WO2013006774A1 - Genomic diagnostics using circulating endothelial cells - Google Patents

Genomic diagnostics using circulating endothelial cells Download PDF

Info

Publication number
WO2013006774A1
WO2013006774A1 PCT/US2012/045709 US2012045709W WO2013006774A1 WO 2013006774 A1 WO2013006774 A1 WO 2013006774A1 US 2012045709 W US2012045709 W US 2012045709W WO 2013006774 A1 WO2013006774 A1 WO 2013006774A1
Authority
WO
WIPO (PCT)
Prior art keywords
markers
expression
cecs
homo sapiens
atg
Prior art date
Application number
PCT/US2012/045709
Other languages
French (fr)
Inventor
Yixin Wang
Baoying HUANG
Jack Yu
Yuqui Jiang
Tim Jatkoe
Yashoda RAJPUROHIT
Original Assignee
Veridex, Llc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Veridex, Llc filed Critical Veridex, Llc
Publication of WO2013006774A1 publication Critical patent/WO2013006774A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers

Definitions

  • Circulating endothelial cells are present in low number in healthy individuals but an increase of CEC has been observed in a variety of human diseases including cardiovascular disorder and cancer. Characterization of CECs would be beneficial in understanding and monitoring these diseases and others.
  • CECs can be isolated from peripheral blood by a variety of techniques including antibody capture with, for example, CD 146 antibody and magnetic separation as well as flow cytometry and other means. Unfortunately, CEC separation and analysis is complicated by the overwhelming presence of leukocytes. It would be beneficial to identify CECs, relate them to important factors such as their tissues of origin, and provide a basis to further analyze them and provide medical information based upon the analysis.
  • CECs are isolated and gene expression of CECs is analyzed to assess a medical condition.
  • gene expression is conducted using microarray analysis or an amplification and identification method such as reverse transcription PCR (RTPCR).
  • RTPCR reverse transcription PCR
  • genes selected from a group of 130 specific genes whose expression is low in peripheral blood mononuclear cells (PBMCs) and high in endothelial cells are employed as CEC markers.
  • gene-based CEC markers are those that are associated with one or more of the following: cell motion, cell migration, angiogenesis, or cell adhesion.
  • such markers are over-expressed relative to other cells.
  • gene-based markers are differentially expressed depending on different vessel types enabling identification of the vessel or tissue of origin of the captured CECs.
  • the markers are selected from 67 genes that are over-expressed in CECs relative to other cells.
  • cell capture is used to obtain CECs which are analyzed for gene expression.
  • capture is via immunomagnetics and the analysis is used to provide a medical assessment such as disease or condition diagnostics, prediction, or
  • kits are provided.
  • the kits include reagents for the identification and analysis of the gene expression of the CECs.
  • kits can contain capture reagents for isolating CECs.
  • the kits can also include embodiments of machine code that apply information and algorithms to the information that is produced during the conduct of the CEC isolation and/or analysis such that a medical assessment is produced or facilitated.
  • the present invention provides compositions, methods and kits for the rapid and efficient isolation and characterization of endothelial cells from biological samples.
  • the methods described isolate and characterize CECs in a blood sample while at the same time minimizing the selection of non- specifically bound or entrapped cells. While any effective mechanism for isolating, enriching, and analyzing CECs in blood may be used to capture and enrich CECs for analysis, the preferred method for collecting them combines immunomagnetic enrichment technology and immunofluorescent labeling technology with an appropriate analytical platform.
  • the associated tests have the sensitivity and specificity to detect these rare cells in a sample of whole blood and to use them in the analysis of the clinical course of diseases and conditions as well as assessments regarding many aspects of the same including predictions and prognostics.
  • the capture and separation technology employed in the preferred embodiment is already used widely to analyze circulating tumor cells (CTC) by employing, for example, a tool to investigate the significance of cells of epithelial origin in the peripheral circulation of cancer patients.
  • CTC circulating tumor cells
  • This technology is described, for example, in U.S. Pat. No. 6,365,362 and U.S. Pat. No. 6,645,731.
  • the "CellSearch” System (Veridex LLC, Raritan, NJ) that employs this technology is an automated system based on fluorescence microscopy of isolated cells from blood. It's use in capturing and isolating CECs is also already known.
  • the system contains an integrated computer controlled fluorescence microscope and automated stage with a magnetic yoke assembly that will hold a disposable sample cartridge.
  • the magnetic yoke is designed to enable ferro fluid-labeled candidate rare cells within the sample chamber to be magnetically localized to the upper viewing surface of the sample cartridge for microscopic viewing.
  • Software detects cells labeled with an antibody and having endothelial cells from blood.
  • a preservative such as "CellSave” cell preservative is used for isolating cells of interest using 7.5 ml of whole blood. Cell-specific magnetic particles are added and incubated, preferably for about 20 minutes.
  • CellSave preservative can be provided in, for example, a tube to the blood sample collector or can be provided as part of the kit of the invention. After magnetic separation, the cells bound to the immunomagnetic-linked antibodies are magnetically held at the wall of the tube.
  • Unbound sample is then aspirated and an isotonic solution is added to resuspend the sample.
  • a nucleic acid dye, monoclonal antibodies to the specified marker and CD 45 (a broad-spectrum leukocyte marker) are incubated with the sample.
  • the unbound fraction is again aspirated and the bound and labeled cells are resuspended in 0.2 ml of an isotonic solution.
  • the sample is suspended in a cell presentation chamber and placed in a magnetic device whose field orients the magnetically labeled cells for fluorescence microscopic examination in the
  • Cells can be identified automatically with control cells enumerated by the System and candidate target cells presented to the operator for checklist enumeration to identify such aspects as morphology.
  • the captured cells can then be subjected to gene -based analysis according to the invention.
  • Preferred magnetic particles included in the reagents for use in carrying out CEC isolation are particles that behave as colloids. Such particles are characterized by their sub-micron particle size, which is generally less than about 200 nm (0.20 microns), and their stability to gravitational separation from solution for extended periods of time. In addition to the many other advantages, this size range makes them essentially invisible to analytical techniques commonly applied to cell analysis.
  • Suitable magnetic particles are composed of a crystalline core of superparamagnetic material surrounded by molecules which are bonded, e.g., physically absorbed or covalently attached, to the magnetic core and which confer stabilizing colloidal properties.
  • the coating material should preferably be applied in an amount effective to prevent non-specific interactions between biological macromolecules found in the sample and the magnetic cores.
  • biological macromolecules may include carbohydrates such as sialic acid residues on the surface of non-target cells, lectins, glyproteins, and other membrane components.
  • the material should contain as much magnetic mass per nanoparticle as possible.
  • the size of the magnetic crystals comprising the core is sufficiently small that they do not contain a complete magnetic domain.
  • the size of the nanoparticles is sufficiently small such that their Brownian energy exceeds their magnetic moment.
  • North Pole, South Pole alignment and subsequent mutual attraction/repulsion of these colloidal magnetic particles does not appear to occur even in moderately strong magnetic fields, contributing to their solution stability.
  • the magnetic particles should be separable in high magnetic gradient external field separators. That characteristic facilitates sample handling and provides economic advantages over the more complicated internal gradient columns loaded with ferromagnetic beads or steel wool.
  • Magnetic particles having the above-described properties can be prepared by modification of base materials described in U.S. Pat. Nos. 4,795,698, 5,597,531 and 5,698,271.
  • the immunomagnetic sample preparation is important for reducing sample volume and obtaining a 10 4 fold enrichment of the target cells.
  • the reagents used in a preferred kit of the invention include: an antibody against the pan- leukocyte antigen, CD45 to identify leucocytes (non-target cells); a cell type specific or nucleic acid dye which allows exclusion of residual red blood cells, platelets and other non-nucleated events; and a biospecific reagent or antibody directed against the target cytostructure or an antibody having specificity for the targets membrane which differs from that used to immunomagnetically select the cells.
  • Morphological analysis can also be conducted on various analytical platforms and include, for example, the CELLSPOTTER system, a magnetic cell immobilization and analysis system, using microscopic detection for manual observation of cells, described in U.S. Pat. Nos. 5,876,593; 5,985,153 and 6,136,182 respectively. All of the aforementioned U.S. Patent Applications are incorporated by reference herein as disclosing the respective apparatus and methods for manual or automated quantitative and qualitative cell analysis.
  • Other analysis platforms include, but are not limited to, laser scanning Cytometry (Compucyte), bright field base image analysis
  • Kits of the invention preferably include or can be used in conjunction with kits having reagents to conduct a molecular analysis of the cells (CECs) obtained.
  • CECs a molecular analysis of the cells
  • kits having reagents to conduct a molecular analysis of the cells include reagents that facilitate methods for determining the gene expression patterns of relevant cells as well as protein based methods of determining gene expression including reverse transcriptase PCR (RT- PCR), competitive RT-PCR, real time RT-PCR, differential display RT-PCR, Northern Blot analysis and other related tests. While it is possible to conduct these techniques using individual PCR reactions, it is best to amplify copy DNA (cDNA) or copy RNA (cRNA) produced from mRNA and analyze it via microarray. A number of different array configurations and methods for their production are known to those of skill in the art and are described in U.S.
  • Patents such as: 5,445,934; 5,532,128; 5,556,752; 5,242,974; 5,384,261; 5,405,783; 5,412,087; 5,424,186; 5,429,807; 5,436,327; 5,472,672; 5,527,681 ; 5,529,756; 5,545,531; 5,554,501; 5,561,071;
  • Microarray technology allows for the measurement of the steady-state mRNA level of thousands of genes simultaneously thereby presenting a powerful tool for identifying effects such as the onset, arrest, or modulation of uncontrolled cell proliferation.
  • Two microarray technologies are currently in wide use. The first are cDNA arrays and the second are oligonucleotide arrays. Although differences exist in the construction of these chips, essentially all downstream data analysis and output are the same.
  • the product of these analyses are typically measurements of the intensity of the signal received from a labeled probe used to detect a cDNA sequence from the sample that hybridizes to a nucleic acid sequence at a known location on the microarray.
  • the intensity of the signal is proportional to the quantity of cDNA, and thus mRNA, expressed in the sample cells.
  • Preferred methods for determining gene expression can be found in US Patents 6,271,002 to Linsley, et al; 6,218,122 to Friend, et al; 6,218,114 to Peck, et al; and 6,004,755 to Wang, et al., the disclosure of each of which is incorporated herein by reference. Components and reagents for conducting these procedures can be included in the kits of the invention.
  • patient blood is collected and CECs are isolated using an immunomagnetic capture technique such as is in the CellSearch System.
  • the CECs are then subjected to separate analysis such as with the use of RTPCR or DNA
  • Microarray Gene expression patterns are determined and processed for the identification of patterns that are indicative of disease diagnosis, prediction, or prognosis which are provided to a clinician and/or the patient. Correlations can be drawn between the expression of the various genes or gene-based markers whose expression is detected and physical conditions such as the presence or absence of disease, disease course or progression, the likelihood of contracting a disease or condition, and other predictive and prognostic judgments. Pattern recognition software can be used to perform these correlations and indicate their presence. Computer instructions that include executable code for comparing assay results with the relevant expression patterns and providing a medical assessment or information useful in providing a medical assessment can be included in the kits of the invention in the form of DVDs, thumbdrives, or any other convenient form.
  • gene expression profiles of 18 endothelial cell samples from nine anatomical locations were analyzed.
  • a set of 130 gene-based markers with high expression in endothelial cells but not in PBMCs were identified. Detection of these markers from endothelial cells enriched by the CellSearch system was also performed. The gene-based markers were readily detected by QRT-PCR in blood sample spike-in with endothelial cells.
  • a set of 67 markers differentially expressed in endothelial cells from different vessel types were identified that can be used to detect the origin of CECs being analyzed.
  • Example 1 CECs Cryopreserved HAEC (human aorta endothelial cell), HUVEC (human umbilical vein EC), HPAEC (human pulmonary artery EC), HMVEC-ad (human microvascular EC, adult dermis) and HASMC (human artery smooth muscle cell) were obtained from Invitrogen (Invitrogen, Carlsbad, CA), cryopreserved HCAEC (human coronary artery EC), HUAEC (human umbilical artery EC), HIAEC (human iliac artery EC), HMVEC-C (Human Cardiac Microvascular EC) cells were obtained from Lonza (Lonza, Cologne, Germany).
  • HSaVEC human saphenous vein EC
  • PromoCell PromoCell GmbH, Heidelberg, Germany
  • Endothelial cells were cultured with EGM®-2 Endothelial Cell Growth Medium-2 (Lonza) in 37°C incubator with 95% humidity and 5 % C0 2 .
  • Smooth muscle cells were cultured with Medium 231 supplemented with Smooth Muscle Growth Supplement (SMGS) (Invitrogen).
  • SGS Smooth Muscle Growth Supplement
  • PBMC Human blood peripheral leukocytes
  • RNA Human blood peripheral leukocytes (PBMC) total RNA was purchased from Clontech (Clontech, Mountain View, CA). Blood from healthy donors was drawn into EDTA-containing vacutainer tubes and of which 4 ml was processed by CellSearch system (Veridex LLC, Raritan, NJ) to isolate CECs. This was done using the CEC Profile kit (Veridex) according to manufacturer's instruction. In spike -in experiments, 500 or 1000 endothelial cells (HAEC, HPAEC, HUVEC or HMVEC-ad) were spiked into 4 ml healthy donor blood and processed by the CellSearch system.
  • HAEC endothelial cells
  • RNA isolation For cultured endothelial cell or cell pellet, about 5X10 5 cells were used for RNA isolation using AUPrep DNA/RNA Micro Kit (Qiagen, Hilden, Germany). To isolate RNA from CECs enriched by CellSearch System, 350 ⁇ 1 of RLTplus buffer (Qiagen) was added to lyse CECs, then 4 ⁇ poly(I) (Epicentre, Madison, WI) of 53 ⁇ 4/ ⁇ 1 was added as carrier RNA, DNA and RNA was isolated using AUPrep DNA/RNA Micro Kit following the manufacturer's instruction. Two samples of the same spike-in was pooled for downstream analysis.
  • RNA was examined by NanoDrop 1000 (NanoDrop, Wilmington, DE) and Agilent Bioanalyzer 2100 (Agilent, Santa Clara, CA). Endothelial cell RNA, smooth muscle cell RNA and PBMC RNA samples were converted into labeled target antisense RNA (cRNA) using the Single-Round RNA Amplification and Enzo Biotin Labeling System. Targets were hybridized to Affymetrix human U133 Plus 2.0 array following protocols as suggested by the supplier (Affymetrix, Santa Clara, CA). Following hybridization, arrays were washed and stained using standard Affymetrix procedures before scanning on the Affymetrix GeneChip Scanner and data extraction using Expression Console.
  • cRNA target antisense RNA
  • RNA was converted to labeled target cDNA using the Ovation RNA Amplification System V2 (NuGEN, San Carlos, CA). Briefly, 50ng of total RNA was converted to double stranded cDNA using a DNA/RNA chimeric primer for reverse transcription, followed by isothermal amplification. The cDNA was purified using magnetic beads and quantitated by spectrophotometry. 3.75 ⁇ g of the purified cDNA subsequently undergoes a two-step fragmentation and labeling process using the Encore Biotin Module (NuGEN). First, the purified cDNA was fragmented to yield single- stranded cDNA products in the 50 to 100 base range.
  • Ovation RNA Amplification System V2 NuGEN, San Carlos, CA
  • 50ng of total RNA was converted to double stranded cDNA using a DNA/RNA chimeric primer for reverse transcription, followed by isothermal amplification.
  • the cDNA was purified using magnetic beads and quantitated by spectrophotometry. 3.
  • this fragmentation product was labeled via enzymatic attachment of a biotin-labeled nucleotide to the 3-hydroxyl end of the fragmented cDNA generated in the first step.
  • a hybridization cocktail was prepared and added to the fragmentation product using the Hybridization, Wash and Stain kit (Affymetrix), applied to arrays, and incubated at 45°C for 18 hours. Following hybridization, arrays were washed and stained using standard Affymetrix procedures before scanning on the Affymetrix GeneChip Scanner and data extraction using Expression Console.
  • Gene expression intensities were extracted with Affymetrix Expression Console (version 1.1) using MAS5 algorithm. Global scaling was performed to bring the average signal intensity of a chip to a target of 600 before data analysis. To minimize noise levels, probes with fewer than two Presence calls in the cohort were removed. As a result, 3 IK probe sets remained for subsequent analyses. It was observed that there was a source effect between samples from cell culture and samples from cell pellet. To minimize this effect, probes that showed significant difference (p ⁇ 0.05) between these two groups were removed. Thus, 23K probes were obtained.
  • probe sets that had a presence call in the two PBMC samples or had intensity above 200 in either of the two PBMC samples were removed, and 3950 probe sets were retained for further selections.
  • signal intensities were normalized to the medium per probe set;
  • Hierarchical clustering was performed using Partek Genomics Suites (version 6.5, Partek Inc., St. Louis, MO). Hierarchical clustering was conducted on both the probes and the samples using the average linkage method. Euclidean distance metric was used for the calculation of dissimilarity. For unsupervised hierarchical clustering, the 23k probe sets after removing genes with significant difference between cell cultures and cell pellets were used. Supervised clustering was performed with either 130 CEC markers or 67 skin, artery, and vein EC specific-markers.
  • R A were extracted from a set of 10 donor samples and 8 cell line spike-in samples (2 HAEC spike-in, 2 HPAEC spike-in , 2 HUVEC spike-in and 2 HMVEC-ad spike-in samples) processed by CellSearch using a CEC Profile kit. 2 ⁇ RNA was used for cDNA synthesis using High-Capacity cDNA Reverse
  • preamplification product was subjected to a 1 :20 dilution, and 5 ⁇ of the diluted product was used as input for quantitative PCR.
  • Real time-PCR was carried out using Applied Biosystems gene expression Taqman assays on an ABI PRISM 7900HT Sequence Detector (Applied Biosystems).
  • RNAs from eighteen endothelial cell samples, two PBMC samples and two smooth muscle cell samples were subjected for microarray analysis using the Affymetrix Human Genome U133 Plus 2.0 Array, which contains more than 54000 probe sets covering 47,000 transcripts and variants, including 38,500 well-characterized human genes.
  • the set of endothelial cell samples represents nine distinct anatomical locations including five different arteries (aorta, coronary artery, pulmonary artery, iliac artery, and umbilical artery), two different veins (umbilical vein and saphenous vein), and two different tissues (skin and heart). Except for iliac artery and skin, two samples including one from cultured cells and one from frozen cell pellet were obtained for each origin.
  • the unsupervised analysis on these 23k probe sets resulted in three major clusters, the cluster of PBMC samples, the cluster of smooth muscle cell samples and the cluster of endothelial cell samples, reflecting the overall similarity of endothelial cells as compared to PBMC and smooth muscle cells.
  • the samples from cell pellet and cell culture were not separated, indicating the elimination of source effect.
  • samples from same anatomical location were not always cluster together, possibly due to the relative small sample size and the difference of cell culture conditions.
  • Example 3 Use of the CellSearch System to Enrich CECs.
  • the CellSearch system was used to isolate CECs from the spiked donor samples described above.
  • the antibody against the most prominent endothelial membrane antigen CD 146 was used for the immuno-capture reagent.
  • the expression level of a specific marker in endothelial cells had to be substantially higher than its expression level in PBMC.
  • probe sets that had a presence call in any of the two PBMC samples or its intensity was above 200 in either of the two PBMC samples were removed. 3950 probes were retained for further analysis. Probes with minimal intensity lower than 1000 in the 18 CEC samples were not considered for subsequent analyses.
  • 130 probe sets (106 unique genes) were selected as candidates for CEC markers. Functional annotation and pathway analysis was conducted of these 130 probe sets using the DAVID functional annotation software.
  • GO Gene ontology
  • One of the functions of endothelial cell is angiogenesis, during which substantial changes in the adhesive interactions between cells and the extracellular matrix (ECM) take place to allow endothelial cell migration.
  • CEC specific genes were identified based on Example 2. These include: Integrin related genes Integrin alpha2 (ITGA2), AXL receptor tyrosine kinase (AXL), EPH receptor A2 (EPHA2), TEK tyrosin kinase, endothelial (TEK), met proto-oncogene (MET), neuropilin 1 (NRP1), VEGFR2 (KDR), and TIE1; angiogenesis related genes activin A receptor type II-like 1 (ACVRL1), connective tissue growth factor (CTGF), endothelial cell-specific chemotaxis regulator (ECSCR), endothelin ⁇ (EDN1) and roundabout homo log 4 (ROB04); genes relating to the maintenance of vascular integrity through cell-cell interactions, CA V1, CA V2, COL4A1,
  • MCAM CD 146
  • KDR VEGFR-2
  • TEK Tie-2
  • some genes associated with endothelial cells are not markers in the present context due to either high expression in PBMC, such as PECAM(CD3 l), CXCR4, or expression that are too low to be diagnostically useful as seen in one or more endothelial cell lines (such as KIT(SCF R/c-kit) and ffi'ZE(E-selectin)).
  • the CEC markers identified in these examples over-represent bioprocess or pathways that are associated with endothelial cell functions.
  • Example 4 Tissue of Origin.
  • the 3950 genes which showed no expression or with intensity less than 200 in both PBMC samples were used to identify gene-based markers useful to identify the tissue of origin of CECs.
  • Artery EC-specific genes were identified as those whose median signal intensity in EC from artery was over 500 and greater than maximum expression in EC from other origins.
  • vein EC-specific genes genes whose median signal intensity in EC from vein was more than 500 and greater than maximum expression in EC from other origins were identified. There were 38 artery EC-specific genes and 14 vein EC-specific genes satisfied these criteria (Table 3).
  • artery-specific genes were the previously reported artery EC-specific gene HEY2, a member of the Hairy-related transcription factor family that has been implied to be required for embryonic cardiovascular development in mouse.
  • Other artery specific CEC genes included CXADR; which is a component of tight junction and has been reported to express asymmetrically in heart, in which expression was shown in subendothelial layers of the vessel wall, but not on the luminal endothelial surface.
  • SOX17 a HMG-box transcription factor has been shown to play important roles in both endoderm formation and cardiovascular
  • Endothelial cells were spiked into healthy donor blood, and then CECs were enriched using the CellSearch System with the CEC Profile kit.
  • Each 4 ml healthy donor blood was spiked in with 500 or 1000 cultured endothelial cells from one origin.
  • Four selected cultured endothelial cell samples including two from artery (HAEC and HPAEC), one from vein (HUVEC), and one from skin (HMVEC-ad) were examined.
  • the enriched CEC samples from spike-in and 10 healthy donor samples without spike -in were subjected to R A isolation and Microarray analysis. The number of CECs from the 10 donors was determined to be from 2 to 107 in 4 ml blood.
  • CEC specific markers obtained from the cell line gene expression profiling microarray data, all of them shown higher average expression in EC spike-in samples than in donor samples, with the ratio of mean expression in EC spike-in to donor ranging from 2 to 655, and 93 genes have the ratio greater than 20.
  • Validation using QRT-PCR was conducted on 21 markers with a ratio of 8 to 654 between spike-in samples vs. donor samples, and the PCR results demonstrated that all of the selected markers had good separation between EC spike -in samples and non-spike- in donors.
  • a principal component analysis was performed for the spike-in microarray data using the 67 origin-specific markers. Donor samples and artery-, vein-, skin- endothelial cell spike-in samples were clearly separated in the PCA. The markers are thus useful for differentiating CECs from various origins.
  • CTC Circulating Tumor Cell
  • the kit that is used contains CD 146 ferro fluid and reagent to stain the enriched cells with the nucleic acid dye DAPI, endoglin (CD105)-PE and the pan-leukocyte marker CD45APC.
  • the sample is reduced to around 300 uL and placed in an analysis chamber that is mounted inside a magnetic "nest" to magnetically monolayer the cells. Enumeration and morphological analysis of the CEC is then conducted. CECs are then extracted from the magnetic nesting devices. Total RNA is extracted with the RNeasy Micro Kit (Qiagen, Hilden, Germany).
  • RNA is converted into cDNA as follows: First, the total amount of extracted RNA is pre-incubated with 300 ng random hexamer at 65° C. for 5 minutes. Then 200 U M-MLV Reverse Transcriptase, RNase H Minus, Point Mutant, M- MLV Reverse Transcriptase lx Reaction Buffer, 10 U RNasin® Plus RNase Inhibitor (all purchased from Promega, Madison Wis.), 50 nmol of an equimolarmix of dATP, dTTP, dCTP and dGTP (Amersham Biosciences, Freiburg, Germany) and water is added to a final reaction volume of 20 ul. The reaction is performed at 55° C. for 50 minutes after a pre -incubation step at 20° C. for 10 min. Finally, the reaction is stopped by heating up to 94° C. for 5 min.
  • Quantitative Reverse-Transcription PCR is then performed as follows. Gene expression analysis is conducted duplicate reactions using individual TaqMan® Pre-Developed Assay Reagents specific for the Artery markers in Table 3. In each case they consist of two unlabeled PCR primers and one FAMTM dye-labeled TaqMan® MGB probe as used with the systems described above. The total volume of the reactions is 14
  • a number of arterial CEC tissue of origin markers show significant over-expression.
  • the data is downloaded to a file that is used by a program that compares the expression pattern to numerous expression patterns constructed by matching CEC marker expression to known clinical outcomes.
  • the program is contained on storage device that also contains executable code for conducting the comparison using statistically based algorithms.
  • the pattern indicates that the CEC's are arterial in nature and, more specifically, are aortic. Together with other diagnostic information it is concluded that the patient is likely to incur a thoracic aortic aneurism if left untreated.
  • Table 1 Pathway Analysis of Gene Signatures
  • focal adhesion 6 5.50E-04 plasma membrane part 28 6.12E-04 I cell-substrate adherens junction 6 6.55E-04 intrinsic to plasma membrane 19 7.74E-04 cell-substrate junction 6 8.41 E-04 extracellular matrix part 6 1.02E-03
  • G NTTGTC ATGGTTTCTTTTG GGGAGGGGCAGG GT AG GG G A AGTTA AGTGTTATATGTG GT
  • CT AA ATAC AA AATTAG G CGTG GTG G C AG G CG CCTGT AATCCC AG CT ACTAG GG ATG CT
  • N M_018214 Homo sapiens leucine rich repeat containing 1 (LRRCl), m RNA. ggaagctccgcgcggcggcgggggcggcgacggcgactggcgggtgggagtggaggcacc
  • CAGTTTCCCC TCTGTAACTTGGGGTTGAACTAAAACACCTGTCCTGCCTACCTCACAAGG TCACTCTGAGGATTGAAACTTGATCTTGTCCAGGAAAGCTTTGTACCAAACAGTGAAGCC
  • GABA-B receptor R2 GABA-B receptor R2
  • a ATCTTTC ATG CTATCCCC ACTTTTTC AG C ATG G GTC ATTG A AG AGTG G G G CG A ATGTT

Abstract

Circulating Endothelial Cells are isolated from patient blood and gene expression of the cells is analyzed to assess a medical condition or the tissue of origin of the cell. Kits for conducting the method are also provided.

