WO2012140703A1 - Image-removing device and video display device - Google Patents

Image-removing device and video display device Download PDF

Info

Publication number
WO2012140703A1
WO2012140703A1 PCT/JP2011/004205 JP2011004205W WO2012140703A1 WO 2012140703 A1 WO2012140703 A1 WO 2012140703A1 JP 2011004205 W JP2011004205 W JP 2011004205W WO 2012140703 A1 WO2012140703 A1 WO 2012140703A1
Authority
WO
WIPO (PCT)
Prior art keywords
coefficient
signal
image
correction
search
Prior art date
Application number
PCT/JP2011/004205
Other languages
French (fr)
Japanese (ja)
Inventor
毛利 浩喜
中平 博幸
孝一 永野
宏行 手塚
角野 英之
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012140703A1 publication Critical patent/WO2012140703A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • H04L27/144Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements
    • H04L27/148Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements using filters, including PLL-type filters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03DDEMODULATION OR TRANSFERENCE OF MODULATION FROM ONE CARRIER TO ANOTHER
    • H03D3/00Demodulation of angle-, frequency- or phase- modulated oscillations
    • H03D3/007Demodulation of angle-, frequency- or phase- modulated oscillations by converting the oscillations into two quadrature related signals
    • H03D3/009Compensating quadrature phase or amplitude imbalances
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/10Frequency-modulated carrier systems, i.e. using frequency-shift keying
    • H04L27/14Demodulator circuits; Receiver circuits
    • H04L27/144Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements
    • H04L27/152Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements using controlled oscillators, e.g. PLL arrangements
    • H04L27/1525Demodulator circuits; Receiver circuits with demodulation using spectral properties of the received signal, e.g. by using frequency selective- or frequency sensitive elements using controlled oscillators, e.g. PLL arrangements using quadrature demodulation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/362Modulation using more than one carrier, e.g. with quadrature carriers, separately amplitude modulated
    • H04L27/364Arrangements for overcoming imperfections in the modulator, e.g. quadrature error or unbalanced I and Q levels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/0014Carrier regulation
    • H04L2027/0044Control loops for carrier regulation
    • H04L2027/0063Elements of loops
    • H04L2027/0069Loop filters

