WO2013032570A1 - Fine pitch wire grid polarizer - Google Patents

Fine pitch wire grid polarizer Download PDF

Info

Publication number
WO2013032570A1
WO2013032570A1 PCT/US2012/043979 US2012043979W WO2013032570A1 WO 2013032570 A1 WO2013032570 A1 WO 2013032570A1 US 2012043979 W US2012043979 W US 2012043979W WO 2013032570 A1 WO2013032570 A1 WO 2013032570A1
Authority
WO
WIPO (PCT)
Prior art keywords
wires
resist
coating
base
etch
Prior art date
Application number
PCT/US2012/043979
Other languages
French (fr)
Inventor
Mark Alan Davis
Original Assignee
Moxtek, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Moxtek, Inc. filed Critical Moxtek, Inc.
Priority to CN201280042224.8A priority Critical patent/CN103907173B/en
Priority to KR1020147005086A priority patent/KR101496689B1/en
Priority to JP2014528388A priority patent/JP5686227B2/en
Publication of WO2013032570A1 publication Critical patent/WO2013032570A1/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3058Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state comprising electrically conductive elements, e.g. wire grids, conductive particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • H01L21/0276Photolithographic processes using an anti-reflective coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • H01L21/0271Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers
    • H01L21/0273Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34 comprising organic layers characterised by the treatment of photoresist layers
    • H01L21/0274Photolithographic processes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24479Structurally defined web or sheet [e.g., overall dimension, etc.] including variation in thickness
    • Y10T428/2457Parallel ribs and/or grooves

Definitions

  • Nanometer-sized devices such as wire grid polarizers
  • the pitch in a wire grid polarizer should be less than half the wavelength of the electromagnetic radiation.
  • Wire grid polarizers, with pitch smaller than half the wavelength of visible light have been demonstrated. See for example U.S. Patent numbers 6,208,463; 6, 122, 103; and 6,243, 199.
  • Various methods have been proposed to solve this problem. See for example U.S. Patent number 7,692,860 and U.S. Publication numbers 2009/0041971 and 2009/0053655.
  • wire grid polarizers are typically formed with wires that are the same height. It would be beneficial to form wire grid polarizers with variable wire height in order to allow tuning of the wire grid polarizer for multiple wavelengths and to allow for a smoother Ts curve. Methods have been proposed for wire grid polarizers with different height wires. See for example U.S. Publication numbers 20080037 01 and 20080038467.
  • Wire grid polarizers are typically formed with wires that are situated along a single plane. It would be beneficial to form wire grid polarizers with wires situated at multiple planes.
  • a wire grid polarizer with wires that are situated along multiple planes may be tuned to multiple wavelengths and may allow for a smoother Ts curve. See for example U.S. Publication numbers 20080037101 and 20080038467.
  • Wire grid polarizers are typically formed with wires that are all comprised of single materials.
  • a wire grid polarizer with some wires comprised one material and other wires comprised of a different material would be beneficial for tuning the wire grid polarizer to multiple wavelengths.
  • nanometer-sized device such as a wire grid polarizer
  • very small spacing between adjacent features i.e. small pitch
  • nanometer-sized device such as a wire grid polarizer in which there is variable wire height, with wires situated at multiple planes, and / or with a wire array in which wires may be comprised of a different material than an adjacent wire.
  • wire grid polarizer or polarizer
  • polarizer will primarily be used for simplicity, but the invention may be used for other purposes.
  • the present invention is directed to a wire grid polarizer comprising an array of parallel, elongated wires disposed on a substrate, the wires having a pitch of less than 80 nanometers.
  • This wire grid polarizer, with this small pitch, can be made by various methods described herein.
  • the present invention is directed a method of making a wire grid polarizer with fine pitch by obtaining a wire grid polarizer having an array of parallel, elongated wires disposed on a substrate, the wires having a protective layer disposed at a surface of the wires, then anisotropically etching the wire grid polarizer to form two parallel, elongated rods substantially located at corners where the wires contacted the substrate.
  • the rods can be polarizing elements. Note that the term "rods" is used to distinguish from the original wires.
  • a segmented film can be deposited on the rods. The segmented film can be used for polarizing or absorbing incoming electromagnetic radiation.
  • This method allows formation of at least two polarizing rods from each resist feature, thus allowing for formation of smaller pitch wire grid polarizer.
  • This method has an advantage of using each original wire to form two polarizing rods.
  • the pitch of the original wires can be limited by patterning abilities, but two rods can be made for each original wire. The process can be repeated again, making two rails for each original rod.
  • the term "rail" is used to distinguish from original wires and rods.
  • the present invention is directed to a polarizer with a repeated pattern of groups of parallel elongated wires disposed over a substrate.
  • Each group of elongated wires comprises at least three wires. At least one wire at an interior of each group is taller by more than 3 nanometers (“nm”) than outermost wires of each group. A distance between the outermost wires in each group is less than about 1 micrometer.
  • This embodiment has an advantage of variable height wires, such that one wire is taller than another.
  • the wires can also have very fine pitch.
  • the present invention is directed to a polarizer with an array of groups of parallel elongated wires disposed over a substrate and comprising a material that is a byproduct of an etch reaction.
  • a distance between outermost wires in each group is less than about 1 micrometer.
  • This embodiment has an advantage of wires made by etch reaction.
  • the wires can also have very fine pitch.
  • the present invention is also directed to a method for making a polarizer.
  • the method comprises a resist over a base, then patterning the resist and creating resist widths. An isotropic etch of the base can then be
  • the present invention is directed to a multi-step wire grid polarizer device comprising a base with a plurality of parallel multi-step ribs disposed on the base.
  • Each of the ribs comprises multiple adjacent steps.
  • a coating is disposed along vertical surfaces of the steps. The coating along the vertical surface of any step can be separate from the coating along a vertical surface of an adjacent step.
  • Each multi-step rib may be formed under a single resist feature.
  • the present invention is also directed to a method for making the above described device, the method comprising (1 ) forming multi-step ribs, the ribs attached to a base; (2) coating the surface of the base and steps; and (3) removing thinner portions of the coating on horizontal surfaces while leaving a majority of the coating on vertical surfaces.
  • This embodiment has advantages the ability to make a wire grid polarizer with wires that can have very fine pitch and / or wires situated at multiple planes, thus allowing the wire grid polarizer to be tuned to multiple wavelengths.
  • FIG. 1 is a schematic cross-sectional side view of a wire grid polarizer in accordance with an embodiment of the present invention
  • FIG. 2 is a schematic cross-sectional side view showing one step in making a wire grid polarizer, in accordance with an embodiment of the present invention
  • FIG. 3 is a schematic cross-sectional side view showing one step in making a wire grid polarizer, in accordance with an embodiment of the present invention
  • FIG. 4 is a schematic cross-sectional side view showing one step in making a wire grid polarizer, in accordance with an embodiment of the present invention
  • FIG. 5 is a schematic cross-sectional side view of a wire grid polarizer, in accordance with an embodiment of the present invention.
  • FIG. 6 is a schematic cross-sectional side view showing one step in the manufacture of a wire grid polarizer, in accordance with an embodiment of the present invention.
  • FIG. 7 is a schematic cross-sectional side view showing one step in the manufacture of a wire grid polarizer, in accordance with an embodiment of the present invention.
  • FIG. 8 is a schematic cross-sectional side view showing one step in the manufacture of a wire grid polarizer, in accordance with an embodiment of the present invention.
  • FIG. 9 is a schematic cross-sectional side view showing one step in the manufacture of a wire grid polarizer, in accordance with an embodiment of the present invention.
  • FIG. 10 is a schematic cross-sectional side view showing one step in the manufacture of a wire grid polarizer in accordance with an embodiment of the present invention.
  • FIG. 1 1 is a schematic cross-sectional side view of a wire grid polarizer, in accordance with an embodiment of the present invention
  • FIG. 12 is a schematic cross-sectional side view of a multi-step wire grid polarizer in accordance with an embodiment of the present invention.
  • FIG. 13 is a schematic cross-sectional side view of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention.
  • FIG. 14 is a schematic cross-sectional side view of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention.
  • FIG. 15 is a schematic cross-sectional side view of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention.
  • FIG. 16 is a schematic cross-sectional side view of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention.
  • FIG. 17 is a schematic cross-sectional side view of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention.
  • FIG. 18 is a schematic cross-sectional side view showing one step in the manufacture of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention.
  • FIG. 19 is a schematic cross-sectional side view showing one step in the manufacture of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention.
  • FIG. 20 is a schematic cross-sectional side view showing one step in the manufacture of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention.
  • FIG. 21 is a schematic cross-sectional side view showing one step in the manufacture of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention.
  • FIG. 22 is a schematic cross-sectional side view showing one step in the manufacture of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention
  • FIG. 23 is a schematic cross-sectional side view showing one step in the manufacture of multi-step wire grid polarizer, in accordance with an embodiment of the present invention
  • FIG. 24 is a schematic cross-sectional side view showing one step in the manufacture of multi-step wire grid polarizer, in accordance with an embodiment of the present invention.
  • FIG. 25 is a schematic cross-sectional side view showing one step in the manufacture of multi-step wire grid polarizer, in accordance with an embodiment of the present invention.
  • FIG. 26 is a schematic cross-sectional side view showing one step in the manufacture of multi-step wire grid polarizer, in accordance with an embodiment of the present invention.
  • electromagnetic radiation includes infrared, visible, ultraviolet, and x-ray regions of the electromagnetic spectrum.
  • wire, rod, rail, and rib are used to describe various elongated structures having lengths significantly longer than width or height.
  • Wires, rods, rails, and ribs can have various cross-sectional shapes.
  • Wires, rods, and rails can refer to polarizing structures in a wire grid polarizer and ribs can refer to an elongated support structure for wires.
  • the term “substantially” refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result.
  • an object that is “substantially” enclosed would mean that the object is either completely enclosed or nearly completely enclosed.
  • the exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context. However, generally speaking the nearness of completion will be so as to have the same overall result as if absolute and total completion were obtained.
  • the use of “substantially” is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result.
  • a polarizer 10 includes an array of parallel, elongated wires 12 disposed on a substrate 11.
  • the substrate 11 can be transmissive of the wavelength of electromagnetic radiation used.
  • the wires can have a pitch of less than 80 nanometers. In one embodiment, the wires can have a pitch of 60 - 80 nanometers. In another embodiment, the wires can have a pitch of 8 - 85
  • the wires can have a pitch of 20 - 85 nanometers. In one embodiment, the wires can have a width w of less than 55 nanometers. In another embodiment, the wires can have a width w of less than 35 nanometers. In another embodiment, the wires can have a width w of less than 15 nanometers.
  • Polarizers, with pitch of 8 - 85 nanometers, may be used for
  • vanadium and hafnium can be good materials of choice for the wires 12.
  • the wires 12 can be formed of aluminum oxide; aluminum silicate; antimony trioxide; antimony sulphide; beryllium oxide; bismuth oxide; bismuth triflouride; boron nitride; boron oxide; cadmium sulfide; cadmium telluride; calcium fluoride; eerie oxide; chiolite; cryolite; cupric oxide; cupric chloride, cuprous chloride, cuprous sulfide; germanium; hafnium dioxide; lanthanum fluoride; lanthanum oxide; lead chloride; lead fluoride; lead telluride; lithium fluoride; magnesium fluoride; magnesium oxide; neodymium fluoride; neodymium oxide; niobium oxide;
  • praseodymium oxide scandium oxide; silicon; silicon oxide; disilicon trioxide; silicon carbide ; silicon dioxide; sodium fluoride; silicon nitride; tantalum oxide; tantalum pentoxide; tellurium; titanium; titanium dioxide; titanium nitride, titanium carbide; thallous chloride; tungsten; yttrium oxide; zinc selenide; zinc sulfide; zirconium dioxide, and combinations thereof.
  • FIGs. 1-4 show one method of manufacturing a fine pitch wire grid polarizer.
  • a wire grid polarizer 10, shown in FIG. 1 having an array of parallel, elongated wires 12 disposed on a substrate 11 , can have a protective layer 21-22 disposed at a surface of the wires 12, as shown in FIG. 2.
  • the protective layer 21-22 can be disposed at a top surface 22 of the wires 12 and also at sides 21 of the wires 12.
  • the protective layer 21-22 can be formed by passivation of the wires 12, and thus can be embedded in the wires 12.
  • the purpose of the protective layer 21-22 is to make surfaces of the wires more etch resistant than central portions of the wires.
  • the second step 30, shown in FIG. 3, is to anisotropically etch the wire grid polarizer to form two parallel, elongated rods 32 substantially located at corners 24a- b where the wires contacted the substrate 1 1.
  • the anisotropic etch can preferentially remove wires at a central portion 25 of the wire 12, thus exposing the substrate 34 in the location of the former center 25 of the wire 12 while leaving wire material at corners 24a-b.
  • the central portion 25 is preferentially removed because the protective layer 21-22 can be more resistant to the anisotropic etch than the wire 12 itself and thus after etching through the protective layer 22 on top of the wire, the anisotropic etch proceeds rapidly through the central portion 25 of the wire down to the substrate 34 while the side portions 26 of the wire etch more slowly due to the etch resistant protective layer 21.
  • the original wire is essentially cut in half, forming two rods 32 in place of the original wire 12.
  • an alternative added step prior to the anisotropic etch is to ion mill the top of the wires 12, thus partially or totally removing the protective layer 22 prior to the anisotropic etch.
  • the two rods 32 can each be polarizing elements.
  • the wire grid polarizer can now have twice as many polarizing elements as before this step 30.
  • rod group 32a was formed of one original wire 12a and rod group 32b was formed of another original wire 12b.
  • Wire grid polarizers without the fine pitch method 30 described above, have been made by standard lithography and etching methods with pitches of around 100 - 150 nanometers and wire widths of around 50 - 75 nanometers. Thus, this method essentially cuts the pitch in half, allowing formation of wire grid polarizers by this method with pitches of around 50 - 75 nanometers and wire widths of around 25 - 38 nanometers, even with present lithography and etching methods.
  • An added step 40, shown in FIG. 4, that may be useful for some wire grid polarizer applications is to apply a segmented coating 42 on top of the rods 32.
  • the segmented coating 42 can be aligned with the rods 32 and can continue partially down both sides 43 of the rods 32 without coating the substrate 44 exposed between the rods 32.
  • This segmented coating may be applied by methods described in USA Patent Application Numbers 12/507,570, filed on July 22, 2009 and 13/075,470, filed on March 30, 2011 , incorporated herein by reference.
  • a polarizer 50 includes a substrate 11 which can be transmissive of the wavelength of electromagnetic radiation used.
  • germanium could be used in the infrared, silicon in the visible, and quartz in the ultraviolet.
  • a repeated pattern of groups 53 of parallel elongated wires 52 may be disposed on the substrate.
  • the wires 52 may comprise a material that can polarize the incident electromagnetic radiation.
  • Each group 53 of elongated wires 52 can comprise at least three wires.
  • Each group can include one or more interior wires 52c, such as one or more center wires, and outermost wires 52o.
  • the interior or center wires 52c can be taller than the outermost wires 52o, such as by more than 3 nm in one aspect, more than about 10 nm in another aspect, more than about 20 nm in another aspect, or more than about 50 nm in another aspect.
  • the distance between the outermost wires 52o, and thus the width d3 of each group 53 can be less than 1 micrometer in one aspect, less than about 150 nm in another aspect, less than about 100 nm in another aspect or less than about 50 nm in another aspect.
  • the wires 52 can be a byproduct of an etch reaction, which material can be beneficial for some applications.
  • the width d3 of each group 53 can be a resist width as will be described below, thus multiple wires can be formed for a single resist width, thus allowing manufacture of a wire grid polarizer having very fine pitch.
  • Shown in FIG. 5 are two groups of wires 53a and 53b, each group having four wires.
  • Two wires 52c at the center of each group 53 can be approximately equal in height and both can be taller than the outermost wires 52o of each group, such that hi ⁇ h2.
  • Center wires 52c of a group of wires 53 can be higher h2 than the height hi of outer wires 52o in a group because center wires 52c can be formed first during initial isotropic etch(es).
  • Having wires of different heights h can allow tuning the polarizer for different wavelengths and allow for smoothing out the s-polarization orientation of transmitted electromagnetic radiation over the spectrum of incident of electromagnetic radiation, or the Ts curve. Having some of the wires higher can increase polarizer contrast while having other wires shorter can improve
  • a difference in height between the center wires 52c and the outer wires 52o can be between about 0 nm to about 150 nm, more than about 3 nm in one aspect, more than about 20 nm in another aspect, or more than about 50 nm in another aspect, depending on the strength, duration, and type of etch, the height of wires created, and whether the wires were planarized.
  • Wire width w may be determined by the type of etch during creation of that wire 52, thin film material and / or substrate material, and whether adjacent wires combine to form a single wire as described below in the description of FIG. 1 1.
  • a maximum wire width of all wires 52 in the polarizer 10 can be less than about 150 nm in one aspect, less than about 50 nm in another aspect, less than about 20 nm in another aspect, or less than about 10 nm in another aspect.
  • a wire width w of one wire may differ from a wire width w of an adjacent wire by more than 5 nm in one aspect, more than 10 nm in another aspect, more than 20 nm in another aspect, or more than 50 nm in another aspect.
  • the distance between wires d in the groups of wires 53 can vary depending on the width of the resist and the nature and length of the etches. For example, a more lateral or stronger initial isotropic etch can result in a smaller distance d2, shown in FIG. 5, between the center wires 52c in a group 53.
  • a distance d1 between a center wire 52c and an outer wire 52o depends on the resist width R, as shown in FIG. 6, the distance d2 between the center wires 52c, and the wire width w.
  • the distance d2 between the center wires 52c can be different from the distance d1 between an outermost wire and an adjacent center wire by more than about 3 nm in one aspect,.
  • the absolute value of d2 minus d1 can be more than about 3 nm in one aspect, more than about 10 nm in another aspect, or more than about 20 nm in another aspect.
  • a minimum distance d between adjacent wires can be less than about 150 nm in one aspect, less than about 50 nm in another aspect, or less than about 20 nm in another aspect.
  • pitch P is a distance between an edge of one wire and a corresponding edge of an adjacent wire.
  • a minimum pitch of adjacent wires can be less than about 300 nm in one aspect, less than about 100 nm in another aspect, less than about 50 nm in another aspect, less than about 30 nm in another aspect, or less than about 20 nm in another aspect.
  • the pitch of the wires can thus be much smaller than, even approximately one fourth the pitch of, the pitch of the resist.
  • a distance d4 between adjacent groups 53 can be determined a distance d5 (see FIG. 6) between adjacent resist 61 and the width w of outermost wires 52o in a group. This distance d4 may be modified for tuning of the polarizer for desired wavelengths.
  • a polarizer of the present invention can be made by disposing a resist 61 on a base 63.
  • the base 63 can comprise a single material or can be layers of multiple materials.
  • the base 63 can comprise a thin film layer 62 disposed on a substrate 1 1 .
  • the thin film 62 may be applied on the substrate 1 1 by methods such as chemical vapor deposition or physical vapor deposition.
  • the thin film may be a single layer of one material or may be multiple layers of different materials.
  • the substrate 1 1 can be a rigid material such as quartz, silicon, or germanium.
  • the substrate 1 1 can also be a flexible material such as a polymer.
  • the resist 61 may be patterned, providing resist widths R.
  • the resist widths R can be less than about 1 micrometer in one aspect, less than about 100 nanometers in another aspect, less than about 75 nanometers in another aspect, or less than about 55 nanometers in another aspect.
  • the resist width R can be the approximate distance d3 between outermost wires 52c in a group.
  • an isotropic etch may then be performed, etching both vertically 71 into the base 63 laterally outside the resist and horizontally 72 under the resist leaving a stem 73, having vertical sidewalls, under the resist 61 .
  • the aforementioned isotropic etch, or a subsequent isotropic etch can be optimized for etch redeposition by etch chemistry, thus allowing etch redeposition along vertical sidewalls of the stem 73 creating etch redeposition wires 74.
  • the etch redeposition wires 74 can be polarizing wires and thus polarizing wires may be formed as a byproduct of an etch reaction.
  • an anisotropic etch can then be performed, etching vertically 71 into the base 63 outside the resist leaving a bottom step 83, having vertical sidewalls, in the base 63.
  • the aforementioned anisotropic etch, or a subsequent anisotropic etch can be optimized for etch redeposition, thus allowing etch redeposition to occur along the vertical sidewalls of the bottom step and creating additional etch redeposition wires 84.
  • etch redeposition wires 74 & 84 can be comprised of a material such as metal oxide, metal alloy, metal halide, metal carbide, and organometal, or combinations thereof. Multiple isotropic etches before an anisotropic etch, with each subsequent isotropic etch being less isotropic in nature than the previous isotropic etch, can result in more than four wires for every resist width R.
  • the anisotropic etch may continue, remove the resist, etch the base 63 between 91 the wires and substantially or totally remove the base 63 between 101 etch redeposition wires 74 & 84, and leave at least four separate etch redeposition wires 74 and 84 for every original resist width R.
  • a group of wires can have three wires comprising a center wire 112c and outer wires 112o. The method of making this structure is similar to that described above except that the stem 73 can be smaller than if two center wires are desired.
  • the stem 73 can be substantially or completely etched away leaving a single center wire 112c rather than two center wires 52c as shown in FIG. 5.
  • the single center wire 112c can be higher than outer wires 112o or can be approximately the same height as outer wires as was described above for the structure with at least four wires. If the center wires converge, and multiple isotropic etches are performed prior to the anisotropic etch, then there may be a structure with an odd number of at least five wires in each group.
  • a structure with a single wire at the center of each group may be beneficial if it is desired to have a large difference between widths of wires in a group.
  • a width w1 of the center wire 72c can be substantially wider than a width w2 of an outer wire 72o of a group.
  • a multi-step, nanometer sized device or polarizer 120 includes a base 121 with a plurality of parallel multi-step ribs 122 disposed on the base 121.
  • the term polarizer will hereafter be used, instead of nanometer sized device, because polarizer is the most typical application, but the device 120 can be used for other applications.
  • Each rib 122 comprises multiple adjacent steps S of different heights h or disposed at different elevational heights.
  • Each rib 122 includes an upper step S1 with a top horizontal surface H1 flanked by upper vertical surfaces V1. It will be appreciated that the terms horizontal and vertical are relative to the orientation of the device as shown in the figures, and that the device can be oriented at various different angles.
  • Each rib also includes at least one lower step or pair of steps (with one step on either side of the upper step) having two horizontal surfaces, each flanked by a vertical surface for that step and by a vertical surface of an adjacent step.
  • steps or pairs of steps are formed on both sides of the upper step, forming a cross-sectional stepped pyramid shape.
  • the device in FIG. 12 shows two lower steps S2 and S3.
  • Intermediate step S2 includes intermediate horizontal surfaces H2 and intermediate vertical surfaces V2. Intermediate horizontal surfaces H2 flank the upper vertical surfaces V1 and intermediate vertical surfaces V2.
  • Lower step S3 includes lower horizontal surfaces H3 and lower vertical surfaces V3. Lower horizontal surfaces H3 flank the intermediate vertical surfaces V2 and lower vertical surfaces V3.
  • the ribs can have more or less than two lower steps.
  • Each step S includes a coating C along the vertical surfaces V of the step S.
  • the coating C along the vertical surface V of any step S can be separate from the coating C along a vertical surface V of an adjacent (upper or lower) step S, such as by the intervening horizontal surface H.
  • a width or length HL of a horizontal surface H thereof can be greater than a thickness of the coating C.
  • FIG. 12 there is no continuity of coating between the steps such that the coating C1 of the upper step S1 is physically separate from the coating C2 of the intermediate step S2 and the coating C2 of the intermediate step S2 is physically separate from the coating C3 of the lower step S3.
  • the coatings C can form pairs of coatings or coating pairs at different elevational heights, such as an upper coating pair C1 , and at least one lower coating pair, such as intermediate coating pair C2 and lower coating pair C3. If the device is used as a polarizer, and a coating C is selected that will polarize the wavelength of interest, then the coating C may be considered to be a polarizing coating rib. Thus, the coating may be a conductive coating and can define wires.
  • the upper and lower steps can be at different elevational heights h defining a cross-sectional stepped pyramid shape.
  • the elevational heights are not equal such that hi ⁇ h2 ⁇ h3 and hi > h2 > h3.
  • the height of the steps can be determined by the depth of etching.
  • Some embodiments of the present invention can have an elevational height of the upper step that is less than about 200 nm in one aspect or less than about 100 nm in another aspect.
  • the rib, or steps or pairs of steps, can increase in width from the upper step so that the rib has a cross- sectional stepped pyramid shape.
  • the coating material C can be or can include a metal such as aluminum, copper, germanium, titanium oxide, tantalum, or a metal alloy.
  • the coating material C can also be a dielectric such as silicon, silicon carbide, Fe 2 Si, or hafnium. If the device is used as a wire grid polarizer, the coating material C can be a material that optimally polarizes the wavelengths of interest. For example, germanium could be used for infrared light, aluminum for visible light, or titanium oxide for ultraviolet light.
  • the base 121 of polarizer 120b can comprise a substrate 131 and at least one thin film layer 132.
  • the substrate 131 can comprise a material that is transparent to the incoming electromagnetic radiation.
  • the substrate 131 can be a rigid material such as quartz, silicon, or germanium.
  • the substrate 131 can also be a flexible material such as a casting film, polymer, or embossing substrate.
  • the film layer 132 can be an anti-reflective coating, a transmissive film, an absorbing film, or other film with the desired optical properties.
  • the ribs 122 in the device can comprise the same material as the base 121 and can be are integrally formed in the base 121 , such as by etching, as shown in FIG. 12. Alternatively, the ribs can be physically separate from the base, as shown in FIG. 13. In addition, the ribs 122 can comprise a different material from the base 121 .
  • the ribs 122 can comprise at least two layers of different materials. Each step can comprise multiple layers of different materials. A step S can be made of a different material than another step S. Each step S can be made of different materials. Multiple layers may be used for desired polarization characteristics, such as optimizing T p , T s , contrast, or absorption.
  • the coatings C can have very small widths CW.
  • the width of the coating can be less than about 30 nm in one aspect, less than about 10 nm in another aspect, or less than about 5 nm in another aspect.
  • the coating width can be selected or tuned based on the anticipated wavelength of the electromagnetic radiation and/or desired performance characteristics. Very narrow coating widths can be sustained by the structural support of the rib or steps thereof.
  • a rib 122 of a polarizer can have vertical heights or length of vertical surfaces VL.
  • a vertical length VL of one step S can be the same as a vertical length VL of another step S, or all other steps S.
  • a vertical length VL of one step S can be different from a vertical length VL of another step S, or all other steps S.
  • the steps S can have unequal vertical lengths, VL1 ⁇ VL2 ⁇ VL3.
  • a polarizer with different vertical lengths of vertical surfaces on different steps can have coating of different heights.
  • Each coating height can be tuned for optimal polarization of a wavelength of interest.
  • a difference of vertical length VL of one step compared to any other step can be more than 10 nanometers in one aspect, 10 to 50 nanometers in another aspect, 50 to 100 nanometers in another aspect, or 100 - 200
  • VL1 - VL2 and VL1 - VL3 can be between 50 to 100 nanometers.
  • the vertical lengths VL of steps S can be nanometer sized.
  • the vertical length VL of any of the vertical surfaces can be less than about 100 nm in one aspect, less than about 50 nm in another aspect, or less than about 20 nm in another aspect.
  • the vertical lengths VL can be selected or tuned based on the anticipated wavelength of the electromagnetic radiation and/or desired performance characteristics.
  • the horizontal length of the widest step or outside width of the lowermost pair of steps, shown as SL1 in FIG. 14, can be approximately the width (see RW in FIG. 18) of the resist feature used to form the step S.
  • Resist features for presently manufactured wire grid polarizers for visible light typically have a width of about 50 - 100 nm.
  • the outside width SL1 and thus a distance between the outermost coatings on a step, can be less than about 100 nm in one aspect, less than about 75 nm in another aspect, less than about 50 nm in another aspect, or 50 - 100 nm in another aspect.
  • the width SL1 of the outermost, lowermost pair of steps can be selected or tuned based on the anticipated wavelength of the light and/or desired performance characteristics.
  • a rib 122 can have a depth or horizontal length HL of the horizontal surface of a step that is the approximate pitch between adjacent coatings.
  • the horizontal length HL of a step can be less than about 50 nm in one aspect, less than about 25 nm in another aspect, or less than about 10 nm in another aspect.
  • a maximum distance between adjacent coatings can be less than about 50 nm and a minimum distance between adjacent coatings can be less than about 20 nm.
  • the horizontal length HL of a step may be different from the horizontal length HL of other steps (HL1 ⁇ HL2 or HL1 ⁇ HL2 or HL1 ⁇ HL2 ⁇ HL3).
  • the horizontal length of steps may be adjusted in order to optimize polarization of the desired wavelengths.
  • FIGs. 12 & 13 have a step with the longest step length SL as the lowest step or the step closest to the base.
  • a step, of a device 120c or rib 122c, with the longest step length SL3 can be an intermediate step and a step with a shorter step length SL5 can be the lowest step or the step closest to the base.
  • the steps need not form a pyramid shape but rather the steps in the ribs can become wider or narrower moving from the outermost rib towards the base.
  • the upper step can have the shortest step length or another step can have the shortest step length depending on the isotropic nature of each successive etch as described below. This embodiment may be useful for optimizing polarization of certain selected wavelengths.
  • wires 173 of polarizer 120d may be disposed on the base 121 , physically separate from the multi-step ribs 122, substantially parallel with the multi-step ribs 122, and located between adjacent multi-step ribs 122.
  • Coating C can be a dielectric or metal.
  • Wires 173 can be dielectric or metal.
  • Wires 173 can be a different material than coating C. This allows use of polarizing ribs made of different materials. This can be beneficial for tuning the polarizer to multiple different wavelengths of electromagnetic radiation.
  • a base 121 can be prepared with either a single material or with layers of different materials.
  • FIG. 13 shows a base 121 comprised of a substrate 131 and a thin film 132.
  • the ribs 122 can be the same material as the base 121 , the same material as the substrate 131 , the same material as the thin film 132, or a different material than the base, substrate, or thin film.
  • the ribs 122 can be made of layers.
  • Each layer can be the same material as another layer or can be a different material than another layer or layers.
  • Each step S can be a different material than another step S.
  • a single step S can be made of multiple layers of different materials. Layers of different materials can be formed by applying thin films on a substrate through processes such as chemical vapor deposition (CVD) or physical vapor deposition (PVD).
  • CVD chemical vapor deposition
  • PVD physical vapor deposition
  • the ribs 122 can be formed by depositing a material on a base 121 or by ion milling into the base 121 .
  • the ribs 122 may also be formed in the base 121 by etching the base as shown in FIGs. 18 - 21 .
  • the term "base" can include a single material or layers of multiple materials.
  • a resist 181 may be applied to the base .121 and the resist 181 may be patterned to create resist widths RW, as shown in FIG. 18. As shown in FIG. 19, an isotropic etch can etch both vertically into the base laterally outside the resist 192 and horizontally under the resist 191 .
  • At least one additional isotropic etch that is more or less isotropic than the previous isotropic etch, may be performed.
  • a second isotropic etch which is less isotropic in nature than that shown in FIG. 19, is performed to etch both vertically into the base laterally outside the resist 192 and horizontally under the resist 191 .
  • Each successive etch that that is either more or less isotropic than the previous etch can result in formation of an additional step.
  • an anisotropic etch may be used to etch into the base laterally outside the resist 192 and to remove the resist 181.
  • anisotropic etch can be used to create a step having a step length SL that is about the same as the width of the resist RW.
  • Step horizontal length HL and step vertical length VL can be controlled during step formation by the nature of the isotropic etches performed. A more isotropic etch can create a longer horizontal length HL for a step. A longer etch time can create a longer vertical step length VL.
  • the resist can be removed and the surface of the structure may be coated with a coating C, as shown in FIG. 22.
  • the coating may be conformal, non-conformal, segmented, atomic layer deposition, spin on, or etch redeposition.
  • the coating may then be anisotropically etched to substantially remove the coating from horizontal surfaces while leaving a majority of the coating on vertical surfaces.
  • the coating is removed from horizontal surfaces in the anisotropic etch, while leaving a substantial portion of the coating on the vertical surfaces, because a thickness of the coating 222 on the horizontal surfaces, in a direction perpendicular to the main plane of the base, as shown by dashed line P, is less than a thickness of the coating 221 on the vertical surfaces, along this same direction P.
  • additional isotropic etches 161 and 162 may be performed.
  • Various combinations of isotropic and anisotropic etches may be performed to create ribs of various shapes.
  • a coating is applied and etched as described above. Etching of the coating can also remove coating along horizontal surfaces 163 that are between the multi-step rib 122c and the base 121 by use of a high bias etch.
  • FIGs. 23-26 show how to make the polarizer 120d of FIG. 17, which includes additional wires 173 in addition to coating C on multi-step ribs 122.
  • a thin first layer 171 can be disposed on a base 121.
  • the material of this first layer 171 can be the desired material of the final wires 173, such as metal for example.
  • a second layer can be applied over the first layer 171 .
  • the second layer can be the desired material of the multi-stepped ribs 122, such as an oxide or dielectric for example.
  • Multi-stepped rib structures 122 can then be formed as described above.
  • the thickness of the second layer and the duration of the isotropic etch can be timed such that the etch steps forming the multi-stepped ribs 122 end the surface of the first layer 171 .
  • the final anisotropic step can be shortened in time in order to form a small final step.
  • a length of the vertical surface of the upper two steps VL1 and VL2 are significantly longer than a length of the vertical surface VL3 of the lowest step.
  • a thickness of the coating in a direction perpendicular P to the base is much smaller along the vertical surface of the lowest step than along the vertical surface of upper steps.
  • a coating C can then be applied as described above. As shown in FIG. 24, the coating C thickness along a vertical surface of an upper step 241 can be much longer than the coating thickness along a vertical surface of the lowest step 242. The coating thickness along the lowest step 242 is not very much thicker than the thickness along a horizontal portion of the structure 243.
  • An anisotropic etch may be performed to remove coating from horizontal surfaces and from the lowest step vertical surface 252. Due to the relatively smaller thickness of coating 242 along the vertical surface of the lowest step, as shown in FIG. 25, the coating can be substantially removed from the vertical surface of this step 252 during this anisotropic etch of the coating while leaving the coating on the vertical surfaces of the upper steps 251 .
  • An anisotropic etch which is optimized for etch redeposition, may then be performed.
  • the coating C, the second layer or rib 122 material, and the etch must be selected such that primarily the first layer 171 will be etched with minimal etching of the coating C or the ribs 122.
  • the etch can be optimized for etch redeposition by etch chemistry.
  • the anisotropic etch will etch into the first layer 171 and can result in formation of etch redeposition wires 173.
  • the anisotropic etch can continue and thus remove the first layer 171 between 175 the etch redeposition wires 173 and the multi-step ribs 122, as shown in FIG. 17.
  • the anisotropic etch may continue to etch into the base between the ribs 174.
  • the base 121 may thus be etched between 174 the wires 173 and the multi-step ribs 122 to a depth of at least 1 nm.