Description

GENOMIC DIAGNOSTICS USING CIRCULATING ENDOTHELIAL CELLS
BACKGROUND OF THE INVENTION
Circulating endothelial cells (CECs), are present in low number in healthy individuals but an increase of CEC has been observed in a variety of human diseases including cardiovascular disorder and cancer. Characterization of CECs would be beneficial in understanding and monitoring these diseases and others. CECs can be isolated from peripheral blood by a variety of techniques including antibody capture with, for example, CD 146 antibody and magnetic separation as well as flow cytometry and other means. Unfortunately, CEC separation and analysis is complicated by the overwhelming presence of leukocytes. It would be beneficial to identify CECs, relate them to important factors such as their tissues of origin, and provide a basis to further analyze them and provide medical information based upon the analysis. SUMMARY OF THE INVENTION
In one aspect of the invention, CECs are isolated and gene expression of CECs is analyzed to assess a medical condition. Preferably, gene expression is conducted using microarray analysis or an amplification and identification method such as reverse transcription PCR (RTPCR). In another aspect of the invention, genes selected from a group of 130 specific genes whose expression is low in peripheral blood mononuclear cells (PBMCs) and high in endothelial cells are employed as CEC markers.
In yet another aspect of the invention, gene-based CEC markers are those that are associated with one or more of the following: cell motion, cell migration, angiogenesis, or cell adhesion.
Preferably, such markers are over-expressed relative to other cells.
In a yet further aspect of the invention, gene-based markers are differentially expressed depending on different vessel types enabling identification of the vessel or tissue of origin of the captured CECs. Preferably, the markers are selected from 67 genes that are over-expressed in CECs relative to other cells. In a yet further aspect of the invention, cell capture is used to obtain CECs which are analyzed for gene expression. Preferably, capture is via immunomagnetics and the analysis is used to provide a medical assessment such as disease or condition diagnostics, prediction, or
prognostics.
In a yet further aspect of the invention, CEC analysis kits are provided. Preferably, the kits include reagents for the identification and analysis of the gene expression of the CECs.
Additionally, kits can contain capture reagents for isolating CECs. The kits can also include embodiments of machine code that apply information and algorithms to the information that is produced during the conduct of the CEC isolation and/or analysis such that a medical assessment is produced or facilitated.
DETAILED DESCRIPTION
The present invention provides compositions, methods and kits for the rapid and efficient isolation and characterization of endothelial cells from biological samples. The methods described isolate and characterize CECs in a blood sample while at the same time minimizing the selection of non- specifically bound or entrapped cells. While any effective mechanism for isolating, enriching, and analyzing CECs in blood may be used to capture and enrich CECs for analysis, the preferred method for collecting them combines immunomagnetic enrichment technology and immunofluorescent labeling technology with an appropriate analytical platform. The associated tests have the sensitivity and specificity to detect these rare cells in a sample of whole blood and to use them in the analysis of the clinical course of diseases and conditions as well as assessments regarding many aspects of the same including predictions and prognostics.
The capture and separation technology employed in the preferred embodiment is already used widely to analyze circulating tumor cells (CTC) by employing, for example, a tool to investigate the significance of cells of epithelial origin in the peripheral circulation of cancer patients. This technology is described, for example, in U.S. Pat. No. 6,365,362 and U.S. Pat. No. 6,645,731. The "CellSearch" System (Veridex LLC, Raritan, NJ) that employs this technology is an automated system based on fluorescence microscopy of isolated cells from blood. It's use in capturing and isolating CECs is also already known. The system contains an integrated computer controlled fluorescence microscope and automated stage with a magnetic yoke assembly that will hold a disposable sample cartridge. The magnetic yoke is designed to enable ferro fluid-labeled candidate rare cells within the sample chamber to be magnetically localized to the upper viewing surface of the sample cartridge for microscopic viewing. Software detects cells labeled with an antibody and having endothelial cells from blood. In a preferred embodiment, a preservative such as "CellSave" cell preservative is used for isolating cells of interest using 7.5 ml of whole blood. Cell-specific magnetic particles are added and incubated, preferably for about 20 minutes. CellSave preservative can be provided in, for example, a tube to the blood sample collector or can be provided as part of the kit of the invention. After magnetic separation, the cells bound to the immunomagnetic-linked antibodies are magnetically held at the wall of the tube. Unbound sample is then aspirated and an isotonic solution is added to resuspend the sample. A nucleic acid dye, monoclonal antibodies to the specified marker and CD 45 (a broad-spectrum leukocyte marker) are incubated with the sample. After magnetic separation, the unbound fraction is again aspirated and the bound and labeled cells are resuspended in 0.2 ml of an isotonic solution. The sample is suspended in a cell presentation chamber and placed in a magnetic device whose field orients the magnetically labeled cells for fluorescence microscopic examination in the
CellSearch System. Cells can be identified automatically with control cells enumerated by the System and candidate target cells presented to the operator for checklist enumeration to identify such aspects as morphology. The captured cells can then be subjected to gene -based analysis according to the invention. Preferred magnetic particles included in the reagents for use in carrying out CEC isolation are particles that behave as colloids. Such particles are characterized by their sub-micron particle size, which is generally less than about 200 nm (0.20 microns), and their stability to gravitational separation from solution for extended periods of time. In addition to the many other advantages, this size range makes them essentially invisible to analytical techniques commonly applied to cell analysis. Particles within the range of 90-150 nm and having between 70-90% magnetic mass are contemplated for use in the present invention. Suitable magnetic particles are composed of a crystalline core of superparamagnetic material surrounded by molecules which are bonded, e.g., physically absorbed or covalently attached, to the magnetic core and which confer stabilizing colloidal properties. The coating material should preferably be applied in an amount effective to prevent non-specific interactions between biological macromolecules found in the sample and the magnetic cores. Such biological macromolecules may include carbohydrates such as sialic acid residues on the surface of non-target cells, lectins, glyproteins, and other membrane components. In addition, the material should contain as much magnetic mass per nanoparticle as possible. The size of the magnetic crystals comprising the core is sufficiently small that they do not contain a complete magnetic domain. The size of the nanoparticles is sufficiently small such that their Brownian energy exceeds their magnetic moment. As a consequence, North Pole, South Pole alignment and subsequent mutual attraction/repulsion of these colloidal magnetic particles does not appear to occur even in moderately strong magnetic fields, contributing to their solution stability. Finally, the magnetic particles should be separable in high magnetic gradient external field separators. That characteristic facilitates sample handling and provides economic advantages over the more complicated internal gradient columns loaded with ferromagnetic beads or steel wool. Magnetic particles having the above-described properties can be prepared by modification of base materials described in U.S. Pat. Nos. 4,795,698, 5,597,531 and 5,698,271.
The immunomagnetic sample preparation is important for reducing sample volume and obtaining a 104 fold enrichment of the target cells. The reagents used in a preferred kit of the invention include: an antibody against the pan- leukocyte antigen, CD45 to identify leucocytes (non-target cells); a cell type specific or nucleic acid dye which allows exclusion of residual red blood cells, platelets and other non-nucleated events; and a biospecific reagent or antibody directed against the target cytostructure or an antibody having specificity for the targets membrane which differs from that used to immunomagnetically select the cells.
Morphological analysis can also be conducted on various analytical platforms and include, for example, the CELLSPOTTER system, a magnetic cell immobilization and analysis system, using microscopic detection for manual observation of cells, described in U.S. Pat. Nos. 5,876,593; 5,985,153 and 6,136,182 respectively. All of the aforementioned U.S. Patent Applications are incorporated by reference herein as disclosing the respective apparatus and methods for manual or automated quantitative and qualitative cell analysis. Other analysis platforms include, but are not limited to, laser scanning Cytometry (Compucyte), bright field base image analysis
(Chromavision), and capillary Volumetry (Biometric Imaging).
Kits of the invention preferably include or can be used in conjunction with kits having reagents to conduct a molecular analysis of the cells (CECs) obtained. These include reagents that facilitate methods for determining the gene expression patterns of relevant cells as well as protein based methods of determining gene expression including reverse transcriptase PCR (RT- PCR), competitive RT-PCR, real time RT-PCR, differential display RT-PCR, Northern Blot analysis and other related tests. While it is possible to conduct these techniques using individual PCR reactions, it is best to amplify copy DNA (cDNA) or copy RNA (cRNA) produced from mRNA and analyze it via microarray. A number of different array configurations and methods for their production are known to those of skill in the art and are described in U.S. Patents such as: 5,445,934; 5,532,128; 5,556,752; 5,242,974; 5,384,261; 5,405,783; 5,412,087; 5,424,186; 5,429,807; 5,436,327; 5,472,672; 5,527,681 ; 5,529,756; 5,545,531; 5,554,501; 5,561,071;
5,571,639; 5,593,839; 5,599,695; 5,624,711; 5,658,734; and 5,700,637; the disclosures of which are incorporated herein by reference. Microarray technology allows for the measurement of the steady-state mRNA level of thousands of genes simultaneously thereby presenting a powerful tool for identifying effects such as the onset, arrest, or modulation of uncontrolled cell proliferation. Two microarray technologies are currently in wide use. The first are cDNA arrays and the second are oligonucleotide arrays. Although differences exist in the construction of these chips, essentially all downstream data analysis and output are the same. The product of these analyses are typically measurements of the intensity of the signal received from a labeled probe used to detect a cDNA sequence from the sample that hybridizes to a nucleic acid sequence at a known location on the microarray. Typically, the intensity of the signal is proportional to the quantity of cDNA, and thus mRNA, expressed in the sample cells. A large number of such techniques are available and useful. Preferred methods for determining gene expression can be found in US Patents 6,271,002 to Linsley, et al; 6,218,122 to Friend, et al; 6,218,114 to Peck, et al; and 6,004,755 to Wang, et al., the disclosure of each of which is incorporated herein by reference. Components and reagents for conducting these procedures can be included in the kits of the invention.
In the most preferred embodiments of the invention, patient blood is collected and CECs are isolated using an immunomagnetic capture technique such as is in the CellSearch System. The CECs are then subjected to separate analysis such as with the use of RTPCR or DNA
Microarray. Gene expression patterns are determined and processed for the identification of patterns that are indicative of disease diagnosis, prediction, or prognosis which are provided to a clinician and/or the patient. Correlations can be drawn between the expression of the various genes or gene-based markers whose expression is detected and physical conditions such as the presence or absence of disease, disease course or progression, the likelihood of contracting a disease or condition, and other predictive and prognostic judgments. Pattern recognition software can be used to perform these correlations and indicate their presence. Computer instructions that include executable code for comparing assay results with the relevant expression patterns and providing a medical assessment or information useful in providing a medical assessment can be included in the kits of the invention in the form of DVDs, thumbdrives, or any other convenient form.
EXAMPLES.
In the following examples, gene expression profiles of 18 endothelial cell samples from nine anatomical locations were analyzed. A set of 130 gene-based markers with high expression in endothelial cells but not in PBMCs were identified. Detection of these markers from endothelial cells enriched by the CellSearch system was also performed. The gene-based markers were readily detected by QRT-PCR in blood sample spike-in with endothelial cells. Additionally, a set of 67 markers differentially expressed in endothelial cells from different vessel types were identified that can be used to detect the origin of CECs being analyzed.
Example 1: CECs Cryopreserved HAEC (human aorta endothelial cell), HUVEC (human umbilical vein EC), HPAEC (human pulmonary artery EC), HMVEC-ad (human microvascular EC, adult dermis) and HASMC (human artery smooth muscle cell) were obtained from Invitrogen (Invitrogen, Carlsbad, CA), cryopreserved HCAEC (human coronary artery EC), HUAEC (human umbilical artery EC), HIAEC (human iliac artery EC), HMVEC-C (Human Cardiac Microvascular EC) cells were obtained from Lonza (Lonza, Cologne, Germany). Cryopreserved HSaVEC (human saphenous vein EC) were obtained from PromoCell (PromoCell GmbH, Heidelberg, Germany). Endothelial cells were cultured with EGM®-2 Endothelial Cell Growth Medium-2 (Lonza) in 37°C incubator with 95% humidity and 5 % C02. Smooth muscle cells were cultured with Medium 231 supplemented with Smooth Muscle Growth Supplement (SMGS) (Invitrogen). Cell pellets of HAEC, HUVEC, HPAEC, HMVEC-ad, HCAEC, HUAEC, HMVEC-C, HSaVEC were purchased from PromoCell. Human blood peripheral leukocytes (PBMC) total RNA was purchased from Clontech (Clontech, Mountain View, CA). Blood from healthy donors was drawn into EDTA-containing vacutainer tubes and of which 4 ml was processed by CellSearch system (Veridex LLC, Raritan, NJ) to isolate CECs. This was done using the CEC Profile kit (Veridex) according to manufacturer's instruction. In spike -in experiments, 500 or 1000 endothelial cells (HAEC, HPAEC, HUVEC or HMVEC-ad) were spiked into 4 ml healthy donor blood and processed by the CellSearch system.
For cultured endothelial cell or cell pellet, about 5X105 cells were used for RNA isolation using AUPrep DNA/RNA Micro Kit (Qiagen, Hilden, Germany). To isolate RNA from CECs enriched by CellSearch System, 350μ1 of RLTplus buffer (Qiagen) was added to lyse CECs, then 4 μΐ poly(I) (Epicentre, Madison, WI) of 5¾/μ1 was added as carrier RNA, DNA and RNA was isolated using AUPrep DNA/RNA Micro Kit following the manufacturer's instruction. Two samples of the same spike-in was pooled for downstream analysis. The quantity and quality of RNA was examined by NanoDrop 1000 (NanoDrop, Wilmington, DE) and Agilent Bioanalyzer 2100 (Agilent, Santa Clara, CA). Endothelial cell RNA, smooth muscle cell RNA and PBMC RNA samples were converted into labeled target antisense RNA (cRNA) using the Single-Round RNA Amplification and Enzo Biotin Labeling System. Targets were hybridized to Affymetrix human U133 Plus 2.0 array following protocols as suggested by the supplier (Affymetrix, Santa Clara, CA). Following hybridization, arrays were washed and stained using standard Affymetrix procedures before scanning on the Affymetrix GeneChip Scanner and data extraction using Expression Console.
For EC spike-in and donor blood sample processed by CellSearch profile kit, RNA was converted to labeled target cDNA using the Ovation RNA Amplification System V2 (NuGEN, San Carlos, CA). Briefly, 50ng of total RNA was converted to double stranded cDNA using a DNA/RNA chimeric primer for reverse transcription, followed by isothermal amplification. The cDNA was purified using magnetic beads and quantitated by spectrophotometry. 3.75μg of the purified cDNA subsequently undergoes a two-step fragmentation and labeling process using the Encore Biotin Module (NuGEN). First, the purified cDNA was fragmented to yield single- stranded cDNA products in the 50 to 100 base range. Second, this fragmentation product was labeled via enzymatic attachment of a biotin-labeled nucleotide to the 3-hydroxyl end of the fragmented cDNA generated in the first step. For hybridization, a hybridization cocktail was prepared and added to the fragmentation product using the Hybridization, Wash and Stain kit (Affymetrix), applied to arrays, and incubated at 45°C for 18 hours. Following hybridization, arrays were washed and stained using standard Affymetrix procedures before scanning on the Affymetrix GeneChip Scanner and data extraction using Expression Console.
Gene expression intensities were extracted with Affymetrix Expression Console (version 1.1) using MAS5 algorithm. Global scaling was performed to bring the average signal intensity of a chip to a target of 600 before data analysis. To minimize noise levels, probes with fewer than two Presence calls in the cohort were removed. As a result, 3 IK probe sets remained for subsequent analyses. It was observed that there was a source effect between samples from cell culture and samples from cell pellet. To minimize this effect, probes that showed significant difference (p < 0.05) between these two groups were removed. Thus, 23K probes were obtained. To find markers for detecting CECs in the blood, probe sets that had a presence call in the two PBMC samples or had intensity above 200 in either of the two PBMC samples were removed, and 3950 probe sets were retained for further selections. For hierarchical clustering, signal intensities were normalized to the medium per probe set;
hierarchical clustering was performed using Partek Genomics Suites (version 6.5, Partek Inc., St. Louis, MO). Hierarchical clustering was conducted on both the probes and the samples using the average linkage method. Euclidean distance metric was used for the calculation of dissimilarity. For unsupervised hierarchical clustering, the 23k probe sets after removing genes with significant difference between cell cultures and cell pellets were used. Supervised clustering was performed with either 130 CEC markers or 67 skin, artery, and vein EC specific-markers.
Functional annotation was analyzed with the Gene Ontology (GO) classification system using DAVID software (NCIF).
To evaluate the genes selected from the microarray analysis, R A were extracted from a set of 10 donor samples and 8 cell line spike-in samples (2 HAEC spike-in, 2 HPAEC spike-in , 2 HUVEC spike-in and 2 HMVEC-ad spike-in samples) processed by CellSearch using a CEC Profile kit. 2 μΐ RNA was used for cDNA synthesis using High-Capacity cDNA Reverse
Transcription Kit (Applied Biosystems, Foster City, CA) in a 20μ1 reaction. To enable multiple gene analysis, 5 μΐ of cDNA was used to conduct a 14-cycle preamplification using the
TaqMan® PreAmp Master Mix Kit (Applied Biosystems) in a 20 μΐ reaction. The
preamplification product was subjected to a 1 :20 dilution, and 5 μΐ of the diluted product was used as input for quantitative PCR. Real time-PCR was carried out using Applied Biosystems gene expression Taqman assays on an ABI PRISM 7900HT Sequence Detector (Applied Biosystems).
Example 2: Gene Experssion Analysis
RNAs from eighteen endothelial cell samples, two PBMC samples and two smooth muscle cell samples were subjected for microarray analysis using the Affymetrix Human Genome U133 Plus 2.0 Array, which contains more than 54000 probe sets covering 47,000 transcripts and variants, including 38,500 well-characterized human genes. The set of endothelial cell samples represents nine distinct anatomical locations including five different arteries (aorta, coronary artery, pulmonary artery, iliac artery, and umbilical artery), two different veins (umbilical vein and saphenous vein), and two different tissues (skin and heart). Except for iliac artery and skin, two samples including one from cultured cells and one from frozen cell pellet were obtained for each origin. For iliac artery and skin, two samples from the same cultured cells were used and served as technical replicates. To gain an overview of the gene expression pattern, an unsupervised clustering analysis of the gene array data was performed using 31k probe sets that show present call in at least two samples. Initial analysis of the endothelial cell cluster indicated that the samples from cell culture and samples from cell pellet form different clusters possibly due to difference in sample type. To eliminate this difference, a t-test was perfomred between these two groups of samples. Probe sets with P-value<0.05 were eliminated resulting in 23k probe sets. The unsupervised analysis on these 23k probe sets resulted in three major clusters, the cluster of PBMC samples, the cluster of smooth muscle cell samples and the cluster of endothelial cell samples, reflecting the overall similarity of endothelial cells as compared to PBMC and smooth muscle cells. Within the endothelial cell cluster, the samples from cell pellet and cell culture were not separated, indicating the elimination of source effect. However, samples from same anatomical location were not always cluster together, possibly due to the relative small sample size and the difference of cell culture conditions.
Example 3: Use of the CellSearch System to Enrich CECs.
The CellSearch system was used to isolate CECs from the spiked donor samples described above. The antibody against the most prominent endothelial membrane antigen CD 146 was used for the immuno-capture reagent. However, there were still about 1000 to 5000 leukocyte cells remaining in the enriched CEC population after the enrichment process. To identify potential CEC specific markers, the expression level of a specific marker in endothelial cells had to be substantially higher than its expression level in PBMC. Thus, probe sets that had a presence call in any of the two PBMC samples or its intensity was above 200 in either of the two PBMC samples were removed. 3950 probes were retained for further analysis. Probes with minimal intensity lower than 1000 in the 18 CEC samples were not considered for subsequent analyses. As a result, 130 probe sets (106 unique genes) were selected as candidates for CEC markers. Functional annotation and pathway analysis was conducted of these 130 probe sets using the DAVID functional annotation software. GO (Gene ontology) term and KEGG (Kyoto
Encyclopedia of Genes and Genomes) pathways with significant over-representation are shown in Table 1. The top bioprocess over-represented in these 130 probe sets included genes involved in regulation of cell motion (n=l 1), regulation of cell migration (n=10) and blood vessel development (n=l 1). The over-represented cellular component group include plasma membrane (n=44) and focal adhesion (n=6). The over-represented molecular function group include transmembrane receptor protein tyrosine kinase activity (n=7) and protein tyrosine kinase activity (n=8). The major pathways associated with CEC specific genes were focal adhesion (n=12) and ECM-receptor interaction (n=5). One of the functions of endothelial cell is angiogenesis, during which substantial changes in the adhesive interactions between cells and the extracellular matrix (ECM) take place to allow endothelial cell migration.
Example 3: Gene-Based Markers.
CEC specific genes were identified based on Example 2. These include: Integrin related genes Integrin alpha2 (ITGA2), AXL receptor tyrosine kinase (AXL), EPH receptor A2 (EPHA2), TEK tyrosin kinase, endothelial (TEK), met proto-oncogene (MET), neuropilin 1 (NRP1), VEGFR2 (KDR), and TIE1; angiogenesis related genes activin A receptor type II-like 1 (ACVRL1), connective tissue growth factor (CTGF), endothelial cell-specific chemotaxis regulator (ECSCR), endothelin \(EDN1) and roundabout homo log 4 (ROB04); genes relating to the maintenance of vascular integrity through cell-cell interactions, CA V1, CA V2, COL4A1,
C0L5A2,CCND1,FLNB,ITGA2, KDR, LAMA4, LAMB1, PARVA, MET; and independently, MCAM (CD 146), KDR (VEGFR-2), TEK (Tie-2). However, some genes associated with endothelial cells are not markers in the present context due to either high expression in PBMC, such as PECAM(CD3 l), CXCR4, or expression that are too low to be diagnostically useful as seen in one or more endothelial cell lines (such as KIT(SCF R/c-kit) and ffi'ZE(E-selectin)). The CEC markers identified in these examples over-represent bioprocess or pathways that are associated with endothelial cell functions.
Example 4: Tissue of Origin. The 3950 genes which showed no expression or with intensity less than 200 in both PBMC samples were used to identify gene-based markers useful to identify the tissue of origin of CECs. Artery EC-specific genes were identified as those whose median signal intensity in EC from artery was over 500 and greater than maximum expression in EC from other origins. Likewise, to identify vein EC-specific genes, genes whose median signal intensity in EC from vein was more than 500 and greater than maximum expression in EC from other origins were identified. There were 38 artery EC-specific genes and 14 vein EC-specific genes satisfied these criteria (Table 3). The representative of the artery-specific genes was the previously reported artery EC-specific gene HEY2, a member of the Hairy-related transcription factor family that has been implied to be required for embryonic cardiovascular development in mouse. Other artery specific CEC genes included CXADR; which is a component of tight junction and has been reported to express asymmetrically in heart, in which expression was shown in subendothelial layers of the vessel wall, but not on the luminal endothelial surface. SOX17, a HMG-box transcription factor has been shown to play important roles in both endoderm formation and cardiovascular
development, whose promoter activity has been shown in the vascular endothelial cells of arteries in the cardiovascular system but not in veins in a mouse model. To enable the detection of tissue specific markers particularly amenable to use with an immunomagnetic platform such as the CellSearch system, the expression level of the selected markers was significantly higher than that in PBMC. For skin EC-specific genes identification, genes whose minimum expression in EC from skin is 5 fold higher than the maximum expression of all other EC samples were selected. There were 15 such genes.
Supervised clustering was performed on the cell line microarray data using the 67 origin-specific genes. The 67 genes correctly clustered EC from different origin with only one exception (an arterial EC cell clustered with venous EC). Cross verification of the genes was also conducted. Example 5: Verification of Markers by Endothelial Cell Spike-In.
Endothelial cells were spiked into healthy donor blood, and then CECs were enriched using the CellSearch System with the CEC Profile kit. Each 4 ml healthy donor blood was spiked in with 500 or 1000 cultured endothelial cells from one origin. Four selected cultured endothelial cell samples including two from artery (HAEC and HPAEC), one from vein (HUVEC), and one from skin (HMVEC-ad) were examined. The enriched CEC samples from spike-in and 10 healthy donor samples without spike -in were subjected to R A isolation and Microarray analysis. The number of CECs from the 10 donors was determined to be from 2 to 107 in 4 ml blood. Among the 130 CEC specific markers obtained from the cell line gene expression profiling microarray data, all of them shown higher average expression in EC spike-in samples than in donor samples, with the ratio of mean expression in EC spike-in to donor ranging from 2 to 655, and 93 genes have the ratio greater than 20. Validation using QRT-PCR was conducted on 21 markers with a ratio of 8 to 654 between spike-in samples vs. donor samples, and the PCR results demonstrated that all of the selected markers had good separation between EC spike -in samples and non-spike- in donors. To validate the artery-, vein-, and skin- specific markers, a principal component analysis was performed for the spike-in microarray data using the 67 origin-specific markers. Donor samples and artery-, vein-, skin- endothelial cell spike-in samples were clearly separated in the PCA. The markers are thus useful for differentiating CECs from various origins.
Example 6: Correlating Disease State with CEC Analysis (Prophetic)
Whole blood is taken from a patient directly into a tube containing CellSave preservative. This is done according to the same protocol used to collect blood for Circulating Tumor Cell (CTC) analysis using the CellSave system. CECs are enriched via the CellSearch system with a CEC cell capture kit. In this system, immunomagnetic enrichment is first conducted with the
AUTOPREP separation system to produce an enriched fraction. The kit that is used contains CD 146 ferro fluid and reagent to stain the enriched cells with the nucleic acid dye DAPI, endoglin (CD105)-PE and the pan-leukocyte marker CD45APC. The sample is reduced to around 300 uL and placed in an analysis chamber that is mounted inside a magnetic "nest" to magnetically monolayer the cells. Enumeration and morphological analysis of the CEC is then conducted. CECs are then extracted from the magnetic nesting devices. Total RNA is extracted with the RNeasy Micro Kit (Qiagen, Hilden, Germany). The RNA is converted into cDNA as follows: First, the total amount of extracted RNA is pre-incubated with 300 ng random hexamer at 65° C. for 5 minutes. Then 200 U M-MLV Reverse Transcriptase, RNase H Minus, Point Mutant, M- MLV Reverse Transcriptase lx Reaction Buffer, 10 U RNasin® Plus RNase Inhibitor (all purchased from Promega, Madison Wis.), 50 nmol of an equimolarmix of dATP, dTTP, dCTP and dGTP (Amersham Biosciences, Freiburg, Germany) and water is added to a final reaction volume of 20 ul. The reaction is performed at 55° C. for 50 minutes after a pre -incubation step at 20° C. for 10 min. Finally, the reaction is stopped by heating up to 94° C. for 5 min.
Quantitative Reverse-Transcription PCR (qRTPCR) is then performed as follows. Gene expression analysis is conducted duplicate reactions using individual TaqMan® Pre-Developed Assay Reagents specific for the Artery markers in Table 3. In each case they consist of two unlabeled PCR primers and one FAMTM dye-labeled TaqMan® MGB probe as used with the systems described above. The total volume of the reactions is 14 |xl containing 7 ul 2x TaqMan® Universal PCR Master, 0.7 |xl TaqMan® Pre-developed Assay Reagents, and 4 |xl fivefold diluted cDNA template. The PCR amplification is performed using the AB 7900HT Fast Realtime PCR System and consists of an initial incubation at 50° C. for 2 min., then 95° C. for 10 min., followed by 50 cycles of denaturation at 95° C. for 15 s and extension at 60° C. for 1 min. The data are analyzed with the AB7900 Sequence Detection Software version 2.2.2 using automatic baseline correction and cycle threshold setting. Resulting cycle threshold (Ct) data is exported for further analysis. Consumables, equipment and software were purchased from Applied Biosystems, Foster City Calif, USA.
A number of arterial CEC tissue of origin markers show significant over-expression. The data is downloaded to a file that is used by a program that compares the expression pattern to numerous expression patterns constructed by matching CEC marker expression to known clinical outcomes. The program is contained on storage device that also contains executable code for conducting the comparison using statistically based algorithms. The pattern indicates that the CEC's are arterial in nature and, more specifically, are aortic. Together with other diagnostic information it is concluded that the patient is likely to incur a thoracic aortic aneurism if left untreated. Table 1: Pathway Analysis of Gene Signatures
Category GO Term Number of P Value genes
Biological Process regulation of cell motion 1 1 2.43E-07 regulation of cell migration 10 8.03E-07 blood vessel development 1 1 2.15E-06 regulation of locomotion 10 2.32E-06 vasculature development 1 1 2.68E-06 blood vessel morphogenesis 10 5.04E-06 angiogenesis 8 3.12E-05 cytoskeleton organization 1 1 2.93E-04 tube development 8 3.70E-04 regulation of response to external stimulus 7 4.02E-04 transmembrane receptor protein tyrosine kinase signaling pathway 8 4.12E-04
Cellular plasma membrane 44 2.47E-05
Component
focal adhesion 6 5.50E-04 plasma membrane part 28 6.12E-04 I cell-substrate adherens junction 6 6.55E-04 intrinsic to plasma membrane 19 7.74E-04 cell-substrate junction 6 8.41 E-04 extracellular matrix part 6 1.02E-03
Molecular Function transmembrane receptor protein tyrosine kinase activity 7 3.35E-06 protein tyrosine kinase activity 8 7.14E-05
KEGG PATHWAY Focal adhesion 12 7.07E-08
ECM-receptor interaction 5 2.73E-03
Table 2: Identified CEC Gene-Based Markers
Figure imgf000017_0001
Table 2: Identified CEC Gene-Based Markers
Figure imgf000018_0001
Table 3: Tissue Specific Gene-Based Markers
Figure imgf000019_0001
Figure imgf000019_0002
>refseq | NM_0155771 NM_015577 Homo sapiens retinoic acid induced 14 (RAI14), transcript variant 1, mRNA.
actgacccccgcagcgggggaggaggagggactgcggcgcaggaagccgagcaggaagcg
agcccggcggccgcgttttcctggggaagcggcgggcggggtggagcagccagctgggtc
cggggagcgccgccgccgcctcgatggggtgttgaaaagtctcctctagagctttggaag
gctgaatgcactaaacatgaagagcttgaaagcgaagttcaggaagagtgacaccaatga
gtggaacaagaatgatgaccggctactgcaggccgtggagaatggagatgcggagaaggt
ggcctcactgctcggcaagaagggggccagtgccaccaaacacgacagtgagggcaagac
cgctttccatcttgctgctgcaaaaggacacgtggaatgcctcagggtcatgattacaca
tggtgtggatgtgacagcccaagatactaccggacacagcgccttacatctcgcagccaa
gaacagccaccatgaatgcatcaggaagctgcttcagtctaaatgcccagccgaaagtgt
cgacagctctgggaaaacagctttacattatgcagcggctcagggctgccttcaagctgt
gcagattctctgcgaacacaagagccccataaacctcaaagatttggatgggaatatacc
gctgcttcttgctgtacaaaatggtcacagtgagatctgtcactttctcctggatcatgg
agcagatgtcaattccaggaacaaaagtggaagaactgctctcatgctggcctgtgagat
tggcagctctaacgctgtggaagccttaattaaaaagggtgcagacctaaaccttgtaga
ttctcttggatacaatgccttacattattccaaactctcagaaaatgcaggaattcaaag
ccttctattatcaaaaatctctcaggatgctgatttaaagaccccaacaaaaccaaagca
gcatgaccaagtctctaaaataagctcagaaagaagtggaactccaaaaaaacgcaaagc
tccaccacctcctatcagtcctacccagttgagtgatgtctcttccccaagatcaataac
ttcgactccactatcgggaaaggaatcggtattttttgctgaaccacccttcaaggctga
gatcagttctatacgagaaaacaaagacagactaagtgacagtactacaggtgctgatag
cttattggatataagttctgaagctgaccaacaagatcttctctctctattgcaagcaaa
agttgcttcccttaccttacacaataaggagttacaagataaattacaggccaaatcacc
caaggaggcggaagcagacctaagctttgactcataccattccacccaaactgacttggg
cccatccctgggaaaacctggtgaaacctctcccccagactccaaatcatctccatctgt cttaatacattctttaggtaaatccactactgacaatgatgtcagaattcagcaactgca agagattttgcaagatctacagaagagattagagagctctgaagcagagagaaaacagct acaggtcgaactccaatcccgaagggcagaactggtatgcttaaacaacactgagatttc agagaacagctctgacctcagccagaaacttaaagaaactcagagcaaatacgaggaggc tatgaaagaagtccttagtgtgcagaagcagatgaaactcggtcttgtctcacctgaaag catggataattattcacatttccacgagctgagggtcacggaagaggaaataaatgtgct aaagcaggatctgcagaatgcattagaagaaagtgaaagaaataaagagaaagtgagaga gttagaggaaaaactggtagagagggagaaaggtacagtgattaagccacctgtggaaga gtacgaggaaatgaaaagttcatattgctctgttattgagaatatgaataaggagaaagc atttttgtttgagaaataccaagaagcccaagaagaaatcatgaaattaaaagacacact aaaaagtcagatgacacaggaagccagtgatgaagctgaggacatgaaagaagccatgaa taggatgatagatgaactcaataaacaggtgagcgagctgtcacagctgtacaaagaagc ccaggctgagctggaggattacaggaagaggaaatctctagaggatgtcacagctgaata tatccataaagcagagcatgagaaactgatgcaattgacaaacgtgtccagggctaaagc agaagatgcactgtctgaaatgaagtctcagtattcaaaagtgttgaatgagttgaccca gctcaaacaactggtggatgcacaaaaagagaactctgtctctatcacagaacatttgca agtgataaccacgctgcggactgcagcaaaagagatggaagaaaaaataagcaatcttaa ggaacaccttgcaagcaaggaagtggaagtagcaaagctggagaaacaactcttagaaga gaaagctgctatgactgatgcaatggtacctcggtcttcctatgaaaaactccagtcatc cttagagagtgaagtgagtgtgttggcatcgaaattaaaggaatctgtgaaagagaaaga gaaggtccattcagaggttgtccagattagaagtgaggtctcacaggtgaaaagagaaaa ggaaaatattcagactctcttgaaatccaaagagcaagaagtaaatgaacttctgcaaaa attccagcaagctcaggaagaacttgcagaaatgaaaagatacgctgagagctcttcaaa actggaggaagataaagataaaaagataaatgagatgtcgaaggaagtcaccaaattgaa ggaggccttgaacagcctctcccagctctcctactcaacaagctcatccaaaaggcagag tcagcagctggaggcgctgcagcagcaagtcaaacagctccagaaccagctggcggaatg caagaaacaacaccaggaggtcatatcagtttacagaatgcatcttctgtatgctgtgca gggccagatggatgaagatgtccagaaagtactgaagcaaatccttaccatgtgtaaaaa ccagtctcaaaagaagtaaagtggattccttggcaggacactgccccttgtcatctgtct ttgtgttagatccagagttgtcggcagccgctgccattgttctcattcgtggtatgcact gtggcctagcgtagcttcttccctttccaaaggtttctgaggacttctcccaggagaaga ctgcccgcctcagaactgcttagagacttcaaaccagcagaggtgaaagtccctgtcatc ccttcagattccagagctgggatcagccatgcccagaggtctggtcctgatgctggcagg ggggccccctcctccatccctgactggctgagtggctttatcaccaccgagtgatgtgct gaggcctcctgcagtgaatgctccttccattcctgtactcgggcagtgccattcagcaca ggagagctctttttgcctttggctttcaattccaaaacatgatttaatttctaactaaat tagtatggcactagttatgaagtatctgcttaaaacccttcatcatgatatcctgtggat ttaaaaactctaattccatgttttcttcccatctgccttatatatctcatcaccctgctt atcaatattcagtttgatgagcactattaactaaaatatgaaacttaaaaacaaaagcaa gttgtccttaaaagttctttttttaagtaaattgttgacatactgcaaattttctatgca aacttgcctcctgctgttatctgtgaagctcaggaaatccaaacatttgtgtttcaacaa gggacagtaaactgtgtgtttacagccaaaagaaatgcctcatagttcttaacctcaact tttgtagaagtatttttttctctgtaatatttttattggctcataaagatgttttcatat ctgaactcctaaataagtgaaattacagtagattatattaacaaaatactttttaggtag ccatgcttgagactttttaaaaatataactttttccttaaagttttcagctatagcaaaa ggtagttatgtatgccagacctaatatgagctgccaccaacacccctagaactttcagcc atggtgtcttcagaattgtagcgcatttctgaatctagcaaatcctccttttacccgttg aatgttttgaatgccctgactctaccagcgcccataaatgatctctagaaggactgttag taccaatctgtttttcaactttgaagctaaaaaccctgatatggtaatattatggtgcat agcagaggtctcggaaaaaaaatatttctgttcactttactttcaggttaaaaatgtttc taacacgcttgcaacttcccttatggcattaatcttgttgagggagagagacagaatcct
ggactctccaaagtatttaactgaaagtagggcctgctctgacagggcccatgtcccaca
aggctgcttggcctcagtgggtgcttggctgtgctggatgatatgttgatctgtattgga
taaggaccaatgacagcaaagcaaaaatggctttaaagcttggtgttacttttcttaagt
tgtttaattatagttaagcaatttcaaaaatgctccaaagaaatgtgaaaggaccttttg
tcacagcacttcagaaaatacacaacagccccttctgcccccgcacagaaatgctgcaga
gtatataaaacttgagacatttttgtaggatgcctgacgaggtgtagccttttatcttgt
ttccggatgcatatttattacgagtactctggttaaatattgaaaagttatatgctgtag
tttttagtattttgtctttgtaatttacagaagttattggagaaaataaacttgtttcat
tttgcaaaaaaaaaaaaaaaaaaaaaaaaa
>refseq | NM_0050451 NM_005045 Homo sapiens reelin (RELN), transcript variant 1, mRNA. ctcggcgggggcccgctcccaggcccgctcccgagcccgttccgctcccgtccgccttct
tctcgccttctctccgcgtggctcctccgtcccggcgtctccaaaactgaatgagcgagc
ggcgcgtagggcgcgcggcggcggcggcggcggcggcggcatggagcgcagtggctgggc
ccggcagactttcctcctagcgctgttgctgggggcgacgctgagggcgcgcgcggcggc
tggctattacccccgcttttcgcccttctttttcctgtgcacccaccacggggagctgga
aggggatggggagcagggcgaggtgctcatttccctgcatattgcgggcaaccccaccta
eta cgttccggga ca aga ata cca tgtga ca a tttca a ca agca ccttttttga eggett
gctggtgacaggactatacacatctacaagtgttcaggcatcacagagcattggaggttc
cagtgctttcggatttgggatcatgtctgaccaccagtttggtaaccagtttatgtgcag
tgtggtagcctctcacgtgagtcacctgcccacaaccaacctcagtttcatctggattgc
tccacctgcgggcacaggctgtgtgaatttcatggctacagcaacacaccggggccaggt
tattttcaaagatgctttagcccagcagttgtgtgaacaaggagctccaacagatgtcac
tgtgcacccacatctagctgaaatacatagtgacagcattatcctgagagatgactttga