Definitions

  • This disclosure relates to a technique for suppressing the influence of an image signal in a signal obtained by mixing a high-frequency signal and a local oscillation signal.
  • a receiver that performs quadrature detection by multiplying a received high-frequency signal by a local oscillation signal that is a complex signal by a mixer, and processes the obtained complex signal after quadrature detection is well known.
  • the in-phase signal and quadrature signal of the complex signal after quadrature detection are ideally equal in amplitude and orthogonal.
  • IQ imbalance also called IQ imbalance
  • Patent Document 1 describes a frequency converter that adjusts the levels of an in-phase signal and a quadrature signal output from a mixer.
  • An object of the present invention is to improve the correction accuracy of orthogonality error and amplitude error.
  • An image removal apparatus corrects an orthogonality error and an amplitude error of an input complex signal, outputs a corrected complex signal, and an image frequency component for a desired signal in the corrected complex signal And a complex filter for outputting the obtained signal.
  • the correction unit performs the correction using a coefficient, updates the coefficient used for the correction by an adaptive algorithm and obtains a converged coefficient, and among the frequency components of the corrected complex signal, A bandpass filter that passes a component in the frequency band of the desired signal, a power measurement unit that obtains power of the component that has passed through the bandpass filter, and a coefficient used for the correction is a complex including the coefficient after convergence.
  • a coefficient search unit that performs a first search process for obtaining a new coefficient for reducing the power by changing within a first region on the plane.
  • the adaptive processing unit performs the correction using the new coefficient.
  • the video display device includes the image removal device and a display that displays video based on a signal output from the complex filter.
  • the orthogonality error and the amplitude error can be corrected with higher accuracy, the influence of the image signal on the desired signal can be sufficiently suppressed.
  • FIG. 1 is a block diagram illustrating a configuration example of a video display device according to an embodiment of the present invention.
  • FIG. 2A is a diagram illustrating an example of vectors corresponding to signal points of a desired signal and an image signal on the complex plane when there is no IQ imbalance.
  • FIG. 2B is a diagram illustrating an example of vectors corresponding to signal points of the desired signal and the image signal on the complex plane when there is IQ imbalance.
  • FIG. 3A is a spectrum diagram corresponding to FIG.
  • FIG. 3B is a spectrum diagram corresponding to FIG.
  • FIG. 4 is a block diagram illustrating a configuration example of the correction unit in FIG. FIG.
  • FIG. 5 is a diagram illustrating an example of values that can be taken by the coefficient W in the region in which the coefficient W changes during the first search process.
  • FIG. 6 is a diagram illustrating an example of a search order in the first search process.
  • FIG. 7 is a diagram illustrating an example of search ranges and order in the second search process.
  • FIG. 8 is a diagram illustrating an example of the relationship between the coefficient W and the SN ratio.
  • FIG. 9 is an example of a state transition diagram for the coefficient search unit of FIG.
  • FIG. 10 is a diagram illustrating another example of the search order in the first search process.
  • FIG. 11 is a diagram illustrating another example of the search order in the second search process.
  • FIG. 12 is a diagram illustrating still another example of the search order in the first search process.
  • FIG. 1 is a block diagram showing a configuration example of a video display apparatus according to an embodiment of the present invention.
  • the video display device 100 in FIG. 1 includes a receiver 110, a display 72, and a speaker 74.
  • the receiver 110 includes an amplifier (LNA) 14, mixers 15, 16, 61 and 62, oscillators 17 and 63, phase shifters 18 and 64, an IF (intermediate frequency) unit 20, and a decimation filter. 65 and 66 and a DSP (digital signal processor) 68.
  • the IF unit 20 includes an analog complex filter 22, analog-to-digital converters (ADCs) 23 and 24, a digital inverse characteristic filter 26, a correction unit 30, and a digital complex filter 52.
  • the correction unit 30 and the digital complex filter 52 operate as an image removal device.
  • the video display device 100 of FIG. 1 has a control unit, and the control unit controls the components of the device of FIG.
  • the LNA 14 amplifies and outputs an RF (radio frequency) signal received by the antenna 12.
  • the oscillator 17 generates and outputs a signal LR having a frequency LO necessary for converting the RF signal into an IF signal.
  • the phase shifter 18 delays the phase of the signal LR generated by the oscillator 17 by 90 ° and outputs the delayed signal.
  • the mixer 15 multiplies the signal amplified by the LNA 14 by the signal LR and outputs the signal AI.
  • the mixer 16 multiplies the signal amplified by the LNA 14 by the signal output from the phase shifter 18 and outputs the result as a signal AQ.
  • the analog complex filter 22 converts the desired signal included in the complex signal AC (consisting of the signals AI and AQ) into a complex signal AC so that the signal level near the image frequency becomes small (for example, 30 dB lower). Processing is performed on the signal and output as a complex signal FC (consisting of signals FI and FQ). This is to make the complex signal AC fall within the dynamic range of the ADCs 23 and 24.
  • ADCs 23 and 24 convert the signals FI and FQ into digital signals, respectively, and output them.
  • the digital inverse characteristic filter 26 has an inverse characteristic of the analog complex filter 22.
  • the digital inverse characteristic filter 26 performs processing to cancel the influence of the analog complex filter 22 on the output signals of the ADCs 23 and 24, and outputs the result as a complex signal RC (consisting of signals RI and RQ). .
  • the correction unit 30 corrects the orthogonality error and the amplitude error of the input complex signal RC to the correction unit 30 and outputs the corrected complex signal CC (consisting of signals CI and CQ) to the digital complex filter 52.
  • the digital complex filter 52 attenuates an image frequency component with respect to a desired signal in the complex signal CC, and outputs a complex signal DC (composed of signals DI and DQ) in which the image frequency component is attenuated.
  • the oscillator 63 generates and outputs a signal LS having a frequency necessary for converting the IF signal into a baseband signal.
  • the phase shifter 64 delays the phase of the signal LS generated by the oscillator 63 by 90 ° and outputs the delayed signal.
  • the mixer 61 multiplies the signal DI by the signal LS and outputs it.
  • the mixer 62 multiplies the signal DQ by the signal output from the phase shifter 64 and outputs the result.
  • the decimation filter 65 outputs the output signal of the mixer 61 after thinning the sample value.
  • the decimation filter 66 outputs the output signal of the mixer 62 after thinning the sample value.
  • the DSP 68 performs predetermined signal processing on the output signals of the decimation filters 65 and 66 and outputs the obtained video signal and audio signal.
  • the display 72 displays video based on the video signal output from the DSP 68.
  • the speaker 74 outputs sound based on the sound signal output from the DSP 68.
  • an FM (frequency modulation) radio broadcast signal receives, for example, an FM (frequency modulation) radio broadcast signal, but may receive other radio broadcast signals, television broadcast signals, and signals such as mobile phones.
  • FM frequency modulation
  • FIG. 2A is a diagram illustrating an example of vectors corresponding to signal points of a desired signal and an image signal on the complex plane when there is no IQ imbalance.
  • FIG. 2B is a diagram illustrating an example of vectors corresponding to signal points of the desired signal and the image signal on the complex plane when there is IQ imbalance.
  • 2A and 2B show the complex signal AC after quadrature detection.
  • the desired signal D and the image signal U do not interfere as shown in FIG.
  • an image leak having the same phase as the desired signal D occurs as shown in FIG. 2B, and this interferes with the desired signal D.
  • FIG. 3 (a) is a spectrum diagram corresponding to FIG. 2 (a).
  • FIG. 3B is a spectrum diagram corresponding to FIG.
  • the desired signal D and the image signal U are separated by the frequency 2f_IF and do not interfere with each other.
  • an image leak due to the image signal is superimposed on the desired signal D as shown in FIG.
  • the power of the frequency component near the desired signal D is greater in the case of FIG. 3B than in the case of FIG. That is, when there is no IQ imbalance, the power of the frequency component near the desired signal D is minimized.
  • FIG. 4 is a block diagram illustrating a configuration example of the correction unit 30 in FIG.
  • the correction unit 30 includes an adaptive processing unit 32, a bandpass filter (BPF) 42, a power measurement unit 44, and a coefficient search unit 46.
  • the adaptive processing unit 32 includes a multiplier 34, a subtracter 36, and a coefficient update unit 38.
  • the thick line in FIG. 4 represents a complex signal.
  • a complex signal RC in-phase signal RI and quadrature signal RQ
  • the multiplier 34 receives the complex signal RCC.
  • the complex signal RCC includes an in-phase signal RI and a signal obtained by inverting the sign of the quadrature signal RQ, and is in a complex conjugate relationship with the complex signal RC.
  • the adaptive processing unit 32 corrects the orthogonality error and the amplitude error of the complex signal RC using the coefficient W to reduce the IQ imbalance.
  • u, w, Y, and Y * correspond to the complex signal CC, the coefficient W, and the complex signals RC and RCC, respectively.
  • is a predetermined step size.
  • the multiplier 34 multiplies the complex signal RCC by the coefficient W and outputs the result.
  • the subtracter 36 subtracts the output signal of the multiplier 34 from the complex signal RC, and outputs the subtraction result as a corrected complex signal CC (Equation (1)).
  • the coefficient updating unit 38 obtains a new coefficient W (k + 1) based on the complex signal CC and the previous coefficient W (k), and outputs the new coefficient W (k + 1) to the multiplier 34 and the coefficient searching unit 46 (Equation (2)).
  • the multiplier 34, the subtractor 36, and the coefficient updating unit 38 repeat the above operation until the coefficient W converges to obtain the converged coefficient W0.
  • the band-pass filter 42 passes the components in the frequency band of the desired signal among the frequency components of the complex signal CC and attenuates other frequency components.
  • the power measuring unit 44 obtains the power of the component that has passed through the bandpass filter 42 and outputs it to the coefficient searching unit 46.
  • the power required by the power measurement unit 44 is an average power obtained by averaging instantaneous power or instantaneous power of two or more samples.
  • the power measurement unit 44 will be described as obtaining average power.
  • the coefficient search unit 46 After the coefficient W converges to the coefficient W0 by the adaptive algorithm, the coefficient search unit 46 performs a first search process. In the first search process, the coefficient W is changed in a region on the complex plane including the converged coefficient W0 obtained by the coefficient updating unit 38, and a new power obtained by the power measuring unit 44 becomes smaller. This is a process for obtaining the coefficient W1. For example, the coefficient search unit 46 obtains the number that minimizes the power in this region as a new coefficient W1.
  • FIG. 5 is a diagram illustrating an example of values that can be taken by the coefficient W in the region in which the coefficient W changes during the first search process.
  • the horizontal axis is the real axis
  • the vertical axis is the imaginary axis.
  • the area in FIG. 5 is an area having a predetermined width and height centered on the coefficient W0, but may be another area including the coefficient W0.
  • the real part of the coefficient W has a value of 0.375, 0.500, 0.625, 0.750, and 0.875
  • the imaginary part of the coefficient W is also 0.375, 0.
  • the value is any of 500, 0.625, 0.750, and 0.875.
  • the region of FIG. 5 can be obtained within this region as the sum of one real number that differs by 0.125 (first step) and one imaginary number that differs by 0.125 (second step). Contains multiple complex numbers that can.
  • the coefficient search unit 46 changes the coefficient W used for correction among these complex numbers during the first search process.
  • FIG. 6 is a diagram illustrating an example of a search order in the first search process.
  • Each square in the region R1 in FIG. 6 is the same as that shown in FIG.
  • the search is performed by changing the real part of the coefficient W by 0.125, and then the imaginary part of the coefficient W is changed by 0.125 to search from the left end to the right end of the next row.
  • all the cells in FIG. 6 are searched.
  • the coefficient search unit 46 holds the coefficient W1 as a result of the first search process. In this way, the coefficient search unit 46 changes the real part of the coefficient W in units of 0.125 and changes the imaginary part of the coefficient W in units of 0.125 within the region of FIG.
  • the unit may be other values.
  • FIG. 7 is a diagram illustrating an example of search ranges and order in the second search process.
  • the coefficient search unit 46 performs a second search process.
  • the coefficient W is changed in the region R2 on the complex plane including the coefficient W1 obtained in the first search process, and a new coefficient W2 in which the power obtained by the power measurement unit 44 becomes smaller. Is a process for obtaining.
  • the region R2 for the second search process in FIG. 7 is narrower than the region R1 for the first search process in FIG.
  • the region R2 in FIG. 7 is a sum of one real number that differs by a third step (eg, 0.03) smaller than the first step and one imaginary number that differs by a fourth step (eg, 0.03) smaller than the second step. Includes a plurality of complex numbers that can be obtained in this region.
  • the coefficient search unit 46 changes the coefficient W used for correction among these complex numbers.
  • the coefficient search unit 46 searches from the left end of the uppermost row to the right end in the region R2 in FIG. 7, and then searches from the left end to the right end of the lower row. At this time, the coefficient search unit 46 sets the coefficient W to the value of each cell. Similarly, all the cells in the area for the second search process are searched. If the coefficient search unit 46 finds that the power obtained by the power measurement unit 44 is minimized when the coefficient W is W2, the coefficient search unit 46 holds the coefficient W2 as a result of the second search process.
  • FIG. 8 is a diagram showing an example of the relationship between the coefficient W and the SN (signal-to-noise) ratio.
  • FIG. 8 shows a result obtained by simulation, and shows an example in the case where the optimum value of the coefficient W is in a region different from FIG.
  • the S / N ratio is minimized in the vicinity of the point indicating the coefficient W2, and the S / N ratio increases as it approaches the periphery of FIG.
  • the S / N ratio is the ratio of the desired signal to the noise in the input signal of the power measurement unit 44. Assuming that the noise is constant, the S / N ratio is shown with a diagram showing the power obtained by the signal power measurement unit 44. Since the figure is the same, the S / N ratio is shown here.
  • the point indicating the coefficient W2 obtained by further performing the first and second search processing is more suitable for the SN ratio and the power of the input signal of the power measuring unit 44 than the point indicating the coefficient W0 obtained only by the adaptive algorithm. It can be seen from FIG. 8 that is smaller and is a more appropriate value.
  • the coefficient search unit 46 performs the first and second search processes, a more appropriate coefficient W2 can be obtained as the coefficient W.
  • a complex signal CC having a smaller IQ imbalance can be obtained.
  • FIG. 9 is an example of a state transition diagram for the coefficient search unit 46 of FIG.
  • the coefficient search unit 46 has a frequency switching detection state, a rough search state, a fine search state, and a standby state.
  • the coarse search state corresponds to the first search process
  • the fine search state corresponds to the second search process.
  • the coefficient search unit 46 includes an internal counter and a search counter. In addition to the description in FIG. 9, the counter is also reset when the edge of the frequency switching flag is detected, when transitioning to a different state, and when the counter reaches a predetermined value.
  • the frequency switching flag, the image detection flag, the DU ratio detection flag, the search start flag, and the internal generation flag are generated by the control unit.
  • the frequency switching flag is a flag for notifying that the reception frequency has been changed at the time of tuning or the like, and rises at the time of switching.
  • the image detection flag is a flag that notifies the presence / absence of an image frequency signal.
  • the image detection flag becomes a high logic level when the level of the image frequency signal is equal to or higher than a predetermined threshold and the DU ratio (ratio of the desired signal to the image signal) is within a predetermined range.
  • the DU ratio detection flag becomes a high logic level when the DU ratio is equal to or greater than a predetermined threshold.
  • the search start flag controls the start and stop of the search by the coefficient search unit 46.
  • the internal generation flag is a logical product of the image detection flag and the DU ratio detection flag.
  • the coefficient search unit 46 operates as follows.
  • the coefficient search unit 46 performs the first search process again when notified by the frequency switching flag that the reception frequency has been changed.
  • the coefficient search unit 46 repeats the first search process and then repeats the second search process every predetermined time.
  • the coefficient search unit 46 does not perform the first search process when notified by the image detection flag that there is no image frequency signal.
  • the coefficient search unit 46 stops the first search process when notified by the image detection flag that there is no image frequency signal during the first search process. After that, when notified by the image detection flag that the image frequency signal exists, the coefficient search unit 46 resumes the first search process.
  • FIG. 10 is a diagram illustrating another example of the search order in the first search process.
  • the coefficient search unit 46 searches from the left end of the uppermost row to the right end in the region R1, and then searches from the left end to the right end of the lower row. However, at this time, the coefficient search unit 46 first searches every other square (only the shaded portion in FIG. 10). When the search to the lower right of FIG. 10 is completed, the process returns to the beginning, and the remaining cells are searched in the same order.
  • FIG. 11 is a diagram illustrating another example of the search order in the second search process.
  • the coefficient search unit 46 searches from the left end of the uppermost row to the right end in the region R2, and then searches from the left end to the right end of the lower row. However, the coefficient search unit 46 first searches every other square (only the shaded portion in FIG. 11). When the search to the lower right of FIG. 11 is completed, the process returns to the beginning, and the remaining cells are searched in the same order.
  • FIGS. 10 and 11 the case where one cell is searched for every two has been described. However, one cell is searched for every n (n is an integer of 2 or more), and then the entire region R1 or R2 is searched.
  • the search for one square for every n squares that have not yet been searched may be repeated in the entire region R1 or R2.
  • an appropriate coefficient W1 or W2 is obtained quickly, and the response performance of the receiver is improved.
  • FIG. 12 is a diagram showing still another example of the search order in the first search process.
  • the coefficient search unit 46 searches the range of FIG. 12 in a spiral shape from the periphery, for example. In other words, the coefficient search unit 46 sequentially searches for values closest to the boundary of the range of FIG. 12, and then sequentially searches for values inside these values. Similarly, the inner value is searched for. Conversely, the coefficient search unit 46 may search in a spiral shape from the center.
  • the coefficient search unit 46 performs only the first search process. You may do it.
  • the coefficient search unit 46 may be stopped according to the situation. As a result, power consumption can be reduced, and when the coefficient search unit 46 is stopped, an unnecessary circuit does not operate, so that signal degradation (noise and distortion) can be suppressed.
  • each functional block in this specification can be typically realized by hardware.
  • each functional block can be formed on a semiconductor substrate as part of an IC (integrated circuit).
  • the IC includes an LSI (large-scale integrated circuit), an ASIC (application-specific integrated circuit), a gate array, an FPGA (field programmable gate array), and the like.
  • some or all of each functional block can be implemented in software.
  • such a functional block can be realized by a processor and a program executed on the processor.
  • each functional block described in the present specification may be realized by hardware, may be realized by software, or may be realized by any combination of hardware and software.
  • the present invention is useful for an image removal device, a video display device, and the like.
  • Correction Unit 32 Adaptive Processing Unit 34 Multiplier 36 Subtractor 38 Coefficient Update Unit 42 Band Pass Filter 44 Power Measurement Unit 46 Coefficient Search Unit 52 Digital Complex Filter (Complex Filter) 100 video display device