Abstract

A multi-step wire grid polarizer (120) can comprise a base (121) with plurality of parallel multi-step ribs (122) disposed on the base. A coating (C) disposed along vertical surfaces (V) of the steps.

Description

Fine Pitch Wire Grid Polarizer
BACKGROUND
Nanometer-sized devices, such as wire grid polarizers, can be limited in performance by the distance between adjacent features, or the pitch of one feature to the next. For example, for effective polarization of electromagnetic radiation, the pitch in a wire grid polarizer should be less than half the wavelength of the electromagnetic radiation. Wire grid polarizers, with pitch smaller than half the wavelength of visible light, have been demonstrated. See for example U.S. Patent numbers 6,208,463; 6, 122, 103; and 6,243, 199. For higher polarization contrast and to allow polarization of smaller wavelengths, such as for polarization of ultra-violet light and x-rays, smaller pitches are needed. Various methods have been proposed to solve this problem. See for example U.S. Patent number 7,692,860 and U.S. Publication numbers 2009/0041971 and 2009/0053655.
A desirable feature of wire grid polarizers is to polarize a broad spectrum of electromagnetic radiation with a single polarizer. Wire grid polarizers are typically formed with wires that are the same height. It would be beneficial to form wire grid polarizers with variable wire height in order to allow tuning of the wire grid polarizer for multiple wavelengths and to allow for a smoother Ts curve. Methods have been proposed for wire grid polarizers with different height wires. See for example U.S. Publication numbers 20080037 01 and 20080038467.
Wire grid polarizers are typically formed with wires that are situated along a single plane. It would be beneficial to form wire grid polarizers with wires situated at multiple planes. A wire grid polarizer with wires that are situated along multiple planes may be tuned to multiple wavelengths and may allow for a smoother Ts curve. See for example U.S. Publication numbers 20080037101 and 20080038467.
Wire grid polarizers are typically formed with wires that are all comprised of single materials. A wire grid polarizer with some wires comprised one material and other wires comprised of a different material would be beneficial for tuning the wire grid polarizer to multiple wavelengths. SUMMARY
It has also been recognized that it would be advantageous to develop a nanometer-sized device, such as a wire grid polarizer, with very small spacing between adjacent features, i.e. small pitch. It has been recognized that it would be advantageous to develop a nanometer-sized device, such as a wire grid polarizer in which there is variable wire height, with wires situated at multiple planes, and / or with a wire array in which wires may be comprised of a different material than an adjacent wire.
The inventions described herein may have multiple uses, but a primary use is as a wire grid polarizer. The terms "wire grid polarizer" or "polarizer" will primarily be used for simplicity, but the invention may be used for other purposes.
In one embodiment, the present invention is directed to a wire grid polarizer comprising an array of parallel, elongated wires disposed on a substrate, the wires having a pitch of less than 80 nanometers. This wire grid polarizer, with this small pitch, can be made by various methods described herein.
In another embodiment, the present invention is directed a method of making a wire grid polarizer with fine pitch by obtaining a wire grid polarizer having an array of parallel, elongated wires disposed on a substrate, the wires having a protective layer disposed at a surface of the wires, then anisotropically etching the wire grid polarizer to form two parallel, elongated rods substantially located at corners where the wires contacted the substrate. The rods can be polarizing elements. Note that the term "rods" is used to distinguish from the original wires. In another embodiment, a segmented film can be deposited on the rods. The segmented film can be used for polarizing or absorbing incoming electromagnetic radiation. This method allows formation of at least two polarizing rods from each resist feature, thus allowing for formation of smaller pitch wire grid polarizer. This method has an advantage of using each original wire to form two polarizing rods. The pitch of the original wires can be limited by patterning abilities, but two rods can be made for each original wire. The process can be repeated again, making two rails for each original rod. The term "rail" is used to distinguish from original wires and rods.
In another embodiment, the present invention is directed to a polarizer with a repeated pattern of groups of parallel elongated wires disposed over a substrate. Each group of elongated wires comprises at least three wires. At least one wire at an interior of each group is taller by more than 3 nanometers ("nm") than outermost wires of each group. A distance between the outermost wires in each group is less than about 1 micrometer. This embodiment has an advantage of variable height wires, such that one wire is taller than another. The wires can also have very fine pitch.
In another embodiment, the present invention is directed to a polarizer with an array of groups of parallel elongated wires disposed over a substrate and comprising a material that is a byproduct of an etch reaction. A distance between outermost wires in each group is less than about 1 micrometer. This embodiment has an advantage of wires made by etch reaction. The wires can also have very fine pitch.
In another embodiment, the present invention is also directed to a method for making a polarizer. The method comprises a resist over a base, then patterning the resist and creating resist widths. An isotropic etch of the base can then be
performed, etching both vertically into the base laterally outside the resist and horizontally under the resist leaving a stem under the resist. Etch redeposition is allowed on the vertical sidewall of the stem, thus creating etch redeposition wires. The base outside the resist can also be etched vertically, leaving a bottom step in the base. Etch redeposition is allowed to form on the vertical sidewall of the bottom step of the base, thus creating additional etch redeposition wires. This embodiment has an advantage of wires made by etch reaction. The wires can also have very fine pitch.
In another embodiment, the present invention is directed to a multi-step wire grid polarizer device comprising a base with a plurality of parallel multi-step ribs disposed on the base. Each of the ribs comprises multiple adjacent steps. A coating is disposed along vertical surfaces of the steps. The coating along the vertical surface of any step can be separate from the coating along a vertical surface of an adjacent step. Each multi-step rib may be formed under a single resist feature. This embodiment has advantages of wires that can have very fine pitch and / or wires situated at multiple planes, thus allowing the wire grid polarizer to be tuned to multiple wavelengths. In another embodiment, the present invention is also directed to a method for making the above described device, the method comprising (1 ) forming multi-step ribs, the ribs attached to a base; (2) coating the surface of the base and steps; and (3) removing thinner portions of the coating on horizontal surfaces while leaving a majority of the coating on vertical surfaces. This embodiment has advantages the ability to make a wire grid polarizer with wires that can have very fine pitch and / or wires situated at multiple planes, thus allowing the wire grid polarizer to be tuned to multiple wavelengths. BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic cross-sectional side view of a wire grid polarizer in accordance with an embodiment of the present invention;
FIG. 2 is a schematic cross-sectional side view showing one step in making a wire grid polarizer, in accordance with an embodiment of the present invention;
FIG. 3 is a schematic cross-sectional side view showing one step in making a wire grid polarizer, in accordance with an embodiment of the present invention;
FIG. 4 is a schematic cross-sectional side view showing one step in making a wire grid polarizer, in accordance with an embodiment of the present invention;
FIG. 5 is a schematic cross-sectional side view of a wire grid polarizer, in accordance with an embodiment of the present invention;
FIG. 6 is a schematic cross-sectional side view showing one step in the manufacture of a wire grid polarizer, in accordance with an embodiment of the present invention;
FIG. 7 is a schematic cross-sectional side view showing one step in the manufacture of a wire grid polarizer, in accordance with an embodiment of the present invention;
FIG. 8 is a schematic cross-sectional side view showing one step in the manufacture of a wire grid polarizer, in accordance with an embodiment of the present invention;
FIG. 9 is a schematic cross-sectional side view showing one step in the manufacture of a wire grid polarizer, in accordance with an embodiment of the present invention; FIG. 10 is a schematic cross-sectional side view showing one step in the manufacture of a wire grid polarizer in accordance with an embodiment of the present invention;
FIG. 1 1 is a schematic cross-sectional side view of a wire grid polarizer, in accordance with an embodiment of the present invention;
FIG. 12 is a schematic cross-sectional side view of a multi-step wire grid polarizer in accordance with an embodiment of the present invention;
FIG. 13 is a schematic cross-sectional side view of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention;
FIG. 14 is a schematic cross-sectional side view of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention;
FIG. 15 is a schematic cross-sectional side view of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention;
FIG. 16 is a schematic cross-sectional side view of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention;
FIG. 17 is a schematic cross-sectional side view of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention;
FIG. 18 is a schematic cross-sectional side view showing one step in the manufacture of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention;
FIG. 19 is a schematic cross-sectional side view showing one step in the manufacture of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention;
FIG. 20 is a schematic cross-sectional side view showing one step in the manufacture of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention;
FIG. 21 is a schematic cross-sectional side view showing one step in the manufacture of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention;
FIG. 22 is a schematic cross-sectional side view showing one step in the manufacture of a multi-step wire grid polarizer, in accordance with an embodiment of the present invention; FIG. 23 is a schematic cross-sectional side view showing one step in the manufacture of multi-step wire grid polarizer, in accordance with an embodiment of the present invention;
FIG. 24 is a schematic cross-sectional side view showing one step in the manufacture of multi-step wire grid polarizer, in accordance with an embodiment of the present invention;
FIG. 25 is a schematic cross-sectional side view showing one step in the manufacture of multi-step wire grid polarizer, in accordance with an embodiment of the present invention; and
FIG. 26 is a schematic cross-sectional side view showing one step in the manufacture of multi-step wire grid polarizer, in accordance with an embodiment of the present invention.
DEFINITIONS
· As used in this description and in the appended claims, the word
"electromagnetic radiation" includes infrared, visible, ultraviolet, and x-ray regions of the electromagnetic spectrum.
• As used herein, the terms wire, rod, rail, and rib are used to describe various elongated structures having lengths significantly longer than width or height. Wires, rods, rails, and ribs can have various cross-sectional shapes. Wires, rods, and rails can refer to polarizing structures in a wire grid polarizer and ribs can refer to an elongated support structure for wires.
• As used herein, the term "substantially" refers to the complete or nearly complete extent or degree of an action, characteristic, property, state, structure, item, or result. For example, an object that is "substantially" enclosed would mean that the object is either completely enclosed or nearly completely enclosed. The exact allowable degree of deviation from absolute completeness may in some cases depend on the specific context. However, generally speaking the nearness of completion will be so as to have the same overall result as if absolute and total completion were obtained. The use of "substantially" is equally applicable when used in a negative connotation to refer to the complete or near complete lack of an action, characteristic, property, state, structure, item, or result.
DETAILED DESCRIPTION
Reference will now be made to the exemplary embodiments illustrated in the drawings, and specific language will be used herein to describe the same. It will nevertheless be understood that no limitation of the scope of the invention is thereby intended. Alterations and further modifications of the inventive features illustrated herein, and additional applications of the principles of the inventions as illustrated herein, which would occur to one skilled in the relevant art and having possession of this disclosure, are to be considered within the scope of the invention.
Fine Pitch Wire Grid Polarizer
As illustrated in FIG. 1 , a polarizer 10 includes an array of parallel, elongated wires 12 disposed on a substrate 11. The substrate 11 can be transmissive of the wavelength of electromagnetic radiation used. The wires can have a pitch of less than 80 nanometers. In one embodiment, the wires can have a pitch of 60 - 80 nanometers. In another embodiment, the wires can have a pitch of 8 - 85
nanometers. In another embodiment, the wires can have a pitch of 20 - 85 nanometers. In one embodiment, the wires can have a width w of less than 55 nanometers. In another embodiment, the wires can have a width w of less than 35 nanometers. In another embodiment, the wires can have a width w of less than 15 nanometers. Polarizers, with pitch of 8 - 85 nanometers, may be used for
polarization of electromagnetic radiation having wavelengths of around 16 - 170 nanometers. For polarization of such electromagnetic radiation, vanadium and hafnium can be good materials of choice for the wires 12.
The wires 12 can be formed of aluminum oxide; aluminum silicate; antimony trioxide; antimony sulphide; beryllium oxide; bismuth oxide; bismuth triflouride; boron nitride; boron oxide; cadmium sulfide; cadmium telluride; calcium fluoride; eerie oxide; chiolite; cryolite; cupric oxide; cupric chloride, cuprous chloride, cuprous sulfide; germanium; hafnium dioxide; lanthanum fluoride; lanthanum oxide; lead chloride; lead fluoride; lead telluride; lithium fluoride; magnesium fluoride; magnesium oxide; neodymium fluoride; neodymium oxide; niobium oxide;
praseodymium oxide; scandium oxide; silicon; silicon oxide; disilicon trioxide; silicon carbide ; silicon dioxide; sodium fluoride; silicon nitride; tantalum oxide; tantalum pentoxide; tellurium; titanium; titanium dioxide; titanium nitride, titanium carbide; thallous chloride; tungsten; yttrium oxide; zinc selenide; zinc sulfide; zirconium dioxide, and combinations thereof.
First Wire Grid Polarizer Manufacturing Method
FIGs. 1-4 show one method of manufacturing a fine pitch wire grid polarizer. A wire grid polarizer 10, shown in FIG. 1 , having an array of parallel, elongated wires 12 disposed on a substrate 11 , can have a protective layer 21-22 disposed at a surface of the wires 12, as shown in FIG. 2. The protective layer 21-22 can be disposed at a top surface 22 of the wires 12 and also at sides 21 of the wires 12. The protective layer 21-22 can be formed by passivation of the wires 12, and thus can be embedded in the wires 12. The purpose of the protective layer 21-22 is to make surfaces of the wires more etch resistant than central portions of the wires.
The second step 30, shown in FIG. 3, is to anisotropically etch the wire grid polarizer to form two parallel, elongated rods 32 substantially located at corners 24a- b where the wires contacted the substrate 1 1. The anisotropic etch can preferentially remove wires at a central portion 25 of the wire 12, thus exposing the substrate 34 in the location of the former center 25 of the wire 12 while leaving wire material at corners 24a-b. The central portion 25 is preferentially removed because the protective layer 21-22 can be more resistant to the anisotropic etch than the wire 12 itself and thus after etching through the protective layer 22 on top of the wire, the anisotropic etch proceeds rapidly through the central portion 25 of the wire down to the substrate 34 while the side portions 26 of the wire etch more slowly due to the etch resistant protective layer 21. Thus, the original wire is essentially cut in half, forming two rods 32 in place of the original wire 12. Note, an alternative added step prior to the anisotropic etch is to ion mill the top of the wires 12, thus partially or totally removing the protective layer 22 prior to the anisotropic etch.
The two rods 32 can each be polarizing elements. Thus the wire grid polarizer can now have twice as many polarizing elements as before this step 30. For example, in FIG. 3, rod group 32a was formed of one original wire 12a and rod group 32b was formed of another original wire 12b. There can be a pitch P1 within a wire group and a pitch P2 between groups. These two pitches can be the same or can be different, depending on the original wire width w, original wire pitch P, wire material, type of protective layer 21-22, and nature of etch.
Wire grid polarizers, without the fine pitch method 30 described above, have been made by standard lithography and etching methods with pitches of around 100 - 150 nanometers and wire widths of around 50 - 75 nanometers. Thus, this method essentially cuts the pitch in half, allowing formation of wire grid polarizers by this method with pitches of around 50 - 75 nanometers and wire widths of around 25 - 38 nanometers, even with present lithography and etching methods.
An added step 40, shown in FIG. 4, that may be useful for some wire grid polarizer applications is to apply a segmented coating 42 on top of the rods 32. The segmented coating 42 can be aligned with the rods 32 and can continue partially down both sides 43 of the rods 32 without coating the substrate 44 exposed between the rods 32. This segmented coating may be applied by methods described in USA Patent Application Numbers 12/507,570, filed on July 22, 2009 and 13/075,470, filed on March 30, 2011 , incorporated herein by reference. Wire Grid Polarizer by Etch Redeposition
As illustrated in FIG. 5, a polarizer 50 includes a substrate 11 which can be transmissive of the wavelength of electromagnetic radiation used. For example, germanium could be used in the infrared, silicon in the visible, and quartz in the ultraviolet. A repeated pattern of groups 53 of parallel elongated wires 52 may be disposed on the substrate. The wires 52 may comprise a material that can polarize the incident electromagnetic radiation. Each group 53 of elongated wires 52 can comprise at least three wires. Each group can include one or more interior wires 52c, such as one or more center wires, and outermost wires 52o. The interior or center wires 52c can be taller than the outermost wires 52o, such as by more than 3 nm in one aspect, more than about 10 nm in another aspect, more than about 20 nm in another aspect, or more than about 50 nm in another aspect. The distance between the outermost wires 52o, and thus the width d3 of each group 53, can be less than 1 micrometer in one aspect, less than about 150 nm in another aspect, less than about 100 nm in another aspect or less than about 50 nm in another aspect. The wires 52 can be a byproduct of an etch reaction, which material can be beneficial for some applications. The width d3 of each group 53 can be a resist width as will be described below, thus multiple wires can be formed for a single resist width, thus allowing manufacture of a wire grid polarizer having very fine pitch.
Shown in FIG. 5 are two groups of wires 53a and 53b, each group having four wires. Two wires 52c at the center of each group 53 can be approximately equal in height and both can be taller than the outermost wires 52o of each group, such that hi < h2. Center wires 52c of a group of wires 53 can be higher h2 than the height hi of outer wires 52o in a group because center wires 52c can be formed first during initial isotropic etch(es). Having wires of different heights h can allow tuning the polarizer for different wavelengths and allow for smoothing out the s-polarization orientation of transmitted electromagnetic radiation over the spectrum of incident of electromagnetic radiation, or the Ts curve. Having some of the wires higher can increase polarizer contrast while having other wires shorter can improve
transmission.
In one embodiment, center wires 52c and outer wires 52o can be made the same height h, such that h2 = hi , by methods such as chemical mechanical polishing, fill and polish, spin on back etch, or other known planarization methods. Thus, a difference in height between the center wires 52c and the outer wires 52o can be between about 0 nm to about 150 nm, more than about 3 nm in one aspect, more than about 20 nm in another aspect, or more than about 50 nm in another aspect, depending on the strength, duration, and type of etch, the height of wires created, and whether the wires were planarized.
Shown in FIG. 5 is wire width w. Wire width may be determined by the type of etch during creation of that wire 52, thin film material and / or substrate material, and whether adjacent wires combine to form a single wire as described below in the description of FIG. 1 1. A maximum wire width of all wires 52 in the polarizer 10 can be less than about 150 nm in one aspect, less than about 50 nm in another aspect, less than about 20 nm in another aspect, or less than about 10 nm in another aspect. A wire width w of one wire may differ from a wire width w of an adjacent wire by more than 5 nm in one aspect, more than 10 nm in another aspect, more than 20 nm in another aspect, or more than 50 nm in another aspect.
The distance between wires d in the groups of wires 53 can vary depending on the width of the resist and the nature and length of the etches. For example, a more lateral or stronger initial isotropic etch can result in a smaller distance d2, shown in FIG. 5, between the center wires 52c in a group 53. A distance d1 between a center wire 52c and an outer wire 52o depends on the resist width R, as shown in FIG. 6, the distance d2 between the center wires 52c, and the wire width w. Thus, by adjusting the parameters above, the distance d2 between the center wires 52c can be different from the distance d1 between an outermost wire and an adjacent center wire by more than about 3 nm in one aspect,. more than about 10 nm in another aspect, or more than about 20 nm in another aspect. In other words, the absolute value of d2 minus d1 can be more than about 3 nm in one aspect, more than about 10 nm in another aspect, or more than about 20 nm in another aspect. A minimum distance d between adjacent wires can be less than about 150 nm in one aspect, less than about 50 nm in another aspect, or less than about 20 nm in another aspect.
As shown in FIG. 5, pitch P is a distance between an edge of one wire and a corresponding edge of an adjacent wire. A minimum pitch of adjacent wires can be less than about 300 nm in one aspect, less than about 100 nm in another aspect, less than about 50 nm in another aspect, less than about 30 nm in another aspect, or less than about 20 nm in another aspect. The pitch of the wires can thus be much smaller than, even approximately one fourth the pitch of, the pitch of the resist.
A distance d4 between adjacent groups 53 can be determined a distance d5 (see FIG. 6) between adjacent resist 61 and the width w of outermost wires 52o in a group. This distance d4 may be modified for tuning of the polarizer for desired wavelengths.
As shown in FIG. 6, a polarizer of the present invention can be made by disposing a resist 61 on a base 63. The base 63 can comprise a single material or can be layers of multiple materials. For example, in one embodiment the base 63 can comprise a thin film layer 62 disposed on a substrate 1 1 . The thin film 62 may be applied on the substrate 1 1 by methods such as chemical vapor deposition or physical vapor deposition. The thin film may be a single layer of one material or may be multiple layers of different materials. The substrate 1 1 can be a rigid material such as quartz, silicon, or germanium. The substrate 1 1 can also be a flexible material such as a polymer.
The resist 61 may be patterned, providing resist widths R. The resist widths R can be less than about 1 micrometer in one aspect, less than about 100 nanometers in another aspect, less than about 75 nanometers in another aspect, or less than about 55 nanometers in another aspect. The resist width R can be the approximate distance d3 between outermost wires 52c in a group.
As shown in FIG. 7, an isotropic etch may then be performed, etching both vertically 71 into the base 63 laterally outside the resist and horizontally 72 under the resist leaving a stem 73, having vertical sidewalls, under the resist 61 . The aforementioned isotropic etch, or a subsequent isotropic etch can be optimized for etch redeposition by etch chemistry, thus allowing etch redeposition along vertical sidewalls of the stem 73 creating etch redeposition wires 74. The etch redeposition wires 74 can be polarizing wires and thus polarizing wires may be formed as a byproduct of an etch reaction.
As shown in FIG. 8, an anisotropic etch can then be performed, etching vertically 71 into the base 63 outside the resist leaving a bottom step 83, having vertical sidewalls, in the base 63. The aforementioned anisotropic etch, or a subsequent anisotropic etch can be optimized for etch redeposition, thus allowing etch redeposition to occur along the vertical sidewalls of the bottom step and creating additional etch redeposition wires 84.
Depending on the material of the base and / or thin film and the type of etch, etch redeposition wires 74 & 84 can be comprised of a material such as metal oxide, metal alloy, metal halide, metal carbide, and organometal, or combinations thereof. Multiple isotropic etches before an anisotropic etch, with each subsequent isotropic etch being less isotropic in nature than the previous isotropic etch, can result in more than four wires for every resist width R.
As shown in FIGs. 9-10, the anisotropic etch may continue, remove the resist, etch the base 63 between 91 the wires and substantially or totally remove the base 63 between 101 etch redeposition wires 74 & 84, and leave at least four separate etch redeposition wires 74 and 84 for every original resist width R. As shown in FIG. 11 , a group of wires can have three wires comprising a center wire 112c and outer wires 112o. The method of making this structure is similar to that described above except that the stem 73 can be smaller than if two center wires are desired. Thus, as etch redeposition starts on both sides of the stem 73, the stem 73 can be substantially or completely etched away leaving a single center wire 112c rather than two center wires 52c as shown in FIG. 5. The single center wire 112c can be higher than outer wires 112o or can be approximately the same height as outer wires as was described above for the structure with at least four wires. If the center wires converge, and multiple isotropic etches are performed prior to the anisotropic etch, then there may be a structure with an odd number of at least five wires in each group.
A structure with a single wire at the center of each group may be beneficial if it is desired to have a large difference between widths of wires in a group. As shown in FIG. 11 , a width w1 of the center wire 72c, can be substantially wider than a width w2 of an outer wire 72o of a group.
Multi-step Wire Grid Polarizer
As illustrated in FIG. 12, a multi-step, nanometer sized device or polarizer 120 includes a base 121 with a plurality of parallel multi-step ribs 122 disposed on the base 121. The term polarizer will hereafter be used, instead of nanometer sized device, because polarizer is the most typical application, but the device 120 can be used for other applications. Each rib 122 comprises multiple adjacent steps S of different heights h or disposed at different elevational heights. Each rib 122 includes an upper step S1 with a top horizontal surface H1 flanked by upper vertical surfaces V1. It will be appreciated that the terms horizontal and vertical are relative to the orientation of the device as shown in the figures, and that the device can be oriented at various different angles. Each rib also includes at least one lower step or pair of steps (with one step on either side of the upper step) having two horizontal surfaces, each flanked by a vertical surface for that step and by a vertical surface of an adjacent step. Thus, steps or pairs of steps are formed on both sides of the upper step, forming a cross-sectional stepped pyramid shape. For example, the device in FIG. 12 shows two lower steps S2 and S3.
Intermediate step S2 includes intermediate horizontal surfaces H2 and intermediate vertical surfaces V2. Intermediate horizontal surfaces H2 flank the upper vertical surfaces V1 and intermediate vertical surfaces V2. Lower step S3 includes lower horizontal surfaces H3 and lower vertical surfaces V3. Lower horizontal surfaces H3 flank the intermediate vertical surfaces V2 and lower vertical surfaces V3.
The ribs can have more or less than two lower steps. Each step S includes a coating C along the vertical surfaces V of the step S. The coating C along the vertical surface V of any step S can be separate from the coating C along a vertical surface V of an adjacent (upper or lower) step S, such as by the intervening horizontal surface H. Thus, a width or length HL of a horizontal surface H thereof can be greater than a thickness of the coating C. For example, in FIG. 12 there is no continuity of coating between the steps such that the coating C1 of the upper step S1 is physically separate from the coating C2 of the intermediate step S2 and the coating C2 of the intermediate step S2 is physically separate from the coating C3 of the lower step S3. The coatings C can form pairs of coatings or coating pairs at different elevational heights, such as an upper coating pair C1 , and at least one lower coating pair, such as intermediate coating pair C2 and lower coating pair C3. If the device is used as a polarizer, and a coating C is selected that will polarize the wavelength of interest, then the coating C may be considered to be a polarizing coating rib. Thus, the coating may be a conductive coating and can define wires.
The upper and lower steps can be at different elevational heights h defining a cross-sectional stepped pyramid shape. For example, in FIG. 12, the elevational heights are not equal such that hi≠ h2≠ h3 and hi > h2 > h3. The height of the steps can be determined by the depth of etching. Some embodiments of the present invention can have an elevational height of the upper step that is less than about 200 nm in one aspect or less than about 100 nm in another aspect. The rib, or steps or pairs of steps, can increase in width from the upper step so that the rib has a cross- sectional stepped pyramid shape.
The coating material C can be or can include a metal such as aluminum, copper, germanium, titanium oxide, tantalum, or a metal alloy. The coating material C can also be a dielectric such as silicon, silicon carbide, Fe2Si, or hafnium. If the device is used as a wire grid polarizer, the coating material C can be a material that optimally polarizes the wavelengths of interest. For example, germanium could be used for infrared light, aluminum for visible light, or titanium oxide for ultraviolet light.
As shown in FIG. 13, the base 121 of polarizer 120b can comprise a substrate 131 and at least one thin film layer 132. The substrate 131 can comprise a material that is transparent to the incoming electromagnetic radiation. The substrate 131 can be a rigid material such as quartz, silicon, or germanium. The substrate 131 can also be a flexible material such as a casting film, polymer, or embossing substrate. The film layer 132 can be an anti-reflective coating, a transmissive film, an absorbing film, or other film with the desired optical properties.
The ribs 122 in the device can comprise the same material as the base 121 and can be are integrally formed in the base 121 , such as by etching, as shown in FIG. 12. Alternatively, the ribs can be physically separate from the base, as shown in FIG. 13. In addition, the ribs 122 can comprise a different material from the base 121 . The ribs 122 can comprise at least two layers of different materials. Each step can comprise multiple layers of different materials. A step S can be made of a different material than another step S. Each step S can be made of different materials. Multiple layers may be used for desired polarization characteristics, such as optimizing Tp, Ts, contrast, or absorption.
The coatings C can have very small widths CW. The width of the coating can be less than about 30 nm in one aspect, less than about 10 nm in another aspect, or less than about 5 nm in another aspect. The coating width can be selected or tuned based on the anticipated wavelength of the electromagnetic radiation and/or desired performance characteristics. Very narrow coating widths can be sustained by the structural support of the rib or steps thereof.
As shown in FIG. 14, a rib 122 of a polarizer can have vertical heights or length of vertical surfaces VL. In one embodiment, a vertical length VL of one step S can be the same as a vertical length VL of another step S, or all other steps S. In another embodiment, a vertical length VL of one step S can be different from a vertical length VL of another step S, or all other steps S. For example, the steps S can have substantially equal vertical lengths, VL1 = VL2 = VL3. Alternatively, the steps S can have unequal vertical lengths, VL1≠ VL2≠ VL3. A polarizer with different vertical lengths of vertical surfaces on different steps can have coating of different heights. Each coating height can be tuned for optimal polarization of a wavelength of interest. A difference of vertical length VL of one step compared to any other step can be more than 10 nanometers in one aspect, 10 to 50 nanometers in another aspect, 50 to 100 nanometers in another aspect, or 100 - 200
nanometers in another aspect. For example VL1 - VL2 and VL1 - VL3 can be between 50 to 100 nanometers.
The vertical lengths VL of steps S can be nanometer sized. For example the vertical length VL of any of the vertical surfaces can be less than about 100 nm in one aspect, less than about 50 nm in another aspect, or less than about 20 nm in another aspect. The vertical lengths VL can be selected or tuned based on the anticipated wavelength of the electromagnetic radiation and/or desired performance characteristics.
The horizontal length of the widest step or outside width of the lowermost pair of steps, shown as SL1 in FIG. 14, can be approximately the width (see RW in FIG. 18) of the resist feature used to form the step S. Resist features for presently manufactured wire grid polarizers for visible light typically have a width of about 50 - 100 nm. Accordingly, the outside width SL1 , and thus a distance between the outermost coatings on a step, can be less than about 100 nm in one aspect, less than about 75 nm in another aspect, less than about 50 nm in another aspect, or 50 - 100 nm in another aspect. Again, the width SL1 of the outermost, lowermost pair of steps can be selected or tuned based on the anticipated wavelength of the light and/or desired performance characteristics.
As shown in FIG. 15, a rib 122 can have a depth or horizontal length HL of the horizontal surface of a step that is the approximate pitch between adjacent coatings. The horizontal length HL of a step can be less than about 50 nm in one aspect, less than about 25 nm in another aspect, or less than about 10 nm in another aspect. A maximum distance between adjacent coatings can be less than about 50 nm and a minimum distance between adjacent coatings can be less than about 20 nm. The horizontal length HL of all steps can be approximately the same. (HL1 = HL2 = HL3). The horizontal length HL of a step may be different from the horizontal length HL of other steps (HL1≠ HL2 or HL1≠ HL2 or HL1≠ HL2≠ HL3). The horizontal length of steps may be adjusted in order to optimize polarization of the desired wavelengths.
The embodiments shown in FIGs. 12 & 13 have a step with the longest step length SL as the lowest step or the step closest to the base. As shown in FIG. 16, a step, of a device 120c or rib 122c, with the longest step length SL3 can be an intermediate step and a step with a shorter step length SL5 can be the lowest step or the step closest to the base.
Also as shown in FIG. 16, the steps need not form a pyramid shape but rather the steps in the ribs can become wider or narrower moving from the outermost rib towards the base. The upper step can have the shortest step length or another step can have the shortest step length depending on the isotropic nature of each successive etch as described below. This embodiment may be useful for optimizing polarization of certain selected wavelengths.
As shown in FIG. 17, wires 173 of polarizer 120d may be disposed on the base 121 , physically separate from the multi-step ribs 122, substantially parallel with the multi-step ribs 122, and located between adjacent multi-step ribs 122. Coating C can be a dielectric or metal. Wires 173 can be dielectric or metal. Wires 173 can be a different material than coating C. This allows use of polarizing ribs made of different materials. This can be beneficial for tuning the polarizer to multiple different wavelengths of electromagnetic radiation.
Multi-step Wire Grid Polarizer - How to Make
A base 121 can be prepared with either a single material or with layers of different materials. For example, FIG. 13 shows a base 121 comprised of a substrate 131 and a thin film 132. The ribs 122 can be the same material as the base 121 , the same material as the substrate 131 , the same material as the thin film 132, or a different material than the base, substrate, or thin film. As shown in FIGs. 14 and 15, the ribs 122 can be made of layers. Each layer can be the same material as another layer or can be a different material than another layer or layers. Each step S can be a different material than another step S. A single step S can be made of multiple layers of different materials. Layers of different materials can be formed by applying thin films on a substrate through processes such as chemical vapor deposition (CVD) or physical vapor deposition (PVD).
The ribs 122 can be formed by depositing a material on a base 121 or by ion milling into the base 121 . The ribs 122 may also be formed in the base 121 by etching the base as shown in FIGs. 18 - 21 . For purposes of the description of FIGs 18 - 21 , the term "base" can include a single material or layers of multiple materials. A resist 181 may be applied to the base .121 and the resist 181 may be patterned to create resist widths RW, as shown in FIG. 18. As shown in FIG. 19, an isotropic etch can etch both vertically into the base laterally outside the resist 192 and horizontally under the resist 191 . At least one additional isotropic etch, that is more or less isotropic than the previous isotropic etch, may be performed. For example, as shown in FIG. 20, a second isotropic etch, which is less isotropic in nature than that shown in FIG. 19, is performed to etch both vertically into the base laterally outside the resist 192 and horizontally under the resist 191 . Each successive etch that that is either more or less isotropic than the previous etch can result in formation of an additional step. As shown in FIG. 21 , an anisotropic etch may be used to etch into the base laterally outside the resist 192 and to remove the resist 181. The
anisotropic etch can be used to create a step having a step length SL that is about the same as the width of the resist RW.
Step horizontal length HL and step vertical length VL can be controlled during step formation by the nature of the isotropic etches performed. A more isotropic etch can create a longer horizontal length HL for a step. A longer etch time can create a longer vertical step length VL.
After the ribs have been created, the resist can be removed and the surface of the structure may be coated with a coating C, as shown in FIG. 22. The coating may be conformal, non-conformal, segmented, atomic layer deposition, spin on, or etch redeposition. The coating may then be anisotropically etched to substantially remove the coating from horizontal surfaces while leaving a majority of the coating on vertical surfaces. The coating is removed from horizontal surfaces in the anisotropic etch, while leaving a substantial portion of the coating on the vertical surfaces, because a thickness of the coating 222 on the horizontal surfaces, in a direction perpendicular to the main plane of the base, as shown by dashed line P, is less than a thickness of the coating 221 on the vertical surfaces, along this same direction P.
To form a structure as shown in FIG. 16, following the previously described anisotropic etch step to etch primarily in the area outside the width of the resist 192, additional isotropic etches 161 and 162 may be performed. Various combinations of isotropic and anisotropic etches may be performed to create ribs of various shapes. After forming the ribs, a coating is applied and etched as described above. Etching of the coating can also remove coating along horizontal surfaces 163 that are between the multi-step rib 122c and the base 121 by use of a high bias etch.
FIGs. 23-26 show how to make the polarizer 120d of FIG. 17, which includes additional wires 173 in addition to coating C on multi-step ribs 122. As shown in FIG. 23, a thin first layer 171 can be disposed on a base 121. The material of this first layer 171 can be the desired material of the final wires 173, such as metal for example. A second layer can be applied over the first layer 171 . The second layer can be the desired material of the multi-stepped ribs 122, such as an oxide or dielectric for example. Multi-stepped rib structures 122 can then be formed as described above. The thickness of the second layer and the duration of the isotropic etch can be timed such that the etch steps forming the multi-stepped ribs 122 end the surface of the first layer 171 . The final anisotropic step can be shortened in time in order to form a small final step. For example, a length of the vertical surface of the upper two steps VL1 and VL2 are significantly longer than a length of the vertical surface VL3 of the lowest step. As a result of the limited length of the vertical surface of the lowest step VL3, a thickness of the coating in a direction perpendicular P to the base is much smaller along the vertical surface of the lowest step than along the vertical surface of upper steps.
A coating C can then be applied as described above. As shown in FIG. 24, the coating C thickness along a vertical surface of an upper step 241 can be much longer than the coating thickness along a vertical surface of the lowest step 242. The coating thickness along the lowest step 242 is not very much thicker than the thickness along a horizontal portion of the structure 243.
An anisotropic etch may be performed to remove coating from horizontal surfaces and from the lowest step vertical surface 252. Due to the relatively smaller thickness of coating 242 along the vertical surface of the lowest step, as shown in FIG. 25, the coating can be substantially removed from the vertical surface of this step 252 during this anisotropic etch of the coating while leaving the coating on the vertical surfaces of the upper steps 251 .
An anisotropic etch, which is optimized for etch redeposition, may then be performed. The coating C, the second layer or rib 122 material, and the etch must be selected such that primarily the first layer 171 will be etched with minimal etching of the coating C or the ribs 122. The etch can be optimized for etch redeposition by etch chemistry. The anisotropic etch will etch into the first layer 171 and can result in formation of etch redeposition wires 173. The anisotropic etch can continue and thus remove the first layer 171 between 175 the etch redeposition wires 173 and the multi-step ribs 122, as shown in FIG. 17. The anisotropic etch may continue to etch into the base between the ribs 174. The base 121 may thus be etched between 174 the wires 173 and the multi-step ribs 122 to a depth of at least 1 nm.
It is to be understood that the above-referenced arrangements are only illustrative of the application for the principles of the present invention. Numerous modifications and alternative arrangements can be devised without departing from the spirit and scope of the present invention. While the present invention has been shown in the drawings and fully described above with particularity and detail in connection with what is presently deemed to be the most practical and preferred embodiment(s) of the invention, it will be apparent to those of ordinary skill in the art that numerous modifications can be made without departing from the principles and concepts of the invention as set forth herein.