ctcctaccaccaactgcaattaaatccaaatatatgggttgaatgtaacaactgtgagac tggagaacagtgtggcgcgattatgcatggcaatgccgtcaccttctgtgaaccatatgg cccacgagaactgattaccacaggccttaatacaacaacagcttctgtcctccaattttc cattgggtcaggttcatgtcgctttagttattcagaccccagcatcatcgtgttatatgc caagaataactctgcggactggattcagctagagaaaattagagccccttccaatgtcag cacaatcatccatatcctctaccttcctgaggacgccaaaggggagaatgtccaatttca gtggaagcaggaaaatcttcgtgtaggtgaagtgtatgaagcctgctgggccttagataa catcttgatcatcaattcagctcacagacaagtcgttttagaagatagtctcgacccagt ggacacaggcaactggcttttcttcccaggagctacagttaagcatagctgtcagtcaga tgggaactccatttatttccatggaaatgaaggcagcgagttcaattttgccaccaccag ggatgtagatctttccacagaagatattcaagagcaatggtcagaagaatttgagagcca gcctacaggatgggatgtcttgggagctgtcattggtacagaatgtggaacgatagaatc aggcttatcaatggtcttcctcaaagatggagagaggaaattatgcactccatccatgga cactaccggttatgggaacctgaggttttactttgtgatgggaggaatttgtgaccctgg aaattctcatgaaaatgacataatcctgtatgcaaaaattgaaggaagaaaagagcatat aacactggataccctttcctattcctcatataaggttccgtctttggtttctgtggtcat caatcctgaacttcagactcctgctaccaaattttgtctcaggcaaaagaaccatcaagg acataataggaatgtctgggctgtagactttttccatgtcttgcctgttctcccttctac aatgtctcacatgatacagttttccatcaatctgggatgtggaacgcatcagcctggtaa cagtgtcagcttggaattttctaccaaccatgggcgctcctggtccctccttcacactga a tgctta cctgaga tctgtgctgga cccca cctccccca cagca ctgtcta ctcctctga aaactacagtgggtggaaccgaataacaattccccttcctaacgcagcactaacccggaa caccaggattcgctggagacaaacaggaccaatccttggaaacatgtgggcaattgataa tgtttatattggcccgtcatgtctcaaattctgttctggcagaggacagtgcactagaca tggttgcaagtgtgaccctggattttctggcccagcttgtgagatggcatcccagacatt cccaatgtttatttctgaaagctttggcagttccaggctctcctcttaccataactttta ctctatccgtggtgctgaagtcagctttggttgtggtgtcttggccagtggtaaggccct ggttttcaacaaagatgggcggcgtcagctaattacatctttccttgacagctcacaatc caggtttctccagttcacactgagactggggagcaaatctgttctgagcacgtgcagagc ccctgatcagcctggtgaaggagttttgttgcattattcttatgataatgggataacttg gaaactcctggagcattattcatatctcagctatcatgagcccagaataatctccgtaga actaccaggtgatgcaaagcagtttggaattcagttcagatggtggcaaccgtatcattc ttcccagagagaagatgtatgggctattgatgagattatcatgacatctgtgcttttcaa cagcattagtcttgactttaccaatcttgtggaggtcactcagtctctgggattctacct tggaaatgttcagccatactgtggccacgactggaccctttgttttacaggagattctaa acttgcctcaagtatgcgctatgtggaaacacaatcaatgcagataggagcatcctatat gattcagttcagtttggtgatgggatgtggccagaaatacaccccacacatggacaacca ggtgaagctggagtactcaaccaaccacggccttacctggcacctcgtccaagaagaatg ccttccaagtatgccaagttgtcaggaatttacatcagcaagtatttaccatgccagtga gtttacacagtggaggagagtcatagtgcttcttccccagaaaacttggtccagtgctac ccgtttccgctggagccagagctattacacagctcaagacgagtgggctttggacagcat ttacattgggcagcagtgccccaacatgtgcagtgggcatggctcatgcgatcatggcat atgcaggtgtgaccaggggtaccaaggcactgaatgccacccagaagctgcccttccgtc cacaattatgtcagattttgagaaccagaatggctgggagtctgactggcaagaagttat tgggggagaaattgtaaaaccagaacaagggtgtggtgtcatctcttctggatcatctct gtacttcagcaaggctgggaaaagacagctggtgagttgggacctggatacttcttgggt ggactttgtccagttctacatccagataggcggagagagtgcttcatgcaacaagcctga cagcagagaggagggcgtcctccttcagtacagcaacaatgggggcatccagtggcacct gctagcagagatgtacttttcagacttcagcaaacccagatttgtctatctggagcttcc agctgctgccaagaccccttgcaccaggttccgctggtggcagcccgtgttctcagggga ggactatgaccagtgggcagtcgatgacatcatcattctgtccgagaagcagaagcagat catcccagttatcaatccaactttacctcagaacttttatgagaagccagcttttgatta ccctatgaatcagatgagtgtgtggttgatgttggctaatgaaggaatggttaaaaatga aaccttctgtgctgccacaccatcagcaatgatatttggaaaatcagatggagatcgatt tgcagtaactcgagatttgaccctgaaacctggatatgtgctacagttcaagctaaacat aggttgtgccaatcaattcagcagtactgctccagttcttcttcagtactctcatgatgc tggtatgtcctggtttctggtgaaagaaggctgttacccggcttctgcaggcaaaggatg cgaaggaaactccagagaactaagtgagcccaccatgtatcacacaggggactttgaaga atggacaagaatcaccattgttattccaaggtctcttgcatccagcaagaccagattccg atggatccaggagagcagctcacagaaaaacgtgcctccatttggtttagatggagtgta catatccgagccttgtcccagttactgcagtggccatggggactgcatttcaggagtgtg tttctgtgacctgggatatactgctgcacaaggaacctgtgtgtcaaatgtccccaatca caatgagatgttcgataggtttgaggggaagctcagccctctgtggtacaagataacagg tgcccaggttgga a ctggctgtgga a ca ctta acga tggca a a tctctcta cttca a tgg ccctgggaaaagggaagcccggacggtccctctggacaccaggaatatcagacttgttca attttatatacaaattggaagcaaaacttcaggcattacctgcatcaaaccaagaactag aaatgaagggcttattgttcagtattcaaatgacaatgggatactctggcatttgcttcg agagttggacttcatgtccttcctggaaccacagatcatttccattgacctgccacagga cgcgaagacacctgcaacggcatttcgatggtggcaaccgcaacatgggaagcattcagc ccagtgggctttggatgatgttcttataggaatgaatgacagctctcaaactggatttca agacaaatttgatggctctatagatttgcaagccaactggtatcgaatccaaggaggtca agttgatattgactgtctctctatggatactgctctgatattcactgaaaacataggaaa acctcgttatgctgagacctgggattttcatgtgtcagcatctacctttttgcagtttga aatgagcatgggctgtagcaagcccttcagcaactcccacagtgtacagctccagtattc tctgaacaatggcaaggactggcatcttgtcaccgaagagtgtgttcctccaaccattgg ctgtctgcattacacggaaagttcaatttacacctcggaaagattccagaattggaagcg gatcactgtctaccttccactctccaccatttctcccaggacccggttcagatggattca ggccaactacactgtgggggctgattcctgggcgattgataatgttgtactggcctcagg gtgcccttggatgtgctcaggacgagggatttgtgatgctggacgctgtgtgtgtgaccg gggctttggtggaccctattgtgttcctgttgttcctctgccctcgattcttaaagacga tttcaatgggaatttacatcctgacctttggcctgaagtgtatggtgcagagagggggaa tctgaatggtgaaaccatcaaatctggaacatctctaatttttaaaggggaaggactaag gatgcttatttcaagagatctagattgtacaaatacaatgtatgtccagttttcacttag atttatagcaaaaagtaccccagagagatctcactctattctgttacaattctccatcag tggaggaatcacttggcacctgatggatgaattttactttcctcaaacaacgaatatact tttcatcaatgttcccttgccatacactgcccaaaccaatgctacaagattcagactctg gcaaccttataataacggtaagaaagaagaaatctggattgttgatgacttcattatcga tggaaataatgtaaacaaccctgtgatgctcttggatacatttgattttgggcccagaga agacaattggtttttctatcctggtggtaacatcggtctttattgtccatattcttcaaa gggggcacctgaagaagattcagctatggtgtttgtttcaaatgaagttggtgagcattc cattaccacccgtgacctaaatgtgaatgagaacaccatcatacaatttgagatcaacgt tggctgttcgactgatagctcatccgcggatccagtgagactggaattttcaagggactt cggggcgacctggcaccttctgctgcccctctgctaccacagcagcagccacgtcagctc tttatgctccaccgagcaccaccccagcagcacctactacgcaggaaccatgcagggctg gaggagggaggtcgtgcactttgggaagctgcacctttgtggatctgtccgtttcagatg gtaccagggattttaccctgccggctctcagccagtgacatgggccattgataatgtcta catcggtccccagtgtgaggagatgtgtaatggacaggggagctgtatcaatggaaccaa atgtatatgtgaccctggctactcaggtccaacctgtaaaataagcaccaaaaatcctga ttttctcaaagatgatttcgaaggtcagctagaatctgatagattcttattaatgagtgg tgggaaaccatctcgaaagtgtggaatcctttctagtggaaacaacctctttttcaatga agatggcttgcgcatgttgatgacacgagacctggatttatcacatgctagatttgtgca gttcttcatgagactgggatgtggtaaaggcgttcctgaccccaggagtcaacccgtgct cctacagtattctctcaacggtggcctctcgtggagtcttcttcaggagttccttttcag caattccagcaatgtgggcaggtacattgccctggagatacccttgaaagcccgttctgg ttcta ctcgccttcgctggtggca a ccgtctgaga a tgggca cttcta cagcccctgggt tatcgatcagattcttattggaggaaatatttctggtaatacggtcttggaagatgattt cacaacccttgatagtaggaaatggctgcttcacccaggaggcaccaagatgcccgtgtg tggctctactggtgatgccctggtcttcattgaaaaggccagcacccgttacgtggtcag cacagacgttgccgtgaatgaggattccttcctacagatagacttcgctgcctcctgctc agtcacagactcttgttatgcgattgaattggaatactcagtagatcttggattgtcatg gcacccattggtaagggactgtctgcctaccaatgtggaatgcagtcgctatcatctgca acggatcctggtgtcagacactttcaacaagtggactagaatcactctgcctctccctcc ttataccaggtcccaagccactcgtttccgttggcatcaaccagctccttttgacaagca gcagacatgggcaatagataatgtctatatcggggatggctgcatagacatgtgcagtgg ccatgggagatgcatccagggaaactgcgtctgtgatgaacagtggggtggcctgtactg tgatgaccccgagacctctcttccaacccaactcaaagacaacttcaatcgagctccatc cagtcagaactggctgactgtgaacggagggaaattgagtacagtgtgtggagccgtggc gtcgggaatggctctccatttcagtgggggttgtagtcgattattagtcactgtggatct aaacctcactaatgctgagttcatccaattttacttcatgtatgggtgcctgattacacc aaacaaccgtaaccaaggtgttctcttggaatattctgtcaatggaggcattacctggaa cctgctcatggagattttctatgaccagtacagtaagcccggatttgtgaatatccttct ccctcctgatgctaaagagattgccactcgcttccgctggtggcagccaagacatgacgg cctggatcagaacgactgggccattgacaatgtcctcatctcaggctctgctgaccaaag gaccgttatgctggacaccttcagcagcgccccagtaccccagcatgagcgctcccctgc agatgccggccctgtcgggaggatcgcctttgacatgtttatggaagacaaaacttcagt gaatgagcactggctattccatgatgattgtacagtagaaagattctgtgactcccctga tggtgtgatgctctgtggcagtcatgatggacgggaggtgtatgcagtgacccatgacct gactcccactgaaggctggattatgcaattcaagatctcagttggatgtaaggtgtctga aaaaattgcccagaatcaaattcatgtgcagtattctactgacttcggtgtgagttggaa ttatctggtccctcagtgcttgcctgctgacccaaaatgctctggaagtgtttctcagcc atctgtattctttccaactaaagggtggaaaaggatcacctacccacttcctgaaagctt agtgggaaatccggtaaggtttaggttctatcagaagtactcagacatgcagtgggcaat cgataatttctacctgggccctggatgcttggacaactgcaggggccatggagattgctt aagggaacagtgcatctgtgatccgggatactcagggccaaactgctacttgacccacac tctgaagactttcctgaaggaacgctttgacagtgaagaaatcaaacctgacttatggat gtccttagaaggtggaagtacttgcactgagtgtggaattcttgccgaggacactgcact ctattttgggggatccactgtgagacaagcggttacacaagatttggatcttcgaggtgc aaagttcctgcaatactgggggcgcatcggtagtgagaacaacatgacctcttgccatcg tcccatctgccggaaggaaggcgtgctgttggactactctaccgatggaggaattacctg gactttgctccatgagatggattaccagaaatacatttctgttagacacgactacatact tcttcctga aga tgccctca cca a ca ca a ctcga cttcgctggtggcagccttttgtga t cagcaatggaattgtggtctctggggtggagcgtgctcagtgggcactggacaacatttt gattggtggagcagaaatcaatcccagccaattggtggacacttttgatgatgaaggcac ttcccatgaagaaaactggagtttttaccctaatgctgtaaggacagcaggattttgtgg caatccatcctttcacctctattggccaaataaaaagaaggacaagactcacaatgctct ctcctcccgagaactcattatacagccaggatacatgatgcagtttaaaattgtggtggg ttgtgaagccacttcttgtggtgaccttcattccgtaatgctggaatacactaaggatgc aagatcggattcctggcagctcgtacagacccagtgccttccttcctcttctaacagcat tggctgctcccctttccagttccatgaagccaccatctacaactctgtcaacagctcaag ctggaaaagaatcaccatccagctgcctgaccatgtctcctctagtgcaacacagttccg ctggatccagaagggagaagaaactgagaagcaaagctgggcaattgaccacgtgtacat tggagaggcttgccccaagctctgcagcgggcacggatactgcacgaccggtgccatctg catctgcgacgagagcttccaaggtgatgactgctctgttttcagtcacgaccttcccag ttatattaaagataattttgagtccgcaagagtcaccgaggcaaactgggagaccattca aggtggagtcataggaagtggctgtgggcagctggccccctacgcccatggagactcact gtactttaatggctgtcagatcaggcaagcagctaccaagcctctggatctcactcgagc aagcaaaatcatgtttgttttgcaaattgggagcatgtcgcagacggacagctgcaacag tgacctgagtggcccccacgctgtggacaaggcagtgctgctgcaatacagcgtcaacaa cgggatcacctggcatgtcatcgcccagcaccagccaaaggacttcacacaagctcagag agtgtcttacaatgtccccctggaggcacggatgaaaggagtcttactgcgctggtggca accacgccacaatggaacaggtcatgatcaatgggctttggaccatgtggaggtcgtcct agtaagcactcgcaaacaaaattacatgatgaatttttcacgacaacatgggctcagaca tttctacaacagaagacgaaggtcacttaggcgatacccatgaagaatcaaaaagtttat tttttttcttccaacatgtgatgtgttgctctccattcttttaaatctcgcactacatct gatatcaggaaatatctgtgaaggacttggtgattacctgaaagcccttctcaagaccga gtgtacaccactttcccacactgtgaactaatgacaagtgacttatttgctcataagtaa atgtcttcatgttgatgtgtccgtgaaagttgtgatctgttgtaatatcagttacagtgg cagtattgacaataagaaacagtttaacagaaaaatgaaatttaagcacaaaaaatttaa gagattttatgtttaaaatggcatttagcacagtatttaacattcttggtcacaaagcta tttaagtggactgtatttcggctatgtctcatgttttatatgattaaattatcattgttt gtcctttatgtattctcttctacaatacaacacattgaaactgtatttacttgttatgtt gtaatattttgctgctgaatttggggctacttatattctgcagaaaattaattgaaatac ctattcaagaagatagttgtaaagatattgtatctcctttaatatactccttaaaaatgt atgttggtttagcgttgttttgtggataagaaaaatgcttgaccctgaaatattttctac tttaaattgtggatgaagaccctatctcccacaaataagttcccatttccttgtctaaag atctttttttaagtgttctgtggctgatttactaacagtaactgccattttttgtctgtg ataacagagtgatttgtaaaacagtggttgttttttcattgtgttttcttcgtggattgt tttttctgcgggtcatattcataccttctgatgaagttgtacaacaccagcaacattata atggccctgtagctctgaatgctatttgtgtaactgaaaggttgcactctagggtgaacc aagctataaaagcccatgcttaaataaaaattatgtccaaaagccattgaa
>ENA | AL037401 | AL037401.1 Homo sa piens m RNA; EST DKFZp564K1671_sl (from clone
DKFZp564K1671)
TT I I I I I I I I I I CT I I I I I I I TAGATATCAAATAATATTTTAATTTCTGAATACTTTCAA
TTTTCCTTGGAATATAACACACAAAGACTCGACCAAACAGTTCAGTTATTATAACTTTTA
CAGTAAACAGAAATGTTGCACTTAAAAAAAAACCTTCGGT I I I I I I AAAACACAAACNGT
AAACTCTAAGANACTGAATCAATCACGTTACCTATAAGTGCCAACAGTGTTATTTTTGTC
ATGCTGATTTCAATGGTATTTTTTAAAAAGGGAAAATATCAACAATTATAATACAAAGCG
TTTG C N AATATAC AA AC AG ATAT AG G ATTTTC AT AAC A ATTC A AG A ACTA AG CGGGGCCC
AATTCAAATTACAAAATTCACTTTTTATTCAATACCTCAGCATGTGTCTTGGACACATTC
CTTGGCTGCCAATAAAATCCACAGTTCATTCTCTTTCTTTAAATA I I I I I I AAAAGCTAG
G NTTGTC ATGGTTTCTTTTG GGGAGGGGCAGG GT AG GG G A AGTTA AGTGTTATATGTG GT
TCCTCCAGTTCTCTAATTAAAGTGCTCGNCTTCACCTAAAAANTTTGG
>ENA | BC004241 | BC004241.1 Homo sapiens laminin, alpha 4, m RNA (cDNA clone IMAGE:3623597), complete cds.
CGGCCAGGGAGAGGAGGTGGCCTAGCGCTGGCGGGGCTCACCCCAATCCGTCTGCCTTTT
GATGCCGTACTGTAAGCTCCGTCCATCTCTGCTGGTTGCGCAGCCACCTCGGGATACTGC
ACACGGAGAGGAGGGAAAATAAGCGAGGCACCGCCGCACCACGCGGGAGACCTACGGAGA
CCCACAGCGCCCGAGCCCTGGAAGAGCACTACTGGATGTCAGCGGAGAAATGGCTTTGAG
CTCAGCCTGGCGCTCGGTTCTGCCTCTGTGGCTCCTCTGGAGCGCTGCCTGCTCCCGCGC
CGCGTCCGGGGACGACAACGCTTTTCCTTTTGACATTGAAGGGAGCTCAGCGGTTGGCAG
GCAAGACCCGCCTGAGACGAGCGAACCCCGCGTGGCTCTGGGACGCCTGCCGCCTGCGGC
CGAGGTACAGTGTCCCTGCCATTGCCACCCTGCTGGGGCACCTGCGCCCCCGCGGGCTGT GCCACACTCGTCCTTCTCTCTCTCTCCGCCTCTTTCCTCTCCCCAGTGCCTTGAGAGTTT
CACCTGGGCTAGGTCAGTTCGGAAACTTGAAATAAAGAGTTTTCCTTTGTAAGTTGAAAA
AAAAAAAAAAAAAAA
>ENA | U77706 | U77706.1 Human laminin alpha 4 chain (LAMA4*-1) m NA, complete cds.
CAAACTGAATCCTGCTTTAATTCAAGCTTGTGGAGAACAAAGTCCTACAGAAACATTCCA
CAGAATTTTCTGGAAAAGAGGGATCACAACAACCCTGTAAAAAGGTGAGAAGGAAGCCAG
GACAGCGCAGTCCCCAGTCCCGAACGGCCAGGGAGAGGAGGTGGCCTAGCGCTGGCGGGG
CTCACCCCAATCCGTCTGCCTTTTGATGCCGTACTCTGCTGGTTGCGCACGCACCTCGGG
ATACTGCACACGGAGAGGAGGGAAAATAAGCGAGGCACCGCCGCACCACGCGGAGACCTA
CGGAGACCCACAGCGCCCGAGCCCTGGAAGAGCACTACTGGATGTCAGCGGAGAAATGGC
TTTGAGCTCAGCCTGGCGCTCGGTTCTGCCTCTGTGGCTCCTCTGGAGCGCTGCCTGCTC
CCGCGCCGCGTCCGGGGACGACAACGCTTTTCCTTTTGACATTGAAGGGAGCTCAGCGGT
TGGCAGGCAAGACCCGCCTGAGACGAGCGAACCCCGCGTGGCTCTGGGACGCCTGCCGCC
TGCGGCCGAGAAATGCAATGCTGGATTCTTTCACACCCTGTCGGGAGAATGTGTGCCCTG
CGACTGTAATGGCAATTCCAACGAGTGTTTGGACGGCTCAGGATACTGTGTGACTACTGA
CGGAGAAGACCCAGGTTTTTCAGCTTCTACCCTATCGTTCATTCTCAGCTCTCAGGGAGC
CAGAGAAGCCAGGGCTCCAACATGAACACTTCTTGTAGCTCACTGTCATGACCAGTGTTT
CAGTCAGTTCTTTCAGGTTGCCTGACTTACCTCATTTCTCTCATTTCCTGTAAGCAACCA
A AA ATA AA AGG CTTTCTTTTATTTC ATTTTGTCTTATTTTG CTTTT ATCTTG AAG G C ATA
TAAGACCTCTGTATCTGCCTTGTTCACCTTCAACTGCTTCTAATTCTTCCTCAATTCCAG
TGTCCAATGTCAATTTGAAATTAAAATTTACAGACTGATTTT
>ENA | U567251 U56725.1 Human heat shock protein mRNA, complete cds.
GGAATTCTT I I I I I I I I I I I I I I I I I I G A AAC AG G GTCTCGCTCTGTC ACCC AG G CTAA A
GTGTAGTGCCGCGATCTCAGCTCATTACAACCTCTGCCTCCCAGGTTCAAGGGATCCTCC
CACCTCAGCCTCCCAAGCAGTTGGGACCACAGGCATGTGCCACCATATCCGGCTAATTTT TGC I I I I I I CATAGAGACAGGGTTTCACCATGTTGCACAAGTCGGTCTTGAACTCCTGAG
CTCAAGTGAGCTACCTGCTTTGGCCTCCCAAAGTGCTGGGATTACACATGTGAACCACCG
TACCCG G CCCC AA AA ATG CTTTCTT AAG CGTA ACTACGTA ATG CTAGTTGTAGTTTAG AT
TCCTGGATGTTAACTTAAAATAGTCCCATAGGAACCCAGTGTGGTGGCTCACGCCTGTAA
TCCCAGCCTGAGGCAGGTGGATCATCTGAGGTCAGGAGTTCGAGACCAGCTGGGCCAACA
TG GTG A AACCCTGTCTCTACT AA AA AC AC AA AA AA ATTAG CTG G G C ATAGTG G C AG G C AC
CCGTAATTTCAGCTTCTCGGGACGCTGAGGCAGAAGAATTGCTTGAACCCAGGAGGCAGT
GGTTGCAGTGAGCCCAGATCGTGCCATTGCACTCCAGCCTGGGCAACAAGAGCAAAACTC
TGTCTC A AA A AA ATC AATTA ATTTAG G CTGG G CG C AGTG G CTC ATG CCTGTA AATCCC AG
CACTTTGAGAGGCTGAAGCGGGTGGATCATGAGGTCAAGAGATCGAGACCATCCTGGCTA
ACACGGTGAAACCCCATTTCTACTAAAAATACAAAAAAAAAACCCCAAAAAACAAAAAAA
C A AA A AC A A AC A A AC A A ACC AA A AA AAC AC A AC A ACTAG CC AG G CGTAGTG G C AG G CG CT
TGTAATCCCAGCTAGTCGGGAGGCTGAGGCAGGAGGAGAATGGAGTGAACCCAGGAGGCA
GAGCTTGCAGTGAGCTGAGATCGCGCCACAGCACTCCAGCCTGGGCAACAGAGCGAGACT
CCATCTCAGGAAAAAAAAAATTAATTAATTAAAAAAACAGTAAGATAAATAACACTTCTC
CCATTTCAGTAAAAGGATGAAGCCAGTTTCTCAATGAATAAAAACAAGAGACTGTTGAAT
GTCAAGTTTTATAGACAGTCCAGACAACACAGGGAGACACCATCTCTACACACACACACA
C AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AAAATAG CTG CGTATG G
TGGCATGGGCCTGTAGTCCCAGCTATTGGGGCAGGGCCAGGGGGTGGGAGGCTGAGGGGA
GAGGATGCCTTAACAGGGAGGTTGAGGCTGCAGAGAGCCATGATCACGTCACTGTACTCC
AGCCTGGGTGATACAGCAAGACTCTGTCTCAGAAAAAAAAAAAAGAAAAAAGTCAAGAAT
GCATTCTTGAGGAATTCCACCAACAAAATGCACCAAATATAGCCAAAGAGTTTTCTGCTA
TATGCCAAGTGGAAAGCTATGAAGAAAGAGAAGAACAGAAGCAGGAGGACATTGGTTTTC
ATCTCCTATTCTTTCAAGAAGTAAGATCCATTATCTTTTAAAAAGTCTAAACACTGGTAA
GGCAAGACACAACTCCCACCCATAACACTGCATCTCTGTCCTCAGGCAACAAATCAAATG TCAGATAAAAGCACAATATCTACCACTCAACCCCCAGGCTTCAGCACAGAACTCACAAAC
ATTCTGCTGGCTAAGGCAAAAAGGTGTACTGTATTTCCAGAGAGCTTGCAGAGTTCTGAG
CACTAATCCCATAATCCTCATATCTCAATCTACACAAAGCACCATCAGGCTAAGAAACAG
ATT AT AT AG C AGG C AC AAC ACTCTTG G GTATG C AA AC ATGTT AAG G ATC A AAGT AAG AA A
AGAGTAACTATAGGGGCCATACTATATTTGCCAAAAAGTGACTTGTTTAAAAATTAAAAA
GAAGCCGGGTGCAGTGGCTCACACCTGTAATCCCAGCACTTTGAGAGGCTGGGGTGGGTG
GATCACCTGAGGTCAGTAGTTCAAAACCAGCCTGGCCAACATAGTGAAACCCCATCTCTA
CT AA AA ATAC AA AATTAG G CGTG GTG G C AG G CG CCTGT AATCCC AG CT ACTAG GG ATG CT
GAGGCAGGAGAATCGCTTGAACCCGGAAGGCAGAGGTTGCAGTGAGCCAAAATCGCACCA
CTGCACTCCAGCCTGGGCAACAAGAGCAAAACTCTGTCTCAAAAAAAAAAAAATAAAAAT
AAAAACAAAAAAGAAATCCAGTTTACCTCCTTGTGCAATTCCTAATAAATTGCTGAGAAG
TGATCTTACATAGGAATCTTGTATAATTTATTCTGATGCGTTCGAGGTGGCCGTTAGTTG
ACTCCGCGGAGTTCATCTCCCTGGTTTTCCCGTCCTAACGTCGCTCGCCTTTCAGTCAGG
ATGTCTGCCCGTGGCCCGGCTATCGGCATCGACCTGGGCACCACCTATTCGTGCGTCGGG
GTCTTCCAACATGGCAAGGTGGAGATCATCGCCAACGACCAGGGCAATCGCACCACCCCC
AGCTACGTGGCCTTCACGGACACCGAGCGCCTCATCGGCGACGCCGCCAAGAACCAGGTG
GCCATGAACCCCACCAACACCATCTTCGACGCCAAGAGGCTGATTGGACGGAAATTCGAG
GATGCCACAGTGCAGTCGGATATGAAACACTGGCCGTTCCGGGTGGTGAGCGAGGGAGGC
AAGCCCAAAGTGCAAGTAGAGTACAAGGGGGAGACCAAGACCTTCTTCCCAGAGGAGATA
TCCTCCATGGTCCTCACGAAGATGAAGGAGATCGCGGAAGCCTACCTGGGGGGCAAGGTG
CACAGCGCGGTCATAACGGTCCCGGCCTATTTCAACGACTCGCAGCGCCAGGCCACCAAG
GACGCAGGCACCATCACGGGGCTCAATGTGCTGCGCATCATCAACGAGCCCACGGCGGCG
GCCATCGCCTACGGCCTGGACAAGAAGGGCTGCGCGGGCGGCGAGAAGAACGTGCTCATC
TTTGACCTGGGCGGTGGCACTTTCGACGTGTCCATCCTGACCATCGAGGATGGCATCTTC
GAGGTGAAGTCCACGGCCGGCGACACCCACCTGGGCGGTGAGGACTTCGACAACCGCATG GTGAGCCACCTGGCGGAGGAGTTCAAGCGCAAGCACAAGAAGGACATTGGGCCCAACAAG
CGCGCCGTGAGGCGGTCGCGCACCGCTTGCGAGCGCGCCAAGCGCACCCTGAGCTCGTCC
ACGCAGGCGAGCATCGAGATCGACTCGCTCTACGAGGGCGTGGACTTCTATACGTCCATC
ACGCGCGCCCGCTTCGAGGAGCTCAATGCCGACCTCTTTCGCGGGACCCTGGAGCCGGTG
GAGAAGGCGCTGCGCGACGCCAAGCTGGACAAGGGCCAGATCCAGGAGATCGTGCTGGTG
GGCGGCTCCACTCGTATCCCCAAGATCCAGAAGCTGCTGCAGGATTTCTTCAACGGCAAG
GAGCTGAACAAGAGCATCAACCCCGACGAGGCGGTGGCCTATGGCGCCGCGGTGCAGGCG
GCCATCCTCATCGGCGACAAATCAGAGAATGTGCAGGACCTGCTGCTACTCGACGTGACC
CCGTTGTCGCTGGGCATCGAGACAGCTGGCGGTGTCATGACCCCACTCATCAAGAGGAAC
ACCACGATCCCCACCAAGCAGACGCAGACCTTCACCACCTACTCGGACAACCAGAGCAGC
GTACTGGTGCAGGTATACGAGGGCGAACGGGCCATGACCAAGGACAATAACCTGCTGGGC
AAGTTCGACCTGACCGGGATTCCCCCTGCGCCTCGCGGGGTCCCCCAAATCGAGGTTACC
TTCGACATTGACGCCAATGGCATCCTTAACGTTACCGCCGCCGACAAGAGCACCGGTAAG
GAAAACAAAATCACCATCACCAATGACAAAGGTCGTCTGAGCAAGGACGACATTGACCGG
ATGGTGCAGGAGGCGGAGCGGTACAAATCGGAAGATGAGGCGAATCGCGACCGAGTCGCG
GCCAAAAACGCCCTGGAGTCCTATACCTACAACATCAAGCAGACGGTGGAAGACGAGAAA
CTGAGGGGCAAGATTAGCGAGCAGGACAAAAACAAGATCCTCGACAAGTGTCAGGAGGTG
ATCAACTGGCTCGACCGAAACCAGATGGCAGAGAAAGATGAGTATGAACACAAGCAGAAA
GAGCTCGAAAGAGTTTGCAACCCCATCATCAGCAAACTTTACCAAGGTGGTCCTGGCGGC
GGCAGCGGCGGCGGCGGTTCAGGAGCCTCCGGGGGACCCACCATCGAAGAAGTGGACTAA
G CTTG C ACTC AAGTC AG CGT AA ACCTCTTTG CCTTTCTCTCTCTCTCT I I I I I I TTGTTT
GTTTCTTTGAAATGTCCTTGTGCCAAGTACGAGATCTATTGTTGGAAGTCTTTGGTATAT
GCAAATGAAAGGAGAGGTGCAACAACTTAGTTTAATTATAAAAGTTCCAAAGTTTGTTTT
TTAAAAACATTATTCGAGGTTTCTCTTTAATGCATTTTGCGTGTTTGCTGACTTGAGCAT
TTTTGATTAGTTCGTGCATGGAGATTTGTTTGAGATGAGAAACCTTAAGTTTGCACACCT GTTCTGTAGAAGCTTGGAAACAGTAAAATATATAGGAGCTTAAATTGTTTATTTTTATGT
ACTACTTTAAAACTAAACTGAACATTGCAGTAATGTTAAGGACAGGTATACTTTTTGCAA
ACAAATGCATAAAATGCAAATGTAAAGTAAAGCTGAAATTGATCTCAAAAAAAAAAAA
>refseq | N M_018214 | N M_018214 Homo sapiens leucine rich repeat containing 1 (LRRCl), m RNA. ggaagctccgcgcggcggcgggggcggcgacggcgactggcgggtgggagtggaggcacc
ggctggcgggcgggggtacagggacggggcaggggctcccgctccaggttccttgaagca
cttccgaccgcgaagcccggcgcgagaagcgagctaacccaagagccaacaacgagcgcg
gagagggcagcggactgagcggagccgccggccagagcgggctcggagcccgggtctccg
ccgctcgggacccggctaggcggcggcgggggcggcgatgttccactgcatccccctgtg
gcggtgcaaccgtcatgtggagagcatcgacaagcgccactgctcgctggtctacgtccc
cgaggagatctaccgctatgcccggagcctggaggagctgctgctggacgccaaccagct
ccgcgagctgcccgagcaatttttccagctagtcaaattacgaaagcttggacttagtga
taatgaaattcagcggctccctccagaaatagcaaacttcatgcagctggtggaactaga
tgtgtctcgaaatgagattcctgaaattccagaaagcatttcattctgtaaagcactgca
ggtagctgacttcagcggaaacccactgactaggttgccagaaagctttcctgaattaca
gaatttaacatgtctttctgtaaatgacatctcactacagtctctacctgaaaatattgg
caatctttataacctggcttcactggaactgagagagaatcttcttacatatcttcctga
ctctcttacccagctgcgaagactagaagaacttgatttaggaaacaatgaaatatataa
tttgccagaatcaattggagccctcttacatctaaaagatctctggttggatggaaatca
actgtcagaattacctcaggaaataggaaatctgaagaacctgctgtgtttagatgtctc
tgaaaacaggttggaaagacttcctgaagaaatcagtggcctgacttcattaacggattt
agtcatttcccagaacttattagaaacgattccggatggcattggaaaactaaagaaact
gtcaatcttgaaggtggatcagaatagactcacacagttgcctgaagcagttggggaatg
tgaaagtctcactgagttagttcttacagaaaatcagctcctgaccctgcctaaaagcat
tggaaaactaaagaagttgagcaacttgaatgcagacagaaataaattagtgtccttacc aaaagagatcggcgggtgctgcagcctcactgtgttctgtgtacgtgacaacagactaac tcggatacctgcagaggtgtcacaggcaacagaacttcatgtcctggatgtggcagggaa caggttgctgcatctacctttatccctgactgccttgaagttgaaggctctgtggctatc tgacaaccagtcccagcccctgcttacattccagacagacacagactacaccacaggaga gaagattttaacctgtgtcttacttcctcagctgccttctgaacctacttgtcaagagaa tctgcctcgctgtggtgca ctggaga a cttggta a atga tgtctctgatga agcctgga a cgagcgtgctgtcaacagagtcagtgcgatccgatttgtggaggatgagaaagatgaaga agacaatgagacgagaacacttctaaggcgagccactccacacccaggggagttaaagca catgaaaaagacagtggagaatttacggaatgacatgaatgctgctaaaggactggactc aaacaaaaacgaggtcaatcatgccattgaccgagtgaccacttctgtgtagagtttcac ctccaagttttacctcctgtgtcttcctctgctgtcgagacgttcctgtctgcttcccgg gagcctcacgtgctccttgtcctaaccagcccccgcgcgccatcttcccgtggagtgtgg ggaagctgctgtctcccaggaagtgccttactcatcccgcaaccagtcagcgcaccagtg gtctcccggtgtgattttttttttttttaatttcagttgtttgtaataagtagaatacac tactgtaaacatacgacctttgtttttgtcttatgttggggtaaaggaaagcaggaaggg gaatttttatcctcctcccttccgtaaagtgctgggatattttgaatcccccaagttccc ttggacctactgatgagagatagttttatgtatggggaaaaatggatactttttaaacct tttttggcagctcagatggtgtaaattttaaaattttgtataggtatttcataacaaaaa tatgtatttcttttttgttattttatcttgaaaacggtacatattttagtatttgtgcag aaaaacaagtcctaaagtatttgtttttatttgtaccatccacttgtgccttactgtatc ctgtgtcatgtccaatcagttgtaaacaatggcatctttgaacagtgtgatgagaatagg aatgtggtgttttaaagcagtgttgcattttaatcagtaatctacctggtggatttgttt ttaaccaaaaagatgaattatcaatgatttgtaattatatcagttgattttttttgaaaa gatgaaccaaaggatttgactgctaatattttattccttacactttttttctgaataagt ctctcataatgagtgcagtgtcagactgtgcctactctgatggtatgtgccatttgtaaa ataaaatagagcagaaaaacacaaaaagagaacactggttcagacattcagtgggcaagt aaattatggactgcaaaataatgatttttattcaagaaagctttaaaagttttatatcca
gatatacaaccacaataaagcaaaataacctactatcaaaatagaaatgttgctatcttt ataagtgcaatttaatttgtaaatagagtttgaatcaaagtatcacaaaatactgcttca agatttaattttaaatctgctaatttaagggatattgggaaaagttttggtgtgtttctg ttgatttcttttttgtatgctgtgataaaagagaaatgaaaagtgccagtcactgtgtgg tgtctaggaaaatcatatatatttttttctccaagaaataaattcatcctggacattggc
>refseq | NM_0050921 NM_005092 Homo sapiens tumor necrosis factor (ligand) superfamily, member 18 (TNFSF18), m NA. catgacattgcatccttcacccatcacttgtgaatttttgttttccacagctctcatttc tccaaaaatgtgtttgagccacttggaaaatatgcctttaagccattcaagaactcaagg agctcagagatcatcctggaagctgtggctcttttgctcaatagttatgttgctatttct ttgctccttcagttggctaatctttatttttctccaattagagactgctaaggagccctg tatggctaagtttggaccattaccctcaaaatggcaaatggcatcttctgaacctccttg cgtgaataaggtgtctgactggaagctggagatacttcagaatggcttatatttaattta tggccaagtggctcccaatgcaaactacaatgatgtagctccttttgaggtgcggctgta taaaaacaaagacatgatacaaactctaacaaacaaatctaaaatccaaaatgtaggagg gacttatgaattgcatgttggggacaccatagacttgatattcaactctgagcatcaggt tctaaaaaataatacatactggggtatcattttactagcaaatccccaattcatctccta gagacttgatttgatctcctcattcccttcagcacatgtagaggtgccagtgggtggatt ggagggagaagatattcaatttctagagtttgtctgtctacaaaaatcaacacaaacaga actcctctgcacgtgaattttcatctat
>ENA I AI2798191 AI279819.1 qm26h04.xl NCI_CGAP_Lu5 Homo sapiens cDNA clone IMAGE:1882999 3', mRNA sequence.
TT I I I I I I TGCTGGGGCGTAAAGGGTTTTTATTGTAGATCCTGTGGCGCTGAAGTGCCAC CAAGGATTTGGAAGGTCACTTTCAGCAGCCGCCATTTCTGCCAGGACCAGTGGCAAGCAC CTGGCAGATGGAGCCCGGGTGTTTCTGCGTAAGGCAGAGGAATCCAGCTTTTCCATGAGA
TTCAGCTGCAGTTGTCGAAAACCCTGTGTGAGCCAGCAGTTCCAGTTCAAAGGTTGAGGG
GGCGAACAGCTGCGAGGTGGCCAGGCTCCCGTGAGTCACCACTCAGGCCTGAGTACACCG
TGGAGAGGAGAGATAAAGCAGCCACGGCTGTTCTGTTGCCAGTCCCACCCCTCTGGCAAA
CAGATGGGGGAAAACAGAGAAGGAAAGTCAACAAAGAAGGTGAAATGCAGGGAGCAGAGA
CTACACGCAGGCCCCCCGTGGCTGGCAATACCATGCGTGCTGGGCCGGCTGCGCCACCCT
CACCCA
>ENA | BE857360 | BE857360.1 7g29bl2.xl NCI_CGAP_Brn23 Homo sapiens cDNA clone I MAGE:3307871 3', m NA sequence.
TTGCCTGTGGCTCTTTTATATATATTTAAAACACACAGTAAGAACATAAGAACATCTCAA ATCATTTAGAAGGTAAAAGGGGGTTATCAACCAAAATCTTTGGAAATTTCATAAAATTTA AATATCTGCAAACAGTCCAACCAAAAACGAAAAAAAAAAAAATCCCAACATTTGGCTATG G AG G G C ACTTC AC ATGTG A ACC AA ATG G CGTTATAAC ATTTTCCTTC A ACTAGTC ACTA A ACCCAATTAGAAAGAATACAAGAGCAATATTGGAGACATCCCCAAATACCACGTACTTGA TT AG A AC ATTCTGTTATG AAG CG CTC AG CT ACCG CG G G CTTTCCTTTAC ATTG CAT AC AT TACTTTACATTTCTACAGTGCAATGTTGAAATAGCCTCCAAATTTTGCAAAGTAGATTGA TGTCCATTCTACAAAAATATTAACTTACAGTACATAACACTGAATAATTTTAATCTGTAC AT I I I I I I CCTTCCATGATAGTTGACACACGTCAGTTTGTA
>ENA | AI8019731 AI801973.1 tx29d05.xl NCI_CGAP_Lu24 Homo sa piens cDNA clone IMAGE:2270985 3', m RNA sequence.
GATGAAAACTCCAGCCTTTCCTGACTCACCTCCATCTTCGGTTCTTCAGTTTTCTGAGAA
GAGTTGGGATATGTGGGAAGGGGCATGGGAGCTCGGCAGCCTCCGCCTGCCAGGAAGGCA
GTTTCGCCTCTGCAGGAAAGAGCAGAGCCCGTGGGAAGCCCTGGGTGAGGGTGGCGCAGC
CGGCCCAGCACGCATGGTATTGCCAGCCACGGGGGGCCTGCGTGTAGTCTCTGCTCCCTG
CATTTCACCTTCTTTGTTGACTTTCCTTCTCTGTTTTCCCCCATCTGTTTGCCAGAGGGG
TGGGACTGGCAACAGAACAGCCGTGGCTGCTTTATCTCTCCTCTCCACGGTGTACTCAGG CCTGAGTGGTGACTCACGGGAGCCTGGCCACCTCGCAGCTGTTCGCCCCCTCAACCTTTG
AACTGGAACTGCTGGCTCACACAGGGTTTTCGACAACTGCAGCTGAATCTCATGGAAAAG
CTGGATTCCTCTGCCTTACGCAGAAACACCCGGGCTCCATCTGCCAGGTGCT
>ENA | AW451115 | AW451115.1 UI-H-BI3-alg-g-01-0-U l.sl NCI_CGAP_Su b5 Homo sapiens cDNA clone I MAGE:2736936 3', m RNA sequence.
TT I I I I I I I I I I I I I I I G G GTTTATCTGTTTATAATC AG AG A ATG GG G GTAC AC AG G CCC
TCCCCAAGAGATACATTTTCTGTACAATGAAAAATTCAGTTTCCTATTTCTTAACTTTGT
TTGCAAACCTACACGCCTCTTCTCTCTTCCACCATGTGTAATAAAATCCATCGCATTCTC
TTCTATCTTCAGTCATGTAGTTTTTGTGTTTAACATTTATAAAATGTGTTCTTATGAGTC
TGAAATCTTTATCAGTTCAAATCATTCCTGATTTCCCATCTACAACCTTCTAGGTCTTTC
TTCTTTCTCTG CCG CTTTCCTTGTTTGTC AGTGTTCTGTACTG AA ATTCC AC AG G G ATG G
CAGTTAGATGAGGACTTCCATCATCTCTCCATCAGGGAACTCGGGCTTGTGCAGCAAGCT
GCTGACCCGGCCTCTGTGGTCAGGCGACTTCCCATGGCCAGGAGAGTTCTCCAGTTTCTC
TGCGGTCCCTTTGGCCGCTGGGTGTTTCAGGATCGTGAGGCCCCGCTTTCACGG
>ENA I AI4723101 AI472310.1 tj87b01.xl Soares_NSF_F8_9W_OT_PA_P_Sl Homo sapiens cDNA clone I MAGE:2148457 3', m RNA sequence.
TTTTTTTCACATCTCAAAAAAAGTTTATTATGTTGGATACAACAGATTCTCAATATTAGC
AAATCATTCCACTTACCCCCAAGCGCCAGATCTTGACTGTACAGTCTAAAAACATTTGTC
AAAGTGAGAAAAATGTTACAGAACATCTCATAAAAGAATTAAGATACAAATAGTATATAC
AGATAGTAGATTGTAACAAAGTGGAACGTACTTGCAAGACATCACCTAGCTAAAATACTT
GATTCCCTATGAGGACAAACTGAAAAATAAAATATTTCAAGCACACAAAGAAAGGACAAA
AT AG G G G AA ACC AATG G G AA ATATA AAGTTTAA ACTTATTTTTA AC ATTTA AA AG C AACT
ACACTTTTCCATTTGAGCCAGTTCAAAAAGGAGAAGTCAAATAAAGACTTTAGAATCCTG
TGACCAACTATAATTTGAGCTTGATAACATGAATGGCATCTGAAAGATGCAAGCCAAGTA
TTTCTAGTACTGTGACCTTGAGAGATAATAACTGAGCAACCTGCTAGG
>gi 118089116 1 gb | BC020718.1 1 Homo sapiens complement factor I, m RNA (cDNA clone MGC:22501 I MAGE:4716122), complete cds AAATTTCAAAAGAATACCTGGAGTGGAAAAGAGTTCTCAGCAGAGACAAAGACCCCGAACACCTCCAACA
TG A AG CTTCTTC ATGTTTTCCTGTTATTTCTGTG CTTCC ACTTA AG GTTTTG C AAG GTC ACTTAT AC ATC
TCAAGAGGATCTGGTGGAGAAAAAGTGCTTAGCAAAAAAATATACTCACCTCTCCTGCGATAAAGTCTTC
TGCCAGCCATGGCAGAGATGCATTGAGGGCACCTGTGTTTGTAAACTACCGTATCAGTGCCCAAAGAATG
GCACTGCAGTGTGTGCAACTAACAGGAGAAGCTTCCCAACATACTGTCAACAAAAGAGTTTGGAATGTCT
TCATCCAGGGACAAAGTTTTTAAATAACGGAACATGCACAGCCGAAGGAAAGTTTAGTGTTTCCTTGAAG
CATGGAAATACAGATTCAGAGGGAATAGTTGAAGTAAAACTTGTGGACCAAGATAAGACAATGTTCATAT
GCAAAAGCAGCTGGAGCATGAGGGAAGCCAACGTGGCCTGCCTTGACCTTGGGTTTCAACAAGGTGCTGA
TACTCAAAGAAGGTTTAAGTTGTCTGATCTCTCTATAAATTCCACTGAATGTCTACATGTGCATTGCCGA
GGATTAGAGACCAGTTTGGCTGAATGTACTTTTACTAAGAGAAGAACTATGGGTTACCAGGATTTCGCTG
ATGTGGTTTGTTATACACAGAAAGCAGATTCTCCAATGGATGACTTCTTTCAGTGTGTGAATGGGAAATA
CATTTCTCAGATGAAAGCCTGTGATGGTATCAATGATTGTGGAGACCAAAGTGATGAACTGTGTTGTAAA
G C ATG CC AAG G C A AAG G CTTCC ATTGCAAATCG G GTGTTTG C ATTCC AAGCC AGTATC A ATG C A ATG GTG
AGGTGGACTGCATTACAGGGGAAGATGAAGTTGGCTGTGCAGGCTTTGCATCTGTGGCTCAAGAAGAAAC
AGAAATTTTGACTGCTGACATGGATGCAGAAAGAAGACGGATAAAATCATTATTACCTAAACTATCTTGT
GGAGTTAAAAACAGAATGCACATTCGAAGGAAACGAATTGTGGGAGGAAAGCGAGCACAACTGGGAAAAA
TGAAGCAAATCTCATTGGATATTTTTAAAGGTCTCCACAGAGTTTATGCCATATTGGAATTTTGTTGTAT
AATTCTCAAATAAATATTTTGGTGAAGCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
>gi 1 867879111 ref | N M_004105.31 Homo sapiens EGF-containing fibulin-like extracellular matrix protein
1 (EFEM P1), transcript variant 1, m NA
CGAAGGTAGCGTGTCGGGGACCCAGACTGATAAGACAAAAGAGAATCAGTCGCTTTGGGCTGCCCCTCCA
CACAACCTGGGACTTTTAAACAAAGCTGTGCGCAGAGAAAGGCGTGGAAATGCCACTTTGAGAGTTTGTG
CTGGGGGATGTGAGAAGCTCTGAGACATGTGAGAAGGTCTAGTATTCTACTAGAACTGGAAGATTGCTCT
CCGAGTTTTGTTTTGTTATTTTGTTTAAAAAATAAAAAGCTTGAGGCCAAGGCAATTCATATTGGCTCAC
AG GTATTTTTG CTGTG CTGTGC AAG G A ACTCTG CT AGCTC AAG ATTC AC A ATGTTG AA AG CCCTTTTCCT
AACTATGCTGACTCTGGCGCTGGTCAAGTCACAGGACACCGAAGAAACCATCACGTACACGCAATGCACT GACGGATATGAGTGGGATCCTGTGAGACAGCAATGCAAAGATATTGATGAATGTGACATTGTCCCAGACG
CTTGTAAAGGTGGAATGAAGTGTGTCAACCACTATGGAGGATACCTCTGCCTTCCGAAAACAGCCCAGAT
TATTGTCAATAATGAACAGCCTCAGCAGGAAACACAACCAGCAGAAGGAACCTCAGGGGCAACCACCGGG
GTTGTAGCTGCCAGCAGCATGGCAACCAGTGGAGTGTTGCCCGGGGGTGGTTTTGTGGCCAGTGCTGCTG
CAGTCGCAGGCCCTGAAATGCAGACTGGCCGAAATAACTTTGTCATCCGGCGGAACCCAGCTGACCCTCA
GCGCATTCCCTCCAACCCTTCCCACCGTATCCAGTGTGCAGCAGGCTACGAGCAAAGTGAACACAACGTG
TGCCAAGACATAGACGAGTGCACTGCAGGGACGCACAACTGTAGAGCAGACCAAGTGTGCATCAATTTAC
GGGGATCCTTTGCATGTCAGTGCCCTCCTGGATATCAGAAGCGAGGGGAGCAGTGCGTAGACATAGATGA
ATGTACCATCCCTCCATATTGCCACCAAAGATGCGTGAATACACCAGGCTCATTTTATTGCCAGTGCAGT
CCTGGGTTTCAATTGGCAGCAAACAACTATACCTGCGTAGATATAAATGAATGTGATGCCAGCAATCAAT
GTG CTC AG C AGTG CT AC A AC ATTCTTGGTTC ATTC ATCTGTC AGTG C A ATC A AG G ATATG AG CTAAG C AG
TGACAGGCTCAACTGTGAAGACATTGATGAATGCAGAACCTCAAGCTACCTGTGTCAATATCAATGTGTC
AATGAACCTGGGAAATTCTCATGTATGTGCCCCCAGGGATACCAAGTGGTGAGAAGTAGAACATGTCAAG
ATATAAATGAGTGTGAGACCACAAATGAATGCCGGGAGGATGAAATGTGTTGGAATTATCATGGCGGCTT
CCGTTGTTATCCACGAAATCCTTGTCAAGATCCCTACATTCTAACACCAGAGAACCGATGTGTTTGCCCA
GTCTCAAATGCCATGTGCCGAGAACTGCCCCAGTCAATAGTCTACAAATACATGAGCATCCGATCTGATA
G GTCTGTG CC ATC AG AC ATCTTCC AG AT AC AG G CC AC AACT ATTTATG CC AAC ACC ATC A AT ACTTTTCG
GATTAAATCTGGAAATGAAAATGGAGAGTTCTACCTACGACAAACAAGTCCTGTAAGTGCAATGCTTGTG
CTCGTGAAGTCATTATCAGGACCAAGAGAACATATCGTGGACCTGGAGATGCTGACAGTCAGCAGTATAG
GGACCTTCCGCACAAGCTCTGTGTTAAGATTGACAATAATAGTGGGGCCATTTTCATTTTAGTCTTTTCT
AAGAGTCAACCACAGGCATTTAAGTCAGCCAAAGAATATTGTTACCTTAAAGCACTATTTTATTTATAGA
TATATCTAGTGCATCTACATCTCTATACTGTACACTCACCCATAATTCAAACAATTACACCATGGTATAA
AGTGGGCATTTAATATGTAAAGATTCAAAGTTTGTCTTTATTACTATATGTAAATTAGACATTAATCCAC
TAAACTGGTCTTCTTCAAGAGAGCTAAGTATACACTATCTGGTGAAACTTGGATTCTTTCCTATAAAAGT
GGGACCAAGCAATGATGATCTTCTGTGGTGCTTAAGGAAACTTACTAGAGCTCCACTAACAGTCTCATAA GGAGGCAGCCATCATAACCATTGAATAGCATGCAAGGGTAAGAATGAGTTTTTAACTGCTTTGTAAGAAA
ATGGAAAAGGTCAATAAAGATATATTTCTTTAGAAAATGGGGATCTGCCATATTTGTGTTGGTTTTTATT
TTC ATATCC AG CCTA AAG GTG GTTGTTTATT ATATAGTA AT AA ATC ATTG CTGTAC AATATG CTG GTTTC
TGTAGGGTATTTTTAATTTTGTCAGAAATTTTAGATTGTGAATATTTTGTAAAAAACAGTAAGCAAAATT
TTCCAGAATTCCCAAAATGAACCAGATATCCCCTAGAAAATTATACTATTGAGAAATCTATGGGGAGGAT
ATGAGAAAATAAATTCCTTCTAAACCACATTGGAACTGACCTGAAGAAGCAAACTCGGAAAATATAATAA
CATCCCTGAATTCAGGACTTCCACAAGATGCAGAACAAAATGGATAAAAGGTATTTCACTGGAGAAGTTT
TAATTTCTAAGTAAAATTTAAATCCTAACACTTCACTAATTTATAACTAAAATTTCTCATCTTCGTACTT
GATGCTCACAGAGGAAGAAAATGATGATGGTTTTTATTCCTGGCATCCAGAGTGACAGTGAACTTAAGCA
AATTACCCTCCTACCCAATTCTATGGAATATTTTATACGTCTCCTTGTTTAAAATGTCACTGCTTTACTT
TGATGTATCATATTTTTAAATAAAAATAAATATTCCTTTAGAAGATCAAAAAAAAAAAAAAAAAAA
>gi 1133758181 ref | N M_024609.11 Homo sa piens nestin (N ES), m NA
AGTCGCTCAGGCTACTCCCACCCCGCCCCGCCCCGTCATTGTCCCCGTCGGTCTCTTTTCTCTTCCGTCC
TAAAAGCTCTGCGAGCCGCTCCCTTCTCCCGGTGCCCCGCGTCTGTCCATCCTCAGTGGGTCAGACGAGC
AGGATGGAGGGCTGCAGAACTGGCTCAGGAAAGCCCTCCTGGGATGGCTGGAGTGGAAAATGAGGATGAG
GCAGAGCTGAATCTGAGGGAGCAGGGTGGCTTCACTGGGAAGGAGGAGGTGGTAGAGCAGGGAGAGCTGA
ATGCCACAGAGGAGGTCTGGATCCCAGGCGAGGGGCACCCAGAGAGCCCTGAGCCCAAAGAGCAGAGAGG
CCTGGTTGAGGGAGCCAGTGTGAAGGGAGGGGCTGAGGGCCTCCAGGACCCTGAAGGGCAATCACAACAG
GTGGGGGCCCCAGGCCTCCAGGCTCCCCAGGGGCTGCCAGAGGCGATAGAGCCCCTGGTGGAAGATGATG
TGGCCCCAGGGGGTGACCAAGCCTCCCCAGAGGTCATGTTGGGGTCAGAGCCTGCCATGGGTGAGTCTGC
TGCGGGAGCTGAGCCAGGCCTGGGGCAGGGGGTGGGAGGGCTGGGGGACCCAGGCCATCTGACCAGGGAA
GAGGTGATGGAACCACCCCTGGAAGAGGAGAGTTTGGAGGCAAAGAGGGTTCAGGGCTTGGAAGGGCCTA
GAAAGGACCTAGAGGAGGCAGGTGGTCTGGGGACAGAGTTCTCCGAGCTGCCTGGAAAGAGCAGAGACCC
TTGGGAGCCTCCCAGGGAGGGTAGGGAGGAGTCAGAGGCTGAGGCCCCCAGGGGAGCAGAGGAGGCGTTC
CCTGCTGAGACCCTGGGCCACACTGGAAGTGATGCCCCTTCACCTTGGCCTCTGGGGTCAGAGGAAGCTG AGGAGGATGTACCACCAGTGCTGGTCTCCCCCAGCCCAACATACACCCCGATCCTGGAAGATGCCCCTGG
GCCTCAGCCTCAGGCTGAAGGGAGTCAGGAGGCTAGCTGGGGGGTGCAGGGGAGGGCTGAAGCCCTGGGG
AAAGTAGAGAGCGAGCAGGAGGAGTTGGGTTCTGGGGAGATCCCCGAGGGCCTCCAGGAGGAAGGGGAGG
AGAGCAGAGAAGAGAGCGAGGAGGATCAGGAGGAGGGGAGGGAGCCAGGGGCTGGGCGGTGGGGGCCAGG
GTCTTCTGTTGGCAGCCTCCAGGCTCTGAGTAGCTCCCAGAGAGGGGAATTCCTGGAGTCTGATTCTGTG
AGTGTCAGTGTCCCCTGGGATGACAGCTTGAGGGGTGCAGTGGCTGGTGCCCCCAAGACTGCCCTGGAAA
CGGAGTCCCAGGACAGTGCTGAGCCTTCTGGCTCAGAGGAAGAGTCTGACCCTGTTTCCTTGGAGAGGGA
GAACAAAGTCCCTGGCCCTCTAGAGATCCCCAGTGGGATGGAGGATGCAGCCAGGGGCAGACATCATTGG
TGTTAATGGCCAGGGTCCCAACTTGGAGGGGAAGTCACAGCATGTGAATGGGGGAGTGATGAACGGGCTG
GAGCAGTCTGAGGAAGTGGGGCAAGGAATGCCGCTAGTCTCTGAGGGAGACCGAGGGAGCCCCTTTCAGG
AGGAGGAGGGGAGTGCTCTGAAGACCTCTTGGGCAGGGGCTCCTGTTCACCTGGGCCAGGGTCAGTTCCT
GAAGTTCACTCAGAGGGAAGGAGATAGAGAGTCCTGGTCCTCAGGGGAGGACTAGGAAAAGACCATCTGC
CCGGCACTGGGGACTTAGGGGTGCGGGGAGGGGAAGGACGCCTCCAAGCCCGCTCCCTGCTCAGGAGCAG
CACTCTTAACTTACGATCTCTTGACATACGGTTTCTGGCTGAGAGGCCTGGCCCGCTAAGGTGAAAAGGG
GTGTGGCAAAGGAGCCTACTCCAAGAATGGAGGCTGTAGGAATATAACCTCCCACCCTGCAAAGGGAATC
TCTTGCCTGCTCCATCTCATAGGCTAAGTCAGCTGAATCCCGATAGTACTAGGTCCCCTTCCCTCCGCAT
CCCGTCAGCTGGAAAAGGCCTGTGGCCCAGAGGCTTCTCCAAAGGGAGGGTGACATGCTGGCTTTTGTGC
CC AAG CTC ACC AG CCCTG CG CC ACCTC ACTG C AGT AGTG C ACC ATCTC ACTG C AGTAG C ACG CCCTCCTG
GGCCGTCTGGCCTGTGGCTAATGGAGGTGACGGCACTCCCATGTGCTGACTCCCCCCATCCCTGCCACGC
TGTGGCCCTGCCTGGCTAGTCCCTGCCTGAATAAAGTAATGCCTCCGCTTCAAAAAAAAAAAAAAAAAAA
AAAAAAAAAAAAAAAAA
>ENA I W725161 W72516.1 zd64g05.sl Soares_fetal_heart_N bHH 19W Homo sapiens cDNA clone I MAGE:345464 3', m NA sequence.
TG G GTCTTG G C ATTTTA AT A AACGTTC AA AG AA AC AA AATTTACTTGT AG G G G ACGTG AC
AAAGAACAGAACCCAAAGACTGCCTGCCTTCTCGGCAGACCCTAGGGAGCTGTGGTGATG
TGACAGCTGCCACAGCGGCTATCTTCCATGGAAATAACGTACGTCATCAACACAATATAC AACACCCCTTCCACTCACCTGACCCACCCACCTCCCTCCTACATGCCCTACCCCAGCCCC
TCTGCACCCTCCACCTTGCTCCAGGCTCCCACCACCCACTCACCCCAAATAACCTGCGTC
CCTTTTGTTCATTTCCCTGACGTCCCAGCTTGTCTGGTCCCCTTGGTCATAAGATGGCAG
GCACTTACACACGNTTCTTCAACACTTATGGATAAGAGGCAGGACTCTTTTTAACTTAGT
GGGCCTGGTCTTGAATTGGCATGGCATGTNAATGGGGGGGGANGGGGGAGTTAAAAAAAA
TCAAGGNTATGGGTTAACAGGGAAACAAAGGGGATATTTTGTAAAAGCTAGGGAAAGCGG
GGGGGTANAATTTGGGGAANAAAANGGGTTGAGGGGTATTGGATTCNTTTGGATGACAAC
CGGT
>refseq | NM_0013871 NM_001387 Homo sapiens dihydropyrimidinase-like 3 (DPYSL3), transcript variant 2, m NA. gcaccattcactccacctgatctcggggcgctgtgcgctgaggaaggcgcgggcgagccg gagcagaagaaggagggagggagccagccgctgcagccaccaccgccaccatgtcctacc aaggcaagaagaacatcccgcggatcacgagtgaccgtctccttatcaagggaggcagaa tcgtcaatgatgatcagtccttttatgctgatatttacatggaagatggcttaataaaac aaattggagacaatctgattgttcctggaggagtgaagaccattgaagccaatgggaaga tggtgatccctggaggcatcgatgtccatactcacttccagatgccatataagggaatga ccacagtagatgacttcttccaagggacaaaggcggccttagcaggtggcaccaccatga tcattgaccatgtggtgcctgagcctgagtccagcctgactgaggcctatgagaaatgga gagagtgggctgatgggaagagttgctgtgactatgccctgcatgtggacatcacccact ggaatgacagcgtcaagcaggaagtgcagaacctcatcaaggacaaaggggttaactcct tcatggtttatatggcttataaggatttgtatcaagtatctaacacagagctctatgaga tcttcacctgcctgggagagctgggggccattgctcaagttcatgctgagaatggggata tcattgcccaggagcaaacccgcatgttggaaatggggataactggcccagaaggccatg tactgagcaggccagaagagctggaagctgaggctgtgttccgtgccatcaccattgcca gccaaaccaattgccctctctacgtcacaaaggtcatgagcaagagtgcagctgacctca tctcacaagccaggaaaaaaggaaatgtagtctttggtgagcccatcactgccagcctcg gcatagatggaacccattattggagcaagaactgggccaaggcggctgcatttgtgacat cccca cccctgagccctga ccca a eta etcegga eta ca tea a ctccttgctggccagcg gggatctgcagctatctgggagtgcccactgcaccttcagcactgcccagaaagcaattg ggaaggacaacttcacagccattcctgagggcaccaatggtgtggaggagcggatgtctg tcatctgggacaaggctgtggccacagggaaaatggacgaaaaccagttcgtggctgtga caagcacaaacgctgccaagatcttcaacctgtatccccgcaagggaagaatatctgtgg gttctgacagcgacctcgtcatctgggatccagatgctgtgaagatcgtctctgccaaga accaccagtctgcggcagagtacaacatctttgaagggatggagctgcgcggggctcctc tggttgtcatctgccagggcaagatcatgctggaagatggcaacctgcacgtgacccagg gggctggccgcttcataccctgcagcccgttctccgactatgtctacaagcgcattaaag cacggaggaagatggcagacctgcatgccgtcccaaggggcatgtacgatgggcctgtgt ttga cctga cca cca ccccca a aggtggca cccccgcaggctctgctcggggctctccta ctcggccgaacccacctgtgaggaatcttcatcagtcgggatttagcctgtcaggcaccc aagtggatgagggggttcgctcagccagcaagcgcatcgtggcgcccccaggcggccgtt ctaatatcacatctctgagttaagcaagccttcctcaaagagaggggcagaagcaagaag agattgttttgaagccaaaatggtacaccgatatttaagaaggaaagcgaatccaaacgg ttgtgatctaaagaatcaataagcctcaagccttatgtttctccaatgttacgctcgctt gcctagctttacgaatattgctttgttttctgtttatgcatagccttgatttgtttgact cccctccccccatttacatgcatgcaatcagacaggccactaaggtaaaagagtctgctc tatcatagtgttgagagcgtgtgtagtgctgcatcttatgacaaggggacagacaagctg ggacgtcagggaaatgaacaaaagggacgcaggttatttggggtgagtgggtggtgggag cctggagcaaggtggagggtgcagaggggctggggtagggcatgtaggagggaggtgggt gggtcaggtgagtggaaggggtgttgtatattgtgttgatgacgtacgttatttccatgg aagatagccgctgtggcagctgtcacatcaccacagctccctagggtctgccgagaaggc aggcagtctttgggttctgttctttgtcacgtcccctacaagtaaattttgtttctttga acgtttattaaaatgccaagacccaaccatttcttccacctgcttgattgtgccagtgtt tgctcaggcctctttcttagtgttgctttcaaatccttctctttcctgggttgggaaggc caggcagggacagagcaaatgacacttctcttcctcttgccctccctgcctctttggtgc tcttaaaagccagcagctgagaacatagcacaggcccacgtggtgagggcacccacagct ta a aga cgcttccttcta a a ca cggcgaggtca cctctca ctcttctgtctttgca a a cc gagaagagtggcatgcttctggcatcccaagtcaggattttagctcagatgaggcagaat gaagggcctctcttacaggcagtttgtgtttgattctctcgatcctggcacatccatgat aaataggagtttttgaaagttggttttattaggtgttccctaatttttaccgtaataggt catctcagcttatatgaaagtcaagtggggaactgggaaagccaaagtcagtcttgagca gagggagca ca ttttgtgga cctggttcca cctttcca ttcca a a cca cctgtttcccct tccattagcagaaactctgggggaactttgtgtctcagtcctagaatctccccaagtgag tggaagtgacatgatgcagtcttcctcatggggcacctgaaagaaattagtgtgggtgct tcgatctaccttgtctgtcagagttgaatatctctttccctatcatgctgcttctgaaaa ttcagttttggagcaagtcctgtgagcaagataagaatctatagaaccaagatgctcatt ttcagaagaaatatgttcaacctgggatcagacttccatgctctggggaatccaagtggt agcacctgtaaccctgtgtactaagtgctttgaagagaagagcaggcctcagacaccttt taattgcttaggagaaaccattgtctctgactgcaggtttgaataagttgaagaccagag aaaagtacacactgggctacaaaggaatttggagatagccaaggaacaggatttccccta gcaagctaccttctgttcaaatcatgaaaaaagactatttccccttagaatagggaagct tgctattttaaagctcttgtagtgcttttcttttaagggagatgtagtaaaagggaaaat gtagctcttagtttacacttcaaagatgtgggggtctttcagagaactaagaataacagt tttatgtgcagagagagtttgccagatctgaagcatatacctcattgactaggctgttac tttgggataggttgcagtaccagccacagccagcagatagaggaaaagacacacataaac tcgcttctgagcgtccacttctgcactctctgctctgctgttactcagcccctgagtctg actcatctctgcacaacctctctgtgccatgaagataagtcttccatggccaaatcggtc atccgcactgcccttgggacttccgaagtgaaccattccaccagaacctttgattctgca caagatttccttgctctgggaacaacccccaaatgcccttgggaggaacaacatgagctc
aggaagcctctctttcttcacttaccattactaactctccaagcatagaaatccctggga attgcgagaataactcccactattttaaaatttatattcagatttgtttcgtttcataag acacatcaaacaggcctatacaaaaggtttaggaaaagaaaacaatggtgagtcccggcc ctcttcgaattcactggcacctcatgcaagtgtaggaaggcacgctggatcgtctatctg attccaaagctgtcctttgccatctcatcccttggcctgccccccaaccctgaggatgcc cctgccatccccccaacctcctcatattgcctctgaacccagatggcaatccatcccggt tctctctgagggccacgggcttgggtagtggaaagggtgtttgggaaattgttaaatcag ttacccgtagtagagctatttcttgtacttctaagttttctagaagtggaaggattgtag tea tcctga a a atgggttta cttca a a a tccctcagccttgttcttca cga ctgtcta ta ctgagagtgtcatgtttccacaaagggctgacacctgagcctggattttcactcatccct gagaagccctttccagtagggtgggcaattcccaacttccttgccacaagcttcccaggc tttctcccctggaaaactccagcttgagtcccagatacactcatgggctgccctgggcag ccagcattcattgtaagttccctctttgaaaactggtgtgtgggtgttcagttctgtgtc tggtgggtatggacagacagtaatctcctgtgatctgtgctagctgtgaggcagctctgg a a cgtga agagctgtttggtttga a ccgtga a ca a a a ctgtgttttgagtttagctga ca ttaaagaaaa a agttca tea cgtga ctgtta a tgta a a cctggtta tta a a ata a eta tg aaattaccaaaaaaaaaaaaaaaaaa
>refseq | NM_0009431 NM_000943 Homo sapiens peptidylprolyl isomerase C (cyclophilin C) (PPIC), m NA. agcgcgcaggcgcagccggccggcagtcccgtcagctgtcccagagcctgtgtcgcgccc gtgccggtagcgcccgtgccggtagcgccgctgccaccgctcaccatgggcccgggtcct cggctgctgctacctctcgtgctttgcgtggggctcggcgcacttgtgttttcttcgggg gccgagggcttccgcaagcgaggcccctcggtgacggccaaggtcttctttgatgtgagg attggagacaaagatgttggcagaattgtgattggcctctttggaaaagttgtgcccaag acagtggaaaattttgttgctctagcaacaggagagaaaggatatggatataaaggaagc
aagtttcatcgtgtcatcaaggatttcatgattcaaggaggtgacatcaccactggagat
ggcactgggggtgtgagcatctatggtgagacatttccagatgagaacttcaagctgaag
cactatggcattgggtgggtcagcatggccaacgctgggcctgacaccaatggctctcag
ttcttta tea ccttga cca agccca cctggttgga eggea a a ca tgtggtgtttgga a a a
gtcattgatgggatgacagtggtgcactccatagagctccaagcaactgatgggcatgac
cgtccactcaccaactgctcgatcatcaacagtggcaagatagacgtgaaaacgcctttt
gtggttgagatcgctgattggtgacacaactggcagaaaacaaggatatgctttggcagg
ggtgtgtgtgtgtgtgtgtgtgtgtgtgtgttgtgttgtctttcaattatttgctttttt
ttttttactttctttttgtattctatcccagatcacaggaaagttataaaaatcaaaccg
tcaccctttagtttgcttgaactttagtaaaccacctgcttagggactttgaacttaaat
atatccccttcctcaagtggtgctattttaaaactaaaaaaaactttgaattggctattt
ttttaatgcaatattttttttctgaattcattatgatccccatattgggtaatgctgaac
atttatctgaaacagatgaggatattattattttgtatccaaacagaaattcagataaag
ggaaatttgactagtgtaatctgagatatgtcatagggatttctttctgacaaaagggtg
ctttgctgttctttatattaaatacttttagatcaaaaaaa
>refseq | NM_0028411 NM_002841 Homo sapiens protein tyrosine phosphatase, receptor type, G (PTP G), mRNA.
acatgttacttcctgtatggaggcatggccagtttccagccccgcgctcttcgttccttc
ccagcctgcgccggagccacaactttcaggagcatggactgaaggcgccctcgccccagc
gcccctctgagatcctttgtgttttcctccgtttcctccggccgtttctattttgggggg
ctctccgctccccctgcctctcccctccccttcccctctcgcaaacatgcctccttcctt
cccggggccctggaaggagctgcctgcctgaagcccggagacgccgcgccgcgctcagcc
ccgccgccgcccgccggctctcgggctgtgctgcgctgccgactcaagttggggatcctc
ggctgctcgccgccgccgcccgcggtccctgcctgccccaggcccggggcatcgccgccg
gccgccgactccgcgccctgcccgatcggctctctcctttttaaacggaaagcagccttt ctccgccgagaggatcgtccccagcgtggctctgcgttcccggtcactttttgagatttt ccggggggcgctcggcggcttcccggattccaaggggactcgggccgccgagcgcggggg gcccgtggagcgggcgagccggggaagcgccccggcttagcggaggctcgcacggaggca aga a ctta ttca a ca agttta cctccctgctttcctcttttcga tgtgcgttttcgga ca tgcggaggtta ctgga a ccgtgttggtgga ttttgttcctga a a a tea ccagttccgtgc tccattatgtcgtgtgcttccccgcgttgacagaaggctacgttggggccctgcacgaga atagacacggcagcgcagtgcagatccgcaggcgcaaggcttcaggcgacccgtactggg cctactctggtgcctatggtcctgagcactgggtcacgtctagtgtcagctgtgggggcc gtcaccagtctcctattgacattttagaccagtatgcgcgtgttggggaagaataccagg aactgcaactcgatggcttcgacaatgagtcttctaacaaaacctggatgaaaaacacag ggaaaacagtcgccatccttctgaaagacgactattttgtcagtggagctggtctacctg gcagattcaaagctgagaaggtggaatttcactggggccacagcaatggctcagcgggct ctgaacacagcatcaatggcaggaggtttcctgttgagatgcagattttcttttacaatc cagatgactttgacagctttcaaaccgcaatttctgagaacagaataatcggagccatgg ccatattttttcaagtcagtccgagggacaattctgcactggatcctattatccacgggt tgaagggtgtcgtacatcatgagaaggagacctttctggatcctttcgtcctccgggacc tcctgcctgcatccctgggcagctattatcggtacacaggttccttgaccacaccaccgt gtagcgaaatagtggagtggatagtcttccggagacccgtccccatctcttaccatcagc ttgaggctttttattccatcttcaccacggagcagcaagaccatgtcaagtcggtggagt atctgagaaataactttcgaccacagcagcgtctgcatgacagggtggtgtccaagtccg ccgtccgtga ctcctgga a cca cga ca tga caga cttcttaga a a a ccca ctgggga ca g aagcctctaaagtttgcagctctccacccatccacatgaaggtgcagcctctgaaccaga cggcactgcaggtgtcctggagccagccggagactatctaccacccacccatcatgaact acatgatctcctacagctggaccaagaatgaggacgagaaggagaagacgtttacaaagg acagcgacaaagacttgaaagccaccattagccatgtctcacccgatagcctttacctgt tccgagtccaggccgtgtgtcggaacgacatgcgcagcgactttagccagacgatgctgt ttcaagctaataccactcgaatattccaagggaccagaatagtgaaaacaggagtgccca cagcgtctcctgcctcttcagccgacatggcccccatcagctcggggtcttctacctgga cgtcctctggcatcccattctcatttgtttccatggcaactgggatgggcccctcctcca gtggcagccaggccacagtggcctcggtggtcaccagcacgctgctcgccggcctggggt tcggcggtggtggcatctcctctttccccagcactgtgtggcccacgcgcctcccgacgg ccgcctcagccagcaagcaggcggctaggccagtcctagccaccacagaggccttggctt ctccagggcccgatggtgattcgtcaccaaccaaggacggcgagggcaccgaggaaggag agaaggatgagaaaagcgagagtgaggatggggagcgggagcacgaggaggatggagaga aggactccgaaaagaaggagaagagtggggtgacccacgctgccgaggagcggaatcaga cggagcccagccccacaccctcgtctcctaacaggactgccgagggagggcatcagacta tacctgggcatgagcaggatcacactgccgtccccacagaccagacgggcggaaggaggg atgccggcccaggcctggaccccgacatggtcacctccacccaagtgccccccaccgcca cagaggagcagtatgcagggagtgatcccaagaggcccgaaatgccatctaaaaagccta tgtcccgcggggaccgattttctgaagacagcagatttatcactgttaatccagcggaaa aaaacacctctggaatgataagccgccctgctccagggaggatggagtggatcatccctc tgattgtggtatcagccttgaccttcgtgtgcctcatccttctcattgctgtgctcgttt actggagagggtgtaacaaaataaagtccaagggctttcccagacgtttccgtgaagtgc cttcttctggggagagaggagagaaggggagcagaaaatgttttcagactgctcatttct atgtggaagacagcagttcacctcgagtggtccctaatgaaagtatccctattattccta ttccggatgacatggaagccattcctgtcaaacagtttgtcaaacacatcggtgagctct attctaataaccagcatgggttctctgaggattttgaggaagtccagcgctgtactgctg atatgaacatcactgcagagcattccaatcatccagaaaacaagcacaaaaacagataca tcaacattttagcatatgatcacagtagggtgaagttaagacctttaccaggaaaagact ctaagcacagcgactacattaatgcaaactatgttgatggttacaacaaagcaaaagcct acattgccacccaaggacctttgaagtctacatttgaagatttctggaggatgatttggg aacaaaacactggaatcattgtgatgattacgaaccttgtggaaaaaggaagacgaaaat gtgatcagtattggccaacagagaacagtgaggaatatggaaacattattgtcacgctga agagcacaaaaatacatgcctgctacactgttcgtcgtttttcaatcagaaatacaaaag tgaaaaagggtcagaagggaaatcccaagggtcgtcagaatgaaagggtagtgatccagt atcactatacacagtggcctgacatgggagttcccgagtatgcccttccagtactgactt tcgtgaggagatcctcagcagctcggatgccagaaacgggccctgtgttggtgcactgca gtgctggtgtgggcagaacaggcacctatattgtaatagacagcatgctgcaacagataa aagacaaaagcacagttaacgtcctgggattcctgaagcatatcaggacacagcgtaact acctcgtccagactgaggagcagtacattttcatccatgatgccttgttggaagccattc ttggaaaggagactgaagtatcttcaaatcagctgcacagctatgttaacagcatcctta taccaggagtaggaggaaagacacgactggaaaagcaattcaagctggtcacacagtgta atgcaaaatatgtggaatgtttcagtgctcagaaagagtgtaacaaagaaaagaacagaa actcttcagttgtgccatctgagcgtgctcgagtgggtcttgcaccattgcctggaatga aaggaacagattacattaatgcttcttatatcatgggctattataggagcaatgaattta ttataactcagcatcctctgccacatactacgaaagatttctggcgaatgatttgggatc ataacgcacagatcattgtcatgctgccagacaaccagagcttggcagaagatgagtttg tgtactggccaagtcgagaagaatccatgaactgtgaggcctttaccgtcacccttatca gcaaagacagactgtgcctctctaatgaagaacaaattatcatccatgactttatccttg aagctacacaggatgactatgtcttagaagttcggcactttcagtgtcccaaatggccta acccagatgcccccataagtagtacctttgaacttatcaacgtcatcaaggaagaggcct taacaagggatggtcccaccattgttcatgatgagtatggagcagtttcagcaggaatgt tatgtgcccttaccaccctgtcccagcaactggagaatgaaaatgctgtggatgttttcc aggttgcaaaaatgatcaatcttatgaggcctggagtattcacagacattgaacaatacc agttcatctataaagcaatgcttagcttggtcagcactaaagaaaatggaaatggtccca tgacagtagacaaaaatggtgctgttcttattgcagatgaatcagaccctgctgagagca tggagtccctagtgtgactggaatcctgaaagggcacttaatttgtaaacttctgaagac tgagaacttttttgaggccttttttgccagactctaggttatacaataacccagttactt ttttacactgataaaagttttgatatttattttttgccattttatgtcttaatggtatcc ta ctga gcatttgca cctctgttca tttca ca cagtga a a cgca a tttta cctagtttgc actatatgatcagtgttactgcctataatcttatacaacagcaaaccctgatgtgacatt ccatgacgacatacatgctacttttttttagttcaatacagtgaaggtctttgttatgac agtgaatattgcttttattattattattgctgaagtggttgcattctactagcaggcaat gctgtacttttcttcagtcctcctctcctttttattttaggcactgttcaatactgtatg ccttctgtattttaatggagtggatagcattgttttcttttacagactagcaggctactg ggacctaaaaaggtctgttaatgtcatggccttgaaacagttccatttatgctggttaag agatcccttaagaagttagaaggcttaagaactgcttcatgtgaacatcccttattagtt acaaagttatattcacagttttttaaaaatgtgtcaaaataaaggataactctgtattac agctttcacagtagctatgtggacaatgtgttatttccattttgactctctaaaatagct acatcctaaaatcagggctatctttaacaatagcaagatagcaatattatatacaactca gttatgagaccctttagttattctccattaatgcttcttagtttgtaataccatacctca cagtaggtagaagaatgaaaacttctgcaggtgtgtaattttgaaactagtcctctaaaa attccctattactcctatagcaatctaataaaaactacctacatagttactgttttcttt ccttctttgccaaatgttttataataaatctcttaattacatacatttttctacttaaga ttaaattggaaatactgtcttagcaaaagtcttgggactatctaaactcccacacataga taaatctgatttggagagagaaatttaaaatatttaattaaaggtgatacccacattttc aagtttttaaaagagggagatggctttgtatgcttttgtgtagtttagaacagatacaca ttagtaaaagataccaataatcattagagctcaaggaagttattaggtgcagcctctgga gccatactcacgctgcagtgcataatgggaaaattaggagcattaataagaaatttcagt agtgtttgtaaggaaaataagctacttactgagatctgtttcttctattgcatgtttgct tttgagggacagcttctgtcaaaagtgaaatcatcaccagaactgggcctgttaggaaga
atagggttttatttactttttatgtcaattaacttcaacaaaaaggccacgctggctgct
gtcatgccatctgggtatgcattaaacattaatgatgatcagcactga
>refseq | NM_0134091 NM_013409 Homo sapiens follistatin (FST), transcript variant FST344, mRNA. ttgggaagggtttccagaaggtgggaaatgtcacctgattcacactgaacttttgaaagc
tccccacccccaaggagccgcgcacaccctcgctcgcggccgccctcccacagccccaca
cactgggagaccgcccaccgcaaaccgcggagacccccgtctagatttaaagcgcggctg
cgcccggcttctgacgtccattgaatcgcgcgggcggccggcggcgagcgcggggctgcg
ccgggatcgctgcgccctccgccgctggcctctgcgacgcgcgccgctcgcccgagccac
ccgccgccgcgccggctccccgcgccgctgcgctcctcgccccgcgcctgcccccaggat
ggtccgcgcgaggcaccagccgggtgggctttgcctcctgctgctgctgctctgccagtt
catggaggaccgcagtgcccaggctgggaactgctggctccgtcaagcgaagaacggccg
ctgccaggtcctgtacaagaccgaactgagcaaggaggagtgctgcagcaccggccggct
gagcacctcgtggaccgaggaggacgtgaatgacaacacactcttcaagtggatgatttt
ca a cgggggcgccccca a ctgca tcccctgta a aga a a cgtgtgaga a cgtgga ctgtgg
acctgggaaaaaatgccgaatgaacaagaagaacaaaccccgctgcgtctgcgccccgga
ttgttccaacatcacctggaagggtccagtctgcgggctggatgggaaaacctaccgcaa
tgaatgtgcactcctaaaggcaagatgtaaagagcagccagaactggaagtccagtacca
aggcagatgtaaaaagacttgtcgggatgttttctgtccaggcagctccacatgtgtggt
ggaccagaccaataatgcctactgtgtgacctgtaatcggatttgcccagagcctgcttc
ctctgagcaatatctctgtgggaatgatggagtcacctactccagtgcctgccacctgag
aaaggctacctgcctgctgggcagatctattggattagcctatgagggaaagtgtatcaa