Abstract

The present invention improves the accuracy with which orthogonality error and amplitude error are corrected. This image-removing device has a correction unit for correcting orthogonality error and amplitude error in an input complex signal, and a complex filter for attenuating and outputting a component of an image frequency in relation to a desired signal in the complex signal following correction. The correction unit has: an adaptive processor for performing the correction using a coefficient and using an adaptive algorithm to update the coefficient used in the correction and obtain a post-convergence coefficient; a bandpass filter for transmitting, from among the frequency components of the corrected complex signal, a component that lies within the frequency range of the desired signal; a power-measuring unit for obtaining the power of the component transmitted through the bandpass filter; and a coefficient searching unit for varying the coefficient used in the correction in a range on a complex plane that includes the post-convergence coefficient, and performing a search process for obtaining a new coefficient in which the power is further reduced. The adaptive processor performs the correction using the new coefficient.

Description

イメージ除去装置及び映像表示装置Image removing device and video display device
 本開示は、高周波信号と局部発振信号とを混合して得られる信号において、イメージ信号の影響を抑える技術に関する。 This disclosure relates to a technique for suppressing the influence of an image signal in a signal obtained by mixing a high-frequency signal and a local oscillation signal.
 受信された高周波信号に、複素信号である局部発振信号をミキサによって乗算することによって直交検波を行い、得られた直交検波後の複素信号を処理する受信機がよく知られている。直交検波後の複素信号の同相信号と直交信号とは、理想的には、振幅が等しく、直交する。しかし、実際には同相信号と直交信号との間に直交度及び振幅の誤差(IQインバランスとも呼ばれる)が存在する場合がある。このような誤差が存在する場合には、直交検波後の複素信号において、希望信号がイメージ信号の影響を受け、希望信号の品質が劣化してしまう。これを防ぐために、例えば特許文献1には、ミキサから出力された同相信号及び直交信号のレベルを調整する周波数変換器が記載されている。 A receiver that performs quadrature detection by multiplying a received high-frequency signal by a local oscillation signal that is a complex signal by a mixer, and processes the obtained complex signal after quadrature detection is well known. The in-phase signal and quadrature signal of the complex signal after quadrature detection are ideally equal in amplitude and orthogonal. However, in reality, there may be a quadrature and amplitude error (also called IQ imbalance) between the in-phase signal and the quadrature signal. When such an error exists, the desired signal is affected by the image signal in the complex signal after quadrature detection, and the quality of the desired signal is deteriorated. In order to prevent this, for example, Patent Document 1 describes a frequency converter that adjusts the levels of an in-phase signal and a quadrature signal output from a mixer.
特開2002-246847号公報JP 2002-246847 A
 しかしながら、特許文献1のように、LMS(least mean square)アルゴリズムを用いて同相信号及び直交信号のレベルを調整するのみでは、これらの信号のレベルが最適値になるとは限らない。同相信号及び直交信号のレベルが適切な値ではない場合には、直交度誤差及び振幅誤差が十分に補正されないので、希望信号に対するイメージ信号の影響を十分に抑えることができない。 However, as in Patent Document 1, just adjusting the levels of the in-phase signal and the quadrature signal using an LMS (least mean square) algorithm does not necessarily mean that the levels of these signals become optimum values. If the levels of the in-phase signal and the quadrature signal are not appropriate values, the quadrature error and the amplitude error are not sufficiently corrected, so that the influence of the image signal on the desired signal cannot be sufficiently suppressed.
 本発明は、直交度誤差及び振幅誤差の補正精度を向上させることを目的とする。 An object of the present invention is to improve the correction accuracy of orthogonality error and amplitude error.
 本開示によるイメージ除去装置は、入力複素信号の直交度誤差及び振幅誤差の補正を行い、補正後の複素信号を出力する補正部と、前記補正後の複素信号において、希望信号に対するイメージ周波数の成分を減衰させ、得られた信号を出力する複素フィルタとを有する。前記補正部は、係数を用いて前記補正を行い、前記補正に用いられる係数を適応アルゴリズムによって更新して収束後の係数を求める適応処理部と、前記補正後の複素信号の周波数成分のうち、前記希望信号の周波数帯域内の成分を通過させるバンドパスフィルタと、前記バンドパスフィルタを通過した成分の電力を求める電力測定部と、前記補正に用いられる係数を、前記収束後の係数を含む複素平面上の第1領域内で変化させて、前記電力がより小さくなる新たな係数を求める第1探索処理を行う係数探索部とを有する。前記適応処理部は、前記新たな係数を用いて前記補正を行う。 An image removal apparatus according to the present disclosure corrects an orthogonality error and an amplitude error of an input complex signal, outputs a corrected complex signal, and an image frequency component for a desired signal in the corrected complex signal And a complex filter for outputting the obtained signal. The correction unit performs the correction using a coefficient, updates the coefficient used for the correction by an adaptive algorithm and obtains a converged coefficient, and among the frequency components of the corrected complex signal, A bandpass filter that passes a component in the frequency band of the desired signal, a power measurement unit that obtains power of the component that has passed through the bandpass filter, and a coefficient used for the correction is a complex including the coefficient after convergence. And a coefficient search unit that performs a first search process for obtaining a new coefficient for reducing the power by changing within a first region on the plane. The adaptive processing unit performs the correction using the new coefficient.
 本開示による映像表示装置は、前記イメージ除去装置と、前記複素フィルタから出力された信号に基づいて映像を表示するディスプレイとを有する。 The video display device according to the present disclosure includes the image removal device and a display that displays video based on a signal output from the complex filter.
 本開示によれば、より高精度に直交度誤差及び振幅誤差を補正することができるので、希望信号に対するイメージ信号の影響を十分に抑えることができる。 According to the present disclosure, since the orthogonality error and the amplitude error can be corrected with higher accuracy, the influence of the image signal on the desired signal can be sufficiently suppressed.
図1は、本発明の実施形態に係る映像表示装置の構成例を示すブロック図である。FIG. 1 is a block diagram illustrating a configuration example of a video display device according to an embodiment of the present invention. 図2(a)は、IQインバランスがない場合における希望信号及びイメージ信号の信号点に対応するベクトルの例を複素平面上で示す図である。図2(b)は、IQインバランスがある場合における希望信号及びイメージ信号の信号点に対応するベクトルの例を複素平面上で示す図である。FIG. 2A is a diagram illustrating an example of vectors corresponding to signal points of a desired signal and an image signal on the complex plane when there is no IQ imbalance. FIG. 2B is a diagram illustrating an example of vectors corresponding to signal points of the desired signal and the image signal on the complex plane when there is IQ imbalance. 図3(a)は、図2(a)に対応するスペクトラム図である。図3(b)は、図2(b)に対応するスペクトラム図である。FIG. 3A is a spectrum diagram corresponding to FIG. FIG. 3B is a spectrum diagram corresponding to FIG. 図4は、図1の補正部の構成例を示すブロック図である。FIG. 4 is a block diagram illustrating a configuration example of the correction unit in FIG. 図5は、第1探索処理の際に係数Wが変化する領域内の値であって、係数Wが取り得る値の例を示す図である。FIG. 5 is a diagram illustrating an example of values that can be taken by the coefficient W in the region in which the coefficient W changes during the first search process. 図6は、第1探索処理における探索の順序の例を示す図である。FIG. 6 is a diagram illustrating an example of a search order in the first search process. 図7は、第2探索処理における探索の範囲及び順序の例を示す図である。FIG. 7 is a diagram illustrating an example of search ranges and order in the second search process. 図8は、係数WとSN比との関係の例を示す図である。FIG. 8 is a diagram illustrating an example of the relationship between the coefficient W and the SN ratio. 図9は、図4の係数探索部についての状態遷移図の例である。FIG. 9 is an example of a state transition diagram for the coefficient search unit of FIG. 図10は、第1探索処理における探索の順序の他の例を示す図である。FIG. 10 is a diagram illustrating another example of the search order in the first search process. 図11は、第2探索処理における探索の順序の他の例を示す図である。FIG. 11 is a diagram illustrating another example of the search order in the second search process. 図12は、第1探索処理における探索の順序の更に他の例を示す図である。FIG. 12 is a diagram illustrating still another example of the search order in the first search process.
 以下、本発明の実施の形態について、図面を参照しながら説明する。図面において同じ参照番号で示された構成要素は、同一の又は類似の構成要素である。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. Components shown with the same reference numbers in the drawings are identical or similar components.
 図1は、本発明の実施形態に係る映像表示装置の構成例を示すブロック図である。図1の映像表示装置100は、受信機110と、ディスプレイ72と、スピーカ74とを有する。受信機110は、アンプ(LNA:low noise amplifier)14と、ミキサ15,16,61,62と、発振器17,63と、位相器18,64と、IF(intermediate frequency)部20と、デシメーションフィルタ65,66と、DSP(digital signal processor)68とを有する。IF部20は、アナログ複素フィルタ22と、ADコンバータ(ADC:analog-to-digital converter)23,24と、デジタル逆特性フィルタ26と、補正部30と、デジタル複素フィルタ52とを有する。補正部30と、デジタル複素フィルタ52とは、イメージ除去装置として動作する。特に図示しないが、図1の映像表示装置100は制御部を有し、制御部は図1の装置の構成要素を制御する。 FIG. 1 is a block diagram showing a configuration example of a video display apparatus according to an embodiment of the present invention. The video display device 100 in FIG. 1 includes a receiver 110, a display 72, and a speaker 74. The receiver 110 includes an amplifier (LNA) 14, mixers 15, 16, 61 and 62, oscillators 17 and 63, phase shifters 18 and 64, an IF (intermediate frequency) unit 20, and a decimation filter. 65 and 66 and a DSP (digital signal processor) 68. The IF unit 20 includes an analog complex filter 22, analog-to-digital converters (ADCs) 23 and 24, a digital inverse characteristic filter 26, a correction unit 30, and a digital complex filter 52. The correction unit 30 and the digital complex filter 52 operate as an image removal device. Although not particularly illustrated, the video display device 100 of FIG. 1 has a control unit, and the control unit controls the components of the device of FIG.
