WO2012134133A2 - Nanowire having diamond deposited thereon, manufacturing method thereof, and biosensor including same - Google Patents

Nanowire having diamond deposited thereon, manufacturing method thereof, and biosensor including same Download PDF

Info

Publication number
WO2012134133A2
WO2012134133A2 PCT/KR2012/002188 KR2012002188W WO2012134133A2 WO 2012134133 A2 WO2012134133 A2 WO 2012134133A2 KR 2012002188 W KR2012002188 W KR 2012002188W WO 2012134133 A2 WO2012134133 A2 WO 2012134133A2
Authority
WO
WIPO (PCT)
Prior art keywords
nanowire
polymer
poly
nanowires
diamond
Prior art date
Application number
PCT/KR2012/002188
Other languages
French (fr)
Korean (ko)
Other versions
WO2012134133A3 (en
Inventor
임대순
이승구
김종훈
송민정
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Publication of WO2012134133A2 publication Critical patent/WO2012134133A2/en
Publication of WO2012134133A3 publication Critical patent/WO2012134133A3/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B1/00Nanostructures formed by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • G01N27/3275Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction
    • G01N27/3278Sensing specific biomolecules, e.g. nucleic acid strands, based on an electrode surface reaction involving nanosized elements, e.g. nanogaps or nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Definitions

  • the present invention relates to a nanowire on which nanodiamonds are deposited, and a method of manufacturing the same, and the nanodiamonds are adsorbed on the nanowires extending in the longitudinal direction through a self-assembly method by electrostatic charge, and the diamonds are deposited using the nucleus as a nucleus.
  • the present invention relates to a nanowire on which diamond is deposited having a high sensitivity for detecting a biological component such as glucose by preparing a nanostructure in the form of a route core-diamond shell and using it as an electrode for a biosensor.
  • High specific surface area is required for electrochemical biosensor electrodes for the detection of biological components such as glucose.
  • electrodes using nanowires and nanoparticles are emerging, rather than film-type electrodes, and gold, platinum, and metal oxides are currently being studied. These materials exhibit chemical and electrochemical instability, low sensitivity, and high manufacturing costs.
  • the diamond proposed in the present invention has better electrochemical properties than those currently studied, such as negative electron affinity, wide potential window, and ease of surface modification. Because of its low background current and chemical stability, it is highly applicable to electrochemical biosensors. However, diamond is very difficult to make a nanowire structure due to the limitations of the synthetic conditions.
  • One method is to produce single crystal diamond using oxygen plasma etching through the masking of nanoparticles. This method has the advantage that its length and thickness can be easily adjusted. Due to the limitation of manufacturing only nanowires arranged in the shape, the specific surface area is lower than that of the network type structure.
  • the other method is obtained by hydrogen plasma treatment from carbon nanotubes. In this method, the amorphous carbon phase is covered on the outer wall of diamond after synthesis, and a process for removing them is required. It has a problem that it is difficult to apply as an electrochemical sensor due to its weak adhesive strength.
  • the problem to be solved by the present invention is to solve the problems as described above, nano-deposited nanowires having a high specific surface area suitable for biosensors, a method for manufacturing the same and a biological component such as glucose using the same It is to provide a high sensitivity biosensor for detection.
  • the present invention to solve the above problems,
  • nanowire core-diamond shell type nanowire formed by depositing a nanodiamond thin film layer on the nanowire so as to surround the outer circumferential surface of the nanowire
  • the nanowire is a first polymer layer coated on the outer peripheral surface of the nanowire; A plurality of nanodiamond particle layers positioned on a surface of the first polymer layer; And a second polymer layer surrounding each of the plurality of nanodiamond particles;
  • the polarity of the first polymer and the second polymer provides a nanowire core-diamond shell type nanowire, characterized in that the opposite polarity.
  • the nanowire may have a structure extending in the longitudinal direction without phase change.
  • phase change refers to the change of a substance into a solid, liquid, or gas by applying heat, and is also called a change of state.
  • the nanodiamond thin film layer may be a diamond thin film layer doped with boron.
  • the nanowires are any one selected from nickel (Ni), gold (Au), platinum (Pt), and alloys thereof; Any one selected from carbon (C), silicon (Si), and germanium (Ge); Any one selected from silicon oxide (SiO 2 ), titanium oxide (TiO 2 ) and tungsten oxide (WO X ); And any one selected from gallium nitride (GaN), indium phosphate (InP), and silicon carbide (SiC); It may be made of a material selected from, the shape of the nanowires may be nanowires, nanotubes or nanorods.
  • the first polymer may be any one selected from poly (styrene sulfonate), poly S-119, polyaniline and nafion
  • the second polymer may be poly (di-methyl Diallyl ammonium chloride) and poly (ethyleneimine).
  • the first polymer may be any one selected from poly (di-methyldiallylammonium chloride) and poly (ethyleneimine), and the second polymer may be poly (styrene sulfonate ), Poly S-119, polyaniline and Nafion.
  • the size of the nanodiamond particles may be 5-100 nm.
  • the present invention to solve the above problems,
  • an electrode for a biosensor comprising the nanowire core-diamond shell type nanowire and a glucose oxidase bound to the nanowire.
  • the glucose oxidase after binding 3-aminopropyltriethoxysilane to the surface of the nanowire, the glucose oxidase may be bound to the nanowire using glutaraldehyde.
  • the present invention also provides a biosensor comprising the electrode, wherein the biosensor detects a glucose component in vivo with a sensitivity of 300 ⁇ A / mM-10 mA / mM.
  • the present invention to solve the above problems,
  • step (d) immersing the nanowires coated with the first polymer obtained in step (b) in a solution in which the nanodiamond particles coated with the second polymer obtained in step (c) are dispersed.
  • the step (d) provides a nanowire pretreatment method characterized in that the nanodiamond particles are adsorbed onto the nanowires through a self-assembly method by electrostatic charge and then act as a deposition nucleus when the diamond thin film is deposited.
  • the nanowire pretreatment method is the polarity of the polymer of step (b) and the polymer of step (c) is the same,
  • the surface of the nanowire obtained in step (b) may be surface treated with a polymer having a polarity opposite to that of the polymer of step (b); .
  • the nanowires are any one selected from nickel (Ni), gold (Au), platinum (Pt), and alloys thereof; Any one selected from carbon (C), silicon (Si), and germanium (Ge); Any one selected from silicon oxide (SiO 2 ), titanium oxide (TiO 2 ) and tungsten oxide (WO X ); And any one selected from gallium nitride (GaN), indium phosphate (InP), and silicon carbide (SiC); It may be made of a material selected from, the shape of the nanowires may be nanowires, nanotubes or nanorods.
  • the first polymer may be any one selected from poly (styrene sulfonate), poly S-119, polyaniline and nafion
  • the second polymer may be poly (di-methyl Diallyl ammonium chloride) and poly (ethyleneimine).
  • the present invention to solve the above problems,
  • It provides a method for producing a nanowire core-diamond shell form comprising the step of depositing a nano-diamond thin film layer on the nanowire pre-treated according to the pretreatment method using a chemical vapor deposition method to surround the outer peripheral surface of the nanowire.
  • the nanodiamond thin film layer may be a boron-doped diamond thin film layer, the thickness of the thin film layer may be 20-100 nm.
  • the nanowire core-diamond shell type nanowire according to the present invention is a nanowire having a three-dimensional diamond-nanowire hybrid structure (BDD-NW), and the effective effective area of the reaction is improved and used as a biosensor electrode. It has excellent selectivity and detection sensitivity, long storage stability and excellent reproducibility, and enables fast time detection.
  • the manufacturing method of the nanowire core-diamond shell type nanowire according to the present invention is capable of producing nanowires having a three-dimensional structure compared to the synthesis method by etching diamond thick film and hydrogen plasma treatment of conventional nanowires, and has excellent manufacturing process efficiency. Do.
  • FIG. 1 is a view showing an outline of the electrostatic self-assembly of the nano diamond particles according to the present invention.
  • Figure 2 is a schematic diagram of the three-dimensional nanowire structure of the nanowires coated with boron-doped nanocrystalline diamond according to the present invention.
  • FIG. 3 is a SEM photograph of a structure of carbon nanotube nanowires coated with boron-doped nanocrystalline diamond according to the present invention.
  • the average thickness of the nanowires is about 100 nm.
  • FIG. 4 is a graph showing the results of glucose detection experiments for Comparative Examples 2-4 and Example 4.
  • FIG. 4 is a graph showing the results of glucose detection experiments for Comparative Examples 2-4 and Example 4.
  • FIG. 5 is an SEM image of a silicon nanowire structure coated with nanocrystalline diamond according to the present invention.
  • the nanowires with the diamond deposited are prepared and used as electrodes of the biosensor, and the detection of biomaterials has been found to be excellent in detecting biological components such as glucose.
  • the nanowires in which the nanodiamonds are deposited according to the present invention have a structure elongated in the longitudinal direction and are characterized by adsorbing nanodiamond particles through self-assembly by electrostatic charge on the outer circumferential surface of the nanowires in which no phase change occurs.
  • the nanowires on which the diamond is deposited according to the present invention are constructed by depositing diamond particles coated with a second polymer having a polarity opposite to the first polymer on the outer circumferential surface of the nanowire coated with the first polymer having polarity.
  • the nanowires are not particularly limited in kind and selected from nickel (Ni), gold (Au), platinum (Pt), and alloys thereof; Any one selected from carbon (C), silicon (Si), and germanium (Ge); Any one selected from silicon oxide (SiO 2 ), titanium oxide (TiO 2 ) and tungsten oxide (WO X ); And any one selected from gallium nitride (GaN), indium phosphate (InP), and silicon carbide (SiC);
  • Various nanowires, such as a material selected from among them, may be applied, and the shape may be a nanowire, a nanotube, or a nanorod having a structure extending in the longitudinal direction.
  • nanowires, nanotubes and nanorods include carbon nanowires, carbon nanotubes and carbon nanorods, more preferably carbon nanotubes, and specific examples of the carbon nanotubes are single walls.
  • the first polymer used in the present invention is selected from poly (styrene sulfonate), poly S-119, polyaniline and Nafion, and the second polymer is poly (di-methyldiallylammonium chloride) and poly (ethyleneimine).
  • the second polymer may be selected from poly (styrene sulfonate), poly S-119, polyaniline and Nafion, and the first polymer may be poly (di-methyldiallylammonium chloride) and poly (ethyleneimine).
  • the average particle size of the nanodiamond particles used in the present invention may be 5-100 nm.
  • nanowire core-diamond shell type nanowire formed by depositing a nanodiamond thin film layer on the nanowire so as to surround the outer circumferential surface of the nanowire according to the present invention
  • the nanowire is a first polymer layer coated on the outer peripheral surface of the nanowire; A plurality of nanodiamond particle layers positioned on a surface of the first polymer layer; And a second polymer layer surrounding each of the plurality of nanodiamond particles.
  • the polarities of the first polymer and the second polymer are opposite to each other, which is preferable for depositing nanodiamond particles on the nanowires by electrostatic self-assembly.
  • the nanowire pretreatment method using the electrostatic self-assembly method of the nanodiamond particles according to the present invention is characterized in that it comprises the following steps.
  • step (d) immersing the nanowires coated with the first polymer obtained in step (b) in a solution in which the nanodiamond particles coated with the second polymer obtained in step (c) are dispersed.
  • the step (d) is characterized in that the nanodiamond particles are adsorbed to the nanowires through a self-assembly method by the electrostatic charge to serve as a deposition nucleus when the diamond film is subsequently deposited.
  • the nanoparticles obtained in step (b) after step (c) is characterized in that it further comprises the step of surface treatment with a polymer having a polarity opposite to the polarity of the polymer of step (b).
  • step (a) it is possible to synthesize a nanowire of a carbon material by inducing a reaction with a carbon source gas in a metal catalyst in the reactor.
  • the metal catalyst is not particularly limited in kind, and includes, for example, nanoparticles of Ni, Fe, Cr, and Mo, metal particles such as stainless steel, carbon steel, and nickel, and iron oxides, nickel oxides, iron chlorides, Nickel chloride, ferrocine can be selected, and specific examples include SUS304, SUS316L, and the like, and the size of the metal catalyst is preferably 5-500 nm.