agcaaagtcctgtgaagatatccagtgcactggtgggaaaaaatgtttatgggatttcaa
ggttgggagaggccggtgttccctctgtgatgagctgtgccctgacagtaagtcggatga
gcctgtctgtgccagtgacaatgccacttatgccagcgagtgtgccatgaaggaagctgc ctgctcctcaggtgtgctactggaagtaaagcactccggatcttgcaactccatttcgga agacaccgaggaagaggaggaagatgaagaccaggactacagctttcctatatcttctat
tctagagtggtaaactctctataagtgttcagtgttgacatagcctttgtgcaaaaaaaa aaaaaaaaaaaaagaaaaagaaaaaaagaaaaatatattgtccatactgtaaataagtgt atgcttatttatttggggggaaaactatacattaaaggacctttgtcctaaagctctctc ccaggccaccttgttactcattggacacggagaggcattcattgtgaggtctactggatg aggcccatagttgagacttgtagacatttatttatactgtgtcatgttttataatttata cataaaatgtctggttgactgtataccttgtttttgaagaaatttattcgtgaaaggaag agcagttgttatttattgtgaggtctcttgcttgtaaagtaaaagctttttttccttgta a a cca ttta agtcca ttcctta eta ttca ctca c
>refseq | NM_0062071 NM_006207 Homo sapiens platelet-derived growth factor receptor-like (PDGFRL), mRNA. acttctgccttgttatcagaggagcgaggatgtggcctgtgtgccgcctaatcatgccta gaactgtctgcacctgctgatcttttgcttctgcgaactggctgcacctgctgttctcct gctcataccctagcccgtgcttaccctaattccctgttctcctgcctcaccaccagaggc ccgggttgtctgca cagtctca ttttcca cgtta ttcctgta a tga a cccgtcctccca c ccccaccagcagttacagggctgggtgcggagaccaactctggccagacacagaggagca gca aga a cccggggca a cggtcctgtga aa a ccga a tcctcccgcttcggcgtcccagga gcccgcccctcgcccgccgcctcccctgcgtccccgccccgcgcagccgccgcgctcctg cgctccgaggtccgaggttcccgagatgaaggtctggctgctgcttggtcttctgctggt gcacgaagcgctggaggatgttactggccaacaccttcccaagaacaagcgtccaaaaga accaggagagaatagaatcaaacctaccaacaagaaggtgaagcccaaaattcctaaaat gaaggacagggactcagccaattcagcaccaaagacgcagtctatcatgatgcaagtgct gga ta a aggtcgcttccaga a a cccgccgcta ccctgagtctgctggcggggca a a ctgt agagcttcgatgtaaagggagtagaattgggtggagctaccctgcgtatctggacacctt taaggattctcgcctcagcgtcaagcagaatgagcgctacggccagttgactctggtcaa ctccacctcggcagacacaggtgaattcagctgctgggtgcagctctgcagcggctacat ctgcaggaaggacgaggccaaaacgggctccacctacatcttttttacagagaaaggaga
a ctctttgta ccttctcccagcta cttcga tgttgtcta cttga a cccgga cagacaggc tgtggttccttgtcgggtga ccgtgctgtcggcca a agtca cgctcca ca ggga a ttccc agccaaggagatcccagccaatggaacggacattgtttatgacatgaagcggggctttgt gtatctgcaacctcattccgagcaccagggtgtggtttactgcagggcggaggccggggg cagatctcagatctccgtcaagtaccagctgctctacgtggcggttcccagtggccctcc ctcaacaaccatcttggcttcttcaaacaaagtgaaaagtggggacgacatcagtgtgct ctgcactgtcctgggggagcccgatgtggaggtggagttcacctggatcttcccagggca gaaggatgaaaggcctgtgacgatccaagacacttggaggttgatccacagaggactggg acacaccacgagaatctcccagagtgtcattacagtggaagactttgagacgattgatgc aggatattacatttgcactgctcagaatcttcaaggacagaccacagtagctaccactgt tgagttttcctgacttggaaaaggaaatgtaatgaacttatggaaagcccatttgtgtac acagtcagctttggggttccttttattagtgctttgccagaggctgatgtcaagcaccac accccaaccccagcgtctcgtgagtccgacccagacatccaaactaaaaggaagtcatcc agtctattcacagaagtgttaacttttctaacagaaagcatgattttgattgcttaccta catacgtgttcctagtttttatacatgtgtaaacaattttatataatcaatcatttctat taaatgagcacgtttttgtaaaaaataaaaagtgggataagtgttaaaaaaaaaaaaaaa aaa
>refseq | NM_0047911 NM_004791 Homo sapiens integrin, beta-like 1 (with EGF-like repeat domains) (ITGBL1), m NA. accagcaccccgcccagagcagtgccgctgcccaaatcctcgcaggcagctcatcaacgc a a ttgca a ctccggctggagccccgga cctgca agcctgggtgtccgtgggtccgtctgc ccagccatctgctggtggcacctctccctcctgccgcctccctcggtgaaccccaccttg cagaagtgcagctcgcccggagcagcccaggagctcagcatgcgtcccccaggcttcagg a a cttcttgctgctggcgtcctcccttctctttgctgggttgtcagctgttcctca a age ttctcgccatctctgaggagctggccgggcgccgcctgcaggctgtcccgggccgagtcg gagcga cgctgccgcgca cctgggcagcccccgggggccgcgctgtgcca cggccggggc cgctgcgactgcggcgtctgcatctgccacgtgactgagccgggcatgttcttcgggccc ctgtgtgagtgccatgagtgggtgtgcgagacctacgacgggagcacctgtgcaggccat ggtaagtgtgactgtggcaagtgcaagtgtgaccagggatggtatggggatgcttgccag tacccaactaactgtgacttgacaaagaagaaaagtaaccaaatgtgcaagaattcacaa gacatcatctgctctaatgcaggtacatgtcactgtggcaggtgtaagtgtgataattca gatggaagtggacttgtgtatggtaaattttgtgagtgtgacgatagagaatgcatagac gatgaaacagaagaaatatgtggaggccatgggaagtgttactgtggaaactgctactgc aaggctggttggcatggagataaatgtgaattccagtgcgatatcaccccctgggaaagc aagcgaagatgcacgtctccagatggcaaaatctgcagtaacagagggacttgtgtatgt ggtgaatgtacctgtcacgatgttgatccgactggggactggggagatattcatggggac acctgtgaatgtgatgagagggactgtagagctgtctatgaccgatattctgatgacttc tgttcaggtcatggacagtgtaattgcggaagatgtgactgcaaagcaggctggtatggg aagaagtgtgagcacccacagtcctgcacgctgtcagctgaggagagcatcaggaagtgc cagggaagctcggatctgccttgctctgggaggggtaaatgtgaatgtggcaaatgcacc tgctatcctccaggagatcgccgggtgtatggcaagacttgtgagtgtgatgatcgccgc tgtgaagacctcgatggtgtggtctgtggaggccacggcacatgttcctgtggtcgctgt gtttgtgagagaggatggtttggaaagctctgccaacatccgcggaagtgtaacatgacg gaagaacaaagcaagaatctgtgtgaatcagcagatggcatattgtgctcggggaagggt tcttgtcattgtgggaagtgcatttgttctgctgaagagtggtatatttctggggagttc tgtgactgtgatgacagagactgcgacaaacatgatggtctcatttgtacagggaatgga atatgtagctgtggaaactgtgaatgctgggatggatggaatggaaatgcatgtgaaatc tggcttggctcagaatatccttaacaattacatgagagaggtctggattcttattttttc tgggccattagaacatataaatgcgaaggaaaccatgtatattcaccactaggacaggtt aaaaagaccattgtatgtttttctatttctgaattacgaatgaaatccgagtacctatta gaaatgagttatgcaaatttagatgcaaataacattagaaaaaaaagattcttccataat
taacataagtggttcctaacgagagcaatttttccacccaaaagtcatttggcaacatct acagacaattttgattgtcacactgggtcgggtaggaaggtatgctgcagacatttggtg ggtagaggccagggatgctgctgagcatcccgcagtgtacaggacagcccccaaacaagg aattatccagccccaaatgccaatagggctcagactgagaaacattgagttatatggcta ttagaaatccacattcttacacaagaaagaccatattagaatctaaggaaaacatgcata ttcacattaattaatcgatcagatttttccagaattccgtatcagtcaccattttaatat ggggacaatgaagacaagcacacaggaggtagaatatcagagtggggctggatcaagggc aaaaactggtcattaagtcatctgacattaaatcatttagccactaagttatttgtgtac tctcactttaaactcaccaaagaagattctcttaaagaaattatgaaaaatgtacaattt aacattttaaataaatagtgacagaagttgtttaaaaa
>refseq | NM_0041861 NM_004186 Homo sapiens sema domain, immunoglobulin domain (Ig), short basic domain, secreted, (semaphorin) 3F (SEMA3F), m NA. ccgcggcgccgatcccggctgaggcgcagcggcgagaggtcgcgggcagggccatggccc cggggggccgctagcgcggaccggcccaacgggagccgctccgtgccgccgccgccgccc gggcgcccaggccccgccgctgcggaagaggtttctagagagtggagcctgcttcctggg ccctaggcccctcccacaatgcttgtcgccggtcttcttctctgggcttccctactgacc ggggcctggccatccttccccacccaggaccacctcccggccacgccccgggtccggctc tcattcaaagagctgaaggccacaggcaccgcccacttcttcaacttcctgctcaacaca accgactaccgaatcttgctcaaggacgaggaccacgaccgcatgtacgtgggcagcaag gactacgtgctgtccctggacctgcacgacatcaaccgcgagcccctcattatacactgg gcagcctccccacagcgcatcgaggaatgcgtgctctcaggcaaggatgtcaacggcgag tgtggga a cttcgtcaggctca tccagccctgga a ccga a ca ca cctgta tgtgtgcggg acaggtgcctacaaccccatgtgcacctatgtgaaccgcggacgccgcgcccaggccaca ccatggacccagactcaggcggtcagaggccgcggcagcagagccacggatggtgccctc cgcccgatgcccacagccccacgccaggattacatcttctacctggagcctgagcgactc gagtcagggaagggcaagtgtccgtacgatcccaagctggacacagcatcggccctcatc aatgaggagctctatgctggtgtgtacatcgattttatgggcactgatgcagccatcttc cgcacacttggaaagcagacagccatgcgcacggatcagtacaactcccggtggctgaac gacccgtcgttcatccatgctgagctcattcctgacagtgcggagcgcaatgatgataag ctttacttcttcttccgtgagcggtcggcagaggcgccgcagagccccgcggtgtacgcc cgca tcgggcgca tttgcctga a cga tga cggtggtca ctgttgcctggtcaa ca agtgg agcacattcctgaaggcgcggctcgtctgctctgtcccgggcgaggatggcattgagact cactttgatgagctccaggacgtgtttgtccagcagacccaggacgtgaggaaccctgtc atttacgctgtctttacctcctctggctccgtgttccgaggctctgccgtgtgtgtctac tccatggctgatattcgcatggtcttcaacgggccctttgcccacaaagaggggcccaac taccagtggatgcccttctcagggaagatgccctacccacggccgggcacgtgccctggt ggaaccttcacgccatctatgaagtccaccaaggattatcctgatgaggtgatcaacttc atgcgcagccacccactcatgtaccaggccgtgtaccctctgcagcggcggcccctggta gtccgcacaggtgctccctaccgccttaccactattgccgtggaccaggtggatgcagcc gacgggcgctatgaggtgcttttcctgggcacagaccgcgggacagtgcagaaggtcatt gtgctgcccaaggatgaccaggagttggaggagctcatgctggaggaggtggaggtcttc aaggatccagcacccgtcaagaccatgaccatctcttctaagaggcaacaactctacgtg gcgtcagccgtgggtgtcacacacctgagcctgcaccgctgccaggcgtatggggctgcc tgtgctgactgctgccttgcccgggacccttactgtgcctgggatggccaggcctgctcc cgctatacagcatcctccaagaggcggagccgccggcaggacgtccggcacggaaacccc atcaggcagtgccgtgggttcaactccaatgccaacaagaatgccgtggagtctgtgcag tatggcgtggccggcagcgcagccttccttgagtgccagccccgctcgccccaagccact gttaagtggctgttccagcgagatcctggtgaccggcgccgagagattcgtgcagaggac cgcttcctgcgcacagagcagggcttgttgctccgtgcactgcagctcagcgatcgtggc ctctactcctgcacagccactgagaacaactttaagcacgtcgtcacacgagtgcagctg
catgtactgggccgggacgccgtccatgctgccctcttcccaccactgtccatgagcgcc
ccgccacccccaggcgcaggccccccaacgcctccttaccaggagttagcccagctgctg
gcccagccagaagtgggcctcatccaccagtactgccagggttactggcgccatgtgccc
cccagccccagggaggctccaggggcaccccggtctcctgagccccaggaccagaaaaag
ccccggaaccgccggcaccaccctccggacacatgaggccagctgcctgtgcctgccatg
ggccagcctagcccttgtcccttttaatataaaagatatatatatatatatatatatata
aaatatctatattctatacacaccctgcccctgcaaagacagtatttattggtgggttga
atatagcctgcctcagtggcagcatcctccaaaacttagacccatgctggtcagagacgg
cagaaaacagagcctgcctaaccaggcccagccagttggtggggccaggccaggaccaca
cagtccccagactcagctggaagtctacctgctggacagcctccgccaagatctacagga
caaagggagggagcaagccctactcggatggggcacggactgtccaccttttctgatgtg
tgttgtcagcctgtgctgtggcatagacatggatgcgaggaccactttggagactggggt
ggcctcaagagcacacagagaagggaagaaggggccatcacaggatgccagcccctgcct
gggttgggggcactcagccacgaccagccccttcctgggtatttattctctatttattgg
ggataggagaagaggcatcctgcctgggtgggacagcctcttcagccccttctcccctcc
ccgcctggcca gggcagggcca ccccactcta cctccttagctttccctgtgcca ctttg
actcagaggctgggagcatagcagaggggccaggcccaggcagagctgacgggaggcccc
agctctgaggggagggggtccgtggtagaggcctggggccggtagaggctccccagggct
cccttatgtccaccacttcaggggatgggtgtggatgtaattagctctggggggcagttg
ggtagatgggtgggggctcctggtggccttctgctgcccaggccacagccgcctttgggt
tccatcttgctaataaacactggctctgggactagaaaaaaaaaaaaaaaa
>ENA | U38276 | U38276.1 Human semaphorin III family homolog mRNA, complete cds. CTG ACTG GTG CTCCCTCTCTTTC ATCTTG G G CTGTCTG C ATGTGTCTC ATTCCCCC ACTC TCTCCTGTGCCTCCCCTCTACTCTAATAATCAGGTCCAGGTTTCTCTGTACTGGGAGAAG ACCTGTGGCTGGAGCAGGCAGGGATGCACCCTATCTGTTCCCCATTCCTCCAGGTGGGAG
GGAGAAGGAGTAACCCACTTTATTGGCCACAGATGCAGGGGAGAAAGGAGAAAGCATGCT
GGGAGCTGGAAAGAGCCCTAAGATCACCTGGTTTCTAGAGAGTGGAGCCTGCTTCCTGCC
TAGGCCCCTCCCACAATGCTTGTCGCCGGTCTTCTTCTCTGGGCTTCCCTACTGACTGGG
GCCTGGCCATCCTTCCCTACCCAGGACCACCTCCCGGCCACGCCCCGGGTACGGCTCTCA
TTCAAAGAGCTGAAGGCCACAGGCACCGCCCACTTCTTCAACTTCCTGCTCAACACAACC
GACTACCGAATCTTGCTCAAGGACGAGGACCACGACCGCATGTACGTGGGCAGCAAGGAC
TACGTGCTGTCCCTGGACCTGCACGACATCAACCGCGAGCCCCTCATTATACACTGGGCA
GCCTCCCCACAGCGCATCGAGGAATGCGTGCTCTCAGGCAAGGATGTCAACGGCGAGTGT
GGGAACTTCGTCAGGCTCATCCAGCCCTGGAACCGAACACACCTGTATGTGTGCGGGACA
GGTGCCTACAACCCCATGTGCACCTATGTGAACCGCGGACGCCGCGCCCAGGATTACATC
TTCTACCTGGAGCCTGAGCGACTCGAGTCAGGGAAGGGCAAGTGTCCGTACGATCCCAAG
CTGGACACAGCATCGGCCCTCATCAATGAGGAGCTCTATGCTGGTGTGTACATCGATTTT
ATGGGCACTGATGCAGCCATCTTCCGCACACTTGGAAAGCAGACAGCCATGCGCACGGAT
CAGTACAACTCCCGGTGGCTGAACGACCCGTCGTTCATCCATGCTGAGCTCATTCCTGAC
AGTGCGGAGAATGATGATAAGCTTTACTTCTTCTTCCGTGAGCGGTCGGCAGAGGCGCCG
CAGAGCCCCGCGGTGTACGCCCGCATCGGGCGCATTTGCCTGAACGATGACGGTGGTCAC
TGTTGCCTGGTCAACAAGTGGAGCACATTCCTGAAGGCGCGGCTCGTCTGCTCTGTCCCG
GGCGAGGATGGCATTGAGACTCACTTTGATGAGCTCCAGGACGTGTTTGTCCAGCAGACC
CAGGACGTGAGGAACCCTGTCATTTACGCTGTCTTTACCTCCTCTGGCTCCGTGTTCCGA
G G CTCTG CCGTGTGTGTCTACTCC ATG G CTG ATATTCG C ATG GTCTTC AACG G G CCCTTT
GCCCACAAAGAGGGGCCCAACTACCAGTGGATGCCCTTCTCAGGGAAGATGCCCTACCCA
CGGCCGGGCACGTGCCCTGGTGGAACCTTCACGCCATCTATGAAGTCCACCAAGGATTAT
CCTGATGAGGTGATCAACTTCATGCGCAGCCACCCACTCATGTACCAGGCCGTGTACCCT
CTGCAGCGGCGGCCCCTGGTAGTCCGCACAGGTGCTCCCTACCGCCTTACCACTATTGCC GTGGACCAGGTGGATTCAGCCGACGGGCGCTATGAGGTGCTTTTCCTGGGCACAGACCGC
GGGACAGTGCAGAAGGTCATTGTGCTGCCCAAGGATGACCAGGAGATGGAGGAGCTCATG
CTGGAGGAGGTGGAGGTCTTCAAGGATCCAGCACCCGTCAAGACCATGACCATCTCTTCT
AAGAGGCAACAACTCTACGTGGCGTCAGCCGTGGGTGTCACACACCTGAGCCTGCACCGC
TGCCAGGCGTATGGGGCTGCCTGTGCTGACTGCTGCCTTGCCCGGGACCCTTACTGTGCC
TGGGATGGCCAGGCCTGCTCCCGCTATACAGCATCCTCCAAGAGGCGGAGCCGCCGGCAG
GACGTCCGGCACGGAAACCCCATCAGGCAGTGCCGTGGGTTCAACTCCAATGCCAACAAG
AATGCCGTGGAGTCTGTGCAGTATGGCGTGGCCGGCAGCGCAGCCTTCCTTGAGTGCCAG
CCCCGCTCGCCCCAAGCCACTGTTAAGTGGCTGTTCCAGCGAGATCCTGGTGACCGGCGC
CGAGAGATTCGTGCAGAGGACCGCTTCCTGCGCACAGAGCAGGGCTTGTTGCTCCGTGCA
CTG C AG CTC AG CG ATCGTG G CCTCTACTCCTG C AC AG CC ACTG AG A AC AACTTTA AG C AC
GTCGTCACACGAGTGCAGCTGCATGTACTGGGCCGGGACGCCGTCCATGCTGCCCTCTTC
CCACCACTGTCCATGAGCGCCCCGCCACCCCCAGGCGCAGGCCCCCCAACGCCTCCTTAC
CAGGAGTTAGCCCAGCTGCTGGCCCAGCCAGAAGTGGGCCTCATCCACCAGTACTGCCAG
GGTTACTGGCGCCATGTGCCCCCCAGCCCCAGGGAGGCTCCAGGGGCACCCCGGTCTCCT
GAGCCCCAGGACCAGAAAAAGCCCCGGAACCGCCGGCACCACCCTCCGGACACATGAGGC
CAGCTGCCTGTTCTGCCATGGGCAGCCTAGCCCTTGTCCCTTTTAATATAAAAGACATAT
ATATATATATATATATATATATATAAAAATATCTATATTCTATACACACCCTGCCCCTGC
A AAG AC AGTATTT ATTG GTG G GTTG A AT AT AG CCTG CCTC AGTG G C AG C ATCCTCC A AA A
CTTAGACCCATGCTGGTCAGAGACGGCAGAAAACAGAGCCTGCCTAACCAGGCCAGCCAG
TTAGTGGGGCCAGGCCAGGACCACACAGTCCCCAGACTCAGCTGGAGTCTACCTGCTGGA
CAGGCCTTGCGCCAAGATCTACAGGACAAAGGGAGGGAGCAAGCCCTACTCGGATGGGGC
ACGGACCGTCCACCTTTCTGATGTGTGTTGTCAGCCTGTGCTGTGGCATAGACATGGATG
CGAGGACCACTTTGGAGACTGGGGTGGCCTCAAGAGCACACAGAGAAGGGAAGAAGGGGC
CATCACAGGATGCCACCCCTGCCTTGGGTTGGGGGCACTCTGCCACGACCAGCCCCTTCC TGGGTATTTATTCTCTATTTATTGGGGATAGGAGAAGAGGCATCCTGCCTGGGTGGGACA
GCCCCTTGGGCCCCTTCTCCCCTCCCCGCCTGGCCAGGGAGGGCCACCCCACTCTACCTC
CTTAGCTTTCCCTGTGCCACTTTGACTCAGAGGCTGGGAGCATAGCAGAGGCCAGGCCCA
GGCAGAGCTGACGGGAGGCCCCAGCTCTGAGGGGAGGGGGTCCGTGGTAGAGCCTGGGGC
AGGTAGAGGCTCCCCAGGGCTCCCTTATGTCCACCACTTCAGGGGATGGGTGTGGATGTA
ATTAGCTCTGGGGGGCAGTTGGGTAGATGGGTGGGGGCTCCTGGTGGCCTTCTGCTGCCC
AGGCCACAGCCGCCTTTGGGTTCCATCTTGCTAATAAACACTGGCTTTGGAACTAAAAAA
AAAAAAAAAAAA
>ENA | AF055585 I AF055585.1 Homo sapiens neurogenic extracellular slit protein Slit2 m RNA, complete cds.
TGCCCCGCGCGCTCTGCTACGGGCCCGCTGGGCCTCCGCGCCTTCTAGCTTCCGGAGCCC
ACTTTGATCGGGGCCATAATACCTATTGAGATCCCCTCTTCTGTCTTGTACCTTCGCCAC
TGGCATCGGATTTGCAGAAGCCTGCGTGGGATCAGAGGACCGCCCTCCCCACAACAACCG
GCCCCTGCATCTTAGCAGCCGTTGGAAGCCCCAGCTCTTTTACCGCCAAGTTCATCCTTG
GGAGACAGAAGACGCGTGATCTCCTCTCCGCTGCTCTTGGGGTCTCCTTGCAGCCCTGGC
CAGGCGGATTCATCCTCAGGACCTAAAGTTGCCCAAGGAGCTCCTGCTCTGCCANAGGAG
GGTGGAAAGGGCGGTGGGAGGCGTGTGCCTGAGTGGGCTCTACTGCCTTGTTCCATATTA
TTTTGTG C AC ATTTTCCCTG G C ACTCTG G GTTG CTAG CCCCGCCGGG C ACTG G G CCTC AG
ACACTGCGCGGTTCCCTCGGAGCAGCAAGCTAAAGAAAGCCCCCAGTGCCGGCGAGGAAG
GAGGCGGCGGGGAAAGATGCGCGGCGTTGGCTGGCAGATGCTGTCCCTGTCGCTGGGGTT
AGTGCTGGCGATCCTGAACAAGGTGGCACCGCAGGCGTGCCCGGCGCAGTGCTCTTGCTC
GGGCAGCACAGTGGACTGTCACGGGCTGGCGCTGCGCAGCGTGCCCAGGAATATCCCCCG
CAACACCGAGAGACTGGATTTAAATGGAAATAACATCACAAGAATTACGAAGACAGATTT
TGCTGGTCTTAGACATCTAAGAGTTCTTCAGCTTATGGAGAATAAGATTAGCACCATTGA
AAGAGGAGCATTCCAGGATCTTAAAGAACTAGAGAGACTGCGTTTAAACAGAAATCACCT
TCAGCTGTTTCCTGAGTTGCTGTTTCTTGGGACTGCGAAGCTATACAGGCTTGATCTCAG TGAAAACCAAATTCAGGCAATCCCAAGGAAAGCTTTCCGTGGGGCAGTTGACATAAAAAA
TTTGCAACTGGATTACAACCAGATCAGCTGTATTGAAGATGGGGCATTCAGGGCTCTCCG
GGACCTGGAAGTGCTCACTCTCAACAATAACAACATTACTAGACTTTCTGTGGCAAGTTT
CAACCATATGCCTAAACTTAGGACTTTTCGACTGCATTCAAACAACCTGTATTGTGACTG
CCACCTGGCCTGGCTCTCCGACTGGCTTCGCCAAAGGCCTCGGGTTGGTCTGTACACTCA
GTGTATGGGCCCCTCCCACCTGAGAGGCCATAATGTAGCCGAGGTTCAAAAACGAGAATT
TGTCTG C AGTGGTC ACC AGTC ATTTATG G CTCCTTCTTGT AGTGTTTTG C ACTG CCCTGC
CGCCTGTACCTGTAGCAACAATATCGTAGACTGTCGTGGGAAAGGTCTCACTGAGATCCC
CACAAATCTTCCAGAGACCATCACAGAAATACGTTTGGAACAGAACACAATCAAAGTCAT
CCCTCCTGGAGCTTTCTCACCATATAAAAAGCTTAGACGAATTGACCTGAGCAATAATCA
GATCTCTGAACTTGCACCAGATGCTTTCCAAGGACTACGCTCTCTGAATTCACTTGTCCT
CTATGGAAATAAAATCACAGAACTCCCCAAAAGTTTATTTGAAGGACTGTTTTCCTTACA
GCTCCTATTATTGAATGCCAACAAGATAAACTGCCTTCGGGTAGATGCTTTTCAGGATCT
CCACAACTTGAACCTTCTCTCCCTATATGACAACAAGCTTCAGACCATCGCCAAGGGGAC
CTTTTCACCTCTTCGGGCCATTCAAACTATGCATTTGGCCCAGAACCCCTTTATTTGTGA
CTGCCATCTCAAGTGGCTAGCGGATTATCTCCATACCAACCCGATTGAGACCAGTGGTGC
CCGTTGCACCAGCCCCCGCCGCCTGGCAAACAAAAGAATTGGACAGATCAAAAGCAAGAA
ATTCCGTTGTTCAGGTACAGAAGATTATCGATCAAAATTAAGTGGAGACTGCTTTGCGGA
TCTGGCTTGCCCTGAAAAGTGTCGCTGTGAAGGAACCACAGTAGATTGCTCTAATCAAAA
GCTCAACAAAATCCCGGAGCACATTCCCCAGTACACTGCAGAGTTGCGTCTCAATAATAA
TGAATTTACCGTGTTGGAAGCCACAGGAATCTTTAAGAAACTTCCTCAATTACGTAAAAT
AAACTTTAGCAACAATAAGATCACAGATATTGAGGAGGGAGCATTTGAAGGAGCATCTGG
TGTAAATGAAATACTTCTTACGAGTAATCGTTTGGAAAATGTGCAGCATAAGATGTTCAA
GGGATTGGAAAAGCCTCAAAACTTGATGTTGAGAAGCAATCGAATAACCTGTGTGGGGAA
TGACAGTTTCATAGGACTCAGTTCTGTGCGTATGCTTTCTTTGTATGATAATCAAATTAC TACAGTTGCACCAGGGGCATTTGATACTCTCCATTCTTTATCTACTCTAAACCTCTTGGC
CAATCCTTTTAACTGTAACTGCTACCTGGCTTGGTTGGGAGAGTGGCTGAGAAAGAAGAG
AATTGTCACGGGAAATCCTAGATGTCAAAAACCATACTTCCTGAAAGAAATACCCATCCA
GGATGTGGCCATTCAGGACTTCACTTGTGATGACGGAAATGATGACAATAGTTGCTCCCC
ACTTTCTCGCTGTCCTACTGAATGTACTTGCTTGGATACAGTCGTCCGATGTAGCAACAA
GGGTTTGAAGGTCTTGCCGAAAGGTATTCCAAGAGATGTCACAGAGTTGTATCTGGATGG
AAACCAATTTACACTGGTTCCCAAGGAACTCTCCAACTACAAACATTTAACACTTATAGA
CTTAAGTAACAACAGAATAAGCACGCTTTCTAATCAGAGCTTCAGCAACATGACCCAGCT
CCTCACCTTAATTCTTAGTTACAACCGTCTGAGATGTATTCCTCCTCGCACCTTTGATGG
ATTAAAGTCTCTTCGATTACTTTCTCTACATGGAAATGACATTTCTGTTGTGCCTGAAGG
TGCTTTCAATGATCTTTCTGCATTATCACATCTAGCAATTGGAGCCAACCCTCTTTACTG
TGATTGTAACATGCAGTGGTTATCCGACTGGGTGAAGTCGGAATATAAGGAGCCTGGAAT
TGCTCGTTGTGCTGGTCCTGGAGAAATGGCAGATAAACTTTTACTCACAACTCCCTCCAA
AAAATTTACCTGTCAAGGTCCTGTGGATGTCAATATTCTAGCTAAGTGTAACCCCTGCCT
ATCAAATCCGTGTAAAAATGATGGCACATGTAATAGTGATCCAGTTGACTTTTACCGATG
CACCTGTCCATATGGTTTCAAGGGGCAGGACTGTGATGTCCCAATTCATGCCTGCATCAG
TAACCCATGTAAACATGGAGGAACTTGCCACTTAAAGGAAGGAGAAGAAGATGGATTCTG
GTGTATTTGTGCTGATGGATTTGAAGGAGAAAATTGTGAAGTCAACGTTGATGATTGTGA
AGATAATGACTGTGAAAATAATTCTACATGTGTCGATGGCATTAATAACTACACATGCCT
TTGCCCACCTGAGTATACAGGTGAGTTGTGTGAGGAGAAGCTGGACTTCTGTGCCCAGGA
CCTGAACCCCTGCCAGCACGATTCAAAGTGCATCCTAACTCCAAAGGGATTCAAATGTGA
CTGCACACCAGGGTACGTAGGTGAACACTGCGACATCGATTTTGACGACTGCCAAGACAA
CAAGTGTAAAAACGGAGCCCACTGCACAGATGCAGTGAACGGCTATACGTGCATATGCCC
CGAAGGTTACAGTGGCTTGTTCTGTGAGTTTTCTCCACCCATGGTCCTCCCTCGTACCAG
CCCCTGTGATAATTTTGATTGTCAGAATGGAGCTCAGTGTATCGTCAGAATAAATGAGCC AATATGTCAGTGTTTGCCTGGCTATCAGGGAGAAAAGTGTGAAAAATTGGTTAGTGTGAA
TTTTATAAACAAAGAGTCTTATCTTCAGATTCCTTCAGCCAAGGTTCGGCCTCAGACGAA
CATAACACTTCAGATTGCCACAGATGAAGACAGCGGAATCCTCCTGTATAAGGGTGACAA
AGACCATATCGCGGTAGAACTCTATCGGGGGCGTGTTCGTGCCAGCTATGACACCGGCTC
TCATCCAGCTTCTGCCATTTACAGTGTGGAGACAATCAATGATGGAAACTTCCACATTGT
GGAACTACTTGCCTTGGATCAGAGTCTCTCTTTGTCCGTGGATGGTGGGAACCCCAAAAT
CATCACTAACTTGTCAAAGCAGTCCACTCTGAATTTTGACTCTCCACTCTATGTAGGAGG
CATGCCAGGGAAGAGTAACGTGGCATCTCTGCGCCAGGCCCCTGGGCAGAACGGAACCAG
CTTCCACGGCTGCATCCGGAACCTTTACATCAACAGTGAGCTGCAGGACTTCCAGAAGGT
GCCGATGCAAACAGGCATTTTGCCTGGCTGTGAGCCATGCCACAAGAAGGTGTGTGCCCA
TGGCACATGCCAGCCCAGCAGCCAGGCAGGCTTCACCTGCGAGTGCCAGGAAGGATGGAT
GGGGCCCCTCTGTGACCAACGGACCAATGACCCTTGCCTTGGAAATAAATGCGTACATGG
C ACCTG CTTG CCC ATC AATG CGTTCTCCT AC AG CTGTA AGTG CTTG G AG G G CC ATG G AG G
TGTCCTCTGTGATGAAGAGGAGGATCTGTTTAACCCATGCCAGGCGATCAAGTGCAAGCA
TG G G A AGTG C AG G CTTTC AG GTCTG G G G C AG CCCTACTGTG AATG C AG C AGTG GAT AC AC
GGGGGACAGCTGTGATCGAGAAATCTCTTGTCGAGGGGAAAGGATAAGAGATTATTACCA
AAAGCAGCAGGGCTATGCTGCTTGCCAAACAACCAAGAAGGTGTCCCGATTAGAGTGCAG
AGGTGGGTGTGCAGGAGGGCAGTGCTGTGGACCGCTGAGGAGCAAGCGGCGGAAATACTC
TTTCGAATGCACTGACGGCTCCTCCTTTGTGGACGAGGTTGAGAAAGTGGTGAAGTGCGG
CTGTACGAGGTGTGTGTCCTAAACACACTCCCGGCAGCTCTGTCTTTGGAAAAGGTTGTA
TACTTCTTGACCATGTGGGACTAATGAATGCTTCATAGTGGAAATATTTGAAATATATTG
TAAAATACAGAAC
>ENA | AF056085 I AF056085.1 Homo sapiens GABA-B receptor m NA, complete cds.
GCCGCCCCTGAGCAGCCTCGCCTTCGCCTCCCGCGTTTCCTGCCGTCCGCCCTCCCCCGG
CCGAGCTCCAGGGGCTGCCGCCTAGCAGCTCCCGGCGGGAGAGCGGTTCAGAGCGCGCAC GGGGGCGGGCGGAGGCGGCCCGGTGCGGGGCGGCCGCGCTGGAGAGAGGCGCGCGCGGAG
ACGCCGGCCCCCCTCTCCGCGTTTGCTCGCTTGCTCCCCGCCTCCCGCACTCCGCTCGCT
CCCACCCCTTCCCGGCGTGATTGATCCGTCACGGGCGCCGCCGCTGCCGCCGCCGCCGCG
GCCGTTCTGAGCCGAGCCGGAACCCTAGCCCGAGACGGAGCCGGGGCCCGGGCCGGCGCC
ATTGCGCGGGCGCCGCGGGAAGACCTTGGCGCGGGGCGGCGGGCCGGGCCAGGCCATGCG
GGCCGAGTGAGCCGGCGCCCGCAGCCCGCGGCGCGGCATGGCTTCCCCGCGGAGCTCCGG
GCAGCCCGGGCCGCCGCCGCCGCCGCCACCGCCGCCCGCGCGCCTGCTACTGCTACTGCT
GCTGCCGCTGCTGCTGCCTCTGGCGCCCGGGGCCTGGGGCTGGGCGCGGGGCGCCCCCCG
GCCGCCGCCCAGCAGCCCGCCGCTCTCCATCATGGGCCTCATGCCGCTCACCAAGGAGGT
GGCCAAGGGCAGCATCGGGCGCGGTGTGCTCCCCGCCGTGGAACTGGCCATCGAGCAGAT
CCGCAACGAGTCACTCCTGCGCCCCTACTTCCTCGACCTGCGGCTCTATGACACGGAGTG
CGACAACGCAAAAGGGTTGAAAGCCTTCTACGATGCAATAAAATACGGGCCGAACCACTT
GATGGTGTTTGGAGGCGTCTGTCCATCCGTCACATCCATCATTGCAGAGTCCCTCCAAGG
CTGGAATCTGGTGCAGCTTTCTTTTGCTGCAACCACGCCTGTTCTAGCCGATAAGAAAAA
ATACCCTTATTTCTTTCGGACCGTCCCATCAGACAATGCGGTGAATCCAGCCATTCTGAA
GTTGCTCAAGCACTACCAGTGGAAGCGCGTGGGCACGCTGACGCAAGACGTTCAGAGGTT
CTCTGAGGTGCGGAATGACCTGACTGGAGTTCTGTATGGCGAGGACATTGAGATTTCAGA
CACCGAGAGCTTCTCCAACGATCCCTGTACCAGTGTCAAAAAGCTGAAGGGGAATGATGT
GCGGATCATCCTTGGCCAGTTTGACCAGAATATGGCAGCAAAAGTGTTCTGTTGTGCATA
CGAGGAGAACATGTATGGTAGTAAATATCAGTGGATCATTCCGGGCTGGTACGAGCCTTC
TTGGTGGGAGCAGGTGCACACGGAAGCCAACTCATCCCGCTGCCTCCGGAAGAATCTGCT
TGCTGCCATGGAGGGCTACATTGGCGTGGATTTCGAGCCCCTGAGCTCCAAGCAGATCAA
GACCATCTCAGGAAAGACTCCACAGCAGTATGAGAGAGAGTACAACAACAAGCGGTCAGG
CGTGGGGCCCAGCAAGTTCCACGGGTACGCCTACGATGGCATCTGGGTCATCGCCAAGAC
ACTGCAGAGGGCCATGGAGACACTGCATGCCAGCAGCCGGCACCAGCGGATCCAGGACTT CAACTACACGGACCACACGCTGGGCAGGATCATCCTCAATGCCATGAACGAGACCAACTT
CTTCGGGGTCACGGGTCAAGTTGTATTCCGGAATGGGGAGAGAATGGGGACCATTAAATT
TACTCAATTTCAAGACAGCAGGGAGGTGAAGGTGGGAGAGTACAACGCTGTGGCCGACAC
ACTGGAGATCATCAATGACACCATCAGGTTCCAAGGATCCGAACCACCAAAAGACAAGAC
CATCATCCTGGAGCAGCTGCGGAAGATCTCCCTACCTCTCTACAGCATCCTCTCTGCCCT
CACCATCCTCGGGATGATCATGGCCAGTGCTTTTCTCTTCTTCAACATCAAGAACCGGAA
TCAGAAGCTCATAAAGATGTCGAGTCCATACATGAACAACCTTATCATCCTTGGAGGGAT
GCTCTCCTATGCTTCCATATTTCTCTTTGGCCTTGATGGATCCTTTGTCTCTGAAAAGAC
CTTTGAAACACTTTGCACCGTCAGGACCTGGATTCTCACCGTGGGCTACACGACCGCTTT
TGGGGCCATGTTTGCAAAGACCTGGAGAGTCCACGCCATCTTCAAAAATGTGAAAATGAA
GAAGAAGATCATCAAGGACCAGAAACTGCTTGTGATCGTGGGGGGCATGCTGCTGATCGA
CCTGTGTATCCTGATCTGCTGGCAGGCTGTGGACCCCCTGCGAAGGACAGTGGAGAAGTA
CAGCATGGAGCCGGACCCAGCAGGACGGGATATCTCCATCCGCCCTCTCCTGGAGCACTG
TG AG AAC ACCC AT ATG ACC ATCTG G CTTGG C ATCGTCTATG CCTAC AAG G G ACTTCTC AT
GTTGTTCGGTTGTTTCTTAGCTTGGGAGACCCGCAACGTCAGCATCCCCGCACTCAACGA
CAGCAAGTACATCGGGATGAGTGTCTACAACGTGGGGATCATGTGCATCATCGGGGCCGC
TGTCTCCTTCCTGACCCGGGACCAGCCCAATGTGCAGTTCTGCATCGTGGCTCTGGTCAT
CATCTTCTGCAGCACCATCACCCTCTGCCTGGTATTCGTGCCGAAGCTCATCACCCTGAG
AACAAACCCAGATGCAGCAACGCAGAACAGGCGATTCCAGTTCACTCAGAATCAGAAGAA
AGAAGATTCTAAAACGTCCACCTCGGTCACCAGTGTGAACCAAGCCAGCACATCCCGCCT
GGAGGGCCTACAGTCAGAAAACCATCGCCTGCGAATGAAGATCACAGAGCTGGATAAAGA
CTTGGAAGAGGTCACCATGCAGCTGCAGGACACACCAGAAAAGACCACCTACATTAAACA
GAACCACTACCAAGAGCTCAATGACATCCTCAACCTGGGAAACTTCACTGAGAGCACAGA
TGGAGGAAAGGCCATTTTAAAAAATCACCTCGATCAAAATCCCCAGCTACAGTGGAACAC
AACAGAGCCCTCTCGAACATGCAAAGATCCTATAGAAGATATAAACTCTCCAGAACACAT CCAGCGTCGGCTGTCCCTCCAGCTCCCCATCCTCCACCACGCCTACCTCCCATCCATCGG
AGGCGTGGACGCCAGCTGTGTCAGCCCCTGCGTCAGCCCCACCGCCAGCCCCCGCCACAG
ACATGTGCCACCCTCCTTCCGAGTCATGGTCTCGGGCCTGTAAGGGTGGGAGGCCTGGGC
CCGGGGCCTCCCCCGTGACAGAACCACACTGGGCAGAGGGGTCTGCTGCAGAAACACTGT
CGGCTCTGGCTGCGGAGAAGCTGGGCACCATGGCTGGCCTCTCAGGACCACTCGGATGGC
ACTCAGGTGGACAGGACGGGGCAGGGGGAGACTTGGCACCTGACCTCGAGCCTTATTTGT
GAAGTCCTTATTTCTTCACAAAGAAGAGGAACGGAAATGGGACGTCTTCCTTAACATCTG
CAAACAAGGAGGCGCTGGGATATCAAACTTGCAAAAAAAAAAAAAAAACAAAACAAAAAA
AAAAACTAGACAAGGAGAGAGGCACTAGAACTCCAGCTGGAAGTCACGGAGTGGCTCGAG
CAGCCTTGGGAAGAGGCAAGGAGCTTCTGAAGAAACTGCCTCTGCACACACATCACTGGC
TGTGACCCCTCAGGCTAGCCCTTCTCCACTCTGGGGGAGGAGGTGGGAAGGGCCACCAGG
CCCCCAGCTGCCAGGCCAGCTGACCCCAGCCTTCCTGGAACAGGGAGTCTGCAGGAGCGC
AGACAGGCACAGCCCTGGAGCAGGCAGGCCGAGGGCTGCGGCACTGGAGCAGGCTGACTT
ACATGCTCCACATGGGACCTGTGTCACCCAATGAGATGTTTGTTACTCTGGTAAATGCCA
CACGTTAACACAATAACACCCATTCCTGGGACCGTGGGGATTTAGGGCACGTCACTGCAG
ACACGCTCTGCAGCATTCACCGACAGTCTGTCATGCACCCACCACGTTGGCCACGTCCTT
GTGTTCCTATCGGATGCTCCCAGTAACCAGGGGGACCACCCGAGCTAATCATGGAATGTC
TGTTCCCAGCAAACACGATAAAGAAAGATTGTGCACTTTAACCTCTCTCATCAGGGCCCA
AG G G CTG GCTG G G ATTTTTTTTTTTTTTTTTTCCC ACTA ACTTTGTTTCTG ACC AA AGTG
AATTGGAGGCATTCTGCTAAAAGACATCCCCGTAGACATAGGGGAGAGAGTTGCTGGCTG
AGGGCTTCCCTTGGCTTCCAGAAGGCAGCCTTCCATCCAGACAAGCCAGTGAGCTCTCCC
CTTGGGATCACTGGGGTGATCAGTCAGCAGATTGATTCTCATTCATAAGATCATTCCTCC
CTTTAAATTGAGCCCCTAAGAGCACTGGCCTGGGAGTCAGACAGACCTGGGTTCAAGTCC
TCAGTCCCCTGCCCACTCCCTACGTGACTTTGATCAGGTCACTAGTGTCTCTCTGAGCCT
CAGTTTCCCCTCTGTAACTTGGGGTTGAACTAAAACACCTGTCCTGCCTACCTCACAAGG TCACTCTGAGGATTGAAACTTGATCTTGTCCAGGAAAGCTTTGTACCAAACAGTGAAGCC
GCCCTGATCCGTGAGGTATGAGTATGACTCTGACCTTCAGCCCTCCCTACAGCCGGGGGT
GTGGCCCAGAGAAGCTTCCAGCACAGCCCTCTACCCAGAACATCCGGGCTGGAGGGAGGC
TCCCAGTGACTTTTCTGACATTCCTAGACAGGTTCATTCTTTGCTCAAGAAAGGCCTGAA
TGACAATGTCCAGGATGTCTGCACAACTGAGCAGCTCGCTCACTCCCTAAAGAAACCTAT
TG G C AG CTTC A AC AG G C AG G C AATAATCTCTTCCC AG AACC ACTG C AGTC AG G A ATA AAC
TGTTTTCTCCACCAGGCTTTGACAAAAGGGCCCACAGGAATCTTACCAATGCCAACATTT
CAAAGCACCCTATTTCACGTAGCATAGCTTTCTGCTCCCCTTCCCCAAAGAGAGGTTATG
GAGGTACTGTAGCTTTTAGGGAAAAAAAAAATGTTAACACATCACAGGTCAAGTTGAAGT
CATTCTCTGTTTAGGCACTAAAAATCGGTGTTGTCACTCACTGTGTATTACCAGTATTTA
CTTGCTTTCTTGATTTCACCAAAACCAAATTTAATTTAAAGGACCACATTAATTTTTCAA
AGGGAAAGAGACAATTAATTGTACATAATGTATACACACACAAAAAAAAAAATACCTGTA
GAAATATTATTCCAGCATAGCAGGAAAACAAACAAAAGTATTGGACTGTCGGAGGTGAGC
CTGTGCGTCTGTAACCCTTTGTGACTCCTGAGCGTGCGCTGTCTTCTAGGTTAACTCACG
AAGTACATTCTCTGTCTTACTGATACTGTAGGTTCACCCAT I I I I I I I TAATTTCCTCGC
AAATAACAAGACCCACAGAAGTGACTCTAGCTACTTAATGGTTCTGTTCTTTTATATGCA
GCAAACACACCGTCCATTTCTGAAGAGGCTTCGGCCTGAAGGCATTTTCCAATGATGTTA
GTGCACAAAACGCTTTAAATTAGACTGGAACTGCCAGAATCAAATGTAAATGAGGAATTT
CTCGTACCCCTACTGCATGGTATCGATTTTTAATAAATTGTTGCAAATTTGTTTTTATGA
ATAAAAGGAAAAAACCTGTCGTCTTT
>ENA I AF0957841 AF095784.1 Homo sapiens GABA-B receptor R2 (GABBR2) m RNA, complete cds.
ACGGGCGGTGTGTACAAAGGGCAGGGACTTAATCAACGCAAGCTTATGACCCGCACTCCT
TGGCGCGGGGCGGCGGGCCGGGCCAGGCCATGCGGGCCGAGTGAGCCGGCGCCCGCAGCC
CGCGGCGCGGCATGGCTTCCCCGCGGAGCTCCGGGCAGCCCGGGCCGCCGCCGCCGCCGC
CACCGCCGCCCGCGCGCCTGCTACTGCTACTGCTGCTGCCGCTGCTGCTGCCTCTGGCGC CCGGGGCCTGGGGCTGGGCGCGGGGCGCCCCCCGGCCGCCGCCCAGCAGCCCGCCGCTCT
CCATCATGGGCCTCATGCCGCTCACCAAGGAGGTGGCCAAGGGCAGCATCGGGCGCGGTG
TGCTCCCCGCCGTGGAACTGGCCATCGAGCAGATCCGCAACGAGTCACTCCTGCGCCCCT
ACTTCCTCGACCTGCGGCTCTATGACACGGAGTGCGACAACGCAAAAGGGTTGAAAGCCT
TCTACGATGCGATAAAATACGGGCCGAACCACTTGATGGTGTTTGGAGGCGTCTGTCCAT
CCGTCACATCCATCATTGCAGAGTCCCTCCAAGGCTGGAATCTGGTGCAGCTTTCTTTTG
CTGCAACCACGCCTGTTCTAGCCGATAAGAAAAAATACCCTTATTTCTTTCGGACCGTCC
CATCAGACAATGCGGTGAATCCAGCCATTCTGAAGTTGCTCAAGCACTACCAGTGGAAGC
GCGTGGGCACGCTGACGCAAGACGTTCAGAGGTTCTCTGAGGTGCGGAATGACCTGACTG
GAGTTCTGTATGGCGAGGACATTGAGATTTCAGACACCGAGAGCTTCTCCAACGATCCCT
GTACCAGTGTCAAAAAGCTGAAGGGGAATGATGTGCGGATCATCCTTGGCCAGTTTGACC
AGAATATGGCAGCAAAAGTGTTCTGTTGTGCATACGAGGAGAACATGTATGGTAGTAAAT
ATCAGTGGATCATTCCGGGCTGGTACGAGCCTTCTTGGTGGGAGCAGGTGCACACGGAAG
CCAACTCATCCCGCTGCCTCCGGAAGAATCTGCTTGCTGCCATGGAGGGCTACATTGGCG
TGGATTTCGAGCCCCTGAGCTCCAAGCAGATCAAGACCATCTCAGGAAAGACTCCACAGC
AGTATGAGAGAGAGTACAACAACAAGCGGTCAGGCGTGGGGCCCAGCAAGTTCCACGGGT
ACGCCTACGATGGCATCTGGGTCATCGCCAAGACACTGCAGAGGGCCATGGAGACACTGC
ATGCCAGCAGCCGGCACCAGCGGATCCAGGACTTCAACTACACGGACCACACGCTGGGCA
GGATCATCCTCAATGCCATGAACGAGACCAACTTCTTCGGGGTCACGGGTCAAGTTGTAT
TCCGGAATGGGGAGAGAATGGAGACCATTAAATTTACTCAATTTCAAGACAGCAGGGAGG
TGAAGGTGGGAGAGTACAACGCTGTGGCCGACACACTGGAGATCATCAATGACACCATCA
GGTTCCAAGGGTCCGAACCACCAAAAGACAAGACCATCATCCTGGAGCAGCTGCGGAAGA
TCTCCCTACCTCTCTACAGCATCCTCTCTGCCCTCACCATCCTCGGGATGATCATGGCCA
GTGCTTTTCTCTTCTTCAACATCAAGAACCGGAATCAGAAGCTCATAAAGATGTCGAGTC
CATACATGAACAACCTTATCATCCTTGGAGGGATGCTCTCCTATGCTTCCATATTTCTCT TTGGCCTTGATGGATCCTTTGTCTCTGAAAAGACCTTTGAAACACTTTGCACCGTCAGGA
CCTGGATTCTCACCGTGGGCTACACGACCGCTTTTGGGGCCATGTTTGCAAAGACCTGGA
GAGTCCACGCCATCTTCAAAAATGTGAAAATGAAGAAGAAGATCATCAAGGACCAGAAAC
TGCTTGTGATCGTGGGGGGCATGCTGCTGATCGACCTGTGTATCCTGATCTGCTGGCAGG
CTGTGGACCCCCTGCGAAGGACAGTGGAGAAGTACAGCATGGAGCCGGACCCAGCAGGAC
GGGATATCTCCATCCGCCCTCTCCTGGAGCACTGTGAGAACACCCATATGACCATCTGGC
TTGGCATCGTCTATGCCTACAAGGGACTTCTCATGTTGTTCGGTTGTTTCTTAGCTTGGG
AGACCCGCAACGTCAGCATCCCCGCACTCAACGACAGCAAGTACATCGGGATGAGTGTCT
ACAACGTGGGGATCATGTGCATCATCGGGGCCGCTGTCTCCTTCCTGACCCGGGACCAGC
CC AATGTG C AGTTCTG C ATCGTG G CTCTG GTC ATC ATCTTCTG C AG C ACC ATC ACCCTCT
GCCTGGTATTCGTGCCGAAGCTCATCACCCTGAGAACAAACCCAGATGCAGCAACGCAGA
ACAGGCGATTCCAGTTCACTCAGAATCAGAAGAAAGAAGATTCTAAAACGTCCACCTCGG
TCACCAGTGTGAACCAAGCCAGCACATCCCGCCTGGAGGGCCTACAGTCAGAAAACCATC
GCCTGCGAATGAAGATCACAGAGCTGGATAAAGACTTGGAAGAGGTCACCATGCAGCTGC
AGGACACACCAGAAAAGACCACCTACATTAAACAGAACCACTACCAAGAGCTCAATGACA
TCCTCAACCTGGGAAACTTCACTGAGAGCACAGATGGAGGAAAGGCCATTTTAAAAAATC
ACCTCGATCAAAATCCCCAGCTACAGTGGAACACAACAGAGCCCTCTCGAACATGCAAAG
ATCCTATAGAAGATATAAACTCTCCAGAACACATCCAGCGTCGGCTGTCCCTCCAGCTCC
CCATCCTCCACCACGCCTACCTCCCATCCATCGGAGGCGTGGACGCCAGCTGTGTCAGCC
CCTGCGTCAGCCCCACCGCCAGCCCCCGCCACAGACATGTGCCACCCTCCTTCCGAGTCA
TGGTCTCGGGCCTGTAAGGGTGGGAGGCCTGGCCCGGGCCTCCCCCGTGACAGAACCACA
CTGGGCAGAGGGGTCTGCTGCAGAAACACTGTCGGCTCTGGCTGCGGAGAAGCTGGGCAC
C ATG G CTG G CCTCTC AG G ACC ACTCG G ATG G C ACTC AG GTG G AC AG G ACG G G G C AG G G G G
AGACTTGGCACCTGACCTCGAGCCTTATTTGTGAAGTCCTTATTTCTTCACAAAGAAGAG
GAACGGAAATGGGACGTCTTCCTTAACATCTGCAAACAAGGAGGCGCTGGGATATCAAAC >ENA | AL359052 | AL359052.1 Homo sa piens mRNA full length insert cDNA clone EUROI MAGE 1968422.
TTCCTGTGGTCGCTGTGTTTGTGAGAGAGGATGGTTTGGAAAGCTCTGCCAACATCCGCG
GAAGTGTAACATGACGGAAGAACAAAGCAAGAATCTGTGTGAATCAGCAGATGGCATATT
GTGCTCGGGGAAGGGTTCTTGTCATTGTGGGAAGTGCATTTGTTCTGCTGAAGAGTGGTA
TATTTCTGGGGAGTTCTGTGACTGTGATGACAGAGACTGCGACAAACATGATGGTCTCAT
TTGTACAGGGAATGGAATATGTAGCTGTGGAAACTGTGAATGCTGGGATGGATGGAATGG
AAATGCATGTGAAATCTGGCTTGGCTCAGAATATCCTTAACAATTACATGAGAGAGCAAT
TTTGATGACGTATTCGCTGATGCACAGACATTGGAATTCATTACATTATCTAGCCATCGT
AATACAAATGACCTTTGGATTTCTCTATCACGGCGCTTATCCTCCTATTAAGGATCAGAA
AGTTAAACTTTACGGACCACGTACGTCCCTGTCTCATATTCTTCTTTGTTGGTTTCTGTT
TAATACTTTAAAGCTGTAAAAAAAATTTAAAAAATTCCTTCTGAGCTCCCAGGCCATACA
A AAGC AACTTAAG G GTG G ATTTG G CTG G C AG CTG G G C AGTACTTTGTC AG CCTC AG CTCC
ACTG G A ACTG CCCTTG ATTCTCTATAG CTC ATC AC AA AACCTC AG GTATGTCTTATTTTT
CTTATAATCCTCTGTATGTTATTATCCTTTTTATTAACAACAACAACTACAACAAAAGTG
CTGCTCTTTTTCATAGTCTCATGTAAGAAGAGTGTCAAAAATGTCCTCGGCATTTGTTTT
CTCAGAAAAAGAATTTAGATATTGGAGAAATTATCATACCATAAAAAGTTCAAAATGTGA
TTCATCTAAAATTTTGGACAAAGATGAAAATATAGTCAGCTCTGTTCTAGTGTTCATTTA
GTTAGAAACCATAGTACCGGAACTGTATTATAGTAGAAGTTAATGGTACCTAAACTCTAA
GGAATGCTTTTTCTTTGAAAACAGAAATATTTTTACTTATTTCTGTCCACTATGTTTGTG
TGTATGTGTGTGTTTGTGTGTGTATGTGTG GTTTTG ATG CC AG C AATG C A AAC ACC AATA
TATCTATTAAGAAGTGATTGAATTTAGATTGGAAAAAATAAAATAGTTACATGTAAAGAC
ATAAACTCTTTCCTTCTTAAATGTGATTTTCAACTCTATGATAGAAACTCCCTCTAAAAA
AC AAG C AG G G C AAG AAC A A ACTTACTTGTA ATG G GTG AG AG AAA AT AAG C A AATCTC ATT
GGCTCATTCCTGTTTTTAGGAAGTTGCAGTGGGATTAATGTCAATTGGAAGGGATGCAGC AAGTTT AG AG AAG GTGTTG G C ACTA ACG CTG CTTGTTTG G C AA ATC ATC ATC ACTG AG GT
ATTCCACCCAGAGACTTTTTCAAAAAAGTCAACTAAAGTGCTAAGTCATAAGAGGAGAGC
CATTATACCCGTTGTCTTTCTGGGCTCCTTGAGTTTATCTGGATTCCAACAGCACTTGGA
AAGTACCGCCCTCCACTACCTCAAATGCAAACACAATCTCTGCCAGTAGACATTGGAATT
AGACTTAGTGAAAACCAGGAAAAAAAAAAAAAAAAAAAA
>ENA | AF095723 I AF095723.null Retired from public view on 15-FEB-2002.
N
>refseq | NM_0121931 NM_012193 Homo sapiens frizzled family receptor 4 (FZD4), mRNA. ggtgagagctgcgcagcgctggctgctggctggcctcgcggagacgccgaacggacgcgg
ccggcgccggcttgtgggctcgccgcctgcagccatgaccctcgcagcctgtccctcggc
ctcggcccgggacgtctaaaatcccacacagtcgcgcgcagctgctggagagccggccgc
tgccccctcgtcgccgcatcacactcccgtcccgggagctgggagcagcgcgggcagccg
gcgcccccgtgcaaactgggggtgtctgccagagcagccccagccgctgccgctgctacc
cccgatgctggccatggcctggcggggcgcagggccgagcgtcccgggggcgcccggggg
cgtcggtctcagtctggggttgctcctgcagttgctgctgctcctggggccggcgcgggg
cttcggggacgaggaagagcggcgctgcgaccccatccgcatctccatgtgccagaacct
cggcta ca a cgtga cca aga tgccca a cctggttgggca cga gctgcagacgga cgccga
gctgcagctgacaactttcacaccgctcatccagtacggctgctccagccagctgcagtt
cttcctttgttctgtttatgtgccaatgtgcacagagaagatcaacatccccattggccc
atgcggcggcatgtgtctttcagtcaagagacgctgtgaacccgtcctgaaggaatttgg
atttgcctggccagagagtctgaactgcagcaaattcccaccacagaacgaccacaacca
catgtgcatggaagggccaggtgatgaagaggtgcccttacctcacaaaacccccatcca
gcctggggaagagtgtcactctgtgggaaccaattctgatcagtacatctgggtgaaaag
gagcctgaactgtgtgctcaagtgtggctatgatgctggcttatacagccgctcagccaa
ggagttcactgatatctggatggctgtgtgggccagcctgtgtttcatctccactgcctt cacagtactgaccttcctgatcgattcttctaggttttcctaccctgagcgccccatcat atttctcagtatgtgctataatatttatagcattgcttatattgtcaggctgactgtagg ccgggaaaggatatcctgtgattttgaagaggcagcagaacctgttctcatccaagaagg acttaagaacacaggatgtgcaataattttcttgctgatgtacttttttggaatggccag ctcca tttggtgggtta ttctga ca ctca cttggtttttggcagca gga ctca a a tgggg tcatgaagccattgaaatgcacagctcttatttccacattgcagcctgggccatccccgc agtgaaaaccattgtcatcttgattatgagactggtggatgcagatgaactgactggctt gtgcta tgttgga a a cca a aa tctcga tgccctca ccgggttcgtggtggctcccctctt tacttatttggtcattggaactttgttcattgctgcaggtttggtggccttgttcaaaat tcggtcaaatcttcaaaaggatgggacaaagacagacaagttagaaagactgatggtcaa gattggggtgttctcagtactgtacacagttcctgcaacgtgtgtgattgcctgttattt ttatgaaatctccaactgggcactttttcggtattctgcagatgattccaacatggctgt tgaaatgttgaaaatttttatgtctttgttggtgggcatcacttcaggcatgtggatttg gtctgccaaaactcttcacacgtggcagaagtgttccaacagattggtgaattctggaaa ggtaaagagagagaagagaggaaatggttgggtgaagcctggaaaaggcagtgagactgt ggtataaggctagtcagcctccatgctttcttcattttgaaggggggaatgccagcattt tggaggaaattctactaaaagttttatgcagtgaatctcagtttgaacaaactagcaaca attaagtgacccccgtcaacccactgcctcccaccccgaccccagcatcaaaaaaccaat gattttgctgcagactttggaatgatccaaaatggaaaagccagttagaggctttcaaag ctgtgaaaaatcaaaacgttgatcactttagcaggttgcagcttggagcgtggaggtcct gcctagattccaggaagtccagggcgatactgttttcccctgcagggtgggatttgagct gtgagttggtaactagcagggagaaatattaacttttttaaccctttaccattttaaata ctaactgggtctttcagatagcaaagcaatctataaacactggaaacgctgggttcagaa aagtgttacaagagttttatagtttggctgatgtaacataaacatcttctgtggtgcgct gtctgctgtttagaactttgtggactgcactcccaagaagtggtgttagaatctttcagt gcctttgtcataaaacagttatttgaacaaacaaaagtactgtactcacacacataaggt atccagtggatttttcttctctgtcttcctctcttaaatttcaacatctctcttcttggc tgctgctgttttcttcattttatgttaatgactcaaaaaaggtatttttatagaattttt gtactgcagcatgcttaaagaggggaaaaggaagggtgattcactttctgacaatcactt aattcagaggaaaatgagatttactaagttgacttacctgacggaccccagagacctatt gcattgagcagtggggacttaatatattttacttgtgtgattgcatctatgcagacgcca gtctggaagagctgaaatgttaagtttcttggcaactttgcattcacacagattagctgt gtaatttttgtgtgtcaattacaattaaaagcacattgttggaccatgacatagtatact ca a ctga cttta a a a ctatggtca a cttca a cttgca ttctcaga a tga tagtgccttta aaaatttttttattttttaaagcataagaatgttatcagaatctggtctacttaggacaa tggagactttttcagttttataaagggaactgaggacagctaatccaactacttggtgcg taattgtttcctagtaattggcaaaggctccttgtaagatttcactggaggcagtgtggc ctggagtatttatatggtgcttaatgaatctccagaatgccagccagaagcctgattggt tagtagggaataaagtgtagaccatatgaaatgaactgcaaactctaatagcccaggtct taattgcctttagcagaggtatccaaagcttttaaaatttatgcatacgttcttcacaag ggggtacccccagcagcctctcgaaaattgcacttctcttaaaactgtaactggcctttc tcttaccttgccttaggccttctaatcatgagatcttggggacaaattgactatgtcaca ggttgctctccttgtaactcatacctgtctgcttcagcaactgctttgcaatgacattta tttattaattcatgccttaaaaaaataggaagggaagcttttttttttcttttttttttt ttcaatcacactttgtggaaaaacatttccagggactcaaaattccaaaaaggtggtcaa attctggaagtaagcatttcctcttttttaaaaatttggtttgagccttatgcccatagt ttgacatttccctttcttctttcctttttgtttttgtgtggttcttgagctctctgacat caagatgcatgtaaagtcgattgtatgttttggaaggcaaagtcttggcttttgagactg aagttaagtgggcacaggtggcccctgctgctgtgcccagtctgagtaccttggctagac tctaggtcaggctccaggagcatgagaattgatccccagaagaaccattttaactccatc tgatactccattgcctatgaaatgtaaaatgtgaactccctgtgctgcttgtagacagtt cccataactgtccacggccctggagcacgcacccaggggcagagcctgcccttactcacg ctctgctctggtgtcttgggagttgtgcagggactctggcccaggcaggggaaggaagac caggcggtaggggactggtcttgctgttagagtatagaggtttgtaatgcagttttcttc ataatgtgtcagtgattgtgtgaccaaggcagcatctagcagaaagccaggcatggagta ggtgatcgatacttgtcaatgactaaataataacaataaaagagcacttgggtgaatctg ggcacctgatttctgagttttgagttctggagctagtgttttgacaatgctttgggtttt gacatgccttttccacaaatctcttgccttttcagggcaaagtgtatttgatcagaagtg gccatttggattagtagccttagcaatgctacagggttataggcctctcctttcacattc cagacaatggagagtgtttatggtttcaggaaaagaactttgtggctgaggggtcagtta ccagtgaccttcaatcaactccatcacttcttaaatcggtatttgttaaaaaaatcagtt attttatttattgagtgccgactgtagtaaagccctgaaatagataatctctgttcttct aactgatctaggatggggacgcacccaggtctgctgaactttactgttcctctgggaaag gagcagggacctctggaattcccatctgtttcactgtctccattccataaatctcttcct gtgtgagccaccacacccagcctgggtctctctacttttaacacatctctcatccctttc ccaggattccttccaagtcagttacaggtggttttaacagaaagcatcagctctgcttcg tgacagtctctggagaaatcccttaggaagactatgagagtaggccacaaggacatgggc ccacacatctgctttggctttgccggcaattcagggcttggggtattccatgtgacttgt ataggtatatttgaggacagcatcttgctagagaaaaggtgagggttgtttttctttctc tgaaacctacagtaaatgggtatgattgtagcttcctcagaaatcccttggcctccagag attaaacatggtgcaatggcacctctgtccaacctcctttctggtagattcctttctcct gcttcatataggccaaacctcagggcaagggaacatgggggtagagtggtgctggccaga accatctgcttgagctacttggttgattcatatcctctttcctttatggagacccatttc ctga tctctgaga ctgttgctga a ctggca a ctta cttgggcctga a a ctggaga agggg tgacatttttttaatttcagagatgctttctgattttcctctcccaggtcactgtctcac ctgcactctccaaactcaggttccgggaagcttgtgtgtctagatactgaattgagattc tgttcagcaccttttagctctatactctctggctcccctcatcctcatggtcactgaatt aaatgcttattgtattgagaaccaagatgggacctgaggacacaaagatgagctcaacag tctcagccctagaggaatagactcagggatttcaccaggtcggtgcagtatttgatttct ggtgaggtgaccacagctgcagttagggaagggagccattgagcacagactttggaagga accttttttttgttgtttgtttgtttgtttgtttgtttgtttgtttgagacagggtcttg ctctgtcaccca ggctggggcgca a tggca cga tcttggctca ctgca a cctctgcctcc tgggttcaagtgattctcctgccacagcctcctgaggagctgggactacaggtgcgtgct accacgcccagctacttctgtatttttagtagagacggggtttcactgtgttggccaggc tggtctcgaactcctgacctcatgatctgcccgcctcagcctcccaaagtgctgggatta caagtgtgagccaccacacctggcctggaaggaacctcttaaaatcagtttacgtcttgt attttgttctgtgatggaggacactggagagagttgctattccagtcaatcatgtcgagt cactggactctgaaaatcctattggttcctttattttatttgagtttagagttcccttct gggtttgtattatgtctggcaaatgacctgggttatcacttttcctccagggttagatca tagatcttggaaactccttagagagcattttgctcctaccaaggatcagatactggagcc ccacataatagatttcatttcactctagcctacatagagctttctgttgctgtctcttgc catgcacttgtgcggtgattacacacttgacagtaccaggagacaaatgacttacagatc ccccgacatgcctcttccccttggcaagctcagttgccctgatagtagcatgtttctgtt tctgatgtaccttttttctcttcttctttgcatcagccaattcccagaatttccccaggc aatttgtagaggacctttttggggtcctatatgagccatgtcctcaaagcttttaaacct ccttgctctcctacaatattcagtacatgaccactgtcatcctagaaggcttctgaaaag aggggcaagagccactctgcgccacaaaggttgggtccatcttctctccgaggttgtgaa agttttcaaattgtactaataggctggggccctgacttggctgtgggctttgggaggggt aagctgctttctagatctctcccagtgaggcatggaggtgtttctgaattttgtctacct cacagggatgttgtgaggcttgaaaaggtcaaaaaatgatggccccttgagctctttgta agaaaggtagatgaaatatcggatgtaatctgaaaaaaagataaaatgtgacttcccctg
ctctgtgcagcagtcgggctggatgctctgtggcctttcttgggtcctcatgccacccca
cagctccaggaaccttgaagccaatctgggggactttcagatgtttgacaaagaggtacc
aggcaaacttcctgctacacatgccctgaatgaattgctaaatttcaaaggaaatggacc
ctgcttttaaggatgtacaaaagtatgtctgcatcgatgtctgtactgtaaatttctaat
ttatcactgtacaaagaaaaccccttgctatttaattttgtattaaaggaaaataaagtt
ttgtttgttaggtt
>refseq | NM_0219391 NM_021939 Homo sapiens FK506 binding protein 10, 65 kDa (FKBPIO), mRNA. cccgagcctctctccctggccaggccccaggtctcgcagccagggatggagatgggggga
gggggaacctagagttctttgtagtgcctccctcagactctaacacactcagcctggccc
cctcctcctattgcaaccccctcccccgctcctcccggccaggccagctcagtcttccca
gcccccattccacgtggaccagccagggcgggggtagggaaagaggacaggaagaggggg
agccagttctgggaggcggggggaaggaggttggtggcgactccctcgctcgccctcact
gccggcggtcccaactccaggcaccatgttccccgcgggcccccccagccacagcctcct
ccggctccccctgctgcagttgctgctactggtggtgcaggccgtggggagggggctggg
ccgcgccagcccggccgggggccccctggaagatgtggtcatcgagaggtaccacatccc
cagggcctgtccccgggaagtgcagatgggggattttgtgcgctaccactacaacggcac
ttttgaagatggcaagaagtttgattcaagctatgatcgcaacaccttggtggccatcgt
ggtgggtgtggggcgcctcatcactggcatggaccgaggcctcatgggcatgtgtgtcaa
cgagcggcgacgcctcattgtgcctccccacctgggctatgggagcatcggcctggcggg
gctcattccaccggatgccaccctctacttcgatgtggttctgctggatgtgtggaacaa
ggaagacaccgtgcaggtgagcacattgctgcgcccgccccactgcccccgcatggtcca
gga cggcga ctttgtccgcta cca ctaca atggca ccctgctgga cggca cctccttcga
caccagctacagtaagggcggcacttatgacacctacgtcggctctggttggctgatcaa
gggcatggaccaggggctgctgggcatgtgtcctggagagagaaggaagattatcatccc tccattcctggcctatggcgagaaaggctatgggacagtgatccccccacaggcctcgct ggtctttcacgtcctcctgattgacgtgcacaacccgaaggacgctgtccagctagagac gctggagctcccccccggctgtgtccgcagagccggggccggggacttcatgcgctacca ctacaatggctccttgatggacggcaccctcttcgattccagctactcccgcaaccacac ctacaatacctatatcgggcagggttacatcatccccgggatggaccaggggctgcaggg tgcctgcatgggggaacgccggagaattaccatccccccgcacctcgcctatggggagaa tggaactggagacaagatccctggctctgccgtgctaatcttcaacgtccatgtcattga cttccacaaccctgcggatgtggtggaaatcaggacactgtcccggccatctgagacctg caatgagaccaccaagcttggggactttgttcgataccattacaactgttctttgctgga cggca cccagctgttca cctcgca tga eta cggggccccccagga ggega ctctcggggc caacaaggtgatcgaaggcctggacacgggcctgcagggcatgtgtgtgggagagaggcg gcagctcatcgtgcccccgcacctggcccacggggagagtggagcccggggagtcccagg cagtgctgtgctgctgtttgaggtggagctggtgtcccgggaggatgggctgcccacagg eta cctgtttgtgtggca ca agga ccctcctgcca a cctgtttga aga ca tgga cctca a caaggatggcgaggtccctccggaggagttctccaccttcatcaaggctcaagtgagtga gggcaaaggacgcctcatgcctgggcaggaccctgagaaaaccataggagacatgttcca gaaccaggaccgcaaccaggacggcaagatcacagtcgacgagctcaagctgaagtcaga tgaggacgaggagcgggtccacgaggagctctgaggggcagggagcctggccaggcctga gacacagaggcccactgcgagggggacagtggcggtgggactgacctgctgacagtcacc ctccctctgctgggatgaggtccaggagccaactaaaacaatggcagaggagacatctct ggtgttccca cca ccctaga tga a a a tcca ca gca caga cctcta ccgtgtttctcttcc atccctaaaccacttccttaaaatgtttggatttgcaaagccaatttggggcctgtggag cctggggttggatagggccatggctggtcccccaccatacctcccctccacatcactgac acagctgagcttgttatccatctccccaaactttctctttctttgtacttcttgtcatcc ccactcccagccccttttcctctatgtgacagctccctaggacccctctgccttcctccc caatcctgactggctcctagggaaggggaaggctcctggagggcagccctacctctccca tgccctttgccctcctccctcgcctccagtggaggctgagctgaccctgggctgctggag
gccagactgggctgtagttagcttttcatccctaaagaaggctcctttccctaaggaacc atagaagagaggaagaaaacaaagggcatgtgtgagggaagctgcttgggtgggtgttag ggctatgaaatcttggatttggggctgaggggtgggagggagggcagagctctgcacact caaaggctaaactggtgtcagtccttttttcctttgttccaaataaaagattaaaccaat ggcaaaaa
>refseq | NM_0122591 NM_012259 Homo sapiens hairy/enhancer-of-split related with YRPW motif 2 (HEY2), mRNA. gcgtggccggcgccggctcttgcggccgagcagagttgcggcgtgggaaagagccgctag gagcagaccgcgccgccgccggagccgcgcctgcccaggcccggggagggaggaggcggg cgtcagggtgctgcgccccgctcggcgtccgagcttccggccgggctgtgccccgcgcgg tcttcgccgggatgaagcgcccctgcgaggagacgacctccgagagcgacatggacgaga ccatcgacgtggggagcgagaacaattactcggggcaaagtactagctctgtgattagat tgaattctccaacaacaacatctcagattatggcaagaaagaaaaggagagggattatag agaaaaggcgtcgggatcggataaataacagtttatctgagttgagaagacttgtgccaa ctgcttttgaaaaacaaggatctgcaaagttagaaaaagctgaaatattgcaaatgacag tggatcatttgaagatgcttcaggcaacagggggtaaaggctactttgacgcacacgctc ttgccatggacttcatgagcataggattccgagagtgcctaacagaagttgcgcggtacc tgagctccgtggaaggcctggactcctcggatccgctgcgggtgcggcttgtgtctcatc tcagcacttgcgccacccagcgggaggcggcggccatgacatcctccatggcccaccacc atcatccgctccacccgcatcactgggccgccgccttccaccacctgcccgcagccctgc tccagcccaacggcctccatgcctcagagtcaaccccttgtcgcctctccacaacttcag aagtgcctcctgcccacggctctgctctcctcacggccacgtttgcccatgcggattcag ccctccgaatgccatccacgggcagcgtcgccccctgcgtgccacctctctccacctctc tcttgtccctctctgccaccgtccacgccgcagccgcagcagccaccgcggctgcacaca gcttccctctgtccttcgcgggggcattccccatgcttcccccaaacgcagcagcagcag tggccgcggccacagccatcagcccgcccttgtcagtatcagccacgtccagtcctcagc agaccagcagtggaacaaacaataaaccttaccgaccctgggggacagaagttggagctt tttaaatttttcttgaacttcttgcaatagtaactgaatgtcctccatttcagagtcagc ttaaaacctctgcaccctgaaggtagccatacagatgccgacagatccacaaaggaacaa taaagctatttgagacacaaacctcacgagtggaaatgtggtattctcttttttttctct cccttttttgtttggttca aggcagctcggta a ctga ca tcagca a cttttga a a a cttc acacttgttaccatttagaagtttcctggaaaatatatggaccgtaccatccagcagtgc atcagtatgtctgaattggggaagtaaaatgccctgactgaattctcttgagactagatg ggacatacatatatagagagagagtgagagagtcgtgtttcgtaagtgcctgagcttagg aagttttcttctggatatataacattgcacaagggaagacgagtgtggaggataggttaa gaaaggaaagggacagaagtcttgcaataggctgcagacattttaataccatgccagaga agagtattctgctgaaaccaacaggttttactggtcaaaatgactgctgaaaataatttt caagttgaaagatctagttttatcttagtttgccttctttgtacagacatgccaagaggt gacatttagcagtgcattggtataagcaattatttcatcagttctcagattaacaagcat ttctgctctgcctgcaggcccccaggcacttttttttttggatggctcaaaatatggtgc tgctttatataaaccttacatttatatagtgcacctatgagcagttgcctaccatgtgtc caccagaggctatttaattcatgccaacttgaaaactctccagtttgtaggagtttggtt taatttattcagtttcattaggactatttttatatatttatcctcttcattttctcctaa tgatgcaacatctattcttgtcaccctttgggagaagttacatttctggaggtgatgaag caaggagggagcactaggaagagaaaagctacaatttttaaagctctttgtcaagttagt gattgcatttgatcccaaaacaagatgaatgtatgcaatgggatgtacataagttatttt tgcccatgcctaaactagtgctatgtaatggggttgtggttttgtttttttcgatttcgt ttaatgacaaaataatctcttaatatgctgaaatcaagcacgtgagagtttttgtttaaa agataagagacacagcatgtattatgcacttcatttctctactgtgtggagaaagcaata aacattatgagaatgttaaacgttatgcaaaattatacttttaaatatttgttttgaaat
tactgtacctagtcttttttgcattactttgtaacctttttctatgcaagagtctttaca
ta cca eta atta a a tga agtcctttttga eta
>refseq | NM_022454 | NM_022454 Homo sapiens SRY (sex determining region Y)-box 17 (S0X17), mRNA. gcagtgtca eta ggccggctgggggccctgggta cgctgtaga ccaga ccgega caggee
agaacacgggcggcggcttcgggccgggagacccgcgcagccctcggggcatctcagtgc
ctcactccccaccccctcccccgggtcgggggaggcggcgcgtccggcggagggttgagg
ggagcggggcaggcctggagcgccatgagcagcccggatgcgggatacgccagtgacgac
cagagccagacccagagcgcgctgcccgcggtgatggccgggctgggcccctgcccctgg
gccgagtcgctgagccccatcggggacatgaaggtgaagggcgaggcgccggcgaacagc
ggagcaccggccggggccgcgggccgagccaagggcgagtcccgtatccggcggccgatg
aacgctttcatggtgtgggctaaggacgagcgcaagcggctggcgcagcagaatccagac
ctgcacaacgccgagttgagcaagatgctgggcaagtcgtggaaggcgctgacgctggcg
gagaagcggcccttcgtggaggaggcagagcggctgcgcgtgcagcacatgcaggaccac
cccaactacaagtaccggccgcggcggcgcaagcaggtgaagcggctgaagcgggtggag
ggcggcttcctgcacggcctggctgagccgcaggcggccgcgctgggccccgagggcggc
cgcgtggccatggacggcctgggcctccagttccccgagcagggcttccccgccggcccg
ccgctgctgcctccgcacatgggcggccactaccgcgactgccagagtctgggcgcgcct
ccgctcga eggcta cccgttgccca cgcccga ca cgtccccgctgga cggcgtgga cccc
gacccggctttcttcgccgccccgatgcccggggactgcccggcggccggcacctacagc
tacgcgcaggtctcggactacgctggccccccggagcctcccgccggtcccatgcacccc
cgactcggcccagagcccgcgggtccctcgattccgggcctcctggcgccacccagcgcc
cttcacgtgtactacggcgcgatgggctcgcccggggcgggcggcgggcgcggcttccag
atgcagccgcaacaccagcaccagcaccagcaccagcaccaccccccgggccccggacag