 LNA14は、アンテナ12で受信されたRF(radio frequency)信号を増幅し、出力する。発振器17は、RF信号をIF信号に変換するために必要な周波数LOの信号LRを生成し、出力する。位相器18は、発振器17で生成された信号LRの位相を90°遅らせて出力する。ミキサ15は、LNA14で増幅された信号に信号LRを乗算し、信号AIとして出力する。ミキサ16は、LNA14で増幅された信号に位相器18から出力された信号を乗算し、信号AQとして出力する。 The LNA 14 amplifies and outputs an RF (radio frequency) signal received by the antenna 12. The oscillator 17 generates and outputs a signal LR having a frequency LO necessary for converting the RF signal into an IF signal. The phase shifter 18 delays the phase of the signal LR generated by the oscillator 17 by 90 ° and outputs the delayed signal. The mixer 15 multiplies the signal amplified by the LNA 14 by the signal LR and outputs the signal AI. The mixer 16 multiplies the signal amplified by the LNA 14 by the signal output from the phase shifter 18 and outputs the result as a signal AQ.
 アナログ複素フィルタ22は、複素信号AC(信号AI及びAQで構成される)に含まれる希望信号についてのイメージ周波数付近の信号レベルが小さくなるように(例えば30dB小さくなるように)、複素信号ACに対して処理を行い、複素信号FC(信号FI及びFQで構成される)として出力する。これは、複素信号ACがADC23,24のダイナミックレンジ内に収まるようにするためである。 The analog complex filter 22 converts the desired signal included in the complex signal AC (consisting of the signals AI and AQ) into a complex signal AC so that the signal level near the image frequency becomes small (for example, 30 dB lower). Processing is performed on the signal and output as a complex signal FC (consisting of signals FI and FQ). This is to make the complex signal AC fall within the dynamic range of the ADCs 23 and 24.
 ADC23,24は、信号FI,FQをデジタル信号にそれぞれ変換して出力する。デジタル逆特性フィルタ26は、アナログ複素フィルタ22の逆特性を有する。デジタル逆特性フィルタ26は、ADC23,24の出力信号に対して、アナログ複素フィルタ22の影響を打ち消すような処理を行い、その結果を複素信号RC(信号RI及びRQで構成される)として出力する。 ADCs 23 and 24 convert the signals FI and FQ into digital signals, respectively, and output them. The digital inverse characteristic filter 26 has an inverse characteristic of the analog complex filter 22. The digital inverse characteristic filter 26 performs processing to cancel the influence of the analog complex filter 22 on the output signals of the ADCs 23 and 24, and outputs the result as a complex signal RC (consisting of signals RI and RQ). .
 補正部30は、補正部30への入力複素信号RCの直交度誤差及び振幅誤差を補正して、補正後の複素信号CC(信号CI及びCQで構成される)をデジタル複素フィルタ52に出力する。デジタル複素フィルタ52は、複素信号CCにおいて、希望信号に対するイメージ周波数の成分を減衰させ、イメージ周波数の成分が減衰した複素信号DC(信号DI及びDQで構成される)を出力する。 The correction unit 30 corrects the orthogonality error and the amplitude error of the input complex signal RC to the correction unit 30 and outputs the corrected complex signal CC (consisting of signals CI and CQ) to the digital complex filter 52. . The digital complex filter 52 attenuates an image frequency component with respect to a desired signal in the complex signal CC, and outputs a complex signal DC (composed of signals DI and DQ) in which the image frequency component is attenuated.
 発振器63は、IF信号をベースバンド信号に変換するために必要な周波数の信号LSを生成し、出力する。位相器64は、発振器63で生成された信号LSの位相を90°遅らせて出力する。ミキサ61は、信号DIに信号LSを乗算し、出力する。ミキサ62は、信号DQに位相器64から出力された信号を乗算し、出力する。 The oscillator 63 generates and outputs a signal LS having a frequency necessary for converting the IF signal into a baseband signal. The phase shifter 64 delays the phase of the signal LS generated by the oscillator 63 by 90 ° and outputs the delayed signal. The mixer 61 multiplies the signal DI by the signal LS and outputs it. The mixer 62 multiplies the signal DQ by the signal output from the phase shifter 64 and outputs the result.
 デシメーションフィルタ65は、ミキサ61の出力信号を、そのサンプル値を間引いてから出力する。デシメーションフィルタ66は、ミキサ62の出力信号を、そのサンプル値を間引いてから出力する。DSP68は、デシメーションフィルタ65及び66の出力信号に所定の信号処理を行い、得られた映像信号及び音声信号を出力する。ディスプレイ72は、DSP68から出力された映像信号に基づいて映像を表示する。スピーカ74は、DSP68から出力された音声信号に基づいて音声を出力する。 The decimation filter 65 outputs the output signal of the mixer 61 after thinning the sample value. The decimation filter 66 outputs the output signal of the mixer 62 after thinning the sample value. The DSP 68 performs predetermined signal processing on the output signals of the decimation filters 65 and 66 and outputs the obtained video signal and audio signal. The display 72 displays video based on the video signal output from the DSP 68. The speaker 74 outputs sound based on the sound signal output from the DSP 68.
 図1の映像表示装置100は、例えばFM(frequency modulation)ラジオ放送信号を受信するが、他のラジオ放送信号、テレビ放送信号、及び携帯電話等の信号を受信してもよい。 1 receives, for example, an FM (frequency modulation) radio broadcast signal, but may receive other radio broadcast signals, television broadcast signals, and signals such as mobile phones.
 図2(a)は、IQインバランスがない場合における希望信号及びイメージ信号の信号点に対応するベクトルの例を複素平面上で示す図である。図2(b)は、IQインバランスがある場合における希望信号及びイメージ信号の信号点に対応するベクトルの例を複素平面上で示す図である。図2(a),(b)では、直交検波後の複素信号ACについて示している。IQインバランスがない場合には、図2(a)のように、希望信号Dと、イメージ信号Uとは干渉しない。一方、IQインバランスがある場合には、図2(b)のように、希望信号Dと同位相であるイメージリークが生じ、これが希望信号Dに干渉する。 FIG. 2A is a diagram illustrating an example of vectors corresponding to signal points of a desired signal and an image signal on the complex plane when there is no IQ imbalance. FIG. 2B is a diagram illustrating an example of vectors corresponding to signal points of the desired signal and the image signal on the complex plane when there is IQ imbalance. 2A and 2B show the complex signal AC after quadrature detection. When there is no IQ imbalance, the desired signal D and the image signal U do not interfere as shown in FIG. On the other hand, when there is IQ imbalance, an image leak having the same phase as the desired signal D occurs as shown in FIG. 2B, and this interferes with the desired signal D.
 図3(a)は、図2(a)に対応するスペクトラム図である。図3(b)は、図2(b)に対応するスペクトラム図である。IQインバランスがない場合には、図3(a)のように、希望信号Dと、イメージ信号Uとは、周波数2f_IF離れており、互いに干渉していない。IQインバランスがある場合には、図3(b)のように、希望信号Dには、イメージ信号に起因するイメージリークが重畳する。このため、希望信号D付近の周波数成分の電力は、図3(b)の場合の方が図3(a)の場合より大きくなる。つまり、IQインバランスがない場合に、希望信号D付近の周波数成分の電力が最小になる。 FIG. 3 (a) is a spectrum diagram corresponding to FIG. 2 (a). FIG. 3B is a spectrum diagram corresponding to FIG. When there is no IQ imbalance, as shown in FIG. 3A, the desired signal D and the image signal U are separated by the frequency 2f_IF and do not interfere with each other. When there is IQ imbalance, an image leak due to the image signal is superimposed on the desired signal D as shown in FIG. For this reason, the power of the frequency component near the desired signal D is greater in the case of FIG. 3B than in the case of FIG. That is, when there is no IQ imbalance, the power of the frequency component near the desired signal D is minimized.
 図4は、図1の補正部30の構成例を示すブロック図である。図4のように、補正部30は、適応処理部32と、バンドパスフィルタ(BPF)42と、電力測定部44と、係数探索部46とを有する。適応処理部32は、乗算器34と、減算器36と、係数更新部38とを有する。図4における太線は、複素信号を表す。減算器36には、複素信号RC(同相信号RIと直交信号RQ)が入力される。乗算器34には、複素信号RCCが入力される。複素信号RCCは、同相信号RIと、直交信号RQの符号を反転した信号とを含み、複素信号RCとは複素共役の関係にある。 FIG. 4 is a block diagram illustrating a configuration example of the correction unit 30 in FIG. As illustrated in FIG. 4, the correction unit 30 includes an adaptive processing unit 32, a bandpass filter (BPF) 42, a power measurement unit 44, and a coefficient search unit 46. The adaptive processing unit 32 includes a multiplier 34, a subtracter 36, and a coefficient update unit 38. The thick line in FIG. 4 represents a complex signal. A complex signal RC (in-phase signal RI and quadrature signal RQ) is input to the subtractor 36. The multiplier 34 receives the complex signal RCC. The complex signal RCC includes an in-phase signal RI and a signal obtained by inverting the sign of the quadrature signal RQ, and is in a complex conjugate relationship with the complex signal RC.
 適応処理部32は、係数Wを用いて複素信号RCの直交度誤差及び振幅誤差を補正して、IQインバランスを小さくする。適応処理部32は、適応アルゴリズムの1つであるLMS法による次式、
  u=Y-w×Y …(1)
  w(k+1)=w(k)+μ×u(k) (kは自然数) …(2)
によって、係数Wを更新する。ここで、u,w,Y及びYは、複素信号CC、係数W、複素信号RC及びRCCにそれぞれ対応する。μは所定のステップサイズである。
The adaptive processing unit 32 corrects the orthogonality error and the amplitude error of the complex signal RC using the coefficient W to reduce the IQ imbalance. The adaptation processing unit 32 is an LMS algorithm that is one of adaptation algorithms,
u = Y−w × Y * (1)
w (k + 1) = w (k) + μ × u (k) 2 (k is a natural number) (2)
To update the coefficient W. Here, u, w, Y, and Y * correspond to the complex signal CC, the coefficient W, and the complex signals RC and RCC, respectively. μ is a predetermined step size.
 具体的には、乗算器34は、複素信号RCCに係数Wを乗算して出力する。減算器36は、複素信号RCから乗算器34の出力信号を減算し、減算結果を補正後の複素信号CCとして出力する(式(1))。係数更新部38は、複素信号CC及び前回の係数W(k)に基づいて新たな係数W(k+1)を求め、乗算器34及び係数探索部46に出力する(式(2))。乗算器34、減算器36、及び係数更新部38は、係数Wが収束するまで、以上の動作を繰り返し、収束後の係数W0を求める。 Specifically, the multiplier 34 multiplies the complex signal RCC by the coefficient W and outputs the result. The subtracter 36 subtracts the output signal of the multiplier 34 from the complex signal RC, and outputs the subtraction result as a corrected complex signal CC (Equation (1)). The coefficient updating unit 38 obtains a new coefficient W (k + 1) based on the complex signal CC and the previous coefficient W (k), and outputs the new coefficient W (k + 1) to the multiplier 34 and the coefficient searching unit 46 (Equation (2)). The multiplier 34, the subtractor 36, and the coefficient updating unit 38 repeat the above operation until the coefficient W converges to obtain the converged coefficient W0.