Claims

CLAIMS What is claimed is:
1. A nanometer sized multi-step device, comprising:
a. a base;
b. a plurality of parallel multi-step ribs disposed on the base; c. each rib comprising multiple adjacent steps on each side thereof, the multiple adjacent steps comprising:
i. an upper step with a top horizontal surface flanked by upper vertical surfaces; and
ii. at least one pair of lower steps having two horizontal surfaces on opposite sides of the upper step, and flanked by lower vertical surfaces;
d. a coating along the vertical surfaces of the upper step and the at least one pair of lower steps; and
e. the coating along the vertical surface of any step is separate from the coating along a vertical surface of an adjacent step.
2. The device of claim 1 , wherein the at least one pair of lower steps comprises at least two pairs of lower steps.
3. The device of claim 1 , wherein the upper and lower steps are at different
elevational heights defining a cross-sectional stepped pyramid shape.
4. The device of claim 1 , further comprising wires which are:
a. attached to the base;
b. physically separate from the multi-step ribs; and
c. substantially parallel with the multi-step ribs and located between adjacent multi-step ribs.
5. The device of claim , wherein the coating is applied by atomic layer deposition.
6. The device of claim 1 , wherein a maximum distance between adjacent coatings is less than 50 nm and a minimum distance between adjacent coatings is less than 25 nm.
The device of claim 1 , wherein a width of every coating is less than about 30
A method for making the device of claim 1 , the method comprising:
a. forming multi-step ribs, the ribs attached to a base;
b. coating the surface of the base and steps; and
c. removing coating on horizontal surfaces while leaving coating on
vertical surfaces.
The method of claim 8, wherein the method for forming multi-step ribs in a base comprises:
a. applying a resist onto the base;
b. patterning the resist to create resist widths;
c. performing a first isotropic etch and etching both vertically into the base laterally outside the resist and horizontally under the resist; d. performing at least one additional isotropic etch that is less isotropic than the previous isotropic etch and etching both vertically into the base laterally outside the resist and horizontally under the resist;
e. performing an anisotropic etch to etch into the base laterally outside the resist and to remove the resist.
10. The method of claim 9, wherein the resist widths are less than about 100 nm.
PCT/US2012/043979 2011-09-02 2012-06-25 Fine pitch wire grid polarizer WO2013032570A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201280042224.8A CN103907173B (en) 2011-09-02 2012-06-25 Fine pitch wire grid polarizer
KR1020147005086A KR101496689B1 (en) 2011-09-02 2012-06-25 Fine pitch wire grid polarizer
JP2014528388A JP5686227B2 (en) 2011-09-02 2012-06-25 Wire grid polarizer manufacturing method, nanometer-sized multi-step element, and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/224,719 US8611007B2 (en) 2010-09-21 2011-09-02 Fine pitch wire grid polarizer
US13/224,719 2011-09-02