ccgtcgccccctccggaggcactgccctgccgggacggcacggaccccagtcagcccgcc gagctcctcggggaggtggaccgcacggaatttgaacagtatctgcacttcgtgtgcaag cctgagatgggcctcccctaccaggggcatgactccggtgtgaatctccccgacagccac
ggggccatttcctcggtggtgtccgacgccagctccgcggtatattactgcaactatcct gacgtgtgacaggtccctgatccgccccagcctgcaggccagaagcagtgttacacactt cctggaggagctaaggaaatcctcagactcctgggtttttgttgttgctgttgttgtttt ttaaaaggtgtgttggcatataatttatggtaatttattttgtctgccacttgaacagtt tgggggggtgaggtttcatttaaaatttgttcagagatttgtttcccatagttggattgt caaaaccctatttccaagttcaagttaactagctttgaatgtgtcccaaaacagcttcct ccatttcctgaaagtttattgatcaaagaaatgttgtcctgggtgtgttttttcaatctt ctaaaaaataaaatctggaatcctgcttttttgctctactagtacctctgtcacactagt cttatcaaaaaccagttcttaagatcaatgttaagtttattagttaatgtaaatttctca tcctcgaaaagggtgaacataaatgcctttaaggagtatatctaaaaataaacattagga tatctaagtttgatgtaattgtttcaggaaggaaaaaagaaaagcattctggaatgagcc tacttcaagtaatcttagtttctaaaactaacagttaatattttcaattccagtatatca ctttaagtagaaggggatgtccaagtaattttggttttctaactgttgaatcataagctt gacctgccccca gaggctttttgga tgttttta tctgtgttttgcca tctcttta ca etc ctcgacattcagtttaccttaatcttcacatttttacaccttgggaagtggcaagcatcg ctgggtttaagataaaggagtcacaaaaactaatcaaaataaaatttgcattatgacaac ttttaataca
>ENA I AK0237951 AK023795.1 Homo sapiens cDNA FLJ13733 fis, clone PLACE3000147, highly similar to Homo sapiens metalloproteinase with thrombospondin type 1 motifs ADAMTSl (ADAMTSl) mRNA.
AACATGGTCATTTTTATTAAAGTAAAAAATAAGATAGTAGTAGCTCTGGACATTTGGAAA
TGTGTATGTTTGTTTACACCCTGTGAAAAGTAGACATGGTCTGCAAAAGAGCCAATCTCC
TAAATATATTTCTTTCTCTAGAAATGTTATTTTGGGACAAATGAATGAATCCCTGTTGGG
AAAAAAGAACCTGCTGCATATCATCCATATTTTATTTTATTATTAT I I I I I I TGAGATGG
AGTCTCACTCTGTCTCCCAGGCTGGAGTGGAGTGGCACAATCTCGGCTCACTGCAACTTC TGCCTCCTGGGTTCAAGCGATTCTGCTGCCTCAGCATGCCCAGTAGCTGGGATTACAGGT
G C ATG CC ACC AC ACCCG G CT AATTTTTGTATTTTAGTAG AG ACG G G GTTTC ACTATGTTG
GCCATGCTGGTCTTGAACTCCTGACCTCAAGTGATCCACCCGCCTCGGCTTCTGGAATTA
CAGGTGTGAGCCACCGCACCCAGCCATGATCCATACTTTAATGTGGGTTCTGGATTGCTT
CCTAG G CC ACGTGTTT AAC ATG CC AC ATG ATG ATG C A AAG C AGTGTG CC AG CCTTA ATG G
TGTGAACCAGGATTCCCACATGATGGCGTCAATGCTTTCCAACCTGGACCACAGCCAGCC
TTGGTCTCCTTGCAGTGCCTACATGATTACATCATTTCTGGATAATGGTCATGGGGAATG
TTTGATGGACAAGCCTCAGAATCCCATACAGCTCCCAGGCGATCTCCCTGGCACCTCGTA
CGATGCCAACCGGCAGTGCCAGTTTACATTTGGGGAGGACTCCAAACACTGCCCCGATGC
AG CC AGC AC ATGTAGC ATCTTGTG GTGT ACCG G C ACCTCTG GTG G G GTG CTG GTGTGTC A
AACCAAACACTTCCCGTGGGCGGATGGCACCAGCTGTGGAGAAGGGAAATGGTGTATCAA
CGGCAAGTGTGTGAACAAAACCGACAGAAAGCATTTTGATGTGAGTTTTTCTACTGAAAC
ACATTCAGAATTGAAAAGAACAAAGTGATGGTAAAAGATATGATACCAAGTTAAACATCC
CCATCCGTGTCCTCTAGCAGGAATGCGAGATAGCTTATTTTTAGAACTGATTCTTTGTCC
CATGTGGCTTTCTTTGATACCCTAAAAGTTCTCTTTAGATAATTCTAATGCTGATGATTT
ATGTCTCCATTTAGACGCCTTTTCATGGAAGCTGGGGAATGTGGGGGCCTTGGGGAGACT
GTTCGAGAACGTGCGGTGGAGGAGTCCAGTACACGATGAGGGAATGTGACAACCCAGTCC
CAAAGAATGGAGGGAAGTACTGTGAAGGCAAACGAGTGCGCTACAGATCCTGTAACCTTG
AGGACTGTCCAGACAATAATGGAAAAACCTTTAGAGAGGAACAATGTGAAGCACACAACG
AGTTTTCAAAAGCTTCCTTTGGGAGTGGGCCTGCGGTGGAATGGATTCCCAAGTACGCTG
G CGTCTC ACC A AAG G AC AG GTG C AAG CTC ATCTG CC A AG CC AA AG G C ATTG G CTACTTCT
TCGTTTTG C AG CCC A AG GTAGTTCGTTTTTACCTT ATTTTT ACCTA AA A ATC A AG G CCTG
G G CTTG CTACCTTTTC A AAC AATTTTTGTT AT ACTATCTTTG CTTTCC ATATTA AC AT AT
CTTCAATTTCAAATTTGAACTCCTTTTCTTTTACATTAATTGGCAACTGCCTGCTTTGAG
TTTAGTGTTTTC AGTT ATG AATG AAG CTTA AATCT AAC ACTTC AC ATG CTTG C AATTG CT CG CTATTACTCTTTTATATG C AA AG A AA AG CTTTTTG G AC AGTC AAG CG CTCCTCTGTG C
GACTAGGCTTCACATACAGCTCATAGTTAGATACATTTTATATTCACACAGTAACCAGTA
GTTTTG G AA A AT AGTCTATG C ATG GTCC A AA AT ACTTGTT ACTG G GTAACTAG C AGT AG C
AGGTGCAAACAGAATAATAGAAGTGGTAGTCTGAGTATTGATTATTTTTATGTTTGAAAA
CACATATTGAACTAGGAAAAGCATCATTTCTTTTGCTGTTTTGCTAAGGGAATACATCTG
GATCTGAGACAGAAAATGGAATTTAATGTGATTGAGATGATCGTGTGTCATTAGCACCAT
AGGCTATGAAAATATTCCCAAGTTGCAGATTCAATATTCAGCAAGTGATTTCTGAAGCAC
TTACTCTTGCCAGATACTAATTATTCTAGGCTCTGAAGATACAGCAGTAAACAAAGTGAC
AAACAGCTCTACTTTCATTGACCTTAGCTGGAGGAGACATAGGTCAATAGATAAATAATT
TTTAAAAATATCTAATTTCTTCAGATGTCTATACGTAGTACTGAAAAATATGCCAAAGTG
AAG G GTA AATG C ATG A AATG C ATA ATGTGTAG AG G GT ACTGTGTTTA ATTAG C ATG GTC A
GGAAAGTAGAGAGAAAATGTTTACACTTATCATTGCAGCATCTCCTTCCTTTGCTTGTAT
GTAACACTAGACATGTGTCC I I I I I I CAGGTTGTAGATGGTACTCCATGTAGCCCAGATT
CCACCTCTGTCTGTGTGCAAGGACAGTGTGTAAAAGCTGGTTGTGATCACATCATAGACT
CCAAAAAGAAGTTTGATAAATGTGGTGTTTGCGGGGGAAATGGATCTACTTGTAAAAAAA
TATCAGGATCAGTTACTAGTGCAAAACCTGGATATCATGATATCATCACAATTCCAACTG
GAGCCACCAACATCGAAGTGAAACAGCGGAACCAGAGGGGATCCAGGAACAATGGCAGCT
TTCTTG CC ATC AA AG CTG CTG ATG G C AC ATATATTCTT AATG GTG ACTAC ACTTTGTCC A
CCTTAGAGCAAGACATTATGTACAAAGGTGTTGTCTTGAGGTACAGCGGCTCCTCTGCGG
CATTGGAAAGAATTCGCAGCTTTAGCCCTCTCAAAGAGCCCTTGACCATCCAGGTTCTTA
CTGTGGGCAATGCCCTTCGACCTAAAATTAAATGCACCTACTTCGTAAAGAAGAAGAAGG
A ATCTTTC A ATG CTATCCCC ACTTTTTC AG C ATG G GTC ATTG A AG AGTG G G G CG A ATGTT
CTAAGTCATGTGAATTGGGTTGGCAGAGAAGACTGGTAGAATGCCGAGACATTAATGGAC
AGCCTGCTTCAGAGTGTGCAAAGGAAGTGAAGCCAGCCAGCACCAGACCTTGTGCAGACC
ATCCCTGCCCCCAGTGGCAGCTGGGGGAGTGGTCATCATGTTCTAAGACCTGTGGGAAGG GTTAAAAAAAAGAAGCTTGAAGTGTCTGTCCCTTGATGGAGGGGTGTTATCTCATGAGAG
CTGTGATCCTTTAAAGAAACCTAAACATTTCATAGACTTTTGCACAATGGCAGAATGCAG
TTAAGTGGTTTAAGTGGTGTTAGCTTTGAGGGCAAGGCAAAGAGAGGAAGGGCTGGTGCA
GGGAAAGCAAGAAGGCTGGAGGGATCCAGCGTATCTTGCCAGTAACCAGTGAGGTGTATC
AGTAAGGTGGGATTATGGGGGTAGATAGAAAAGGAGTTGAATCATCAGAGTAAACTGCCA
GTTGCAAATTTGATAGGATAGTTAGTGAGGATTATTAACCTCTGAGCAGTGATATAGCAT
AATAAAGCCCCGGGCATTATTATTATTATTTCTTTTGTTACATCTATTACAAGTTTAGAA
AAAACAAAGCAATTGTCAAAAAAAGTTAGAACTATTACAACCCCTGTTTCCTGGTACTTA
TCTAATACTTAGTATCATGGGGGTTGGGAAGTGAAAAGTAGGAGAAAAGTGAGATTTTAC
TAAGACCTGTTTTACTTTACCTCACTAACAATGGGGGGAGAAAGGAGTACAAATAGGATC
TTTGACCAGCACTGTTTATGGCTGCTATGGTTTCAGAGAATGTTTATACATTATTTCTAC
CGAGAATTAAAACTTCAGATTGTTCAACATGAGAGAAAGGCTCAGCAACGTGAAATAACG
CAAATGGCTTCCTCTTTCCT I I I I I I GGACCATCTCAGTCTTTATTTGTGTAATTCATTT
TGAGGAAAAAACAACTCCATGTATTTATTCAAGTGCATTAAAGTCTACAATGGAAAAAAA
GCAGTGAAGCATTAGATGCTGGTAAAAGCTAGAGGAGACACAATGAGCTTAGTACCTCCA
ATTTCCTTTCTTTCCTACCATGTAACCCTGCTTTGGGAATATGGATGTAAAGAAGTAACT
TGTGTCTCATGAAAATCAGTACAATCACACAAGGAGGATGAAACGCCGGAACAAAAATGA
GGTGTGTAGAACAGGGTCCCACAGGTTTGGGGACATTGAGATCACTTGTCTTGTGGTGGG
GAGGCTGCTGAGGGGTAGCAGGTCCATCTCCAGCAGCTGGTCCAACAGTCGTATCCTGGT
GAATGTCTGTTCAGCTCTTCTGTGAGAATATGATTTTTTCCATATGTATATAGTAAAATA
TGTTACTATAAATTACATGTACTTTATAAGTATTGGTTTGGGTGTTCCTTCCAAGAAGGA
CTATAGTTAGTAATAAATGCCTATAATAAC
>ENA | AF060152 | AF060152.1 Homo sapiens M ETHl protein (M ETH l) m RNA, complete cds.
TGCAGCGCCTCCTCTTAGTGACTCCGGGAGCTTCGGCTGTAGCCGGCTCTGCGCGCCCTT
CCAACGAATAATAGAAATTGTTAATTTTAACAATCCAGAGCAGGCCAACGAGGCTTTGCT CTCCCGACCCGAACTAAAGCTCCCTCGCTCCGTGCGCTGCTACGAGCGGTGTCTCCTGGG
GCTCCAATGCAGCGAGCTGTGCCCGAGGGGTTCGGAAGGCGCAAGCTGGGCAGCGACATG
GGGAACGCGGAGCGGGCTCCGGGGTCTCGGAGCTTTGGGCCCGTACCCACGCTGCTGCTG
CTCGCCGCGGCGCTACTGGCCGTGTCGGACGCACTCGGGCGCCCCTCCGAGGAGGACGAG
GAGCTAGTGGTGCCGGAGCTGGAGCGCGCCCCGGGACACGGGACCACGCGCCTCCGCCTG
CACGCCTTTGACCAGCAGCTGGATCTGGAGCTGCGGCCCGACAGCAGCTTTTTGGCGCCC
GGCTTCACGCTCCAGAACGTGGGGCGCAAATCCGGGTCCGAGACGCCGCTTCCGGAAACC
GACCTGGCGCACTGCTTCTACTCCGGCACCGTGAATGGCGATCCCAGCTCGGCTGCCGCC
CTCAGCCTCTGCGAGGGCGTGCGCGGCGCCTTCTACCTGCTGGGGGAGGCGTATTTCATC
CAGCCGCTGCCCGCCGCCAGCGAGCGCCTCGCCACCGCCGCCCCAGGGGAGAAGCCGCCG
GCACCACTACAGTTCCACCTCCTGCGGCGGAATCGGCAGGGCGACGTAGGCGGCACGTGC
GGGGTCGTGGACGACGAGCCCCGGCCGACTGGGAAAGCGGAGACCGAAGACGAGGACGAA
GGGACTGAGGGCGAGGACGAAGGGCCTCAGTGGTCGCCGCAGGACCCGGCACTGCAAGGC
GTAGGACAGCCCACAGGAACTGGAAGCATAAGAAAGAAGCGATTTGTGTCCAGTCACCGC
TATGTGGAAACCATGCTTGTGGCAGACCAGTCGATGGCAGAATTCCACGGCAGTGGTCTA
A AG C ATT ACCTTCTC ACGTTGTTTTCG GTG G C AG CC AG ATTGT AC AA AC ACCCC AG C ATT
CGTAATTCAGTTAGCCTGGTGGTGGTGAAGATCTTGGTCATCCACGATGAACAGAAGGGG
CCGGAAGTGACCTCCAATGCTGCCCTCACTCTGCGGAACTTTTGCAACTGGCAGAAGCAG
CACAACCCACCCAGTGACCGGGATGCAGAGCACTATGACACAGCAATTCTTTTCACCAGA
CAGGACTTGTGTGGGTCCCAGACATGTGATACTCTTGGGATGGCTGATGTTGGAACTGTG
TGTGATCCGAGCAGAAGCTGCTCCGTCATAGAAGATGATGGTTTACAAGCTGCCTTCACC
ACAGCCCATGAATTAGGCCACGTGTTTAACATGCCACATGATGATGCAAAGCAGTGTGCC
AGCCTTAATGGTGTGAACCAGGATTCCCACATGATGGCGTCAATGCTTTCCAACCTGGAC
C AC AG CC AG CCTTG GTCTCCTTG C AGTG CCTAC ATG ATTAC ATC ATTTCTGG ATA ATG GT
CATGGGGAATGTTTGATGGACAAGCCTCAGAATCCCATACAGCTCCCAGGCGATCTCCCT GGCACCTCGTACGATGCCAACCGGCAGTGCCAGTTTACATTTGGGGAGGACTCCAAACAC
TGCCCTGATGCAGCCAGCACATGTAGCACCTTGTGGTGTACCGGCACCTCTGGTGGGGTG
CTGGTGTGTCAAACCAAACACTTCCCGTGGGCGGATGGCACCAGCTGTGGAGAAGGGAAA
TGGTGTATCAACGGCAAGTGTGTGAACAAAACCGACAGAAAGCATTTTGATACGCCTTTT
CATGGAAGCTGGGGAATGTGGGGGCCTTGGGGAGACTGTTCGAGAACGTGCGGTGGAGGA
GTCCAGTACACGATGAGGGAATGTGACAACCCAGTCCCAAAGAATGGAGGGAAGTACTGT
GAAGGCAAACGAGTGCGCTACAGATCCTGTAACCTTGAGGACTGTCCAGACAATAATGGA
AAAACCTTTAGAGAGGAACAATGTGAAGCACACAACGAGTTTTCAAAAGCTTCCTTTGGG
AGTGGGCCTGCGGTGGAATGGATTCCCAAGTACGCTGGCGTCTCACCAAAGGACAGGTGC
AAGCTCATCTGCCAAGCCAAAGGCATTGGCTACTTCTTCGTTTTGCAGCCCAAGGTTGTA
GATGGTACTCCATGTAGCCCAGATTCCACCTCTGTCTGTGTGCAAGGACAGTGTGTAAAA
GCTGGTTGTGATCGCATCATAGACTCCAAAAAGAAGTTTGATAAATGTGGTGTTTGCGGG
GGAAATGGATCTACTTGTAAAAAAATATCAGGATCAGTTACTAGTGCAAAACCTGGATAT
CATGATATCATCACAATTCCAACTGGAGCCACCAACATCGAAGTGAAACAGCGGAACCAG
AGG G G ATCC AG G A AC AATG G C AG CTTTCTTG CC ATC AA AG CTG CTG ATG G C AC AT AT ATT
CTTAATGGTGACTACACTTTGTCCACCTTAGAGCAAGACATTATGTACAAAGGTGTTGTC
TTGAGGTACAGCGGCTCCTCTGCGGCATTGGAAAGAATTCGCAGCTTTAGCCCTCTCAAA
GAGCCCTTGACCATCCAGGTTCTTACTGTGGGCAATGCCCTTCGACCTAAAATTAAATAC
ACCTACTTCGTAAAGAAGAAGAAGGAATCTTTCAATGCTATCCCCACTTTTTCAGCATGG
GTCATTGAAGAGTGGGGCGAATGTTCTAAGTCATGTGAATTGGGTTGGCAGAGAAGACTG
GTAGAATGCCGAGACATTAATGGACAGCCTGCTTCCGAGTGTGCAAAGGAAGTGAAGCCA
GCCAGCACCAGACCTTGTGCAGACCATCCCTGCCCCCAGTGGCAGCTGGGGGAGTGGTCA
TCATGTTCTAAGACCTGTGGGAAGGGTTACAAAAAAAGAAGCTTGAAGTGTCTGTCCCAT
GATGGAGGGGTGTTATCTCATGAGAGCTGTGATCCTTTAAAGAAACCTAAACATTTCATA
GACTTTTGCACAATGGCAGAATGCAGTTAAGTGGTTTAAGTGGTGTTAGCTTTGAGGCAA GGCAAAGTGAGGAAGGGCTGGTGCAGGGAAAGCAAGAAGGCTGGAGGGATCCAGCGTATC
TTGCCAGTAACCAGTGAGGTGTATCAGTAAGGTGGGATTATGGGGGTAGATAGAAAAGGA
GTTGAATCATCAGAGTAAACTGCCAGTTGCAAATTTGATAGGATAGTTAGTGAGGATTAT
TAACCTCTGAGCAGTGATATAGCATAATAAANCCCCGGGCATTATTATTATTATTTCTTT
TGTTACATCTATTACAAGTTTAGAAAAAACAAAGCAATTGTCAAAAAAAAAAAAAAAAAA
AAAAAAAAAA
>ENA I AF2322381 AF232238.1 Homo sapiens HES-related repressor protein 1 HERPl m RNA, complete cds.
GTCGACCGCCTGCCCAGGCCCGGGGAGGGAGGAGGCGGGCGTCAGGGTGCTGCGCCCCGC
TCGGCGTCCGAGCTTCCGGCCGGGCTGTGCCCCGCGCGGTCTTCGCCGGGATGAAGCGCC
CCTGCGAGGAGACGACCTCCGAGAGCGACATGGACGAGACCATCGACGTGGGGAGCGAGA
ACAATTACTCGGGGCAAAGTACTAGCTCTGTGATTAGATTGAATTCTCCAACAACAACAT
CTCAGATTATGGCAAGAAAGAAAAGGAGAGGGATTATAGAGAAAAGGCGTCGGGATCGGA
TAAATAACAGTTTATCTGAGTTGAGAAGACTTGTGCCAACTGCTTTTGAAAAACAAGGAT
CTGCAAAGTTAGAAAAAGCTGAAATATTGCAAATGACAGTGGATCATTTGAAGATGCTTC
AGGCAACAGGGGGTAAAGGCTACTTTGACGCACACGCTCTTGCCATGGACTTCATGAGCA
TAGGATTCCGAGAGTGCCTAACAGAAGTTGCGCGGTACCTGAGCTCCGTGGAAGGCCTGG
ACTCCTCGGATCCGCTGCGGGTGCGGCTTGTGTCTCATCTCAGCACTTGCGCCACCCAGC
GGGAGGCGGCGGCCATGACATCCTCCATGGCCCACCACCATCATCCGCTCCACCCGCATC
ACTGGGCCGCCGCCTTCCACCACCTGCCCGCAGCCCTGCTCCAGCCCAACGGCCTCCATG
CCTCAGAGTCAACCCCTTGTCGCCTCTCCACAACTTCAGAAGTGCCTCCTGCCCACGGCT
CTGCTCTCCTCACGGCCACGTTTGCCCATGCGGATTCAGCCCTCCGAATGCCATCCACGG
GCAGCGTCGCCCCCTGCGTGCCACCTCTCTCCACCTCTCTCTTGTCCCTCTCTGCCACCG
TCCACGCCGCAGCCGCAGCAGCCACCGCGGCTGCACACAGCTTCCCTCTGTCCTTCGCGG
GGGCATTCCCCATGCTTCCCCCAAACGCAGCAGCAGCAGTGGCCGCGGCCACAGCCATCA
GCCCGCCCTTGTCAGTATCAGCCACGTCCAGTCCTCAGCAGACCAGCAGTGGAACAAACA ATAAACCTTACCGACCCTGGGGGACAGAAGTTGGAGCTTTTTAAATTTTTCTTGAACTTC
TTGCAATAGTAACTGAATGTCCTCCATTTCAGAGTCAGCTTAAAACCTCTGCACCCTGAA
GGTAGCCATACAGATGCCGACAGATCCACAAAGGAACAATAAAGCTATTTGAGACAC
>ENA I AI0499731 AI049973.1 an38g03.xl Gessler Wilms tumor Homo sapiens cDNA clone
I MAGE: 1700980 3', m NA sequence.
TACTTTTTAAAACATTTATATTTATATATATAAAAAAATTAAATATATATAATATATAGT
GTGTTTGAGACTAAAAATATAGTACATAATATTTTTAAAAAAAGGAAAAAAAAGTAGAAT
AGGAAAAGGTGTGAGGGACACACAGATACACATTGCTAAAAACCTACAATGGTTTGTCCT
AACAAAAATAATATCTTTTTTTCTCTTCTCTTAATTATCATCATGGATCCATTTATTTTT
GGGGTCTGGGTGGAGAAAATTCAACAGGAGCTAGAAATGGAGGTTGCAATGCCAAGAATG
GCTGGGTAGAAAATGTGACCACAGGGAGCCCTGGGCCTCTTCTGGTGAAATTGGACTTCT
CAAAATTTTCTGGGTCACTGTTGCTAACAAGATTGTGTGGAGTTTTACTGTATTGGGATT
TTGGCTGCTCTTTCCCCAGAGTTAGGGTATTCTCAGGGGGGACAGCATCTGAAGAGCTCC
AAA AG C A AAC AG AAG AG CTC AG G G CCC ATCG AT ACTC AAC A AG G CC AGTG GTTG G G G CC A
GCAAAAAACCAGGGTAGGGACAGCAGACTGGCAGGAATGAGTGACAGTTCTATGCAAATG
G AGTTATTATTATT ATTG GT ATT ATT A AT AAG G G C AG GTTTGTACC AG A ACTG CCC AGT A
TGGGCTGTGACTTCTGCGCAGCAAATATTTCTCCAGGGACCGGGCCTGAAGCTACCTCAC
AGTGATGCCAAAAAAATGGA
>ENA | BG2600871 BG260087.1 602371673F1 NI H_MGC_93 Homo sapiens cDNA clone I MAGE:4479642 5', m RNA sequence.
CAAATTCCTTTTATAAATGTTATAGAAGCAGGAAGAATAATAAACACATTTGTGAATTGT G GTTC AGTTTATTTATCTTTAG G G AAG GCTG ATC ATTTATCTTATAG C AC ATA ACCCC AG CCTCTTATTCATTATGGTTAACTTTTATAATTTATCTTATTTTATAATTTAAGAATATAG TAC ATATC AGTTG G GTTTG GTTTTG GTC ATCG AG ACT AA AAG CTCC ATC AA AAC AG AACT TTGTGTTTTCTGCTAACTTATTTAATGACACAAGTTTTAAGAGAACCACAATTCATTGAT TCACTTATTCTTTTCCCTAATTGTGAATTTTAGTGATAAATACACCTGTACTACTGAGGA AAATATTCTGACACTTCACGTGTGCAAAGTATAGAACTGACAGTGTCAGTTTCAGATTTT
GTATGTACGATTTCTGGCTTATATATCCAATGGTGCAGATTTTGAAATTTGTAAGAACAA
AATTTGTTAAGAAAAACAACTTGCTCTAGTTTTGTGACCTTGTGTACTTTTGAAATAAAA
TCAAGAAAGCAGTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
AAAAAG
>ENA | BF438173 | BF438173.1 7q68a03.xl NCI_CGAP_Lu 24 Homo sapiens cDNA clone I MAGE:3703205 3', m NA sequence.
TTTG G CTTTTT AA AATTTTTTTATTTTTTC ACTC ATC ATTTATTTAC AA ATAC AC ATTAT
AACTTTTATATACATTGCACATTTACATGGTAGAAAAGTACAAAACTATATATTTAAATG
AATTTATATTTTAACTTGCCATGTTTGAAAATATAAAATTGCATCAGAAAAAAGTATTAT
GAAAAGCAAGAAACTTGAACTGATAAAGCTTTGATATAACTTTTAGTGATATACTGGTTG
AAAAAGAACTAATTTAAAAGGTACAGCTGAGTAGCTTAAAGGAAACACCTAACAAAAGGT
TGAATGTGTAGCCTTCAACATCCTTTAGTCTCCTGACACCCACATCATTTCTTTGTATCT
GTAACATCTTAAAAGTACATTACTAGAATTCTAATCATCTCCTCTCTCACAAATGTCTTC
ATCATAACAAAAGAACTGAAGTAGGAGTTTCCTCAAAGATGCTTATCTTCTGTACCTTGT
ATTTGAGTCAGAGTTATAATGCCTTTTGGTCAGTCAAGGTTCCTTGTA
>ENA | H 16409 | H 16409.1 ym22h04.sl Soares infant brain IN IB Homo sapiens cDNA clone IMAGE:49055 3', m RNA sequence.
TT I I I I I I I I I GACTTTAAATGAATAAACTTTTATTCTGAATATACTGTTTTTGCCACAA
GATTTAACACAACATTTTTCTGGGATTATAAATATTTTATAACAGTATTATACAAATTTT
TACAAAATGTTTTTATCAGGCTAGGTAATTTTCACAAAAGTGTCAAGAGNAACAAAATAA
AGGGGAGAAAAGATCTATTGTTCACAAAAGCCAGTTGGCCTTTTGCATGAATGCACACCA
TTTTAATAAAAGTATTCCTAAAAGCATGATCCNACACTCATACAACACAACAAAAAGGAC
AGCTTTACTAGGTCACATTATAAACTCAACTGGCATCTACACAAGACAGTATCCCATTAG
TTTCAGTGGAATTTGAGGATAACTGTGTGAACTGGAAATAAGGTAGGATGAAGAGTTGTC
TA ATTCTTC A AA AATCTG G AATTTTTTTC AAC ACTC A AA AC ATT AT ATT N G GTT N CTCTT NACAGAAATGTACTGTGAATATTGACATCTGCTATGGGGACCAATCCAGGTTGGNTGAAA AATATTTAA ATTTTG G C AGGTG A ATG GTATTC ATCTATCTTT
>ENA | BF338870 | BF338870.1 602036126F1 NCI_CGAP_Brn64 Homo sapiens cDNA clone
I MAGE:4183999 5', m NA sequence.
ATGAAGCCTTAAGAAAAAAAAC I I I I I I TAACTTTCCCTGAAACTTTATCATTTGATAAG
TAAATTTACTTTTCAAGAAGAGTATAACCAAAGAGTAAAGATAATGTGACACTAAGTTAT
C A AT ATTTTATG A AT AC AC ATA AG G C ATA A ATTTC AG CTGTA AA AA AG CTAC ATTC A ATC
TGACTCTGGTTTTAAAACAAAACTGCTGTCATAATTATACATGATACTGCAACTTTTGGA
AGGCTAATTTGGTGGAATGTTGCCTCATCATAGAACACCATAGATCATTAAAAATTCTAT
AAAAATTTTACCAAGCTACCATATAGTTAATAAAAGGGTATACAGTCACTTTTATTTCTG
AAAATATAAAACATTGAGCCTTTCAGTGTATCTGATGCTTCTCTTNTGGTAAGGAATACT
TTTATTTCATGGATCCCAGGCAGGCATATAAAAGTTACGGAATTTATAAAATCATTTGGG
ATAATTAGAAAATGCAATTATTCATAACAGAAAAATAAAGACTTTCTAGAAAGCTTCAAA
AAAAAAAAAAACAACAAAAAAAAAAAACGAACAACAAAAAAAAAACAGAAAAAAAAAAAA
ACAACTACAACAAGAAACACGACACACCAGAAACACCAGGACAAAAACACACAAGACGCA
ACAAAAACAAACATACACACAAGACAGACAAAAAGAAAACCCGGAAGAAACAACACACAA
AAAACAGAACAAAGACAAACAATAAAACATGAAAAGAGAACACAAAACCGAGAAAAACCA
CACGGCGCCGACCAATAACACCGACCATAAAGAAAGAACCCAAAGCAGAGAAAACACAAC
ACACCGCGAGAGAAAACGAAACAACGAGAGAGACCCAGAAAAAAAAGAGAAAAGAACACA
AAAAAAACGAAACAAGCAACAAAGACAAAAACAAAACAAGAACAAAAAGAAAGCGCGCAG
CAGGCAACGACCGCCAACGGAGAGGAGGAAGCCCACAGACAACACAAAGTAGAA
>ENA I AI7420431 AI742043.1 wg38c09.xl Soares_NSF_F8_9W_OT_PA_P_Sl Homo sapiens cDNA clone I MAGE:2367376 3', m RNA sequence.
TTTTTTATAATGATAATTTTTATACTTTTATTACTTAGAAAATAATTTATATTTTTCCAT
CATTTAAACAAAGAGTAGGCCTGAGTCTCATGCCTTTTGCACAGCTTTTACCTTCAAAGA
AAGTTATCTGGGTAAGATAGGCAGGAAATATGGGGAAACTGCAAATTAACAGTCTACATA CATCTAATATGAACAGTCTGTAAGATATTCCTTTTCTTTCGTTTTACTGGGATTGCAACG
GAAAGATTTGTTCTGGGTTTTAACCAAAATAGACAGAATCGGGAATTCTATTTTTAGGAA
GTAAATACTTTCTTGAACATAATATGAGAAAATTTCTTCATTCATCAGATGAAGACTAAT
ATAGATATATCCCTGTACAGAGCTACTGTCTTCATCTTTTATTGAGAGCCAAACCAGGTC
TTATCTAAATGACAAAAAATATTACAGCTAACAAAAGCAAAAGTGGTGCTTTTATCAAGG
AAACCAATATTTTAAAGGTTAATTTAGATAGATATATAACCGGAAAGACATTTATTAGCA
TGCTGAAAATAACACTGATGACACTCAGAATACACCTGGTCTCTTAC
>ENA | BE6448091 BE644809.1 7e57e09.xl Soares_NSF_F8_9W_OT_PA_P_Sl Homo sapiens cDNA clone I MAGE:3286600 3' similar to contains element M ER37 repetitive element, m RNA sequence.
TAACCATTTGACCATGTTATATTTTAATTGGCAGAGACAAAAATGACAAGCAATTTATTT
ACATAAAACTGTACAAAAGCAAATTAAATTATGCAAAGTATTTCATAAATAGTTGGACGA
GTGTTTAATACATTTCGCCATGTTAAGCATAGTTGCGTGCATAGTGACTCATAATAAACG
ATGATAAATTGTTCTCTGCTTCACTATCAACATCCAAGTAGCAGAACAATAGTCAATGAT
TAACATTACAAACAGATCGTACCACACTGAACGCAAGTGCTTTAAACTGTAGGAAAAGTC
TGAAAGTAAACCCTAGGTAGCTGAACAAATGATGCTTCCTCCAGATGTTATCATTACACC
TTCACCTAGGTCACAACTCACAAGATTTACTATATTCATGATCATGCTCACTTTTTATTA
TTTATTTATTTATTTATTTATTTATTTATTTTTGCTTAAGGACACATTTTCTTATTTCTC
ACTGAGAGCATATACCTAAGATTATTTAGGTCTTTAGATNTCTCATGAC
>ENA I AI9633041 AI963304.1 wt61d01.xl NCI_CGAP_Panl Homo sapiens cDNA clone I MAGE:2511937 3' similar to gb:J03464 PROCOLLAGEN ALPHA 2(1) CHAI N PRECU RSOR (HUMAN), mRNA sequence.
AATGAAGTAAATATCTGTTTAATTTACAAACATCAGCAGTGTAACCGATATTAATCTGGA
GAAAGACAAAGCACACTGAATTATACATGTACATCTAATTTTCTTTGTAAAAAAAGAAGT
TTTCAGGAAGAAACATCTGCATCTTTACAGGGCACCCTGGGATTTTAATGAGGGAAGAGC
AC AGTTC ACT ATA AACC ATTATC A ATTCT AC ATTGTA ATTTAG C AG C A AAC ATGTTA AC A
TGGGAGCATTAAGATAAATAAGGGAGTTTTATTGTTTGAGGGAAAGAAAAGTCACAGTTC
TTGATATGACAGTCTTTTTATCCCCACCTCACCCCCAGAAAAGGGCAAAAAAGGTCAAGG ACATATTAATTTGCAAAAGGTCTACTTTCTAGTGTTGATTGCTACACACCATTTCGTTTC
TGTGAGGACATGTTGCAGAGGGGCCACTTCTTTCTGTACAATGACCATCTCACATACAGA
TTTCTGTTTTCCTTTCTCGGACTTTGCATACTCTCTGCAGTGTCCTGAATGAGGCCAGTA
GGTCATTGACATCAGTGATCATCTGGCCCTTCTGGTCCCCCTGGTTCTTGCTGGAAAGAA
GGGCTTCGTGTTCCTCGTGTGACCAAGGTCAGTTGGCCGAACTTGAGAAGAAGGTGCAGT
>ENA I AW0061821 AW006182.1 wz93c05.xl NCI_CGAP_Brn25 Homo sapiens cDNA clone I MAGE:2566376 3', m NA sequence.
GGGTAGTCTTTCCTCTGTTTACTCTTTACTTCATTTGATCAATTCCAA I I I I I I TCATAA
TGCCATTATTATTGAGGGAAGGGGAGTAACTTCAAGGTAATCCAGAGAGAAGCAAATGCA
ATACAGTTCTGACTGAGATGCAGATTCCTTTTTGTTAAATGCTGACTGTGTCCTTGGTTT
CCCATTCACCTGGGAAGTAGAAGAATAAAAATCATTCCATAGTTCCATCCAAGGAGGGCA
GCTGCAACAGTGTGCTCTTGAGCAGGCTGTCTGGGTCATCAGGAAAAGCCATTCCAGTTA
CTCACGCATTCTCTGAGAAACCTTGTCATCTCTGCCATCTGTCTCTGTGTAGGAACTGCC
A AAGTCCTTCG GTTCCCC ATCTC AA ATA AG C AGTG C ATG G GTTACTTCCCTC ATTCTA AT
CCTTCAGTCCCTCCTTGTGTCCGTTTGGATCTTCCAGGAAGCAGCTTTCAAGATGGAGTT
AGAAGTACGAGTAATGAGGGGTGATTACCGTGAAAGATAAAGGGGA
>ENA | AB037820 | AB037820.1 Homo sapiens m RNA for KIAA1399 protein, partial cds.
CCCACCTCGGCCACACTGCTTCGCTCCCCCCTCCCCACCTTCAGCTGGCACCGCAAACAA
GCCTTACCTCGTTGCATCTGCGAGGAGAGGTAGCAACAGCGAGCCTAGCCAGCCAGAGGC
GGTGGAGAGGAGGAAGGGGCGGGGTGGGGGGGCAGAGAGCGGGCCGAGGCCGCCCTTGGT
GGGGGTAGCGGGGGCAGAGCTGCCGAGCAGACCCGGCAGCCGCCCTCCTCCGCCCCCACC
CTCCAGAAGCACTCTTGCCTGAGAACCGAATTATTCCACTAGTATTATTTCATTTTTTAT
TACTCCCCCTCCTCACTCCCCAGCCGCCCCCACCCCCACGCCGGCCTCGCCTCTGGTTGC
ATGGCAGCGCTGCCCGGGCGCGGGGGCTCAGGGCTGGCCCCCAGGGAAGGGGGAGGAGGA
GGAGGATCATGAAGGCCGGAGTCGCGACCGCGCCGGACGGCGGGCAGCAGCCAGAGGACG AGCCGGAGCAGCCCCCGCCCCGGAGACACCCGGACGCCGAGCAGCAGTCGCCTCCGCCGC
CGCAGCAGCAGCTGCGGGCGCGGGCCGACCCGGAGCCGGAGGAGGAGGGCGACCGCGACC
CAGAGGAGGAAGAGGAGGAGAAGGCGAGGCCACTCGCCCGCCCGGACCTGCCCTTCTCTC
GGCTCTTGCCCCTCGACCGAAGGGACCTTTGATGGAACCGAGGGGAGGGCGCCACGGATT
TGCCGACTGCAGCAGGGGTGGGCTGGGGGCTGAGATAATGTAACCACTCCTTTCTCCTGT
TCTCTCCCACACGCCCCTCTCCTCTACCCCTATTCTCTGCTCCACTGCCCTCTCACCCCG
GTACACACACCCTTCCTCTAGCCAGGATCTTCATGCTCAGGAAGGAGGCGCCTCTGCAAG
GGTTAAACGATCTTTTCTTTTTCTCCCATCCTTTTTCCTTCCCAAACCTCTATTTTACCT
CCCTTCTCCTAATTGGCTTTCCCCTCTTCGGTGTAACCCTTTGGCTGCGGAGGCAAAGCA
CAAGCCCCTAGCCCAGTTTCACCTGCAACACCCCTCCCCCACCCAACTGCTCTCTTAAAA
GCAACTCTGGTGCTTCTGGGGGTTAATTGCCCCAGTTTTCTGCCCAGGAGAATTAAAACT
TCTCCCAATCTTCTCTCCTCCCCTACCTTGACTCCCCCAACCCCTACCACCTGAGAAAAA
CGATCTTTTCTCTCTCACACATGCAGTCCTCAATTCTTCATTGAGCTAGTTTTCTCTAAG
CCCAGCTCAATCCACTCCAGATTTGATTTACAATTGTCCCCACCCTTTTATATAAAAGAA
AGATTTCTCACTGCGTAGGAATTTGAGAAGAACCCAATAATCCTTTCCTGGGGAACTTTT
AAACAATTCGACATTGATTTAAACAATTCGACAGAGGCTCTAGTGGCCCCTCCACCACGC
TTCTTCAATCCCTCTGCTCCTACCAGTGTCCTCAGGTCAAAAGCAGAAAGGAGACACACT
GAACAAAGTTGGAGGTTGGGGTGGGTGTGTGAGGGCAAGAAAAAC I I I I I I GTTATTGGG
CTTTCCAGGTGGAGTTCAGAACCAGTGACTCACACTTCTCAGTCCTGGGAGCAATTTATT
TGCTACTTGGAGGGGTTGTAAGAAAAGCCAGTGAGAAAGCAGACTCCCCCCACAACACAG
ATCCACTGTGGACCCCCAAAACCTGTCCTGTCCCCCTCTTTTAAGACTCCAGCCACCCCT
CTTGGGCTCTCTACTTCCACGGGGCACATGCTGATGCCCCTGTGTGGGCTGCTCTGGTGG
TGGTGGTGCTGCTGCTCCGGCTGGTACTGCTATGGATTGTGTGCCCCAGCCCCCCAGATG
TTGCGCCACCAGGGTCTCCTCAAGTGCCGCTGCCGCATGCTCTTCAATGACCTGAAGGTT
TTCTTACTGCGGCGCCCTCCTCAAGCGCCCCTGCCCATGCACGGCGACCCCCAGCCCCCC GGTTTGGCGGCCAACAACACCCTTCCGGCTCTGGGCGCCGGGGGGTGGGCAGGCTGGAGG
GGCCCCCGAGAAGTGGTGGGCAGGGAGCCCCCTCCTGTGCCACCTCCACCCCCCTTGCCA
CCTTCTTCTGTGGAAGATGACTGGGGTGGCCCAGCCACAGAGCCACCTGCCTCGCTGCTC
AGCAGTGCCTCCTCAGATGACTTCTGTAAGGAGAAGACCGAGGATCGCTACTCACTGGGC
AGCAGCTTGGACAGTGGTATGAGGACCCCACTCTGCCGCATCTGCTTCCAGGGGCCAGAA
CAGGGGGAGCTGCTGAGCCCATGCCGCTGTGATGGCTCGGTCAAGTGCACACACCAGCCT
TGCCTCATCAAGTGGATCAGCGAGCGGGGCTGCTGGAGCTGCGAGCTGTGCTACTACAAG
TACCACGTCATCGCCATAAGCACAAAAAATCCTCTGCAGTGGCAGGCCATCTCTCTGACG
GTCATTGAGAAGGTTCAGGTTGCAGCCGCCATCCTGGGCTCCCTCTTCCTCATCGCCAGT
ATTTCTTGGCTCATCTGGTCAACTTTCAGCCCCTCGGCAAGATGGCAGCGCCAAGACCTT
CTCTTCCAGATCTGCTACGGGATGTATGGCTTCATGGACGTGGTGTGCATAGGTCTCATC
ATCCATGAAGGACCCTCGGTGTACCGCATCTTTAAACGGTGGCAGGCTGTCAACCAGCAG
TGGAAAGTGCTGAACTATGACAAGACAAAAGACCTGGAGGATCAAAAGGCAGGAGGCAGG
ACCAACCCCCGGACCTCCTCATCCACCCAGGCCAATATCCCCTCCTCGGAAGAGGAGACC
GCAGGCACCCCTGCCCCTGAGCAGGGCCCTGCCCAGGCTGCCGGCCACCCCTCAGGCCCT
CTGTCCCATCACCACTGTGCTTATACCATCCTGCACATCCTGAGTCACTTGAGACCTCAT
GAACAGCGAAGTCCCCCAGGCAGCAGCCGAGAGCTGGTCATGAGAGTCACGACAGTGTGA
GAGCAGAGGCCCGGAAGGAAGGCCATGACCACCACTGAGGGCCCGGAGCAGGGTGGGGAG
GTGCAGTGGCACCCCCGGAGCCAACAGAGGGAGCAGGCAGAGGGTGGGGGACCTGGCGGG
AGCCCTGGGGTAGTGTCAGAGCGGGAGTGAGGCTGGTGCAGGAGCAGTTCTGCTATTTCC
AATCAGTCAATGCCACTCTCCACAACAACAATGAAAACCAACACCAACTCAACAACAAAG
TGCAATACAGGCTGAACCTGGCCCAACAGAAAAACCCTGCCCCAATGCACCTGCAGGCAA
GGTACCCGAAGAAGCAGAGGCTGAGGGCAGGCAAAGCCTGTGTGACTGTGGCAGTGCCGG
AGGCCAAGGGGGCCAAGAGGAAAAGCATCTGTGGTCTGCCCTGCTCTCACCCTGTTTGGT
TTTGTTTCTCCTGGGGCTGTGTTCTGCAGGCAGCCAGAAAAGGAGGAGGCACGGGTGAGC TGGCAGGGACACACTGCCTTTGGGGCTCCTGGGCTCATTTGGATGAGCAAGATTCGCTGA
CAAATGGCTGTGGGGATGGTGGGGTGGATGGTCAGGGAGGGATCCTCAGGGAGGGATATG
CTGGTGTGAGCAGCCAGAGGGAGAGTGTGTCTCCTTCCTGAAGGAACTTCCAAATGGAAC
TCCCGATTTCAGGTGGGCTAAAAGAGGGCTTAGGTTTGGAAAAGGGTGTCCTTCTGTGCC
CTTGTTAATTTATTTTATAGTGATTTGGTTCAAAGATGTTTACAGGACACACACACACAC
ACACACACACACACACACACACACACACCCCTAGAGAAAAGTACAGATTTCCAGTGGATA
TTTCAAGCACAGTTCTGCTGCTGTGGCTTCAGCTTTGGAAGCTGTCAATCCCGGAGCAAC
TTTCCCAACTACCCAACCCCACCATGGCCAGGACATGTGCAATGCCAGCCCCTTCTTGTC
TTGGCACATGCACAGACCCAGTCCCCTCACGGTAGGGCACCCCTGACCTACGGGCTTCCA
AGAGAGCAGCTGCAGTGGTTGGGAGGAGCTTGACCAGTGTGCCCCAAGGAGTGGAGTAGA
GCCCAATCTAAGTATTCCTTGCTGCTTGGAACCCTCCCTGTTTGGAACCCTCCCCAAAGA
G G C AGTC AG G CTG ATG CTC AGTG CTTTGTG CTCCCTG CTCCTTCCCG CGTAG CC AG GTG G
GCCCAAGGGTGCCTGGCAGGGAGCACTACCCCTGGACCCCTCCTGCTCGCTCTGGGGACC
CTG CC AG G G AAG G CC ACTG G GTGTTC ACCTGC AA AGTTTCTG GTTGTC ACTG C AC AGTG G
TCG CGTC ATCC ATG G GTATT AA AAG G AC ACTGTC A AGT AC I I I I I I AAACTAGTTTTTAG
GG I I I I I I AAAACTCTCTGTTGTTTGTAATATTCTCTTAAAAGCTTGAAAATAAAACTTC
TTTCCCTACC
>ENA | AI9121221 AI912122.1 wd63a l2.xl NCI_CGAP_Lu24 Homo sapiens cDNA clone I MAGE:2336254 3', m NA sequence.
TTGGAAATCTTGGTAATATTTATTCATGATAATAAACACGTTTTTAATGAAAGCCATAGA
TGTCCAAACACAAACTGAATCATGACAACCCAATGGTCTTTTTTACAAAAACCATGACAT
ATGTCCCATTAATTTGCTAAATGATATGAATGCAGAGAAAGGATGAATCAAAACCACTAA
AATCCTTTTAAACACACCATCTAGTTTAGATGTCAACTCTGAAAATGGCATTCAAAAATG
GTCCCTCTCTTTTAAATTTATCTGCTGAGTTTTTGTTACGGTACCTTTACCAATTTCTTA
AA AG CTTT AATTGTTATC ATTC ATTTC AACTC AA AACTG CTAG C A ATTTG GTTTG ACTTT
CCATAAAGGACTAAATTCTGTCACATTAATACATATGTAGGTAGTTATACAATGTTATTT GTA AGT AT ATG G GTCTG AA AG GG CC ATTATA AATGTTATATA AACC ATATAGTAT AT AG G GTATATATATTA
>ENA | AI3764331 AI376433.1 tc36a08.xl Soares_total_fetus_N b2H F8_9w Homo sapiens cDNA clone I MAGE:2066678 3', m RNA sequence.
TT I I I I I I I I I I I TTGAGATTAAATAATTTATTACCATTGCTAAGATGAACACATATACT TAATACTCAATTTTATGCAGAACTTTAAAAAAATAGTTTTAATACAGTATCAAAATTTAC AC AAGTTT ATTTTGTC A AA AG ACC AGTGTCCCTTGT ATTAG CTTCTG C AG G CTCTGCTG C AGG C AC AA AAG CTT ATTTT AA ATGTCTTC AG AG G GTAG G AATAC AAC AATTTA AG G ATG A A AG CTTTCCTAG G A A AG A AG GTGT AA ATATAG C AAG C A ATTTTCTTTTATAG AGTA ATAA CATTTTAAAATATAACATTTAAAAGGGGAGCTTAAATTGTAACCCAATTATGATAATTAG AGAGATAATTCTATAGTAAATTAATTCATAAATATTTTCTGAAAATAGATGATTTTTCAT CACAGTAACATTTTTGAAAGTATAACAAAATTCCTTCACAGTCTCCTACTAGTGACAATT AACTCGTTATGTAATGAGCCCATCTAAAACAACAACAACAGAGAATATCT
>ENA I AW9607481 AW960748.1 EST372819 MAGE resequences, MAGF Homo sapiens cDNA, m RNA sequence.
CAGAAACCACATGAGGAGTGGCTCTTTGAGAGCATTTGAGGTTCCAGAACACCTCCATTC
CTGAGGGGAGTCTCTTGAGCAGCGATTTGGGGCTGCGCCAGTTGCTTGGTCCTTCTTCCT
TTGGACCAAAGAAACGGAATTACAGAGAGCTGCAATGGATGCTAGCCGAACAAGTCGTCA
TCTGGAGGAAACTATTAACAACTTTGAAAGGCAGAAAATGAAGGATATAAAGACTATATT
TTCTG A ATTT ATC AC AATCG A A ATGTTATTTC ACG G C A AAG CTTTAG AG GTCTAC ACTG C
TGCCTACCAGAATATACAAAACATTGATGAAGATGAAGATTTAGAGGTTTTCCGAAATTC
TCTGTATGCACCAGATTATTCATCTCGTTTAGATATTGTAAGAGCAAATTCAAAGTCACC
TCTTCAGAGATCACTGTCAGCTAAGTGTGTATCTGGAACAGGACAGGTATCCACTTGTCG
ACTAAGAAAGGATCAACAAGCAGAAGATGATGAGGATGACGAGTTAGATGTTACAGAAGA
AGAAAATTTTCTTAAGTAAACTACACATTTCCATTTTCATCATAAATGACTTGAAATCCA
CAATGACTAAATTGTAGAACTTTATACTCACTTTGCTATGTTAAGCCTTAAAGTGAAGTC CAACTGGAAAACAGAAAAATAATTAAAGGGAAACTTATGCTGACCCAAAAATGAAGGCTT
TAAAAAATTATTGCATACCAGTCATTTTAACATTCTTACCTAATGGTACCATGATTTTTG
GGTAA
>ENA I AW0584591 AW058459.1 wx21bl2.xl NCI_CGAP_Kid ll Homo sapiens cDNA clone I MAGE:2544287 3', m RNA sequence.
TT I I I I I I I I I I TTGCCAATGCTATTGTATTTTTTATTTAAAAAAAATTAAATAAAATAG
TGATCCATTGCATATAAAACTGAACTAGAGTCCATAGTTTACGGGGGGGAAGGCTCAAAA
AATAG AG G C AAG A ATGTAG CTG C AG C ATTTTCTTTTTCTTC ATATCTAG G AG G C AATTC A
AATGGAAGATGTGGAGTGTGTGAGGCCTCAAAAGATGAATTCGTCCCAGAAATGGTATAT
ATAGATTCACAGTCTCTTTCAGAGGCTGCACCCTCTGAAGTTGGGGTCCTGCTAAAGAGA
AGGAGAGAGAACATGAAGGGGAGGGGATGAAAACAGTGACACCCCTTTAGTACTAGGTTC
TTTTCAAATGTTTGATTACATGCACTTAAGAGTATTTGCAAGAATCTGAGGAGTAATTTC
TCCCTCACTCTACTTTTCATAGATTTGTTTTGATTTCTTACCTCTTCCTTTTCCTAGAGC
TGAGTGTAACATTAAGACAGTCTCACTCCTGC
>ENA I AA9044301 AA904430.1 ok07fl2.sl Soares_N FL_T_GBC_Sl Homo sapiens cDNA clone I MAGE: 1507151 3' similar to TR:Q00808 Q00808 BETA TRANSDUCIN-LI KE PROTEI N, mRNA seq
TTTTACAAGGAATTTCCTCCAAACACTTTATTCAACAGAAATTATAACAATAGGCTTCAA
AGTAAAATCCAGGAGACACGTTGTTAAGTTGTTCTGGTCTCCTTTTTCAGTATCATAATG
CTTTT AA AA AAC A AAC AC A ACTG AA ATA ACTG GTG G C ATTAG C AA AC ATTATG CTGTGTC
CTGCCATCGCCATCAAATAATAATATTGGAGTGGCATAACTTTGTCATGTTTAATGGTCA
TATCTGTGAAATGAAGGACAGTTGTAGAAATAGTTGACTTGCAGAAAAAGAGAAAGTATA
AGAAATATTAAGAGAGCTGCTGTCTGTGAAGTTCCAGTTCTTGATTACCATTGCTAGCAA
GGTTGCTCACTGACCAGCTTCCTTCAGTCAACGCCATATCCTACAGGTATTATCCTTGCT
GCCTGTAATGACTATGTTGCCTTTATAGTTGAGAGCACATGAAAAGATTTCATCAGTGTG
CCCCTCAAGAACCTGGAGGCACTGGCCAGTCTGAGCATCCCAGATTCTAGCCGTATTGTC
AGAGCTGCCAGT >ENA | AF4938791 AF493879.1 Homo sapiens guanine nucleotide binding protein gamma 12 (GNG12) mRNA, complete cds.
ATGTCC AG C AA AAC AG C A AG C ACC AAC A AT ATAG CCC AG G C A AG G AG A ACTGTG C AGC AG TTAAGATTAGAAGCCTCCATTGAAAGAATAAAGGTTTCGAAGGCATCAGCGGACCTCATG TCCTACTGTGAGGAACATGCCAGGAGTGACCCTTTGCTGATAGGAATACCAACTTCAGAA AACCCTTTCAAGGATAAAAAAACTTGCATCATCTTATAG
>ENA | AI7531431 AI753143.1 cr05h01.xl Human bone marrow stromal cells Homo sapiens cDNA clone HBMSC_cr05h01 3', mRNA sequence.
CGAG I I I I I I I I I I I I I I I I I I GTTGTAGTTGTTGTTGTTAATAAAAAGGATANTNACAT
NCAGAGGATTATAAGAAAAATAAGACATACCTGAGGTTTTGTGATGAGCTATAGAGAATC
AAGGGCAGTTCCAGTGGAGCTGAGGCTGACAAAGTACTGCCCAGCTGCCAGCCAAATCCA
CCCTT AAGTTG CTTTTGTATG G CCTG G G AG CTC AG A AG G A ATTTTTT AA AT I I I I I I TAC
AGCTTTAAAGTATTAAACAGAAACCAACAAAGAAGAATATGAGACAGGGACCGTACGTGG
TCCGTAAAGTTTAACTTTCTGATCCTTAATAGGAGGATAAGCGCCGTGATAGAGAAATCC
AAAGGTCATTTGTATT
>refseq | NM_0155771 NM_015577 Homo sapiens retinoic acid induced 14 (RAI14), transcript variant 1, mRNA. actgacccccgcagcgggggaggaggagggactgcggcgcaggaagccgagcaggaagcg agcccggcggccgcgttttcctggggaagcggcgggcggggtggagcagccagctgggtc cggggagcgccgccgccgcctcgatggggtgttgaaaagtctcctctagagctttggaag gctgaatgcactaaacatgaagagcttgaaagcgaagttcaggaagagtgacaccaatga gtggaacaagaatgatgaccggctactgcaggccgtggagaatggagatgcggagaaggt ggcctcactgctcggcaagaagggggccagtgccaccaaacacgacagtgagggcaagac cgctttccatcttgctgctgcaaaaggacacgtggaatgcctcagggtcatgattacaca tggtgtggatgtgacagcccaagatactaccggacacagcgccttacatctcgcagccaa gaacagccaccatgaatgcatcaggaagctgcttcagtctaaatgcccagccgaaagtgt cgacagctctgggaaaacagctttacattatgcagcggctcagggctgccttcaagctgt gcagattctctgcgaacacaagagccccataaacctcaaagatttggatgggaatatacc gctgcttcttgctgtacaaaatggtcacagtgagatctgtcactttctcctggatcatgg agcagatgtcaattccaggaacaaaagtggaagaactgctctcatgctggcctgtgagat tggcagctctaacgctgtggaagccttaattaaaaagggtgcagacctaaaccttgtaga ttctcttggatacaatgccttacattattccaaactctcagaaaatgcaggaattcaaag ccttctattatcaaaaatctctcaggatgctgatttaaagaccccaacaaaaccaaagca gcatgaccaagtctctaaaataagctcagaaagaagtggaactccaaaaaaacgcaaagc tccaccacctcctatcagtcctacccagttgagtgatgtctcttccccaagatcaataac ttcgactccactatcgggaaaggaatcggtattttttgctgaaccacccttcaaggctga gatcagttctatacgagaaaacaaagacagactaagtgacagtactacaggtgctgatag cttattggatataagttctgaagctgaccaacaagatcttctctctctattgcaagcaaa agttgcttcccttaccttacacaataaggagttacaagataaattacaggccaaatcacc caaggaggcggaagcagacctaagctttgactcataccattccacccaaactgacttggg cccatccctgggaaaacctggtgaaacctctcccccagactccaaatcatctccatctgt cttaatacattctttaggtaaatccactactgacaatgatgtcagaattcagcaactgca agagattttgcaagatctacagaagagattagagagctctgaagcagagagaaaacagct acaggtcgaactccaatcccgaagggcagaactggtatgcttaaacaacactgagatttc agagaacagctctgacctcagccagaaacttaaagaaactcagagcaaatacgaggaggc tatgaaagaagtccttagtgtgcagaagcagatgaaactcggtcttgtctcacctgaaag catggataattattcacatttccacgagctgagggtcacggaagaggaaataaatgtgct aaagcaggatctgcagaatgcattagaagaaagtgaaagaaataaagagaaagtgagaga gttagaggaaaaactggtagagagggagaaaggtacagtgattaagccacctgtggaaga gtacgaggaaatgaaaagttcatattgctctgttattgagaatatgaataaggagaaagc atttttgtttgagaaataccaagaagcccaagaagaaatcatgaaattaaaagacacact aaaaagtcagatgacacaggaagccagtgatgaagctgaggacatgaaagaagccatgaa taggatgatagatgaactcaataaacaggtgagcgagctgtcacagctgtacaaagaagc ccaggctgagctggaggattacaggaagaggaaatctctagaggatgtcacagctgaata tatccataaagcagagcatgagaaactgatgcaattgacaaacgtgtccagggctaaagc agaagatgcactgtctgaaatgaagtctcagtattcaaaagtgttgaatgagttgaccca gctcaaacaactggtggatgcacaaaaagagaactctgtctctatcacagaacatttgca agtgataaccacgctgcggactgcagcaaaagagatggaagaaaaaataagcaatcttaa ggaacaccttgcaagcaaggaagtggaagtagcaaagctggagaaacaactcttagaaga gaaagctgctatgactgatgcaatggtacctcggtcttcctatgaaaaactccagtcatc cttagagagtgaagtgagtgtgttggcatcgaaattaaaggaatctgtgaaagagaaaga gaaggtccattcagaggttgtccagattagaagtgaggtctcacaggtgaaaagagaaaa ggaaaatattcagactctcttgaaatccaaagagcaagaagtaaatgaacttctgcaaaa attccagcaagctcaggaagaacttgcagaaatgaaaagatacgctgagagctcttcaaa actggaggaagataaagataaaaagataaatgagatgtcgaaggaagtcaccaaattgaa ggaggccttgaacagcctctcccagctctcctactcaacaagctcatccaaaaggcagag tcagcagctggaggcgctgcagcagcaagtcaaacagctccagaaccagctggcggaatg caagaaacaacaccaggaggtcatatcagtttacagaatgcatcttctgtatgctgtgca gggccagatggatgaagatgtccagaaagtactgaagcaaatccttaccatgtgtaaaaa ccagtctcaaaagaagtaaagtggattccttggcaggacactgccccttgtcatctgtct ttgtgttagatccagagttgtcggcagccgctgccattgttctcattcgtggtatgcact gtggcctagcgtagcttcttccctttccaaaggtttctgaggacttctcccaggagaaga ctgcccgcctcagaactgcttagagacttcaaaccagcagaggtgaaagtccctgtcatc ccttcagattccagagctgggatcagccatgcccagaggtctggtcctgatgctggcagg ggggccccctcctccatccctgactggctgagtggctttatcaccaccgagtgatgtgct gaggcctcctgcagtgaatgctccttccattcctgtactcgggcagtgccattcagcaca ggagagctctttttgcctttggctttcaattccaaaacatgatttaatttctaactaaat tagtatggcactagttatgaagtatctgcttaaaacccttcatcatgatatcctgtggat
ttaaaaactctaattccatgttttcttcccatctgccttatatatctcatcaccctgctt
atcaatattcagtttgatgagcactattaactaaaatatgaaacttaaaaacaaaagcaa
gttgtccttaaaagttctttttttaagtaaattgttgacatactgcaaattttctatgca
aacttgcctcctgctgttatctgtgaagctcaggaaatccaaacatttgtgtttcaacaa
gggacagtaaactgtgtgtttacagccaaaagaaatgcctcatagttcttaacctcaact
tttgtagaagtatttttttctctgtaatatttttattggctcataaagatgttttcatat
ctgaactcctaaataagtgaaattacagtagattatattaacaaaatactttttaggtag
ccatgcttgagactttttaaaaatataactttttccttaaagttttcagctatagcaaaa
ggtagttatgtatgccagacctaatatgagctgccaccaacacccctagaactttcagcc
atggtgtcttcagaattgtagcgcatttctgaatctagcaaatcctccttttacccgttg
aatgttttgaatgccctgactctaccagcgcccataaatgatctctagaaggactgttag
taccaatctgtttttcaactttgaagctaaaaaccctgatatggtaatattatggtgcat
agcagaggtctcggaaaaaaaatatttctgttcactttactttcaggttaaaaatgtttc
taacacgcttgcaacttcccttatggcattaatcttgttgagggagagagacagaatcct
ggactctccaaagtatttaactgaaagtagggcctgctctgacagggcccatgtcccaca
aggctgcttggcctcagtgggtgcttggctgtgctggatgatatgttgatctgtattgga
taaggaccaatgacagcaaagcaaaaatggctttaaagcttggtgttacttttcttaagt
tgtttaattatagttaagcaatttcaaaaatgctccaaagaaatgtgaaaggaccttttg
tcacagcacttcagaaaatacacaacagccccttctgcccccgcacagaaatgctgcaga
gtatataaaacttgagacatttttgtaggatgcctgacgaggtgtagccttttatcttgt
ttccggatgcatatttattacgagtactctggttaaatattgaaaagttatatgctgtag
tttttagtattttgtctttgtaatttacagaagttattggagaaaataaacttgtttcat
tttgcaaaaaaaaaaaaaaaaaaaaaaaaa
>refseq | NM_0050451 NM_005045 Homo sapiens reelin (RELN), transcript variant 1, mRNA. ctcggcgggggcccgctcccaggcccgctcccgagcccgttccgctcccgtccgccttct tctcgccttctctccgcgtggctcctccgtcccggcgtctccaaaactgaatgagcgagc ggcgcgtagggcgcgcggcggcggcggcggcggcggcggcatggagcgcagtggctgggc ccggcagactttcctcctagcgctgttgctgggggcgacgctgagggcgcgcgcggcggc tggctattacccccgcttttcgcccttctttttcctgtgcacccaccacggggagctgga aggggatggggagcagggcgaggtgctcatttccctgcatattgcgggcaaccccaccta eta cgttccggga ca aga ata cca tgtga ca a tttca a ca agca ccttttttga eggett gctggtgacaggactatacacatctacaagtgttcaggcatcacagagcattggaggttc cagtgctttcggatttgggatcatgtctgaccaccagtttggtaaccagtttatgtgcag tgtggtagcctctcacgtgagtcacctgcccacaaccaacctcagtttcatctggattgc tccacctgcgggcacaggctgtgtgaatttcatggctacagcaacacaccggggccaggt tattttcaaagatgctttagcccagcagttgtgtgaacaaggagctccaacagatgtcac tgtgcacccacatctagctgaaatacatagtgacagcattatcctgagagatgactttga ctcctaccaccaactgcaattaaatccaaatatatgggttgaatgtaacaactgtgagac tggagaacagtgtggcgcgattatgcatggcaatgccgtcaccttctgtgaaccatatgg cccacgagaactgattaccacaggccttaatacaacaacagcttctgtcctccaattttc cattgggtcaggttcatgtcgctttagttattcagaccccagcatcatcgtgttatatgc caagaataactctgcggactggattcagctagagaaaattagagccccttccaatgtcag cacaatcatccatatcctctaccttcctgaggacgccaaaggggagaatgtccaatttca gtggaagcaggaaaatcttcgtgtaggtgaagtgtatgaagcctgctgggccttagataa catcttgatcatcaattcagctcacagacaagtcgttttagaagatagtctcgacccagt ggacacaggcaactggcttttcttcccaggagctacagttaagcatagctgtcagtcaga tgggaactccatttatttccatggaaatgaaggcagcgagttcaattttgccaccaccag ggatgtagatctttccacagaagatattcaagagcaatggtcagaagaatttgagagcca gcctacaggatgggatgtcttgggagctgtcattggtacagaatgtggaacgatagaatc aggcttatcaatggtcttcctcaaagatggagagaggaaattatgcactccatccatgga cactaccggttatgggaacctgaggttttactttgtgatgggaggaatttgtgaccctgg aaattctcatgaaaatgacataatcctgtatgcaaaaattgaaggaagaaaagagcatat aacactggataccctttcctattcctcatataaggttccgtctttggtttctgtggtcat caatcctgaacttcagactcctgctaccaaattttgtctcaggcaaaagaaccatcaagg acataataggaatgtctgggctgtagactttttccatgtcttgcctgttctcccttctac aatgtctcacatgatacagttttccatcaatctgggatgtggaacgcatcagcctggtaa cagtgtcagcttggaattttctaccaaccatgggcgctcctggtccctccttcacactga a tgctta cctgaga tctgtgctgga cccca cctccccca cagca ctgtcta ctcctctga aaactacagtgggtggaaccgaataacaattccccttcctaacgcagcactaacccggaa caccaggattcgctggagacaaacaggaccaatccttggaaacatgtgggcaattgataa tgtttatattggcccgtcatgtctcaaattctgttctggcagaggacagtgcactagaca tggttgcaagtgtgaccctggattttctggcccagcttgtgagatggcatcccagacatt cccaatgtttatttctgaaagctttggcagttccaggctctcctcttaccataactttta ctctatccgtggtgctgaagtcagctttggttgtggtgtcttggccagtggtaaggccct ggttttcaacaaagatgggcggcgtcagctaattacatctttccttgacagctcacaatc caggtttctccagttcacactgagactggggagcaaatctgttctgagcacgtgcagagc ccctgatcagcctggtgaaggagttttgttgcattattcttatgataatgggataacttg gaaactcctggagcattattcatatctcagctatcatgagcccagaataatctccgtaga actaccaggtgatgcaaagcagtttggaattcagttcagatggtggcaaccgtatcattc ttcccagagagaagatgtatgggctattgatgagattatcatgacatctgtgcttttcaa cagcattagtcttgactttaccaatcttgtggaggtcactcagtctctgggattctacct tggaaatgttcagccatactgtggccacgactggaccctttgttttacaggagattctaa acttgcctcaagtatgcgctatgtggaaacacaatcaatgcagataggagcatcctatat gattcagttcagtttggtgatgggatgtggccagaaatacaccccacacatggacaacca ggtgaagctggagtactcaaccaaccacggccttacctggcacctcgtccaagaagaatg ccttccaagtatgccaagttgtcaggaatttacatcagcaagtatttaccatgccagtga gtttacacagtggaggagagtcatagtgcttcttccccagaaaacttggtccagtgctac ccgtttccgctggagccagagctattacacagctcaagacgagtgggctttggacagcat ttacattgggcagcagtgccccaacatgtgcagtgggcatggctcatgcgatcatggcat atgcaggtgtgaccaggggtaccaaggcactgaatgccacccagaagctgcccttccgtc cacaattatgtcagattttgagaaccagaatggctgggagtctgactggcaagaagttat tgggggagaaattgtaaaaccagaacaagggtgtggtgtcatctcttctggatcatctct gtacttcagcaaggctgggaaaagacagctggtgagttgggacctggatacttcttgggt ggactttgtccagttctacatccagataggcggagagagtgcttcatgcaacaagcctga cagcagagaggagggcgtcctccttcagtacagcaacaatgggggcatccagtggcacct gctagcagagatgtacttttcagacttcagcaaacccagatttgtctatctggagcttcc agctgctgccaagaccccttgcaccaggttccgctggtggcagcccgtgttctcagggga ggactatgaccagtgggcagtcgatgacatcatcattctgtccgagaagcagaagcagat catcccagttatcaatccaactttacctcagaacttttatgagaagccagcttttgatta ccctatgaatcagatgagtgtgtggttgatgttggctaatgaaggaatggttaaaaatga aaccttctgtgctgccacaccatcagcaatgatatttggaaaatcagatggagatcgatt tgcagtaactcgagatttgaccctgaaacctggatatgtgctacagttcaagctaaacat aggttgtgccaatcaattcagcagtactgctccagttcttcttcagtactctcatgatgc tggtatgtcctggtttctggtgaaagaaggctgttacccggcttctgcaggcaaaggatg cgaaggaaactccagagaactaagtgagcccaccatgtatcacacaggggactttgaaga atggacaagaatcaccattgttattccaaggtctcttgcatccagcaagaccagattccg atggatccaggagagcagctcacagaaaaacgtgcctccatttggtttagatggagtgta catatccgagccttgtcccagttactgcagtggccatggggactgcatttcaggagtgtg tttctgtgacctgggatatactgctgcacaaggaacctgtgtgtcaaatgtccccaatca caatgagatgttcgataggtttgaggggaagctcagccctctgtggtacaagataacagg tgcccaggttgga a ctggctgtgga a ca ctta acga tggca a a tctctcta cttca a tgg ccctgggaaaagggaagcccggacggtccctctggacaccaggaatatcagacttgttca attttatatacaaattggaagcaaaacttcaggcattacctgcatcaaaccaagaactag aaatgaagggcttattgttcagtattcaaatgacaatgggatactctggcatttgcttcg agagttggacttcatgtccttcctggaaccacagatcatttccattgacctgccacagga cgcgaagacacctgcaacggcatttcgatggtggcaaccgcaacatgggaagcattcagc ccagtgggctttggatgatgttcttataggaatgaatgacagctctcaaactggatttca agacaaatttgatggctctatagatttgcaagccaactggtatcgaatccaaggaggtca agttgatattgactgtctctctatggatactgctctgatattcactgaaaacataggaaa acctcgttatgctgagacctgggattttcatgtgtcagcatctacctttttgcagtttga aatgagcatgggctgtagcaagcccttcagcaactcccacagtgtacagctccagtattc tctgaacaatggcaaggactggcatcttgtcaccgaagagtgtgttcctccaaccattgg ctgtctgcattacacggaaagttcaatttacacctcggaaagattccagaattggaagcg gatcactgtctaccttccactctccaccatttctcccaggacccggttcagatggattca ggccaactacactgtgggggctgattcctgggcgattgataatgttgtactggcctcagg gtgcccttggatgtgctcaggacgagggatttgtgatgctggacgctgtgtgtgtgaccg gggctttggtggaccctattgtgttcctgttgttcctctgccctcgattcttaaagacga tttcaatgggaatttacatcctgacctttggcctgaagtgtatggtgcagagagggggaa tctgaatggtgaaaccatcaaatctggaacatctctaatttttaaaggggaaggactaag gatgcttatttcaagagatctagattgtacaaatacaatgtatgtccagttttcacttag atttatagcaaaaagtaccccagagagatctcactctattctgttacaattctccatcag tggaggaatcacttggcacctgatggatgaattttactttcctcaaacaacgaatatact tttcatcaatgttcccttgccatacactgcccaaaccaatgctacaagattcagactctg gcaaccttataataacggtaagaaagaagaaatctggattgttgatgacttcattatcga tggaaataatgtaaacaaccctgtgatgctcttggatacatttgattttgggcccagaga agacaattggtttttctatcctggtggtaacatcggtctttattgtccatattcttcaaa gggggcacctgaagaagattcagctatggtgtttgtttcaaatgaagttggtgagcattc cattaccacccgtgacctaaatgtgaatgagaacaccatcatacaatttgagatcaacgt tggctgttcgactgatagctcatccgcggatccagtgagactggaattttcaagggactt cggggcgacctggcaccttctgctgcccctctgctaccacagcagcagccacgtcagctc tttatgctccaccgagcaccaccccagcagcacctactacgcaggaaccatgcagggctg gaggagggaggtcgtgcactttgggaagctgcacctttgtggatctgtccgtttcagatg gtaccagggattttaccctgccggctctcagccagtgacatgggccattgataatgtcta catcggtccccagtgtgaggagatgtgtaatggacaggggagctgtatcaatggaaccaa atgtatatgtgaccctggctactcaggtccaacctgtaaaataagcaccaaaaatcctga ttttctcaaagatgatttcgaaggtcagctagaatctgatagattcttattaatgagtgg tgggaaaccatctcgaaagtgtggaatcctttctagtggaaacaacctctttttcaatga agatggcttgcgcatgttgatgacacgagacctggatttatcacatgctagatttgtgca gttcttcatgagactgggatgtggtaaaggcgttcctgaccccaggagtcaacccgtgct cctacagtattctctcaacggtggcctctcgtggagtcttcttcaggagttccttttcag caattccagcaatgtgggcaggtacattgccctggagatacccttgaaagcccgttctgg ttcta ctcgccttcgctggtggca a ccgtctgaga a tgggca cttcta cagcccctgggt tatcgatcagattcttattggaggaaatatttctggtaatacggtcttggaagatgattt cacaacccttgatagtaggaaatggctgcttcacccaggaggcaccaagatgcccgtgtg tggctctactggtgatgccctggtcttcattgaaaaggccagcacccgttacgtggtcag cacagacgttgccgtgaatgaggattccttcctacagatagacttcgctgcctcctgctc agtcacagactcttgttatgcgattgaattggaatactcagtagatcttggattgtcatg gcacccattggtaagggactgtctgcctaccaatgtggaatgcagtcgctatcatctgca acggatcctggtgtcagacactttcaacaagtggactagaatcactctgcctctccctcc ttataccaggtcccaagccactcgtttccgttggcatcaaccagctccttttgacaagca gcagacatgggcaatagataatgtctatatcggggatggctgcatagacatgtgcagtgg ccatgggagatgcatccagggaaactgcgtctgtgatgaacagtggggtggcctgtactg tgatgaccccgagacctctcttccaacccaactcaaagacaacttcaatcgagctccatc cagtcagaactggctgactgtgaacggagggaaattgagtacagtgtgtggagccgtggc gtcgggaatggctctccatttcagtgggggttgtagtcgattattagtcactgtggatct aaacctcactaatgctgagttcatccaattttacttcatgtatgggtgcctgattacacc aaacaaccgtaaccaaggtgttctcttggaatattctgtcaatggaggcattacctggaa cctgctcatggagattttctatgaccagtacagtaagcccggatttgtgaatatccttct ccctcctgatgctaaagagattgccactcgcttccgctggtggcagccaagacatgacgg cctggatcagaacgactgggccattgacaatgtcctcatctcaggctctgctgaccaaag gaccgttatgctggacaccttcagcagcgccccagtaccccagcatgagcgctcccctgc agatgccggccctgtcgggaggatcgcctttgacatgtttatggaagacaaaacttcagt gaatgagcactggctattccatgatgattgtacagtagaaagattctgtgactcccctga tggtgtgatgctctgtggcagtcatgatggacgggaggtgtatgcagtgacccatgacct gactcccactgaaggctggattatgcaattcaagatctcagttggatgtaaggtgtctga aaaaattgcccagaatcaaattcatgtgcagtattctactgacttcggtgtgagttggaa ttatctggtccctcagtgcttgcctgctgacccaaaatgctctggaagtgtttctcagcc atctgtattctttccaactaaagggtggaaaaggatcacctacccacttcctgaaagctt agtgggaaatccggtaaggtttaggttctatcagaagtactcagacatgcagtgggcaat cgataatttctacctgggccctggatgcttggacaactgcaggggccatggagattgctt aagggaacagtgcatctgtgatccgggatactcagggccaaactgctacttgacccacac tctgaagactttcctgaaggaacgctttgacagtgaagaaatcaaacctgacttatggat gtccttagaaggtggaagtacttgcactgagtgtggaattcttgccgaggacactgcact ctattttgggggatccactgtgagacaagcggttacacaagatttggatcttcgaggtgc aaagttcctgcaatactgggggcgcatcggtagtgagaacaacatgacctcttgccatcg tcccatctgccggaaggaaggcgtgctgttggactactctaccgatggaggaattacctg gactttgctccatgagatggattaccagaaatacatttctgttagacacgactacatact tcttcctga aga tgccctca cca a ca ca a ctcga cttcgctggtggcagccttttgtga t cagcaatggaattgtggtctctggggtggagcgtgctcagtgggcactggacaacatttt gattggtggagcagaaatcaatcccagccaattggtggacacttttgatgatgaaggcac ttcccatgaagaaaactggagtttttaccctaatgctgtaaggacagcaggattttgtgg caatccatcctttcacctctattggccaaataaaaagaaggacaagactcacaatgctct ctcctcccgagaactcattatacagccaggatacatgatgcagtttaaaattgtggtggg ttgtgaagccacttcttgtggtgaccttcattccgtaatgctggaatacactaaggatgc aagatcggattcctggcagctcgtacagacccagtgccttccttcctcttctaacagcat tggctgctcccctttccagttccatgaagccaccatctacaactctgtcaacagctcaag ctggaaaagaatcaccatccagctgcctgaccatgtctcctctagtgcaacacagttccg ctggatccagaagggagaagaaactgagaagcaaagctgggcaattgaccacgtgtacat tggagaggcttgccccaagctctgcagcgggcacggatactgcacgaccggtgccatctg catctgcgacgagagcttccaaggtgatgactgctctgttttcagtcacgaccttcccag ttatattaaagataattttgagtccgcaagagtcaccgaggcaaactgggagaccattca aggtggagtcataggaagtggctgtgggcagctggccccctacgcccatggagactcact gtactttaatggctgtcagatcaggcaagcagctaccaagcctctggatctcactcgagc aagcaaaatcatgtttgttttgcaaattgggagcatgtcgcagacggacagctgcaacag tgacctgagtggcccccacgctgtggacaaggcagtgctgctgcaatacagcgtcaacaa cgggatcacctggcatgtcatcgcccagcaccagccaaaggacttcacacaagctcagag agtgtcttacaatgtccccctggaggcacggatgaaaggagtcttactgcgctggtggca accacgccacaatggaacaggtcatgatcaatgggctttggaccatgtggaggtcgtcct agtaagcactcgcaaacaaaattacatgatgaatttttcacgacaacatgggctcagaca tttctacaacagaagacgaaggtcacttaggcgatacccatgaagaatcaaaaagtttat tttttttcttccaacatgtgatgtgttgctctccattcttttaaatctcgcactacatct
gatatcaggaaatatctgtgaaggacttggtgattacctgaaagcccttctcaagaccga gtgtacaccactttcccacactgtgaactaatgacaagtgacttatttgctcataagtaa atgtcttcatgttgatgtgtccgtgaaagttgtgatctgttgtaatatcagttacagtgg cagtattgacaataagaaacagtttaacagaaaaatgaaatttaagcacaaaaaatttaa gagattttatgtttaaaatggcatttagcacagtatttaacattcttggtcacaaagcta tttaagtggactgtatttcggctatgtctcatgttttatatgattaaattatcattgttt gtcctttatgtattctcttctacaatacaacacattgaaactgtatttacttgttatgtt gtaatattttgctgctgaatttggggctacttatattctgcagaaaattaattgaaatac ctattcaagaagatagttgtaaagatattgtatctcctttaatatactccttaaaaatgt atgttggtttagcgttgttttgtggataagaaaaatgcttgaccctgaaatattttctac tttaaattgtggatgaagaccctatctcccacaaataagttcccatttccttgtctaaag atctttttttaagtgttctgtggctgatttactaacagtaactgccattttttgtctgtg ataacagagtgatttgtaaaacagtggttgttttttcattgtgttttcttcgtggattgt tttttctgcgggtcatattcataccttctgatgaagttgtacaacaccagcaacattata atggccctgtagctctgaatgctatttgtgtaactgaaaggttgcactctagggtgaacc aagctataaaagcccatgcttaaataaaaattatgtccaaaagccattgaa
>ENA | AL037401 | AL037401.1 Homo sa piens m RNA; EST DKFZp564K1671_sl (from DKFZp564K1671)