  • the nanowires include carbon nanowires, carbon nanotubes and carbon nanorods, and more preferably carbon nanotubes.
  • Specific examples of the carbon nanotubes include single-walled nanotubes (SWCNTs) and double-walled nanoparticles. Tubes (DWCNTs), multiwall nanotubes (MWCNTs), and the like.
  • the first polymer of step (b) and the second polymer of step (c) are PSS (poly (styrene sulfonate)) and PDDA (poly (di-methyldiallylammonium chloride), respectively. )), PEI (poly (ethyleneimine)), poly S-119, polyaniline and Nafion.
  • the average particle size of the nanodiamond particles may be 5-100 nm.
  • a method of manufacturing a nanowire in a nanowire core-diamond shell form by depositing a nanodiamond thin film on the pretreated nanowire is performed so as to surround the outer circumferential surface of the nanowire by chemical vapor deposition on the pretreated nanowire. And depositing a diamond thin film layer.
  • step of depositing the nano-diamond thin film layer using the chemical vapor deposition method by depositing a diamond thin film doped with boron can further increase the electrical conductivity of the diamond.
  • the nanowire pretreatment method using the electrostatic self-assembly method of the nanodiamond particles according to the present invention the electrostatic self-assembly method using the charge that the diamond nanoparticles of 5-100 nm size has a diamond nanoparticle layer to the nanowire
  • the electrostatic self-assembly method using the charge that the diamond nanoparticles of 5-100 nm size has a diamond nanoparticle layer to the nanowire
  • Pretreatment method of nanowires according to the present invention is a process of coating nanodiamonds with a polymer chain having a polarity opposite to the electrostatic charge of the nanodiamond particles, a process of coating the nanowires to be coated with a polymer chain having a polarity, and Nanodiamond particles coated with the polymer chain is divided into a process of coating the nanowires by self-assembly.
  • the first polymer and the second polymer used in the present invention are not particularly limited and may be appropriately selected and used according to the electrostatic charge possessed by the polymer itself.
  • PSS poly (styrene sulfonate)
  • PDDA poly (di-methyldiallylammonium chloride)
  • PEI poly (ethyleneimine)
  • poly S-119 polyaniline and nafion
  • polyaniline and nafion can be used.
  • Table 1 shows the polarity of the polymer.
  • the charge of diamond particles having a different value depending on pH should be taken into account.
  • nanodiamonds they tend to have a positive charge in an acid atmosphere and a negative charge in a basic atmosphere, so in the case of acid, an aqueous solution in which an anionic polymer is dispersed should be used.
  • an aqueous solution in which a cationic polymer is dispersed should be used.
  • the nanodiamond particles may be coated with a polymer chain that is opposite to the charge of the particles, but is not limited thereto.
  • FIG. 1 is a view showing the outline of the electrostatic self-assembly of the nano diamond particles of the present invention.
  • A the charge of the nanodiamond
  • B the charge of the polymer used to coat it should be B. If charge A is +, charge B is-and if charge A is-, charge B is +.
  • carbon nanotubes are coated using a polar polymer, and charge B is-when charge A is +, and charge B is + when charge A is-.
  • the type of polymer used at this time is as shown in [Table 1].
  • Coating the carbon nanotubes with a polymer is carried out by immersing the nanowires in a solution of 1-50% by weight of the ionic polymer dispersed in the solvent shown in [Table 1]. It is enough to dry well using nitrogen gas or the like.
  • the nanodiamond particles and nanowires subjected to the above process are (i) when the charges of the respective surface polymers are different, the nanowire particles are immersed in a solution in which the nanodiamond particles are dispersed, and after 10 seconds or more, they are taken out in a pure solvent.
  • diamond nucleation pretreatment is terminated ((a) of FIG. 1), and (ii) when the charges of the respective surface polymers are the same, After dipping carbon nanotubes in a polar polymer solution for 10 seconds or more, take them out, wash them again in a pure solvent, dry them well using nitrogen gas, etc. without moisture (Fig. 1). (B)).
  • the diamond when the diamond is synthesized by chemical vapor phase synthesis (plasma chemical vapor phase synthesis, thermal filament chemical vapor phase synthesis, etc.) on the nanowire to which nanodiamond is attached by electrostatic self-assembly, the above-mentioned three-dimensional Nanowires in which diamond thin films having a typical structure are deposited, that is, nanowire core-diamond shell forms, may be manufactured.
  • chemical vapor phase synthesis plasma chemical vapor phase synthesis, thermal filament chemical vapor phase synthesis, etc.
  • the three-dimensional structure of the diamond thin film deposition method according to the present invention is the thickness of the nanowire structure is determined by the thickness of the nanowire, the size and density of the nanodiamond particles.
  • the diamond synthesis of the nanowires is prepared by chemical vapor phase synthesis method, it is possible to control the boron doping concentration by adjusting the concentration of borane (Borane) gas.
  • An electrode including nanowires on which nanodiamonds are deposited according to the present invention is characterized in that it has a structure extending in the longitudinal direction without phase change.
  • glucose oxidase In order to detect glucose using the diamond-deposited nanowires according to the present invention, glucose oxidase must be attached to the surface of the diamond-deposited nanowire hybrid structure, and the method of attaching the same is as follows.
  • the surface of the nanowires on which nanodiamonds are deposited by oxygen plasma treatment is treated with oxygen atoms, and then 3-aminopropyltriethoxysilane (APTES) is bonded to oxygen atoms, and then glutaraldehyde is used.
  • APTES 3-aminopropyltriethoxysilane
  • 3-aminopropyltriethoxysilane used for the surface treatment has an amine group at the terminal, it cannot bind to a glucose oxidase having an amine group at the terminal. Therefore, it is possible to attach glucose oxidase by using glutaaldehyde having a carboxyl group at both ends.
  • a three-dimensional diamond / nanowire hybrid structure in which glucose oxidase is immobilized can be used as an electrode, and electrons generated by the following reaction can be detected.
  • the biological component detected using the nanowires on which the nanodiamonds are deposited according to the present invention may be sugars, proteins, and the like in blood and urine, including DNA, proteins, and glucose.
  • Carbon nanotubes were prepared on a silicon oxide substrate by inducing a reaction of a metal catalyst SUS316L with a carbon source gas in a reactor using a known method.
  • the carbon nanotubes prepared in Preparation Example were immersed in a nitric acid solution containing 10 ml of nitric acid in 100 ml of distilled water at 80 ° C. for 2 hours. Then, the carbon nanotubes surface-modified with acid were coated with PDDA (poly diallyldimethyl ammonium chloride Mw: 400,000-500,000) cationic polymer. Cationic nanodiamond particles having an average particle size of 10 nm were coated with PSS (poly sodium 4-styrene sulfonate, Mw: 70,000) anionic polymer by a ball milling process for 1 hour.
  • PDDA poly diallyldimethyl ammonium chloride Mw: 400,000-500,000
  • the carbon nanotubes coated with PDDA were immersed in a solution in which the PSS-coated nanodiamond particles were dispersed, and dried by washing with distilled water.
  • a diamond thin film was deposited on the carbon nanotubes prepared above using a thermal filament chemical vapor deposition method for 1 hour to prepare a nanowire on which the diamond thin film was deposited, and the SEM photograph is shown in FIG. 3.
  • the carbon nanotubes prepared in Preparation Example were immersed in a nitric acid solution containing 10 ml of nitric acid in 100 ml of distilled water at 80 ° C. for 2 hours. Then, the carbon nanotubes surface-modified with acid were coated with PDDA (poly diallyldimethyl ammonium chloride Mw: 400,000-500,000) cationic polymer. Cationic nanodiamond particles having an average particle size of 10 nm were immersed in a known method on an aqueous PSS (poly sodium 4-styrene n sulfonate Mw: 70,000) anionic polymer solution and coated with the polymer.
  • PDDA poly diallyldimethyl ammonium chloride Mw: 400,000-500,000
  • Cationic nanodiamond particles having an average particle size of 10 nm were subjected to a ball milling process for 1 hour, coated with poly sodium 4-styrene n sulfonate Mw (70,000) anionic polymer, and anionic silicon oxide substrate was coated with PDDA (poly diallyldimethyl ammonium chloride Mw: 400,000-500,000) was coated with a cationic polymer.
  • the substrate prepared above was immersed in a solution in which the PSS-coated nanodiamond particles were dispersed, washed with distilled water and dried, and then boron-doped diamond was heated for 1 hour using a hot filament chemical vapor deposition method.
  • a diamond thin film formed by deposition and having a thin film thickness of 80 nm was synthesized on a silicon oxide substrate.
  • Cationic nano diamond particles having an average particle size of 10 nm were coated with a PSS (poly sodium 4-styrene n sulfonate Mw: 70,000) anionic polymer by performing a ball milling process for 5 hours, and the carbon nanotubes prepared in the preparation example.
  • PSS poly sodium 4-styrene n sulfonate Mw: 70,000
  • the carbon nanotubes prepared in the preparation example was immersed in a nitric acid solution containing 10 ml of nitric acid in 100 ml of distilled water at 80 °C for 2 hours. Then, the carbon nanotubes surface-modified with acid were coated with PDDA (poly diallyldimethyl ammonium chloride Mw: 400,000-500,000) cationic polymer.
  • PDDA poly diallyldimethyl ammonium chloride Mw: 400,000-500,000
  • washed with distilled water washed with distilled water, and dried on a dried specimen using hot filament chemical vapor deposition to deposit boron-doped diamond and wrapped in a diamond thin film.
  • a uniform diamond thin film of 100 nm or less can be easily deposited without physically damaging the surface of the carbon nanotubes.
  • the thickness of the thin film depends on the size of the nanodiamond particles, and since the average particle size (size) of the nanodiamond particles is 5-100 nm, a smooth diamond thin film layer having a thickness of 20 nm or more can be formed. There is no problem of physical impact or residual stress applied and there is no need to apply an electric field, and carbon nanotubes can be coated with a thin film of high smoothness.
  • Example 2 After the surface of the diamond-deposited carbon nanotubes prepared in Example 1 were surface treated with oxygen atoms using oxygen plasma, the 3-aminopropyltriethoxysilane (APTES) was combined with oxygen atoms using a known method. After the synthesis, a glutaaldehyde was combined with glucose oxidase to prepare a biosensor, and the detection sensitivity of detecting glucose is shown in FIG. 4.
  • APTES 3-aminopropyltriethoxysilane
  • a biosensor was manufactured by preparing an electrode made of gold (Au) using a known method, and the detection sensitivity of detecting glucose using the same is shown in FIG. 4.
  • a biosensor was manufactured by preparing an electrode made of platinum (Pt) using a known method, and the detection sensitivity of detecting glucose using the same is shown in FIG. 4.
  • Example 1-4 according to the present invention can be seen that the specific surface area is very small in the biosensor by using a nanowire deposited with nanodiamonds.
  • the detection sensitivity of Example 4 was about 6000 times higher than Comparative Example 2, about 100 times higher than Comparative Example 3, and about 30 times higher than that of Comparative Example 4.
  • Example 4 can be detected in a low concentration of solution, it can be seen that it is a high sensitivity biosensor.
  • the surface of the silicon nanowire is formed with a natural oxide film, the surface is negatively charged.
  • the surface of the negatively charged silicon nanowires was coated with PDDA (poly diallyldimethyl ammonium chloride) cationic polymer.
  • Cationic nanodiamond particles having an average particle size of 10 nm were coated with a PSS (poly sodium 4-stylene sulfonate) anionic polymer by a ball milling process for 1 hour.
  • PSS poly sodium 4-stylene sulfonate
  • the PDDA-coated silicon nanowires were immersed in a solution in which PSS-coated nanodiamond particles were dispersed, and dried by washing with distilled water.
  • a diamond thin film was deposited on the silicon nanowires prepared above using a thermal filament chemical vapor deposition method for 1 hour to prepare a silicon nanowire on which the diamond thin film was deposited, and the SEM photograph is shown in FIG. 5.
  • the nanowire core-diamond shell type nanowire according to the present invention is a nanowire having a three-dimensional diamond-nanowire hybrid structure (BDD-NW), and the effective effective area of the reaction is improved and used as a biosensor electrode. It has excellent selectivity and detection sensitivity, long storage stability and excellent reproducibility, and enables fast time detection.
  • the manufacturing method of the nanowire core-diamond shell type nanowire according to the present invention is capable of producing nanowires having a three-dimensional structure compared to the synthesis method by etching diamond thick film and hydrogen plasma treatment of conventional nanowires, and has excellent manufacturing process efficiency. Do.

