-03-06 2019-02-15 赛克赛斯生物科技股份有限公司 A kind of Biodegradable polymeric material and its preparation method and application
CN113881021A (en) * 2021-10-20 2022-01-04 广东粤港澳大湾区黄埔材料研究院 Terpolymer, suture line, preparation method and application thereof

Also Published As

Publication number Publication date
KR101177656B1 (en) 2012-08-27

Similar Documents

Publication Publication Date Title
EP0548237B1 (en) Method for the production of an article from the Copolymer of Lactide and (e)-Caprolactone for medical applications
KR100453130B1 (en) Sequentially Ordered Biodegradable Lactide(Glycolide or Lactide/Glycolide)/ε-Caprolactone Multi-Block Copolymer and Process for the Preparation Thereof
WO2013048126A1 (en) Polyamide-imide copolymer film and method of preparing polyamide-imide copolymer
CA2385140A1 (en) Biodegradable elastomer and methods of preparing same
KR20000035277A (en) Copolyesters with minimized hydrolytic instability and crystalline absorbable copolymers thereof
WO2013042870A1 (en) Biodegradable polymer for a suture and method for manufacturing same
WO2016186329A1 (en) Method for preparing high-softening-point pitch and high-softening-point pitch prepared by same method
JPH0343906B2 (en)
WO2021006480A1 (en) Biodegradable composite material with improved mechanical properties using aqueous dispersion of natural polymer nanofibers and method for preparing same
EP2364332A1 (en) Highly purified polylactic acid or a derivative thereof, a salt of the same, and purification method thereof
Motta et al. Synthesis and characterization of a novel terpolymer based on L-lactide, D, L-lactide and trimethylene carbonate
WO2021118124A1 (en) Non-mixed amphiphilic thermoplastic polyurethane, method for producing same, and implantable medical device including same
DE68904709D1 (en) METHOD FOR PRODUCING AROMATIC THERMOTROPER COPOLYESTERAMIDES AND CORRESPONDING COPOLYESTERAMIDES.
WO2020197104A1 (en) Composition, comprising hyaluronic acid, for suture coating and method for manufacturing hyaluronic acid-coated suture by using same
AU631291B2 (en) Segmented copolymers of epsilon-caprolactone and glycolide
WO2016186470A1 (en) Polylactic acid copolymer having significantly improved elasticity, and preparation method therefor
WO2014054846A1 (en) Method of producing vegetable-oil-based biomass elastomer and elastomer produced by the method
WO2023008632A1 (en) Absorbable suture including polydeoxyribonucleotide
EP1136511B1 (en) PROCESS FOR PRODUCING POLY(p-DIOXANONE), AND POLY(p-DIOXANONE) MONOFILAMENT AND PROCESS FOR PRODUCING THE SAME
WO2019066200A1 (en) Method for preparing polyamide and polyamide prepared thereby
WO2023182686A1 (en) Polylactide resin composition with excellent crystallinity, and preparation method therefor
WO2023027512A1 (en) Poly(lactic acid-b-3-hydroxypropionic acid) block copolymer and method for preparation thereof
CN113881021B (en) Terpolymer, suture and preparation method and application thereof
WO2023182723A1 (en) Polylactide resin composition and preparation method therefor
KR101395357B1 (en) Polylactic acid-polysiloxane copolymer and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12833388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12833388

Country of ref document: EP

Kind code of ref document: A1