TT I I I I I I I I I I CT I I I I I I I TAGATATCAAATAATATTTTAATTTCTGAATACTTTCAA TTTTCCTTGGAATATAACACACAAAGACTCGACCAAACAGTTCAGTTATTATAACTTTTA CAGTAAACAGAAATGTTGCACTTAAAAAAAAACCTTCGGT I I I I I I AAAACACAAACNGT AAACTCTAAGANACTGAATCAATCACGTTACCTATAAGTGCCAACAGTGTTATTTTTGTC ATGCTGATTTCAATGGTATTTTTTAAAAAGGGAAAATATCAACAATTATAATACAAAGCG TTTG C N AATATAC AA AC AG ATAT AG G ATTTTC AT AAC A ATTC A AG A ACTA AG CGGGGCCC AATTCAAATTACAAAATTCACTTTTTATTCAATACCTCAGCATGTGTCTTGGACACATTC CTTGGCTGCCAATAAAATCCACAGTTCATTCTCTTTCTTTAAATA I I I I I I AAAAGCTAG G NTTGTC ATGGTTTCTTTTG GGGAGGGGCAGG GT AG GG G A AGTTA AGTGTTATATGTG GT TCCTCCAGTTCTCTAATTAAAGTGCTCGNCTTCACCTAAAAANTTTGG
>ENA | BC004241 | BC004241.1 Homo sapiens laminin, alpha 4, m RNA (cDNA clone IMAGE:3623597), complete cds.
CGGCCAGGGAGAGGAGGTGGCCTAGCGCTGGCGGGGCTCACCCCAATCCGTCTGCCTTTT
GATGCCGTACTGTAAGCTCCGTCCATCTCTGCTGGTTGCGCAGCCACCTCGGGATACTGC
ACACGGAGAGGAGGGAAAATAAGCGAGGCACCGCCGCACCACGCGGGAGACCTACGGAGA
CCCACAGCGCCCGAGCCCTGGAAGAGCACTACTGGATGTCAGCGGAGAAATGGCTTTGAG
CTCAGCCTGGCGCTCGGTTCTGCCTCTGTGGCTCCTCTGGAGCGCTGCCTGCTCCCGCGC
CGCGTCCGGGGACGACAACGCTTTTCCTTTTGACATTGAAGGGAGCTCAGCGGTTGGCAG
GCAAGACCCGCCTGAGACGAGCGAACCCCGCGTGGCTCTGGGACGCCTGCCGCCTGCGGC
CGAGGTACAGTGTCCCTGCCATTGCCACCCTGCTGGGGCACCTGCGCCCCCGCGGGCTGT
GCCACACTCGTCCTTCTCTCTCTCTCCGCCTCTTTCCTCTCCCCAGTGCCTTGAGAGTTT
CACCTGGGCTAGGTCAGTTCGGAAACTTGAAATAAAGAGTTTTCCTTTGTAAGTTGAAAA
AAAAAAAAAAAAAAA
>ENA | U77706 | U77706.1 Human laminin alpha 4 chain (LAMA4*-1) m RNA, complete cds.
CAAACTGAATCCTGCTTTAATTCAAGCTTGTGGAGAACAAAGTCCTACAGAAACATTCCA
CAGAATTTTCTGGAAAAGAGGGATCACAACAACCCTGTAAAAAGGTGAGAAGGAAGCCAG
GACAGCGCAGTCCCCAGTCCCGAACGGCCAGGGAGAGGAGGTGGCCTAGCGCTGGCGGGG
CTCACCCCAATCCGTCTGCCTTTTGATGCCGTACTCTGCTGGTTGCGCACGCACCTCGGG
ATACTGCACACGGAGAGGAGGGAAAATAAGCGAGGCACCGCCGCACCACGCGGAGACCTA
CGGAGACCCACAGCGCCCGAGCCCTGGAAGAGCACTACTGGATGTCAGCGGAGAAATGGC
TTTGAGCTCAGCCTGGCGCTCGGTTCTGCCTCTGTGGCTCCTCTGGAGCGCTGCCTGCTC
CCGCGCCGCGTCCGGGGACGACAACGCTTTTCCTTTTGACATTGAAGGGAGCTCAGCGGT TGGCAGGCAAGACCCGCCTGAGACGAGCGAACCCCGCGTGGCTCTGGGACGCCTGCCGCC
TGCGGCCGAGAAATGCAATGCTGGATTCTTTCACACCCTGTCGGGAGAATGTGTGCCCTG
CGACTGTAATGGCAATTCCAACGAGTGTTTGGACGGCTCAGGATACTGTGTGACTACTGA
CGGAGAAGACCCAGGTTTTTCAGCTTCTACCCTATCGTTCATTCTCAGCTCTCAGGGAGC
CAGAGAAGCCAGGGCTCCAACATGAACACTTCTTGTAGCTCACTGTCATGACCAGTGTTT
CAGTCAGTTCTTTCAGGTTGCCTGACTTACCTCATTTCTCTCATTTCCTGTAAGCAACCA
A AA ATA AA AGG CTTTCTTTTATTTC ATTTTGTCTTATTTTG CTTTT ATCTTG AAG G C ATA
TAAGACCTCTGTATCTGCCTTGTTCACCTTCAACTGCTTCTAATTCTTCCTCAATTCCAG
TGTCCAATGTCAATTTGAAATTAAAATTTACAGACTGATTTT
>ENA | U567251 U56725.1 Human heat shock protein m NA, complete cds.
GGAATTCTT I I I I I I I I I I I I I I I I I I G A AAC AG G GTCTCGCTCTGTC ACCC AG G CTAA A
GTGTAGTGCCGCGATCTCAGCTCATTACAACCTCTGCCTCCCAGGTTCAAGGGATCCTCC
CACCTCAGCCTCCCAAGCAGTTGGGACCACAGGCATGTGCCACCATATCCGGCTAATTTT
TGC I I I I I I CATAGAGACAGGGTTTCACCATGTTGCACAAGTCGGTCTTGAACTCCTGAG
CTCAAGTGAGCTACCTGCTTTGGCCTCCCAAAGTGCTGGGATTACACATGTGAACCACCG
TACCCG G CCCC AA AA ATG CTTTCTT AAG CGTA ACTACGTA ATG CTAGTTGTAGTTTAG AT
TCCTGGATGTTAACTTAAAATAGTCCCATAGGAACCCAGTGTGGTGGCTCACGCCTGTAA
TCCCAGCCTGAGGCAGGTGGATCATCTGAGGTCAGGAGTTCGAGACCAGCTGGGCCAACA
TG GTG A AACCCTGTCTCTACT AA AA AC AC AA AA AA ATTAG CTG G G C ATAGTG G C AG G C AC
CCGTAATTTCAGCTTCTCGGGACGCTGAGGCAGAAGAATTGCTTGAACCCAGGAGGCAGT
GGTTGCAGTGAGCCCAGATCGTGCCATTGCACTCCAGCCTGGGCAACAAGAGCAAAACTC
TGTCTC A AA A AA ATC AATTA ATTTAG G CTGG G CG C AGTG G CTC ATG CCTGTA AATCCC AG
CACTTTGAGAGGCTGAAGCGGGTGGATCATGAGGTCAAGAGATCGAGACCATCCTGGCTA
ACACGGTGAAACCCCATTTCTACTAAAAATACAAAAAAAAAACCCCAAAAAACAAAAAAA
C A AA A AC A A AC A A AC A A ACC AA AA A AAC AC A AC A ACTAG CC AG G CGTAGTG G C AG G CG CT TGTAATCCCAGCTAGTCGGGAGGCTGAGGCAGGAGGAGAATGGAGTGAACCCAGGAGGCA
GAGCTTGCAGTGAGCTGAGATCGCGCCACAGCACTCCAGCCTGGGCAACAGAGCGAGACT
CCATCTCAGGAAAAAAAAAATTAATTAATTAAAAAAACAGTAAGATAAATAACACTTCTC
CCATTTCAGTAAAAGGATGAAGCCAGTTTCTCAATGAATAAAAACAAGAGACTGTTGAAT
GTCAAGTTTTATAGACAGTCCAGACAACACAGGGAGACACCATCTCTACACACACACACA
C AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AC AAAATAG CTG CGTATG G
TGGCATGGGCCTGTAGTCCCAGCTATTGGGGCAGGGCCAGGGGGTGGGAGGCTGAGGGGA
GAGGATGCCTTAACAGGGAGGTTGAGGCTGCAGAGAGCCATGATCACGTCACTGTACTCC
AGCCTGGGTGATACAGCAAGACTCTGTCTCAGAAAAAAAAAAAAGAAAAAAGTCAAGAAT
GCATTCTTGAGGAATTCCACCAACAAAATGCACCAAATATAGCCAAAGAGTTTTCTGCTA
TATGCCAAGTGGAAAGCTATGAAGAAAGAGAAGAACAGAAGCAGGAGGACATTGGTTTTC
ATCTCCTATTCTTTCAAGAAGTAAGATCCATTATCTTTTAAAAAGTCTAAACACTGGTAA
GGCAAGACACAACTCCCACCCATAACACTGCATCTCTGTCCTCAGGCAACAAATCAAATG
TCAGATAAAAGCACAATATCTACCACTCAACCCCCAGGCTTCAGCACAGAACTCACAAAC
ATTCTGCTGGCTAAGGCAAAAAGGTGTACTGTATTTCCAGAGAGCTTGCAGAGTTCTGAG
CACTAATCCCATAATCCTCATATCTCAATCTACACAAAGCACCATCAGGCTAAGAAACAG
ATT AT AT AG C AGG C AC AAC ACTCTTG G GTATG C AA AC ATGTT AAG G ATC A AAGT AAG AA A
AGAGTAACTATAGGGGCCATACTATATTTGCCAAAAAGTGACTTGTTTAAAAATTAAAAA
GAAGCCGGGTGCAGTGGCTCACACCTGTAATCCCAGCACTTTGAGAGGCTGGGGTGGGTG
GATCACCTGAGGTCAGTAGTTCAAAACCAGCCTGGCCAACATAGTGAAACCCCATCTCTA
CT AA AA ATAC AA AATTAG G CGTG GTG G C AG G CG CCTGT AATCCC AG CT ACTAG GG ATG CT
GAGGCAGGAGAATCGCTTGAACCCGGAAGGCAGAGGTTGCAGTGAGCCAAAATCGCACCA
CTGCACTCCAGCCTGGGCAACAAGAGCAAAACTCTGTCTCAAAAAAAAAAAAATAAAAAT
AAAAACAAAAAAGAAATCCAGTTTACCTCCTTGTGCAATTCCTAATAAATTGCTGAGAAG
TGATCTTACATAGGAATCTTGTATAATTTATTCTGATGCGTTCGAGGTGGCCGTTAGTTG ACTCCGCGGAGTTCATCTCCCTGGTTTTCCCGTCCTAACGTCGCTCGCCTTTCAGTCAGG
ATGTCTGCCCGTGGCCCGGCTATCGGCATCGACCTGGGCACCACCTATTCGTGCGTCGGG
GTCTTCCAACATGGCAAGGTGGAGATCATCGCCAACGACCAGGGCAATCGCACCACCCCC
AGCTACGTGGCCTTCACGGACACCGAGCGCCTCATCGGCGACGCCGCCAAGAACCAGGTG
GCCATGAACCCCACCAACACCATCTTCGACGCCAAGAGGCTGATTGGACGGAAATTCGAG
GATGCCACAGTGCAGTCGGATATGAAACACTGGCCGTTCCGGGTGGTGAGCGAGGGAGGC
AAGCCCAAAGTGCAAGTAGAGTACAAGGGGGAGACCAAGACCTTCTTCCCAGAGGAGATA
TCCTCCATGGTCCTCACGAAGATGAAGGAGATCGCGGAAGCCTACCTGGGGGGCAAGGTG
CACAGCGCGGTCATAACGGTCCCGGCCTATTTCAACGACTCGCAGCGCCAGGCCACCAAG
GACGCAGGCACCATCACGGGGCTCAATGTGCTGCGCATCATCAACGAGCCCACGGCGGCG
GCCATCGCCTACGGCCTGGACAAGAAGGGCTGCGCGGGCGGCGAGAAGAACGTGCTCATC
TTTGACCTGGGCGGTGGCACTTTCGACGTGTCCATCCTGACCATCGAGGATGGCATCTTC
GAGGTGAAGTCCACGGCCGGCGACACCCACCTGGGCGGTGAGGACTTCGACAACCGCATG
GTGAGCCACCTGGCGGAGGAGTTCAAGCGCAAGCACAAGAAGGACATTGGGCCCAACAAG
CGCGCCGTGAGGCGGTCGCGCACCGCTTGCGAGCGCGCCAAGCGCACCCTGAGCTCGTCC
ACGCAGGCGAGCATCGAGATCGACTCGCTCTACGAGGGCGTGGACTTCTATACGTCCATC
ACGCGCGCCCGCTTCGAGGAGCTCAATGCCGACCTCTTTCGCGGGACCCTGGAGCCGGTG
GAGAAGGCGCTGCGCGACGCCAAGCTGGACAAGGGCCAGATCCAGGAGATCGTGCTGGTG
GGCGGCTCCACTCGTATCCCCAAGATCCAGAAGCTGCTGCAGGATTTCTTCAACGGCAAG
GAGCTGAACAAGAGCATCAACCCCGACGAGGCGGTGGCCTATGGCGCCGCGGTGCAGGCG
GCCATCCTCATCGGCGACAAATCAGAGAATGTGCAGGACCTGCTGCTACTCGACGTGACC
CCGTTGTCGCTGGGCATCGAGACAGCTGGCGGTGTCATGACCCCACTCATCAAGAGGAAC
ACCACGATCCCCACCAAGCAGACGCAGACCTTCACCACCTACTCGGACAACCAGAGCAGC
GTACTGGTGCAGGTATACGAGGGCGAACGGGCCATGACCAAGGACAATAACCTGCTGGGC
AAGTTCGACCTGACCGGGATTCCCCCTGCGCCTCGCGGGGTCCCCCAAATCGAGGTTACC TTCGACATTGACGCCAATGGCATCCTTAACGTTACCGCCGCCGACAAGAGCACCGGTAAG
GAAAACAAAATCACCATCACCAATGACAAAGGTCGTCTGAGCAAGGACGACATTGACCGG
ATGGTGCAGGAGGCGGAGCGGTACAAATCGGAAGATGAGGCGAATCGCGACCGAGTCGCG
GCCAAAAACGCCCTGGAGTCCTATACCTACAACATCAAGCAGACGGTGGAAGACGAGAAA
CTGAGGGGCAAGATTAGCGAGCAGGACAAAAACAAGATCCTCGACAAGTGTCAGGAGGTG
ATCAACTGGCTCGACCGAAACCAGATGGCAGAGAAAGATGAGTATGAACACAAGCAGAAA
GAGCTCGAAAGAGTTTGCAACCCCATCATCAGCAAACTTTACCAAGGTGGTCCTGGCGGC
GGCAGCGGCGGCGGCGGTTCAGGAGCCTCCGGGGGACCCACCATCGAAGAAGTGGACTAA
G CTTG C ACTC AAGTC AG CGT AA ACCTCTTTG CCTTTCTCTCTCTCTCT I I I I I I TTGTTT
GTTTCTTTGAAATGTCCTTGTGCCAAGTACGAGATCTATTGTTGGAAGTCTTTGGTATAT
GCAAATGAAAGGAGAGGTGCAACAACTTAGTTTAATTATAAAAGTTCCAAAGTTTGTTTT
TTAAAAACATTATTCGAGGTTTCTCTTTAATGCATTTTGCGTGTTTGCTGACTTGAGCAT
TTTTGATTAGTTCGTGCATGGAGATTTGTTTGAGATGAGAAACCTTAAGTTTGCACACCT
GTTCTGTAGAAGCTTGGAAACAGTAAAATATATAGGAGCTTAAATTGTTTATTTTTATGT
ACTACTTTAAAACTAAACTGAACATTGCAGTAATGTTAAGGACAGGTATACTTTTTGCAA
ACAAATGCATAAAATGCAAATGTAAAGTAAAGCTGAAATTGATCTCAAAAAAAAAAAA
>refseq | N M_018214 | N M_018214 Homo sapiens leucine rich repeat containing 1 (LRRCl), m RNA. ggaagctccgcgcggcggcgggggcggcgacggcgactggcgggtgggagtggaggcacc
ggctggcgggcgggggtacagggacggggcaggggctcccgctccaggttccttgaagca
cttccgaccgcgaagcccggcgcgagaagcgagctaacccaagagccaacaacgagcgcg
gagagggcagcggactgagcggagccgccggccagagcgggctcggagcccgggtctccg
ccgctcgggacccggctaggcggcggcgggggcggcgatgttccactgcatccccctgtg
gcggtgcaaccgtcatgtggagagcatcgacaagcgccactgctcgctggtctacgtccc
cgaggagatctaccgctatgcccggagcctggaggagctgctgctggacgccaaccagct
ccgcgagctgcccgagcaatttttccagctagtcaaattacgaaagcttggacttagtga taatgaaattcagcggctccctccagaaatagcaaacttcatgcagctggtggaactaga tgtgtctcgaaatgagattcctgaaattccagaaagcatttcattctgtaaagcactgca ggtagctgacttcagcggaaacccactgactaggttgccagaaagctttcctgaattaca gaatttaacatgtctttctgtaaatgacatctcactacagtctctacctgaaaatattgg caatctttataacctggcttcactggaactgagagagaatcttcttacatatcttcctga ctctcttacccagctgcgaagactagaagaacttgatttaggaaacaatgaaatatataa tttgccagaatcaattggagccctcttacatctaaaagatctctggttggatggaaatca actgtcagaattacctcaggaaataggaaatctgaagaacctgctgtgtttagatgtctc tgaaaacaggttggaaagacttcctgaagaaatcagtggcctgacttcattaacggattt agtcatttcccagaacttattagaaacgattccggatggcattggaaaactaaagaaact gtcaatcttgaaggtggatcagaatagactcacacagttgcctgaagcagttggggaatg tgaaagtctcactgagttagttcttacagaaaatcagctcctgaccctgcctaaaagcat tggaaaactaaagaagttgagcaacttgaatgcagacagaaataaattagtgtccttacc aaaagagatcggcgggtgctgcagcctcactgtgttctgtgtacgtgacaacagactaac tcggatacctgcagaggtgtcacaggcaacagaacttcatgtcctggatgtggcagggaa caggttgctgcatctacctttatccctgactgccttgaagttgaaggctctgtggctatc tgacaaccagtcccagcccctgcttacattccagacagacacagactacaccacaggaga ga aga tttta a cctgtgtctta cttcctca gctgccttctga a ccta cttgtca agaga a tctgcctcgctgtggtgca ctggaga a cttggta a atga tgtctctgatga agcctgga a cgagcgtgctgtcaacagagtcagtgcgatccgatttgtggaggatgagaaagatgaaga agacaatgagacgagaacacttctaaggcgagccactccacacccaggggagttaaagca catgaaaaagacagtggagaatttacggaatgacatgaatgctgctaaaggactggactc aaacaaaaacgaggtcaatcatgccattgaccgagtgaccacttctgtgtagagtttcac ctccaagttttacctcctgtgtcttcctctgctgtcgagacgttcctgtctgcttcccgg gagcctcacgtgctccttgtcctaaccagcccccgcgcgccatcttcccgtggagtgtgg ggaagctgctgtctcccaggaagtgccttactcatcccgcaaccagtcagcgcaccagtg gtctcccggtgtgattttttttttttttaatttcagttgtttgtaataagtagaatacac
tactgtaaacatacgacctttgtttttgtcttatgttggggtaaaggaaagcaggaaggg gaatttttatcctcctcccttccgtaaagtgctgggatattttgaatcccccaagttccc ttggacctactgatgagagatagttttatgtatggggaaaaatggatactttttaaacct tttttggcagctcagatggtgtaaattttaaaattttgtataggtatttcataacaaaaa tatgtatttcttttttgttattttatcttgaaaacggtacatattttagtatttgtgcag aaaaacaagtcctaaagtatttgtttttatttgtaccatccacttgtgccttactgtatc ctgtgtcatgtccaatcagttgtaaacaatggcatctttgaacagtgtgatgagaatagg aatgtggtgttttaaagcagtgttgcattttaatcagtaatctacctggtggatttgttt ttaaccaaaaagatgaattatcaatgatttgtaattatatcagttgattttttttgaaaa gatgaaccaaaggatttgactgctaatattttattccttacactttttttctgaataagt ctctcataatgagtgcagtgtcagactgtgcctactctgatggtatgtgccatttgtaaa ataaaatagagcagaaaaacacaaaaagagaacactggttcagacattcagtgggcaagt aaattatggactgcaaaataatgatttttattcaagaaagctttaaaagttttatatcca gatatacaaccacaataaagcaaaataacctactatcaaaatagaaatgttgctatcttt ataagtgcaatttaatttgtaaatagagtttgaatcaaagtatcacaaaatactgcttca agatttaattttaaatctgctaatttaagggatattgggaaaagttttggtgtgtttctg ttgatttcttttttgtatgctgtgataaaagagaaatgaaaagtgccagtcactgtgtgg tgtctaggaaaatcatatatatttttttctccaagaaataaattcatcctggacattggc
>refseq | NM_0050921 NM_005092 Homo sapiens tumor necrosis factor (ligand) superfamily, member 18 (TNFSF18), m NA. catgacattgcatccttcacccatcacttgtgaatttttgttttccacagctctcatttc tccaaaaatgtgtttgagccacttggaaaatatgcctttaagccattcaagaactcaagg agctcagagatcatcctggaagctgtggctcttttgctcaatagttatgttgctatttct ttgctccttcagttggctaatctttatttttctccaattagagactgctaaggagccctg tatggctaagtttggaccattaccctcaaaatggcaaatggcatcttctgaacctccttg cgtgaataaggtgtctgactggaagctggagatacttcagaatggcttatatttaattta
tggccaagtggctcccaatgcaaactacaatgatgtagctccttttgaggtgcggctgta taaaaacaaagacatgatacaaactctaacaaacaaatctaaaatccaaaatgtaggagg gacttatgaattgcatgttggggacaccatagacttgatattcaactctgagcatcaggt tctaaaaaataatacatactggggtatcattttactagcaaatccccaattcatctccta gagacttgatttgatctcctcattcccttcagcacatgtagaggtgccagtgggtggatt ggagggagaagatattcaatttctagagtttgtctgtctacaaaaatcaacacaaacaga actcctctgcacgtgaattttcatctat
>ENA I AI2798191 AI279819.1 qm26h04.xl NCI_CGAP_Lu5 Homo sapiens cDNA clone IMAGE:1882999 3', m NA sequence.
TT I I I I I I TGCTGGGGCGTAAAGGGTTTTTATTGTAGATCCTGTGGCGCTGAAGTGCCAC
CAAGGATTTGGAAGGTCACTTTCAGCAGCCGCCATTTCTGCCAGGACCAGTGGCAAGCAC
CTGGCAGATGGAGCCCGGGTGTTTCTGCGTAAGGCAGAGGAATCCAGCTTTTCCATGAGA
TTCAGCTGCAGTTGTCGAAAACCCTGTGTGAGCCAGCAGTTCCAGTTCAAAGGTTGAGGG
GGCGAACAGCTGCGAGGTGGCCAGGCTCCCGTGAGTCACCACTCAGGCCTGAGTACACCG
TGGAGAGGAGAGATAAAGCAGCCACGGCTGTTCTGTTGCCAGTCCCACCCCTCTGGCAAA
CAGATGGGGGAAAACAGAGAAGGAAAGTCAACAAAGAAGGTGAAATGCAGGGAGCAGAGA
CTACACGCAGGCCCCCCGTGGCTGGCAATACCATGCGTGCTGGGCCGGCTGCGCCACCCT
CACCCA
>ENA | BE857360 | BE857360.1 7g29bl2.xl NCI_CGAP_Brn23 Homo sapiens cDNA clone IMAGE:3307871 3', mRNA sequence.
TTGCCTGTGGCTCTTTTATATATATTTAAAACACACAGTAAGAACATAAGAACATCTCAA ATCATTTAGAAGGTAAAAGGGGGTTATCAACCAAAATCTTTGGAAATTTCATAAAATTTA AATATCTGCAAACAGTCCAACCAAAAACGAAAAAAAAAAAAATCCCAACATTTGGCTATG G AG G G C ACTTC AC ATGTG A ACC AA ATG G CGTTATAAC ATTTTCCTTC A ACTAGTC ACTA A ACCCAATTAGAAAGAATACAAGAGCAATATTGGAGACATCCCCAAATACCACGTACTTGA TT AG A AC ATTCTGTTATG AAG CG CTC AG CT ACCG CG G G CTTTCCTTTAC ATTG CAT AC AT TACTTTACATTTCTACAGTGCAATGTTGAAATAGCCTCCAAATTTTGCAAAGTAGATTGA TGTCCATTCTACAAAAATATTAACTTACAGTACATAACACTGAATAATTTTAATCTGTAC AT I I I I I I CCTTCCATGATAGTTGACACACGTCAGTTTGTA
>ENA | AI8019731 AI801973.1 tx29d05.xl NCI_CGAP_Lu24 Homo sa piens cDNA clone IMAGE:2270985 3', m NA sequence.
GATGAAAACTCCAGCCTTTCCTGACTCACCTCCATCTTCGGTTCTTCAGTTTTCTGAGAA
GAGTTGGGATATGTGGGAAGGGGCATGGGAGCTCGGCAGCCTCCGCCTGCCAGGAAGGCA
GTTTCGCCTCTGCAGGAAAGAGCAGAGCCCGTGGGAAGCCCTGGGTGAGGGTGGCGCAGC
CGGCCCAGCACGCATGGTATTGCCAGCCACGGGGGGCCTGCGTGTAGTCTCTGCTCCCTG
CATTTCACCTTCTTTGTTGACTTTCCTTCTCTGTTTTCCCCCATCTGTTTGCCAGAGGGG
TGGGACTGGCAACAGAACAGCCGTGGCTGCTTTATCTCTCCTCTCCACGGTGTACTCAGG
CCTGAGTGGTGACTCACGGGAGCCTGGCCACCTCGCAGCTGTTCGCCCCCTCAACCTTTG
AACTGGAACTGCTGGCTCACACAGGGTTTTCGACAACTGCAGCTGAATCTCATGGAAAAG
CTGGATTCCTCTGCCTTACGCAGAAACACCCGGGCTCCATCTGCCAGGTGCT
>ENA | AW451115 | AW451115.1 UI-H-BI3-alg-g-01-0-U l.sl NCI_CGAP_Su b5 Homo sapiens cDNA clone I MAGE:2736936 3', m RNA sequence.
TT I I I I I I I I I I I I I I I G G GTTTATCTGTTTATAATC AG AG A ATG GG G GTAC AC AG G CCC
TCCCCAAGAGATACATTTTCTGTACAATGAAAAATTCAGTTTCCTATTTCTTAACTTTGT
TTGCAAACCTACACGCCTCTTCTCTCTTCCACCATGTGTAATAAAATCCATCGCATTCTC
TTCTATCTTCAGTCATGTAGTTTTTGTGTTTAACATTTATAAAATGTGTTCTTATGAGTC
TGAAATCTTTATCAGTTCAAATCATTCCTGATTTCCCATCTACAACCTTCTAGGTCTTTC
TTCTTTCTCTG CCG CTTTCCTTGTTTGTC AGTGTTCTGTACTG AA ATTCC AC AG G G ATG G
CAGTTAGATGAGGACTTCCATCATCTCTCCATCAGGGAACTCGGGCTTGTGCAGCAAGCT
GCTGACCCGGCCTCTGTGGTCAGGCGACTTCCCATGGCCAGGAGAGTTCTCCAGTTTCTC TGCGGTCCCTTTGGCCGCTGGGTGTTTCAGGATCGTGAGGCCCCGCTTTCACGG
>ENA I AI4723101 AI472310.1 tj87b01.xl Soares_NSF_F8_9W_OT_PA_P_Sl Homo sapiens cDNA clone I MAGE:2148457 3', m RNA sequence.
TTTTTTTCACATCTCAAAAAAAGTTTATTATGTTGGATACAACAGATTCTCAATATTAGC
AAATCATTCCACTTACCCCCAAGCGCCAGATCTTGACTGTACAGTCTAAAAACATTTGTC
AAAGTGAGAAAAATGTTACAGAACATCTCATAAAAGAATTAAGATACAAATAGTATATAC
AGATAGTAGATTGTAACAAAGTGGAACGTACTTGCAAGACATCACCTAGCTAAAATACTT
GATTCCCTATGAGGACAAACTGAAAAATAAAATATTTCAAGCACACAAAGAAAGGACAAA
AT AG G G G AA ACC AATG G G AA ATATA AAGTTTAA ACTTATTTTTA AC ATTTA AA AG C AACT
ACACTTTTCCATTTGAGCCAGTTCAAAAAGGAGAAGTCAAATAAAGACTTTAGAATCCTG
TGACCAACTATAATTTGAGCTTGATAACATGAATGGCATCTGAAAGATGCAAGCCAAGTA
TTTCTAGTACTGTGACCTTGAGAGATAATAACTGAGCAACCTGCTAGG
>gi 118089116 1 gb | BC020718.1 1 Homo sapiens complement factor I, m RNA (cDNA clone MGC:22501 I MAGE:4716122), complete cds
AAATTTCAAAAGAATACCTGGAGTGGAAAAGAGTTCTCAGCAGAGACAAAGACCCCGAACACCTCCAACA
TG A AG CTTCTTC ATGTTTTCCTGTTATTTCTGTG CTTCC ACTTA AG GTTTTG C AAG GTC ACTTAT AC ATC
TCAAGAGGATCTGGTGGAGAAAAAGTGCTTAGCAAAAAAATATACTCACCTCTCCTGCGATAAAGTCTTC
TGCCAGCCATGGCAGAGATGCATTGAGGGCACCTGTGTTTGTAAACTACCGTATCAGTGCCCAAAGAATG
GCACTGCAGTGTGTGCAACTAACAGGAGAAGCTTCCCAACATACTGTCAACAAAAGAGTTTGGAATGTCT
TCATCCAGGGACAAAGTTTTTAAATAACGGAACATGCACAGCCGAAGGAAAGTTTAGTGTTTCCTTGAAG
CATGGAAATACAGATTCAGAGGGAATAGTTGAAGTAAAACTTGTGGACCAAGATAAGACAATGTTCATAT
GCAAAAGCAGCTGGAGCATGAGGGAAGCCAACGTGGCCTGCCTTGACCTTGGGTTTCAACAAGGTGCTGA
TACTCAAAGAAGGTTTAAGTTGTCTGATCTCTCTATAAATTCCACTGAATGTCTACATGTGCATTGCCGA
GGATTAGAGACCAGTTTGGCTGAATGTACTTTTACTAAGAGAAGAACTATGGGTTACCAGGATTTCGCTG
ATGTGGTTTGTTATACACAGAAAGCAGATTCTCCAATGGATGACTTCTTTCAGTGTGTGAATGGGAAATA
CATTTCTCAGATGAAAGCCTGTGATGGTATCAATGATTGTGGAGACCAAAGTGATGAACTGTGTTGTAAA G C ATG CC AAG G C A AAG G CTTCC ATTGC AA ATCG G GTGTTTG C ATTCC AAGCC AGTATC A ATG C A ATG GTG
AGGTGGACTGCATTACAGGGGAAGATGAAGTTGGCTGTGCAGGCTTTGCATCTGTGGCTCAAGAAGAAAC
AGAAATTTTGACTGCTGACATGGATGCAGAAAGAAGACGGATAAAATCATTATTACCTAAACTATCTTGT
GGAGTTAAAAACAGAATGCACATTCGAAGGAAACGAATTGTGGGAGGAAAGCGAGCACAACTGGGAAAAA
TGAAGCAAATCTCATTGGATATTTTTAAAGGTCTCCACAGAGTTTATGCCATATTGGAATTTTGTTGTAT
AATTCTCAAATAAATATTTTGGTGAAGCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
>ENA | BF9676571 BF967657.1 602287358T1 N IH_MGC_96 Homo sapiens cDNA clone IMAGE:4374495 3', m NA sequence.
CCCACTAATGAAGAGTAAATATGCAAGGCAGCAACCTTCAGGAGTAGGGAGATTGGGGAG
A AACG ACTTC A AA ACTG CG ATAG GTC ACTATATG GTAG G GTC ACCTG GTG AT ACTTAGTA
TGGCACAAATGCCCTGCCTAGCCCCCTTCACTGCGATACAGCTTCACAGAATGGAGTGTT
ACAGTAAGTAAGGTGTTCGTTAAGTAGGCAGGATTGCCTTAACACTAGGGGAAAAAAAGA
CCAGACTTGAAGATGAAAGTACCGCAGAGTGTATAAGATATATATGTATTGGTATGTGTG
GTTATTAATAGCAAACAACCCAGTCTCACAGATATTACCAAAGTAGGACAACAATAATTC
CACGTAAGACATAAATAGTNACTATGATACCTAATAGGTAACAGACGCTATAAAATGAAC
CATCACACAATTCATGGACATCACACAAATTAAGCCCACCGTAAAACATTTAACATTAAA
TACATATACCATCAAAAGAACTTAAACTAACAAAATTAAGCCCACATTTATGAAAGACAC
GATTAACACGGCATGACTGTGGAAACCATGACAGAATATAGAGAATTGCGATGATTACAG
GAACATTAAAAAAGGGTTCAACATATATGAGCTTCATACCCCAAAATTGAGTCATAAGAG
AACAGACATACTAAGTCCAACCACATTTCTAAAAGCCAAAACACCAGATAGAACACACAA
ATAATCCCCGGAAGAGACCAGAAAAGAACAATAGAAACCACACAAAGAGGAAATAACCAA
AACCACGAAAAAAGAGAGATAAAAAGAACCAGAAACAATAGATAAAAAGCAAAAAAACAT
GAAAAGAGACAGAAGCAGAAAAACAACACAGAGAAAACAAGAAAGGACCTACGCAAGAAG
CAAAAAAACAAAACCATACAAGGACACAAACACAAGAGCAATAAAAACACAAAAAGGCAA
TGGACCAAAAACAAAGAAAGAAAAAAAATAAGAAGCCAAAAAACGAAACAAAACCCCACT
CAAACAAATAAACATAAGAAATAAAAATAAAAACAAAAACATATAAAAAAATAATTCCAA ACAAATAACAAAATAGTAACAATATAAAAAAAATAATAATAATATAACTAAAAAAGGGTA TGACACAAATATTTTTTCTTTTC I I I I I I CTTACTAAAAAAAAAAAG
>refseq | NM_006474 | NM_006474 Homo sapiens podoplanin (PDPN), transcript variant 1, mRNA. agaccaccttgcggccgaccccgctcccccgcctcctcgggagagataaatgctgactcc
gctcgga a agttctca a ctgca a agtttgctgtccggctgcctagggtctggga agctcg
ggcaccctccctctccggggctcctgctcccacccctccggcccccccaccgtcgcgctc
ctccaggctgggcctgtggccgcggtgctttttaattttcccccagctcagaatcttgct
gctcggcccccaggagagcaacaactcaacgggaacgatgtggaaggtgtcagctctgct
cttcgttttgggaagcgcgtcgctctgggtcctggcagaaggagccagcacaggccagcc
agaagatgacactgagactacaggtttggaaggcggcgttgccatgccaggtgccgaaga
tgatgtggtgactccaggaaccagcgaagaccgctataagtctggcttgacaactctggt
ggcaacaagtgtcaacagtgtaacaggcattcgcatcgaggatctgccaacttcagaaag
cacagtccacgcgcaagaacaaagtccaagcgccacagcctcaaacgtggccaccagtca
ctccacggagaaagtggatggagacacacagacaacagttgagaaagatggtttgtcaac
agtgaccctggttggaatcatagttggggtcttactagccatcggcttcattggtgcaat
catcgttgtggttatgcgaaaaatgtcgggaaggtactcgccctaaagagctgaagggtt
a cgccctgctgcca a cgtgctta a a a a a aga ccgtttctga ctctgtgccctgtccctga
gctcgtgggagaagatgacccgtggaacacttgcctggcccactcagaatccacggtgac
ctctccgcttgccaaaataaccgaaggaaagaccgttcaccagacttggctcctctaaac
atttgctgttcaaacatgtttttgaatatacattctataaaagattatttgaaagacaaa
attcatagaaaatggagcaaaactgtataaactgatttgtaactaacactggaccattgg
atcgatattatatgctgtaaccatgtgtctccgtctgaccattcttgttattgttaaaat
gcagaggaatctggaaatatttatatccacggagtccttggatccagtgctacgtcagta
aatagcaccagcattttgcaattgctgatctgctgaaatgtacacattctggtctagttt
ggtctatcttttaaagcctgatctggtgtgaataatcaactaggaaatctaaacttggat aacacgtggtgaacaactgcctttagctggtccagattaatcatttcaaagacatccatt ttagatcacaagcaggaagtcgatagtctcaaaggcactttgtttctcccaagtaggcca ccaggcagcctctagagttgctttacccaaatccttctccagccatgacttggtgactct aagcttgctcccacctgccccctccacttccctcagatgatgaggagccagggctaaggg ggcagccttctctcttcccagtgatgcacatccttcacattggctgctttgttctggaat atggatatctcagcctggatgccgaggaagctgctggatgcttaatggtgctagaggctc aagtgtgtttgaaaccaagagccagttgtcccccatgcagaaagaaatcctgtgtgagcc tctggtatgagaaataaaatctgccagttttataacattcactttctgcctctgaggaaa gatacagggaacaaaaatcaatttgtacagtcttaatattaaaagcagcttgactaaata cctgatttaaaaatagaagacatccccagtcctcatgacataccgcaaatatctgtgggg tcctgttgaaaagaacaaaataaaggagcccaaggggtcattctgtctcagcaccatcca gcctggca cttctcttccca ta ta tcca ttggatttttttttttttttccta a a ca a agt ttttacactgagcagatgctctgtcatgatggcggttgtgcaattctggtatcctctaaa tttgtaagcattcataaaacaggaaaaagtaaactatcattcggaagcacagcccattcc tcccattttttgcaatgatgtctggatgttattttaaacagtgtgtctgtgtgttcccaa atccagctggccccaccagctcagattccattttttttgtgtgtgtgtgtgaaacgtagt ctgcaactctgcctcccggcaattatacatgtgtcaggatgtcaaaaagcaattctcctg cctcagcctcctgagtagctggga eta caggttccta cca cca ca cccggcca a tttttg tatttttagtagagatggggtttcaccgtatcggcgaggatgatctctatctcttgacct cgtgatctgcccgcctcggcctcccaaagtgctgggattacaggcgtgtgccactgcgct cggcctcagattccatatttgaacaccagctgattgagagaaggggaatgagaagagctg gatgagtttaaataactcattgttcagattcctgaacaggagttgggataatggccatct tttctttccta tcctttcttcccccctca ctgtga a a a a ta a cagtcca cccca agtca t a ca ctgga cccagtgcctgcgggga cagga ctgtgggtttcttggtca ca cctgtgttgg tgctcaatgcagtgtagacatgttttcaaataaaacaaatgattgtgtacaaaaaaaaaa aaaaaaaa
>refseq | NM_0036191 NM_003619 Homo sapiens protease, serine, 12 (neurotrypsin, motopsin) (P SS12), mRNA. gcccgagaagctggggagcatggaccagaccccgcagcgctggcaccatgacgctcgccc gcttcgtgctagccctgatgttaggggcgctccccgaagtggtcggctttgattctgtcc tcaatgattccctccaccacagccaccgccattcgccccctgcgggtccgcactacccct attaccttcccacccagcagcggcccccgaggacgcgtccgccgccgcctctcccgcgct tcccgcgccccccgcgggcgctccctgcccagcgcccgcacgccctccaggccgggcaca cgccccggccgca cccctggggctgccccgccggcgagcca tgggtca gcgtga cgga ct tcggcgccccgtgtctgcggtgggcggaggtgccacccttcctggagcggtcgcccccag cgagctgggctcagctgcgaggacagcgccacaacttttgtcggagccccgacggcgcgg gcaga ccctggtgtttcta cggaga cgcccgtggca aggtgga ctggggcta ctgcga ct gcagacacggatcagtacgacttcgtggcggcaaaaatgagtttgaaggcacagtggaag tatatgcaagtggagtttggggcactgtctgtagcagccactgggatgattctgatgcat cagtcatttgtcaccagctgcagctgggaggaaaaggaatagcaaaacaaaccccgtttt ctggactgggccttattcccatttattggagcaatgtccgttgccgaggagatgaagaaa atatactgctttgtgaaaaagacatctggcagggtggggtgtgtcctcagaagatggcag ctgctgtcacgtgtagcttttcccatggcccaacgttccccatcattcgccttgctggag gcagcagtgtgcatgaaggccgggtggagctctaccatgctggccagtggggaaccgttt gtgatgaccaatgggatgatgccgatgcagaagtgatctgcaggcagctgggcctcagtg gcattgccaaagcatggcatcaggcatattttggggaagggtctggcccagttatgttgg atgaagtacgctgcactgggaatgagctttcaattgagcagtgtccaaagagctcctggg gagagcataactgtggccataaagaagatgctggagtgtcctgtacccctctaacagatg gggtcatcagacttgcaggtgggaaaggcagccatgagggtcgcttggaggtatattaca gaggccagtggggaactgtctgtgatgatggctggactgagctgaatacatacgtggttt gtcgacaattgggatttaaatatggtaaacaagcatctgccaaccattttgaagaaagca cagggcccatatggttggatgacgtcagctgctcaggaaaggaaaccagatttcttcagt gttccaggcgacagtggggaaggcatgactgcagccaccgcgaagatgttagcattgcct gctaccctggcggcgagggacacaggctctctctgggttttcctgtcagactgatggatg gagaaaataagaaagaaggacgagtggaggtttttatcaatggccagtggggaacaatct gtgatgatggatggactgataaggatgcagctgtgatctgtcgtcagcttggctacaagg gtcctgccagagcaagaaccatggcttactttggagaaggaaaaggacccatccatgtgg ataatgtgaagtgcacaggaaatgagaggtccttggctgactgtatcaagcaagatattg gaagacacaactgccgccacagtgaagatgcaggagttatttgtgattattttggcaaga aggcctcaggtaacagtaataaagagtccctctcatctgtttgtggcttgagattactgc accgtcggcagaagcggatcattggtgggaaaaattctttaaggggtggttggccttggc aggtttccctccggctgaagtcatcccatggagatggcaggctcctctgcggggctacgc tcctgagtagctgctgggtcctcacagcagcacactgtttcaagaggtatggcaacagca ctaggagctatgctgttagggttggagattatcatactctggtaccagaggagtttgagg aagaaattggagttcaacagattgtgattcatcgggagtatcgacccgaccgcagtgatt atgacatagccctggttagattacaaggaccagaagagcaatgtgccagattcagcagcc atgttttgccagcctgtttaccactctggagagagaggccacagaaaacagcatccaact gttacataacaggatggggtgacacaggacgagcctattcaagaacactacaacaagcag ccattcccttacttcctaaaaggttttgtgaagaacgttataagggtcggtttacaggga gaatgctttgtgctggaaacctccatgaacacaaacgcgtggacagctgccagggagaca gcggaggaccactcatgtgtgaacggcccggagagagctgggtggtgtatggggtgacct cctgggggtatggctgtggagtcaaggattctcctggtgtttataccaaagtctcagcct ttgtaccttggataaaaagtgtcaccaaactgtaattcttcatggaaacttcaaagcagc atttaaacaaatggaaaactttgaacccccactattagcactcagcagagatgacaacaa a tggca aga tctgtttttgctttgtgttgtggta a a a a a ttgtgta ccccctgctgcttt tgagaaatttgtgaacattttcagaggcctcagtgtagtggaagtgataatccttaaatg aacattttctaccctaatttcactggagtgacttattctaagcctcatctatcccctacc tatttctcaaaatcattctatgctgattttacaaaagatcatttttacatttgaactgag aaccccttttaattgaatcagtggtgtctgaaatcatattaaatacccacatttgacata aatgcggtaccctttactacactcatgagtggcatatttatgcttaggtcttttcaaaag acttgacaagaaatcttcatattctctgtagcctttgtcaagtgaggaaatcagtggtta aagaattccactataaacttttaggcctgaataggagtagtaaagcctcaaggacatctg cctgtcacaatatattctcaaagtgatctgatatttggaaacaagtatccttgttgagta ccaagtgctacagaaaccataagataaaaatactttctacctacagcgtataaactagca aaatttgaaaggatttctggtaactaaatgccagctggacatacaacctattttatccaa cacattaacatatctactatatttgcttttaacaagcacctcatcatagtccacgttccc cgaccatgatgtaagagtgccacccactgacacttccctgtaactgacttatacctgcag gttttcccaagcccaacctgatacaatccaatcttaaaatatactagtcaaaatgctttc ctggcctacacattgaaaagttctaatacatacagcagttataacatatgccaggcactg cattaggcagctttgcacatcactgacaatttgcaaaaggccagtaaatcttatggtagt agcccttgttttcaaatgggggaaaacaggcttgcctcaaagtgagaccagttggtgaaa ctgattccaaactccagaaaaaatgctgatttttttccccatggttctcctacctaaatg attggtttccctatggctatttctccaagagttaagggatagctgcttaactatgcacct ttacagaacattcttagcagtaatgctcaaatttaaaaggcacactcaagatacttccat gtcatggatccttccccaggtcccagtagtataaatatagggaagaggttagcatgaact tacaaattgttttaagtaatcctcttgaatgccagtcattaaaggactttgcccttctac atcaaattacatccttttcacaaatccccatttctgtaataactggtgcaaacctaaagg tgctttatagttttactactttgcagatttgcaatgctgcatataatgcagaagagcatt aaaaacttttgtaaaaactcatgattttgataaacttttaaagtagcgtttatatgtaaa tagaactacacatggcacacacacttgcacaagggcttcagaaaaacgtgcaatataggt gagaaaaatgtctattgaaactttctcacaggctgcccttataattaaactagtgttggg gcaagcaacatctgtttcaagtagatcagggactagcaaacctaaaaggcagcaagcagc
ctgcagtttgctcaatccttaagaatacatggttcatacaacatgcttttactatgtctt
aagtgtgacttttgaaagatacaagtgttctgtgcatatttgtgtaaataaatacataat
tttccaccttgta
>refseq | NM_003149 | NM_003149 Homo sapiens SH3 and cysteine rich domain (STAC), mRNA. gttcctccgggagcccaacaccgttcccgcgcggccacgatgatccctccgagcagcccc
cgcgagga cggcgtgga cgggctgccca aggaggcggtgggcgccgagca a ccgccctct
cctgcatccaccagcagccaggaatccaagctccagaaactaaaacgatcactttctttc
aagaccaagagtttacggagcaaaagtgctgacaacttcttccagcgaaccaacagcgaa
gacatgaaactgcaagcacacatggtggctgagatcagccccagctccagcccactccct
gctccaggaagcctgacgtccacacccgccagggctggtctgcatccaggtggcaaggct
catgcctttcaggaatacatcttcaagaagcccactttctgtgatgtctgcaaccacatg
atagtgggaacaaatgctaagcatggactgcgctgcaaagcctgtaagatgagcatccac
cacaagtgcacagatggcctggcaccccagcggtgcatgggcaagctgccaaaggggttt
cggcgttactacagctcccccttgctcattcatgaacagtttggctgcattaaagaagtt
atgcccattgcctgtggcaataaggtggaccctgtctacgagaccctccgcttcggcacc
tccctggcccagaggacaaagaagggcagctccggcagtggctctgactcacctcacaga
acctctacttcagatcttgtggaggttcctgaggaagccaatgggccaggaggcgggtat
gacctaaggaaacgcagcaacagcgtgtttacatatccagaaaatggcactgatgatttc
agagatccagcgaagaacataaaccaccagggatctctttccaaagacccattacagatg
aacacctatgttgccttgtacaaatttgtaccacaggagaatgaagatttggaaatgagg
ccaggagacataattactcttttagaggattccaatgaagactggtggaaagggaaaatt
caagacagaattggcttctttccagccaactttgttcagagactacaacaaaatgagaag
atttttagatgtgttagaaccttcattgggtgtaaggaacaggggcagataacactgaaa
gagaatcagatctgcgtgagttctgaagaagaacaagatggttttatcagagtcctcagt ggaaaaaagaaaggcctcatcccccttgatgtactagaaaacatctgattgctggctcct cctccgtttgcagtaggcaagctctgctgcgatgcctctgcctcatctcacactgcgtca acccaaaggagctgccgcactgacccagccccccaggaaacagtgagacaagaatcaagt atctgagactgtggagtaatagccacaaaacagagggcccactgcacagcatatccaggc tgccacaggtggggacgaggctgagagagtcagcaggcagagccagatgccatgcttggc agcagcagtaggactataaaccacagctgtcccccaggatcccactcctttcctgtctgt gtggtgtaagttaacacactggagtgtgctccagtttgcagggtagcccagtgcaaggtt cagatccatgtagctaagtattatcctgcttccagacctatgtcaccagtaccaatcagt cagtgtcatcacatttcaggccccaagcaatctctgtgcaaagcatcagaaagacctgct tcccagcccccagcattccagtgctctccaggcttcctctctttgtgattgtgctgtcca gagtgtccagcttgttctttctttctcttcagtcctctgagtacatctggtggtgtgcat tagatgtgagggctatgttgacatggcatcacctccaaagacctgacctgcctaaagact gatgacaggccatccttcctgctgttctaggtactggcctgggtgacagagcaggacatg agacatagatacagtggggaggagaagtggggaaaggtggagcagagagttcttacttat tgaagattatacagccctttcggttatgaagtccctgcttgaaggcaatggacctgggga agagactatcacaaaaagtctccattttcattttacatcctctctattggaggcagcact tttccctca tgctgtcctatagga ctcca ctttga aggttgtgccta cgttgcaggga a c taggaacatggaggggaaccaacaacagcatcttagaagaaatgtagccaaattggagtc cattcttctttagggcagtatatgaaatcctagcagatgtaaaatggaaaagaatcctaa tgcttcttccttcagaaagtagaggaactaggggcccaattagcatcatctaggggaatc tctattactctgtacttatactaatgtttacaagaatgcaatatactgtgatgccttcct actcaagcctcctagcattcaaacttccatcctattagtcattaacgtggttaaacttca attcacaatcaccttggaatcaatgtcagtttgatttattttgttacagagcaataaaat cattagaacaatggtttttaaaagacttaagtggatgcatcctatgcatgtaagcattat ttcccaaaccaaagcatcattcatctccatttatttcttttgttcccgctcagtgtgaag ttgggaactgagaggggatggctgctggtttcacagaagtttggatgccttactcttatc ttaaagccagcatccagaatttcctccctctctgatgccacatgcaaaaccaggtgtacg atgtcaagatggattctttgagagccagggtagatcatatgactgcctttctgtaaaatt ggatgcctagtacaaatgctctttgcctctaattcagtattccatttaataaaaacaata cagtggctggaaaggagcatcag
>ENA I AW0075321 AW007532.1 ws52h07.xl NCI_CGAP_Brn25 Homo sapiens cDNA clone
I MAGE:2500861 3', m NA sequence.
TTTTTCACCAGTAAAGATTATCATCGTTTATTTTTGTTTTTAAAGTTGAAAACAAAAAAG
AGGAGAGAACAGAGTTATGGTATGAATGTATGTAAAACTATAGAGAACTACAGTAATATG
TACTGTGGTTATTGCTGTCTTCAAAAAAAAAAAGAAAAAGAAAAACAACAACAACAACAA
CGAAAACAACCGGTAGGCAACTCGGAATCTGAAGGAATCTTGTCTGACAACTGTGCTATC
CATGTGGGCTACGGTGTGACAGTGGCGGTAGAGAGGAGACTCCGGCTGGCGACCGGGGAC
TGGTGGAGTGGGGTGAGCGGGCACAGGGAAAGCTGGGGTCCCCTTCCCCTCGGACCCTCC
CCACCTTCCCTTTCCCCATCCAAAAGGATTTCAGGAGAGGAGGCCAGAGTCTGTGAAATG
ACTAAACTATATACTCCATTAGAAAACCAAGAAAGTATGTTTGAAATAGAAACAAAAGCC
TAAGAGAAAATAAAAAGTGGAGAAACAGT
>ENA I AI8107671 AI810767.1 tu04d02.xl NCI_CGAP_Pr28 Homo sapiens cDNA clone I MAGE:2250051 3', m RNA sequence.
TTTTTACAAGGGGGAAAATTATGTATTTATTTACACAAATATGCACAGAACACTTGTATC TTTCAAAAGTCACACTTAAGACATAGTAAAAGCATGTTGTATGAACCATGTATTCTTAAG GATTGAGCAAACTGCAGGCTGCTTGCTGCCTTTTAGGTTTGCTAGTCCCTGATCTACTTG A AAC AG ATGTTG CTTG CCCC AAC ACTAGTTT AATTATA AG G G C AG CCTGTG AG A A AGTTT CAATAGACATTTTTCTCACCTATATTGCACGTTTTTCTGAAGCCCTTGGGCAAGTGTGTG TGCCATGTGTAGTTCTATTTACATATAAACGCTACTTTAAAAGTTTATCAAAATCATGAG TTTTT AC A AA AGTTTTTA ATG CTCTTCTG C ATT AT ATGT AG C ATTG C A AATCTG C A AAGT AGT AA AACT ATA AAG C ACCTTTAG GTTTG C ACC AGTT ATTAC AG A AATG G G G ATTTGTG A AAAGGATGTAATTTGATGTAGAAGGGCAAAGTCCTTTAATGACTGGCATTCAAGAGGATT ACTTAAAACA
>ENA I AF1540541 AF154054.1 Homo sapiens D M (DRM) m RNA, complete cds.
ATAATAATTAGGCCAAGCGTTGAATAGTACGGGGGGGGGGGGGGGGCGAGCCCCGGCGGC
TCTGGCCGCGGCCGCACTCAGCGCCACGCGTCGAAAGCGCAGGCCCCGAGGACCCGCCGC
ACTGACAGTATGAGCCGCACAGCCTACACGGTGGGAGCCCTGCTTCTCCTCTTGGGGACC
CTGCTGCCGGCTGCTGAAGGGAAAAAGAAAGGGTCCCAAGGTGCCATCCCCCCGCCAGAC
AAGGCCCAGCACAATGACTCAGAGCAGACTCAGTCGCCCCAGCAGCCTGGCTCCAGGAAC
CGGGGGCGGGGCCAAGGGCGGGGCACTGCCATGCCCGGGGAGGAGGTGCTGGAGTCCAGC
CAAGAGGCCCTGCATGTGACGGAGCGCAAATACCTGAAGCGAGACTGGTGCAAAACCCAG
CCGCTTAAGCAGACCATCCACGAGGAAGGCTGCAACAGTCGCACCATCATCAACCGCTTC
TGTTACGGCCAGTGCAACTCTTTCTACATCCCCAGGCACATCCGGAAGGAGGAAGGTTCC
TTTCAGTCCTGCTCCTTCTGCAAGCCCAAGAAATTCACTACCATGATGGTCACACTCAAC
TGCCCTGAACTACAGCCACCTACCAAGAAGAAGAGAGTCACACGTGTGAAGCAGTGTCGT
TGCATATCCATCGATTTGGATTAAGCCAAATCCAGGTGCACCCAGCATGTCCTAGGAATG
CAGACCCAGGAAGTCCCAGACCTAAAACAACCAGATTCTTACTTGGCTTAAACCTAGAGG
CCAGAAGAACCCCCAGCTGCCTCCTGGCAGGAGCCTGCTTGTGCGTAGTTCGTGTGCATG
AGTGTGGATGGGTGCCTGTGGGTGTTTTTAGACACCAGAGAAAACACAGTCTCTGCTAGA
GAGCACTTCCTATTTTGTAAACCTATCTGCTTTAATGGGGATGTACCAGAAACCCACCTC
ACCCCGGCTCACATCTAAAGGGGCGGGGCCGTGGTCTGGTTCTGACTTTGTGTTTTTGTG
CCCTCCTGGGGACCAGAATCTCCTTTCGGAATGAATGTTCATGGAAGAGGCTCCTCTGAG
GGCAAGAGACCTGTTTTAGTGCTGCATTCGACATGGAAAAGTCCTTTTAACCTGTGCTTG
CATCCTCCTTTCCTCCTCCTCCTCACAATCCATCTCTTCTTAAGTTGACAGTGACTATGT
CAGTCTAATCTCTTGTTTGCCAGGGTTCCTAAATTAATTCACTTAACCATGATGCAAATG
TTTTTCATTTGGTGAAGACCTCCAGACTCTGGGAGAGGCTGGTGTGGGCAAGGACAAGCA GGATAGTGGAGTGAGAAAGGGAGGGTGGAGGGTGAGGCCAAATCAGGTCCAGCAAAAGTC
AGTAGGGACATTGCAGAAGCTTGAAAGGCCAATACCAGAACACAGGCTGATGCTTCTGAG
AAAGTCTTTTCCTAGTATTTAACAAAACCCAAGTGAACAGAGGAGAAATGAGATTGCCAG
AAAGTGATTAACTTTGGCCGTTGCAATCTGCTCAAACCTAACACCAAACTGAAAACATAA
ATACTGACCACTCCTATGTTCGGACCCAAGCAAGTTAGCTAAACCAAACCAACTCCTCTG
CTTTGTCCCTCAGGTGGAAAAGAGAGGTAGTTTAGAACTCTCTGCATAGGGGTGGGAATT
AATCAAAAACCTCAGAGGCTGAAATTCCTAATACCTTTCCTTTATCGTGGTTATAGTCAG
CTCATTTCCATTCCACTATTTCCCATAATGCTTCTGAGAGCCACTAACTTGATTGATAAA
GATCCTGCCTCTGCTGAGTGTACCTGACAGTAGTCTAAGATGAGAGAGTTTAGGGACTAC
TCTGTTTTA AC AAG AA AT ATTTTGG G G GTCTTTTTGTTTT AACTATTGTC AG G AG ATTG G
GCTAAAGAGAAGACGACGAGAGTAAGGAAATAAAGGGAATTGCCTCTGGCTAGAGAGTAG
TTAGGTGTTAATACCTGGTAGAGATGTAAGGGATATGACCTCCCTTTCTTTATGTGCTCA
CTTGAGGATCTGAGGGGACCCTGTTAGGAGAGCATAGCATCATGATGTATTAGCTGTTCA
TCTG CTACTG GTTG G ATG G AC ATA ACTATTGTA ACTATTC AGT ATTTACTG GT AG G C ACT
GTCCTCTGATTAAACTTGGCCTACTGGCAATGGCTACTTAGGATTGATCTAAGGGCCAAA
GTG C AG G GTG G GTG AACTTTATTGT ACTTTG G ATTTG GTT AACCTGTTTTCCTC A AG CCT
GAGGTTTTATATACAAACTCCCTGAATACTCTTTTTGCCTTGTTACTTCTCAGCCTCCTA
GCCAAGTCCTATGTAATATGGAAAACAAACACTGCAGACTTGAGATTCAGTTGCCGATCA
AGGCTCTGGCATTCAGAGAACCCTTGCAACTCGAGAAGCTGTTTTTGATTTCGTTTTTGT
TTTGAACCGGTGCTCTCCCATCTAACAACTAACAAGGACCATTTCCAGGCGGGAGATATT
TTAAACACCCAAAATGTTGGGTCTGATTTCCAAACTTTTAAACTCACTACTGATGATTCT
CACGCTAGGCGAATTTGTCCAAACACATAGTGTGTGTGTTTTGTATACACTGTATGACCC
CACCCCAAATCTTTGTATTGTCCACATTCTCCAACAATAAAGCACAGAGTGGATTTAATT
AAGCACACAAATGCTAAGGCAGAATTTTGAGGGTGGGAGAGAAGAAAAGGGAAAGAAGCT
GAAAATGTAAAACCACACCAGGGAGGAAAAATGACATTCAGAACCACCAAACACTGAATT TCTCTTGTTGTTTTAACTCTCCCACAAGAATGCAATTTCGTTAATGGAGATGACTTAAGT
TG G C AG C AGTA ATCTTCTTTTAG G AG CTTGTACC AC AGTCTTG C AC ATA AGTG C AG ATTT
GCCCCAAGTAAAGAGAATTTCCTCAACACTAACTTCACGGGGATAATCACCACGTAACTA
CCCTTAA AG C ATATC ACTAG CC AA AG AG G G G A AT ATCTGTTCTTCTT ACTGTG CCTATAT
TAAGACTAGTACAAATGTGGTGTGTCTTCCAACTTTCATTGAAAATGCCATATCTATACC
ATATTTTATTCGAGTCACTGATGATGTAATGATATATTTTTTCATTATTATAGTAGAATA
TTTTTATGGCAAGAGATTTGTGGTCTTGATCATACCTATTAAAATAATGCCAAACACCAA
ATATG A ATTTT ATG ATGT AC ACTTTGTG CTTG G C ATTA AA AG A AA AA AAC AC AC ACG CC
>refseq | NM_0133721 NM_013372 Homo sapiens gremlin 1 (GREMl), transcript variant 1, mRNA. a ctcggtgcgccttccgcgga ccgggcga cccagtgca cggccgccgcgtca ctctcggt
cccgctgaccccgcgccgagccccggcggctctggccgcggccgcactcagcgccacgcg
tcgaaagcgcaggccccgaggacccgccgcactgacagtatgagccgcacagcctacacg
gtgggagccctgcttctcctcttggggaccctgctgccggctgctga aggga aaaagaaa
gggtcccaaggtgccatccccccgccagacaaggcccagcacaatgactcagagcagact
cagtcgccccagcagcctggctccaggaaccgggggcggggccaagggcggggcactgcc
atgcccggggaggaggtgctggagtccagccaagaggccctgcatgtgacggagcgcaaa
tacctgaagcgagactggtgcaaaacccagccgcttaagcagaccatccacgaggaaggc
tgca a cagtcgca ccatca tea a ccgcttctgtta cggccagtgca a ctctttcta ca tc
cccaggcacatccggaaggaggaaggttcctttcagtcctgctccttctgcaagcccaag
aaattcactaccatgatggtcacactcaactgccctgaactacagccacctaccaagaag
aagagagtcacacgtgtgaagcagtgtcgttgcatatccatcgatttggattaagccaaa
tccaggtgcacccagcatgtcctaggaatgcagccccaggaagtcccagacctaaaacaa
ccagattcttacttggcttaaacctagaggccagaagaacccccagctgcctcctggcag
gagcctgcttgtgcgtagttcgtgtgcatgagtgtggatgggtgcctgtgggtgttttta
gacaccagagaaaacacagtctctgctagagagcactccctattttgtaaacatatctgc tttaatggggatgtaccagaaacccacctcaccccggctcacatctaaaggggcggggcc gtggtctggttctgactttgtgtttttgtgccctcctggggaccagaatctcctttcgga atgaatgttcatggaagaggctcctctgagggcaagagacctgttttagtgctgcattcg a ca tgga a a agtcctttta a cctgtgcttgca tcctcctttcctcctcctcctca ca a tc catctcttcttaagttgatagtgactatgtcagtctaatctcttgtttgccaaggttcct aaattaattcacttaaccatgatgcaaatgtttttcattttgtgaagaccctccagactc tgggagaggctggtgtgggcaaggacaagcaggatagtggagtgagaaagggagggtgga gggtgaggccaaatcaggtccagcaaaagtcagtagggacattgcagaagcttgaaaggc caataccagaacacaggctgatgcttctgagaaagtcttttcctagtatttaacagaacc caagtgaacagaggagaaatgagattgccagaaagtgattaactttggccgttgcaatct gctcaaacctaacaccaaactgaaaacataaatactgaccactcctatgttcggacccaa gcaagttagctaaaccaaaccaactcctctgctttgtccctcaggtggaaaagagaggta gtttagaactctctgcataggggtgggaattaatcaaaaacctcagaggctgaaattcct aatacctttcctttatcgtggttatagtcagctcatttccattccactatttcccataat gcttctgagagccactaacttgattgataaagatcctgcctctgctgagtgtacctgaca gtagtctaagatgagagagtttagggactactctgttttagcaagagatattttgggggt ctttttgttttaactattgtcaggagattgggctaaagagaagacgacgagagtaaggaa ataaagggaattgcctctggctagagagtagttaggtgttaatacctggtagagatgtaa gggatatgacctccctttctttatgtgctcactgaggatctgaggggaccctgttaggag agcatagcatcatgatgtattagctgttcatctgctactggttggatggacataactatt gtaactattcagtatttactggtaggcactgtcctctgattaaacttggcctactggcaa tggctacttaggattgatctaagggccaaagtgcagggtgggtgaactttattgtacttt ggatttggttaacctgttttcttcaagcctgaggttttatatacaaactccctgaatact ctttttgccttgtatcttctcagcctcctagccaagtcctatgtaatatggaaaacaaac actgcagacttgagattcagttgccgatcaaggctctggcattcagagaacccttgcaac tcgagaagctgtttttatttcgtttttgttttgatccagtgctctcccatctaacaacta aacaggagccatttcaaggcgggagatattttaaacacccaaaatgttgggtctgatttt caaacttttaaactcactactgatgattctcacgctaggcgaatttgtccaaacacatag tgtgtgtgttttgtatacactgtatgaccccaccccaaatctttgtattgtccacattct ccaacaataaagcacagagtggatttaattaagcacacaaatgctaaggcagaattttga gggtgggagagaagaaaagggaaagaagctgaaaatgtaaaaccacaccagggaggaaaa atgacattcagaaccagcaaacactgaatttctcttgttgttttaactctgccacaagaa tgcaatttcgttaacggagatgacttaagttggcagcagtaatcttcttttaggagcttg taccacagtcttgcacataagtgcagatttggctcaagtaaagagaatttcctcaacact aacttcactgggataatcagcagcgtaactaccctaaaagcatatcactagccaaagagg gaaatatctgttcttcttactgtgcctatattaagactagtacaaatgtggtgtgtcttc caactttcattgaaaatgccatatctataccatattttattcgagtcactgatgatgtaa tgatatattttttcattattatagtagaatatttttatggcaagatatttgtggtcttga tcatacctattaaaataatgccaaacaccaaatatgaattttatgatgtacactttgtgc ttggcattaaaagaaaaaaacacacatcctggaagtctgtaagttgttttttgttactgt aggtcttcaaagttaagagtgtaagtgaaaaatctggaggagaggataatttccactgtg tggaatgtgaatagttaaatgaaaagttatggttatttaatgtaattattacttcaaatc ctttggtcactgtgatttcaagcatgttttctttttctcctttatatgactttctctgag ttgggcaaagaagaagctgacacaccgtatgttgttagagtcttttatctggtcagggga aacaaaatcttgacccagctgaacatgtcttcctgagtcagtgcctgaatctttattttt taaattgaatgttccttaaaggttaacatttctaaagcaatattaagaaagactttaaat gttattttggaagacttacgatgcatgtatacaaacgaatagcagataatgatgactagt tcacacataaagtccttttaaggagaaaatctaaaatgaaaagtggataaacagaacatt tataagtgatcagttaatgcctaagagtgaaagtagttctattgacattcctcaagatat ttaatatcaactgcattatgtattatgtctgcttaaatcatttaaaaacggcaaagaatt atatagactatgaggtaccttgctgtgtaggaggatgaaaggggagttgatagtctcata aaactaatttggcttcaagtttcatgaatctgtaactagaatttaattttcaccccaata atgttctatatagcctttgctaaagagcaactaataaattaaacctattctttctgtgaa aaaaaaaaaa
>ENA | AU154455 | AU154455.1 Homo sapiens cDNA clone:NT2RP4001145, 3' end, expressed in NT2 neuronal precursor cells after 2-weeks retinoic acid (RA) induction.
GTACACAATCATTTGTTTTATTTGAAAACATGTCTACACTGCATTGAGCACCAACACAGG
TGTGACCAAGAAACCCACAGTCCTGTCCCCGCAGGCACTGGGTCCAGTGTATGACTTGGG
GTGGACTGTTATTTTTCACAGTGAGGGGGGAAGAAAGGATAGGAAAGAAAAGATGGCCAT
TATCCCAACTCCTGTTCAGGAATCTGAACAATGAAAGTTATTTAAACTCATCCAGCTCTT
CTCATTCCCCTTCTCTCAATCAGCTGGTGTTCAAATATGGAATCTGAGGCCGAGCGCAGT
GGCACACGCCTGTAATCCCAGCACTTTGGGAGGCCGAGGCGGGCAGATCACGAGGTCAAG
AGATAGAGATCATCCTCGCCGATACGGTGAAACCCCATCTCTACTAAAAATACAAAAATT
GGCCGGGTGTGGTGGTAGGAACCTGTAGTCCCAGCTACTCAGGAGGCTGAGGCAGGAGAA
TTGCTTTTGACATCCTGACACATGTATAATTGCCGGGAGGCAAATTGCAGACTACGTTTA
C ACC AC AC N C N C AA AA ATG G
>ENA I AW5901961 AW590196.1 hg41a02.xl NCI_CGAP_GC6 Homo sapiens cDNA clone IMAGE:2948138 3', m RNA sequence.
TTGTTAT AA A ACTG G C AG ATTTTATTTCTC ATACC AG AG G CTC AC AC AG G ATTTCTTTCT
G C ATG G G G G AC AACTG G CTCTTG GTTTC A AAC AC ACTTG AG CCTCTAG C ACC ATT A AG C A
TCCAGCAGCTTCCTCGGCATCCAGGCTGAGATATCCATATTCCAGAACAAAGCAGCCAAT
GTGAAGGATGTGCATCACTGGGAAGAGAGAAGGCTGCCCCCTTAGCCCTGGCTCCTCATC
ATCTGAGGGAAGTGGAGGGGGCAGGTGGGAGCAAGCTTATAGTCACCAAGTCATGGCTGG
AGAAGGATTTGGGTAAAGCAACTCTAGAGGCTGCCTGGTGGCCTACTTGGGAGAAACAAA
GTGCCTTTGAGACTATCGACTTCCTGCTTGTGATCTAAAATGGATGTCTTTGAAATGATT
AATCTGGACCAGCTAAAGGCAGTTGTTCACCACGTGTTATCCAAGTTTAGATTTCCTAGT TGATTATTCACACCAGATCAGGCTTTAAAAGATAGACCAAACTAGACAGAATGTGTACAT
TTCAGCAGATCAGCAATTGCAAAATGCTGGTGCTATNTACTGACGTAGCACTGGATCCA
>ENA | BG4940071 BG494007.1 602542289F1 NI H_MGC_59 Homo sapiens cDNA clone I MAGE:4673182 5', m RNA sequence.
GTGATGATCGACATTTGAATCTCTTTGCCCTTTCCAACGGCTATGGCATCAGGTTCTAAA
ATAAGCTCGTAATTTTTCCTGTTATTTTAATAATATGGAAATATTAGCATAGTGTTTCTT
TTGATAGTGATAGACTATAATCCATATTTAAATTTTATAGAGAAGAAATTTTATTGTACT
GTGATGTAGATATTTATTATCCAGGTAAGGATTTGCCCGGTGTGTATTTTTTACAATTGA
GACATTTTACTTTAATCTTTAACAAAAAATGCATTAAAAACACACTCAAAAAAAAACAAA
AAAAAAAAAAAAAGACAACCCAAACGGGGGGGGAAAAAAGAGGTGATTGGCACCCTTTAT
C ACG A AA ATCTTCCTG CG G G CG G CCCTCT AATA ACC AGTCTTCTG G A AC A ACTGTG CCC A
AACCGAGGTGTCGCTCTTTAAAATAGGCGTGGTCTCCCACCATATCTAACACTCAAATGG
CGCCGCCTCTTCTCAAAAGAACCCACAAATATGTGTGCCGACCAAGAGTTAAAAAACCCG
CCTTGCGTTGGACGGGGCGGACATTATCTTGGATTGGCACCAACACTATTAAAAGAGGCG
ATGCGACACCCAACCCCGATTAATTGGCAGCAGACAGAAATCCTTTCTCAACTAGTATAG
AAAACTGTTGTGGCCCTCCACCACACAAAAGGACGAATCCTACCCAACTAATGTATTAGC
TCCTCTCCAGTGTGAACAATATACTAATCTGGATGCGCCCACACCCAAGCTGGTTAGCTA
ACACAAACACCAGGGAGGGAAGACACACGCATTTTGTAACACAAATAGATCTAATATTAG
ACTCGTGCCGTATAACATCGGACACTAATCTCTAGCACCAGCGGGCGTCGACTGTAATTA
TGTCCCGCCACTGCTGCTGTTCGTCGGCATGTTATCATGCCCCACGCTCTCTGTGATCCT
ACACGAGAGGGATCACCCCACGCTTAT
>ENA | AI540210 | AI540210.1 te55e07.xl Soares_N FL_T_GBC_Sl Homo sapiens cDNA clone
I MAGE:2090628 3' similar to TR:Q63571 Q63571 RAT GROWTH AND TRANSFORMATION-DEPENDENT, m RNA sequence.
ATGTATAAATCCATTTATATAAAGTTCAAAAACAGGCAAAATGAATCAAAGGTGATGAAA CTCAGAAAAACTGCTATGTTTGGGAGGTAATGGCTGAGAAAAGGCAGGAATGAGGCTGTG AAGTGTTG CC AATATTCT AC ATCTTC ACTTTG G C AGTG GTT AC AC AG GTGTTC ACG AC AT AAATATCTATCAGACTGTATACAGTTTTGTCCACTTTTTGAATGCATGGTATACTTCAGT AAAAGTTTACTAAAAAATAAAAATAAAAAAGACATTGTGCTTCTTGTTACCAAAATAAAA CCATGGCAGATATTTTGGTAAATATTCTATTTTTCCCATCTTCTACTGTTGCTGATGACA G G G ATG GT ATTC AG GTG A AC ACTCTGTC ACTTAG A AT ATC ATTTAG CTTTAG CCTGTG C A G CC AATG C AG CTTCTTC ACG CC ACTTAG CTTTTCTTG CC AAGTTCC A ACTTTGTAAG G AT TC ATGTCGTTCTAC AG CCCTTTTG G CTG AC ACT ATC AC AG CAN AG C AG G CG ATA ATTGTG AGTCC A ATC ATTATCGTAC AAG CT NTC ACTCG AG CT NTGTTTCTTG CG GTGTCTATC ATT TCTGGCGGGATCCGAAGCGGGATCTACTNCATCGATTTGAAACGCCTGTCCACAGCAGGA TTTTCTTGTCGAAATGCGA
>ENA | BF589515 | BF589515.1 naa05c06.xl NCI_CGAP_Pr28 Homo sapiens cDNA clone I MAGE:3254002 3', m NA sequence.
A AATATTCC ATGTG C AG AA ATTTATTTTA A ATTTTATTG CATC AC ATT ATAC AAG C ATTA
ATCATGGCTTCATATTGATGACTATTTAAATGTGAAAATTCACTCATGTCAGTACTTTTT
G G CTATTTAC AAGTA AG G A ATTTCTATGTACTTTATATATCTCTGTATTTGTATGTAC AT
ATGCAGGAATACATGACTATACATATGTACACACAGAAATACATCTATGGCCATACACAT
AGCTATAGATATGTCATATATAATAATCTTCTCAGAAAGGTCTAAAATTAAAAAAAAGGA
AAGAAAAAGTTGTAAACAGGGTCTTGTCTGTGTTGTTGGTGACATGGAATTAGGACCATA
TGATGACATTCTAGGAATGTGTGTCCATGTGTCTGAATACCCTTTTTAGCCCAGTGTCTG
TAAAATTCACATGGGATAGAATGCAAAAAAGGTAGCAAACAGGCTGAAAAACAGGCCCAG
TATACAAGTTCCCCTTGATTTTAAAAACTTGAGAATGTAACTGCCCATAATGTGCATGCT
TGCTTGGTCAAG AATG GTCT ATG G AT AG AT
>gi 1114443201 gb | BF432206.11 BF432206 nab81ell.xl Soares_NSF_F8_9W_OT_PA_P_Sl Homo sapiens cDNA clone IMAGE:3274101 3', m RNA sequence
TTTTCTTTTTCTAGTTTAAAATACAATTTAATAAGAAAATCCGGGATACATTTTATATGATTCCATTTAT
TAAAGAAAAAGAAACTTCTTTCCAATATATTCTACCCAATTATTAAATTCATTTTAGATTTTTGGGAAGA
GCAAATCCAACTTAAAAAAAAAACTTGCTAGGCAGTTGAAATCCTCTGGTTCCAAAGTTTTAAAAAATGA GGCAAGATTGTATAGTGAGAGTAGAAAAAATAAGATGAAGTGGAATCACCCATGACAATTTGTCATATTT
GTCATTACGAATTTCAACATCTGCAACTGAAAAGCTACAGAAATCAAAAAATAAAACACAAAGAAGATTC
TCAAGGACCAAAGACTGTTTGATGATGTTGCTCTAAGATTTCGTCCTCCATTTATTTCACACAAAAATAA
GTTAAGTATAAATAAGAAGATGAGGAGAGCTGGTATGTACTCAGATGTGTTCACTGGTGCATAGTCAGAG
GGGGTGTGAGAACAGCCAAATGTATTTCTTCGCCCACACTCACTACACAAAACTCTCCTCCATGTTG
>gi 12838066651 ref | N M_153448.3 | Homo sapiens ESX homeobox 1 (ESX1), m NA
CCCGGGATCGCCGCGGAACCACGCACAGAGTCTGCAGAAGTGCACAGCTTTATCGACAGCGCTTGAAGCA
TGGAGTCTCTTCGCGGGTACACCCACAGTGATATTGGCTACCGCAGCCTGGCAGTCGGCGAGGACATCGA
GGAAGTGAATGATGAGAAACTTACCGTGACCTCGCTGATGGCAAGGGGAGGAGAGGACGAGGAGAATACA
CGGTCCAAACCTGAGTACGGAACAGAAGCGGAAAACAACGTTGGCACGGAAGGGTCCGTCCCCTCGGACG
ACCAAGACCGTGAGGGTGGCGGCGGCCACGAGCCGGAGCAACAGCAGGAGGAGCCGCCCCTGACCAAGCC
GGAGCAACAGCAGGAGGAGCCGCCCCTGCTCGAGCTGAAGCAAGAGCAGGAGGAGCCGCCCCAGACGACC
GTGGAGGGGCCACAGCCGGCGGAGGGGCCACAAACCGCTGAGGGACCACAGCCCCCAGAGAGGAAACGCC
GCCGCCGCACCGCGTTCACGCAGTTTCAGCTGCAGGAGCTAGAGAACTTTTTCGATGAATCTCAATATCC
CGACGTTGTGGCGCGAGAGAGACTTGCAGCACGCCTGAATTTGACTGAAGACAGAGTGCAGGTTTGGTTT
CAGAACAGAAGAGCCAAGTGGAAACGAAATCAGAGGGTGCTAATGTTGAGAAACACTGCTACTGCTGACC
TGGCCCACCCTTTGGACATGTTCTTGGGTGGGGCCTATTATGCTGCTCCTGCTCTGGATCCTGCTTTGTG
TGTTCATCTGGTGCCACAACTACCTAGACCACCTGTGCTGCCTGTGCCACCTATGCCACCCAGGCCACCC
ATGGTCCCTATGCCACCCAGGCCACCCATAGCACCTATGCCACCCATGGCGCCTGTGCCACCCGGCTCAC
GCATGGCGCCTGTGCCACCCGGGCCACGCATGGCGCCTGTGCCACCCTGGCCGCCCATGGCGCCTGTGCC
ACCCTGGCCGCCCATGGCGCCTGTGCCAACCGGGCCGCCCATGGCGCCTGTGCCACCCGGGCCGCCCATG
GCGCGTGTGCCACCCGGGCCGCCCATGGCGCGTGTGCCACCCGGGCCGCCCATGGCGCCTCTGCCACCCG
GGCCGCCCATGGCGCCTCTGCCACCCGGGCCGCCCATGGCGCCTCTGCCACCCGGGCCGCCCATGGCGCC
TCTG CC ACCC AG GTC AC ATGTG CCTC AC ACTG G CCTG G CTCCTGTAC AC ATC AC ATG G G CCCCTGTC ATC
AACAGTTATTATGCATGTCCCTTTTTCTAAAGTAAGGTATTCATAACAGTTTTTCCAAAGTTCTTTCCTG CCAGATAGAAATTGTGCACAGCACAGCATCAAGTAATTCGTTAGATGCTTGTTAAATGAAGTGGGTAGGT GAACAAAGTTAACGAATGCCCTGTTATTTTTGTAGGCCACATAATTGTAGTATTTTCAATAAAGATGTGA CTTAATAGTAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Claims