Abstract

The present invention relates to a nanowire having a diamond deposited thereon, and a manufacturing method thereof, and more particularly to a nanowire on which a diamond having high sensitivity is deposited, so as to detect a biological component such as glucose by attaching the nanodiamond to the nanowire extended in the longitudinal direction through a self-assembling method using electrostatic charges, depositing the diamond using the attached nanodiamond as a core, and finally manufacturing a nanowire core-diamond shell type of the nanowire to be used as an electrode, and a manufacturing method thereof.

Description

다이아몬드가 증착된 나노선, 그 제조방법 및 이를 포함하는 바이오센서Nanowire deposited with diamond, manufacturing method thereof and biosensor comprising same
본 발명은 나노 다이아몬드가 증착된 나노선 및 이의 제조방법에 관한 것으로 나노 다이아몬드가 정전하에 의한 자기조립 방법을 통해, 길이방향으로 신장된 나노선에 흡착되어 이를 핵으로 하여 다이아몬드를 증착하여 최종적으로 나노선 코어-다이아몬드 쉘 형태의 나노구조를 제조하여 바이오 센서용 전극으로 사용함으로써 글루코오스와 같은 생체 성분을 검출하는데 높은 감도를 갖는 다이아몬드가 증착된 나노선 및 이의 제조방법에 관한 것이다.The present invention relates to a nanowire on which nanodiamonds are deposited, and a method of manufacturing the same, and the nanodiamonds are adsorbed on the nanowires extending in the longitudinal direction through a self-assembly method by electrostatic charge, and the diamonds are deposited using the nucleus as a nucleus. The present invention relates to a nanowire on which diamond is deposited having a high sensitivity for detecting a biological component such as glucose by preparing a nanostructure in the form of a route core-diamond shell and using it as an electrode for a biosensor.
글루코오스와 같은 생체 성분 검출용 전기화학 바이오센서 전극을 위해서는 높은 비표면적이 요구된다. 이러한 높은 비표면적을 이루기 위해서는 필름 형태의 전극 보다는 나노선 및 나노입자를 이용한 전극이 대두되고 있고, 현재 연구되어지고 있는 재료는 금, 백금 및 금속산화물 등이 주류를 이루고 있다. 이러한 재료들은 화학적 및 전기화학적으로 불안정한 특성을 보이고, 감도가 낮고 제조 단가가 비싸다. 본 발명에서 제안된 다이아몬드는 현재 연구되어지고 있는 재료들 보다 우수한 전기화학적 특성인 음의 전자친화도(Negative electron affinity), 넓은 전위창(wide potential window), 표면 개질의 용이성(ease of surface modification), 낮은 바탕전류(low background current) 및 화학적 안정성(chemical stability)을 갖기 때문에 전기화학 바이오센서로의 응용 가능성이 매우 높다. 그러나, 다이아몬드는 그가 갖는 합성조건의 제약으로 인하여 나노선 형태의 구조체를 만들기가 매우 어렵다.High specific surface area is required for electrochemical biosensor electrodes for the detection of biological components such as glucose. In order to achieve such a high specific surface area, electrodes using nanowires and nanoparticles are emerging, rather than film-type electrodes, and gold, platinum, and metal oxides are currently being studied. These materials exhibit chemical and electrochemical instability, low sensitivity, and high manufacturing costs. The diamond proposed in the present invention has better electrochemical properties than those currently studied, such as negative electron affinity, wide potential window, and ease of surface modification. Because of its low background current and chemical stability, it is highly applicable to electrochemical biosensors. However, diamond is very difficult to make a nanowire structure due to the limitations of the synthetic conditions.
현재까지 나노선 형태의 구조체를 형성하는 방법은 2가지로 요약된다. 하나는 단결정 다이아몬드를 나노입자의 마스킹을 통한 산소 플라즈마 식각법을 이용하여 제조하는 방법으로 이 방법은 그 길이와 두께조절이 용이하다는 장점을 갖고 있으나 제조를 위한 장치비용이 많이 들고, 기판에 수직방향으로 정렬된 나노선 만을 제조할 수 있는 한계로 인하여 네트워크 형태의 구조물보다 비표면적이 낮은 단점이 있다. 다른 하나는 탄소나노튜브로부터 수소플라즈마 처리를 통해 얻는 방법이 있는데, 이 방법의 경우, 합성 후 다이아몬드의 외벽에 비정질 탄소상이 덮고 있는 형태를 띄어 이를 제거하기 위한 공정이 필요하며, 전해질 내에서 기판과의 접착력이 약해 전기화학 센서로 응용하는데 어렵다는 문제점 등을 가지고 있다.To date, there are two ways to form nanowire-shaped structures. One method is to produce single crystal diamond using oxygen plasma etching through the masking of nanoparticles. This method has the advantage that its length and thickness can be easily adjusted. Due to the limitation of manufacturing only nanowires arranged in the shape, the specific surface area is lower than that of the network type structure. The other method is obtained by hydrogen plasma treatment from carbon nanotubes. In this method, the amorphous carbon phase is covered on the outer wall of diamond after synthesis, and a process for removing them is required. It has a problem that it is difficult to apply as an electrochemical sensor due to its weak adhesive strength.
따라서, 본 발명이 해결하고자 하는 과제는 상기와 같은 문제점들을 개선하기 위해 안출된 것으로서, 바이오센서에 적합한 높은 비표면적을 갖는 다이아몬드가 증착된 나노선, 그 제조방법 및 이를 이용하여 글루코오스와 같은 생체 성분 검출용 고감도 바이오센서를 제공하는 것이다.Accordingly, the problem to be solved by the present invention is to solve the problems as described above, nano-deposited nanowires having a high specific surface area suitable for biosensors, a method for manufacturing the same and a biological component such as glucose using the same It is to provide a high sensitivity biosensor for detection.
본 발명은 상기 과제를 해결하기 위하여,The present invention to solve the above problems,
나노선의 외주면을 감싸도록 나노 다이아몬드 박막층이 나노선에 증착되어 형성된 나노선 코어-다이아몬드 쉘 형태의 나노선에 있어서,In the nanowire core-diamond shell type nanowire formed by depositing a nanodiamond thin film layer on the nanowire so as to surround the outer circumferential surface of the nanowire,
상기 나노선은 나노선의 외주면에 코팅된 제1 고분자층; 상기 제1 고분자층의 표면에 위치하는 복수개의 나노 다이아몬드 입자층; 및 상기 복수개의 나노다이아몬드 입자 각각을 감싸는 제2 고분자층;을 포함하고, The nanowire is a first polymer layer coated on the outer peripheral surface of the nanowire; A plurality of nanodiamond particle layers positioned on a surface of the first polymer layer; And a second polymer layer surrounding each of the plurality of nanodiamond particles;
상기 제1 고분자와 제2 고분자의 극성은 서로 반대인 것을 특징으로 하는 나노선 코어-다이아몬드 쉘 형태의 나노선을 제공한다. The polarity of the first polymer and the second polymer provides a nanowire core-diamond shell type nanowire, characterized in that the opposite polarity.
본 발명의 일 실시예에 의하면, 상기 나노선은 상변화가 없고 길이 방향으로 신장되는 구조일 수 있다. According to an embodiment of the present invention, the nanowire may have a structure extending in the longitudinal direction without phase change.
상기 "상변화"란 열을 가함에 따라 물질이 고체, 액체, 기체로 변화하는 것을 일컬으며, 상태변화(change of state)라고도 한다. The term " phase change " refers to the change of a substance into a solid, liquid, or gas by applying heat, and is also called a change of state.
본 발명의 다른 일 실시예에 의하면, 상기 나노 다이아몬드 박막층은 보론이 도핑된 다이아몬드 박막층일 수 있다. According to another embodiment of the present invention, the nanodiamond thin film layer may be a diamond thin film layer doped with boron.
본 발명의 다른 일 실시예에 의하면, 상기 나노선은 니켈(Ni), 금(Au), 백금(Pt) 및 이들의 합금 중에서 선택되는 어느 하나; 탄소(C), 실리콘(Si) 및 게르마늄(Ge) 중에서 선택되는 어느 하나; 실리콘옥사이드(SiO2), 티타늄옥사이드(TiO2) 및 텅스텐옥사이드(WOX) 중에서 선택되는 어느 하나; 및 갈륨나이트라이드(GaN), 인듐포스페이트(InP) 및 실리콘카바이드(SiC) 중에서 선택되는 어느 하나; 중에서 선택되는 물질로 이루어져 있을 수 있으며, 상기 나노선의 형태는 나노와이어, 나노튜브 또는 나노로드일 수 있다.According to another embodiment of the present invention, the nanowires are any one selected from nickel (Ni), gold (Au), platinum (Pt), and alloys thereof; Any one selected from carbon (C), silicon (Si), and germanium (Ge); Any one selected from silicon oxide (SiO 2 ), titanium oxide (TiO 2 ) and tungsten oxide (WO X ); And any one selected from gallium nitride (GaN), indium phosphate (InP), and silicon carbide (SiC); It may be made of a material selected from, the shape of the nanowires may be nanowires, nanotubes or nanorods.
본 발명의 다른 일 실시예에 의하면, 상기 제1 고분자는 폴리(스티렌 설포네이트), 폴리 S-119, 폴리아닐린 및 나피온으로부터 선택되는 어느 하나일 수 있으며, 상기 제2 고분자는 폴리(디-메틸디알릴암모늄클로라이드) 및 폴리(에틸렌이민) 중에서 선택되는 어느 하나일 수 있다. According to another embodiment of the present invention, the first polymer may be any one selected from poly (styrene sulfonate), poly S-119, polyaniline and nafion, and the second polymer may be poly (di-methyl Diallyl ammonium chloride) and poly (ethyleneimine).
본 발명의 다른 일 실시예에 의하면, 상기 제1 고분자는 폴리(디-메틸디알릴암모늄클로라이드) 및 폴리(에틸렌이민) 중에서 선택되는 어느 하나일 수 있으며, 상기 제2 고분자는 폴리(스티렌 설포네이트), 폴리 S-119, 폴리아닐린 및 나피온으로부터 선택되는 어느 하나일 수 있다. According to another embodiment of the present invention, the first polymer may be any one selected from poly (di-methyldiallylammonium chloride) and poly (ethyleneimine), and the second polymer may be poly (styrene sulfonate ), Poly S-119, polyaniline and Nafion.
본 발명의 다른 일 실시예에 의하면, 상기 나노 다이아몬드 입자의 크기는 5-100 ㎚일 수 있다. According to another embodiment of the present invention, the size of the nanodiamond particles may be 5-100 nm.
본 발명은 상기 과제를 해결하기 위하여, The present invention to solve the above problems,
상기 나노선 코어-다이아몬드 쉘 형태의 나노선 및 상기 나노선에 결합되는 글루코오스 산화효소를 포함하는 바이오센서용 전극을 제공한다. Provided are an electrode for a biosensor comprising the nanowire core-diamond shell type nanowire and a glucose oxidase bound to the nanowire.
본 발명의 일 실시예에 의하면, 상기 나노선의 표면에 3-아미노프로필트라이에톡시실레인을 결합시킨 후, 글루타알데하이드를 이용하여 글루코오스 산화효소를 나노선에 결합시킬 수 있다. According to an embodiment of the present invention, after binding 3-aminopropyltriethoxysilane to the surface of the nanowire, the glucose oxidase may be bound to the nanowire using glutaraldehyde.
또한, 본 발명은 상기 전극을 포함하는 바이오센서로서, 상기 바이오센서는 생체내 글루코오스 성분을 300 μA/mM - 10 mA/mM의 감도로 검출하는 것을 특징으로 하는 바이오센서를 제공한다. The present invention also provides a biosensor comprising the electrode, wherein the biosensor detects a glucose component in vivo with a sensitivity of 300 μA / mM-10 mA / mM.
본 발명은 상기 과제를 해결하기 위하여, The present invention to solve the above problems,
(a) 나노선을 합성하는 단계;(a) synthesizing the nanowires;
(b) 상기 나노선의 외주면에 극성을 갖는 제1 고분자를 코팅하는 단계;(b) coating a first polymer having a polarity on an outer circumferential surface of the nanowire;
(c) 나노 다이아몬드 입자의 표면에 표면의 정전하와 반대되는 극성을 갖는 제2 고분자를 코팅하는 단계; 및(c) coating a surface of the nanodiamond particles with a second polymer having a polarity opposite to the surface static charge; And
(d) 상기 (c) 단계에서 수득된 제2 고분자가 코팅된 나노 다이아몬드 입자를 분산시킨 용액에 상기 (b) 단계에서 수득된 제1 고분자가 코팅된 나노선을 침지시키는 단계;를 포함하고,(d) immersing the nanowires coated with the first polymer obtained in step (b) in a solution in which the nanodiamond particles coated with the second polymer obtained in step (c) are dispersed.
상기 (d) 단계는 상기 나노 다이아몬드 입자가 정전하에 의한 자기조립 방법을 통해 상기 나노선에 흡착되어 이후 다이아몬드 박막 증착시 증착핵으로 작용하는 것을 특징으로 하는 나노선의 전처리방법을 제공한다.The step (d) provides a nanowire pretreatment method characterized in that the nanodiamond particles are adsorbed onto the nanowires through a self-assembly method by electrostatic charge and then act as a deposition nucleus when the diamond thin film is deposited.
본 발명의 일 실시예에 의하면, 상기 나노선의 전처리 방법은 상기 (b) 단계의 고분자의 극성과 (c) 단계의 고분자의 극성이 같은 경우에,According to one embodiment of the invention, the nanowire pretreatment method is the polarity of the polymer of step (b) and the polymer of step (c) is the same,
(e) 상기 (c) 단계 이후에 상기 (b) 단계에서 수득된 나노선의 표면을 상기 (b) 단계의 고분자의 극성과 반대되는 극성을 갖는 고분자로 표면처리하는 단계;를 더 포함할 수 있다. (e) after the step (c), the surface of the nanowire obtained in step (b) may be surface treated with a polymer having a polarity opposite to that of the polymer of step (b); .
본 발명의 다른 일 실시예에 의하면, 상기 나노선은 니켈(Ni), 금(Au), 백금(Pt) 및 이들의 합금 중에서 선택되는 어느 하나; 탄소(C), 실리콘(Si) 및 게르마늄(Ge) 중에서 선택되는 어느 하나; 실리콘옥사이드(SiO2), 티타늄옥사이드(TiO2) 및 텅스텐옥사이드(WOX) 중에서 선택되는 어느 하나; 및 갈륨나이트라이드(GaN), 인듐포스페이트(InP) 및 실리콘카바이드(SiC) 중에서 선택되는 어느 하나; 중에서 선택되는 물질로 이루어져 있을 수 있으며, 상기 나노선의 형태는 나노와이어, 나노튜브 또는 나노로드일 수 있다.According to another embodiment of the present invention, the nanowires are any one selected from nickel (Ni), gold (Au), platinum (Pt), and alloys thereof; Any one selected from carbon (C), silicon (Si), and germanium (Ge); Any one selected from silicon oxide (SiO 2 ), titanium oxide (TiO 2 ) and tungsten oxide (WO X ); And any one selected from gallium nitride (GaN), indium phosphate (InP), and silicon carbide (SiC); It may be made of a material selected from, the shape of the nanowires may be nanowires, nanotubes or nanorods.