 バンドパスフィルタ42は、複素信号CCの周波数成分のうち、希望信号の周波数帯域内の成分を通過させ、他の周波数成分を減衰させる。電力測定部44は、バンドパスフィルタ42を通過した成分の電力を求め、係数探索部46に出力する。電力測定部44が求める電力は、瞬時電力又は2サンプル以上の瞬時電力を平均した平均電力である。以下では例として、電力測定部44が平均電力を求めるものとして説明する。 The band-pass filter 42 passes the components in the frequency band of the desired signal among the frequency components of the complex signal CC and attenuates other frequency components. The power measuring unit 44 obtains the power of the component that has passed through the bandpass filter 42 and outputs it to the coefficient searching unit 46. The power required by the power measurement unit 44 is an average power obtained by averaging instantaneous power or instantaneous power of two or more samples. Hereinafter, as an example, the power measurement unit 44 will be described as obtaining average power.
 適応アルゴリズムにより係数Wが係数W0に収束した後、係数探索部46は、第1探索処理を行う。第1探索処理は、係数Wを、係数更新部38で求められた収束後の係数W0を含む複素平面上の領域内で変化させ、電力測定部44で求められた電力がより小さくなる新たな係数W1を求める処理である。係数探索部46は、例えば、この領域内において電力が最小になる数を新たな係数W1として求める。 After the coefficient W converges to the coefficient W0 by the adaptive algorithm, the coefficient search unit 46 performs a first search process. In the first search process, the coefficient W is changed in a region on the complex plane including the converged coefficient W0 obtained by the coefficient updating unit 38, and a new power obtained by the power measuring unit 44 becomes smaller. This is a process for obtaining the coefficient W1. For example, the coefficient search unit 46 obtains the number that minimizes the power in this region as a new coefficient W1.
 図5は、第1探索処理の際に係数Wが変化する領域内の値であって、係数Wが取り得る値の例を示す図である。横軸は実数軸、縦軸は虚数軸である。適応アルゴリズムにより、係数Wが係数W0=(実数部,虚数部)=(0.625,0.625)に収束しているものとして説明する。図5の領域は、係数W0を中心とする所定の幅及び高さを有する領域であるが、係数W0を含む他の領域であってもよい。図5の場合、係数Wの実数部は0.375,0.500,0.625,0.750,及び0.875のいずれかの値となり、係数Wの虚数部も0.375,0.500,0.625,0.750,及び0.875のいずれかの値となる。 FIG. 5 is a diagram illustrating an example of values that can be taken by the coefficient W in the region in which the coefficient W changes during the first search process. The horizontal axis is the real axis, and the vertical axis is the imaginary axis. In the following description, it is assumed that the coefficient W converges to the coefficient W0 = (real part, imaginary part) = (0.625, 0.625) by the adaptive algorithm. The area in FIG. 5 is an area having a predetermined width and height centered on the coefficient W0, but may be another area including the coefficient W0. In the case of FIG. 5, the real part of the coefficient W has a value of 0.375, 0.500, 0.625, 0.750, and 0.875, and the imaginary part of the coefficient W is also 0.375, 0. The value is any of 500, 0.625, 0.750, and 0.875.
 このように、図5の領域は、0.125(第1ステップ)ずつ異なる実数の1つと、0.125(第2ステップ)ずつ異なる虚数の1つとの和として、この領域内で得ることができる複数の複素数を含んでいる。係数探索部46は、第1探索処理の際には、これらの複素数の中で、補正に用いられる係数Wを変化させる。 Thus, the region of FIG. 5 can be obtained within this region as the sum of one real number that differs by 0.125 (first step) and one imaginary number that differs by 0.125 (second step). Contains multiple complex numbers that can. The coefficient search unit 46 changes the coefficient W used for correction among these complex numbers during the first search process.
 図6は、第1探索処理における探索の順序の例を示す図である。図6の領域R1の各マスは、図5に示されたものと同じである。例えば図6のように、係数探索部46は、領域R1において、最上行の左端(W=(0.375,0.375))から右端(W=(0.875,0.375))へ、係数Wの実数部を0.125ずつ変化させることによって探索し、次に係数Wの虚数部を0.125変化させ、次の行の左端から右端へ探索する。以下同様にして、図6の全てのマスを探索する。係数WがW1のときに、電力測定部44で求められた電力が最小になることが分かったとすると、係数探索部46は、係数W1を第1探索処理の結果として保持する。このように、係数探索部46は、図6の領域内で、係数Wの実数部を0.125を単位として変化させ、係数Wの虚数部を0.125を単位として変化させるが、これらの単位は他の値であってもよい。 FIG. 6 is a diagram illustrating an example of a search order in the first search process. Each square in the region R1 in FIG. 6 is the same as that shown in FIG. For example, as shown in FIG. 6, the coefficient search unit 46 moves from the left end (W = (0.375, 0.375)) to the right end (W = (0.875, 0.375)) in the uppermost row in the region R1. The search is performed by changing the real part of the coefficient W by 0.125, and then the imaginary part of the coefficient W is changed by 0.125 to search from the left end to the right end of the next row. Similarly, all the cells in FIG. 6 are searched. If it is found that the power obtained by the power measurement unit 44 is minimized when the coefficient W is W1, the coefficient search unit 46 holds the coefficient W1 as a result of the first search process. In this way, the coefficient search unit 46 changes the real part of the coefficient W in units of 0.125 and changes the imaginary part of the coefficient W in units of 0.125 within the region of FIG. The unit may be other values.
 図7は、第2探索処理における探索の範囲及び順序の例を示す図である。第1探索処理の後、係数探索部46は、第2探索処理を行う。第2探索処理は、係数Wを、第1探索処理で求められた係数W1を含む複素平面上の領域R2内で変化させ、電力測定部44で求められた電力がより小さくなる新たな係数W2を求める処理である。図7の第2探索処理用の領域R2は、図6の第1探索処理用の領域R1より狭い。 FIG. 7 is a diagram illustrating an example of search ranges and order in the second search process. After the first search process, the coefficient search unit 46 performs a second search process. In the second search process, the coefficient W is changed in the region R2 on the complex plane including the coefficient W1 obtained in the first search process, and a new coefficient W2 in which the power obtained by the power measurement unit 44 becomes smaller. Is a process for obtaining. The region R2 for the second search process in FIG. 7 is narrower than the region R1 for the first search process in FIG.
 図7の領域R2は、第1ステップより小さい第3ステップ(例えば0.03)ずつ異なる実数の1つと、第2ステップより小さい第4ステップ(例えば0.03)ずつ異なる虚数の1つとの和として、この領域内で得ることができる複数の複素数を含んでいる。係数探索部46は、第2探索処理の際には、これらの複素数の中で、補正に用いられる係数Wを変化させる。 The region R2 in FIG. 7 is a sum of one real number that differs by a third step (eg, 0.03) smaller than the first step and one imaginary number that differs by a fourth step (eg, 0.03) smaller than the second step. Includes a plurality of complex numbers that can be obtained in this region. In the second search process, the coefficient search unit 46 changes the coefficient W used for correction among these complex numbers.
 例えば係数探索部46は、図7の領域R2内で、最上行の左端から右端へ探索し、次にその下の行の左端から右端へ探索する。この際、係数探索部46は、係数Wを各マスの値にする。以下同様にして、第2探索処理用の領域の全てのマスを探索する。係数探索部46は、係数WがW2のときに、電力測定部44で求められた電力が最小になることが分かったとすると、係数W2を第2探索処理の結果として保持する。 For example, the coefficient search unit 46 searches from the left end of the uppermost row to the right end in the region R2 in FIG. 7, and then searches from the left end to the right end of the lower row. At this time, the coefficient search unit 46 sets the coefficient W to the value of each cell. Similarly, all the cells in the area for the second search process are searched. If the coefficient search unit 46 finds that the power obtained by the power measurement unit 44 is minimized when the coefficient W is W2, the coefficient search unit 46 holds the coefficient W2 as a result of the second search process.
 図8は、係数WとSN(signal-to-noise)比との関係の例を示す図である。図8はシミュレーションによって得られた結果であり、図5等とは異なる領域に係数Wの最適値がある場合の例を示している。図8では、係数W2を示す点の付近においてSN比が最小になり、図8の周縁に近づくほどSN比が大きくなる。SN比は、電力測定部44の入力信号における、ノイズに対する希望信号の比であるが、ノイズが一定であると仮定すると、信号電力測定部44で求められた電力を示す図とSN比を示す図とが同様になるので、ここではSN比を示している。適応アルゴリズムのみにより得られた係数W0を示す点よりも、第1及び第2探索処理を更に行って得られた係数W2を示す点の方が、SN比及び電力測定部44の入力信号の電力が小さくなり、より適切な値であることが図8から分かる。 FIG. 8 is a diagram showing an example of the relationship between the coefficient W and the SN (signal-to-noise) ratio. FIG. 8 shows a result obtained by simulation, and shows an example in the case where the optimum value of the coefficient W is in a region different from FIG. In FIG. 8, the S / N ratio is minimized in the vicinity of the point indicating the coefficient W2, and the S / N ratio increases as it approaches the periphery of FIG. The S / N ratio is the ratio of the desired signal to the noise in the input signal of the power measurement unit 44. Assuming that the noise is constant, the S / N ratio is shown with a diagram showing the power obtained by the signal power measurement unit 44. Since the figure is the same, the S / N ratio is shown here. The point indicating the coefficient W2 obtained by further performing the first and second search processing is more suitable for the SN ratio and the power of the input signal of the power measuring unit 44 than the point indicating the coefficient W0 obtained only by the adaptive algorithm. It can be seen from FIG. 8 that is smaller and is a more appropriate value.
 つまり、係数探索部46が第1及び第2探索処理を行うので、係数Wとして、より適切な係数W2を求めることができる。係数W2を用いて複素信号RCを補正することにより、IQインバランスがより小さい複素信号CCを得ることができる。 That is, since the coefficient search unit 46 performs the first and second search processes, a more appropriate coefficient W2 can be obtained as the coefficient W. By correcting the complex signal RC using the coefficient W2, a complex signal CC having a smaller IQ imbalance can be obtained.
 図9は、図4の係数探索部46についての状態遷移図の例である。係数探索部46は、周波数切り替え検出状態、粗いサーチ状態、細かいサーチ状態、及び待機状態を有する。粗いサーチ状態は第1探索処理に対応し、細かいサーチ状態は第2探索処理に対応する。係数探索部46は、内部カウンタ及び探索カウンタを有する。図9の記載の他、周波数切り替えフラグのエッジが検出された場合、異なる状態に遷移する場合、及びカウンタが所定値に達した場合にも、カウンタはリセットされる。 FIG. 9 is an example of a state transition diagram for the coefficient search unit 46 of FIG. The coefficient search unit 46 has a frequency switching detection state, a rough search state, a fine search state, and a standby state. The coarse search state corresponds to the first search process, and the fine search state corresponds to the second search process. The coefficient search unit 46 includes an internal counter and a search counter. In addition to the description in FIG. 9, the counter is also reset when the edge of the frequency switching flag is detected, when transitioning to a different state, and when the counter reaches a predetermined value.