We claim:
1. A method of assessing medical condition comprising identifying differential expression of gene-based markers (relative to the expression of the same genes in a normal population) in CECs.
2. The method of claim 1 wherein the markers are not differentially expressed in PBMCs.
3. The method of claim 1 wherein there is at least a 2 fold difference in the expression of the modulated genes.
4. The method of claim 1 wherein the p-value indicating differential modulation is less than .05.
5. The method of claim 1 wherein the markers are selected from Table 2.
6. A method of identifying the tissue of origin of a CEC comprising identifying differential expression of tissue specific gene -based markers (relative to the expression of the same genes in a normal population) in CECs.
7. The method of claim 6 wherein the markers are not differentially expressed in PBMCs.
8. The method of claim 1 wherein there is at least a 2 fold difference in the expression of the modulated genes.
9. The method of claim 1 wherein the p-value indicating differential modulation is less than .05.
10. The method of claim 1 wherein the markers are selected from Table 3.
11. The method of claim 4 wherein there is at least a 2 fold difference in the expression of the modulated genes.
12. The method of claim 4 wherein the p-value indicating differential modulation is less than .05.
13. A diagnostic kit comprising reagents for isolating CECs and reagents for detecting the expression of the markers of Table 2.
14. The diagnostic kit of claim 13 wherein the reagents for detecting markers are those of Table 3.
15. The kit of claim 13 further comprising reagents for conducting a microarray analysis.
16. The kit of claim 13 further comprising reagents for amplifying the markers.
17. The kit of claim 13 further comprising a component containing executable instructions that correlate expression detection with a pattern.
18. The kit of claim 13 wherein said reagents for isolating CECs include immunomagnetic reagents.
19. A method for assessing medical condition comprising isolating CECs, amplifying gene expression markers from said CECs, detecting the expression of said markers, and correlating the expression of said markers with a diagnosis or prognosis; wherein isolation and amplification is conducted using the kit of claim 13.
20. A method for assessing medical condition comprising isolating CECs, amplifying gene expression markers from said CECs, detecting the expression of said markers, and correlating the expression of said markers with a diagnosis or prognosis; wherein isolation and amplification is conducted using the kit of claim 14.
PCT/US2012/045709 2011-07-07 2012-07-06 Genomic diagnostics using circulating endothelial cells WO2013006774A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201161505364P 2011-07-07 2011-07-07
US61/505,364 2011-07-07

Publications (1)

Publication Number Publication Date
WO2013006774A1 true WO2013006774A1 (en) 2013-01-10

Family

ID=46516870

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2012/045709 WO2013006774A1 (en) 2011-07-07 2012-07-06 Genomic diagnostics using circulating endothelial cells

Country Status (2)

Country Link
TW (1) TW201311907A (en)
WO (1) WO2013006774A1 (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795698A (en) 1985-10-04 1989-01-03 Immunicon Corporation Magnetic-polymer particles
US5597531A (en) 1985-10-04 1997-01-28 Immunivest Corporation Resuspendable coated magnetic particles and stable magnetic particle suspensions
US5698271A (en) 1989-08-22 1997-12-16 Immunivest Corporation Methods for the manufacture of magnetically responsive particles
US5876593A (en) 1990-09-26 1999-03-02 Immunivest Corporation Magnetic immobilization and manipulation of biological entities
US5985153A (en) 1996-06-07 1999-11-16 Immunivest Corporation Magnetic separation apparatus and methods employing an internal magnetic capture gradient and an external transport force
US6004755A (en) 1998-04-07 1999-12-21 Incyte Pharmaceuticals, Inc. Quantitative microarray hybridizaton assays
US6136182A (en) 1996-06-07 2000-10-24 Immunivest Corporation Magnetic devices and sample chambers for examination and manipulation of cells
US6218114B1 (en) 1998-03-27 2001-04-17 Academia Sinica Methods for detecting differentially expressed genes
US6218122B1 (en) 1998-06-19 2001-04-17 Rosetta Inpharmatics, Inc. Methods of monitoring disease states and therapies using gene expression profiles
US6271002B1 (en) 1999-10-04 2001-08-07 Rosetta Inpharmatics, Inc. RNA amplification method
US6365362B1 (en) 1998-02-12 2002-04-02 Immunivest Corporation Methods and reagents for the rapid and efficient isolation of circulating cancer cells
WO2009038754A2 (en) * 2007-09-19 2009-03-26 The Research Foundation Of State University Of New York Gene expression signatures in enriched tumor cell samples

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4795698A (en) 1985-10-04 1989-01-03 Immunicon Corporation Magnetic-polymer particles
US5597531A (en) 1985-10-04 1997-01-28 Immunivest Corporation Resuspendable coated magnetic particles and stable magnetic particle suspensions
US5698271A (en) 1989-08-22 1997-12-16 Immunivest Corporation Methods for the manufacture of magnetically responsive particles
US5876593A (en) 1990-09-26 1999-03-02 Immunivest Corporation Magnetic immobilization and manipulation of biological entities
US6136182A (en) 1996-06-07 2000-10-24 Immunivest Corporation Magnetic devices and sample chambers for examination and manipulation of cells
US5985153A (en) 1996-06-07 1999-11-16 Immunivest Corporation Magnetic separation apparatus and methods employing an internal magnetic capture gradient and an external transport force
US6365362B1 (en) 1998-02-12 2002-04-02 Immunivest Corporation Methods and reagents for the rapid and efficient isolation of circulating cancer cells
US6645731B2 (en) 1998-02-12 2003-11-11 Immunivest Corporation Methods and reagents for the rapid and efficient isolation of circulating cancer cells
US6218114B1 (en) 1998-03-27 2001-04-17 Academia Sinica Methods for detecting differentially expressed genes
US6004755A (en) 1998-04-07 1999-12-21 Incyte Pharmaceuticals, Inc. Quantitative microarray hybridizaton assays
US6218122B1 (en) 1998-06-19 2001-04-17 Rosetta Inpharmatics, Inc. Methods of monitoring disease states and therapies using gene expression profiles
US6271002B1 (en) 1999-10-04 2001-08-07 Rosetta Inpharmatics, Inc. RNA amplification method
WO2009038754A2 (en) * 2007-09-19 2009-03-26 The Research Foundation Of State University Of New York Gene expression signatures in enriched tumor cell samples

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BERTOLINI FRANCESCO ET AL: "The multifaceted circulating endothelial cell in cancer: towards marker and target identification", NATURE REVIEWS. CANCER, NATUR PUBLISHING GROUP, LONDON, GB, vol. 6, no. 11, 1 November 2006 (2006-11-01), pages 835 - 845, XP002582394, ISSN: 1474-175X, [retrieved on 20061005], DOI: 10.1038/NRC1971 *
RIGOLIN GIAN MATTEO ET AL: "Circulating Endothelial Cells in Patients With Chronic Lymphocytic Leukemia Clinical-Prognostic and Biologic Significance", CANCER, vol. 116, no. 8, April 2010 (2010-04-01), pages 1926 - 1937, XP002684709, ISSN: 0008-543X *
SMIRNOV D A ET AL: "Global Gene Expression Profiling of Circulating Endothelial Cells in Patients with Metastatic Carcinomas", CANCER RESEARCH, AMERICAN ASSOCIATION FOR CANCER RESEARCH, US, vol. 66, no. 6, 15 March 2006 (2006-03-15), pages 2918 - 2922, XP003009584, ISSN: 0008-5472, DOI: 10.1158/0008-5472.CAN-05-4003 *

Also Published As

Publication number Publication date
TW201311907A (en) 2013-03-16

Similar Documents

Publication Publication Date Title
EP2201134B1 (en) Gene expression signatures in enriched tumor cell samples
Gur et al. LGR5 expressing skin fibroblasts define a major cellular hub perturbed in scleroderma
US10344334B2 (en) Method of diagnosing neoplasms
WO2014075822A1 (en) New diagnostic mirna markers for parkinson disease
US20150147271A1 (en) Targets for diagnosis, prognosis and therapy of acute myeloid leukemia and myelodysplastic syndromes
JP5934726B2 (en) Method for analyzing the presence of disease markers in a blood sample of a subject
AU2014305994A1 (en) Urine biomarker cohorts, gene expression signatures, and methods of use thereof
EP3135774B1 (en) Complex sets of mirnas as non-invasive biomarkers for kidney cancer
US10718018B2 (en) Complex sets of miRNAs as non-invasive biomarkers for dilated cardiomyopathy
US9631241B2 (en) Complex sets of miRNAs as non-invasive biomarkers for colon cancer
WO2016001030A1 (en) Diagnosis of neuromyelitis optica vs. multiple sclerosis using mirna biomarkers
CN101490280A (en) Procedure and methods for detecting alzheimer&#39;s disease
JP2004507206A (en) Tissue-specific genes important for diagnosis
Koringa et al. Transcriptome analysis and SNP identification in SCC of horn in (Bos indicus) Indian cattle
JP2011211955A (en) Composition and method for prognostic prediction of hepatic cancer patient
KR101767644B1 (en) Composition and method for prediction of pigs litter size using gene expression profile
US20150045243A1 (en) Mirnas as non-invasive biomarkers for diagnosis
Hohos et al. DNA cytosine hydroxymethylation levels are distinct among non-overlapping classes of peripheral blood leukocytes
WO2009051672A2 (en) Natural killer immunoglobulin-like receptor (kir) assay
JP5243021B2 (en) Genetic markers for detecting cells such as mesenchymal stem cells
JP2017143810A (en) Biomarkers of mycobacteriosis or acid-fast bacterial infection
US8530155B2 (en) Methods for diagnosis of common acute lymphoblastic leukemia by determining the level of gene expression
JP6113159B2 (en) Epigenetic markers for identifying natural killer cells
WO2013006774A1 (en) Genomic diagnostics using circulating endothelial cells
US20140221506A1 (en) Methods of Diagnosing Neuropathic Pain

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736025

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736025

Country of ref document: EP

Kind code of ref document: A1