본 발명의 다른 일 실시예에 의하면, 상기 제1 고분자는 폴리(스티렌 설포네이트), 폴리 S-119, 폴리아닐린 및 나피온으로부터 선택되는 어느 하나일 수 있으며, 상기 제2 고분자는 폴리(디-메틸디알릴암모늄클로라이드) 및 폴리(에틸렌이민) 중에서 선택되는 어느 하나일 수 있다. According to another embodiment of the present invention, the first polymer may be any one selected from poly (styrene sulfonate), poly S-119, polyaniline and nafion, and the second polymer may be poly (di-methyl Diallyl ammonium chloride) and poly (ethyleneimine).
본 발명은 상기 과제를 해결하기 위하여, The present invention to solve the above problems,
상기 전처리 방법에 따라 전처리된 나노선 상에 화학기상증착법을 이용하여 나노선의 외주면을 감싸도록 나노 다이아몬드 박막층을 증착시키는 단계;를 포함하는 나노선 코어-다이아몬드 쉘 형태의 나노선의 제조방법을 제공한다. It provides a method for producing a nanowire core-diamond shell form comprising the step of depositing a nano-diamond thin film layer on the nanowire pre-treated according to the pretreatment method using a chemical vapor deposition method to surround the outer peripheral surface of the nanowire.
본 발명의 일 실시예에 의하면, 상기 나노 다이아몬드 박막층은 보론이 도핑된 다이아몬드 박막층일 수 있으며, 상기 박막층의 두께는 20-100 ㎚일 수 있다. According to an embodiment of the present invention, the nanodiamond thin film layer may be a boron-doped diamond thin film layer, the thickness of the thin film layer may be 20-100 nm.
본 발명에 따른 나노선 코어-다이아몬드 쉘 형태의 나노선은 3차원 다이아몬드-나노선 하이브리드 구조를 갖는 나노선(BDD-NW)으로서, 반응 유효면적이 향상되어 이를 바이오센서용 전극으로 활용시 생체물질에 대한 선택성 및 검출감도가 우수하고, 긴 저장 안정성 및 우수한 재현성을 가지며, 빠른 시간 내 검출이 가능하다. 또한, 본 발명에 따른 나노선 코어-다이아몬드 쉘 형태의 나노선의 제조방법은 종래 다이아몬드 후막의 식각 및 나노선의 수소플라즈마 처리를 통한 합성법 대비 3차원 구조의 나노선 제조가 가능하고, 제조공정 효율이 우수하다.The nanowire core-diamond shell type nanowire according to the present invention is a nanowire having a three-dimensional diamond-nanowire hybrid structure (BDD-NW), and the effective effective area of the reaction is improved and used as a biosensor electrode. It has excellent selectivity and detection sensitivity, long storage stability and excellent reproducibility, and enables fast time detection. In addition, the manufacturing method of the nanowire core-diamond shell type nanowire according to the present invention is capable of producing nanowires having a three-dimensional structure compared to the synthesis method by etching diamond thick film and hydrogen plasma treatment of conventional nanowires, and has excellent manufacturing process efficiency. Do.
도 1은 본 발명에 따른 나노 다이아몬드 입자 정전하 자기조립의 개요를 나타내는 도면이다.1 is a view showing an outline of the electrostatic self-assembly of the nano diamond particles according to the present invention.
도 2는 본 발명에 따른 보론이 도핑된 나노결정 다이아몬드가 코팅된 나노선의 3차원 나노선 구조체 모식도이다.Figure 2 is a schematic diagram of the three-dimensional nanowire structure of the nanowires coated with boron-doped nanocrystalline diamond according to the present invention.
도 3은 본 발명에 따른 보론이 도핑된 나노결정 다이아몬드가 코팅된 탄소나노튜브 나노선의 구조체의 SEM 사진이다. 상기 나노선의 평균 두께는 약 100 ㎚ 이다.3 is a SEM photograph of a structure of carbon nanotube nanowires coated with boron-doped nanocrystalline diamond according to the present invention. The average thickness of the nanowires is about 100 nm.
도 4는 비교예 2-4 및 실시예 4에 대한 글루코오스 검출 실험을 실시한 결과를 나타낸 그래프이다.4 is a graph showing the results of glucose detection experiments for Comparative Examples 2-4 and Example 4. FIG.
도 5는 본 발명에 따라 나노결정 다이아몬드가 코팅된 실리콘 나노선 구조체의 SEM 이미지이다.5 is an SEM image of a silicon nanowire structure coated with nanocrystalline diamond according to the present invention.
본 발명에서는 다이아몬드가 증착된 나노선을 제조하여 바이오센서의 전극으로 이용하여 글루코오스와 같은 생체 성분을 검출하는데에 있어서 뛰어난 생체물질 검출감도를 확인하였다.In the present invention, the nanowires with the diamond deposited are prepared and used as electrodes of the biosensor, and the detection of biomaterials has been found to be excellent in detecting biological components such as glucose.
본 발명에 따른 나노 다이아몬드가 증착된 나노선은 길이방향으로 신장된 구조를 가지고 있으며 상변화가 일어나지 않는 나노선의 외주면에 정전하에 의한 자기조립을 통해 나노 다이아몬드 입자를 흡착시켜 이루어지는 것을 특징으로 한다.The nanowires in which the nanodiamonds are deposited according to the present invention have a structure elongated in the longitudinal direction and are characterized by adsorbing nanodiamond particles through self-assembly by electrostatic charge on the outer circumferential surface of the nanowires in which no phase change occurs.
본 발명에 따른 다이아몬드가 증착된 나노선은 극성을 갖는 제1 고분자가 코팅된 나노선의 외주면에 상기 제1 고분자와 반대되는 극성을 갖는 제2 고분자가 코팅된 다이아몬드 입자를 증착시켜 구성된다.The nanowires on which the diamond is deposited according to the present invention are constructed by depositing diamond particles coated with a second polymer having a polarity opposite to the first polymer on the outer circumferential surface of the nanowire coated with the first polymer having polarity.
상기 나노선은 그 종류에 특별히 한정이 없고, 니켈(Ni), 금(Au), 백금(Pt) 및 이들의 합금 중에서 선택되는 어느 하나; 탄소(C), 실리콘(Si) 및 게르마늄(Ge) 중에서 선택되는 어느 하나; 실리콘옥사이드(SiO2), 티타늄옥사이드(TiO2) 및 텅스텐옥사이드(WOX) 중에서 선택되는 어느 하나; 및 갈륨나이트라이드(GaN), 인듐포스페이트(InP) 및 실리콘카바이드(SiC) 중에서 선택되는 어느 하나; 중에서 선택되는 물질 등 다양한 나노선이 적용 가능하고, 그형태는 길이 방향으로 신장되는 구조를 갖는 나노와이어, 나노튜브 또는 나노로드일 수 있다.The nanowires are not particularly limited in kind and selected from nickel (Ni), gold (Au), platinum (Pt), and alloys thereof; Any one selected from carbon (C), silicon (Si), and germanium (Ge); Any one selected from silicon oxide (SiO 2 ), titanium oxide (TiO 2 ) and tungsten oxide (WO X ); And any one selected from gallium nitride (GaN), indium phosphate (InP), and silicon carbide (SiC); Various nanowires, such as a material selected from among them, may be applied, and the shape may be a nanowire, a nanotube, or a nanorod having a structure extending in the longitudinal direction.
상기 나노와이어, 나노튜브 및 나노로드의 구체예로는 탄소나노와이어, 탄소나노튜브 및 탄소나노로드 등이 있으며, 더욱 바람직하게는 탄소나노튜브가 있고, 상기 탄소나노튜브의 구체예로는 단일벽 나노튜브(SWCNT), 이중벽 나노튜브(DWCNT), 다중벽 나노튜브(MWCNT) 등이 있다.Specific examples of the nanowires, nanotubes and nanorods include carbon nanowires, carbon nanotubes and carbon nanorods, more preferably carbon nanotubes, and specific examples of the carbon nanotubes are single walls. Nanotubes (SWCNT), double-walled nanotubes (DWCNT), multi-walled nanotubes (MWCNT), and the like.
본 발명에 사용되는 상기 제1 고분자는 폴리(스티렌 설포네이트), 폴리 S-119, 폴리아닐린 및 나피온으로부터 선택되고, 제2 고분자는 폴리(디-메틸디알릴암모늄클로라이드) 및 폴리(에틸렌이민)이거나,The first polymer used in the present invention is selected from poly (styrene sulfonate), poly S-119, polyaniline and Nafion, and the second polymer is poly (di-methyldiallylammonium chloride) and poly (ethyleneimine). Or
상기 제2 고분자는 폴리(스티렌 설포네이트), 폴리 S-119, 폴리아닐린 및 나피온으로부터 선택되고, 제1 고분자는 폴리(디-메틸디알릴암모늄클로라이드) 및 폴리(에틸렌이민)일 수 있다.The second polymer may be selected from poly (styrene sulfonate), poly S-119, polyaniline and Nafion, and the first polymer may be poly (di-methyldiallylammonium chloride) and poly (ethyleneimine).
본 발명에 사용되는 나노 다이아몬드 입자의 평균입도는 5-100 ㎚일 수 있다.The average particle size of the nanodiamond particles used in the present invention may be 5-100 nm.
본 발명에 따른 나노선의 외주면을 감싸도록 나노 다이아몬드 박막층이 나노선에 증착되어 형성된 나노선 코어-다이아몬드 쉘 형태의 나노선에 있어서,In the nanowire core-diamond shell type nanowire formed by depositing a nanodiamond thin film layer on the nanowire so as to surround the outer circumferential surface of the nanowire according to the present invention,
상기 나노선은 나노선의 외주면에 코팅된 제1 고분자층; 상기 제1 고분자층의 표면에 위치하는 복수개의 나노 다이아몬드 입자층; 및 상기 복수개의 나노다이아몬드 입자 각각을 감싸는 제2 고분자층;을 포함하는 것을 특징으로 한다.The nanowire is a first polymer layer coated on the outer peripheral surface of the nanowire; A plurality of nanodiamond particle layers positioned on a surface of the first polymer layer; And a second polymer layer surrounding each of the plurality of nanodiamond particles.
또한, 상기 제1 고분자와 제2 고분자의 극성은 서로 반대인 것이 바람직한데, 이는 정전하 자기 조립에 의해 나노 다이아몬드 입자를 나노선에 증착시키기 위해서 바람직하다.In addition, it is preferable that the polarities of the first polymer and the second polymer are opposite to each other, which is preferable for depositing nanodiamond particles on the nanowires by electrostatic self-assembly.
본 발명에 따른 나노 다이아몬드 입자의 정전하 자기조립 방법을 이용한 나노선의 전처리방법은 하기의 단계를 포함하는 것을 특징으로 한다.The nanowire pretreatment method using the electrostatic self-assembly method of the nanodiamond particles according to the present invention is characterized in that it comprises the following steps.
(a) 나노선을 합성하는 단계,(a) synthesizing the nanowires,
(b) 상기 나노선의 외주면에 극성을 갖는 제1 고분자를 코팅하는 단계,(b) coating a first polymer having a polarity on an outer circumferential surface of the nanowire;
(c) 나노 다이아몬드 입자의 표면에 표면의 정전하와 반대되는 극성을 갖는 제2 고분자를 코팅하는 단계,(c) coating a surface of the nanodiamond particles with a second polymer having a polarity opposite to the surface static charge,
(d) 상기 (c) 단계에서 수득된 제2 고분자가 코팅된 나노 다이아몬드 입자를 분산시킨 용액에 상기 (b) 단계에서 수득된 제1 고분자가 코팅된 나노선을 침지시키는 단계.(d) immersing the nanowires coated with the first polymer obtained in step (b) in a solution in which the nanodiamond particles coated with the second polymer obtained in step (c) are dispersed.
상기 (d) 단계는 상기 나노 다이아몬드 입자가 정전하에 의한 자기조립 방법을 통해 상기 나노선에 흡착되어 이후 다이아몬드 박막 증착시 증착핵으로 작용하는 것을 특징으로 한다.The step (d) is characterized in that the nanodiamond particles are adsorbed to the nanowires through a self-assembly method by the electrostatic charge to serve as a deposition nucleus when the diamond film is subsequently deposited.
또한, 상기 나노선의 전처리 방법에서 상기 (b) 단계의 고분자의 극성과 (c) 단계의 고분자의 극성이 같은 경우에는, (e) 상기 (c) 단계 이후에 상기 (b) 단계에서 수득된 나노선의 표면을 상기 (b) 단계의 고분자의 극성과 반대되는 극성을 갖는 고분자로 표면처리하는 단계를 더 포함하는 것을 특징으로 한다.In addition, when the polarity of the polymer of step (b) and the polymer of step (c) are the same in the method of pretreatment of the nanowire, (e) the nanoparticles obtained in step (b) after step (c) The surface of the line is characterized in that it further comprises the step of surface treatment with a polymer having a polarity opposite to the polarity of the polymer of step (b).
본 발명의 일 실시예에 의하면, 상기 (a) 단계에 있어서, 금속촉매를 반응기 내에서 탄소 소스 가스와의 반응을 유도하여 탄소 소재의 나노선을 합성할 수 있다.According to one embodiment of the present invention, in the step (a), it is possible to synthesize a nanowire of a carbon material by inducing a reaction with a carbon source gas in a metal catalyst in the reactor.
상기 금속촉매는 그 종류에 특별히 한정이 없고, 예를 들면 Ni, Fe, Cr, Mo의 나노입자 및 이들 원소를 포함하는 스테인리스스틸, 탄소강, 니켈 등의 금속 입자 및 철산화물, 니켈산화물, 염화철, 염화니켈, 페로신 중에서 선택될 수 있고, 구체예로는 SUS304, SUS316L 등이 있으며, 상기 금속촉매의 크기는 5-500 ㎚인 것이 바람직하다.The metal catalyst is not particularly limited in kind, and includes, for example, nanoparticles of Ni, Fe, Cr, and Mo, metal particles such as stainless steel, carbon steel, and nickel, and iron oxides, nickel oxides, iron chlorides, Nickel chloride, ferrocine can be selected, and specific examples include SUS304, SUS316L, and the like, and the size of the metal catalyst is preferably 5-500 nm.
상기 나노선의 바람직한 예로는 탄소나노와이어, 탄소나노튜브 및 탄소나노로드 등이 있으며, 더욱 바람직하게는 탄소나노튜브가 있으며, 상기 탄소나노튜브의 구체예로는 단일벽 나노튜브(SWCNT), 이중벽 나노튜브(DWCNT), 다중벽 나노튜브(MWCNT) 등이 있다.Preferred examples of the nanowires include carbon nanowires, carbon nanotubes and carbon nanorods, and more preferably carbon nanotubes. Specific examples of the carbon nanotubes include single-walled nanotubes (SWCNTs) and double-walled nanoparticles. Tubes (DWCNTs), multiwall nanotubes (MWCNTs), and the like.
본 발명의 다른 실시예에 의하면, 상기 (b) 단계의 제1 고분자 및 (c) 단계의 제2 고분자는 각각 PSS(폴리(스티렌 설포네이트)), PDDA(폴리(디-메틸디알릴암모늄클로라이드)), PEI(폴리(에틸렌이민)), 폴리 S-119, 폴리아닐린 및 나피온으로 이루어진 군에서 선택된 어느 하나일 수 있다.According to another embodiment of the present invention, the first polymer of step (b) and the second polymer of step (c) are PSS (poly (styrene sulfonate)) and PDDA (poly (di-methyldiallylammonium chloride), respectively. )), PEI (poly (ethyleneimine)), poly S-119, polyaniline and Nafion.
본 발명의 바람직한 실시예에 의하면, 상기 나노 다이아몬드 입자의 평균입도는 5-100 ㎚일 수 있다.According to a preferred embodiment of the present invention, the average particle size of the nanodiamond particles may be 5-100 nm.