Publications (1)

Publication Number Publication Date
WO2013032570A1 true WO2013032570A1 (en) 2013-03-07

Family

ID=46926937

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/043979 WO2013032570A1 (en) 2011-09-02 2012-06-25 Fine pitch wire grid polarizer

Country Status (5)

Country Link
US (2) US8611007B2 (en)
JP (1) JP5686227B2 (en)
KR (1) KR101496689B1 (en)
CN (1) CN103907173B (en)
WO (1) WO2013032570A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015137362A1 (en) * 2014-03-11 2015-09-17 ウシオ電機株式会社 Grid polarizer and photo-alignment device
CN105093380A (en) * 2014-05-15 2015-11-25 迪睿合电子材料有限公司 Inorganic polarizing plate and production method thereof
JP2015222449A (en) * 2015-09-10 2015-12-10 ウシオ電機株式会社 Grid polarization element and photo-orientation device
TWI561863B (en) * 2013-03-29 2016-12-11 Ushio Electric Inc
US11709301B2 (en) 2018-06-12 2023-07-25 Ushio Denki Kabushiki Kaisha VUV polarizer, VUV polarization device, VUV polarization method and alignment method

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8755113B2 (en) 2006-08-31 2014-06-17 Moxtek, Inc. Durable, inorganic, absorptive, ultra-violet, grid polarizer
US8913321B2 (en) 2010-09-21 2014-12-16 Moxtek, Inc. Fine pitch grid polarizer
US8611007B2 (en) 2010-09-21 2013-12-17 Moxtek, Inc. Fine pitch wire grid polarizer
US20150077851A1 (en) 2010-12-30 2015-03-19 Moxtek, Inc. Multi-layer absorptive wire grid polarizer
US8913320B2 (en) * 2011-05-17 2014-12-16 Moxtek, Inc. Wire grid polarizer with bordered sections
US8873144B2 (en) * 2011-05-17 2014-10-28 Moxtek, Inc. Wire grid polarizer with multiple functionality sections
US8922890B2 (en) * 2012-03-21 2014-12-30 Moxtek, Inc. Polarizer edge rib modification
KR20150004858A (en) * 2012-04-20 2015-01-13 워싱톤 유니버시티 Sensor for spectral-polarization imaging
JP6433895B2 (en) * 2012-08-10 2018-12-05 テマセク ポリテクニックTemasek Polytechnic Optical diffraction grating
KR102082783B1 (en) * 2013-07-23 2020-03-02 삼성디스플레이 주식회사 Wire grid polarizer and organic light emitting display apparatus comprising the same
US10371898B2 (en) 2013-09-05 2019-08-06 Southern Methodist University Enhanced coupling strength grating having a cover layer
WO2015060943A1 (en) * 2013-10-24 2015-04-30 Moxtek, Inc. Polarizer with variable inter-wire distance
US9354374B2 (en) * 2013-10-24 2016-05-31 Moxtek, Inc. Polarizer with wire pair over rib
IL232866B (en) * 2014-05-29 2020-08-31 Elta Systems Ltd Polarization rotator
US9632224B2 (en) * 2014-06-25 2017-04-25 Moxtek, Inc. Broadband, selectively-absorptive wire grid polarizer
US10088616B2 (en) 2014-09-19 2018-10-02 Toyota Motor Engineering & Manufacturing North America, Inc. Panel with reduced glare
EP3023820B1 (en) * 2014-11-18 2023-12-27 Samsung Display Co., Ltd. Wire grid polarizing plate, display device including the same, and method of fabricating said display device
CN104459863A (en) * 2014-12-04 2015-03-25 京东方科技集团股份有限公司 Wire gating polaroid, manufacturing method of wire gating polaroid, display panel and display device
KR20160070883A (en) * 2014-12-10 2016-06-21 삼성디스플레이 주식회사 Wire grid polarizer and method for manufacturing the same
US10534120B2 (en) 2015-04-03 2020-01-14 Moxtek, Inc. Wire grid polarizer with protected wires
US9995864B2 (en) * 2015-04-03 2018-06-12 Moxtek, Inc. Wire grid polarizer with silane protective coating
US10054717B2 (en) * 2015-04-03 2018-08-21 Moxtek, Inc. Oxidation and moisture barrier layers for wire grid polarizer
KR20160143443A (en) * 2015-06-05 2016-12-14 코오롱인더스트리 주식회사 Wire Grid Polarizer And Liquid Crystal Display Device Including The Same
US20170059758A1 (en) 2015-08-24 2017-03-02 Moxtek, Inc. Small-Pitch Wire Grid Polarizer
JP6884501B2 (en) * 2015-08-25 2021-06-09 大日本印刷株式会社 Polarizer
KR102546954B1 (en) * 2015-09-03 2023-06-23 삼성디스플레이 주식회사 Wire grid polarizer plate and method for manufacturing the smae
CN109804279A (en) * 2016-10-12 2019-05-24 应用材料公司 For manufacturing the method for polarizer apparatus, polarizer apparatus and with the display system of polarizer apparatus
JP6401837B1 (en) * 2017-08-10 2018-10-10 デクセリアルズ株式会社 Polarizing plate and optical device
CN109975910B (en) 2017-12-28 2022-02-18 迪睿合株式会社 Polarizing plate, method for manufacturing the same, and optical device
US11079528B2 (en) * 2018-04-12 2021-08-03 Moxtek, Inc. Polarizer nanoimprint lithography
JP7279304B2 (en) * 2018-06-12 2023-05-23 ウシオ電機株式会社 Vacuum UV light polarizer
JP7200510B2 (en) * 2018-06-12 2023-01-10 ウシオ電機株式会社 Orientation method and photo-alignment device
JP6577641B2 (en) * 2018-08-20 2019-09-18 デクセリアルズ株式会社 Polarizing plate, method for producing the same, and optical instrument
US11644084B2 (en) 2018-10-04 2023-05-09 Kinematics, Llc Force sensing slew drive
KR20210054085A (en) 2019-11-04 2021-05-13 삼성전자주식회사 Image sensor
CN111090958B (en) * 2019-12-30 2021-11-30 西北工业大学 Electromagnetic wave time domain efficient numerical mixing method based on sub-grid technology
CN111665588B (en) * 2020-05-06 2022-02-11 山东科技大学 Bifunctional polarizer based on vanadium dioxide and Dirac semi-metal composite super-surface
CN111679356B (en) * 2020-06-22 2022-07-29 京东方科技集团股份有限公司 Polarizing plate and preparation method thereof
US11543584B2 (en) * 2020-07-14 2023-01-03 Meta Platforms Technologies, Llc Inorganic matrix nanoimprint lithographs and methods of making thereof with reduced carbon
CN114879386B (en) * 2022-07-11 2022-09-23 华南师范大学 Spin photon transmission regulation and control device based on pyramid helical line array metamaterial

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080137188A1 (en) * 2006-12-07 2008-06-12 Atsushi Sato Wire grid polarizer and method of manufacturing the same
US20080192346A1 (en) * 2007-02-13 2008-08-14 Samsung Electronics Co., Ltd. Wire grid polarizer and method of fabricating the same
US20100238555A1 (en) * 2007-08-10 2010-09-23 Seiko Epson Corporation Optical element, liquid crystal device, and display
US20110115991A1 (en) * 2009-11-16 2011-05-19 Seiko Epson Corporation Polarization element and projector

Family Cites Families (482)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2224214A (en) 1937-12-28 1940-12-10 Polaroid Corp Light polarizing body
US2287598A (en) 1937-12-28 1942-06-23 Polaroid Corp Method of manufacturing lightpolarizing bodies
US2237567A (en) 1939-05-04 1941-04-08 Polaroid Corp Light polarizer and process of manufacturing the same
CH230613A (en) 1939-11-08 1944-01-15 Ges Foerderung Forschung Technische Physik Eth Zuerich Arrangement for displaying a television picture.
US2605352A (en) 1940-08-28 1952-07-29 Fischer Ernst Friedrich Deformable medium for controlling a light stream
US2403731A (en) 1943-04-01 1946-07-09 Eastman Kodak Co Beam splitter
US2748659A (en) 1951-02-26 1956-06-05 Jenaer Glaswerk Schott & Gen Light source, searchlight or the like for polarized light
US2887566A (en) 1952-11-14 1959-05-19 Marks Polarized Corp Glare-eliminating optical system
NL113615C (en) 1954-06-01 1900-01-01
US2815452A (en) 1954-11-12 1957-12-03 Baird Associates Inc Interferometer
US3046839A (en) 1959-01-12 1962-07-31 Polaroid Corp Processes for preparing light polarizing materials
US3084590A (en) 1959-02-26 1963-04-09 Gen Electric Optical system
NL254460A (en) 1960-08-02
US3213753A (en) 1962-01-24 1965-10-26 Polaroid Corp Multilayer lenticular light polarizing device
US3235630A (en) 1962-07-17 1966-02-15 Little Inc A Method of making an optical tool
US3291871A (en) 1962-11-13 1966-12-13 Little Inc A Method of forming fine wire grids
US3293331A (en) 1962-11-13 1966-12-20 Little Inc A Method of forming replicas of contoured substrates
US3479168A (en) 1964-03-09 1969-11-18 Polaroid Corp Method of making metallic polarizer by drawing fusion
US3291550A (en) 1965-04-16 1966-12-13 Polaroid Corp Metallic grid light-polarizing device
US3436143A (en) 1965-11-30 1969-04-01 Bell Telephone Labor Inc Grid type magic tee
US3566099A (en) 1968-09-16 1971-02-23 Polaroid Corp Light projection assembly
US3627431A (en) 1969-12-22 1971-12-14 John Victor Komarniski Densitometer
US3631288A (en) 1970-01-23 1971-12-28 Polaroid Corp Simplified polarized light projection assembly
US3653741A (en) 1970-02-16 1972-04-04 Alvin M Marks Electro-optical dipolar material
US3731986A (en) 1971-04-22 1973-05-08 Int Liquid Xtal Co Display devices utilizing liquid crystal light modulation
CH558023A (en) 1972-08-29 1975-01-15 Battelle Memorial Institute POLARIZING DEVICE.
US3877789A (en) 1972-11-08 1975-04-15 Marie G R P Mode transformer for light or millimeter electromagnetic waves
US4049944A (en) 1973-02-28 1977-09-20 Hughes Aircraft Company Process for fabricating small geometry semiconductive devices including integrated components
US3969545A (en) 1973-03-01 1976-07-13 Texas Instruments Incorporated Light polarizing material method and apparatus
US3857628A (en) 1973-08-29 1974-12-31 Hoffmann La Roche Selective polarizer arrangement for liquid crystal displays
US3857627A (en) 1973-08-29 1974-12-31 Hoffmann La Roche Polarizer arrangement for liquid crystal displays
US3912369A (en) 1974-07-02 1975-10-14 Gen Electric Single polarizer reflective liquid crystal display
US4025688A (en) 1974-08-01 1977-05-24 Polaroid Corporation Polarizer lamination
CH582894A5 (en) 1975-03-17 1976-12-15 Bbc Brown Boveri & Cie
US4009933A (en) 1975-05-07 1977-03-01 Rca Corporation Polarization-selective laser mirror
US4104598A (en) 1975-06-09 1978-08-01 Hughes Aircraft Company Laser internal coupling modulation arrangement with wire grid polarizer serving as a reflector and coupler
DE2529112C3 (en) 1975-06-30 1978-03-23 Siemens Ag, 1000 Berlin Und 8000 Muenchen Ultrasonic applicator for line-by-line ultrasound scanning of bodies
JPS6034742B2 (en) 1976-02-20 1985-08-10 ミノルタ株式会社 optical low pass filter
US4073571A (en) 1976-05-05 1978-02-14 Hughes Aircraft Company Circularly polarized light source
US4181756A (en) 1977-10-05 1980-01-01 Fergason James L Process for increasing display brightness of liquid crystal displays by bleaching polarizers using screen-printing techniques
DE2818103A1 (en) 1978-04-25 1979-11-08 Siemens Ag METHOD OF PRODUCING A VARIETY OF ELECTRICALLY CONDUCTIVE STRIPS, ARRANGED ON A GLASS PLATE, AND ALIGNED IN PARALLEL
JPS6033246B2 (en) 1978-07-26 1985-08-01 三立電機株式会社 Manufacturing method of polarizing plate for multicolor display
DE2915847C2 (en) 1978-09-29 1986-01-16 Nitto Electric Industrial Co., Ltd., Ibaraki, Osaka Electro-optically activated display
US4221464A (en) 1978-10-17 1980-09-09 Hughes Aircraft Company Hybrid Brewster's angle wire grid infrared polarizer
US4289381A (en) 1979-07-02 1981-09-15 Hughes Aircraft Company High selectivity thin film polarizer
US4308079A (en) 1980-06-16 1981-12-29 Martin Marietta Corporation Durability of adhesively bonded aluminum structures and method for inhibiting the conversion of aluminum oxide to aluminum hydroxide
US4514479A (en) 1980-07-01 1985-04-30 The United States Of America As Represented By The Secretary Of The Navy Method of making near infrared polarizers
DE3169810D1 (en) 1980-07-28 1985-05-15 Bbc Brown Boveri & Cie Homeotropic nematic display with an internal reflector
US4441791A (en) 1980-09-02 1984-04-10 Texas Instruments Incorporated Deformable mirror light modulator
US4466704A (en) 1981-07-20 1984-08-21 Polaroid Corporation Patterned polarizer having differently dyed areas
DE3376172D1 (en) 1982-01-22 1988-05-05 Hitachi Ltd Method and apparatus for reducing semiconductor laser optical noise
JPS5842003Y2 (en) 1982-05-20 1983-09-22 財団法人石炭技術研究所 Device for adjusting the descending characteristics of filtration material in continuous filtration equipment
US4512638A (en) 1982-08-31 1985-04-23 Westinghouse Electric Corp. Wire grid polarizer
US4515441A (en) 1982-10-13 1985-05-07 Westinghouse Electric Corp. Dielectric polarizer for high average and high peak power operation
DE3244885A1 (en) 1982-12-02 1984-06-07 Merck Patent Gmbh, 6100 Darmstadt COLOR SELECTIVE CIRCULAR POLARIZER AND ITS USE
US4515443A (en) 1982-12-29 1985-05-07 The United States Of America As Represented By The Secretary Of The Army Passive optical system for background suppression in starring imagers
US4560599A (en) 1984-02-13 1985-12-24 Marquette University Assembling multilayers of polymerizable surfactant on a surface of a solid material
FR2564605B1 (en) 1984-05-18 1987-12-24 Commissariat Energie Atomique LIQUID CRYSTAL CELL CAPABLE OF PRESENTING A HOMEOTROPIC STRUCTURE, WITH BIREFRINGENCE COMPENSATED FOR THIS STRUCTURE
SU1283685A1 (en) 1985-02-20 1987-01-15 Предприятие П/Я А-1705 Grating-polarizer
US4679910A (en) 1985-03-20 1987-07-14 Hughes Aircraft Company Dual liquid-crystal cell-based visible-to-infrared dynamic image converter
US4688897A (en) 1985-06-17 1987-08-25 Hughes Aircraft Company Liquid crystal device
US4712881A (en) 1985-06-21 1987-12-15 The United States Of America As Represented By The Secretary Of The Army Birefringent artificial dielectric structures
JPS626225A (en) 1985-07-02 1987-01-13 Semiconductor Energy Lab Co Ltd Liquid crystal display device
JPS6231822A (en) 1985-08-02 1987-02-10 Hitachi Ltd Liquid crystal displaying element
US4743093A (en) 1985-09-16 1988-05-10 Eastman Kodak Company Optical disc player lens
FR2588093B1 (en) 1985-09-27 1987-11-20 Thomson Csf DIFFERENTIAL ABSORPTION POLARIZER, ITS MANUFACTURING METHOD, AND DEVICE USING THE SAME
JPS6275418A (en) 1985-09-27 1987-04-07 Alps Electric Co Ltd Liquid crystal element
US4724436A (en) 1986-09-22 1988-02-09 Environmental Research Institute Of Michigan Depolarizing radar corner reflector
US4743092A (en) 1986-11-26 1988-05-10 The United States Of America As Represented By The Secretary Of The Army Polarizing grids for far-infrared and method for making same
US4759611A (en) 1986-12-19 1988-07-26 Polaroid Corporation, Patent Department Liquid crystal display having silylated light polarizers
US4795233A (en) 1987-03-09 1989-01-03 Honeywell Inc. Fiber optic polarizer
DE3707984A1 (en) 1987-03-12 1988-09-22 Max Planck Gesellschaft POLARIZING MIRROR FOR OPTICAL RADIATION
US4840757A (en) 1987-05-19 1989-06-20 S. D. Warren Company Replicating process for interference patterns
US4789646A (en) 1987-07-20 1988-12-06 North American Philips Corporation, Signetics Division Company Method for selective surface treatment of semiconductor structures
DE3738951C1 (en) 1987-11-17 1989-05-03 Heinrich Dipl-Ing Marpert Joint for transmitting the torque of a first shaft to a second shaft
FR2623649B1 (en) 1987-11-23 1992-05-15 Asulab Sa LIQUID CRYSTAL DISPLAY CELL
US4865670A (en) 1988-02-05 1989-09-12 Mortimer Marks Method of making a high quality polarizer
FR2629924B1 (en) 1988-04-08 1992-09-04 Comp Generale Electricite DIELECTRIC LAYER POLARIZER
US4893905A (en) 1988-06-10 1990-01-16 Hughes Aircraft Company Optical light valve system for providing phase conjugated beam of controllable intensity
JP2703930B2 (en) 1988-06-29 1998-01-26 日本電気株式会社 Birefringent diffraction grating polarizer
JPH0212105A (en) 1988-06-29 1990-01-17 Nec Corp Double refractive diffraction grating type polarizer
JPH0215238A (en) 1988-07-04 1990-01-18 Stanley Electric Co Ltd Anisotropic compensation homeotropic liquid crystal display device
JPH0223304A (en) 1988-07-12 1990-01-25 Toray Ind Inc Visible polarizing film
US4895769A (en) 1988-08-09 1990-01-23 Polaroid Corporation Method for preparing light polarizer
US4915463A (en) 1988-10-18 1990-04-10 The United States Of America As Represented By The Department Of Energy Multilayer diffraction grating
US4939526A (en) 1988-12-22 1990-07-03 Hughes Aircraft Company Antenna system having azimuth rotating directive beam with selectable polarization
US4913529A (en) 1988-12-27 1990-04-03 North American Philips Corp. Illumination system for an LCD display system
US4870649A (en) 1988-12-28 1989-09-26 American Telephone And Telegraph Company, At&T Bell Laboratories Tranverse mode control in solid state lasers
US4974941A (en) 1989-03-08 1990-12-04 Hercules Incorporated Process of aligning and realigning liquid crystal media
US4946231A (en) 1989-05-19 1990-08-07 The United States Of America As Represented By The Secretary Of The Army Polarizer produced via photographic image of polarizing grid
US5599551A (en) 1989-06-06 1997-02-04 Kelly; Patrick D. Genital lubricants containing zinc as an anti-viral agent
US5486949A (en) 1989-06-20 1996-01-23 The Dow Chemical Company Birefringent interference polarizer
US5279689A (en) 1989-06-30 1994-01-18 E. I. Du Pont De Nemours And Company Method for replicating holographic optical elements
EP0405582A3 (en) 1989-06-30 1992-07-08 E.I. Du Pont De Nemours And Company Method for making optically readable media containing embossed information
US5235443A (en) 1989-07-10 1993-08-10 Hoffmann-La Roche Inc. Polarizer device
EP0416157A1 (en) 1989-09-07 1991-03-13 Max-Planck-Gesellschaft zur Förderung der Wissenschaften e.V. Polarizer
FR2653234A1 (en) 1989-10-13 1991-04-19 Philips Electronique Lab DEVICE OF THE MIRROR TYPE IN THE FIELD OF X-UV RAYS.
EP0422661A3 (en) 1989-10-13 1992-07-01 Mitsubishi Rayon Co., Ltd Polarization forming optical device and polarization beam splitter
JPH03132603A (en) 1989-10-18 1991-06-06 Matsushita Electric Ind Co Ltd Polarizer
JP2924055B2 (en) 1989-12-08 1999-07-26 セイコーエプソン株式会社 Reflective liquid crystal display
JPH0723841Y2 (en) 1989-12-18 1995-05-31 ハイパーケミカル株式会社 Planar light emitter and display board
US5267029A (en) 1989-12-28 1993-11-30 Katsumi Kurematsu Image projector
US5235449A (en) 1990-03-02 1993-08-10 Hitachi, Ltd. Polarizer with patterned diacetylene layer, method for producing the same, and liquid crystal display device including such polarizer
US5401587A (en) 1990-03-27 1995-03-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Anisotropic nanophase composite material and method of producing same
JPH03289692A (en) 1990-04-06 1991-12-19 Matsushita Electric Ind Co Ltd Spatial light modulation element and hologram image recording device using same
JP2681304B2 (en) 1990-05-16 1997-11-26 日本ビクター株式会社 Display device
KR920010809B1 (en) 1990-05-19 1992-12-17 주식회사 금성사 Lcd projector
US5083857A (en) 1990-06-29 1992-01-28 Texas Instruments Incorporated Multi-level deformable mirror device
US5115305A (en) 1990-07-05 1992-05-19 Baur Thomas G Electrically addressable liquid crystal projection system with high efficiency and light output
US5157526A (en) 1990-07-06 1992-10-20 Hitachi, Ltd. Unabsorbing type polarizer, method for manufacturing the same, polarized light source using the same, and apparatus for liquid crystal display using the same
JP2902456B2 (en) 1990-08-09 1999-06-07 株式会社豊田中央研究所 Inorganic polarizing thin film
US5113285A (en) 1990-09-28 1992-05-12 Honeywell Inc. Full color three-dimensional flat panel display
JPH07104450B2 (en) 1990-10-17 1995-11-13 スタンレー電気株式会社 Biaxial optical element and manufacturing method thereof
FR2669126B1 (en) 1990-11-09 1993-01-22 Thomson Csf SYSTEM FOR VIEWING IMAGES PROVIDED BY A SPATIAL MODULATOR WITH ENERGY TRANSFER.
US5387953A (en) 1990-12-27 1995-02-07 Canon Kabushiki Kaisha Polarization illumination device and projector having the same
US5092774A (en) 1991-01-09 1992-03-03 National Semiconductor Corporation Mechanically compliant high frequency electrical connector
JP2698218B2 (en) 1991-01-18 1998-01-19 シャープ株式会社 Reflective liquid crystal display device and method of manufacturing the same
US5122887A (en) 1991-03-05 1992-06-16 Sayett Group, Inc. Color display utilizing twisted nematic LCDs and selective polarizers
DE69218830T2 (en) 1991-05-29 1997-07-17 Matsushita Electric Ind Co Ltd Image projection system
KR940701548A (en) 1991-06-13 1994-05-28 게리 리 그리스월드 Retroreflective polarizer
US5245471A (en) 1991-06-14 1993-09-14 Tdk Corporation Polarizers, polarizer-equipped optical elements, and method of manufacturing the same
DE69232747T2 (en) 1991-06-14 2003-01-02 Hughes Aircraft Co Method for the vertical alignment of liquid crystals
DE69221968T2 (en) 1991-06-28 1998-03-05 Philips Electronics Nv Image display device
US5122907A (en) 1991-07-03 1992-06-16 Polatomic, Inc. Light polarizer and method of manufacture
JP2754964B2 (en) 1991-08-13 1998-05-20 日本電気株式会社 Multi-pole connector mating structure
US5196953A (en) 1991-11-01 1993-03-23 Rockwell International Corporation Compensator for liquid crystal display, having two types of layers with different refractive indices alternating
EP0543061B1 (en) 1991-11-20 1998-07-15 Hamamatsu Photonics K.K. Light amplifying polarizer
JP2796005B2 (en) 1992-02-10 1998-09-10 三菱電機株式会社 Projection exposure apparatus and polarizer
US5383053A (en) 1992-04-07 1995-01-17 Hughes Aircraft Company Virtual image display having a high efficiency grid beamsplitter
US5422756A (en) 1992-05-18 1995-06-06 Minnesota Mining And Manufacturing Company Backlighting system using a retroreflecting polarizer
WO1994000792A1 (en) 1992-06-30 1994-01-06 Citizen Watch Co., Ltd. Liquid crystal display unit and liquid crystal projector using this liquid crystal display unit
EP0730755A1 (en) 1992-10-20 1996-09-11 Hughes-Jvc Technology Corporation Liquid crystal light valve with minimized double reflection
US5480748A (en) 1992-10-21 1996-01-02 International Business Machines Corporation Protection of aluminum metallization against chemical attack during photoresist development
JPH06138413A (en) 1992-10-29 1994-05-20 Canon Inc Plate type polarized light separating device and polarized light illuminating device using the same
JP3250853B2 (en) 1992-11-09 2002-01-28 松下電器産業株式会社 Liquid crystal display device and projection display device using the same
JPH06174907A (en) 1992-12-04 1994-06-24 Shimadzu Corp Production of metallic grating
US5333072A (en) 1992-12-31 1994-07-26 Minnesota Mining And Manufacturing Company Reflective liquid crystal display overhead projection system using a reflective linear polarizer and a fresnel lens
US5325218A (en) 1992-12-31 1994-06-28 Minnesota Mining And Manufacturing Company Cholesteric polarizer for liquid crystal display and overhead projector
TW289095B (en) 1993-01-11 1996-10-21
US5477359A (en) 1993-01-21 1995-12-19 Sharp Kabushiki Kaisha Liquid crystal projector having a vertical orientating polyimide film
EP0611981B1 (en) 1993-02-17 1997-06-11 F. Hoffmann-La Roche Ag Optical device
US5522111A (en) 1993-03-02 1996-06-04 Marshalltown Trowel Company Finishing trowel handle
US5594561A (en) 1993-03-31 1997-01-14 Palomar Technologies Corporation Flat panel display with elliptical diffuser and fiber optic plate
JP3168765B2 (en) 1993-04-01 2001-05-21 松下電器産業株式会社 Polarizing device and projection display device using the polarizing device
US5349192A (en) 1993-05-20 1994-09-20 Wisconsin Alumni Research Foundation Solid state detector for polarized x-rays
US5486935A (en) 1993-06-29 1996-01-23 Kaiser Aerospace And Electronics Corporation High efficiency chiral nematic liquid crystal rear polarizer for liquid crystal displays having a notch polarization bandwidth of 100 nm to 250 nm
US5391091A (en) 1993-06-30 1995-02-21 American Nucleonics Corporation Connection system for blind mate electrical connector applications
WO1995004303A1 (en) 1993-07-27 1995-02-09 Physical Optics Corporation High-brightness directional viewing screen
EP1275988A3 (en) 1993-09-10 2006-03-22 Nippon Kayaku Kabushiki Kaisha Polarizing element, and polarizing plate
JPH0784252A (en) 1993-09-16 1995-03-31 Sharp Corp Liquid crystal display device
US5514478A (en) 1993-09-29 1996-05-07 Alcan International Limited Nonabrasive, corrosion resistant, hydrophilic coatings for aluminum surfaces, methods of application, and articles coated therewith
IL111108A (en) 1993-10-01 1998-08-16 Hughes Training Inc Active matrix liquid crystal subtractive color display with integral light confinement
US5576854A (en) 1993-11-12 1996-11-19 Hughes-Jvc Technology Corporation Liquid crystal light valve projector with improved contrast ratio and with 0.27 wavelength compensation for birefringence in the liquid crystal light valve
US6122403A (en) 1995-07-27 2000-09-19 Digimarc Corporation Computer system linked by using information in data objects
US5499126A (en) 1993-12-02 1996-03-12 Ois Optical Imaging Systems, Inc. Liquid crystal display with patterned retardation films
US5517356A (en) 1993-12-15 1996-05-14 Corning Incorporated Glass polarizer for visible light
US5430573A (en) 1993-12-15 1995-07-04 Corning Incorporated UV-absorbing, polarizing glass article
BE1007993A3 (en) 1993-12-17 1995-12-05 Philips Electronics Nv LIGHTING SYSTEM FOR A COLOR IMAGE PROJECTION DEVICE AND circular polarizer SUITABLE FOR USE IN SUCH A LIGHTING SYSTEM AND COLOR IMAGE PROJECTION DEVICE CONTAINING SUCH LIGHTING SYSTEM WITH circular polarizer.
US5882774A (en) 1993-12-21 1999-03-16 Minnesota Mining And Manufacturing Company Optical film
US6096375A (en) 1993-12-21 2000-08-01 3M Innovative Properties Company Optical polarizer
US5455589A (en) 1994-01-07 1995-10-03 Millitech Corporation Compact microwave and millimeter wave radar