 周波数切り替えフラグ、イメージ検出フラグ、DU比検出フラグ、探索開始フラグ、及び内部生成フラグは、制御部によって生成される。周波数切り替えフラグは、選局時等において、受信周波数が変更されたことを通知するフラグであり、切り替え時に立ち上がる。イメージ検出フラグは、イメージ周波数の信号の有無を通知するフラグである。イメージ検出フラグは、イメージ周波数の信号のレベルが所定の閾値以上であり、かつ、DU比(イメージ信号に対する希望信号の比)が所定の範囲内である場合に、高論理レベルになる。DU比検出フラグは、DU比が所定の閾値以上である場合に、高論理レベルになる。探索開始フラグは、係数探索部46による探索の開始及び停止を制御する。内部生成フラグは、イメージ検出フラグとDU比検出フラグとの論理積である。 The frequency switching flag, the image detection flag, the DU ratio detection flag, the search start flag, and the internal generation flag are generated by the control unit. The frequency switching flag is a flag for notifying that the reception frequency has been changed at the time of tuning or the like, and rises at the time of switching. The image detection flag is a flag that notifies the presence / absence of an image frequency signal. The image detection flag becomes a high logic level when the level of the image frequency signal is equal to or higher than a predetermined threshold and the DU ratio (ratio of the desired signal to the image signal) is within a predetermined range. The DU ratio detection flag becomes a high logic level when the DU ratio is equal to or greater than a predetermined threshold. The search start flag controls the start and stop of the search by the coefficient search unit 46. The internal generation flag is a logical product of the image detection flag and the DU ratio detection flag.
 図9に記載されているように、係数探索部46は次のように動作する。係数探索部46は、受信周波数が変更されたことを周波数切り替えフラグによって通知されると、第1探索処理を再び行う。また、係数探索部46は、第1探索処理を再び行った後、第2探索処理を所定の時間毎に繰り返す。係数探索部46は、イメージ周波数の信号が存在しないことをイメージ検出フラグによって通知された場合には、第1探索処理を行わない。係数探索部46は、第1探索処理中に、イメージ周波数の信号が存在しないことをイメージ検出フラグによって通知された場合には、第1探索処理を中止する。係数探索部46は、その後、イメージ周波数の信号が存在することをイメージ検出フラグによって通知された場合には、第1探索処理を再開する。 As shown in FIG. 9, the coefficient search unit 46 operates as follows. The coefficient search unit 46 performs the first search process again when notified by the frequency switching flag that the reception frequency has been changed. The coefficient search unit 46 repeats the first search process and then repeats the second search process every predetermined time. The coefficient search unit 46 does not perform the first search process when notified by the image detection flag that there is no image frequency signal. The coefficient search unit 46 stops the first search process when notified by the image detection flag that there is no image frequency signal during the first search process. After that, when notified by the image detection flag that the image frequency signal exists, the coefficient search unit 46 resumes the first search process.
 図10は、第1探索処理における探索の順序の他の例を示す図である。係数探索部46は、図6と同様に、領域R1において、最上行の左端から右端へ探索し、次にその下の行の左端から右端へ探索する。ただし、係数探索部46は、この際、まず1マスおきに探索する(図10の斜線部のみ)。図10の右下までの探索が終わると、最初に戻り、残りのマスを同様の順で探索する。 FIG. 10 is a diagram illustrating another example of the search order in the first search process. Similarly to FIG. 6, the coefficient search unit 46 searches from the left end of the uppermost row to the right end in the region R1, and then searches from the left end to the right end of the lower row. However, at this time, the coefficient search unit 46 first searches every other square (only the shaded portion in FIG. 10). When the search to the lower right of FIG. 10 is completed, the process returns to the beginning, and the remaining cells are searched in the same order.
 図11は、第2探索処理における探索の順序の他の例を示す図である。係数探索部46は、図7と同様に、領域R2において、最上行の左端から右端へ探索し、次にその下の行の左端から右端へ探索する。ただし、係数探索部46は、この際、まず1マスおきに探索する(図11の斜線部のみ)。図11の右下までの探索が終わると、最初に戻り、残りのマスを同様の順で探索する。図10及び図11では、2つ毎に1つのマスを探索する場合について説明したが、n個(nは2以上の整数)毎に1つのマスを領域R1又はR2の全体において探索し、その後、まだ探索されていないマスについてn個毎に1つのマスを領域R1又はR2の全体において探索することを繰り返すようにしてもよい。図10又は図11のようにn個毎に1つのマスを探索すると、適切な係数W1又はW2が早く得られ、受信機の応答性能が向上する。 FIG. 11 is a diagram illustrating another example of the search order in the second search process. As in FIG. 7, the coefficient search unit 46 searches from the left end of the uppermost row to the right end in the region R2, and then searches from the left end to the right end of the lower row. However, the coefficient search unit 46 first searches every other square (only the shaded portion in FIG. 11). When the search to the lower right of FIG. 11 is completed, the process returns to the beginning, and the remaining cells are searched in the same order. In FIGS. 10 and 11, the case where one cell is searched for every two has been described. However, one cell is searched for every n (n is an integer of 2 or more), and then the entire region R1 or R2 is searched. The search for one square for every n squares that have not yet been searched may be repeated in the entire region R1 or R2. When one cell is searched for every n pieces as shown in FIG. 10 or FIG. 11, an appropriate coefficient W1 or W2 is obtained quickly, and the response performance of the receiver is improved.
 図12は、第1探索処理における探索の順序の更に他の例を示す図である。係数探索部46は、図12の範囲を、例えば周縁からスパイラル状に探索する。言い換えると、係数探索部46は、図12の範囲の境界に最も近い値を順に探索し、その後、これらの値よりより内側の値を順に探索する。以下も同様に、より内側の値を探索していく。逆に、係数探索部46は、中心からスパイラル状に探索してもよい。 FIG. 12 is a diagram showing still another example of the search order in the first search process. The coefficient search unit 46 searches the range of FIG. 12 in a spiral shape from the periphery, for example. In other words, the coefficient search unit 46 sequentially searches for values closest to the boundary of the range of FIG. 12, and then sequentially searches for values inside these values. Similarly, the inner value is searched for. Conversely, the coefficient search unit 46 may search in a spiral shape from the center.
 以上の実施形態では、適応アルゴリズムにより係数Wが係数W0に収束した後、第1及び第2探索処理が行われる場合について説明したが、収束後、係数探索部46は第1探索処理のみを行うようにしてもよい。状況に応じて、係数探索部46を停止させてもよい。これにより、低消費電力化を図ることができ、係数探索部46を停止させる場合には、不要な回路が動作しないので信号の劣化(ノイズや歪み)を抑えることができる。 In the above embodiment, the case where the first and second search processes are performed after the coefficient W has converged to the coefficient W0 by the adaptive algorithm has been described. However, after the convergence, the coefficient search unit 46 performs only the first search process. You may do it. The coefficient search unit 46 may be stopped according to the situation. As a result, power consumption can be reduced, and when the coefficient search unit 46 is stopped, an unnecessary circuit does not operate, so that signal degradation (noise and distortion) can be suppressed.
 本明細書における各機能ブロックは、典型的にはハードウェアで実現され得る。例えば各機能ブロックは、IC(集積回路)の一部として半導体基板上に形成され得る。ここでICは、LSI(large-scale integrated circuit)、ASIC(application-specific integrated circuit)、ゲートアレイ、FPGA(field programmable gate array)等を含む。代替としては各機能ブロックの一部又は全ては、ソフトウェアで実現され得る。例えばそのような機能ブロックは、プロセッサ及びプロセッサ上で実行されるプログラムによって実現され得る。換言すれば、本明細書で説明される各機能ブロックは、ハードウェアで実現されてもよいし、ソフトウェアで実現されてもよいし、ハードウェアとソフトウェアとの任意の組合せで実現され得る。 Each functional block in this specification can be typically realized by hardware. For example, each functional block can be formed on a semiconductor substrate as part of an IC (integrated circuit). Here, the IC includes an LSI (large-scale integrated circuit), an ASIC (application-specific integrated circuit), a gate array, an FPGA (field programmable gate array), and the like. Alternatively, some or all of each functional block can be implemented in software. For example, such a functional block can be realized by a processor and a program executed on the processor. In other words, each functional block described in the present specification may be realized by hardware, may be realized by software, or may be realized by any combination of hardware and software.
 本発明の多くの特徴及び優位性は、記載された説明から明らかであり、よって添付の特許請求の範囲によって、本発明のそのような特徴及び優位性の全てをカバーすることが意図される。更に、多くの変更及び改変が当業者には容易に可能であるので、本発明は、図示され記載されたものと全く同じ構成及び動作に限定されるべきではない。したがって、全ての適切な改変物及び等価物は本発明の範囲に入るものとされる。 Many features and advantages of the present invention will be apparent from the written description, and thus, it is intended by the appended claims to cover all such features and advantages of the present invention. Further, since many changes and modifications will readily occur to those skilled in the art, the present invention should not be limited to the exact construction and operation as illustrated and described. Accordingly, all suitable modifications and equivalents are intended to be within the scope of the present invention.
 以上説明したように、本開示によれば、直交度誤差及び振幅誤差の補正精度を向上させることができるので、本発明は、イメージ除去装置及び映像表示装置等について有用である。 As described above, according to the present disclosure, it is possible to improve the correction accuracy of the orthogonality error and the amplitude error. Therefore, the present invention is useful for an image removal device, a video display device, and the like.
30 補正部
32 適応処理部
34 乗算器
36 減算器
38 係数更新部
42 バンドパスフィルタ
44 電力測定部
46 係数探索部
52 デジタル複素フィルタ(複素フィルタ)
100 映像表示装置
30 Correction Unit 32 Adaptive Processing Unit 34 Multiplier 36 Subtractor 38 Coefficient Update Unit 42 Band Pass Filter 44 Power Measurement Unit 46 Coefficient Search Unit 52 Digital Complex Filter (Complex Filter)
100 video display device