본 발명에 따라 상기 전처리된 나노선에 나노 다이아몬드 박막을 증착하여 나노선 코어-다이아몬드 쉘 형태의 나노선을 제조하는 방법은 전처리된 나노선 상에 화학기상증착법을 이용하여 나노선의 외주면을 감싸도록 나노 다이아몬드 박막층을 증착시키는 단계를 포함하는 것을 특징으로 한다.According to the present invention, a method of manufacturing a nanowire in a nanowire core-diamond shell form by depositing a nanodiamond thin film on the pretreated nanowire is performed so as to surround the outer circumferential surface of the nanowire by chemical vapor deposition on the pretreated nanowire. And depositing a diamond thin film layer.
상기 화학기상증착법을 이용하여 나노 다이아몬드 박막층을 증착시키는 단계에서 보론이 도핑된 다이아몬드 박막을 증착시켜서 다이아몬드의 전기전도성을 더욱 높일 수 있다.In the step of depositing the nano-diamond thin film layer using the chemical vapor deposition method by depositing a diamond thin film doped with boron can further increase the electrical conductivity of the diamond.
본 발명에 따른 상기 나노 다이아몬드 입자의 정전하 자기조립 방법을 이용한 나노선의 전처리방법은, 5-100 ㎚ 크기의 다이아몬드 나노입자가 가지고 있는 전하를 이용한 정전하 자기 조립방법으로 다이아몬드 나노입자층을 나노선에 생성하고 이를 화학적 기상증착의 다이아몬드 핵으로 사용함으로써 기존의 방법들이 가진 핵생성 밀도의 한계를 극복한 고밀도의 핵생성 자리를 제공함으로써 이후, 100 ㎚ 이하 두께를 갖는 다이아몬드 박막층을 나노선에 층착시킬 수 있게 한다.The nanowire pretreatment method using the electrostatic self-assembly method of the nanodiamond particles according to the present invention, the electrostatic self-assembly method using the charge that the diamond nanoparticles of 5-100 nm size has a diamond nanoparticle layer to the nanowire By creating and using it as a diamond nucleus for chemical vapor deposition, it provides a high density nucleation site that overcomes the limitations of nucleation density of existing methods, thereby depositing a diamond thin film layer having a thickness of 100 nm or less on the nanowire. To be.
본 발명에 따른 나노선의 전처리방법은 나노 다이아몬드 입자가 가진 정전하와 반대되는 극성을 가진 고분자 사슬로 나노 다이아몬드를 코팅하는 과정과, 다이아몬드를 코팅하려는 나노선을 극성을 가진 고분자 사슬로 코팅하는 과정, 그리고 상기 고분자 사슬로 코팅된 나노 다이아몬드 입자를 자기조립에 의해 상기 나노선에 코팅하는 과정으로 나누어진다.Pretreatment method of nanowires according to the present invention is a process of coating nanodiamonds with a polymer chain having a polarity opposite to the electrostatic charge of the nanodiamond particles, a process of coating the nanowires to be coated with a polymer chain having a polarity, and Nanodiamond particles coated with the polymer chain is divided into a process of coating the nanowires by self-assembly.
본 발명에 사용되는 제1 고분자 및 제2 고분자는 특별히 제한되는 것은 아니며, 고분자 자체가 가지고 있는 정전하에 따라 적절히 선택하여 사용할 수 있다. 예를 들어, PSS(폴리(스티렌 설포네이트)), PDDA(폴리(디-메틸디알릴암모늄클로라이드)), PEI(폴리(에틸렌이민)), 폴리 S-119, 폴리아닐린 및 나피온을 사용할 수 있다.The first polymer and the second polymer used in the present invention are not particularly limited and may be appropriately selected and used according to the electrostatic charge possessed by the polymer itself. For example, PSS (poly (styrene sulfonate)), PDDA (poly (di-methyldiallylammonium chloride)), PEI (poly (ethyleneimine)), poly S-119, polyaniline and nafion can be used. .
하기 [표 1]에는 상기 고분자의 극성을 도시하였다.Table 1 shows the polarity of the polymer.
표 1
고분자 정전하 용매
폴리(스티렌 설포네이트) -
폴리 S-119 -
폴리아닐린 -
나피온 - 메탄올/물
폴리(디-메틸디알릴암모늄클로라이드) +
폴리(에틸렌이민) +
Table 1
Polymer Electrostatic charge menstruum
Poly (styrene sulfonate) - water
Foley S-119 - water
Polyaniline - water
Nafion - Methanol / water
Poly (di-methyldiallylammonium chloride) + water
Poly (ethyleneimine) + water
나노 다이아몬드 입자를 이와 반대되는 정전하를 갖는 고분자로 코팅하기 위해서는, pH에 따라 다른 값을 갖는 다이아몬드 입자의 전하를 고려하여야 한다. 나노 다이아몬드의 경우 산성분위기에서 양전하를 띄고 염기성 분위기에서 음전하를 띄는 경향이 있기 때문에 산성의 경우 음이온성 고분자가 분산된 수용액을 사용해야 하고 염기성의 경우 양이온성 고분자가 분산된 수용액을 사용하여야 한다. 통상적인 볼밀링 과정으로 나노 다이아몬드 입자는 상기 입자의 전하와 반대되는 고분자 사슬로 코팅될 수 있으나, 이에 한정은 없다.In order to coat nanodiamond particles with a polymer having an opposite static charge, the charge of diamond particles having a different value depending on pH should be taken into account. In the case of nanodiamonds, they tend to have a positive charge in an acid atmosphere and a negative charge in a basic atmosphere, so in the case of acid, an aqueous solution in which an anionic polymer is dispersed should be used. In the basic case, an aqueous solution in which a cationic polymer is dispersed should be used. In a conventional ball milling process, the nanodiamond particles may be coated with a polymer chain that is opposite to the charge of the particles, but is not limited thereto.
하기 도 1은 본 발명의 나노 다이아몬드 입자 정전하 자기조립의 개요를 나타내는 도면이다. 도 1을 참조하면 나노 다이아몬드가 가진 전하를 A라 하였을 때, 이를 코팅하는데 사용되는 고분자가 가진 전하는 B이어야만 하고, charge A가 +이면 charge B는 -, charge A가 -이면 charge B는 +이다.1 is a view showing the outline of the electrostatic self-assembly of the nano diamond particles of the present invention. Referring to FIG. 1, when the charge of the nanodiamond is referred to as A, the charge of the polymer used to coat it should be B. If charge A is +, charge B is-and if charge A is-, charge B is +.
한편, 도 1에 의하면 탄소나노튜브는 극성이 있는 고분자를 사용하여 코팅하며, charge A가 +이면 charge B는 -, charge A가 -이면 charge B는 +이다. 이 때 사용되는 고분자의 종류는 상기 [표 1]에 제시된 바와 같다. 탄소나노튜브를 고분자로 코팅하는 과정은 [표 1]에 제시된 용매에 분산되어 있는 이온성 고분자 1-50 중량% 용액에 나노선을 담가 10초 이상의 시간이 경과된 후 꺼내어 순수한 용매에 다시 씻고 습기가 없는 질소 가스 등을 사용하여 잘 말려 주는 것으로 충분하다.Meanwhile, according to FIG. 1, carbon nanotubes are coated using a polar polymer, and charge B is-when charge A is +, and charge B is + when charge A is-. The type of polymer used at this time is as shown in [Table 1]. Coating the carbon nanotubes with a polymer is carried out by immersing the nanowires in a solution of 1-50% by weight of the ionic polymer dispersed in the solvent shown in [Table 1]. It is enough to dry well using nitrogen gas or the like.
위와 같은 공정을 거친 나노 다이아몬드 입자와 나노선은, (i) 각각의 표면 고분자가 가진 전하가 다른 경우 나노 다이아몬드 입자가 분산된 용액에 나노선을 담가 10초 이상의 시간이 경과된 후 꺼내어 순수한 용매에 다시 씻고 습기가 없는 질소 가스 등을 사용하여 잘 말려 주면 다이아몬드 핵생성 전처리가 종료되고(하기 도 1의 (a)), (ii) 각각의 표면 고분자가 가진 전하가 같은 경우, 표면 전하와 반대되는 극성의 고분자 용액에 다시 탄소나노튜브를 담가 10초 이상의 시간이 경과된 후 꺼내어 순수한 용매에 다시 씻고 습기가 없는 질소 가스 등을 사용하여 잘 말려준 뒤 (i)의 과정을 실시하여야 한다(도 1의 (b)).The nanodiamond particles and nanowires subjected to the above process are (i) when the charges of the respective surface polymers are different, the nanowire particles are immersed in a solution in which the nanodiamond particles are dispersed, and after 10 seconds or more, they are taken out in a pure solvent. When washed again and dried well using a nitrogen gas or the like without moisture, diamond nucleation pretreatment is terminated ((a) of FIG. 1), and (ii) when the charges of the respective surface polymers are the same, After dipping carbon nanotubes in a polar polymer solution for 10 seconds or more, take them out, wash them again in a pure solvent, dry them well using nitrogen gas, etc. without moisture (Fig. 1). (B)).
상기에 서술한 바와 같이 나노 다이아몬드가 정전하 자기조립에 의해 붙어있는 나노선을 화학기상합성법(플라즈마 화학기상합성법, 열필라멘트 화학기상합성법 등)을 이용하여 다이아몬드를 합성하게 되면 상기에서 언급한 3차원적인 구조체를 갖는 다이아몬드 박막이 증착된 나노선, 즉 나노선 코어-다이아몬드 쉘 형태의 나노선을 제조할 수 있다.As described above, when the diamond is synthesized by chemical vapor phase synthesis (plasma chemical vapor phase synthesis, thermal filament chemical vapor phase synthesis, etc.) on the nanowire to which nanodiamond is attached by electrostatic self-assembly, the above-mentioned three-dimensional Nanowires in which diamond thin films having a typical structure are deposited, that is, nanowire core-diamond shell forms, may be manufactured.
본 발명에 따른 다이아몬드 박막 증착방법으로 이루어지는 상기 3차원적인 구조체는 나노선의 두께, 나노 다이아몬드 입자의 크기 및 밀도에 의해 제조된 나노선 구조물의 두께가 결정된다.The three-dimensional structure of the diamond thin film deposition method according to the present invention is the thickness of the nanowire structure is determined by the thickness of the nanowire, the size and density of the nanodiamond particles.
상기 나노선의 다이아몬드 합성은 화학기상합성법에 의해 제조되며, 보레인(Borane) 가스의 농도를 조절하여 보론 도핑농도를 조절할 수 있다.The diamond synthesis of the nanowires is prepared by chemical vapor phase synthesis method, it is possible to control the boron doping concentration by adjusting the concentration of borane (Borane) gas.
본 발명에 따른 나노다이아몬드가 증착된 나노선을 포함하는 전극은 상변화가 없고 길이방향으로 신장된 구조를 갖는 것을 특징으로 한다.An electrode including nanowires on which nanodiamonds are deposited according to the present invention is characterized in that it has a structure extending in the longitudinal direction without phase change.
본 발명에 따른 다이아몬드가 증착된 나노선을 이용하여 글루코오스를 검출하기 위해서는 글루코오스 산화효소(Glucose oxidase)를 상기 다이아몬드로 증착된 나노선 하이브리드 구조의 표면에 붙여야 하며, 상기 부착시키는 방법은 하기와 같다.In order to detect glucose using the diamond-deposited nanowires according to the present invention, glucose oxidase must be attached to the surface of the diamond-deposited nanowire hybrid structure, and the method of attaching the same is as follows.
우선, 산소플라즈마 처리를 통해 나노 다이아몬드가 증착된 나노선의 표면을 산소원자로 표면처리를 해준 후에 3-아미노프로필트라이에톡시실란(APTES)을 산소원자와 결합을 시킨 후 글루타알데하이드 (glutaraldehyde)를 이용하여 글루코오스 산화효소와 결합시킨다.First, the surface of the nanowires on which nanodiamonds are deposited by oxygen plasma treatment is treated with oxygen atoms, and then 3-aminopropyltriethoxysilane (APTES) is bonded to oxygen atoms, and then glutaraldehyde is used. To glucose oxidase.
상기 표면처리에 사용되는 3-아미노프로필트라이에톡시실레인은 말단에 아민 (amine)기를 가지고 있기 때문에 말단에 아민기를 가지고 있는 글루코오스 산화효소와 결합을 할 수 없다. 따라서 양단에 카르복실기를 가지고 있는 글루타알데하이드를 이용하여 글루코오스 산화효소를 붙일 수 있다.Since 3-aminopropyltriethoxysilane used for the surface treatment has an amine group at the terminal, it cannot bind to a glucose oxidase having an amine group at the terminal. Therefore, it is possible to attach glucose oxidase by using glutaaldehyde having a carboxyl group at both ends.
상기와 같이 글루코오스 산화효소가 고정된 3차원 다이아몬드/나노선 하이브리드 구조는 전극으로 사용가능하며, 아래의 반응식에 의해 생성된 전자를 검출할 수 있다.As described above, a three-dimensional diamond / nanowire hybrid structure in which glucose oxidase is immobilized can be used as an electrode, and electrons generated by the following reaction can be detected.
Glucose + O2 + Glucose oxidase → gluconic acid + H2O2 Glucose + O 2 + Glucose oxidase → gluconic acid + H 2 O 2
H2O2 → 2H+ + O2 + 2e- H 2 O 2 → 2H + + O 2 + 2e -
본 발명에 따른 나노 다이아몬드가 증착된 나노선을 이용하여 검출하는 생체성분은 DNA, 단백질, 및 글루코오스를 포함하는 혈액 및 뇨내의 당류, 단백질류 등일 수 있다.The biological component detected using the nanowires on which the nanodiamonds are deposited according to the present invention may be sugars, proteins, and the like in blood and urine, including DNA, proteins, and glucose.
이하, 바람직한 실시예를 들어 본 발명을 더욱 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이에 의하여 제한되지 않고, 본 발명의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업계의 통상의 지식을 가진 자에게 자명할 것이다.Hereinafter, the present invention will be described in more detail with reference to preferred examples. However, these examples are intended to illustrate the present invention in more detail, and the scope of the present invention is not limited thereto, and various changes and modifications are possible within the scope and spirit of the present invention. It will be self-evident to those who have knowledge.
<실시예 및 비교예><Examples and Comparative Examples>
제조예. 탄소나노튜브의 제조Preparation example. Manufacture of Carbon Nanotubes
공지의 방법을 이용하여 금속촉매인 SUS316L을 반응기 내에서 탄소 소스 가스와의 반응을 유도하여 실리콘 산화물 기판 상에 탄소나노튜브를 제조하였다.Carbon nanotubes were prepared on a silicon oxide substrate by inducing a reaction of a metal catalyst SUS316L with a carbon source gas in a reactor using a known method.
실시예 1Example 1