GB2286058A (en) 1994-01-21 1995-08-02 Sharp Kk Switchable holographic apparatus
JP3278521B2 (en) 1994-01-28 2002-04-30 松下電器産業株式会社 Rear projection type image display
US5969861A (en) 1994-02-07 1999-10-19 Nikon Corporation Polarizing optical system
JP2765471B2 (en) 1994-02-15 1998-06-18 日本電気株式会社 Projection type liquid crystal display
US5504603A (en) 1994-04-04 1996-04-02 Rockwell International Corporation Optical compensator for improved gray scale performance in liquid crystal display
US5638197A (en) 1994-04-04 1997-06-10 Rockwell International Corp. Inorganic thin film compensator for improved gray scale performance in twisted nematic liquid crystal displays and method of making
CN1152358A (en) 1994-05-31 1997-06-18 菲利浦电子有限公司 Display device having diffusing display panel
US5485499A (en) 1994-08-05 1996-01-16 Moxtek, Inc. High throughput reflectivity and resolution x-ray dispersive and reflective structures for the 100 eV to 5000 eV energy range and method of making the devices
US5513023A (en) 1994-10-03 1996-04-30 Hughes Aircraft Company Polarizing beamsplitter for reflective light valve displays having opposing readout beams onto two opposing surfaces of the polarizer
US6049428A (en) 1994-11-18 2000-04-11 Optiva, Inc. Dichroic light polarizers
KR0147607B1 (en) 1994-11-25 1998-09-15 김광호 Optic system of reflection type lcd projector
US5917562A (en) 1994-12-16 1999-06-29 Sharp Kabushiki Kaisha Autostereoscopic display and spatial light modulator
JP2864464B2 (en) 1994-12-22 1999-03-03 日本ビクター株式会社 Reflective active matrix display panel and method of manufacturing the same
JPH08184711A (en) 1994-12-29 1996-07-16 Sony Corp Polarization optical element
EP0722253A3 (en) 1995-01-10 1996-10-30 Ibm Arrangements for projection displays employing reflective light valves
US5510215A (en) 1995-01-25 1996-04-23 Eastman Kodak Company Method for patterning multilayer dielectric color filter
US5652667A (en) 1995-02-03 1997-07-29 Victor Company Of Japan, Ltd. Liquid crystal display apparatus
US5808795A (en) 1995-03-06 1998-09-15 Nikon Corporation Projection type display apparatus
US6062694A (en) 1995-03-06 2000-05-16 Nikon Corporation Projection type display apparatus
JP3005706B2 (en) 1995-03-13 2000-02-07 極東開発工業株式会社 Flooring of dump truck bed
US5719695A (en) 1995-03-31 1998-02-17 Texas Instruments Incorporated Spatial light modulator with superstructure light shield
US5751388A (en) 1995-04-07 1998-05-12 Honeywell Inc. High efficiency polarized display
US5535047A (en) 1995-04-18 1996-07-09 Texas Instruments Incorporated Active yoke hidden hinge digital micromirror device
DE69625642T2 (en) 1995-05-23 2003-05-28 Kyocera Corp Method of making an optical polarizer
US5686979A (en) 1995-06-26 1997-11-11 Minnesota Mining And Manufacturing Company Optical panel capable of switching between reflective and transmissive states
JP3935936B2 (en) 1995-06-26 2007-06-27 スリーエム カンパニー Transflective display with reflective polarizing transflective reflector
EP0753785B1 (en) 1995-07-11 2016-05-11 Rolic AG Transfer of polarisation patterns to polarisation sensitive photolayers
KR100258290B1 (en) 1995-07-17 2000-06-01 야스카와 히데아키 Liquid device
DE69614337T2 (en) 1995-10-15 2002-06-13 Victor Company Of Japan Reflection type display device
JPH09146061A (en) 1995-11-17 1997-06-06 Matsushita Electric Ind Co Ltd Liquid crystal projection device
JPH09159988A (en) 1995-12-12 1997-06-20 Nikon Corp Projection type display device
US6181386B1 (en) 1995-12-29 2001-01-30 Duke University Projecting images
CA2193790C (en) 1995-12-29 2001-03-13 Duke University Projecting images
US5751466A (en) 1996-01-11 1998-05-12 University Of Alabama At Huntsville Photonic bandgap apparatus and method for delaying photonic signals
US5838403A (en) 1996-02-14 1998-11-17 Physical Optics Corporation Liquid crystal display system with internally reflecting waveguide for backlighting and non-Lambertian diffusing
JP3282986B2 (en) 1996-02-28 2002-05-20 富士通株式会社 Liquid crystal display
US5867316A (en) 1996-02-29 1999-02-02 Minnesota Mining And Manufacturing Company Multilayer film having a continuous and disperse phase
US5828489A (en) 1996-04-12 1998-10-27 Rockwell International Corporation Narrow wavelength polarizing beamsplitter
JP3767047B2 (en) 1996-04-26 2006-04-19 セイコーエプソン株式会社 Projection display
US5826959A (en) 1996-05-09 1998-10-27 Pioneer Electronic Corporation Projection image display apparatus
JP3738505B2 (en) 1996-05-10 2006-01-25 株式会社ニコン Projection display
US5841494A (en) 1996-06-26 1998-11-24 Hall; Dennis R. Transflective LCD utilizing chiral liquid crystal filter/mirrors
JP3834130B2 (en) 1996-07-19 2006-10-18 株式会社リコー Digital camera
US5982541A (en) 1996-08-12 1999-11-09 Nationsl Research Council Of Canada High efficiency projection displays having thin film polarizing beam-splitters
US5912762A (en) 1996-08-12 1999-06-15 Li; Li Thin film polarizing device
US6291797B1 (en) 1996-08-13 2001-09-18 Nippon Sheet Glass Co., Ltd. Laser machining method for glass substrate, diffraction type optical device fabricated by the machining method, and method of manufacturing optical device
JPH1073722A (en) 1996-08-30 1998-03-17 Sony Corp Polarizing optical element and its production
JP3557317B2 (en) 1996-09-02 2004-08-25 テキサス インスツルメンツ インコーポレイテツド Projector device and color separation / synthesis device
US6096155A (en) 1996-09-27 2000-08-01 Digital Optics Corporation Method of dicing wafer level integrated multiple optical elements
US5833360A (en) 1996-10-17 1998-11-10 Compaq Computer Corporation High efficiency lamp apparatus for producing a beam of polarized light
US6390626B2 (en) 1996-10-17 2002-05-21 Duke University Image projection system engine assembly
US5991075A (en) 1996-11-25 1999-11-23 Ricoh Company, Ltd. Light polarizer and method of producing the light polarizer
JPH10153706A (en) 1996-11-25 1998-06-09 Ricoh Co Ltd Polarizer and its manufacture
US5914818A (en) 1996-11-29 1999-06-22 Texas Instruments Incorporated Offset projection lens for use with reflective spatial light modulators
USRE38194E1 (en) 1996-12-18 2003-07-22 Seiko Epson Corporation Projection display device
JPH10186302A (en) 1996-12-27 1998-07-14 Fujitsu Ltd Display device and polarized light source device
US6008951A (en) 1996-12-31 1999-12-28 Texas Instruments Incorporated Offset projection zoom lens with fixed rear group for reflective spatial light modulators
US6075235A (en) 1997-01-02 2000-06-13 Chun; Cornell Seu Lun High-resolution polarization-sensitive imaging sensors
US5886754A (en) 1997-01-17 1999-03-23 Industrial Technology Research Institute Liquid crystal display projector
JPH10260403A (en) 1997-01-20 1998-09-29 Seiko Epson Corp Liquid-crystal device and electronic equipment
US5890095A (en) 1997-01-21 1999-03-30 Nichols Research Corporation System for receiving and enhancing electromagnetic radiation input signals
US6249378B1 (en) 1997-02-28 2001-06-19 Nikon Corporation Mirror and projection type display apparatus
ATE404902T1 (en) 1997-03-10 2008-08-15 Fujifilm Corp OPTICAL COMPENSATION FILM FOR LIQUID CRYSTAL DISPLAYS
US5958345A (en) 1997-03-14 1999-09-28 Moxtek, Inc. Thin film sample support
US6010221A (en) 1997-05-22 2000-01-04 Nikon Corporation Projection type display apparatus
US5844722A (en) 1997-06-05 1998-12-01 Hughes-Jvc Technology Corporation Internal aperture mask for embedded optics
JP3654553B2 (en) 1997-06-19 2005-06-02 株式会社リコー Optical element
US6055103A (en) 1997-06-28 2000-04-25 Sharp Kabushiki Kaisha Passive polarisation modulating optical element and method of making such an element
US6247816B1 (en) 1997-08-07 2001-06-19 International Business Machines Corporation Optical system for projection displays using spatial light modulators
US5973833A (en) 1997-08-29 1999-10-26 Lightware, Inc. High efficiency polarizing converter
US5930050A (en) 1997-10-21 1999-07-27 Texas Instruments Incorporated Anamorphic lens for providing wide-screen images generated by a spatial light modulator
US5907427A (en) 1997-10-24 1999-05-25 Time Domain Corporation Photonic band gap device and method using a periodicity defect region to increase photonic signal delay
US7023602B2 (en) 1999-05-17 2006-04-04 3M Innovative Properties Company Reflective LCD projection system using wide-angle Cartesian polarizing beam splitter and color separation and recombination prisms
US6486997B1 (en) 1997-10-28 2002-11-26 3M Innovative Properties Company Reflective LCD projection system using wide-angle Cartesian polarizing beam splitter
JPH11142650A (en) 1997-11-13 1999-05-28 Fuji Elelctrochem Co Ltd Grid polarizer
JP3753853B2 (en) 1997-12-16 2006-03-08 株式会社リコー Magneto-optical element and magneto-optical device
US6005918A (en) 1997-12-19 1999-12-21 Picker International, Inc. X-ray tube window heat shield
JP3372466B2 (en) 1997-12-22 2003-02-04 ティーディーケイ株式会社 Manufacturing method of polarizing plate
US6016173A (en) 1998-02-18 2000-01-18 Displaytech, Inc. Optics arrangement including a compensator cell and static wave plate for use in a continuously viewable, reflection mode, ferroelectric liquid crystal spatial light modulating system
US5900976A (en) 1998-02-20 1999-05-04 Displaytech, Inc. Display system including a polarizing beam splitter
JP3486334B2 (en) 1998-02-23 2004-01-13 日本電信電話株式会社 How to make a polarizer
US6654168B1 (en) 1998-03-31 2003-11-25 Corning Incorporated Inorganic visible light reflection polarizer
US6496287B1 (en) 1998-04-09 2002-12-17 Rolic Ag Optical identification element
JP3667984B2 (en) 1998-04-24 2005-07-06 株式会社リコー Broadband polarization separation element and optical head using the broadband polarization separation element
US6208463B1 (en) 1998-05-14 2001-03-27 Moxtek Polarizer apparatus for producing a generally polarized beam of light
US6108131A (en) 1998-05-14 2000-08-22 Moxtek Polarizer apparatus for producing a generally polarized beam of light
US5943171A (en) 1998-06-03 1999-08-24 International Business Machines Corporation Head mounted displays utilizing reflection light valves
EP1042705A1 (en) 1998-07-02 2000-10-11 Koninklijke Philips Electronics N.V. Image projection system
US6081376A (en) 1998-07-16 2000-06-27 Moxtek Reflective optical polarizer device with controlled light distribution and liquid crystal display incorporating the same
DE69904338T2 (en) 1998-08-21 2003-10-16 Olivier M Parriaux DEVICE FOR MEASURING TRANSLATION, ROTATION OR SPEED BY INTERFERENCE OF LIGHT BEAMS
US6082861A (en) 1998-09-16 2000-07-04 International Business Machines Corporation Optical system and method for high contrast projection display
US6331060B1 (en) 1998-10-08 2001-12-18 Sony Corporation Projection-type display device and method of adjustment thereof
US6172816B1 (en) 1998-10-23 2001-01-09 Duke University Optical component adjustment for mitigating tolerance sensitivities
US6172813B1 (en) 1998-10-23 2001-01-09 Duke University Projection lens and system including a reflecting linear polarizer
US6185041B1 (en) 1998-10-23 2001-02-06 Duke University Projection lens and system
US6215547B1 (en) 1998-11-19 2001-04-10 Eastman Kodak Company Reflective liquid crystal modulator based printing system
US5986730A (en) 1998-12-01 1999-11-16 Moxtek Dual mode reflective/transmissive liquid crystal display apparatus
US6181458B1 (en) 1998-12-18 2001-01-30 Eastman Kodak Company Mechanical grating device with optical coating and method of making mechanical grating device with optical coating
US6490017B1 (en) 1999-01-28 2002-12-03 Duke University Separating white light into polarized, colored light
JP3743190B2 (en) 1999-02-02 2006-02-08 セイコーエプソン株式会社 Electro-optical device mounting unit and projection display device using the same
JP3603650B2 (en) 1999-03-08 2004-12-22 セイコーエプソン株式会社 Adjustment mechanism and projection display device using the same
JP3368225B2 (en) 1999-03-11 2003-01-20 キヤノン株式会社 Method for manufacturing diffractive optical element
AU3763800A (en) 1999-03-22 2000-10-09 Mems Optical, Inc. Diffractive selectively polarizing beam splitter and beam routing prisms produced thereby
JP2000284117A (en) 1999-03-30 2000-10-13 Fuji Elelctrochem Co Ltd Grid polarizer and its manufacture
JP3371846B2 (en) 1999-04-06 2003-01-27 日本電気株式会社 Hologram element
EP1045272A3 (en) 1999-04-12 2004-02-25 Matsushita Electric Industrial Co., Ltd. Reflective color liquid crystal display device
US6010121A (en) 1999-04-21 2000-01-04 Lee; Chi Ping Work piece clamping device of workbench
US6515785B1 (en) 1999-04-22 2003-02-04 3M Innovative Properties Company Optical devices using reflecting polarizing materials
US6122103A (en) 1999-06-22 2000-09-19 Moxtech Broadband wire grid polarizer for the visible spectrum
US6288840B1 (en) 1999-06-22 2001-09-11 Moxtek Imbedded wire grid polarizer for the visible spectrum
EP1065559B1 (en) 1999-07-01 2008-04-23 Sanyo Electric Co., Ltd. Rear projection display device
US6666556B2 (en) 1999-07-28 2003-12-23 Moxtek, Inc Image projection system with a polarizing beam splitter
US7306338B2 (en) 1999-07-28 2007-12-11 Moxtek, Inc Image projection system with a polarizing beam splitter
US6234634B1 (en) 1999-07-28 2001-05-22 Moxtek Image projection system with a polarizing beam splitter
US6447120B2 (en) 1999-07-28 2002-09-10 Moxtex Image projection system with a polarizing beam splitter
US6282025B1 (en) 1999-08-02 2001-08-28 New Focus, Inc. Optical polarization beam combiner/splitter
JP4427837B2 (en) 1999-09-03 2010-03-10 住友化学株式会社 Wire grid type polarization optical element
US6243199B1 (en) 1999-09-07 2001-06-05 Moxtek Broad band wire grid polarizing beam splitter for use in the visible wavelength region
US6398364B1 (en) 1999-10-06 2002-06-04 Optical Coating Laboratory, Inc. Off-axis image projection display system
US6310345B1 (en) 1999-10-12 2001-10-30 The United States Of America As Represented By The Secretary Of The Army Polarization-resolving infrared imager
US6781640B1 (en) 1999-11-15 2004-08-24 Sharp Laboratories Of America, Inc. Projection display having polarization compensator
US6375330B1 (en) 1999-12-30 2002-04-23 Gain Micro-Optics, Inc. Reflective liquid-crystal-on-silicon projection engine architecture
US7087599B2 (en) 2000-02-14 2006-08-08 Merck & Co., Inc. Estrogen receptor modulators
US6340230B1 (en) 2000-03-10 2002-01-22 Optical Coating Laboratory, Inc. Method of using a retarder plate to improve contrast in a reflective imaging system
DE60135889D1 (en) 2000-03-17 2008-11-06 Hitachi Ltd Image display device
US6661475B1 (en) 2000-03-23 2003-12-09 Infocus Corporation Color video projection system employing reflective liquid crystal display device
US6411749B2 (en) 2000-05-11 2002-06-25 Micro-Optice, Inc. In-line fiber optic polarization combiner/divider
US6624936B2 (en) 2000-05-11 2003-09-23 3M Innovative Properties Company Color-compensated information displays
JP2001330728A (en) 2000-05-22 2001-11-30 Jasco Corp Wire grid type polarizer and its manufacturing method
JP2001343512A (en) 2000-05-31 2001-12-14 Canon Inc Diffraction optical device and optical system having the same
WO2002003129A1 (en) 2000-07-05 2002-01-10 Sony Corporation Image display element, and image display device
JP3642267B2 (en) 2000-07-05 2005-04-27 セイコーエプソン株式会社 Illumination optical system and projector equipped with the same
US6704469B1 (en) 2000-09-12 2004-03-09 Finisar Corporation Polarization beam combiner/splitter
US6409525B1 (en) 2000-12-11 2002-06-25 Tyco Electronics Corporation Terminal position housing assembly
AU2002241632A1 (en) 2000-12-27 2002-07-08 Technion Research And Development Foundation Ltd. Space-variant subwavelength polarization grating and applications thereof
JP3891266B2 (en) * 2000-12-28 2007-03-14 富士電機ホールディングス株式会社 Light guide plate and liquid crystal display device provided with the light guide plate
US6532111B2 (en) 2001-03-05 2003-03-11 Eastman Kodak Company Wire grid polarizer
GB0106050D0 (en) 2001-03-12 2001-05-02 Suisse Electronique Microtech Polarisers and mass-production method and apparatus for polarisers
US6585378B2 (en) 2001-03-20 2003-07-01 Eastman Kodak Company Digital cinema projector
US7375887B2 (en) 2001-03-27 2008-05-20 Moxtek, Inc. Method and apparatus for correcting a visible light beam using a wire-grid polarizer
US20020167727A1 (en) 2001-03-27 2002-11-14 Hansen Douglas P. Patterned wire grid polarizer and method of use
CN1503915A (en) 2001-04-20 2004-06-09 3M创新有限公司 Method and apparatus for positioning optical prisms
KR20030064371A (en) 2001-05-18 2003-07-31 쓰리엠 이노베이티브 프로퍼티즈 컴파니 Polarization arrangement
DE10124803A1 (en) 2001-05-22 2002-11-28 Zeiss Carl Polarizer and microlithography projection system with polarizer
US20020181824A1 (en) 2001-05-30 2002-12-05 Shangyuan Huang Compact polarization beam combiner/splitter
US6669343B2 (en) 2001-05-31 2003-12-30 Koninklijke Philips Electronics N.V. Image display system
US6511183B2 (en) 2001-06-02 2003-01-28 Koninklijke Philips Electronics N.V. Digital image projector with oriented fixed-polarization-axis polarizing beamsplitter
US6609795B2 (en) 2001-06-11 2003-08-26 3M Innovative Properties Company Polarizing beam splitter
US6813077B2 (en) 2001-06-19 2004-11-02 Corning Incorporated Method for fabricating an integrated optical isolator and a novel wire grid structure
US6510200B1 (en) 2001-06-29 2003-01-21 Osmic, Inc. Multi-layer structure with variable bandpass for monochromatization and spectroscopy
US6893130B2 (en) 2001-08-06 2005-05-17 Advanced Digital Optics, Inc. Color management system having a field lens
US6857747B2 (en) 2001-08-06 2005-02-22 Advanced Digital Optics, Inc. Color management system
US6899432B2 (en) 2001-08-06 2005-05-31 Advanced Digital Optics, Inc. Color management system having a transmissive panel and optical isolator
GB0119176D0 (en) 2001-08-06 2001-09-26 Ocuity Ltd Optical switching apparatus
EP1420275B1 (en) 2001-08-24 2008-10-08 Asahi Glass Company, Limited Isolator and optical attenuator
US6547396B1 (en) 2001-12-27 2003-04-15 Infocus Corporation Stereographic projection system
EP1694079B1 (en) 2001-10-01 2008-07-23 Sony Corporation Polarization selecting prism for a projection device
US6922287B2 (en) 2001-10-12 2005-07-26 Unaxis Balzers Aktiengesellschaft Light coupling element
JP3949924B2 (en) 2001-10-15 2007-07-25 シャープ株式会社 Reflective liquid crystal display device substrate and reflective liquid crystal display device using the same
US6714350B2 (en) 2001-10-15 2004-03-30 Eastman Kodak Company Double sided wire grid polarizer
JP2003202523A (en) 2001-11-02 2003-07-18 Nec Viewtechnology Ltd Polarization unit, polarization illumination device and projection type display device using the illumination device
US6739723B1 (en) 2001-12-07 2004-05-25 Delta Electronics, Inc. Polarization recapture system for liquid crystal-based data projectors
US7085050B2 (en) 2001-12-13 2006-08-01 Sharp Laboratories Of America, Inc. Polarized light beam splitter assembly including embedded wire grid polarizer
US20030117708A1 (en) 2001-12-21 2003-06-26 Koninklijke Philips Electronics N.V. Sealed enclosure for a wire-grid polarizer and subassembly for a display system
US6947215B2 (en) 2001-12-27 2005-09-20 Canon Kabushiki Kaisha Optical element, optical functional device, polarization conversion device, image display apparatus, and image display system
US6909473B2 (en) 2002-01-07 2005-06-21 Eastman Kodak Company Display apparatus and method
US7061561B2 (en) 2002-01-07 2006-06-13 Moxtek, Inc. System for creating a patterned polarization compensator
US20050008839A1 (en) 2002-01-30 2005-01-13 Cramer Ronald Dean Method for hydrophilizing materials using hydrophilic polymeric materials with discrete charges
JP4373793B2 (en) 2002-02-12 2009-11-25 オー・ツェー・エリコン・バルザース・アクチェンゲゼルシャフト Ingredients containing submicron hollow spaces
JP4197100B2 (en) 2002-02-20 2008-12-17 大日本印刷株式会社 Anti-reflective article
US6590695B1 (en) 2002-02-26 2003-07-08 Eastman Kodak Company Micro-mechanical polarization-based modulator
JP2005519326A (en) 2002-02-28 2005-06-30 スリーエム イノベイティブ プロパティズ カンパニー Compound polarization beam splitter
US6930053B2 (en) 2002-03-25 2005-08-16 Sanyo Electric Co., Ltd. Method of forming grating microstructures by anodic oxidation
US7050234B2 (en) 2002-05-01 2006-05-23 Adc Telecommunications, Inc. Lossless beam combination in a dual fiber collimator using a polarizing beamsplitter
US6785050B2 (en) 2002-05-09 2004-08-31 Moxtek, Inc. Corrosion resistant wire-grid polarizer and method of fabrication
US6899440B2 (en) 2002-05-17 2005-05-31 Infocus Corporation Polarized light source system with mirror and polarization converter
TW523119U (en) 2002-05-24 2003-03-01 Coretronic Corp Structure of polarizer module
US20030224116A1 (en) 2002-05-30 2003-12-04 Erli Chen Non-conformal overcoat for nonometer-sized surface structure
US6876784B2 (en) 2002-05-30 2005-04-05 Nanoopto Corporation Optical polarization beam combiner/splitter
JP2004062148A (en) 2002-06-04 2004-02-26 Canon Inc Optical component and manufacturing method therefor
US7131737B2 (en) 2002-06-05 2006-11-07 Moxtek, Inc. Housing for mounting a beamsplitter and a spatial light modulator with an output optical path
US6805445B2 (en) 2002-06-05 2004-10-19 Eastman Kodak Company Projection display using a wire grid polarization beamsplitter with compensator
US6823093B2 (en) 2002-06-11 2004-11-23 Jds Uniphase Corporation Tunable micro-optic architecture for combining light beam outputs of dual capillary polarization-maintaining optical fibers
US20040047039A1 (en) 2002-06-17 2004-03-11 Jian Wang Wide angle optical device and method for making same
JP4310080B2 (en) 2002-06-17 2009-08-05 キヤノン株式会社 Diffractive optical element and optical system and optical apparatus provided with the same
US7386205B2 (en) 2002-06-17 2008-06-10 Jian Wang Optical device and method for making same
US6859303B2 (en) 2002-06-18 2005-02-22 Nanoopto Corporation Optical components exhibiting enhanced functionality and method of making same
JP2004045672A (en) 2002-07-11 2004-02-12 Canon Inc Polarized light separating element, and optical system using the same
US7050233B2 (en) 2002-08-01 2006-05-23 Nanoopto Corporation Precision phase retardation devices and method of making same
AU2003262728A1 (en) 2002-08-21 2004-03-11 Nanoopto Corporation Method and system for providing beam polarization
GB0219541D0 (en) 2002-08-22 2002-10-02 Secr Defence Method and apparatus for stand-off chemical detection
KR100988705B1 (en) 2002-08-29 2010-10-18 소니 주식회사 Optical head and optical recording medium drive device
US7324180B2 (en) 2002-09-06 2008-01-29 Dai Nippon Printing Co., Ltd. Laminated retardation optical element, process of producing the same, and liquid crystal display
US6809873B2 (en) 2002-09-09 2004-10-26 Eastman Kodak Company Color illumination system for spatial light modulators using multiple double telecentric relays
US6751003B2 (en) 2002-09-12 2004-06-15 Eastman Kodak Company Apparatus and method for selectively exposing photosensitive materials using a reflective light modulator
US7013064B2 (en) 2002-10-09 2006-03-14 Nanoopto Corporation Freespace tunable optoelectronic device and method
US6920272B2 (en) 2002-10-09 2005-07-19 Nanoopto Corporation Monolithic tunable lasers and reflectors
US6665119B1 (en) 2002-10-15 2003-12-16 Eastman Kodak Company Wire grid polarizer
JP4376507B2 (en) 2002-11-01 2009-12-02 リコー光学株式会社 Polarizing optical element
JP4363029B2 (en) 2002-11-06 2009-11-11 ソニー株式会社 Manufacturing method of split wave plate filter
US6811274B2 (en) 2002-12-04 2004-11-02 General Electric Company Polarization sensitive optical substrate
JP3599052B2 (en) 2002-12-13 2004-12-08 ソニー株式会社 Image display device
US7113335B2 (en) 2002-12-30 2006-09-26 Sales Tasso R Grid polarizer with suppressed reflectivity
US7113336B2 (en) 2002-12-30 2006-09-26 Ian Crosby Microlens including wire-grid polarizer and methods of manufacture
WO2004072692A2 (en) 2003-02-10 2004-08-26 Nanoopto Corporation Universal broadband polarizer, devices incorporating same, and method of making same
US6943941B2 (en) 2003-02-27 2005-09-13 Asml Netherlands B.V. Stationary and dynamic radial transverse electric polarizer for high numerical aperture systems
CN1438544A (en) * 2003-02-28 2003-08-27 北京大学 Method for deep etching multi-layer high depth-width-ratio silicon stairs
US20040174596A1 (en) 2003-03-05 2004-09-09 Ricoh Optical Industries Co., Ltd. Polarization optical device and manufacturing method therefor
WO2004081620A1 (en) 2003-03-13 2004-09-23 Asahi Glass Company Limited Diffraction element and optical device
US20060192960A1 (en) 2003-03-24 2006-08-31 Rencs Erik V Polarization detection
JP2004309903A (en) 2003-04-09 2004-11-04 Ricoh Opt Ind Co Ltd Inorganic polarizing element, polarizing optical element, and liquid crystal element
US7159987B2 (en) 2003-04-21 2007-01-09 Seiko Epson Corporation Display device, lighting device and projector
US6846089B2 (en) 2003-05-16 2005-01-25 3M Innovative Properties Company Method for stacking surface structured optical films
US20040227994A1 (en) 2003-05-16 2004-11-18 Jiaying Ma Polarizing beam splitter and projection systems using the polarizing beam splitter
WO2004106982A2 (en) 2003-05-22 2004-12-09 Optical Research Associates Optical combiner designs and head mounted displays
US7196849B2 (en) 2003-05-22 2007-03-27 Optical Research Associates Apparatus and methods for illuminating optical systems
US20040258355A1 (en) 2003-06-17 2004-12-23 Jian Wang Micro-structure induced birefringent waveguiding devices and methods of making same
DE10327963A1 (en) 2003-06-19 2005-01-05 Carl Zeiss Jena Gmbh Polarization beam splitter for microscopy or projection system or UV lithography using grid array with parallel grid lines formed by multi-layer system with alternating non-metallic dielectric layers with differing optical characteristics
US6769779B1 (en) 2003-07-22 2004-08-03 Eastman Kodak Company Housing for mounting modulation and polarization components in alignment with an optical path
US6821135B1 (en) 2003-08-06 2004-11-23 Tyco Electronics Corporation Alignment plate for aligning connector terminals
KR100512141B1 (en) 2003-08-11 2005-09-05 엘지전자 주식회사 A fabrication method of a wire grid polarizer
CN1845795A (en) 2003-08-19 2006-10-11 纳诺普托公司 Sub-micron-scale patterning method and system
JP4386413B2 (en) 2003-08-25 2009-12-16 株式会社エンプラス Manufacturing method of wire grid polarizer
JP4593894B2 (en) 2003-09-01 2010-12-08 キヤノン株式会社 Optical encoder
DE10341596B4 (en) 2003-09-05 2009-01-29 Carl Zeiss Polarization beam splitter
JP4475501B2 (en) 2003-10-09 2010-06-09 インターナショナル・ビジネス・マシーンズ・コーポレーション Spectroscopic element, diffraction grating, composite diffraction grating, color display device, and duplexer
JP2005121906A (en) 2003-10-16 2005-05-12 Fuji Photo Film Co Ltd Reflection type optical modulation array element and exposure device
TWI223103B (en) 2003-10-23 2004-11-01 Ind Tech Res Inst Wire grid polarizer with double metal layers
JP4311170B2 (en) 2003-11-14 2009-08-12 富士ゼロックス株式会社 Image forming apparatus and communication method between image forming apparatus and IC memory
JP2005172844A (en) 2003-12-05 2005-06-30 Enplas Corp Wire grid polarizer
KR20050057767A (en) 2003-12-11 2005-06-16 엘지전자 주식회사 Method and apparatus for inproving resolution and display apparatus thereof
US7203001B2 (en) 2003-12-19 2007-04-10 Nanoopto Corporation Optical retarders and related devices and systems
TWI230834B (en) 2003-12-31 2005-04-11 Ind Tech Res Inst High-transmissivity polarizing module constituted with sub-wavelength structure
JP4527986B2 (en) 2004-01-07 2010-08-18 旭化成イーマテリアルズ株式会社 Wire grid polarizer
JP2005202104A (en) * 2004-01-15 2005-07-28 Nikon Corp Method for manufacturing polarization element, polarization element, method for manufacturing picture projecting device and picture projecting device
CN1910672A (en) 2004-01-16 2007-02-07 皇家飞利浦电子股份有限公司 Optical system
US7234816B2 (en) 2004-02-03 2007-06-26 3M Innovative Properties Company Polarizing beam splitter assembly adhesive
JP2005223631A (en) 2004-02-05 2005-08-18 Sony Corp Data processor and processing method, encoder and decoder
US7142375B2 (en) 2004-02-12 2006-11-28 Nanoopto Corporation Films for optical use and methods of making such films
JP2005242080A (en) 2004-02-27 2005-09-08 Victor Co Of Japan Ltd Wire grid polarizer
CN100337143C (en) 2004-03-03 2007-09-12 株式会社日立制作所 Optical unit and projection-type image display apparatus using the same
JP4451268B2 (en) 2004-03-04 2010-04-14 株式会社リコー Optical element and manufacturing method thereof, optical product using the same, optical pickup, and optical information processing apparatus
US7256938B2 (en) 2004-03-17 2007-08-14 General Atomics Method for making large scale multilayer dielectric diffraction gratings on thick substrates using reactive ion etching
US7025464B2 (en) 2004-03-30 2006-04-11 Goldeneye, Inc. Projection display systems utilizing light emitting diodes and light recycling
US20050275944A1 (en) 2004-06-11 2005-12-15 Wang Jian J Optical films and methods of making the same
EP1741003A4 (en) 2004-04-15 2009-11-11 Api Nanofabrication And Res Co Optical films and methods of making the same
US7670758B2 (en) 2004-04-15 2010-03-02 Api Nanofabrication And Research Corporation Optical films and methods of making the same
US7155073B2 (en) 2004-05-07 2006-12-26 Canon Kabushiki Kaisha Polarization element and optical device using polarization element
US20060001969A1 (en) 2004-07-02 2006-01-05 Nanoopto Corporation Gratings, related optical devices and systems, and methods of making such gratings
JP4442760B2 (en) 2004-08-06 2010-03-31 旭化成イーマテリアルズ株式会社 Inorganic material selective pattern forming method and grid-type polarizing element
DE102004041222A1 (en) 2004-08-26 2006-03-02 Carl Zeiss Jena Gmbh Photonic crystal structure, for a frequency selective reflector or diffractive polarization-dependent band splitter, has grate bars on a substrate of alternating low and high refractive material layers
US7414784B2 (en) 2004-09-23 2008-08-19 Rohm And Haas Denmark Finance A/S Low fill factor wire grid polarizer and method of use
US7466484B2 (en) 2004-09-23 2008-12-16 Rohm And Haas Denmark Finance A/S Wire grid polarizers and optical elements containing them
KR100623026B1 (en) 2004-10-06 2006-09-19 엘지전자 주식회사 Wire-grid Polarizer and Fabrication Method thereof
JP2006126338A (en) 2004-10-27 2006-05-18 Nippon Sheet Glass Co Ltd Polarizer and its manufacturing method
JP2006133402A (en) 2004-11-04 2006-05-25 Canon Inc Polarized beam splitter and optical system having the same
JP2006133403A (en) 2004-11-04 2006-05-25 Canon Inc Polarized beam splitter
US7261418B2 (en) 2004-11-12 2007-08-28 3M Innovative Properties Company Projection apparatus
EP1838899A2 (en) 2004-11-30 2007-10-03 Agoura Technologies Inc. Applications and fabrication techniques for large scale wire grid polarizers
US7351346B2 (en) 2004-11-30 2008-04-01 Agoura Technologies, Inc. Non-photolithographic method for forming a wire grid polarizer for optical and infrared wavelengths
US7570424B2 (en) 2004-12-06 2009-08-04 Moxtek, Inc. Multilayer wire-grid polarizer
US20080055721A1 (en) 2006-08-31 2008-03-06 Perkins Raymond T Light Recycling System with an Inorganic, Dielectric Grid Polarizer
US20080055719A1 (en) 2006-08-31 2008-03-06 Perkins Raymond T Inorganic, Dielectric Grid Polarizer
US7800823B2 (en) 2004-12-06 2010-09-21 Moxtek, Inc. Polarization device to polarize and further control light
US20080055720A1 (en) 2006-08-31 2008-03-06 Perkins Raymond T Optical Data Storage System with an Inorganic, Dielectric Grid Polarizer
US20080055549A1 (en) 2006-08-31 2008-03-06 Perkins Raymond T Projection Display with an Inorganic, Dielectric Grid Polarizer
US20080055722A1 (en) 2006-08-31 2008-03-06 Perkins Raymond T Optical Polarization Beam Combiner/Splitter with an Inorganic, Dielectric Grid Polarizer
US7961393B2 (en) 2004-12-06 2011-06-14 Moxtek, Inc. Selectively absorptive wire-grid polarizer
US7630133B2 (en) 2004-12-06 2009-12-08 Moxtek, Inc. Inorganic, dielectric, grid polarizer and non-zero order diffraction grating
US20060127830A1 (en) 2004-12-15 2006-06-15 Xuegong Deng Structures for polarization and beam control
US7619816B2 (en) 2004-12-15 2009-11-17 Api Nanofabrication And Research Corp. Structures for polarization and beam control
KR100656999B1 (en) 2005-01-19 2006-12-13 엘지전자 주식회사 The wire-grid polarizer and manufacturing method of Mold thereof
JP2006201540A (en) 2005-01-21 2006-08-03 Asahi Kasei Corp Wire-grid polarizing plate and manufacturing method thereof
JP4652110B2 (en) 2005-04-21 2011-03-16 株式会社日立製作所 Projection-type image display device
JP4760135B2 (en) 2005-05-24 2011-08-31 ソニー株式会社 Optical device and optical device manufacturing method
US8237876B2 (en) 2005-05-25 2012-08-07 Kim Leong Tan Tilted C-plate retarder compensator and display systems incorporating the same
JP2007058100A (en) 2005-08-26 2007-03-08 Ricoh Co Ltd Optical element, light source unit, optical scanner, and image forming apparatus
JP2007101859A (en) 2005-10-04 2007-04-19 Fujifilm Corp Polarized beam splitter and method of manufacturing same
JP4275692B2 (en) 2005-10-17 2009-06-10 旭化成株式会社 Wire grid polarizer and liquid crystal display using the same
US20070183025A1 (en) 2005-10-31 2007-08-09 Koji Asakawa Short-wavelength polarizing elements and the manufacture and use thereof
KR100707083B1 (en) 2005-11-24 2007-04-13 엘지전자 주식회사 Wire grid polarizer and fabricating method thereof
US7475991B2 (en) 2005-12-22 2009-01-13 3M Innovative Properties Company Polarizing beamsplitter assembly
US7907609B2 (en) 2006-01-06 2011-03-15 Qualcomm, Incorporated Method and apparatus for enhancing RoHC performance when encountering silence suppression
US20070217008A1 (en) 2006-03-17 2007-09-20 Wang Jian J Polarizer films and methods of making the same
JP2007257750A (en) 2006-03-24 2007-10-04 Hitachi Media Electoronics Co Ltd Optical pickup and optical disk device
JP3126910U (en) 2006-04-04 2006-11-16 シンク精機株式会社 Plate crusher
US20070242352A1 (en) 2006-04-13 2007-10-18 Macmaster Steven William Wire-grid polarizers, methods of fabrication thereof and their use in transmissive displays
US20070297052A1 (en) 2006-06-26 2007-12-27 Bin Wang Cube wire-grid polarizing beam splitter
WO2008016753A2 (en) 2006-08-01 2008-02-07 Colorlink, Inc. Compensation schemes for lcos projection systems using form birefringent polarization beam splitters
US20080038467A1 (en) 2006-08-11 2008-02-14 Eastman Kodak Company Nanostructured pattern method of manufacture
US20080037101A1 (en) 2006-08-11 2008-02-14 Eastman Kodak Company Wire grid polarizer
WO2008022099A2 (en) 2006-08-15 2008-02-21 Api Nanofabrication And Research Corp. Polarizer films and methods of making the same
WO2008022097A2 (en) 2006-08-15 2008-02-21 Api Nanofabrication And Research Corp. Methods for forming patterned structures
US8755113B2 (en) 2006-08-31 2014-06-17 Moxtek, Inc. Durable, inorganic, absorptive, ultra-violet, grid polarizer
JP4778873B2 (en) 2006-10-20 2011-09-21 株式会社 日立ディスプレイズ Liquid crystal display
JP2008145457A (en) 2006-12-05 2008-06-26 Canon Inc Optical element and image projection apparatus
EP2128667A4 (en) 2007-02-27 2012-02-01 Zeon Corp Grid polarizer
US7789515B2 (en) 2007-05-17 2010-09-07 Moxtek, Inc. Projection device with a folded optical path and wire-grid polarizer
US7944544B2 (en) 2007-06-07 2011-05-17 Seiko Epson Corporation Liquid crystal device having a diffraction function layer that includes a flat portion and a non-flat portion with a grid disposed in the non-flat portion
US7722194B2 (en) 2007-06-07 2010-05-25 Seiko Epson Corporation Optical element having a reflected light diffusing function and a polarization separation function and a projection display device
US20080316599A1 (en) 2007-06-22 2008-12-25 Bin Wang Reflection-Repressed Wire-Grid Polarizer
US8493658B2 (en) * 2007-07-06 2013-07-23 Semiconductor Energy Laboratory Co., Ltd. Polarizer and display device including polarizer
JP4412388B2 (en) 2007-10-31 2010-02-10 セイコーエプソン株式会社 Optical element, liquid crystal device and electronic apparatus
CN101981479A (en) 2008-04-03 2011-02-23 旭硝子株式会社 Wire grid polarizer and method for manufacturing the same
US7759755B2 (en) 2008-05-14 2010-07-20 International Business Machines Corporation Anti-reflection structures for CMOS image sensors
JP5288910B2 (en) 2008-07-01 2013-09-11 株式会社北川鉄工所 Casting device
WO2010005059A1 (en) 2008-07-10 2010-01-14 旭硝子株式会社 Wire grid type polarizer, and method for manufacturing the polarizer
KR20100035783A (en) 2008-09-29 2010-04-07 삼성전자주식회사 Polarizer, method for manufacturing the same, display substrate and black light asamble having the polarizer
JP5439783B2 (en) 2008-09-29 2014-03-12 ソニー株式会社 Optical element, optical component with antireflection function, and master
US20100103517A1 (en) 2008-10-29 2010-04-29 Mark Alan Davis Segmented film deposition
US20120075699A1 (en) 2008-10-29 2012-03-29 Mark Alan Davis Segmented film deposition
US20100239828A1 (en) 2009-03-19 2010-09-23 Cornaby Sterling W Resistively heated small planar filament
US8248696B2 (en) 2009-06-25 2012-08-21 Moxtek, Inc. Nano fractal diffuser
JP6049979B2 (en) 2009-07-03 2016-12-21 ソニー株式会社 Optical element and display device
WO2011056496A2 (en) 2009-10-26 2011-05-12 3M Innovative Properties Company Apparatus and method for providing a structured surface on a substrate
TWI418726B (en) 2011-06-28 2013-12-11 Pegatron Corp Variable color lighting module and lamp
US8913321B2 (en) 2010-09-21 2014-12-16 Moxtek, Inc. Fine pitch grid polarizer
US8611007B2 (en) 2010-09-21 2013-12-17 Moxtek, Inc. Fine pitch wire grid polarizer
US8913320B2 (en) 2011-05-17 2014-12-16 Moxtek, Inc. Wire grid polarizer with bordered sections
US8873144B2 (en) 2011-05-17 2014-10-28 Moxtek, Inc. Wire grid polarizer with multiple functionality sections
US8922890B2 (en) 2012-03-21 2014-12-30 Moxtek, Inc. Polarizer edge rib modification

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080137188A1 (en) * 2006-12-07 2008-06-12 Atsushi Sato Wire grid polarizer and method of manufacturing the same
US20080192346A1 (en) * 2007-02-13 2008-08-14 Samsung Electronics Co., Ltd. Wire grid polarizer and method of fabricating the same
US20100238555A1 (en) * 2007-08-10 2010-09-23 Seiko Epson Corporation Optical element, liquid crystal device, and display
US20110115991A1 (en) * 2009-11-16 2011-05-19 Seiko Epson Corporation Polarization element and projector

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI561863B (en) * 2013-03-29 2016-12-11 Ushio Electric Inc
WO2015137362A1 (en) * 2014-03-11 2015-09-17 ウシオ電機株式会社 Grid polarizer and photo-alignment device
JP2015172648A (en) * 2014-03-11 2015-10-01 ウシオ電機株式会社 Grid polarization element and photo-aligning device
TWI565979B (en) * 2014-03-11 2017-01-11 Ushio Electric Inc Grating polarizer and light alignment device
CN105093380A (en) * 2014-05-15 2015-11-25 迪睿合电子材料有限公司 Inorganic polarizing plate and production method thereof
JP2015219319A (en) * 2014-05-15 2015-12-07 デクセリアルズ株式会社 Inorganic polarizer and method for manufacturing the same
US10295716B2 (en) 2014-05-15 2019-05-21 Dexerials Corporation Inorganic polarizing plate and production method thereof
CN105093380B (en) * 2014-05-15 2020-02-07 迪睿合电子材料有限公司 Inorganic polarizing plate and production method thereof
JP2015222449A (en) * 2015-09-10 2015-12-10 ウシオ電機株式会社 Grid polarization element and photo-orientation device
US11709301B2 (en) 2018-06-12 2023-07-25 Ushio Denki Kabushiki Kaisha VUV polarizer, VUV polarization device, VUV polarization method and alignment method

Also Published As

Publication number Publication date
JP2014527203A (en) 2014-10-09
JP5686227B2 (en) 2015-03-18
CN103907173B (en) 2015-06-03
US8611007B2 (en) 2013-12-17
KR20140054139A (en) 2014-05-08
US20140016197A1 (en) 2014-01-16
KR101496689B1 (en) 2015-02-27
US9523805B2 (en) 2016-12-20
US20120250154A1 (en) 2012-10-04
CN103907173A (en) 2014-07-02

Similar Documents

Publication Publication Date Title
US8611007B2 (en) Fine pitch wire grid polarizer
US8913321B2 (en) Fine pitch grid polarizer
US10014175B2 (en) Lithography using high selectivity spacers for pitch reduction
US8298954B1 (en) Sidewall image transfer process employing a cap material layer for a metal nitride layer
JP4760135B2 (en) Optical device and optical device manufacturing method
US9570305B2 (en) Self-aligned double patterning
US20030104700A1 (en) Method to fabricate layered material compositions
US7700390B2 (en) Method for fabricating three-dimensional photonic crystal
TW202346974A (en) Vertical grating filters for photonics and method of forming the same
WO2020210425A1 (en) Patterning of multi-depth optical devices
US20090124084A1 (en) Fabrication of sub-resolution features for an integrated circuit
WO2019225518A1 (en) Method for manufacturing substrate having uneven structure
US20200343100A1 (en) Semiconductor device and fabrication method thereof
US11435513B2 (en) Wire grid polarizer with slanted support-ribs
CN108091555A (en) A kind of manufacturing method of semiconductor devices
US20220011471A1 (en) Air-gap encapsulation of nanostructured optical devices
JP2008310299A (en) Method of manufacturing 3-d photonic crystal
WO2015060939A1 (en) Wire grid polarizer with side region
US11892676B2 (en) Self-aligned formation of angled optical device structures
JP2000258645A (en) Three-dimensional periodic structure and two- dimensional periodic structure as well as their manufacture
TW202239698A (en) Nanoimprint and etch fabrication of optical devices
CN113728250B (en) Transferring nanostructures from a wafer to a transparent substrate
CN117289546A (en) Processing method of wire grid polarizer
WO2015199573A1 (en) Wavelike hard nanomask on a topographic feature and methods of making and using

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12829005

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014528388

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20147005086

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12829005

Country of ref document: EP

Kind code of ref document: A1