Claims (14)

  1.  入力複素信号の直交度誤差及び振幅誤差の補正を行い、補正後の複素信号を出力する補正部と、
     前記補正後の複素信号において、希望信号に対するイメージ周波数の成分を減衰させ、得られた信号を出力する複素フィルタとを備え、
     前記補正部は、
     係数を用いて前記補正を行い、前記補正に用いられる係数を適応アルゴリズムによって更新して収束後の係数を求める適応処理部と、
     前記補正後の複素信号の周波数成分のうち、前記希望信号の周波数帯域内の成分を通過させるバンドパスフィルタと、
     前記バンドパスフィルタを通過した成分の電力を求める電力測定部と、
     前記補正に用いられる係数を、前記収束後の係数を含む複素平面上の第1領域内で変化させて、前記電力がより小さくなる新たな係数を求める第1探索処理を行う係数探索部とを有し、
     前記適応処理部は、前記新たな係数を用いて前記補正を行う
    イメージ除去装置。
    A correction unit that corrects the orthogonality error and amplitude error of the input complex signal and outputs the corrected complex signal;
    A complex filter for attenuating an image frequency component for a desired signal in the complex signal after correction and outputting the obtained signal;
    The correction unit is
    An adaptive processing unit that performs the correction using a coefficient, updates the coefficient used for the correction by an adaptive algorithm, and obtains a converged coefficient;
    Of the frequency components of the complex signal after correction, a bandpass filter that passes components in the frequency band of the desired signal;
    A power measurement unit for obtaining power of a component that has passed through the bandpass filter;
    A coefficient search unit that performs a first search process for changing a coefficient used for the correction in a first region on a complex plane including the converged coefficient to obtain a new coefficient that reduces the power; Have
    The adaptive processing unit is an image removal device that performs the correction using the new coefficient.
  2.  請求項1に記載のイメージ除去装置において、
     前記適応処理部は、
     前記補正後の複素信号に基づいて前記補正に用いられる係数を更新する係数更新部と、
     前記入力複素信号と複素共役の関係にある複素信号に前記更新された係数を乗算し、乗算後の信号を出力する乗算器と、
     前記入力複素信号から前記乗算後の信号を減算して、前記補正後の複素信号として出力する減算器とを有する
    イメージ除去装置。
    The image removal apparatus according to claim 1,
    The adaptive processing unit includes:
    A coefficient updating unit that updates a coefficient used for the correction based on the corrected complex signal;
    A multiplier for multiplying the complex signal in a complex conjugate relationship with the input complex signal by the updated coefficient and outputting a signal after multiplication;
    An image removing apparatus comprising: a subtracter that subtracts the multiplied signal from the input complex signal and outputs the signal as the corrected complex signal.
  3.  請求項1に記載のイメージ除去装置において、
     前記係数探索部は、前記第1探索処理の際には、第1ステップずつ異なる実数の1つと第2ステップずつ異なる虚数の1つとの和として前記第1領域内で得ることができる複数の複素数の中で、前記補正に用いられる係数を変化させる
    イメージ除去装置。
    The image removal apparatus according to claim 1,
    In the first search process, the coefficient search unit can obtain a plurality of complex numbers that can be obtained in the first region as a sum of one real number that differs for each first step and one imaginary number that differs for each second step. An image removing device for changing a coefficient used for the correction.
  4.  請求項3に記載のイメージ除去装置において、
     前記係数探索部は、前記第1領域内で、前記補正に用いられる係数の実数部を第1実数値から第2実数値まで前記第1ステップずつ変化させ、かつ、前記補正に用いられる係数の虚数部を前記第2ステップ変化させることを繰り返す
    イメージ除去装置。
    The image removal apparatus according to claim 3.
    The coefficient search unit changes the real part of the coefficient used for the correction from the first real value to the second real value step by step in the first region, and the coefficient used for the correction. An image removing apparatus that repeats changing the imaginary part in the second step.
  5.  請求項3に記載のイメージ除去装置において、
     前記係数探索部は、前記第1領域内で、前記補正に用いられる係数の実数部を第1実数値から第2実数値まで前記第1ステップのn倍(nは2以上の整数)ずつ変化させ、かつ、前記補正に用いられる係数の虚数部を前記第2ステップ変化させることを繰り返す
    イメージ除去装置。
    The image removal apparatus according to claim 3.
    The coefficient search unit changes the real part of the coefficient used for the correction from the first real value to the second real value by n times (n is an integer of 2 or more) of the first step in the first region. And an image removing device that repeats changing the imaginary part of the coefficient used for the correction in the second step.
  6.  請求項3に記載のイメージ除去装置において、
     前記係数探索部は、前記第1領域において、スパイラル状に探索する
    イメージ除去装置。
    The image removal apparatus according to claim 3.
    The coefficient search unit is an image removal device that searches in a spiral shape in the first region.
  7.  請求項3に記載のイメージ除去装置において、
     前記係数探索部は、前記第1探索処理後に、前記新たな係数を含み前記第1領域より狭い第2領域内で、前記第1ステップより小さい第3ステップずつ異なる実数の1つと前記第2ステップより小さい第4ステップずつ異なる虚数の1つとの和として得ることができる複数の複素数の中で、前記補正に用いられる係数を変化させて、前記電力がより小さくなる係数を前記新たな係数として求める第2探索処理を行う
    イメージ除去装置。
    The image removal apparatus according to claim 3.
    The coefficient search unit, after the first search process, within the second region that includes the new coefficient and is narrower than the first region, the second step is different from one of the real numbers that is different by a third step that is smaller than the first step. A coefficient used for the correction is changed among a plurality of complex numbers that can be obtained as a sum of one different imaginary number for each smaller fourth step, and a coefficient with smaller power is obtained as the new coefficient. An image removing device that performs the second search process.
  8.  請求項7に記載のイメージ除去装置において、
     前記係数探索部は、受信周波数が変更されたことを通知されると、前記第1探索処理を再び行う
    イメージ除去装置。
    The image removal apparatus according to claim 7.
    When the coefficient search unit is notified that the reception frequency has been changed, the image search device performs the first search process again.
  9.  請求項8に記載のイメージ除去装置において、
     前記係数探索部は、前記第1探索処理を再び行った後、前記第2探索処理を所定の時間毎に繰り返す
    イメージ除去装置。
    The image removal apparatus according to claim 8, wherein
    The coefficient search unit performs the first search process again and then repeats the second search process every predetermined time.
  10.  請求項1に記載のイメージ除去装置において、
     前記係数探索部は、イメージ周波数の信号が存在しないことを通知された場合には、前記第1探索処理を行わない
    イメージ除去装置。
    The image removal apparatus according to claim 1,
    The image search apparatus, in which the coefficient search unit does not perform the first search process when notified that there is no image frequency signal.
  11.  請求項1に記載のイメージ除去装置において、
     前記係数探索部は、前記第1探索処理中にイメージ周波数の信号が存在しないことを通知された場合には、前記第1探索処理を中止する
    イメージ除去装置。
    The image removal apparatus according to claim 1,
    The coefficient search unit is an image removal device that stops the first search process when notified that there is no image frequency signal during the first search process.
  12.  請求項11に記載のイメージ除去装置において、
     前記係数探索部は、イメージ周波数の信号が存在することを通知された場合には、前記第1探索処理を再開する
    イメージ除去装置。
    12. The image removal device according to claim 11, wherein
    The image search device restarts the first search process when the coefficient search unit is notified that a signal having an image frequency exists.
  13.  請求項1に記載のイメージ除去装置において、
     前記適応アルゴリズムはLMS(least mean square)アルゴリズムである
    イメージ除去装置。
    The image removal apparatus according to claim 1,
    The image removing apparatus, wherein the adaptive algorithm is an LMS (least mean square) algorithm.
  14.  請求項1に記載のイメージ除去装置と、
     前記複素フィルタから出力された信号に基づいて映像を表示するディスプレイとを備える
    映像表示装置。
    An image removal device according to claim 1;
    An image display device comprising: a display that displays an image based on a signal output from the complex filter.
PCT/JP2011/004205 2011-04-14 2011-07-26 Image-removing device and video display device WO2012140703A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-090324 2011-04-14
JP2011090324 2011-04-14