상기 제조예에서 제조된 탄소나노튜브를 증류수 100 ㎖에 질산 10 ㎖가 포함된 질산용액에 80℃에서 2 시간 동안 침지시켰다. 그런 다음, 산으로 표면개질된 탄소나노튜브를 PDDA(poly diallyldimethyl ammonium chloride Mw: 400,000-500,000) 양이온성 고분자로 코팅하였다. 평균입자 크기가 10 ㎚인 양이온성 나노 다이아몬드 입자를 1 시간 동안 볼밀링 공정을 수행하여 PSS(폴리 소듐 4-스티렌 설포네이트, Mw: 70,000) 음이온성 고분자로 코팅하였다. PSS가 코팅된 나노 다이아몬드 입자가 분산된 용액에 상기 PDDA로 코팅된 탄소나노튜브를 담근 후 증류수로 세척하여 건조시켰다. 다음으로 상기에서 제조된 탄소나노튜브에 열필라멘트 화학적기상증착법을 사용하여 1 시간 동안 다이아몬드 박막을 증착시켜 다이아몬드 박막이 증착된 나노선을 제조하였으며, SEM 사진을 하기 도 3에 도시하였다.The carbon nanotubes prepared in Preparation Example were immersed in a nitric acid solution containing 10 ml of nitric acid in 100 ml of distilled water at 80 ° C. for 2 hours. Then, the carbon nanotubes surface-modified with acid were coated with PDDA (poly diallyldimethyl ammonium chloride Mw: 400,000-500,000) cationic polymer. Cationic nanodiamond particles having an average particle size of 10 nm were coated with PSS (poly sodium 4-styrene sulfonate, Mw: 70,000) anionic polymer by a ball milling process for 1 hour. The carbon nanotubes coated with PDDA were immersed in a solution in which the PSS-coated nanodiamond particles were dispersed, and dried by washing with distilled water. Next, a diamond thin film was deposited on the carbon nanotubes prepared above using a thermal filament chemical vapor deposition method for 1 hour to prepare a nanowire on which the diamond thin film was deposited, and the SEM photograph is shown in FIG. 3.
실시예 2Example 2
상기 제조예에서 제조된 탄소나노튜브를 증류수 100 ㎖에 질산 10 ㎖가 포함된 질산용액에 80℃에서 2 시간 동안 침지시켰다. 그런 다음, 산으로 표면개질된 탄소나노튜브를 PDDA(poly diallyldimethyl ammonium chloride Mw: 400,000-500,000) 양이온성 고분자로 코팅하였다. 평균입자 크기가 10 ㎚인 양이온성 나노 다이아몬드 입자를 PSS(poly sodium 4-styrenen sulfonate Mw: 70,000)음이온성 고분자 수용액 상에 공지의 방법으로 침지시켜 상기 고분자로 코팅을 하였다. PSS가 코팅된 나노 다이아몬드 입자가 분산된 용액에 상기 PDDA로 코팅된 탄소나노튜브를 담근 후 증류수로 세척하여 말린 시편에 열필라멘트 화학적기상증착법을 사용하여 1 시간 동안 보론이 도핑된 다이아몬드 박막을 증착시켜 두께 80-100 ㎚로 증착된 나노선을 제조하였다.The carbon nanotubes prepared in Preparation Example were immersed in a nitric acid solution containing 10 ml of nitric acid in 100 ml of distilled water at 80 ° C. for 2 hours. Then, the carbon nanotubes surface-modified with acid were coated with PDDA (poly diallyldimethyl ammonium chloride Mw: 400,000-500,000) cationic polymer. Cationic nanodiamond particles having an average particle size of 10 nm were immersed in a known method on an aqueous PSS (poly sodium 4-styrene n sulfonate Mw: 70,000) anionic polymer solution and coated with the polymer. Immerse the carbon nanotubes coated with PDDA in PSS-coated nanodiamond particles, and then wash them with distilled water, and deposit a boron-doped diamond thin film on a dried specimen for 1 hour using a thermal filament chemical vapor deposition method. A nanowire deposited to a thickness of 80-100 nm was prepared.
비교예 1Comparative Example 1
평균입자 크기가 10 ㎚인 양이온성 나노 다이아몬드 입자를 1 시간 동안 볼밀링 공정을 수행하여 PSS(poly sodium 4-styrenen sulfonate Mw: 70,000) 음이온성 고분자로 코팅하고, 음이온성 실리콘 산화물 기판을 PDDA(poly diallyldimethyl ammonium chloride Mw: 400,000∼500,000) 양이온성 고분자로 코팅하였다. PSS가 코팅된 나노 다이아몬드 입자가 분산된 용액에 상기에서 준비된 기판을 담근 후 증류수로 세척하여 건조시킨 다음, 상기에서 제조된 기판에 열필라멘트 화학적기상증착법을 사용하여 1 시간 동안 보론이 도핑된 다이아몬드를 증착시켰으며 박막 두께 80 ㎚로 형성된 다이아몬드 박막을 실리콘 산화물 기판 위에 합성하였다.Cationic nanodiamond particles having an average particle size of 10 nm were subjected to a ball milling process for 1 hour, coated with poly sodium 4-styrene n sulfonate Mw (70,000) anionic polymer, and anionic silicon oxide substrate was coated with PDDA (poly diallyldimethyl ammonium chloride Mw: 400,000-500,000) was coated with a cationic polymer. The substrate prepared above was immersed in a solution in which the PSS-coated nanodiamond particles were dispersed, washed with distilled water and dried, and then boron-doped diamond was heated for 1 hour using a hot filament chemical vapor deposition method. A diamond thin film formed by deposition and having a thin film thickness of 80 nm was synthesized on a silicon oxide substrate.
실시예 3Example 3
평균입자 크기가 10 ㎚인 양이온성 나노 다이아몬드 입자를 5시간 동안 볼밀링 공정을 수행하여 PSS(poly sodium 4-styrenen sulfonate Mw: 70,000) 음이온성 고분자로 코팅하고, 상기 제조예에서 제조된 탄소나노튜브를 증류수 100 ㎖에 질산 10 ㎖가 포함된 질산용액에 80℃에서 2 시간 동안 침지시켰다. 그런 다음, 산으로 표면개질된 탄소나노튜브를 PDDA(poly diallyldimethyl ammonium chloride Mw: 400,000-500,000) 양이온성 고분자로 코팅하였다. PSS가 코팅된 나노 다이아몬드 입자가 분산된 용액에 준비된 탄소나노튜브를 담근 후 증류수로 세척하여 말린 시편에 열필라멘트 화학적기상증착법을 사용하여 보론이 도핑된 다이아몬드를 증착시켜 다이아몬드 박막으로 감싸져 이루어지는 나노선을 제조하였다.Cationic nano diamond particles having an average particle size of 10 nm were coated with a PSS (poly sodium 4-styrene n sulfonate Mw: 70,000) anionic polymer by performing a ball milling process for 5 hours, and the carbon nanotubes prepared in the preparation example. Was immersed in a nitric acid solution containing 10 ml of nitric acid in 100 ml of distilled water at 80 ℃ for 2 hours. Then, the carbon nanotubes surface-modified with acid were coated with PDDA (poly diallyldimethyl ammonium chloride Mw: 400,000-500,000) cationic polymer. Soaked carbon nanotubes in a solution containing PSS-coated nanodiamond particles, washed with distilled water, and dried on a dried specimen using hot filament chemical vapor deposition to deposit boron-doped diamond and wrapped in a diamond thin film. Was prepared.
본 발명에 따르면 탄소나노튜브의 표면에 물리적 손상을 주지 않으면서도 100 ㎚ 이하의 균일한 다이아몬드 박막을 용이하게 증착할 수 있다는 것을 확인할 수 있다. 이때 박막의 두께는 나노 다이아몬드 입자의 크기에 의존하며, 나노 다이아몬드 입자의 평균입도(크기)가 5-100 ㎚이므로 두께 20 ㎚ 이상의 평활한 다이아몬드 박막층을 형성할 수 있으며, 공정과정에서 탄소나노튜브에 가해지는 물리적 충격이나 잔류응력의 문제가 전혀 없고 전기장을 인가할 필요도 없다는 장점이 있으며, 탄소나노튜브에 고평활도의 다이아몬드 박막을 코팅할 수 있다.According to the present invention, it can be seen that a uniform diamond thin film of 100 nm or less can be easily deposited without physically damaging the surface of the carbon nanotubes. In this case, the thickness of the thin film depends on the size of the nanodiamond particles, and since the average particle size (size) of the nanodiamond particles is 5-100 nm, a smooth diamond thin film layer having a thickness of 20 nm or more can be formed. There is no problem of physical impact or residual stress applied and there is no need to apply an electric field, and carbon nanotubes can be coated with a thin film of high smoothness.
실시예 4Example 4
상기 실시예 1에서 제조된 다이아몬드가 증착된 탄소나노튜브의 표면을 산소플라즈마를 이용하여 산소원자로 표면처리한 후에 공지의 방법을 이용하여 3-아미노프로필트라이에톡시실란(APTES)을 산소원자와 결합을 시킨 후, 글루타알데하이드를 글루코오스 산화효소와 결합시켜 전극으로 이용하여 바이오센서를 제조하였고, 글루코오스를 검출한 검출감도에 대하여 하기 도 4에 나타내었다.After the surface of the diamond-deposited carbon nanotubes prepared in Example 1 were surface treated with oxygen atoms using oxygen plasma, the 3-aminopropyltriethoxysilane (APTES) was combined with oxygen atoms using a known method. After the synthesis, a glutaaldehyde was combined with glucose oxidase to prepare a biosensor, and the detection sensitivity of detecting glucose is shown in FIG. 4.
비교예 2Comparative Example 2
공지의 방법을 이용하여 금(Au)으로 이루어지는 전극을 제조하여 바이오센서를 제조하였고, 이를 이용하여 글루코오스를 검출한 검출감도에 대하여 하기 도 4에 나타내었다.A biosensor was manufactured by preparing an electrode made of gold (Au) using a known method, and the detection sensitivity of detecting glucose using the same is shown in FIG. 4.
비교예 3Comparative Example 3
공지의 방법을 이용하여 백금(Pt)으로 이루어지는 전극을 제조하여 바이오센서를 제조하였고, 이를 이용하여 글루코오스를 검출한 검출감도에 대하여 하기 도 4에 나타내었다.A biosensor was manufactured by preparing an electrode made of platinum (Pt) using a known method, and the detection sensitivity of detecting glucose using the same is shown in FIG. 4.
비교예 4Comparative Example 4
상기 비교예 1에서 제조된 다이아몬드 박막의 표면을 산소플라즈마를 이용하여 산소원자로 표면처리한 후에 공지의 방법을 이용하여 3-아미노프로필트라이에톡시실란(APTES)을 산소원자와 결합을 시킨 후, 글루타알데하이드를 글루코오스 산화효소와 결합시켜 전극으로 이용하여 바이오센서를 제조하였고, 글루코오스를 검출한 검출감도에 대하여 하기 도 4에 나타내었다.After the surface of the diamond thin film prepared in Comparative Example 1 was surface treated with an oxygen atom using oxygen plasma, the 3-aminopropyltriethoxysilane (APTES) was bonded with an oxygen atom using a known method, and then A biosensor was prepared by combining rutaaldehyde with glucose oxidase as an electrode, and the detection sensitivity of detecting glucose is shown in FIG. 4.
상기 비교예 2, 3, 4 및 실시예 4에 대하여, 포텐시오스탯(Potentiostat)의 시클리볼타모메트리 모드(cyclicvoltamometry mode)로 CV 곡선을 스캔속도를 달리하여 유효면적을 측정하였고, 그 결과는 하기 [표 2]에 나타내었다.For Comparative Examples 2, 3, 4 and 4, the effective area was measured by varying the scanning speed of the CV curve in the cyclicvoltamometry mode of the potentiostat. It is shown in the following [Table 2].
표 2
구분 유효면적(cm2)
비교예 2 (Au) 0.619
비교예 3 (Pt) 0.389
비교예 4 (BDD) 0.696
실시예 4 (BDD-CNT) 1.388
TABLE 2
division Effective area (cm 2 )
Comparative Example 2 (Au) 0.619
Comparative Example 3 (Pt) 0.389
Comparative Example 4 (BDD) 0.696
Example 4 (BDD-CNT) 1.388
상기에 나타낸 바와 같이, 본 발명에 따른 실시예 1-4는 나노 다이아몬드가 증착된 나노선을 사용함으로써 비표면적이 바이오센서에 매우 적함함을 알 수 있다. 그 결과, 하기 [표 3] 및 도 4에서 나타낸 바와 같이, 실시예 4의 검출감도는 비교예 2 보다 약 6000 배, 비교예 3 보다 약 100 배 및 비교예 4 보다 약 30 배 이상 높은 감도를 가짐을 알 수 있으며, 또한 [표 3]에서 알 수 있는 바와 같이 실시예 4는 저농도의 용액에서도 검출가능하여 고감도의 바이오 센서임을 알 수 있다.As indicated above, Example 1-4 according to the present invention can be seen that the specific surface area is very small in the biosensor by using a nanowire deposited with nanodiamonds. As a result, as shown in Table 3 and FIG. 4, the detection sensitivity of Example 4 was about 6000 times higher than Comparative Example 2, about 100 times higher than Comparative Example 3, and about 30 times higher than that of Comparative Example 4. As can be seen, and also can be seen in Table 3, Example 4 can be detected in a low concentration of solution, it can be seen that it is a high sensitivity biosensor.
표 3
구분 감도(μA/mM) 직선범위(mM)(Linear range)
비교예 2 0.06 0.8671-6.5844
비교예 3 3.39 0.02255-4.39
비교예 4 11.76 0.0005867-0.01
실시예 4 362.99 0.000391-0.00445
TABLE 3
division Sensitivity (μA / mM) Linear range (mM)
Comparative Example 2 0.06 0.8671-6.5844
Comparative Example 3 3.39 0.02255-4.39
Comparative Example 4 11.76 0.0005867-0.01
Example 4 362.99 0.000391-0.00445
실시예 5.Example 5.
실리콘 나노선의 표면은 자연 산화막이 생성되어 표면이 음전하를 띄게 된다. 음전하를 띄는 실리콘 나노선의 표면을 PDDA(poly diallyldimethyl ammonium chloride) 양이온성 고분자로 코팅하였다. 평균입자 크기가 10 ㎚인 양이온성 나노다이아몬드 입자를 1 시간 동안 볼밀링 공정을 수행하여 PSS(poly sodium 4-stylene sulfonate) 음이온성 고분자로 코팅하였다. PSS가 코팅된 나노 다이아몬드 입자가 분산된 용액에 상기 PDDA로 코팅된 실리콘 나노선을 담근 후 증류수로 세척하여 건조시켰다. 다음으로 상기에서 제조된 실리콘 나노선에 열필라멘트 화학적기상증착법을 사용하여 1 시간 동안 다이아몬드 박막을 증착시켜 다이아몬드 박막이 증착된 실리콘 나노선을 제조하였으며, SEM 사진을 하기 도 5에 도시하였다.The surface of the silicon nanowire is formed with a natural oxide film, the surface is negatively charged. The surface of the negatively charged silicon nanowires was coated with PDDA (poly diallyldimethyl ammonium chloride) cationic polymer. Cationic nanodiamond particles having an average particle size of 10 nm were coated with a PSS (poly sodium 4-stylene sulfonate) anionic polymer by a ball milling process for 1 hour. The PDDA-coated silicon nanowires were immersed in a solution in which PSS-coated nanodiamond particles were dispersed, and dried by washing with distilled water. Next, a diamond thin film was deposited on the silicon nanowires prepared above using a thermal filament chemical vapor deposition method for 1 hour to prepare a silicon nanowire on which the diamond thin film was deposited, and the SEM photograph is shown in FIG. 5.
본 발명에 따른 나노선 코어-다이아몬드 쉘 형태의 나노선은 3차원 다이아몬드-나노선 하이브리드 구조를 갖는 나노선(BDD-NW)으로서, 반응 유효면적이 향상되어 이를 바이오센서용 전극으로 활용시 생체물질에 대한 선택성 및 검출감도가 우수하고, 긴 저장 안정성 및 우수한 재현성을 가지며, 빠른 시간 내 검출이 가능하다. 또한, 본 발명에 따른 나노선 코어-다이아몬드 쉘 형태의 나노선의 제조방법은 종래 다이아몬드 후막의 식각 및 나노선의 수소플라즈마 처리를 통한 합성법 대비 3차원 구조의 나노선 제조가 가능하고, 제조공정 효율이 우수하다.The nanowire core-diamond shell type nanowire according to the present invention is a nanowire having a three-dimensional diamond-nanowire hybrid structure (BDD-NW), and the effective effective area of the reaction is improved and used as a biosensor electrode. It has excellent selectivity and detection sensitivity, long storage stability and excellent reproducibility, and enables fast time detection. In addition, the manufacturing method of the nanowire core-diamond shell type nanowire according to the present invention is capable of producing nanowires having a three-dimensional structure compared to the synthesis method by etching diamond thick film and hydrogen plasma treatment of conventional nanowires, and has excellent manufacturing process efficiency. Do.

Claims (17)

  1. 나노선의 외주면을 감싸도록 나노 다이아몬드 박막층이 나노선에 증착되어 형성된 나노선 코어-다이아몬드 쉘 형태의 나노선에 있어서, In the nanowire core-diamond shell type nanowire formed by depositing a nanodiamond thin film layer on the nanowire so as to surround the outer circumferential surface of the nanowire,
    상기 나노선은 나노선의 외주면에 코팅된 제1 고분자층; 상기 제1 고분자층의 표면에 위치하는 복수개의 나노 다이아몬드 입자층; 및 상기 복수개의 나노다이아몬드 입자 각각을 감싸는 제2 고분자층;을 포함하고, The nanowire is a first polymer layer coated on the outer peripheral surface of the nanowire; A plurality of nanodiamond particle layers positioned on a surface of the first polymer layer; And a second polymer layer surrounding each of the plurality of nanodiamond particles;
    상기 제1 고분자와 제2 고분자의 극성은 서로 반대인 것을 특징으로 하는 나노선 코어-다이아몬드 쉘 형태의 나노선. Nanowire core-diamond shell type nanowires, characterized in that the polarity of the first polymer and the second polymer are opposite to each other.
  2. 제 1 항에 있어서, The method of claim 1,
    상기 나노선은 상변화가 없고 길이 방향으로 신장되는 구조인 것을 특징으로 하는 나노선 코어-다이아몬드 쉘 형태의 나노선. The nanowire is a nanowire core-diamond shell type nanowire, characterized in that the structure does not have a phase change and extend in the longitudinal direction.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 나노 다이아몬드 박막층은 보론이 도핑된 다이아몬드 박막층인 것을 특징으로 하는 나노선 코어-다이아몬드 쉘 형태의 나노선. The nanodiamond thin film layer is a nanowire core-diamond shell type nanowire, characterized in that the boron-doped diamond thin film layer.
  4. 제 1 항에 있어서, The method of claim 1,
    상기 나노선은 니켈(Ni), 금(Au), 백금(Pt) 및 이들의 합금 중에서 선택되는 어느 하나; 탄소(C), 실리콘(Si) 및 게르마늄(Ge) 중에서 선택되는 어느 하나; 실리콘옥사이드(SiO2), 티타늄옥사이드(TiO2) 및 텅스텐옥사이드(WOX) 중에서 선택되는 어느 하나; 및 갈륨나이트라이드(GaN), 인듐포스페이트(InP) 및 실리콘카바이드(SiC) 중에서 선택되는 어느 하나; 중에서 선택되는 물질로 이루어져 있고The nanowires are any one selected from nickel (Ni), gold (Au), platinum (Pt), and alloys thereof; Any one selected from carbon (C), silicon (Si), and germanium (Ge); Any one selected from silicon oxide (SiO 2 ), titanium oxide (TiO 2 ) and tungsten oxide (WO X ); And any one selected from gallium nitride (GaN), indium phosphate (InP), and silicon carbide (SiC); Consists of a material selected from
    상기 나노선의 형태는 나노와이어, 나노튜브 또는 나노로드인 것을 특징으로 하는 나노선 코어-다이아몬드 쉘 형태의 나노선. The nanowires are in the form of nanowires, nanotubes or nanorods, wherein the nanowire core-diamond shell form nanowires.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 제1 고분자는 폴리(스티렌 설포네이트), 폴리 S-119, 폴리아닐린 및 나피온으로부터 선택되는 어느 하나이고,The first polymer is any one selected from poly (styrene sulfonate), poly S-119, polyaniline and nafion,
    상기 제2 고분자는 폴리(디-메틸디알릴암모늄클로라이드) 및 폴리(에틸렌이민) 중에서 선택되는 어느 하나인 것을 특징으로 하는 나노선 코어-다이아몬드 쉘 형태의 나노선.The second polymer is a nanowire core-diamond shell type nanowire, characterized in that any one selected from poly (di- methyl diallyl ammonium chloride) and poly (ethyleneimine).
  6. 제 1 항에 있어서, The method of claim 1,
    상기 제1 고분자는 폴리(디-메틸디알릴암모늄클로라이드) 및 폴리(에틸렌이민) 중에서 선택되는 어느 하나이고, The first polymer is any one selected from poly (di-methyldiallylammonium chloride) and poly (ethyleneimine),
    상기 제2 고분자는 폴리(스티렌 설포네이트), 폴리 S-119, 폴리아닐린 및 나피온으로부터 선택되는 어느 하나인 것을 특징으로 하는 나노선 코어-다이아몬드 쉘 형태의 나노선. The second polymer is any one selected from poly (styrene sulfonate), poly S-119, polyaniline, and nafion.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 나노 다이아몬드 입자의 크기는 5-100 ㎚인 것을 특징으로 하는 나노선 코어-다이아몬드 쉘 형태의 나노선.Nanowire core-diamond shell type nanowires, characterized in that the size of the nano-diamond particles are 5-100 nm.
  8. 제 1 항에 따른 나노선 코어-다이아몬드 쉘 형태의 나노선; 및 상기 나노선에 결합되는 글루코오스 산화효소;를 포함하는 전극.Nanowire in the form of a nanowire core-diamond shell according to claim 1; And a glucose oxidase bound to the nanowires.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 나노선의 표면에 3-아미노프로필트라이에톡시실레인을 결합시킨 후, 글루타알데하이드를 이용하여 글루코오스 산화효소를 나노선에 결합시키는 것을 특징으로 하는 전극.After the 3-aminopropyl triethoxy silane is bonded to the surface of the nanowire, the electrode characterized in that to bind the glucose oxidase to the nanowire using glutaaldehyde.
  10. 제 8 항에 따른 전극을 포함하는 바이오센서로서, 상기 바이오센서는 생체내 글루코오스 성분을 300 μA/mM - 10 mA/mM의 감도로 검출하는 것을 특징으로 하는 바이오센서.A biosensor comprising an electrode according to claim 8, wherein the biosensor detects an in vivo glucose component with a sensitivity of 300 μA / mM-10 mA / mM.
  11. (a) 나노선을 합성하는 단계;(a) synthesizing the nanowires;
    (b) 상기 나노선의 외주면에 극성을 갖는 제1 고분자를 코팅하는 단계;(b) coating a first polymer having a polarity on an outer circumferential surface of the nanowire;
    (c) 나노 다이아몬드 입자의 표면에 표면의 정전하와 반대되는 극성을 갖는 제2 고분자를 코팅하는 단계; 및(c) coating a surface of the nanodiamond particles with a second polymer having a polarity opposite to the surface static charge; And
    (d) 상기 (c) 단계에서 수득된 제2 고분자가 코팅된 나노 다이아몬드 입자를 분산시킨 용액에 상기 (b) 단계에서 수득된 제1 고분자가 코팅된 나노선을 침지시키는 단계;를 포함하고,(d) immersing the nanowires coated with the first polymer obtained in step (b) in a solution in which the nanodiamond particles coated with the second polymer obtained in step (c) are dispersed.
    상기 (d) 단계는 상기 나노 다이아몬드 입자가 정전하에 의한 자기조립 방법을 통해 상기 나노선에 흡착되어 이후 다이아몬드 박막 증착시 증착핵으로 작용하는 것을 특징으로 하는 나노선의 전처리방법.In the step (d), the nanodiamond particles are adsorbed onto the nanowires through a self-assembly method by electrostatic charge, and then act as deposition nuclei when the diamond thin film is deposited.
  12. 제 11 항에 있어서, The method of claim 11,
    상기 나노선의 전처리 방법에서 상기 (b) 단계의 고분자의 극성과 (c) 단계의 고분자의 극성이 같은 경우에는, When the polarity of the polymer of step (b) and the polymer of step (c) in the nanowire pretreatment method is the same,
    (e) 상기 (c) 단계 이후에 상기 (b) 단계에서 수득된 나노선의 표면을 상기 (b) 단계의 고분자의 극성과 반대되는 극성을 갖는 고분자로 표면처리하는 단계;를 더 포함하는 것을 특징으로 하는 나노선의 전처리방법. (e) surface treating the surface of the nanowire obtained in step (b) after the step (c) with a polymer having a polarity opposite to that of the polymer of step (b); Nanowire pretreatment method.
  13. 제 11 항에 있어서, The method of claim 11,
    상기 나노선은 니켈(Ni), 금(Au), 백금(Pt) 및 이들의 합금 중에서 선택되는 어느 하나; 탄소(C), 실리콘(Si) 및 게르마늄(Ge) 중에서 선택되는 어느 하나; 실리콘옥사이드(SiO2), 티타늄옥사이드(TiO2) 및 텅스텐옥사이드(WOX) 중에서 선택되는 어느 하나; 및 갈륨나이트라이드(GaN), 인듐포스페이트(InP) 및 실리콘카바이드(SiC) 중에서 선택되는 어느 하나; 중에서 선택되는 물질로 이루어져 있고The nanowires are any one selected from nickel (Ni), gold (Au), platinum (Pt), and alloys thereof; Any one selected from carbon (C), silicon (Si), and germanium (Ge); Any one selected from silicon oxide (SiO 2 ), titanium oxide (TiO 2 ) and tungsten oxide (WO X ); And any one selected from gallium nitride (GaN), indium phosphate (InP), and silicon carbide (SiC); Consists of a material selected from
    상기 나노선의 형태는 나노와이어, 나노튜브 또는 나노로드인 것을 특징으로 하는 나노선의 전처리방법. The nanowires are in the form of nanowires, nanotubes or nanorods.
  14. 제 11 항에 있어서,The method of claim 11,
    상기 제1 고분자는 폴리(스티렌 설포네이트), 폴리 S-119, 폴리아닐린 및 나피온으로부터 선택되는 어느 하나이고,The first polymer is any one selected from poly (styrene sulfonate), poly S-119, polyaniline and nafion,
    상기 제2 고분자는 폴리(디-메틸디알릴암모늄클로라이드) 및 폴리(에틸렌이민) 중에서 선택되는 어느 하나인 것을 특징으로 하는 나노선의 전처리방법.The second polymer is any one selected from poly (di- methyl diallyl ammonium chloride) and poly (ethyleneimine).
  15. 제 11 항에 있어서, The method of claim 11,
    상기 제1 고분자는 폴리(디-메틸디알릴암모늄클로라이드) 및 폴리(에틸렌이민) 중에서 선택되는 어느 하나이고, The first polymer is any one selected from poly (di-methyldiallylammonium chloride) and poly (ethyleneimine),
    상기 제2 고분자는 폴리(스티렌 설포네이트), 폴리 S-119, 폴리아닐린 및 나피온으로부터 선택되는 어느 하나인 것을 특징으로 하는 나노선의 전처리방법. The second polymer is any one selected from poly (styrene sulfonate), poly S-119, polyaniline and Nafion.
  16. 제 11 항에 따라 전처리된 나노선 상에 화학기상증착법을 이용하여 나노선의 외주면을 감싸도록 나노 다이아몬드 박막층을 증착시키는 단계;를 포함하는 나노선 코어-다이아몬드 쉘 형태의 나노선의 제조방법.A method of manufacturing a nanowire in the form of a nanowire core-diamond shell, comprising: depositing a nanodiamond thin film layer on the pretreated nanowire according to claim 11 to surround the outer circumferential surface of the nanowire using chemical vapor deposition.
  17. 제 16 항에 있어서,The method of claim 16,
    상기 나노 다이아몬드 박막층은 보론이 도핑된 다이아몬드 박막층이고, 상기 박막층의 두께는 20-100 ㎚인 것을 특징으로 하는 나노선 코어-다이아몬드 쉘 형태의 나노선의 제조방법.The nanodiamond thin film layer is a boron-doped diamond thin film layer, the thickness of the thin film layer is a nanowire core-diamond shell type nanowire manufacturing method, characterized in that the thickness.
PCT/KR2012/002188 2011-03-31 2012-03-26 Nanowire having diamond deposited thereon, manufacturing method thereof, and biosensor including same WO2012134133A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2011-0029951 2011-03-31
KR1020110029951A KR101373575B1 (en) 2011-03-31 2011-03-31 Diamond-deposited nanowire and method of preparing the same

Publications (2)

Publication Number Publication Date
WO2012134133A2 true WO2012134133A2 (en) 2012-10-04
WO2012134133A3 WO2012134133A3 (en) 2013-01-03

Family

ID=46932095

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2012/002188 WO2012134133A2 (en) 2011-03-31 2012-03-26 Nanowire having diamond deposited thereon, manufacturing method thereof, and biosensor including same

Country Status (2)

Country Link
KR (1) KR101373575B1 (en)
WO (1) WO2012134133A2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964430A (en) * 2013-01-30 2014-08-06 中国科学院宁波材料技术与工程研究所 Diamond-nanowire complex and preparation method thereof
CN108950628A (en) * 2018-06-29 2018-12-07 清华大学天津高端装备研究院 A kind of self assembly diamond fretsaw cutting material and preparation method thereof
CN110632125A (en) * 2018-06-21 2019-12-31 现代自动车株式会社 Gas sensor, method of manufacturing the same, and method of sensing gas using the same
CN114660147A (en) * 2022-03-29 2022-06-24 重庆医科大学 Based on Fe doped NiMoO4Non-enzymatic glucose electrochemical sensor and preparation method and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020087401A (en) * 2000-02-16 2002-11-22 풀러린 인터내셔날 코포레이션 Diamond/carbon nanotube structures for efficient electron field emission
US7479516B2 (en) * 2003-05-22 2009-01-20 Zyvex Performance Materials, Llc Nanocomposites and methods thereto

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020087401A (en) * 2000-02-16 2002-11-22 풀러린 인터내셔날 코포레이션 Diamond/carbon nanotube structures for efficient electron field emission
US7479516B2 (en) * 2003-05-22 2009-01-20 Zyvex Performance Materials, Llc Nanocomposites and methods thereto

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BEHLER, K. ET AL.: 'Nanodiamond-Polymer Composite Fibers and Coatings' ACS NANO vol. 3, no. 2, 04 February 2009, pages 363 - 369 *
SHENDEROVA, O. ET AL.: 'Nanodiamond-Assisted Dispersion of Carbon Nanotubes and Hybrid Nanocarbon-Based Composites' NANOSCI. NANOTECHNOL. LETT. vol. 3, no. 1, 28 February 2011, pages 75 - 82 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964430A (en) * 2013-01-30 2014-08-06 中国科学院宁波材料技术与工程研究所 Diamond-nanowire complex and preparation method thereof
CN103964430B (en) * 2013-01-30 2016-01-13 中国科学院宁波材料技术与工程研究所 Diamond-nanowire complex and preparation method thereof
CN110632125A (en) * 2018-06-21 2019-12-31 现代自动车株式会社 Gas sensor, method of manufacturing the same, and method of sensing gas using the same
CN108950628A (en) * 2018-06-29 2018-12-07 清华大学天津高端装备研究院 A kind of self assembly diamond fretsaw cutting material and preparation method thereof
CN114660147A (en) * 2022-03-29 2022-06-24 重庆医科大学 Based on Fe doped NiMoO4Non-enzymatic glucose electrochemical sensor and preparation method and application thereof
CN114660147B (en) * 2022-03-29 2023-09-15 重庆医科大学 Based on Fe doped NiMoO 4 Non-enzymatic glucose electrochemical sensor and preparation method and application thereof

Also Published As

Publication number Publication date
WO2012134133A3 (en) 2013-01-03
KR101373575B1 (en) 2014-03-13
KR20120111467A (en) 2012-10-10

Similar Documents

Publication Publication Date Title
Wanekaya et al. Nanowire‐based electrochemical biosensors
Du et al. Immobilization-free direct electrochemical detection for DNA specific sequences based on electrochemically converted gold nanoparticles/graphene composite film
Merkoçi Carbon nanotubes in analytical sciences
Gooding Nanostructuring electrodes with carbon nanotubes: A review on electrochemistry and applications for sensing
US7592050B2 (en) Method for forming carbon nanotube thin film
Wang et al. Impedimetric immunosensor based on gold nanoparticles modified graphene paper for label-free detection of Escherichia coli O157: H7
Chopra et al. Functional one‐dimensional nanomaterials: applications in nanoscale biosensors
Qureshi et al. Review on carbon-derived, solid-state, micro and nano sensors for electrochemical sensing applications
Guo et al. Electrochemical characteristics of the immobilization of calf thymus DNA molecules on multi-walled carbon nanotubes
Wei et al. Directed assembly of carbon nanotube electronic circuits
JP2006525129A (en) Method and apparatus for patterned deposition of nanostructured materials by self-assembly and related articles
US20080020487A1 (en) Alignment of carbon nanotubes on a substrate via solution deposition
WO2012134133A2 (en) Nanowire having diamond deposited thereon, manufacturing method thereof, and biosensor including same
KR20060039898A (en) Deposition method for nanostructure materials
JP2006342040A (en) Cylindrical molecular structure, its producing method, pretreated substrate and its producing method
Yang et al. Toward the chemistry of carboxylic single-walled carbon nanotubes by chemical force microscopy
EP2823094B1 (en) Covalent functionalization of carbon nanotubes grown on a surface
Tran et al. The gas sensing properties of single-walled carbon nanotubes deposited on an aminosilane monolayer
Guiseppi-Elie et al. SAM-modified microdisc electrode arrays (MDEAs) with functionalized carbon nanotubes
Wang et al. Aligned open-ended carbon nanotube membranes for direct electrochemistry applications
CN108918614B (en) Glucose sensor and preparation method thereof
Xu et al. DNA mediated assembly of single walled carbon nanotubes: role of DNA linkers and annealing
Li et al. Transfer printing of submicrometer patterns of aligned carbon nanotubes onto functionalized electrodes
Miller Porous silicon in biosensing applications
Du et al. Carbon nanotube-based electrochemical biosensors

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12763878

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12763878

Country of ref document: EP

Kind code of ref document: A2