Publications (1)

Publication Number Publication Date
WO2012140703A1 true WO2012140703A1 (en) 2012-10-18

Family

ID=47008915

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/004205 WO2012140703A1 (en) 2011-04-14 2011-07-26 Image-removing device and video display device

Country Status (1)

Country Link
WO (1) WO2012140703A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246847A (en) * 2001-01-29 2002-08-30 Samsung Electronics Co Ltd Frequency converter
US20050070236A1 (en) * 2003-09-29 2005-03-31 Silicon Laboratories, Inc. Apparatus and method for deriving a digital image correction factor in a receiver
JP2007104522A (en) * 2005-10-07 2007-04-19 Renesas Technology Corp Receiver
WO2010035359A1 (en) * 2008-09-26 2010-04-01 パナソニック株式会社 Complex signal processing circuit, reception circuit, and signal reproduction device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002246847A (en) * 2001-01-29 2002-08-30 Samsung Electronics Co Ltd Frequency converter
US20050070236A1 (en) * 2003-09-29 2005-03-31 Silicon Laboratories, Inc. Apparatus and method for deriving a digital image correction factor in a receiver
JP2007104522A (en) * 2005-10-07 2007-04-19 Renesas Technology Corp Receiver
WO2010035359A1 (en) * 2008-09-26 2010-04-01 パナソニック株式会社 Complex signal processing circuit, reception circuit, and signal reproduction device

Similar Documents

Publication Publication Date Title
JP4593430B2 (en) Receiving machine
US20140323071A1 (en) Interference Adaptive Wideband Receiver
US8306103B2 (en) Systems and methods providing in-phase and quadrature equalization
US8391818B2 (en) Second-order distortion correcting receiver and second-order distortion correcting method
US20140370833A1 (en) Down-conversion circuit with interference detection
TW201027109A (en) Method and apparatus for performing active jammer suppression on an electronic device
JP2012065017A (en) Harmonic rejection mixer and phase adjustment method
US11671131B2 (en) Transmitter circuit, compensation value calibration device and method for calibrating IQ imbalance compensation values
US8416899B2 (en) Multimode filter architecture
JP4731569B2 (en) Image suppression receiver
JP4936493B2 (en) Complex signal processing circuit
JP5453195B2 (en) High frequency receiver and radio receiver
US8586461B2 (en) Systems and methods providing spur avoidance in a direct conversion tuner architecture
US8897350B2 (en) Orthogonal transform error corrector
JP2010219697A (en) Receiver
JPWO2010106752A1 (en) Distortion correction receiver and distortion correction method
WO2012140703A1 (en) Image-removing device and video display device
US8351887B2 (en) Systems and methods providing multi-path low noise amplifiers with seamless switching
WO2011114393A1 (en) Complex signal processing circuit, receiver circuit, and signal reproducing apparatus
WO2018142745A1 (en) Receiving apparatus, receiving method, and program
JP4735312B2 (en) Receiving device and electronic device using the same
JP2019106630A (en) Radio communication device and reflection wave phase control method
JP7056611B2 (en) Receiver, program
JP2010193160A (en) Radio receiver and method of receiving radio signal
JP2021048643A (en) Dc component fluctuation suppression device, dc component fluctuation suppression method, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11863456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11863456

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP