WO2012133737A1 - Crosslinkable amine compound, polymer membrane using crosslinkable amine compound, and method for producing polymer membrane - Google Patents

Crosslinkable amine compound, polymer membrane using crosslinkable amine compound, and method for producing polymer membrane Download PDF

Info

Publication number
WO2012133737A1
WO2012133737A1 PCT/JP2012/058521 JP2012058521W WO2012133737A1 WO 2012133737 A1 WO2012133737 A1 WO 2012133737A1 JP 2012058521 W JP2012058521 W JP 2012058521W WO 2012133737 A1 WO2012133737 A1 WO 2012133737A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
represented
amine compound
integer
Prior art date
Application number
PCT/JP2012/058521
Other languages
French (fr)
Japanese (ja)
Inventor
育雄 谷口
照彦 甲斐
淑紅 段
伸吾 風間
Original Assignee
公益財団法人地球環境産業技術研究機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 公益財団法人地球環境産業技術研究機構 filed Critical 公益財団法人地球環境産業技術研究機構
Publication of WO2012133737A1 publication Critical patent/WO2012133737A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C219/00Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton
    • C07C219/02Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton
    • C07C219/04Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C219/08Compounds containing amino and esterified hydroxy groups bound to the same carbon skeleton having esterified hydroxy groups and amino groups bound to acyclic carbon atoms of the same carbon skeleton the carbon skeleton being acyclic and saturated having at least one of the hydroxy groups esterified by a carboxylic acid having the esterifying carboxyl group bound to an acyclic carbon atom of an acyclic unsaturated carbon skeleton
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0006Organic membrane manufacture by chemical reactions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/60Polyamines
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C237/00Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups
    • C07C237/02Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C237/04Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • C07C237/10Carboxylic acid amides, the carbon skeleton of the acid part being further substituted by amino groups having the carbon atoms of the carboxamide groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated having the nitrogen atom of at least one of the carboxamide groups bound to an acyclic carbon atom of a hydrocarbon radical substituted by nitrogen atoms not being part of nitro or nitroso groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C271/00Derivatives of carbamic acids, i.e. compounds containing any of the groups, the nitrogen atom not being part of nitro or nitroso groups
    • C07C271/06Esters of carbamic acids
    • C07C271/08Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms
    • C07C271/10Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms
    • C07C271/20Esters of carbamic acids having oxygen atoms of carbamate groups bound to acyclic carbon atoms with the nitrogen atoms of the carbamate groups bound to hydrogen atoms or to acyclic carbon atoms to carbon atoms of hydrocarbon radicals substituted by nitrogen atoms not being part of nitro or nitroso groups
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/30Cross-linking
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/103Esters of polyhydric alcohols or polyhydric phenols of trialcohols, e.g. trimethylolpropane tri(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/104Esters of polyhydric alcohols or polyhydric phenols of tetraalcohols, e.g. pentaerythritol tetra(meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F222/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a carboxyl radical and containing at least one other carboxyl radical in the molecule; Salts, anhydrides, esters, amides, imides, or nitriles thereof
    • C08F222/10Esters
    • C08F222/1006Esters of polyhydric alcohols or polyhydric phenols
    • C08F222/106Esters of polycondensation macromers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/151Reduction of greenhouse gas [GHG] emissions, e.g. CO2

Definitions

  • the present invention relates to a novel crosslinkable amine compound, a polymer membrane for separating carbon dioxide from a mixed gas containing carbon dioxide using the compound, a method for producing the polymer membrane, and a gas using the polymer membrane It relates to a separation method.
  • a gas component can be separated by a film composed of the polymer material (see, for example, Non-Patent Document 1).
  • a gas component separation technique using a membrane has advantages such as low energy consumption, miniaturization of the apparatus, and easy maintenance of the apparatus, and is used in various fields.
  • a technique for selectively separating carbon dioxide among techniques for separating a gas component by a membrane has been energetically studied. This technology can be used to separate and recover carbon dioxide from off-gas in oil fields, waste incineration, exhaust gas from thermal power generation, natural gas, and the like.
  • Patent Document 1 discloses a film thickness of about 500 ⁇ m or more.
  • phase separation occurs and the polyamidoamine dendrimer is easily detached from the polymer membrane.
  • the polymer film of Document 1 may be damaged under pressure, further improvement has been demanded for practical use.
  • the present invention is a novel cross-linking for producing a polymer membrane capable of separating carbon dioxide from other gases with high selectivity at a pressure difference for practical use and causing no phase separation even when the film thickness is reduced. It is an object to provide a functional amine compound, a polymer membrane using the compound, a method for producing the polymer membrane, and a gas separation method using the polymer membrane.
  • a group represented by the following formula (4) (In the formula, A 5 and A 6 represent a divalent organic residue having 1 to 3 carbon atoms, and t represents an integer of 0 or 1.) Obtained by reacting an amine compound (A) having one or more groups selected from the group consisting of groups represented
  • the crosslinkable amine compound is represented by the following formula (5): A compound represented by the following formula (6): A compound represented by the following formula (7): A compound which is a polyamidoamine represented by the following formula (8): A compound that is not a polyamidoamine represented by formula (9): A compound which is not a polyamidoamine represented by the following formula (10): A compound which is not a polyamidoamine represented by formula (11): The crosslinkable amine compound according to the above [1], which is at least one compound selected from the group consisting of compounds other than the polyamidoamine represented by formula (1).
  • the polyamidoamine-based dendrimer has the following formula [10] The polymer film as described in [10] above, which is at least one kind of 0th generation dendrimer selected from the group consisting of 1st to 5th generation dendrimers corresponding thereto.
  • the polyfunctional polymerizable monomer is one or more selected from the group consisting of polyfunctional (meth) acrylamide, polyfunctional (meth) acrylate, polyfunctional vinyl ether and divinylbenzene.
  • the polymer membrane according to any one of [11].
  • Di (meth) acrylate is (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropane di (meth) )
  • Monofunctional polymerizable monomer is monofunctional (meth) acrylamide, monofunctional (meth) acrylate, monofunctional vinyl ether, monofunctional N-vinyl compound, monofunctional vinyl compound and monofunctional ⁇ , ⁇ -unsaturated
  • Monofunctional (meth) acrylate is methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, methoxyethyl (meth) acrylate, Selected from the group consisting of methoxypolyethylene glycol (meth) acrylate, (meth) acrylic acid, N, N-dimethylaminoethyl (meth) acrylate, (poly) ethylene glycol (meth) acrylate and (poly) propylene glycol (meth) acrylate.
  • the polymer film as described in [16] above, wherein the polymer film is at least one kind.
  • a method for producing a polymer film comprising a step of immobilizing the compound (B).
  • the following formula (1) (In the formula, A 1 represents a divalent organic residue having 1 to 3 carbon atoms, and p represents an integer of 0 or 1.)
  • a group represented by the following formula (4) (In the formula, A 5 and A 6 represent a divalent organic residue having 1 to 3 carbon atoms, and t represents an integer of 0 or 1.)
  • the polyamidoamine dendrimer is represented by the following formula: The method for producing a polymer film as described in [22] above, which is at least one kind of 0th generation dendrimer selected from the group consisting of 1st to 5th generation dendrimers corresponding thereto. [24] including a step of bringing a mixed gas containing carbon dioxide into contact with the polymer membrane according to any one of [8] to [19] to selectively permeate carbon dioxide in the mixed gas.
  • a polymer membrane capable of separating carbon dioxide from other gases with high selectivity at a pressure difference for practical use and a method for producing the polymer membrane are provided.
  • the present invention also provides a method for efficiently separating carbon dioxide from other gases using the polymer membrane.
  • the amine compound having carbon dioxide separation ability is not supported on the surface of the polymer membrane, but is immobilized in the polymer membrane, Even if the film is thinned, it does not cause phase separation and has a feature of excellent stability. By making the film thinner, the gas permeation rate can be increased and gas separation can be performed efficiently. Further, the polymer membrane obtained in the present invention does not cause phase separation even when pressure is applied, the amine compound (B) does not leak, and the membrane does not break down, and is stable for a long time. It can be used and is useful as a practical gas separation membrane.
  • GC gas chromatography
  • a circle indicates an amine compound.
  • a circle indicates an amine compound.
  • 6 is a scanning electron microscope image of Test Example 4. The left shows the comparative product 1 and the right shows the product 15 of the present invention. 10 is a fluorescence image of Test Example 5. The left shows the comparative product 8 and the right shows the product 16 of the present invention. 10 is a graph showing measurement results of X-ray small angle scattering in Test Example 6.
  • the crosslinkable amine compound of the present invention is characterized by having 3 or more acrylic groups and / or methacrylic groups in the molecule at the branch ends.
  • the crosslinkable amine compound is not particularly limited as long as the effect of the present invention is not hindered.
  • a 1 represents a divalent organic residue having 1 to 3 carbon atoms, and p represents an integer of 0 or 1.
  • a group represented by formula (2) (In the formula, A 2 represents a divalent organic residue having 1 to 3 carbon atoms, and q represents an integer of 0 or 1.)
  • a group represented by the following formula (4) In the formula, A 5 and A 6 represent a divalent organic residue having 1 to 3 carbon atoms, and t represents an integer of 0 or 1.
  • the crosslinkable amine compound is preferred.
  • (i) a compound obtained by reacting an acrylic ester and / or methacrylic ester with a haloformate (hereinafter also referred to as compound (i));
  • (ii) Acrylic acid ester having at least one group selected from the group consisting of hydroxyl group, carboxyl group, glycidyl group, isocyanate group, isocyanurate group, carbodiimide group, aldehyde group, amino group and alkoxysilyl group, and / or Methacrylic acid ester (hereinafter also referred to as compound (ii)).
  • crosslinkable amine compound examples include: Following formula (5) A compound represented by formula (6): A compound represented by formula (7): A compound represented by formula (8): A compound represented by formula (9): A compound represented by formula (10): And a compound represented by the following formula (11) Preferred examples include compounds represented by:
  • the crosslinkable amine compound of the present invention is a compound having 3 or more acrylic groups and / or methacryl groups in the molecule at the branch end. From the viewpoint of improving the crosslink density and preventing phase separation, an acrylic group is present at the branch end. A compound having 4 or more methacrylic groups in the molecule is more preferred. Further, the crosslinkable amine compound of the present invention may contain a metal atom, but it is preferable to exclude one containing a metal atom (particularly a trivalent or higher-valent metal atom).
  • the amine compound (B) is immobilized in the polymer without causing phase separation. Therefore, when a polymer membrane of 100 ⁇ m or less is produced, the phase separation is performed. The cloudiness which shows is not produced. Moreover, since the crosslink density can be increased by using the crosslinkable amine compound, there is no possibility of breakage under high pressure, and a practical polymer membrane for gas separation can be obtained.
  • the ester used for the reaction with the haloformate is more preferably a methacrylic acid ester from the viewpoint that a stronger crosslinked structure can be obtained for the produced polymer film.
  • the acrylic ester is not particularly limited, and examples thereof include methyl acrylate, ethyl acrylate, (n- or i-) propyl acrylate, (n-, i-, sec- or t-) butyl acrylate, amyl acrylate, -Ethylhexyl acrylate, dodecyl acrylate, chloroethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 5-hydroxypentyl acrylate, cyclohexyl acrylate, allyl acrylate, trimethylolpropane monoacrylate, pentaerythritol monoacrylate, glycidyl acrylate, benzyl Acrylate, methoxybenzyl acrylate, chlorobenzyl acrylate, 2- (p-hydroxyphenyl) ethyla
  • Examples include relate, furfuryl acrylate, tetrahydrofurfuryl acrylate
  • 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 5-hydroxypentyl acrylate and 2- (p- Acrylic acid esters having one or more hydroxy groups selected from hydroxyphenyl) ethyl acrylate are preferred.
  • the acrylic ester may be used alone or in combination of two or more.
  • the methacrylic acid ester is not particularly limited.
  • the haloformate is not particularly limited, and examples thereof include a haloformate having an aromatic ring group which may have a substituent or a heterocyclic group which may have a substituent, and the like. Preferred are haloformates having an aromatic ring group.
  • the haloformate group in the haloformate has the following formula: —OC ( ⁇ O) X (In the formula, X means Cl, Br or I.) It is group shown by these. Although it does not specifically limit as a haloformate which has the aromatic ring group which may have the said substituent, The aromatic chloroformate which may have a substituent is preferable.
  • the aromatic chloroformate which may have a substituent is not particularly limited, but a chloroformate having a phenyl group which may have a substituent is preferable, and 2,4,5-trichlorophenylchloro Formate (chloroformate 2,4,5-trichlorophenyl) or p-nitrophenyl chloroformate is particularly preferred.
  • the substituent in the above-described compound is not particularly limited as long as the effect of the present invention is not hindered.
  • the amount of the haloformate used is usually about 1.0 to 5.0 moles, preferably about 1.2 to 2.0 moles per mole of acrylic acid ester and / or methacrylic acid ester.
  • the temperature of the reaction is not particularly limited, but is usually about 20 ° C to 60 ° C.
  • the reaction time is not particularly limited, but is usually about 3 hours to 1 day.
  • the reaction of the acrylic ester and / or methacrylic ester with haloformate is preferably carried out in the presence of a catalyst, and the catalyst used in the reaction is not particularly limited, but N, N-dimethyl-4-aminopyridine is used. (DMAP) or 4-pyrrolidinepyridine.
  • the amount of the catalyst used is not particularly limited, but is preferably 1 ⁇ 10 ⁇ 8 to 1 ⁇ 10 ⁇ 3 equivalents per 1 mol of the acrylic ester and / or methacrylic ester of the raw material, and 1 ⁇ 10 ⁇ 7 to 5 ⁇ 10.
  • the solvent used in the reaction is not particularly limited, and examples thereof include chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, monochlorobenzene and dichlorobenzene; aromatic hydrocarbons such as benzene, toluene and xylene. Can be mentioned. Any of these may be used alone or in combination of two or more at any ratio.
  • the compound (ii) has one or more groups selected from the group consisting of a hydroxyl group, a carboxylic acid group, a glycidyl group, an isocyanate group, an isocyanurate group, a carbodiimide group, an aldehyde group, an amino group, and an alkoxysilyl group.
  • a hydroxyl group a carboxylic acid group, a glycidyl group, an isocyanate group, an isocyanurate group, a carbodiimide group, an aldehyde group, an amino group, and an alkoxysilyl group.
  • Acrylic acid ester and / or methacrylic acid ester having a glycidyl group is preferable from the viewpoint of increasing affinity with a certain polyethylene glycol compound and the like.
  • crosslinking compound (ii) examples include dimethylaminoethyl methacrylate, dimethylaminopropyl methacrylate, alkyl methacrylamide (for example, methacrylamide, dimethylmethacrylamide, N-isopropylmethacrylamide, n-butylmethacrylamide, tert-butyl methacrylamide and tert-octyl methacrylamide), 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, (meth) acrylic acid, 3-butenoic acid, allyl isothiocyanate, isothiocyanate 3- Examples include buten-1-yl, allyl glycidyl ether, and glycidyl methacrylate, and glycidyl methacrylate is particularly preferable.
  • alkyl methacrylamide for example, methacrylamide, dimethylmethacrylamide, N-isopropylmethacrylamide, n
  • the reaction between the amine compound (A) and one or more compounds selected from the group consisting of the compounds (i) and (ii) will be described.
  • the amount of the compounds (i) and (ii) to be used is not particularly limited, but is usually about 1.0 to 10 mol, preferably 1.2 to 2. mol per mol of the amine compound (A). About 0 mole.
  • the temperature of the reaction is not particularly limited, but is usually about 20 ° C to 60 ° C.
  • the reaction time is not particularly limited, but is usually about 3 hours to 1 day.
  • the solvent used in the reaction is not particularly limited.
  • Examples include formamide, chloroform, dichloromethane, methylene chloride, ethyl acetate, dimethyl sulfoxide, dioxane, benzene, toluene, tetrahydrofuran, water, methanol, ethanol, isopropanol, etc., and these may be used alone or in combination of two or more. Good. Moreover, the said reaction may be performed in absence of a catalyst and may be performed in presence of a catalyst.
  • the catalyst is not particularly limited.
  • the cross-linking agent of the present invention can be obtained.
  • the amine compound (A) is an amine compound having one or more groups selected from the group consisting of the groups represented by the formulas (1) to (4).
  • Examples of the divalent organic residue having 1 to 3 carbon atoms represented by A 1 , A 2 , A 3 , A 4 , A 5 and A 6 include, for example, linear or branched C 1 to 3 carbon atoms.
  • An alkylene group is mentioned. Specific examples of such alkylene groups, -CH 2 -, - CH 2 -CH 2 -, - CH 2 -CH 2 -CH 2 -, - CH 2 -CH (CH 3) - , and the like, Of these, —CH 2 — is particularly preferable.
  • the number of the groups is not particularly limited as long as at least one group represented by the formulas (1) to (4) is contained, but preferably 2 to 4096 groups, More preferably, those having 3 to 128 groups are exemplified.
  • the polymer film of the present invention has the following formula (1) in a polymer obtained by polymerizing a polyfunctional polymerizable monomer that is crosslinked using the crosslinkable amine compound as a crosslinking agent.
  • a 1 represents a divalent organic residue having 1 to 3 carbon atoms, and p represents an integer of 0 or 1.
  • a 2 represents a divalent organic residue having 1 to 3 carbon atoms, and q represents an integer of 0 or 1.
  • a group represented by the following formula (4) In the formula, A 5 and A 6 represent a divalent organic residue having 1 to 3 carbon atoms, and t represents an integer of 0 or 1.
  • the amount of the crosslinkable amine compound used in the production of the polymer is not particularly limited as long as the effect of the present invention is not hindered, but is usually 5 to 95 wt% with respect to the polyfunctional polymerizable monomer. From the viewpoint of improving the durability of the resulting polymer film and the stability of the amine compound (B), it is preferably 10 to 80 wt%, more preferably 15 to 50 wt%.
  • the weight fraction occupied by one or more groups selected from the group consisting of the groups represented by the formulas (1) to (4) is not particularly limited, but carbon dioxide and hydrogen From the viewpoint of improving the separation ability of the amine compound, it is preferable that the weight fraction of one or more groups selected from the group consisting of groups represented by formulas (1) to (4) in the amine compound is 5% or more. More preferred is 10 to 94%, and further preferred is 15 to 53%.
  • examples of the skeleton to which one or more groups selected from the group consisting of groups represented by formulas (1) to (4) are bonded include the following. [Wherein n represents an integer of 0 to 10. ]
  • a bond which is bonded directly or via an alkylene group and is not bonded with one or more groups selected from the group consisting of the groups represented by formulas (1) to (4) includes a hydrogen atom, an alkyl group, amino A compound in which an alkyl group, a hydroxyalkyl group or the like is bonded.
  • Examples of the amine compound (B) include 0th generation polyamidoamine dendrimers represented by the following formula, and 1st generation or more corresponding to these 0 th generation polyamidoamine dendrimers.
  • polyamidoamine dendrimers examples of particularly suitable compounds include the following polyamidoamine dendrimers.
  • the polyamidoamine-based dendrimers used in the present invention include those having all equal branch lengths and those having at least one of them substituted with a hydroxyalkyl group or an alkyl group and having different branch lengths.
  • various polyamidoamine dendrimers having different numbers of surface groups [namely, groups represented by the formula (1), (2), (3) or (4)] can be used. .
  • the relationship between the number of surface groups and the generation of the polyamidoamine-based dendrimer is as follows. If the number of the 0th generation surface groups is a (a represents an integer of 3 or more), the b generation (b represents an integer).
  • the number c of surface groups is as follows.
  • 0th to 10th generation PAMAM dendrimers manufactured by Aldrich can be used, and in particular, 0th to 5th generation polyamidoamine dendrimers can be preferably used.
  • Table 1 below shows the number of surface groups for each generation when the number of surface groups of the 0th generation is four.
  • the polyamidoamine dendrimer the first generation or higher is preferable from the viewpoint of increasing the crosslink density of the obtained polymer film.
  • the second generation or higher is particularly preferable. preferable.
  • the amine compound having a group represented by the formula (1) can be produced according to a known organic synthesis method.
  • a method of reacting a mother nucleus compound having a methyl ester group with an amine compound represented by the following formula (1a) is exemplified.
  • the methyl ester group of a compound having a methyl ester group is converted to a group represented by the formula (1a), and an amine compound having a group represented by the formula (1) can be produced.
  • the following formula is a formula in which a methyl ester group is converted into a group represented by formula (1) in the synthesis method. (In the formula, A 1 and p have the same meaning as described above.)
  • the reaction between the compound having a methyl ester group and the amine compound represented by the formula (1a) is usually carried out by adding 3 to 20 mol of the amine compound represented by the formula (1a) with respect to 1 mol of the compound having a methyl ester group. , Preferably 5 to 10 moles.
  • the reaction between the compound having a methyl ester group and the amine compound represented by the formula (1a) is usually carried out in a suitable solvent.
  • a suitable solvent known solvents can be widely used as long as they do not inhibit the reaction. Examples of such a solvent include methanol, ethanol, 2-propanol, tetrahydrofuran, 1,4-dioxane and the like. These solvents do not prevent water from being contained.
  • the reaction between the compound having a methyl ester group and the amine compound represented by (1a) is usually continued at 0 to 40 ° C., preferably 20 to 30 ° C., for 90 to 180 hours, preferably 160 to 170 hours. Is done.
  • compounds of known compounds can be used as the compound having a methyl ester group used as a raw material and the amine compound represented by the formula (1a).
  • the reaction mixture obtained by the above reaction is cooled, for example, and then subjected to an isolation operation such as filtration, concentration, extraction, etc. to separate the crude reaction product, and if necessary, column chromatography, recrystallization, etc.
  • the amine compound having a group represented by the formula (1) can be isolated and purified by performing a normal purification operation.
  • the amine compound having a group represented by the formula (2) is obtained by reacting, for example, a mother nucleus compound having an amino group and an amine compound having a methyl ester group at the terminal represented by the following formula (2a) in the same manner as described above. Can be manufactured. (In the formula, A 2 and q have the same meaning as described above.)
  • the amine compound having a group represented by the formula (3) is, for example, a mother nucleus compound having an alkenyl group at the terminal represented by the following formula (3a) and a diamine compound represented by the following formula (3b) in the same manner as described above. It can be produced by reacting. (In the formula, A 3 , A 4 , r and s have the same meaning as described above.)
  • the amine compound having a group represented by the formula (4) for example, reacts a mother nucleus compound having a carbonyl group represented by the following formula (4a) and a diamine compound represented by the following formula (4b) in the same manner as described above. Can be manufactured.
  • a 5 , A 6 and t have the same meaning as described above, and A 7 represents an organic residue.
  • Preferable examples of the organic residue having 1 to 3 carbon atoms represented by A 7 include a linear or branched alkyl group having 1 to 3 carbon atoms (methyl group, ethyl group, propyl group). .
  • the polyfunctional polymerizable monomer used in the present invention is not particularly limited as long as it is a polymerizable compound having two or more carbon-carbon unsaturated bonds.
  • examples thereof include polyfunctional acrylic monomers such as polyfunctional (meth) acrylamide and polyfunctional (meth) acrylate, and polyfunctional vinyl monomers such as polyfunctional vinyl ether or divinylbenzene. These polyfunctional polymerizable monomers can be used alone or in combination of two or more.
  • polyfunctional (meth) acrylamides examples include N, N ′-(1,2-dihydroxyethylene) bisacrylamide, ethidium bromide-N, N′-bisacrylamide, and ethidium. Examples include bromide-N, N′-bismethacrylamide, N, N′-ethylenebisacrylamide, N, N′-methylenebisacrylamide, and the like. Examples of the polyfunctional (meth) acrylates include di (meth) acrylates, tri (meth) acrylates, and tetra (meth) acrylates.
  • di (meth) acrylates examples include (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropane di (meth) And alkylene glycol di (meth) acrylates such as acrylate and pentaerythritol di (meth) acrylate.
  • tri (meth) acrylates examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethylene oxide-modified trimethylolpropane tri (meth) acrylate, glycerin tri (meth) acrylate, and the like. .
  • Examples of the tetra (meth) acrylates include ditrimethylolpropane tetra (meth) acrylate and pentaerythritol tetra (meth) acrylate.
  • Examples of the polyfunctional vinyl ethers include trimethylolpropane trivinyl ether, ditrimethylolpropane tetravinyl ether, glycerin trivinyl ether, and the like.
  • the polymerization reaction may be carried out by using the polyfunctional polymerizable monomer and the monofunctional polymerizable monomer in combination. By using in combination, the size of the network in the polymer can be adjusted.
  • Monofunctional polymerizable monomers include monofunctional acrylic monomers such as monofunctional (meth) acrylamides and monofunctional (meth) acrylates, monofunctional vinyl ethers, monofunctional N-vinyl compounds or monofunctional vinyl compounds. And monofunctional vinyl monomers and monofunctional ⁇ , ⁇ -unsaturated compounds.
  • Examples of the monofunctional (meth) acrylamide include 2-acetamidoacrylic acid, (meth) acrylamide, 2-acrylamide-2-methylpropanesulfonic acid, N- (butoxymethyl) acrylamide, N-tert-butylacrylamide, and diacetone acrylamide.
  • Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, methoxyethyl (meth) acrylate, methoxy
  • Examples include polyethylene glycol (meth) acrylate, (meth) acrylic acid, N, N-dimethylaminoethyl (meth) acrylate, (poly) ethylene glycol methacrylate, and polypropylene glycol (meth) acrylate.
  • Examples of the monofunctional vinyl ethers include methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, 2-ethylhexyl vinyl ether, cyclohexyl vinyl ether, methoxyethyl vinyl ether, and methoxypolyethylene glycol vinyl ether.
  • Examples of the monofunctional N-vinyl compounds include N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylformamide, N-vinylacetamide and the like.
  • Examples of the monofunctional vinyl compounds include styrene, ⁇ -methylstyrene, vinyl acetate and the like.
  • Examples of the monofunctional ⁇ , ⁇ -unsaturated compounds include maleic anhydride, maleic acid, dimethyl maleate, diethyl maleate, fumaric acid, dimethyl fumarate, diethyl fumarate, monomethyl fumarate, monoethyl fumarate, and itaconic anhydride.
  • Examples thereof include acid, itaconic acid, dimethyl itaconate, methylene malonic acid, dimethyl methylene malonate, cinnamic acid, methyl cinnamate, crotonic acid, and methyl crotonic acid.
  • the amount of the amine compound (B) having one or more groups selected from the group consisting of the groups represented by the formulas (1) to (4) immobilized in the polymer is determined by the polymer 100
  • the amount is usually about 2 to 400 parts by weight, preferably about 25 to 250 parts by weight, more preferably about 40 to 100 parts by weight from the viewpoint of obtaining sufficient gas separation performance.
  • the thickness of the polymer membrane of the present invention is not particularly limited as long as the effects of the present invention are not hindered, but is usually about 1000 ⁇ m or less from the viewpoints of high gas permeation rate and preferable performance of gas separation. About 600 ⁇ m or less, more preferably about 250 ⁇ m or less, and even more preferably about 100 ⁇ m or less.
  • the lower limit of the film thickness is not particularly limited as long as gas separation can be effectively performed, but is preferably about 5 ⁇ m or more, and more preferably about 10 ⁇ m or more from the viewpoint of durability.
  • the film thickness when used as a self-supporting film having no support is not particularly limited as long as the effects of the present invention are not hindered.
  • the film thickness when used as a composite film having a support is not particularly limited as long as the effects of the present invention are not hindered, but is preferably about 5 ⁇ m or more and 150 ⁇ m or less from the viewpoint of the strength of the film and the gas permeation rate, More preferably, it is about 10 ⁇ m or more and 100 ⁇ m or less.
  • the gas permeation rate when using the polymer membrane of the present invention is not particularly limited as long as the effect of the present invention is not hindered, but is about 1 ⁇ 10 ⁇ 13 m 3 from the viewpoint of gas separation efficiency.
  • (STP) / (m 2 Spa) or more is preferable, and about 1 ⁇ 10 ⁇ 12 m 3 (STP) / (m 2 Spa) or more is more preferable.
  • the pressure applied to the membrane when using the polymer membrane of the present invention is preferably about 0.1 MPa or more, more preferably about 1 to 4 MPa.
  • a support is not essential, but a support may be provided as necessary.
  • a porous support membrane is preferably used from the viewpoint of gas separation.
  • the thickness of the porous support membrane is not particularly limited as long as the effect of the present invention is not hindered, but is preferably about 50 ⁇ m to 1000 ⁇ m, more preferably about 100 ⁇ m to 500 ⁇ m from the viewpoint of strength and gas permeation rate.
  • the porous support membrane and the polymer membrane integrally formed can be used as a gas separation composite membrane.
  • the composite membrane refers to one in which a polymer membrane having gas separation ability and a porous support membrane are integrally formed.
  • the porous support membrane used in the present invention can be produced using, for example, a polymer described later, and ceramics, polyethylene phthalate (PET) film, and the like can also be used. Specifically, when producing using a polymer, the polymer is dissolved in a solvent to obtain a raw material solution, and then the raw material solution is brought into contact with a coagulation liquid (a mixed solution of a solvent and a non-solvent).
  • a porous support membrane can be produced by a method of inducing phase separation by increasing the solvent concentration (non-solvent induced phase separation method; NIPS method, see Japanese Patent Publication No. 1-2003).
  • the ceramic include alumina, zirconia, titania, and silica.
  • Examples of the polymer used for the production of the porous support membrane include polyethersulfone (PES), polysulfone (PSF), polyphenylenesulfone, triacetylcellulose, cellulose acetate, carbon, polyacrylonitrile, polyvinylidene fluoride, aromatic nylon, and polyethylene.
  • Examples thereof include phthalate (PET), polyethylene naphthalate, polyarylate, polyimide, polyether, cellophane, aromatic polyamide, polyethylene, and polypropylene.
  • Examples of the solvent include N-methylpyrrolidone (NMP), acetone, dimethylformamide and the like. There is no particular limitation as long as the solvent dissolves in the coagulation liquid during coagulation.
  • non-solvent examples include water, monohydric alcohol, polyhydric alcohol, ethylene glycol, and tetraethylene glycol.
  • a swelling agent for example, one or a mixture of two or more selected from polyethylene glycol, polyvinyl pyrrolidone, hydroxypropyl cellulose, sodium chloride, lithium chloride, and magnesium bromide can be used.
  • polyethylene glycol is preferable, and polyethylene glycol having a weight average molecular weight of 400 to 800 is particularly preferable.
  • the concentration of the raw material solution and the coagulation liquid is not particularly limited as long as the concentration is such that the raw material solution and the coagulation liquid are brought into contact with each other and a porous support membrane can be obtained by a non-solvent induced phase separation method.
  • the raw material solution is preferably a 20 to 35 wt% PES solution in view of film forming properties.
  • the method for contacting the raw material solution with the coagulating liquid is not particularly limited, and examples thereof include a method of immersing the raw material solution in the coagulating liquid.
  • the concentration of the solvent in the coagulation liquid is not particularly limited, but by changing the solvent concentration in the coagulation liquid in the coagulation of the raw material solution, the structure of the support film can be changed and the pressure resistance can be increased.
  • the pore diameter of the pores of the porous support membrane is preferably 100 nm or less, more preferably 10 nm or less.
  • the thickness of the porous support membrane is not particularly limited as long as the gas permeability of the polymer membrane does not become larger than the gas permeability of the porous support membrane.
  • a crosslinkable amine compound having 3 or more branched ends having an acrylic group and / or methacrylic group as a polymerizable functional group and the following formula (1)
  • a 2 represents a divalent organic residue having 1 to 3 carbon atoms, and q represents an integer of 0 or 1.
  • a 3 and A 4 represent a divalent organic residue having 1 to 3 carbon atoms, and r and s represent an integer of 0 or 1.
  • a group represented by the following formula (4) In the formula, A 5 and A 6 represent a divalent organic residue having 1 to 3 carbon atoms, and t represents an integer of 0 or 1.
  • Examples include a method including a step of immobilizing the compound (B) to form a polymer film (step [I]). Moreover, the process (process [II]) which laminates
  • This step is a polyfunctional polymerizable compound in the presence of the crosslinkable amine compound having three or more branched ends with the acrylic group and / or methacrylic group as the polymerizable functional group in the molecule, and the amine compound (B).
  • This is a step of forming a polymer film by immobilizing the amine compound in the polymer polymer produced by polymerizing the monomer.
  • the polymerization reaction is not particularly limited as long as the effects of the present invention are not hindered.
  • the polymerization reaction may be thermal polymerization or photopolymerization. In this case, a polymerization initiator is usually used (heat or light).
  • thermal polymerization initiator known ones can be used. Specifically, methyl ethyl ketone peroxide, benzoyl peroxide, dicumyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxide Organic peroxides such as octoate, t-butylperoxybenzoate, and lauroyl peroxide; azo compounds such as azobisisobutyronitrile are suitable.
  • a curing accelerator may be used by mixing at the time of thermal polymerization, and as the curing accelerator, cobalt naphthenate, cobalt octylate, etc., or tertiary amine is suitable.
  • the addition amount of the thermal polymerization initiator is preferably about 0.01 to 10 parts by weight with respect to 100 parts by weight of the polyfunctional polymerizable monomer. More preferably, it is about 0.1 to 1 part by weight.
  • Benzoin and its alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 4- (1 -T-butyldioxy-1-methylethyl) acetophenone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one and 2-benzyl-2-dimethylamino-1- (4 -Morpholinophenyl) -butanone-1, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal
  • Anthraquinones such as 2-methylanthraquinone, 2-amylanthraquinone, 2-t-butylanthraquinone, 1-chloroanthraquinone; 2,4-dimethylthioxanthone, 2,4-diisopropylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2- (3-dimethylamino-2-hydroxy) -3,4-dimethyl-9H-thioxanthone Thioxanthones such as -9-one mesochloride; ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenone, 4- (1-t-butyldi
  • Benzyldimethyl ketal (eg, 2,2-dimethoxy-1,2-diphenylethane-1-one), ⁇ -hydroxyalkylphenone (eg, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2 -Methyl-1-phenyl-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- ⁇ 4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl ⁇ -2-methyl-propan-1-one), ⁇ -aminoalkylphenone (eg, 2-methyl-1- (4 -Methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinofe Nyl) -butanone-1,2- (dimethylamino) -2-[(4-[2-
  • the addition amount of the photopolymerization initiator is preferably about 0.5 to 10 parts by weight with respect to 100 parts by weight of the polyfunctional polymerizable monomer. More preferably, it is about 2 to 3 parts by weight.
  • a basic compound can be used as a sensitizer together with a photopolymerization initiator.
  • an amine compound is preferably used, and the amine compound is not particularly limited. Specifically, monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, monopropylamine, dimethylpropyl are used. Examples include amine, monoethanolamine, diethanolamine, ethylenediamine, diethylenetriamine, dimethylaminoethyl methacrylate, and polyethyleneimine. Of these, tertiary amine compounds are particularly preferred.
  • tertiary amine compound examples include triethanolamine, triisopropanolamine, tributanolamine, methyldiethanolamine, methyldiisopropanolamine, methyldibutanolamine, ethyldiethanolamine, ethyldiisopropanolamine, ethyldibutanolamine, propyldiethanolamine, propyl Diisopropanolamine, propyldibutanolamine, dimethylethanolamine, dimethylisopropanolamine, dimethylbutanolamine, diethylethanolamine, diethylisopropanolamine, diethylbutanolamine, dipropylethanolamine, dipropylisopropanolamine, dipropylbutanolamine, dibutylethanol Amine, dibutylisopropano Triethanolamine, dibutyl butanolamine, methyl ethyl ethanolamine, methyl
  • hydroxyl group-containing tertiary amine compounds are added with ethylene oxide to introduce a polyethylene glycol chain, and the hydroxyl group-containing tertiary amine compound is added with a monomer containing a functional group reactive with a hydroxyl group to obtain a polymerizable group. What introduced the heavy bond, what introduce
  • These amine compounds can be used alone or in combination of two or more.
  • the amount of the sensitizer used is preferably about 1 to 10 parts by weight with respect to 100 parts by weight of the photopolymerization initiator. More preferably, it is about 5 to 8 parts by weight.
  • the polymerization reaction is preferably carried out in a suitable solvent by heating in the case of thermal polymerization and by irradiation with ultraviolet rays in the case of photopolymerization.
  • the solvent is not particularly limited as long as it dissolves the amine compound and the polyfunctional polymerizable monomer, but usually an alcohol (for example, methanol, ethanol, etc.) can be preferably used.
  • Heating in the thermal polymerization is usually performed at about 40 to 90 ° C., preferably about 60 to 70 ° C., usually about 2 to 24 hours, preferably about 5 to 10 hours.
  • the ultraviolet irradiation of the photopolymerization is usually performed for about 30 seconds to 10 minutes, preferably about 1 to 3 minutes, using a wavelength of about 200 to 400 nm, preferably about 250 to 360 nm.
  • thermal polymerization and photopolymerization can be performed in combination.
  • photopolymerization can be performed after thermal polymerization, thermal polymerization can be performed after photopolymerization, or photopolymerization and thermal polymerization can be performed simultaneously. .
  • a polymer film is obtained in which the amine compound (B) is physically or chemically immobilized in the polymer at the same time as the polymer is produced.
  • Suitable examples of the obtained polymer film include those in which the amine compound (B) is sealed and fixed in the network structure of the polymer having the three-dimensional network structure.
  • the high molecular polymer has a cross-linked structure of the cross-linkable amine compound, a high polymer film having excellent strength and gas separation property can be obtained.
  • the crosslinkable amine compound the amine compound (B) having carbon dioxide gas separation performance does not phase-separate even if the film thickness is reduced, the membrane is subjected to high pressure, etc. A gas separation membrane that is preferable in this respect is obtained.
  • phase separation can be confirmed, for example, by X-ray small angle scattering using CuK ⁇ rays (wavelength 0.1542 nm). When no peak is observed at a scattering vector of 0.6 nm ⁇ 1 or more, it can be seen that a particularly excellent gas separation performance can be maintained because there is no structure due to a phase separation structure of 200 nm or less.
  • the polymer membrane of the present invention may be provided with a support as necessary.
  • This step is a step of obtaining a composite membrane obtained by laminating the polymer membrane obtained in the step (1) and a porous support membrane.
  • a method of laminating the polymer membrane and the porous support membrane a method known per se can be employed, and examples thereof include a laminating method. Examples of the laminating method include known dry laminating and hot melt laminating. Is mentioned.
  • the polymer membrane and the porous support membrane are usually cut to have a diameter (diameter) of 20 to 60 mm, preferably about 25 to 50 mm, and bonded together using an adhesive or an adhesive film.
  • the adhesive used for laminating is not particularly limited, but an aqueous adhesive (eg, ⁇ -olefin adhesive, aqueous polymer-isocyanate adhesive, etc.), an aqueous dispersion adhesive (eg, acrylic resin emulsion adhesive) , Epoxy resin emulsion adhesives, vinyl acetate resin emulsion adhesives, etc.), solvent adhesives (eg, nitrocellulose adhesives, vinyl chloride resin solvent adhesives, chloroprene rubber adhesives, etc.), reactive adhesives (eg, , Cyanoacrylate adhesives, acrylic resin adhesives, silicone adhesives, etc.), hot melt adhesives (eg, ethylene-vinyl acetate resin hot melt adhesives, polyamide resin hot melt adhesives, polyamide resin hot melt adhesives) , Polyolefin resin hot melt adhesive, etc.).
  • an aqueous adhesive eg, ⁇ -olefin adhesive, aqueous polymer-isocyanate adhesive, etc.
  • the adhesive film examples include films made of a thermoplastic transparent resin such as polyvinyl butyral, polyurethane, and ethylene-vinyl acetate copolymer resin.
  • the thickness of the adhesive or adhesive film layer is not particularly limited as long as it does not interfere with the gas permeability of the polymer membrane of the present invention and the gas permeability of the porous support membrane.
  • the gas separation method of the present invention includes a step of bringing the mixed gas containing carbon dioxide into contact with the polymer membrane or the composite membrane obtained above to selectively permeate carbon dioxide in the mixed gas.
  • the gas separation method it is preferable to provide a pressure difference between the gas supply side and the gas permeation side of the separation membrane. This pressure difference is usually provided by reducing the pressure on the gas permeation side.
  • the mixed gas applicable to the separation method of the present invention is not particularly limited as long as it is a mixed gas containing carbon dioxide.
  • the relative humidity of the mixed gas is set to 30. % Or more, preferably 60 to 100%.
  • the gas separation method can be applied to, for example, separating carbon dioxide (CO 2 ) from combustion exhaust gas generated in a thermal power plant, a steel plant, or the like.
  • Example 1 Following formula 2 generation polyamidoamine (PAMAM) dendrimer (surface group: —CONHCH 2 CH 2 NH 2 ; number of amino groups: 4; manufactured by Sigma-Aldrich), polyethylene glycol dimethacrylate (PEGDMA, molecular weight 750) , Sigma-Aldrich) 1.7 g (2.27 mmol) and 4 GMAP (Synthesis Example 1) 300 mg (0.28 mmol) as a crosslinking agent are dissolved in 4 g of water, and IRGACURE 2959 (trade name, BASF) is used as a polymerization initiator.
  • PAMAM polyamidoamine
  • PEGDMA polyethylene glycol dimethacrylate
  • 4 GMAP Synthesis Example 1
  • 300 mg (0.28 mmol) as a crosslinking agent are dissolved in 4 g of water, and IRGACURE 2959 (trade name, BASF) is used as a polymerization initiator.
  • Example 2 A polymer film was obtained in the same manner as in Example 1 except that the film thickness was changed to the value shown in Table 3 (Invention products 2 to 4).
  • Example 3 A polymer film was obtained in the same manner as in Example 1 except that the film thickness was changed to the value described in Table 4.
  • the polymer membrane and a porous support membrane (polyethersulfone ultrafiltration membrane, fractional molecular weight 300,000, manufactured by Millipore) were laminated to obtain composite membranes (Invention products 5 to 10).
  • Example 4 A composite film was obtained in the same manner as in Example 3 except that 300 mg (0.35 mol) of GM4TA obtained in Synthesis Example 5 was used instead of 4GMAP, and the film thickness was changed to 60 ⁇ m (Product 11 of the present invention).
  • Example 5 A composite film was obtained in the same manner as in Example 3 except that 300 mg (0.52 mol) of GM3TA obtained in Synthesis Example 6 was used instead of 4GMAP, and the film thickness was changed to 42 ⁇ m (Product 12 of the present invention).
  • Example 6 A composite film was obtained in the same manner as in Example 3 except that 300 mg (0.30 mol) of 3GMA6OHTA obtained in Synthesis Example 7 was used instead of 4GMAP, and the film thickness was changed to 52 ⁇ m (Product 13 of the present invention).
  • Example 7 A composite membrane was obtained in the same manner as in Example 3 except that 300 mg (0.25 mol) of 4GMA4OHP obtained in Synthesis Example 8 was used instead of 4GMAP, and the thickness was changed to 21 ⁇ m (Product 14 of the present invention).
  • Example 8 A polymer film was obtained in the same manner as in Example 1 except that 300 mg (1.17 ⁇ 10 ⁇ 4 mol) of 8GMAP obtained in Synthesis Example 2 was used instead of 4GMAP and the film thickness was changed to 340 ⁇ m (Invention Product 15 ).
  • Example 9 A polymer membrane was obtained in the same manner as in Example 1 except that 3 wt% of FITC-PEGMA obtained in Synthesis Example 9 was added in addition to 4GMAP (Product 16 of the present invention).
  • TMPTMA trimethylolpropane trimethacrylate
  • 4GMAP 3 mg (0.89 mmol) of trimethylolpropane trimethacrylate
  • 4 g of ethanol was used as a polymerization solvent
  • IRGACURE 2959 was used as a polymerization initiator.
  • a polymer membrane was obtained in the same manner as in Example 1 except that 10 mg of 1-hydroxycyclohexyl phenyl ketone (manufactured by Sigma-Aldrich) was used (Comparative product 1).
  • the obtained polymer film had a TMPTMA content of 15 wt%.
  • Example 1 Separation test of carbon dioxide and hydrogen Using the polymer membrane obtained in Example 1 (Product 1 of the present invention), CO 2 separation ability was measured using the apparatus shown schematically in FIG. That is, the polymer membrane is placed in contact with the supply gas, and a mixed gas of carbon dioxide gas and hydrogen gas having a partial pressure of CO 2 shown in Table 2 is supplied to the polymer membrane and permeates the polymer membrane.
  • the gas permeation rate Q CO2 (m 3 (STP) / m 2 Pas) was measured using a gas chromatography and a flow meter under the following conditions, and selectivity ⁇ was calculated according to the following equation.
  • the polymer film used for the test was 0.8 cm 2 .
  • the polymer membrane of the present invention has strength to withstand a pressure difference and has excellent carbon dioxide selectivity.
  • Example 2 Using the polymer membrane obtained in Example 2 (products 2 to 4 of the present invention), the gas permeation rate and selectivity of the polymer membrane were measured using the apparatus shown schematically in FIG. That is, a gas mixture of carbon dioxide gas having a partial pressure of CO 2 and hydrogen gas shown in Table 3 is supplied to the polymer membrane, and Q H2 , Q CO2 (m 3 (STP) of the gas permeated through the polymer membrane or the composite membrane. ) / M 2 Pas) was measured using a gas chromatography and a flow meter under the following conditions, and selectivity ⁇ was calculated in the same manner as in Test Example 1. The polymer film used for the test was 0.8 cm 2 . Further, the same test was performed using the polymer film obtained in Comparative Example 3 (Comparative products 3 to 5). The results are shown in Table 3.
  • Example 3 Using the composite membrane (Products 5 to 10 of the present invention) obtained in Example 3, the gas permeation rate and selectivity of the composite membrane were measured using the apparatus shown schematically in FIG. That is, the polymer membrane layer was placed in contact with the supply gas, measured under the same conditions as in Test Example 2, and the selectivity ⁇ was calculated in the same manner as in Test Example 1. In addition, the same test was performed using the polymer films obtained in Comparative Example 4 (Comparative products 6 and 7). The results are shown in Table 3.
  • FIG. 4 shows a scanning electron microscope (Hitachi S-4800) image of the polymer matrix after immersion.
  • the product 15 of the present invention no vacancies were observed and a compatible state was maintained, whereas in the comparative product 1, many vacancies were observed, and phase separation was confirmed. From this, it was confirmed that the product of the present invention did not cause phase separation and could maintain excellent gas separation performance of Q CO2 > 10 ⁇ 12 (m 3 / m 2 Pa s) and ⁇ > 10.
  • Example 5 The product 16 of the present invention obtained in Example 9 and the comparative product 8 obtained in Comparative Example 5 were observed with a confocal scan laser (LSM700 manufactured by Carl Zeiss).
  • FIG. 5 is a fluorescent image 10 ⁇ m inside from the surface (resolution 200 nm, scale bar represents 5 ⁇ m).
  • the bright part represents a high molecular polymer colored with FITC-PEGMA, and the dark part represents a dendrimer (amine compound (B)).
  • the product 16 of the present invention containing 4GMAP (amine compound (A)) shows no phase separation structure
  • the comparative product 8 containing no 4GMAP shows a phase separation structure of about several microns (macrophase separation). It was confirmed. From this, it was confirmed that the product of the present invention does not cause phase separation and can maintain excellent gas separation performance.
  • Example 6 The X-ray small angle scattering of the product 1 of the present invention obtained in Example 1 was measured using a Nano viewer manufactured by Rigaku Corporation. The optical path length is 1,250 mm, and scatterers of 200 nm or less can be detected. The results are shown in FIG. The vertical axis represents the scattering intensity, and the horizontal axis represents the scattering vector q ( ⁇ ⁇ 1 ). No peak due to scattering was observed, and it was confirmed that there was no structure due to a phase separation structure of 200 nm or less. From this, it was confirmed that the product of the present invention does not cause phase separation and can maintain excellent gas separation performance.
  • the polymer membrane of the present invention is used in applications for separating carbon dioxide from other gases, and is useful for, for example, CO 2 separation from combustion exhaust gas generated in thermal power plants, steel plants, etc. It is.

Abstract

Provided are: a novel crosslinkable amine compound for producing a polymer membrane for separating carbon dioxide from another gas with high selectivity; a polymer membrane using the compound; a method for producing the polymer membrane; and a gas separation method using the polymer membrane. This crosslinkable amine compound is characterized by having three or more acryloyl groups and/or methacryloyl groups in each molecule, said acryloyl groups and/or methacryloyl groups being respectively at the ends of branches.

Description

架橋性アミン化合物、該化合物を用いた高分子膜及びその製造方法Crosslinkable amine compound, polymer film using the compound, and method for producing the same
 本発明は、新規架橋性アミン化合物、該化合物を用いた二酸化炭素を含有する混合ガスから二酸化炭素を分離するための高分子膜、該高分子膜の製造方法及び該高分子膜を用いたガス分離方法に関する。 The present invention relates to a novel crosslinkable amine compound, a polymer membrane for separating carbon dioxide from a mixed gas containing carbon dioxide using the compound, a method for producing the polymer membrane, and a gas using the polymer membrane It relates to a separation method.
 従来より、高分子素材には、その素材に特有の気体透過性があるため、高分子素材から構成された膜によって、気体成分を分離できることが知られている(例えば、非特許文献1参照)。特に、膜による気体成分の分離技術は、エネルギーが少ない、装置が小型化できる、装置のメンテナンスが容易になる等の利点があり、種々の分野で使用されている。
 近年、膜により気体成分を分離する技術の中でも、二酸化炭素を選択的に分離する技術が精力的に検討されている。この技術は、油田のオフガス、ゴミ焼却や火力発電の排ガス、天然ガス等からの二酸化炭素の分離回収に利用することができる。
Conventionally, since a polymer material has gas permeability unique to the material, it is known that a gas component can be separated by a film composed of the polymer material (see, for example, Non-Patent Document 1). . In particular, a gas component separation technique using a membrane has advantages such as low energy consumption, miniaturization of the apparatus, and easy maintenance of the apparatus, and is used in various fields.
In recent years, a technique for selectively separating carbon dioxide among techniques for separating a gas component by a membrane has been energetically studied. This technology can be used to separate and recover carbon dioxide from off-gas in oil fields, waste incineration, exhaust gas from thermal power generation, natural gas, and the like.
 しかしながら、従来の高分子膜及び複合膜では二酸化炭素選択性(二酸化炭素の膜透過速度/二酸化炭素以外の分離対象ガスの膜透過速度)が不十分で、目的とする濃度で二酸化炭素を回収することが出来なかった。そのため、二酸化炭素選択性に優れた分離膜の開発が望まれていた。
 このような膜を得るために、二酸化炭素に対して選択的に親和性が高い素材を用いることが提案されている。例えば、室温で液状物質であるポリアミドアミンデンドリマーを、微多孔質の支持体に含浸させた分離膜が提案されている(非特許文献2及び3)。この含浸膜の分離性能を、膜に圧力差を設けないヘリウムキャリアー法という方法を用いて測定すると、1000を超える優れた二酸化炭素選択性を示した。
 しかしながら、液状物質であるポリアミドアミンデンドリマーを微多孔質の支持体に含浸させた分離膜では、この膜に圧力を掛けると、含有したデンドリマーが高分子マトリクスと時間と相分離を起こし、高分子マトリクスから抜け出して、性能を維持できないため、実用に供することが困難である。
However, conventional polymer membranes and composite membranes have insufficient carbon dioxide selectivity (the membrane permeation rate of carbon dioxide / the membrane permeation rate of the separation target gas other than carbon dioxide), and carbon dioxide is recovered at a target concentration. I couldn't. Therefore, development of a separation membrane having excellent carbon dioxide selectivity has been desired.
In order to obtain such a membrane, it has been proposed to use a material having a high selective affinity for carbon dioxide. For example, a separation membrane in which a polyamidoamine dendrimer that is a liquid substance at room temperature is impregnated in a microporous support has been proposed (Non-patent Documents 2 and 3). When the separation performance of the impregnated membrane was measured using a method called a helium carrier method in which no pressure difference was provided in the membrane, excellent carbon dioxide selectivity exceeding 1000 was shown.
However, in a separation membrane in which a polyamidoamine dendrimer, which is a liquid substance, is impregnated in a microporous support, when the membrane is pressurized, the contained dendrimer causes phase separation between the polymer matrix and time, and the polymer matrix It is difficult to put it into practical use because the performance cannot be maintained.
 したがって、ポリアミドアミンデンドリマーのような二酸化炭素に選択的に強い親和性を有する物質を固定して、実用的な圧力差をかけることが可能な高分子膜及び複合膜の開発が望まれていた。 Therefore, it has been desired to develop a polymer membrane and a composite membrane capable of immobilizing a substance having a strong and selective affinity for carbon dioxide such as a polyamidoamine dendrimer and applying a practical pressure difference.
 そこで、本発明者らは、例えば、特許文献1に示される高分子膜を開発した。一方、実用的にガス分離の性能を発揮するためには、ガスの透過速度を上げる必要があり、透過速度を上げるためには、膜厚を薄くする必要がある。前記特許文献1の高分子膜は、膜厚が500μm以上程度を開示しているが、250μm以下の膜を製造した場合、相分離を起こし、ポリアミドアミンデンドリマーが高分子膜から脱離しやすくなる。また、前記文献1の高分子膜は、加圧下で破損を起こす場合があるため、実用化に向けてさらなる改良が求められていた。 Therefore, the present inventors have developed a polymer film disclosed in Patent Document 1, for example. On the other hand, in order to practically exhibit gas separation performance, it is necessary to increase the gas permeation rate, and in order to increase the permeation rate, it is necessary to reduce the film thickness. The polymer membrane of Patent Document 1 discloses a film thickness of about 500 μm or more. However, when a membrane of 250 μm or less is produced, phase separation occurs and the polyamidoamine dendrimer is easily detached from the polymer membrane. In addition, since the polymer film of Document 1 may be damaged under pressure, further improvement has been demanded for practical use.
特開2009-185118号公報JP 2009-185118 A
 本発明は、実用に供する圧力差において、高い選択性をもって二酸化炭素を他のガスから分離することができ、膜厚を薄くしても相分離を起こさない高分子膜を製造するための新規架橋性アミン化合物、該化合物を用いた高分子膜、該高分子膜の製造方法及び該高分子膜を用いたガス分離方法を提供することを目的とする。 The present invention is a novel cross-linking for producing a polymer membrane capable of separating carbon dioxide from other gases with high selectivity at a pressure difference for practical use and causing no phase separation even when the film thickness is reduced. It is an object to provide a functional amine compound, a polymer membrane using the compound, a method for producing the polymer membrane, and a gas separation method using the polymer membrane.
 本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、特定のアミン化合物
の存在下、メタクリル基を重合性官能基とした分岐末端を3点以上分子内に有する新規架橋性アミン化合物を架橋剤として使用し、多官能重合性単量体を重合させて高分子重合体とすることによって、二酸化炭素に対する高い選択性を有すると共に、圧力差に耐え(例えば、0.7MPaの圧力下において破損しない)、実用に供することが可能な高分子膜を得ることを見出した。ここで架橋性とは架橋剤として働く性能を有することである。本発明は、かかる知見に基づいて、さらに検討を重ねることにより完成したものである。
As a result of intensive studies to solve the above problems, the present inventors have found that a novel crosslinking property having 3 or more branching ends in the molecule having a methacrylic group as a polymerizable functional group in the presence of a specific amine compound. By using an amine compound as a crosslinking agent and polymerizing a polyfunctional polymerizable monomer to obtain a high molecular weight polymer, it has high selectivity to carbon dioxide and can withstand a pressure difference (for example, 0.7 MPa It was found that a polymer membrane that is not damaged under pressure) and that can be put to practical use is obtained. Here, the term “crosslinkability” refers to having the ability to act as a crosslinking agent. The present invention has been completed by further studies based on this finding.
 すなわち、本発明は、以下の発明に関する。
[1]分岐末端にアクリル基及び/又はメタクリル基を3点以上分子内に有することを特徴とする架橋性アミン化合物。
[2]下記式(1)
Figure JPOXMLDOC01-appb-C000026
(式中、Aは炭素数1~3の二価有機残基を示し、pは0又は1の整数を示す。)
で示される基、下記式(2)
Figure JPOXMLDOC01-appb-C000027
(式中、Aは炭素数1~3の二価有機残基を示し、qは0又は1の整数を示す。)
で示される基、下記式(3)
Figure JPOXMLDOC01-appb-C000028
(式中、A及びAは炭素数1~3の二価有機残基を示し、r及びsは0又は1の整数を示す。)
で示される基、及び下記式(4)
Figure JPOXMLDOC01-appb-C000029
(式中、A及びAは炭素数1~3の二価有機残基を示し、tは0又は1の整数を示す。)
で示される基からなる群から選ばれる1種以上の基を有するアミン化合物(A)と、以下の(i)及び(ii)からなる群から選ばれる1種以上の化合物とを反応させて得られることを特徴とする前記[1]に記載の架橋性アミン化合物。
(i)アクリル酸エステル及び/又はメタクリル酸エステルとハロホルメートとを反応させて得られる化合物;
(ii)水酸基、カルボキシル酸基、グリシジル基、イソシアネート基、イソシアヌレート基、カルボジイミド基、アルデヒド基、アミノ基及びアルコキシシリル基からなる群から選ばれる1種以上の基を有する、アクリル酸エステル及び/又はメタクリル酸エステル。
[3]アミン化合物(A)が、前記式(1)~(4)で示される基からなる群から選ばれる3点以上の基を有することを特徴とする前記[2]に記載の架橋性アミン化合物。
[4]ハロホルメートが、置換基を有していてもよい芳香族環基又は置換基を有していてもよい複素環基を有するハロホルメートであることを特徴とする前記[3]に記載の架橋性アミン化合物。
[5]置換基を有していてもよい芳香族環基を有するハロホルメートが、置換基を有していてもよい芳香族クロロホルメートであることを特徴とする前記[4]に記載の架橋性アミン化合物。
[6]置換基を有していてもよい芳香族クロロホルメートが、2,4,5-トリクロロフェニルクロロホルメート又はp-ニトロフェニルクロロホルメートであることを特徴とする前記[5]に記載の架橋性アミン化合物。
[7]前記架橋性アミン化合物が、下記式(5)
Figure JPOXMLDOC01-appb-C000030
で示されるポリアミドアミンである化合物、下記式(6)
Figure JPOXMLDOC01-appb-C000031
で示されるポリアミドアミンである化合物、下記式(7)
Figure JPOXMLDOC01-appb-C000032
で示されるポリアミドアミンである化合物、下記式(8)
Figure JPOXMLDOC01-appb-C000033
で示されるポリアミドアミンではない化合物、下記式(9)
Figure JPOXMLDOC01-appb-C000034
で示されるポリアミドアミンではない化合物、下記式(10)
Figure JPOXMLDOC01-appb-C000035
で示されるポリアミドアミンではない化合物及び下記式(11)
Figure JPOXMLDOC01-appb-C000036
で示されるポリアミドアミンではない化合物からなる群から選ばれる少なくとも1種以上の化合物であることを特徴とする前記[1]に記載の架橋性アミン化合物。
[8]前記[1]~[7]のいずれかに記載の架橋性アミン化合物を架橋剤に用いて架橋されてなる、多官能重合性単量体を重合させて得られる高分子重合体内に、下記式(1)
Figure JPOXMLDOC01-appb-C000037
(式中、Aは炭素数1~3の二価有機残基を示し、pは0又は1の整数を示す。)
で示される基、下記式(2)
Figure JPOXMLDOC01-appb-C000038
(式中、Aは炭素数1~3の二価有機残基を示し、qは0又は1の整数を示す。)
で示される基、下記式(3)
Figure JPOXMLDOC01-appb-C000039
(式中、A及びAは炭素数1~3の二価有機残基を示し、r及びsは0又は1の整数を示す。)
で示される基、及び下記式(4)
Figure JPOXMLDOC01-appb-C000040
(式中、A及びAは炭素数1~3の二価有機残基を示し、tは0又は1の整数を示す。)
で示される基からなる群から選ばれる1種以上の基を有するアミン化合物(B)が含有されてなることを特徴とする高分子膜。
[9]アミン化合物(B)が、前記式(1)~(4)で示される基からなる群から選ばれる3以上の基を有することを特徴とする前記[8]に記載の高分子膜。
[10]アミン化合物(B)が、ポリアミドアミン系デンドリマーであることを特徴とする前記[8]又は[9]に記載の高分子膜。
[11]ポリアミドアミン系デンドリマーが、下記式
Figure JPOXMLDOC01-appb-C000041
からなる群から選ばれる少なくとも1種以上の第0世代デンドリマー、又はこれらに対応する第1~5世代デンドリマーであることを特徴とする前記[10]記載の高分子膜。
[12]多官能重合性単量体が、多官能(メタ)アクリルアミド、多官能(メタ)アクリレート、多官能ビニルエーテル及びジビニルベンゼンからなる群から選ばれる1種以上であることを特徴とする前記[8]~[11]のいずれかに記載の高分子膜。
[13]多官能(メタ)アクリレートが、ジ(メタ)アクリレート、トリ(メタ)アクリレート、テトラ(メタ)アクリレート又はエポキシアルキル(メタ)アクリレートであることを特徴とする前記[12]に記載の高分子膜。
[14]ジ(メタ)アクリレートが、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオ-ルジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート及びペンタエリスリトールジ(メタ)アクリレートからなる群から選ばれる1種以上であることを特徴とする前記[13]に記載の高分子膜。
[15]高分子重合体が、多官能重合性単量体に、さらに単官能重合性単量体を加えて重合させて得られることを特徴とする前記[8]~[14]のいずれかに記載の高分子膜。
[16]単官能重合性単量体が、単官能(メタ)アクリルアミド、単官能(メタ)アクリレート、単官能ビニルエーテル、単官能N-ビニル化合物、単官能ビニル化合物及び単官能α,β-不飽和化合物からなる群から選ばれる1種以上であることを特徴とする前記[15]に記載の高分子膜。
[17]単官能(メタ)アクリレートが、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、(メタ)アクリル酸、N,N-ジメチルアミノエチル(メタ)アクリレート、(ポリ)エチレングリコール(メタ)アクリレート及び(ポリ)プロピレングリコール(メタ)アクリレートからなる群から選ばれる1種以上であることを特徴とする前記[16]に記載の高分子膜。
[18]単官能重合性単量体がポリエチレングリコールメタクリレートであり、多官能重合性単量体がポリエチレングリコールジメタクリレートであることを特徴とする前記[17]に記載の高分子膜。
[19]該高分子膜が、ガス分離膜であることを特徴とする前記[8]~[18]のいずれかに記載の高分子膜。
[20]前記[1]~[7]のいずれかに記載の架橋性アミン化合物及び下記式(1)
Figure JPOXMLDOC01-appb-C000042
(式中、Aは炭素数1~3の二価有機残基を示し、pは0又は1の整数を示す。)
で示される基、下記式(2)
Figure JPOXMLDOC01-appb-C000043
(式中、Aは炭素数1~3の二価有機残基を示し、qは0又は1の整数を示す。)
で示される基、下記式(3)
Figure JPOXMLDOC01-appb-C000044
(式中、A及びAは炭素数1~3の二価有機残基を示し、r及びsは0又は1の整数を示す。)
で示される基、及び下記式(4)
Figure JPOXMLDOC01-appb-C000045
(式中、A及びAは炭素数1~3の二価有機残基を示し、tは0又は1の整数を示す。)
で示される基からなる群から選ばれる1種以上の基を有するアミン化合物(B)の存在下に、多官能重合性単量体を重合反応させることにより、生成する高分子重合体内に前記アミン化合物(B)を固定化させる工程を含むことを特徴とする高分子膜の製造方法。
[21]重合反応に先立って、下記式(1)
Figure JPOXMLDOC01-appb-C000046
(式中、Aは炭素数1~3の二価有機残基を示し、pは0又は1の整数を示す。)
で示される基、下記式(2)
Figure JPOXMLDOC01-appb-C000047
(式中、Aは炭素数1~3の二価有機残基を示し、qは0又は1の整数を示す。)
で示される基、下記式(3)
Figure JPOXMLDOC01-appb-C000048
(式中、A及びAは炭素数1~3の二価有機残基を示し、r及びsは0又は1の整数を示す。)
で示される基、及び下記式(4)
Figure JPOXMLDOC01-appb-C000049
(式中、A及びAは炭素数1~3の二価有機残基を示し、tは0又は1の整数を示す。)
で示される基からなる群から選ばれる1種以上の基を有するアミン化合物(A)と、以下の(i)及び(ii)からなる群から選ばれる1種以上の化合物とを反応させる工程を有することを特徴とする前記[20]に記載の製造方法。
(i)アクリル酸エステル及び/又はメタクリル酸エステルとハロホルメートとを反応させて得られる架橋用化合物;
(ii)水酸基、カルボキシル基、グリシジル基、イソシアネート基、イソシアヌレート基、カルボジイミド基、アルデヒド基、アミノ基及びアルコキシシリル基からなる群から選ばれる1種以上の基を有する、アクリル酸エステル及び/又はメタクリル酸エステル。
[22]アミン化合物(B)が、ポリアミドアミン系デンドリマーであることを特徴とする前記[20]又は[21]に記載の高分子膜の製造方法。
[23]ポリアミドアミン系デンドリマーが、下記式
Figure JPOXMLDOC01-appb-C000050
からなる群から選ばれる少なくとも1種以上の第0世代デンドリマー、又はこれらに対応する第1~5世代デンドリマーであることを特徴とする前記[22]に記載の高分子膜の製造方法。
[24]二酸化炭素を含む混合ガスを、前記[8]~[19]のいずれかに記載の高分子膜に接触させて、該混合ガス中の二酸化炭素を選択的に透過させる工程を含むことを特徴とする二酸化炭素の分離方法。
[25]CuKα線(波長0.1542nm)を使用したX線小角散乱により、散乱ベクトルが0.6nm-1以上にピークがないことを特徴とする前記[8]~[19]のいずれかに記載の高分子膜。
That is, the present invention relates to the following inventions.
[1] A crosslinkable amine compound having three or more acryl groups and / or methacryl groups in the molecule at the branch ends.
[2] The following formula (1)
Figure JPOXMLDOC01-appb-C000026
(In the formula, A 1 represents a divalent organic residue having 1 to 3 carbon atoms, and p represents an integer of 0 or 1.)
A group represented by formula (2):
Figure JPOXMLDOC01-appb-C000027
(In the formula, A 2 represents a divalent organic residue having 1 to 3 carbon atoms, and q represents an integer of 0 or 1.)
A group represented by formula (3):
Figure JPOXMLDOC01-appb-C000028
(In the formula, A 3 and A 4 represent a divalent organic residue having 1 to 3 carbon atoms, and r and s represent an integer of 0 or 1.)
And a group represented by the following formula (4)
Figure JPOXMLDOC01-appb-C000029
(In the formula, A 5 and A 6 represent a divalent organic residue having 1 to 3 carbon atoms, and t represents an integer of 0 or 1.)
Obtained by reacting an amine compound (A) having one or more groups selected from the group consisting of groups represented by the following groups with one or more compounds selected from the following groups (i) and (ii): The crosslinkable amine compound as described in [1] above.
(i) a compound obtained by reacting an acrylic ester and / or methacrylic ester with a haloformate;
(ii) an acrylic ester having at least one group selected from the group consisting of a hydroxyl group, a carboxylic acid group, a glycidyl group, an isocyanate group, an isocyanurate group, a carbodiimide group, an aldehyde group, an amino group, and an alkoxysilyl group; Or methacrylate.
[3] The crosslinkability according to [2], wherein the amine compound (A) has three or more groups selected from the group consisting of groups represented by the formulas (1) to (4). Amine compounds.
[4] The bridge according to [3], wherein the haloformate is a haloformate having an aromatic ring group which may have a substituent or a heterocyclic group which may have a substituent. Amine compounds.
[5] The bridge according to [4], wherein the haloformate having an aromatic ring group which may have a substituent is an aromatic chloroformate which may have a substituent. Amine compounds.
[6] In the above [5], the aromatic chloroformate which may have a substituent is 2,4,5-trichlorophenyl chloroformate or p-nitrophenyl chloroformate The crosslinkable amine compound as described.
[7] The crosslinkable amine compound is represented by the following formula (5):
Figure JPOXMLDOC01-appb-C000030
A compound represented by the following formula (6):
Figure JPOXMLDOC01-appb-C000031
A compound represented by the following formula (7):
Figure JPOXMLDOC01-appb-C000032
A compound which is a polyamidoamine represented by the following formula (8):
Figure JPOXMLDOC01-appb-C000033
A compound that is not a polyamidoamine represented by formula (9):
Figure JPOXMLDOC01-appb-C000034
A compound which is not a polyamidoamine represented by the following formula (10):
Figure JPOXMLDOC01-appb-C000035
A compound which is not a polyamidoamine represented by formula (11):
Figure JPOXMLDOC01-appb-C000036
The crosslinkable amine compound according to the above [1], which is at least one compound selected from the group consisting of compounds other than the polyamidoamine represented by formula (1).
[8] In a polymer obtained by polymerizing a polyfunctional polymerizable monomer, which is crosslinked using the crosslinkable amine compound according to any one of [1] to [7] as a crosslinking agent. The following formula (1)
Figure JPOXMLDOC01-appb-C000037
(In the formula, A 1 represents a divalent organic residue having 1 to 3 carbon atoms, and p represents an integer of 0 or 1.)
A group represented by formula (2):
Figure JPOXMLDOC01-appb-C000038
(In the formula, A 2 represents a divalent organic residue having 1 to 3 carbon atoms, and q represents an integer of 0 or 1.)
A group represented by formula (3):
Figure JPOXMLDOC01-appb-C000039
(In the formula, A 3 and A 4 represent a divalent organic residue having 1 to 3 carbon atoms, and r and s represent an integer of 0 or 1.)
And a group represented by the following formula (4)
Figure JPOXMLDOC01-appb-C000040
(In the formula, A 5 and A 6 represent a divalent organic residue having 1 to 3 carbon atoms, and t represents an integer of 0 or 1.)
A polymer film comprising an amine compound (B) having at least one group selected from the group consisting of groups represented by the formula:
[9] The polymer film according to [8], wherein the amine compound (B) has three or more groups selected from the group consisting of groups represented by the formulas (1) to (4). .
[10] The polymer film according to [8] or [9], wherein the amine compound (B) is a polyamidoamine-based dendrimer.
[11] The polyamidoamine-based dendrimer has the following formula
Figure JPOXMLDOC01-appb-C000041
[10] The polymer film as described in [10] above, which is at least one kind of 0th generation dendrimer selected from the group consisting of 1st to 5th generation dendrimers corresponding thereto.
[12] The polyfunctional polymerizable monomer is one or more selected from the group consisting of polyfunctional (meth) acrylamide, polyfunctional (meth) acrylate, polyfunctional vinyl ether and divinylbenzene. [8] The polymer membrane according to any one of [11].
[13] The high function according to [12], wherein the polyfunctional (meth) acrylate is di (meth) acrylate, tri (meth) acrylate, tetra (meth) acrylate, or epoxyalkyl (meth) acrylate. Molecular film.
[14] Di (meth) acrylate is (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropane di (meth) ) The polymer film as described in [13] above, which is at least one selected from the group consisting of acrylate and pentaerythritol di (meth) acrylate.
[15] Any one of the above [8] to [14], wherein the polymer is obtained by polymerizing a polyfunctional polymerizable monomer with a monofunctional polymerizable monomer added thereto. The polymer film described in 1.
[16] Monofunctional polymerizable monomer is monofunctional (meth) acrylamide, monofunctional (meth) acrylate, monofunctional vinyl ether, monofunctional N-vinyl compound, monofunctional vinyl compound and monofunctional α, β-unsaturated The polymer film as described in [15] above, which is at least one selected from the group consisting of compounds.
[17] Monofunctional (meth) acrylate is methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, methoxyethyl (meth) acrylate, Selected from the group consisting of methoxypolyethylene glycol (meth) acrylate, (meth) acrylic acid, N, N-dimethylaminoethyl (meth) acrylate, (poly) ethylene glycol (meth) acrylate and (poly) propylene glycol (meth) acrylate The polymer film as described in [16] above, wherein the polymer film is at least one kind.
[18] The polymer film according to [17], wherein the monofunctional polymerizable monomer is polyethylene glycol methacrylate, and the polyfunctional polymerizable monomer is polyethylene glycol dimethacrylate.
[19] The polymer membrane as described in any one of [8] to [18], wherein the polymer membrane is a gas separation membrane.
[20] The crosslinkable amine compound according to any one of [1] to [7] and the following formula (1)
Figure JPOXMLDOC01-appb-C000042
(In the formula, A 1 represents a divalent organic residue having 1 to 3 carbon atoms, and p represents an integer of 0 or 1.)
A group represented by formula (2):
Figure JPOXMLDOC01-appb-C000043
(In the formula, A 2 represents a divalent organic residue having 1 to 3 carbon atoms, and q represents an integer of 0 or 1.)
A group represented by formula (3):
Figure JPOXMLDOC01-appb-C000044
(In the formula, A 3 and A 4 represent a divalent organic residue having 1 to 3 carbon atoms, and r and s represent an integer of 0 or 1.)
And a group represented by the following formula (4)
Figure JPOXMLDOC01-appb-C000045
(In the formula, A 5 and A 6 represent a divalent organic residue having 1 to 3 carbon atoms, and t represents an integer of 0 or 1.)
In the presence of an amine compound (B) having one or more groups selected from the group consisting of the groups represented by the above formula, the amine is introduced into the polymer produced by polymerizing a polyfunctional polymerizable monomer. A method for producing a polymer film, comprising a step of immobilizing the compound (B).
[21] Prior to the polymerization reaction, the following formula (1)
Figure JPOXMLDOC01-appb-C000046
(In the formula, A 1 represents a divalent organic residue having 1 to 3 carbon atoms, and p represents an integer of 0 or 1.)
A group represented by formula (2):
Figure JPOXMLDOC01-appb-C000047
(In the formula, A 2 represents a divalent organic residue having 1 to 3 carbon atoms, and q represents an integer of 0 or 1.)
A group represented by formula (3):
Figure JPOXMLDOC01-appb-C000048
(In the formula, A 3 and A 4 represent a divalent organic residue having 1 to 3 carbon atoms, and r and s represent an integer of 0 or 1.)
And a group represented by the following formula (4)
Figure JPOXMLDOC01-appb-C000049
(In the formula, A 5 and A 6 represent a divalent organic residue having 1 to 3 carbon atoms, and t represents an integer of 0 or 1.)
A step of reacting an amine compound (A) having one or more groups selected from the group consisting of groups represented by formula (1) and one or more compounds selected from the group consisting of (i) and (ii) below: The manufacturing method according to [20] above, comprising:
(i) a crosslinking compound obtained by reacting an acrylic ester and / or methacrylic ester with a haloformate;
(ii) Acrylic acid ester having at least one group selected from the group consisting of hydroxyl group, carboxyl group, glycidyl group, isocyanate group, isocyanurate group, carbodiimide group, aldehyde group, amino group and alkoxysilyl group, and / or Methacrylic acid ester.
[22] The method for producing a polymer film according to [20] or [21], wherein the amine compound (B) is a polyamidoamine-based dendrimer.
[23] The polyamidoamine dendrimer is represented by the following formula:
Figure JPOXMLDOC01-appb-C000050
The method for producing a polymer film as described in [22] above, which is at least one kind of 0th generation dendrimer selected from the group consisting of 1st to 5th generation dendrimers corresponding thereto.
[24] including a step of bringing a mixed gas containing carbon dioxide into contact with the polymer membrane according to any one of [8] to [19] to selectively permeate carbon dioxide in the mixed gas. A carbon dioxide separation method characterized by the above.
[25] Any one of the above [8] to [19], wherein the scattering vector has no peak at 0.6 nm −1 or more by X-ray small angle scattering using CuKα rays (wavelength 0.1542 nm) The polymer membrane described.
 本発明によれば、実用に供する圧力差において、高い選択性をもって二酸化炭素を他のガスから分離できる高分子膜及び該高分子膜の製造方法が提供される。また、本発明によれば、該高分子膜を用いて効率よく二酸化炭素を他のガスから分離する方法が提供される。 According to the present invention, a polymer membrane capable of separating carbon dioxide from other gases with high selectivity at a pressure difference for practical use and a method for producing the polymer membrane are provided. The present invention also provides a method for efficiently separating carbon dioxide from other gases using the polymer membrane.
 本発明の架橋性アミン化合物を使用した高分子膜は、二酸化炭素分離能を有するアミン化合物が高分子膜の表面に担持されているのではなく、該高分子膜内に固定化されており、薄膜化しても相分離を起こさず、安定性が非常に優れているという特長を有する。前記薄膜化により、ガスの透過速度を上げることができ、効率よくガス分離を行うことができる。また、本発明で得られる高分子膜は圧力をかけた場合にも、相分離を起こさず、前記アミン化合物(B)が漏出することがなく、かつ膜の破損が起こらず、長期間安定に使用でき、実用的なガス分離膜として有用である。 In the polymer membrane using the crosslinkable amine compound of the present invention, the amine compound having carbon dioxide separation ability is not supported on the surface of the polymer membrane, but is immobilized in the polymer membrane, Even if the film is thinned, it does not cause phase separation and has a feature of excellent stability. By making the film thinner, the gas permeation rate can be increased and gas separation can be performed efficiently. Further, the polymer membrane obtained in the present invention does not cause phase separation even when pressure is applied, the amine compound (B) does not leak, and the membrane does not break down, and is stable for a long time. It can be used and is useful as a practical gas separation membrane.
ガス分離装置の概略図である。図中、GCはガスクロマトグラフィーを意味する。It is the schematic of a gas separation apparatus. In the figure, GC means gas chromatography. 従来の高分子膜の構造の概略図である。図中、丸がアミン化合物を示す。It is the schematic of the structure of the conventional polymer film. In the figure, a circle indicates an amine compound. 本発明の高分子膜の構造の概略図である。図中、丸がアミン化合物を示す。It is the schematic of the structure of the polymer film of this invention. In the figure, a circle indicates an amine compound. 試験例4の走査電子顕微鏡像である。左は比較品1を、右は本発明品15を示す。6 is a scanning electron microscope image of Test Example 4. The left shows the comparative product 1 and the right shows the product 15 of the present invention. 試験例5の蛍光画像である。左は比較品8を、右は本発明品16を示す。10 is a fluorescence image of Test Example 5. The left shows the comparative product 8 and the right shows the product 16 of the present invention. 試験例6のX線小角散乱の測定結果を示すグラフである。10 is a graph showing measurement results of X-ray small angle scattering in Test Example 6.
 本発明の架橋性アミン化合物は、分岐末端にアクリル基及び/又はメタクリル基を3点以上分子内に有することを特徴とする。該架橋性アミン化合物としては、本発明の効果を妨げない限り特に限定されないが、
下記式(1)
Figure JPOXMLDOC01-appb-C000051
(式中、Aは炭素数1~3の二価有機残基を示し、pは0又は1の整数を示す。)
で示される基、下記式(2)
Figure JPOXMLDOC01-appb-C000052
(式中、Aは炭素数1~3の二価有機残基を示し、qは0又は1の整数を示す。)
で示される基、下記式(3)
Figure JPOXMLDOC01-appb-C000053
(式中、A及びAは炭素数1~3の二価有機残基を示し、r及びsは0又は1の整数を示す。)
で示される基、及び下記式(4)
(式中、A及びAは炭素数1~3の二価有機残基を示し、tは0又は1の整数を示す。)
で示される基からなる群から選ばれる1種以上の基を有するアミン化合物(A)と、以下の(i)及び(ii)からなる群から選ばれる1種以上の化合物とを反応させて得られる架橋性アミン化合物が好ましい。
(i)アクリル酸エステル及び/又はメタクリル酸エステルとハロホルメートとを反応させて得られる化合物(以下、化合物(i)ともいう。);
(ii)水酸基、カルボキシル基、グリシジル基、イソシアネート基、イソシアヌレート基、カルボジイミド基、アルデヒド基、アミノ基及びアルコキシシリル基からなる群から選ばれる1種以上の基を有する、アクリル酸エステル及び/又はメタクリル酸エステル(以下、化合物(ii)ともいう。)。
The crosslinkable amine compound of the present invention is characterized by having 3 or more acrylic groups and / or methacrylic groups in the molecule at the branch ends. The crosslinkable amine compound is not particularly limited as long as the effect of the present invention is not hindered.
Following formula (1)
Figure JPOXMLDOC01-appb-C000051
(In the formula, A 1 represents a divalent organic residue having 1 to 3 carbon atoms, and p represents an integer of 0 or 1.)
A group represented by formula (2):
Figure JPOXMLDOC01-appb-C000052
(In the formula, A 2 represents a divalent organic residue having 1 to 3 carbon atoms, and q represents an integer of 0 or 1.)
A group represented by formula (3):
Figure JPOXMLDOC01-appb-C000053
(In the formula, A 3 and A 4 represent a divalent organic residue having 1 to 3 carbon atoms, and r and s represent an integer of 0 or 1.)
And a group represented by the following formula (4)
(In the formula, A 5 and A 6 represent a divalent organic residue having 1 to 3 carbon atoms, and t represents an integer of 0 or 1.)
Obtained by reacting an amine compound (A) having one or more groups selected from the group consisting of groups represented by the following groups with one or more compounds selected from the following groups (i) and (ii): The crosslinkable amine compound is preferred.
(i) a compound obtained by reacting an acrylic ester and / or methacrylic ester with a haloformate (hereinafter also referred to as compound (i));
(ii) Acrylic acid ester having at least one group selected from the group consisting of hydroxyl group, carboxyl group, glycidyl group, isocyanate group, isocyanurate group, carbodiimide group, aldehyde group, amino group and alkoxysilyl group, and / or Methacrylic acid ester (hereinafter also referred to as compound (ii)).
 前記架橋性アミン化合物の具体例としては、
下記式(5)
Figure JPOXMLDOC01-appb-C000055
で示される化合物、下記式(6)
Figure JPOXMLDOC01-appb-C000056
で示される化合物、下記式(7)
Figure JPOXMLDOC01-appb-C000057
で示される化合物、下記式(8)
Figure JPOXMLDOC01-appb-C000058
で示される化合物、下記式(9)
Figure JPOXMLDOC01-appb-C000059
で示される化合物、下記式(10)
Figure JPOXMLDOC01-appb-C000060
で示される化合物及び下記式(11)
Figure JPOXMLDOC01-appb-C000061
で示される化合物等が好ましく挙げられる。
Specific examples of the crosslinkable amine compound include:
Following formula (5)
Figure JPOXMLDOC01-appb-C000055
A compound represented by formula (6):
Figure JPOXMLDOC01-appb-C000056
A compound represented by formula (7):
Figure JPOXMLDOC01-appb-C000057
A compound represented by formula (8):
Figure JPOXMLDOC01-appb-C000058
A compound represented by formula (9):
Figure JPOXMLDOC01-appb-C000059
A compound represented by formula (10):
Figure JPOXMLDOC01-appb-C000060
And a compound represented by the following formula (11)
Figure JPOXMLDOC01-appb-C000061
Preferred examples include compounds represented by:
 本発明の架橋性アミン化合物は、分岐末端にアクリル基及び/又はメタクリル基を3点以上分子内に有する化合物であるが、架橋密度の向上及び相分離の防止の点から、分岐末端にアクリル基及び/又はメタクリル基を4点以上分子内に有する化合物がより好ましい。また、本発明の架橋性アミン化合物は、金属原子を含んでいてもよいが、金属原子(特に三価以上の金属原子)を含むものを除くほうが好ましい。 The crosslinkable amine compound of the present invention is a compound having 3 or more acrylic groups and / or methacryl groups in the molecule at the branch end. From the viewpoint of improving the crosslink density and preventing phase separation, an acrylic group is present at the branch end. A compound having 4 or more methacrylic groups in the molecule is more preferred. Further, the crosslinkable amine compound of the present invention may contain a metal atom, but it is preferable to exclude one containing a metal atom (particularly a trivalent or higher-valent metal atom).
 本発明の架橋性アミン化合物を使用することにより、アミン化合物(B)が相分離を起こさずに高分子重合体内に固定化されるため、100μm以下の高分子膜を製造した場合に、相分離を示す白濁を生じない。また、前記架橋性アミン化合物の使用により、架橋密度を上げることができるため、高圧下において破損するおそれがなく、実用的なガス分離用高分子膜が得られる。 By using the crosslinkable amine compound of the present invention, the amine compound (B) is immobilized in the polymer without causing phase separation. Therefore, when a polymer membrane of 100 μm or less is produced, the phase separation is performed. The cloudiness which shows is not produced. Moreover, since the crosslink density can be increased by using the crosslinkable amine compound, there is no possibility of breakage under high pressure, and a practical polymer membrane for gas separation can be obtained.
 以下、前記化合物(i)に関し、アクリル酸エステル及び/又はメタクリル酸エステルとハロホルメートとの反応について説明する。ハロホルメートとの反応に用いるエステルとしては、製造された高分子膜について、より強い架橋構造が得られる点から、メタクリル酸エステルがより好ましい。 Hereinafter, the reaction of acrylic ester and / or methacrylic ester with haloformate will be described with respect to the compound (i). The ester used for the reaction with the haloformate is more preferably a methacrylic acid ester from the viewpoint that a stronger crosslinked structure can be obtained for the produced polymer film.
 前記アクリル酸エステルとしては、特に限定されないが、例えば、メチルアクリレート、エチルアクリレート、(n-又はi-)プロピルアクリレート、(n-、i-、sec-又はt-)ブチルアクリレート、アミルアクリレート、2-エチルヘキシルアクリレート、ドデシルアクリレート、クロロエチルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、5-ヒドロキシペンチルアクリレート、シクロヘキシルアクリレート、アリルアクリレート、トリメチロールプロパンモノアクリレート、ペンタエリスリトールモノアクリレート、グリシジルアクリレート、ベンジルアクリレート、メトキシベンジルアクリレート、クロロベンジルアクリレート、2-(p-ヒドロキシフェニル)エチルアクリレート、フルフリルアクリレート、テトラヒドロフルフリルアクリレート、フェニルアクリレート、クロロフェニルアクリレート、スルファモイルフェニルアクリレート等が挙げられ、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、5-ヒドロキシペンチルアクリレート及び2-(p-ヒドロキシフェニル)エチルアクリレートから選ばれる1種以上のヒドロキシ基を有するアクリル酸エステルが好ましい。前記アクリル酸エステルは、単独又は2以上を併用してもよい。 The acrylic ester is not particularly limited, and examples thereof include methyl acrylate, ethyl acrylate, (n- or i-) propyl acrylate, (n-, i-, sec- or t-) butyl acrylate, amyl acrylate, -Ethylhexyl acrylate, dodecyl acrylate, chloroethyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 5-hydroxypentyl acrylate, cyclohexyl acrylate, allyl acrylate, trimethylolpropane monoacrylate, pentaerythritol monoacrylate, glycidyl acrylate, benzyl Acrylate, methoxybenzyl acrylate, chlorobenzyl acrylate, 2- (p-hydroxyphenyl) ethyla Examples include relate, furfuryl acrylate, tetrahydrofurfuryl acrylate, phenyl acrylate, chlorophenyl acrylate, sulfamoylphenyl acrylate, and the like. 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 5-hydroxypentyl acrylate and 2- (p- Acrylic acid esters having one or more hydroxy groups selected from hydroxyphenyl) ethyl acrylate are preferred. The acrylic ester may be used alone or in combination of two or more.
 前記メタクリル酸エステルとしては、特に限定されないが、例えば、メチルメタクリレート、エチルメタクリレート、(n-又はi-)プロピルメタクリレート、(n-、i-、sec-又はt-)ブチルメタクリレート、アミルメタクリレート、2-エチルヘキシルメタクリレート、ドデシルメタクリレート、クロロエチルメタクリレート、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、5-ヒドロキシペンチルメタクリレート、シクロヘキシルメタクリレート、アリルメタクリレート、トリメチロールプロパンモノメタクリレート、ペンタエリスリトールモノメタクリレート、グリシジルメタクリレート、メトキシベンジルメタクリレート、クロロベンジルメタクリレート、2-(p-ヒドロキシフェニル)エチルメタクリレート、フルフリルメタクリレート、テトラヒドロフルフリルメタクリレート、フェニルメタクリレート、クロロフェニルメタクリレート、スルファモイルフェニルメタクリレート等が挙げられ、2-ヒドロキシエチルメタクリレート、2-ヒドロキシプロピルメタクリレート、5-ヒドロキシペンチルメタクリレート及び2-(p-ヒドロキシフェニル)エチルメタクリレートから選ばれる1種以上のヒドロキシ基を有するメタクリル酸エステルが好ましい。前記メタクリル酸エステルは、単独又は2以上を併用してもよい。 The methacrylic acid ester is not particularly limited. For example, methyl methacrylate, ethyl methacrylate, (n- or i-) propyl methacrylate, (n-, i-, sec- or t-) butyl methacrylate, amyl methacrylate, 2 -Ethylhexyl methacrylate, dodecyl methacrylate, chloroethyl methacrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 5-hydroxypentyl methacrylate, cyclohexyl methacrylate, allyl methacrylate, trimethylolpropane monomethacrylate, pentaerythritol monomethacrylate, glycidyl methacrylate, methoxy Benzyl methacrylate, chlorobenzyl methacrylate, 2- (p-hydroxyl Nyl) ethyl methacrylate, furfuryl methacrylate, tetrahydrofurfuryl methacrylate, phenyl methacrylate, chlorophenyl methacrylate, sulfamoyl phenyl methacrylate, and the like, such as 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, 5-hydroxypentyl methacrylate and 2- A methacrylic acid ester having one or more hydroxy groups selected from (p-hydroxyphenyl) ethyl methacrylate is preferred. The methacrylic acid esters may be used alone or in combination of two or more.
 前記ハロホルメートとしては、特に限定されないが、置換基を有していてもよい芳香族環基又は置換基を有していてもよい複素環基を有するハロホルメート等が挙げられ、置換基を有していてもよい芳香族環基を有するハロホルメートが好ましい。前記ハロホルメートにおけるハロホルメート基は、下記式
 -OC(=O)X
(式中、Xは、Cl、Br又はIを意味する。)
で示される基である。前記置換基を有していてもよい芳香族環基を有するハロホルメートとしては、特に限定されないが置換基を有していてもよい芳香族クロロホルメートが好ましい。置換基を有していてもよい芳香族クロロホルメートとしては、特に限定されないが、置換基を有していてもよいフェニル基を有するクロロホルメートが好ましく、2,4,5-トリクロロフェニルクロロホルメート(クロロぎ酸2,4,5-トリクロロフェニル)又はp-ニトロフェニルクロロホルメート等が特に好ましい。前記した化合物における置換基としては、本発明の効果を妨げない限り特に限定されないが、例えば、ニトロ基、アミノ基、ハロゲン原子(フッ素原子、塩素原子、臭素原子又はヨウ素原子)、炭化水素基(C1~10)、ハロゲン化炭化水素基(C1~10)、シアノ基、スルホ基、カルボキシル基等が挙げられる。前記ハロホルメートの使用量は、アクリル酸エステル及び/又はメタクリル酸エステル1モルに対して、通常1.0~5.0モル程度、好ましくは、1.2~2.0モル程度である。
The haloformate is not particularly limited, and examples thereof include a haloformate having an aromatic ring group which may have a substituent or a heterocyclic group which may have a substituent, and the like. Preferred are haloformates having an aromatic ring group. The haloformate group in the haloformate has the following formula: —OC (═O) X
(In the formula, X means Cl, Br or I.)
It is group shown by these. Although it does not specifically limit as a haloformate which has the aromatic ring group which may have the said substituent, The aromatic chloroformate which may have a substituent is preferable. The aromatic chloroformate which may have a substituent is not particularly limited, but a chloroformate having a phenyl group which may have a substituent is preferable, and 2,4,5-trichlorophenylchloro Formate (chloroformate 2,4,5-trichlorophenyl) or p-nitrophenyl chloroformate is particularly preferred. The substituent in the above-described compound is not particularly limited as long as the effect of the present invention is not hindered. For example, a nitro group, amino group, halogen atom (fluorine atom, chlorine atom, bromine atom or iodine atom), hydrocarbon group ( C1-10), halogenated hydrocarbon group (C1-10), cyano group, sulfo group, carboxyl group and the like. The amount of the haloformate used is usually about 1.0 to 5.0 moles, preferably about 1.2 to 2.0 moles per mole of acrylic acid ester and / or methacrylic acid ester.
 前記反応の温度は、特に限定されないが、通常20℃~60℃程度である。前記反応の時間は、特に限定されないが、通常3時間~1日程度である。前記アクリル酸エステル及び/又はメタクリル酸エステルとハロホルメートとの反応は、触媒の存在下に行うことが好ましく、前記反応に用いる触媒としては、特に限定されないが、N,N-ジメチル-4-アミノピリジン(DMAP)又は4-ピロリジンピリジン等が挙げられる。触媒の使用量は特に限定されないが、原料のアクリル酸エステル及び/又はメタクリル酸エステル1モルに対し、1×10-8~1×10-3当量が好ましく、1×10-7~5×10-4当量がより好ましい。反応に用いる溶媒としては、特に限定されないが、例えば、ジクロロメタン、1,2-ジクロロエタン、クロロホルム、モノクロロベンゼン、ジクロロベンゼン等の塩素化炭化水素等;ベンゼン、トルエン、キシレン等の芳香族炭化水素等が挙げられる。これらはいずれも、1種を単独で用いてもよく、2種以上を任意の割合で併用してもよい。 The temperature of the reaction is not particularly limited, but is usually about 20 ° C to 60 ° C. The reaction time is not particularly limited, but is usually about 3 hours to 1 day. The reaction of the acrylic ester and / or methacrylic ester with haloformate is preferably carried out in the presence of a catalyst, and the catalyst used in the reaction is not particularly limited, but N, N-dimethyl-4-aminopyridine is used. (DMAP) or 4-pyrrolidinepyridine. The amount of the catalyst used is not particularly limited, but is preferably 1 × 10 −8 to 1 × 10 −3 equivalents per 1 mol of the acrylic ester and / or methacrylic ester of the raw material, and 1 × 10 −7 to 5 × 10. -4 equivalents are more preferred. The solvent used in the reaction is not particularly limited, and examples thereof include chlorinated hydrocarbons such as dichloromethane, 1,2-dichloroethane, chloroform, monochlorobenzene and dichlorobenzene; aromatic hydrocarbons such as benzene, toluene and xylene. Can be mentioned. Any of these may be used alone or in combination of two or more at any ratio.
 前記化合物(ii)としては、水酸基、カルボキシル酸基、グリシジル基、イソシアネート基、イソシアヌレート基、カルボジイミド基、アルデヒド基、アミノ基及びアルコキシシリル基からなる群から選ばれる1種以上の基を有する、アクリル酸エステル及び/又はメタクリル酸エステルであれば特に限定されないが、温和な条件でアミン化合物との反応が進行し、該反応において逆反応がなく、また、水酸基の生成により前記高分子重合体であるポリエチレングリコール化合物等と親和性が増すという点から、グリシジル基を有するアクリル酸エステル及び/又はメタクリル酸エステルが好ましい。前記架橋用化合物(ii)としては、具体的には、ジメチルアミノエチルメタクリレート、ジメチルアミノプロピルメタクリレート、アルキルメタクリルアミド(例えば、メタクリルアミド、ジメチルメタクリルアミド、N-イソプロピルメタクリルアミド、n-ブチルメタクリルアミド、tert-ブチルメタクリルアミド、及びtert-オクチルメタクリルアミド等)、2-ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、(メタ)アクリル酸、3-ブテン酸、イソチオシアン酸アリル、イソチオシアン酸3-ブテン-1-イル、アリルグリシジルエーテル、グリシジルメタクリレート等が挙げられ、特にグリシジルメタクリレート等が好ましい。 The compound (ii) has one or more groups selected from the group consisting of a hydroxyl group, a carboxylic acid group, a glycidyl group, an isocyanate group, an isocyanurate group, a carbodiimide group, an aldehyde group, an amino group, and an alkoxysilyl group. Although it is not particularly limited as long as it is an acrylic acid ester and / or a methacrylic acid ester, the reaction with the amine compound proceeds under mild conditions, and there is no reverse reaction in the reaction. Acrylic acid ester and / or methacrylic acid ester having a glycidyl group is preferable from the viewpoint of increasing affinity with a certain polyethylene glycol compound and the like. Specific examples of the crosslinking compound (ii) include dimethylaminoethyl methacrylate, dimethylaminopropyl methacrylate, alkyl methacrylamide (for example, methacrylamide, dimethylmethacrylamide, N-isopropylmethacrylamide, n-butylmethacrylamide, tert-butyl methacrylamide and tert-octyl methacrylamide), 2-hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, (meth) acrylic acid, 3-butenoic acid, allyl isothiocyanate, isothiocyanate 3- Examples include buten-1-yl, allyl glycidyl ether, and glycidyl methacrylate, and glycidyl methacrylate is particularly preferable.
 前記アミン化合物(A)と、前記化合物(i)及び(ii)からなる群から選ばれる1種以上の化合物との反応について説明する。前記化合物(i)及び(ii)の使用量は、特に限定されないが、前記アミン化合物(A)1モルに対して、通常1.0~10モル程度であり、好ましくは1.2~2.0モル程度である。前記反応の温度は、特に限定されないが、通常20℃~60℃程度である。前記反応の時間は、特に限定されないが、通常3時間~1日程度である。前記アミン化合物(A)と、前記化合物(i)及び(ii)からなる群から選ばれる1種以上の化合物との反応に関し、反応に用いる溶媒としては、特に限定されないが、例えば、アセトニトリル、ジメチルホルムアミド、クロロホルム、ジクロロメタン、塩化メチレン、酢酸エチル、ジメチルスルホキシド、ジオキサン、ベンゼン、トルエン、テトラヒドロフラン、水、メタノール、エタノール、イソプロパノール等が挙げられ、これらを単独で又は2以上を組みわせて使用してもよい。また、前記反応は、触媒の非存在下に行ってもよく、触媒の存在下に行ってもよい。前記触媒としては、特に限定されないが、例えば、少量(前記アミン化合物(A)1モルに対し10-4~10-3モル程度)の塩酸、水酸化ナトリウム水溶液及びDMAP(N,N-ジメチル-4-アミノピリジン)等が挙げられる。当該反応により、本発明の架橋剤を得ることができる。 The reaction between the amine compound (A) and one or more compounds selected from the group consisting of the compounds (i) and (ii) will be described. The amount of the compounds (i) and (ii) to be used is not particularly limited, but is usually about 1.0 to 10 mol, preferably 1.2 to 2. mol per mol of the amine compound (A). About 0 mole. The temperature of the reaction is not particularly limited, but is usually about 20 ° C to 60 ° C. The reaction time is not particularly limited, but is usually about 3 hours to 1 day. Regarding the reaction between the amine compound (A) and one or more compounds selected from the group consisting of the compounds (i) and (ii), the solvent used in the reaction is not particularly limited. Examples include formamide, chloroform, dichloromethane, methylene chloride, ethyl acetate, dimethyl sulfoxide, dioxane, benzene, toluene, tetrahydrofuran, water, methanol, ethanol, isopropanol, etc., and these may be used alone or in combination of two or more. Good. Moreover, the said reaction may be performed in absence of a catalyst and may be performed in presence of a catalyst. The catalyst is not particularly limited. For example, a small amount (about 10 −4 to 10 −3 mol per 1 mol of the amine compound (A)) hydrochloric acid, an aqueous sodium hydroxide solution and DMAP (N, N-dimethyl- 4-aminopyridine) and the like. By the reaction, the cross-linking agent of the present invention can be obtained.
 前記アミン化合物(A)は、前記式(1)~(4)で示される基からなる群から選ばれる1種以上の基を有するアミン化合物であるが、式(1)~(4)中、A、A、A、A、A及びAで示される炭素数1~3の二価有機残基としては、例えば、直鎖状又は分枝状の炭素数1~3のアルキレン基が挙げられる。このようなアルキレン基の具体例としては、-CH-、-CH-CH-、-CH-CH-CH-、-CH-CH(CH)-等が挙げられ、これらのうち特に-CH-が好ましい。本発明のアミン化合物は、式(1)~(4)で示される基が1種以上含まれている限り、該基の数については特に制限されないが、好ましくは該基が2~4096個、更に好ましくは該基を3~128個有するものが例示される。 The amine compound (A) is an amine compound having one or more groups selected from the group consisting of the groups represented by the formulas (1) to (4). In the formulas (1) to (4), Examples of the divalent organic residue having 1 to 3 carbon atoms represented by A 1 , A 2 , A 3 , A 4 , A 5 and A 6 include, for example, linear or branched C 1 to 3 carbon atoms. An alkylene group is mentioned. Specific examples of such alkylene groups, -CH 2 -, - CH 2 -CH 2 -, - CH 2 -CH 2 -CH 2 -, - CH 2 -CH (CH 3) - , and the like, Of these, —CH 2 — is particularly preferable. In the amine compound of the present invention, the number of the groups is not particularly limited as long as at least one group represented by the formulas (1) to (4) is contained, but preferably 2 to 4096 groups, More preferably, those having 3 to 128 groups are exemplified.
 本発明の高分子膜は、前記架橋性アミン化合物を架橋剤に用いて架橋されてなる、多官能重合性単量体を重合させて得られる高分子重合体内に、下記式(1)
Figure JPOXMLDOC01-appb-C000062
(式中、Aは炭素数1~3の二価有機残基を示し、pは0又は1の整数を示す。)
で示される基、下記式(2)
Figure JPOXMLDOC01-appb-C000063
(式中、Aは炭素数1~3の二価有機残基を示し、qは0又は1の整数を示す。)
で示される基、下記式(3)
Figure JPOXMLDOC01-appb-C000064
(式中、A及びAは炭素数1~3の二価有機残基を示し、r及びsは0又は1の整数を示す。)
で示される基、及び下記式(4)
Figure JPOXMLDOC01-appb-C000065
(式中、A及びAは炭素数1~3の二価有機残基を示し、tは0又は1の整数を示す。)
で示される基からなる群から選ばれる1種以上の基を有するアミン化合物(B)が物理的又は化学的に固定化されてなることを特徴とする高分子膜である。
The polymer film of the present invention has the following formula (1) in a polymer obtained by polymerizing a polyfunctional polymerizable monomer that is crosslinked using the crosslinkable amine compound as a crosslinking agent.
Figure JPOXMLDOC01-appb-C000062
(In the formula, A 1 represents a divalent organic residue having 1 to 3 carbon atoms, and p represents an integer of 0 or 1.)
A group represented by formula (2):
Figure JPOXMLDOC01-appb-C000063
(In the formula, A 2 represents a divalent organic residue having 1 to 3 carbon atoms, and q represents an integer of 0 or 1.)
A group represented by formula (3):
Figure JPOXMLDOC01-appb-C000064
(In the formula, A 3 and A 4 represent a divalent organic residue having 1 to 3 carbon atoms, and r and s represent an integer of 0 or 1.)
And a group represented by the following formula (4)
Figure JPOXMLDOC01-appb-C000065
(In the formula, A 5 and A 6 represent a divalent organic residue having 1 to 3 carbon atoms, and t represents an integer of 0 or 1.)
A polymer film characterized in that an amine compound (B) having one or more groups selected from the group consisting of the groups shown above is physically or chemically immobilized.
 前記高分子重合体の製造における前記架橋性アミン化合物の使用量としては、本発明の効果を妨げない限り特に限定されないが、前記多官能重合性単量体に対し、通常5~95wt%であり、得られる高分子膜の耐久性及び前記アミン化合物(B)の安定性等を高める点から、10~80wt%が好ましく、15~50wt%がさらに好ましい。 The amount of the crosslinkable amine compound used in the production of the polymer is not particularly limited as long as the effect of the present invention is not hindered, but is usually 5 to 95 wt% with respect to the polyfunctional polymerizable monomer. From the viewpoint of improving the durability of the resulting polymer film and the stability of the amine compound (B), it is preferably 10 to 80 wt%, more preferably 15 to 50 wt%.
 アミン化合物(B)において、式(1)~(4)で示される基からなる群から選ばれる1種以上の基が占める重量分率は、特に制限されるものではないが、二酸化炭素と水素の分離能を高めるという観点から、該アミン化合物に占める式(1)~(4)で示される基からなる群から選ばれる1種以上の基の重量分率が5%以上であるものが好ましく、10~94%であるものがより好ましく、15~53%であるものがさらに好ましい。 In the amine compound (B), the weight fraction occupied by one or more groups selected from the group consisting of the groups represented by the formulas (1) to (4) is not particularly limited, but carbon dioxide and hydrogen From the viewpoint of improving the separation ability of the amine compound, it is preferable that the weight fraction of one or more groups selected from the group consisting of groups represented by formulas (1) to (4) in the amine compound is 5% or more. More preferred is 10 to 94%, and further preferred is 15 to 53%.
 前記アミン化合物(B)において、式(1)~(4)で示される基からなる群から選ばれる1種以上の基が結合する骨格を示すと、例えば次のものが挙げられる。
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
[式中、nは0~10の整数を示す。]
In the amine compound (B), examples of the skeleton to which one or more groups selected from the group consisting of groups represented by formulas (1) to (4) are bonded include the following.
Figure JPOXMLDOC01-appb-C000066
Figure JPOXMLDOC01-appb-C000067
[Wherein n represents an integer of 0 to 10. ]
 すなわち、前記アミン化合物(B)は、式(1)~(4)で示される基からなる群から選ばれる1種以上の基が、前記式において米印の結合子の一部又は全部に、直接又はアルキレン基を介して結合し、式(1)~(4)で示される基からなる群から選ばれる1種以上の基が結合してない結合子には、水素原子、アルキル基、アミノアルキル基、ヒドロキシアルキル基等が結合した化合物である。 That is, in the amine compound (B), one or more groups selected from the group consisting of groups represented by the formulas (1) to (4) are present in a part or all of the rice-marked binders in the above formula, A bond which is bonded directly or via an alkylene group and is not bonded with one or more groups selected from the group consisting of the groups represented by formulas (1) to (4) includes a hydrogen atom, an alkyl group, amino A compound in which an alkyl group, a hydroxyalkyl group or the like is bonded.
 前記アミン化合物(B)としては、例えば、下記の式で示される第0世代のポリアミドアミン系デンドリマー、並びにこれら第0世代ポリアミドアミン系デンドリマーに対応する第1世代以上のものが挙げられる。
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
Examples of the amine compound (B) include 0th generation polyamidoamine dendrimers represented by the following formula, and 1st generation or more corresponding to these 0 th generation polyamidoamine dendrimers.
Figure JPOXMLDOC01-appb-C000068
Figure JPOXMLDOC01-appb-C000069
Figure JPOXMLDOC01-appb-C000070
Figure JPOXMLDOC01-appb-C000071
Figure JPOXMLDOC01-appb-C000072
Figure JPOXMLDOC01-appb-C000073
Figure JPOXMLDOC01-appb-C000074
 前記ポリアミドアミン系デンドリマーのうち、特に好適な化合物の一例として、下記ポリアミドアミン系デンドリマーが挙げられる。
Figure JPOXMLDOC01-appb-C000075
Among the polyamidoamine dendrimers, examples of particularly suitable compounds include the following polyamidoamine dendrimers.
Figure JPOXMLDOC01-appb-C000075
 なお、本発明で用いるポリアミドアミン系デンドリマーは、枝の長さがすべて等しいものと、そのうちの少なくとも1つがヒドロキシアルキル基又はアルキル基で置換され、枝の長さが異なるものを含む。また、ポリアミドアミン系デンドリマーは、表面基[すなわち、式(1)、(2)、(3)又は(4)で示される基]の数が異なる各種のポリアミドアミン系デンドリマーを使用することができる。ポリアミドアミン系デンドリマーの表面基の数と世代の関係は、第0世代の表面基の数をa(aは3以上の整数を示す。)とすると、第b世代(bは整数を示す。)の表面基の数cは、次の通りである。 The polyamidoamine-based dendrimers used in the present invention include those having all equal branch lengths and those having at least one of them substituted with a hydroxyalkyl group or an alkyl group and having different branch lengths. As the polyamidoamine dendrimer, various polyamidoamine dendrimers having different numbers of surface groups [namely, groups represented by the formula (1), (2), (3) or (4)] can be used. . The relationship between the number of surface groups and the generation of the polyamidoamine-based dendrimer is as follows. If the number of the 0th generation surface groups is a (a represents an integer of 3 or more), the b generation (b represents an integer). The number c of surface groups is as follows.
Figure JPOXMLDOC01-appb-M000076
 本発明においては市販品(例えば、アルドリッチ社製の第0~10世代のPAMAMデンドリマー)を使用することもでき、とりわけ第0~5世代のポリアミドアミン系デンドリマーを好適に使用することができる。第0世代の表面基の数が4個の場合の世代ごとの表面基の数を下記表1に示す。ポリアミドアミン系デンドリマーとしては、得られた高分子膜の架橋密度を上げる点から、第1世代以上が好ましく、得られた高分子膜の架橋密度をより向上させるために、特に第2世代以上が好ましい。
Figure JPOXMLDOC01-appb-M000076
In the present invention, commercially available products (for example, 0th to 10th generation PAMAM dendrimers manufactured by Aldrich) can be used, and in particular, 0th to 5th generation polyamidoamine dendrimers can be preferably used. Table 1 below shows the number of surface groups for each generation when the number of surface groups of the 0th generation is four. As the polyamidoamine dendrimer, the first generation or higher is preferable from the viewpoint of increasing the crosslink density of the obtained polymer film. In order to further improve the crosslink density of the obtained polymer film, the second generation or higher is particularly preferable. preferable.
Figure JPOXMLDOC01-appb-T000077
Figure JPOXMLDOC01-appb-T000077
 式(1)で示される基を有するアミン化合物は、公知の有機合成法に従って製造することができる。当該アミン化合物の合成方法の一例として、メチルエステル基を有する母核化合物と、下記式(1a)で示されるアミン化合物を反応させる方法が例示される。かかる方法によれば、メチルエステル基を有する化合物の該メチルエステル基が式(1a)で示される基に変換されて、式(1)で示される基を有するアミン化合物を製造することができる。下式は、当該合成法において、メチルエステル基が式(1)で示される基に変換される式である。
Figure JPOXMLDOC01-appb-C000078
 (式中、A及びpは前記と同一意味を有する。)
The amine compound having a group represented by the formula (1) can be produced according to a known organic synthesis method. As an example of the method for synthesizing the amine compound, a method of reacting a mother nucleus compound having a methyl ester group with an amine compound represented by the following formula (1a) is exemplified. According to this method, the methyl ester group of a compound having a methyl ester group is converted to a group represented by the formula (1a), and an amine compound having a group represented by the formula (1) can be produced. The following formula is a formula in which a methyl ester group is converted into a group represented by formula (1) in the synthesis method.
Figure JPOXMLDOC01-appb-C000078
(In the formula, A 1 and p have the same meaning as described above.)
 メチルエステル基を有する化合物と、式(1a)で示されるアミン化合物との反応は、メチルエステル基を有する化合物1モルに対して、式(1a)で示されるアミン化合物を、通常3~20モル、好ましくは5~10モルの割合で使用して行われる。メチルエステル基を有する化合物と、式(1a)で示されるアミン化合物との反応は、通常、適当な溶媒中で行われる。溶媒としては、反応を阻害しない溶媒であれば公知のものを広く使用できる。このような溶媒としては、例えば、メタノール、エタノール、2-プロパノール、テトラヒドロフラン、1,4-ジオキサン等が挙げられる。これらの溶媒には、水が含まれていていることを妨げるものではない。メチルエステル基を有する化合物と、(1a)で示されるアミン化合物との反応は、通常0~40℃、好ましくは20~30℃で、90~180時間、好ましくは160~170時間攪拌を続けることにより行われる。原料として用いられるメチルエステル基を有する化合物、及び式(1a)で示されるアミン化合物は公知化合物の化合物を用いることができる。前記反応によって得られた反応混合物を、例えば、冷却した後、濾過、濃縮、抽出等の単離操作に供して粗反応生成物を分離し、更に必要に応じてカラムクロマトグラフィー、再結晶等の通常の精製操作を行うことによって式(1)で示される基を有するアミン化合物を単離精製することができる。 The reaction between the compound having a methyl ester group and the amine compound represented by the formula (1a) is usually carried out by adding 3 to 20 mol of the amine compound represented by the formula (1a) with respect to 1 mol of the compound having a methyl ester group. , Preferably 5 to 10 moles. The reaction between the compound having a methyl ester group and the amine compound represented by the formula (1a) is usually carried out in a suitable solvent. As the solvent, known solvents can be widely used as long as they do not inhibit the reaction. Examples of such a solvent include methanol, ethanol, 2-propanol, tetrahydrofuran, 1,4-dioxane and the like. These solvents do not prevent water from being contained. The reaction between the compound having a methyl ester group and the amine compound represented by (1a) is usually continued at 0 to 40 ° C., preferably 20 to 30 ° C., for 90 to 180 hours, preferably 160 to 170 hours. Is done. As the compound having a methyl ester group used as a raw material and the amine compound represented by the formula (1a), compounds of known compounds can be used. The reaction mixture obtained by the above reaction is cooled, for example, and then subjected to an isolation operation such as filtration, concentration, extraction, etc. to separate the crude reaction product, and if necessary, column chromatography, recrystallization, etc. The amine compound having a group represented by the formula (1) can be isolated and purified by performing a normal purification operation.
 式(2)で示される基を有するアミン化合物は、例えば、アミノ基を有する母核化合物と下記式(2a)で示される末端にメチルエステル基を有するアミン化合物を、前記と同様に反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000079
 (式中、A及びqは前記と同一意味を有する。)
The amine compound having a group represented by the formula (2) is obtained by reacting, for example, a mother nucleus compound having an amino group and an amine compound having a methyl ester group at the terminal represented by the following formula (2a) in the same manner as described above. Can be manufactured.
Figure JPOXMLDOC01-appb-C000079
(In the formula, A 2 and q have the same meaning as described above.)
 式(3)で示される基を有するアミン化合物は、例えば、下記式(3a)で示される末端にアルケニル基を有する母核化合物と下記式(3b)で示されるジアミン化合物を、前記と同様に反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000080
 (式中、A、A、r及びsは前記と同一意味を有する。)
The amine compound having a group represented by the formula (3) is, for example, a mother nucleus compound having an alkenyl group at the terminal represented by the following formula (3a) and a diamine compound represented by the following formula (3b) in the same manner as described above. It can be produced by reacting.
Figure JPOXMLDOC01-appb-C000080
(In the formula, A 3 , A 4 , r and s have the same meaning as described above.)
 式(4)で示される基を有するアミン化合物は、例えば、下記式(4a)で示されるカルボニル基を有する母核化合物と下記式(4b)で示されるジアミン化合物を、前記と同様に反応させることにより製造することができる。
Figure JPOXMLDOC01-appb-C000081
 (式中、A、A及びtは前記と同一意味を有し、Aは、有機残基を示す。)
 Aで示される炭素数1~3の有機残基としては、例えば、直鎖状又は分枝状の炭素数1~3のアルキル基(メチル基、エチル基、プロピル基)が好適に挙げられる。
The amine compound having a group represented by the formula (4), for example, reacts a mother nucleus compound having a carbonyl group represented by the following formula (4a) and a diamine compound represented by the following formula (4b) in the same manner as described above. Can be manufactured.
Figure JPOXMLDOC01-appb-C000081
(In the formula, A 5 , A 6 and t have the same meaning as described above, and A 7 represents an organic residue.)
Preferable examples of the organic residue having 1 to 3 carbon atoms represented by A 7 include a linear or branched alkyl group having 1 to 3 carbon atoms (methyl group, ethyl group, propyl group). .
 本発明に用いる前記多官能重合性単量体としては、炭素-炭素不飽和結合を2個以上有する重合可能な化合物であれば、特に限定されない。例えば、多官能(メタ)アクリルアミド、多官能(メタ)アクリレート等の多官能アクリル系単量体、多官能ビニルエーテル又はジビニルベンゼン等の多官能ビニル系単量体等が挙げられる。これらの多官能重合性単量体は、単独又は2種類以上を組み合わせて用いることができる。 The polyfunctional polymerizable monomer used in the present invention is not particularly limited as long as it is a polymerizable compound having two or more carbon-carbon unsaturated bonds. Examples thereof include polyfunctional acrylic monomers such as polyfunctional (meth) acrylamide and polyfunctional (meth) acrylate, and polyfunctional vinyl monomers such as polyfunctional vinyl ether or divinylbenzene. These polyfunctional polymerizable monomers can be used alone or in combination of two or more.
 前記多官能(メタ)アクリルアミド類としては、N,N’-(1,2-ジヒドロキシエチレン)ビスアクリルアミド、エチジウムブロマイド-N,N’-ビスアクリルアミド(Ethidium bromide-N,N’-bisacrylamide)、エチジウムブロマイド-N,N’-ビスメタクリルアミド(Ethidium bromide-N,N’-bismethacrylamide)、N,N’-エチレンビスアクリルアミド、N,N’-メチレンビスアクリルアミド等が挙げられる。
 前記多官能(メタ)アクリレート類としては、ジ(メタ)アクリレート類、トリ(メタ)アクリレート類又はテトラ(メタ)アクリレート類等が挙げられる。
Examples of the polyfunctional (meth) acrylamides include N, N ′-(1,2-dihydroxyethylene) bisacrylamide, ethidium bromide-N, N′-bisacrylamide, and ethidium. Examples include bromide-N, N′-bismethacrylamide, N, N′-ethylenebisacrylamide, N, N′-methylenebisacrylamide, and the like.
Examples of the polyfunctional (meth) acrylates include di (meth) acrylates, tri (meth) acrylates, and tetra (meth) acrylates.
 前記ジ(メタ)アクリレート類としては、(ポリ)エチレングリコールジ(メタ)アクリレート、(ポリ)プロピレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオ-ルジ(メタ)アクリレート、トリメチロールプロパンジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート等のアルキレングリコールジ(メタ)アクリレート類が挙げられる。 Examples of the di (meth) acrylates include (poly) ethylene glycol di (meth) acrylate, (poly) propylene glycol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, trimethylolpropane di (meth) And alkylene glycol di (meth) acrylates such as acrylate and pentaerythritol di (meth) acrylate.
 前記トリ(メタ)アクリレート類としては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリストールトリ(メタ)アクリレート、エチレンオキサイド変性トリメチロールプロパントリ(メタ)アクリレート、グリセリントリ(メタ)アクリレート等が挙げられる。 Examples of the tri (meth) acrylates include trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ethylene oxide-modified trimethylolpropane tri (meth) acrylate, glycerin tri (meth) acrylate, and the like. .
 前記テトラ(メタ)アクリレート類としては、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート等が挙げられる。
 前記多官能ビニルエーテル類としては、トリメチロールプロパントリビニルエーテル、ジトリメチロールプロパンテトラビニルエーテル、グリセリントリビニルエーテル等が挙げられる。
Examples of the tetra (meth) acrylates include ditrimethylolpropane tetra (meth) acrylate and pentaerythritol tetra (meth) acrylate.
Examples of the polyfunctional vinyl ethers include trimethylolpropane trivinyl ether, ditrimethylolpropane tetravinyl ether, glycerin trivinyl ether, and the like.
 また、必要に応じて、重合反応を前記多官能重合性単量体と単官能重合性単量体とを併用して行ってもよい。併用することにより、高分子重合体内の網目の大きさを調節することができる。 Further, if necessary, the polymerization reaction may be carried out by using the polyfunctional polymerizable monomer and the monofunctional polymerizable monomer in combination. By using in combination, the size of the network in the polymer can be adjusted.
 単官能重合性単量体としては、単官能(メタ)アクリルアミド、単官能(メタ)アクリレート等の単官能アクリル系単量体、単官能ビニルエーテル、単官能N-ビニル化合物又は単官能ビニル化合物等の単官能ビニル系単量体、単官能α,β-不飽和化合物等が挙げられる。 Monofunctional polymerizable monomers include monofunctional acrylic monomers such as monofunctional (meth) acrylamides and monofunctional (meth) acrylates, monofunctional vinyl ethers, monofunctional N-vinyl compounds or monofunctional vinyl compounds. And monofunctional vinyl monomers and monofunctional α, β-unsaturated compounds.
 前記単官能(メタ)アクリルアミドとしては、2-アセトアミドアクリル酸、(メタ)アクリルアミド、2-アクリルアミド-2-メチルプロパンスルホン酸、N-(ブトキシメチル)アクリルアミド、N-tert-ブチルアクリルアミド、ジアセトンアクリルアミド、N,N-ジメチルアクリルアミド、N-[3-(ジメチルアミノ)プロピル]メタクリルアミド、等が挙げられる。 Examples of the monofunctional (meth) acrylamide include 2-acetamidoacrylic acid, (meth) acrylamide, 2-acrylamide-2-methylpropanesulfonic acid, N- (butoxymethyl) acrylamide, N-tert-butylacrylamide, and diacetone acrylamide. N, N-dimethylacrylamide, N- [3- (dimethylamino) propyl] methacrylamide, and the like.
 前記単官能(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メトキシエチル(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、(メタ)アクリル酸、N,N-ジメチルアミノエチル(メタ)アクリレート、(ポリ)エチレングリコールメタクリレート、ポリプロピレングリコール(メタ)アクリレート等が挙げられる。
 前記単官能ビニルエーテル類としては、メチルビニルエーテル、エチルビニルエーテル、ブチルビニルエーテル、2-エチルヘキシルビニルエーテル、シクロヘキシルビニルエーテル、メトキシエチルビニルエーテル、メトキシポリエチレングリコールビニルエーテル等が挙げられる。
Examples of the monofunctional (meth) acrylate include methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, methoxyethyl (meth) acrylate, methoxy Examples include polyethylene glycol (meth) acrylate, (meth) acrylic acid, N, N-dimethylaminoethyl (meth) acrylate, (poly) ethylene glycol methacrylate, and polypropylene glycol (meth) acrylate.
Examples of the monofunctional vinyl ethers include methyl vinyl ether, ethyl vinyl ether, butyl vinyl ether, 2-ethylhexyl vinyl ether, cyclohexyl vinyl ether, methoxyethyl vinyl ether, and methoxypolyethylene glycol vinyl ether.
 前記単官能N-ビニル化合物類としては、N-ビニルピロリドン、N-ビニルカプロラクタム、N-ビニルホルムアミド、N-ビニルアセトアミド等が挙げられる。
 前記単官能ビニル化合物類としては、スチレン、α-メチルスチレン、酢酸ビニル等が挙げられる。
Examples of the monofunctional N-vinyl compounds include N-vinylpyrrolidone, N-vinylcaprolactam, N-vinylformamide, N-vinylacetamide and the like.
Examples of the monofunctional vinyl compounds include styrene, α-methylstyrene, vinyl acetate and the like.
 前記単官能α,β-不飽和化合物類としては、無水マレイン酸、マレイン酸、マレイン酸ジメチル、マレイン酸ジエチル、フマル酸、フマル酸ジメチル、フマル酸ジエチル、フマル酸モノメチル、フマル酸モノエチル、無水イタコン酸、イタコン酸、イタコン酸ジメチル、メチレンマロン酸、メチレンマロン酸ジメチル、桂皮酸、桂皮酸メチル、クロトン酸、クロトン酸メチル等が挙げられる。 Examples of the monofunctional α, β-unsaturated compounds include maleic anhydride, maleic acid, dimethyl maleate, diethyl maleate, fumaric acid, dimethyl fumarate, diethyl fumarate, monomethyl fumarate, monoethyl fumarate, and itaconic anhydride. Examples thereof include acid, itaconic acid, dimethyl itaconate, methylene malonic acid, dimethyl methylene malonate, cinnamic acid, methyl cinnamate, crotonic acid, and methyl crotonic acid.
 前記高分子重合体内に固定化される前記式(1)~(4)で示される基からなる群から選ばれる1種以上の基を有するアミン化合物(B)の量は、高分子重合体100重量部に対して通常約2~400重量部、好ましくは約25~250重量部、十分なガス分離性能を得る点から、さらに好ましくは約40~100重量部である。 The amount of the amine compound (B) having one or more groups selected from the group consisting of the groups represented by the formulas (1) to (4) immobilized in the polymer is determined by the polymer 100 The amount is usually about 2 to 400 parts by weight, preferably about 25 to 250 parts by weight, more preferably about 40 to 100 parts by weight from the viewpoint of obtaining sufficient gas separation performance.
 本発明の高分子膜の膜厚は、本発明の効果を妨げない限り特に限定されないが、ガス透過速度が高く、ガス分離の性能が好ましく発揮される等の点から、通常約1000μm以下であり、約600μm以下が好ましく、約250μm以下がより好ましく、約100μm以下がさらに好ましい。前記膜厚の下限としては、効果的にガス分離を行うことができる限り特に限定されないが、耐久性等の点から、約5μm以上が好ましく、約10μm以上がさらに好ましい。特に、支持体を有しない自立膜として使用する場合の膜厚は、本発明の効果を妨げない限り特に限定されないが、膜の強度及びガス透過速度等の点から、50μm以上600μm以下程度が好ましく、100μm以上250μm以下程度がさらに好ましい。また、支持体を有する複合膜として使用する場合の膜厚は、本発明の効果を妨げない限り特に限定されないが、膜の強度及びガス透過速度等の点から、5μm以上150μm以下程度が好ましく、10μm以上100μm以下程度がさらに好ましい。 The thickness of the polymer membrane of the present invention is not particularly limited as long as the effects of the present invention are not hindered, but is usually about 1000 μm or less from the viewpoints of high gas permeation rate and preferable performance of gas separation. About 600 μm or less, more preferably about 250 μm or less, and even more preferably about 100 μm or less. The lower limit of the film thickness is not particularly limited as long as gas separation can be effectively performed, but is preferably about 5 μm or more, and more preferably about 10 μm or more from the viewpoint of durability. In particular, the film thickness when used as a self-supporting film having no support is not particularly limited as long as the effects of the present invention are not hindered. More preferably, it is about 100 μm or more and 250 μm or less. The film thickness when used as a composite film having a support is not particularly limited as long as the effects of the present invention are not hindered, but is preferably about 5 μm or more and 150 μm or less from the viewpoint of the strength of the film and the gas permeation rate, More preferably, it is about 10 μm or more and 100 μm or less.
 また、本発明の高分子膜を使用する際の前記ガス透過速度としては、本発明の効果を妨げない限り特に限定されないが、ガス分離の効率等の点から、約1×10-13(STP)/(msPa)以上が好ましく、約1×10-12(STP)/(msPa)以上がさらに好ましい。本発明の高分子膜を使用する際に膜にかかる圧力としては、約0.1MPa以上が好ましく、約1~4MPaがさらに好ましい。 Further, the gas permeation rate when using the polymer membrane of the present invention is not particularly limited as long as the effect of the present invention is not hindered, but is about 1 × 10 −13 m 3 from the viewpoint of gas separation efficiency. (STP) / (m 2 Spa) or more is preferable, and about 1 × 10 −12 m 3 (STP) / (m 2 Spa) or more is more preferable. The pressure applied to the membrane when using the polymer membrane of the present invention is preferably about 0.1 MPa or more, more preferably about 1 to 4 MPa.
 本発明の高分子膜は、自立性を有するため、支持体は必須ではないが、必要に応じて、支持体を設けていてもよい。前記支持体としては、ガス分離に用いる点から、多孔質支持膜が好適に用いられる。前記多孔質支持膜の膜厚としては、本発明の効果を妨げない限り特に限定されないが、強度及びガス透過速度等の点から、約50μm~1000μmが好ましく、約100μm~500μmがさらに好ましい。前記多孔質支持膜と前記高分子膜とが一体に形成されたものをガス分離用複合膜として使用することができる。なお、本発明において複合膜とは、ガス分離能を有する高分子膜と多孔質支持膜が一体に形成されたものをいう。本発明に用いる多孔質支持膜は、例えば、後述するポリマー等を用いて製造することができ、セラミックス、ポリエチレンフタレート(PET)フィルム等を用いることもできる。具体的には、ポリマーを用いて製造する場合、ポリマーを溶媒に溶解して、原料溶液を得たのち、該原料溶液と、凝固液(溶媒と非溶媒の混合溶液)と接触させて、非溶媒濃度の上昇により相分離を誘起する方法(非溶媒誘起相分離法;NIPS法、特公平1-22003号公報参照)により、多孔質支持膜を製造することができる。前記セラミックスとしては、アルミナ、ジルコニア、チタニア、シリカ等が挙げられる。 Since the polymer membrane of the present invention is self-supporting, a support is not essential, but a support may be provided as necessary. As the support, a porous support membrane is preferably used from the viewpoint of gas separation. The thickness of the porous support membrane is not particularly limited as long as the effect of the present invention is not hindered, but is preferably about 50 μm to 1000 μm, more preferably about 100 μm to 500 μm from the viewpoint of strength and gas permeation rate. The porous support membrane and the polymer membrane integrally formed can be used as a gas separation composite membrane. In the present invention, the composite membrane refers to one in which a polymer membrane having gas separation ability and a porous support membrane are integrally formed. The porous support membrane used in the present invention can be produced using, for example, a polymer described later, and ceramics, polyethylene phthalate (PET) film, and the like can also be used. Specifically, when producing using a polymer, the polymer is dissolved in a solvent to obtain a raw material solution, and then the raw material solution is brought into contact with a coagulation liquid (a mixed solution of a solvent and a non-solvent). A porous support membrane can be produced by a method of inducing phase separation by increasing the solvent concentration (non-solvent induced phase separation method; NIPS method, see Japanese Patent Publication No. 1-2003). Examples of the ceramic include alumina, zirconia, titania, and silica.
 多孔質支持膜の製造に用いるポリマーとしては、例えば、ポリエーテルスルホン(PES)、ポリスルホン(PSF)、ポリフェニレンスルホン、トリアセチルセルロース、酢酸セルロース、カーボン、ポリアクリロニトリル、ポリフッ化ビニリデン、芳香族ナイロン、ポリエチレンフタレ-ト(PET)、ポリエチレンナフタレート、ポリアリレート、ポリイミド、ポリエーテル、セロファン、芳香族ポリアミド、ポリエチレン、ポリプロピレン等が挙げられる。前記溶媒としては、N-メチルピロリドン(NMP)、アセトン、ジメチルホルムアミド等が挙げられる。凝固時に凝固液へ溶媒が溶解するものであれば、特に限定されない。前記非溶媒としては、例えば水、一価アルコール、多価アルコール、エチレングリコール、テトラエチレングリコール等が挙げられる。原料溶液の調製の際に、膨潤剤を添加して、凝固後の支持膜内の貫通孔を増加させ、ガス透過性を向上させることが好ましい。前記膨潤剤としては、例えばポリエチレングリコール、ポリビニルピロリドン、ヒドロキシプロピルセルロース、食塩、塩化リチウム、臭化マグネシウムから選ばれる1種又は2種以上の混合物を用いることができる。この膨潤剤の中で、ポリエチレングリコールが好ましく、特に重量平均分子量400~800のポリエチレングリコールが好ましい。原料溶液及び凝固液の濃度は、原料溶液と凝固液とを接触させ、非溶媒誘起相分離法により、多孔質支持膜を得られる濃度であれば、特に限定されないが、例えば、原料のポリマーとしてポリエーテルスルホン(PES)を用いる場合、原料溶液は、製膜性から20~35wt%PES溶液とするのが好ましい。 Examples of the polymer used for the production of the porous support membrane include polyethersulfone (PES), polysulfone (PSF), polyphenylenesulfone, triacetylcellulose, cellulose acetate, carbon, polyacrylonitrile, polyvinylidene fluoride, aromatic nylon, and polyethylene. Examples thereof include phthalate (PET), polyethylene naphthalate, polyarylate, polyimide, polyether, cellophane, aromatic polyamide, polyethylene, and polypropylene. Examples of the solvent include N-methylpyrrolidone (NMP), acetone, dimethylformamide and the like. There is no particular limitation as long as the solvent dissolves in the coagulation liquid during coagulation. Examples of the non-solvent include water, monohydric alcohol, polyhydric alcohol, ethylene glycol, and tetraethylene glycol. In preparing the raw material solution, it is preferable to add a swelling agent to increase the number of through-holes in the support film after solidification and improve gas permeability. As the swelling agent, for example, one or a mixture of two or more selected from polyethylene glycol, polyvinyl pyrrolidone, hydroxypropyl cellulose, sodium chloride, lithium chloride, and magnesium bromide can be used. Among these swelling agents, polyethylene glycol is preferable, and polyethylene glycol having a weight average molecular weight of 400 to 800 is particularly preferable. The concentration of the raw material solution and the coagulation liquid is not particularly limited as long as the concentration is such that the raw material solution and the coagulation liquid are brought into contact with each other and a porous support membrane can be obtained by a non-solvent induced phase separation method. When polyethersulfone (PES) is used, the raw material solution is preferably a 20 to 35 wt% PES solution in view of film forming properties.
 原料溶液と凝固液との接触の方法としては、特に限定されないが、例えば、原料溶液を凝固液に浸漬する方法が挙げられる。凝固液中の溶媒濃度は、特に限定されないが、原料溶液の凝固において、凝固液中の溶媒濃度を変化させることにより、支持膜の構造が変化し、耐圧性を上げることができる。多孔質支持膜の細孔の孔径としては、100nm以下が好ましく、さらに好ましくは10nm以下である。多孔質支持膜の膜厚は、高分子膜のガス透過性が多孔質支持膜のガス透過性よりも大きくならない範囲であれば、特に限定されない。 The method for contacting the raw material solution with the coagulating liquid is not particularly limited, and examples thereof include a method of immersing the raw material solution in the coagulating liquid. The concentration of the solvent in the coagulation liquid is not particularly limited, but by changing the solvent concentration in the coagulation liquid in the coagulation of the raw material solution, the structure of the support film can be changed and the pressure resistance can be increased. The pore diameter of the pores of the porous support membrane is preferably 100 nm or less, more preferably 10 nm or less. The thickness of the porous support membrane is not particularly limited as long as the gas permeability of the polymer membrane does not become larger than the gas permeability of the porous support membrane.
 以下に、本発明の高分子膜の製造方法について説明する。
 本発明の高分子膜の製造方法の第一の態様としては、
[I]アクリル基及び/又はメタクリル基を重合性官能基とする分岐末端を3点以上分子内に有する架橋性アミン化合物、及び下記式(1)
Figure JPOXMLDOC01-appb-C000082
(式中、Aは炭素数1~3の二価有機残基を示し、pは0又は1の整数を示す。)
で示される基、下記式(2)
Figure JPOXMLDOC01-appb-C000083
(式中、Aは炭素数1~3の二価有機残基を示し、qは0又は1の整数を示す。)
で示される基、下記式(3)
Figure JPOXMLDOC01-appb-C000084
(式中、A及びAは炭素数1~3の二価有機残基を示し、r及びsは0又は1の整数を示す。)
で示される基、及び下記式(4)
Figure JPOXMLDOC01-appb-C000085
(式中、A及びAは炭素数1~3の二価有機残基を示し、tは0又は1の整数を示す。)
で示される基からなる群から選ばれる1種以上の基を有するアミン化合物(B)の存在下に、多官能重合性単量体を重合反応させることにより、生成する高分子重合体内に前記アミン化合物(B)を固定化させ、高分子膜を形成する工程(工程[I])を含む方法が挙げられる。また、必要に応じて、得られた高分子膜を多孔質支持膜に積層する工程(工程[II])を設けていてもよい。
Below, the manufacturing method of the polymer film of this invention is demonstrated.
As a first aspect of the method for producing a polymer film of the present invention,
[I] A crosslinkable amine compound having 3 or more branched ends having an acrylic group and / or methacrylic group as a polymerizable functional group, and the following formula (1)
Figure JPOXMLDOC01-appb-C000082
(In the formula, A 1 represents a divalent organic residue having 1 to 3 carbon atoms, and p represents an integer of 0 or 1.)
A group represented by formula (2):
Figure JPOXMLDOC01-appb-C000083
(In the formula, A 2 represents a divalent organic residue having 1 to 3 carbon atoms, and q represents an integer of 0 or 1.)
A group represented by formula (3):
Figure JPOXMLDOC01-appb-C000084
(In the formula, A 3 and A 4 represent a divalent organic residue having 1 to 3 carbon atoms, and r and s represent an integer of 0 or 1.)
And a group represented by the following formula (4)
Figure JPOXMLDOC01-appb-C000085
(In the formula, A 5 and A 6 represent a divalent organic residue having 1 to 3 carbon atoms, and t represents an integer of 0 or 1.)
In the presence of an amine compound (B) having one or more groups selected from the group consisting of the groups represented by the above formula, the amine is introduced into the polymer produced by polymerizing a polyfunctional polymerizable monomer. Examples include a method including a step of immobilizing the compound (B) to form a polymer film (step [I]). Moreover, the process (process [II]) which laminates | stacks the obtained polymer film on a porous support film may be provided as needed.
 <工程[I]>
 本工程は、前記アクリル基及び/又はメタクリル基を重合性官能基とする分岐末端を3点以上分子内に有する架橋性アミン化合物、及び前記アミン化合物(B)の存在下に、多官能重合性単量体を重合反応させることにより、生成する高分子重合体内に前記アミン化合物を固定化させ、高分子膜を形成する工程である。前記重合反応としては、本発明の効果を妨げない限り特に限定されないが、例えば、熱重合であっても光重合であってもよい。この場合、通常(熱又は光)重合開始剤が用いられる。
<Process [I]>
This step is a polyfunctional polymerizable compound in the presence of the crosslinkable amine compound having three or more branched ends with the acrylic group and / or methacrylic group as the polymerizable functional group in the molecule, and the amine compound (B). This is a step of forming a polymer film by immobilizing the amine compound in the polymer polymer produced by polymerizing the monomer. The polymerization reaction is not particularly limited as long as the effects of the present invention are not hindered. For example, the polymerization reaction may be thermal polymerization or photopolymerization. In this case, a polymerization initiator is usually used (heat or light).
 前記熱重合開始剤としては、公知のものを使用でき、具体的には、メチルエチルケトンパーオキサイド、ベンゾイルパーオキサイド、ジクミルパーオキサイド、t-ブチルハイドロパーオキサイド、クメンハイドロパーオキサイド、t-ブチルパーオキシオクトエート、t-ブチルパーオキシベンゾエー卜、ラウロイルパーオキサイド等の有機過酸化物;アゾビスイソブチロニトリル等のアゾ系化合物等が好適である。また、熱重合時には硬化促進剤を混合して使用してもよく、硬化促進剤としては、ナフテン酸コバルトやオクチル酸コバルト等又は3級アミン等が好適である。熱重合開始剤の添加量としては、前記多官能重合性単量体100重量部に対し、約0.01~10重量部とすることが好ましい。より好ましくは、約0.1~1重量部である。 As the thermal polymerization initiator, known ones can be used. Specifically, methyl ethyl ketone peroxide, benzoyl peroxide, dicumyl peroxide, t-butyl hydroperoxide, cumene hydroperoxide, t-butyl peroxide Organic peroxides such as octoate, t-butylperoxybenzoate, and lauroyl peroxide; azo compounds such as azobisisobutyronitrile are suitable. In addition, a curing accelerator may be used by mixing at the time of thermal polymerization, and as the curing accelerator, cobalt naphthenate, cobalt octylate, etc., or tertiary amine is suitable. The addition amount of the thermal polymerization initiator is preferably about 0.01 to 10 parts by weight with respect to 100 parts by weight of the polyfunctional polymerizable monomer. More preferably, it is about 0.1 to 1 part by weight.
 前記光重合開始剤としては、公知のものを使用でき、具体的には、以下のような化合物が好適である。これらは単独又は2種以上の混合物として使用される。
 ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾインイソブチルエーテル等のベンゾインとそのアルキルエーテル類;アセトフェノン、2,2-ジメトキシ-2-フェニルアセトフェノン、1,1-ジクロロアセトフェノン、4-(1-t-ブチルジオキシ-1-メチルエチル)アセトフェノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルホリノ-プロパン-1-オンや2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノン-1、ジエトキシアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-[4-(1-メチルビニル)フェニル]プロパノンオリゴマー等のアセトフェノン類。
As the photopolymerization initiator, known ones can be used, and specifically, the following compounds are suitable. These are used alone or as a mixture of two or more.
Benzoin and its alkyl ethers such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin isobutyl ether; acetophenone, 2,2-dimethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 4- (1 -T-butyldioxy-1-methylethyl) acetophenone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholino-propan-1-one and 2-benzyl-2-dimethylamino-1- (4 -Morpholinophenyl) -butanone-1, diethoxyacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, benzyldimethyl ketal, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2 -Professional Le) ketone, 1-hydroxycyclohexyl phenyl ketone, 2-hydroxy-2-methyl-1- [4- (1-methylvinyl) phenyl] acetophenone such as propanone oligomer.
 2-メチルアントラキノン、2-アミルアントラキノン、2-t-ブチルアントラキノン、1-クロロアントラキノン等のアントラキノン類;2,4-ジメチルチオキサントン、2,4-ジイソプロピルチオキサントン、2-クロロチオキサントン、2-イソプロピルチオキサントン、4-イソプロピルチオキサントン、2,4-ジエチルチオキサントン、2,4-ジクロロチオキサントン、1-クロロ-4-プロポキシチオキサントン、2-(3-ジメチルアミノ-2-ヒドロキシ)-3,4-ジメチル-9H-チオキサントン-9-オンメソクロリド等のチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタール等のケタール類;ベンゾフェノン、4-(1-t-ブチルジオキシ-1-メチルエチル)ベンゾフェノン、3,3′,4,4′-テトラキス(t-ブチルジオキシカルボニル)ベンゾフェノン、o-ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、4-ベンゾイル-4′-メチル-ジフェニルサルファイド、3,3′,4,4′-テトラ(t-ブチルパーオキシルカルボニル)ベンゾフェノン、2,4,6-トリメチルベンゾフェノン、4-ベンゾイル-N,N-ジメチル-N-[2-(1-オキソ-2-プロペニルオキシ)エチル]ベンゼンメタナミニウムブロミド、(4-ベンゾイルベンジル)トリメチルアンモニウムクロリド等のベンゾフェノン類;アシルフォスフィンオキサイド類及びキサントン類。 Anthraquinones such as 2-methylanthraquinone, 2-amylanthraquinone, 2-t-butylanthraquinone, 1-chloroanthraquinone; 2,4-dimethylthioxanthone, 2,4-diisopropylthioxanthone, 2-chlorothioxanthone, 2-isopropylthioxanthone, 4-isopropylthioxanthone, 2,4-diethylthioxanthone, 2,4-dichlorothioxanthone, 1-chloro-4-propoxythioxanthone, 2- (3-dimethylamino-2-hydroxy) -3,4-dimethyl-9H-thioxanthone Thioxanthones such as -9-one mesochloride; ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenone, 4- (1-t-butyldioxy-1-methylethyl) benzoph Non, 3,3 ', 4,4'-tetrakis (t-butyldioxycarbonyl) benzophenone, methyl o-benzoylbenzoate, 4-phenylbenzophenone, 4-benzoyl-4'-methyl-diphenyl sulfide, 3,3 ', 4,4'-tetra (t-butylperoxylcarbonyl) benzophenone, 2,4,6-trimethylbenzophenone, 4-benzoyl-N, N-dimethyl-N- [2- (1-oxo-2-propenyl) Benzophenones such as (oxy) ethyl] benzenemethananium bromide and (4-benzoylbenzyl) trimethylammonium chloride; acylphosphine oxides and xanthones.
 ベンジルジメチルケタール(BDK)(例えば、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン)、α-ヒドロキシアルキルフェノン(例えば、1-ヒドロキシ-シクロヘキシル-フェニル-ケトン、2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、2-ヒロドキシ-1-{4-[4-(2-ヒドロキシ-2-メチル-プロピオニル)-ベンジル]フェニル}-2-メチル-プロパン-1-オン)、α-アミノアルキルフェノン(例えば、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン-1、2-(ジメチルアミノ)-2-[(4-メチルフェニル)メチル]-1-[4-(4-モルホリニル)フェニル]-1-ブタノン)等のアルキルフェノン系光重合開始剤;2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド等のアシルフォスフィンオキサイド系光重合開始剤;ビス(η5-2,4-シクロペンタジエン-1-イル)-ビス(2,6-ジフルオロ-3-(1H-ピロール-1-イル)-フェニル)チタニウム等のチタノセン系光重合開始剤;オキシムエステル(例えば、1.2-オクタンジオン,1-[4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)]、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム))、オキシフェニル酢酸エステル(例えば、オキシフェニル酢酸、2-[2-オキソ-2-フェニルアセトキシエトキシ]エチルエステルとオキシフェニル酢酸、2-(2-ヒドロキシエトキシ)エチルエステルの混合物)等のその他の光重合開始剤。 Benzyldimethyl ketal (BDK) (eg, 2,2-dimethoxy-1,2-diphenylethane-1-one), α-hydroxyalkylphenone (eg, 1-hydroxy-cyclohexyl-phenyl-ketone, 2-hydroxy-2 -Methyl-1-phenyl-propan-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one, 2-hydroxy-1- {4- [4- (2-hydroxy-2-methyl-propionyl) -benzyl] phenyl} -2-methyl-propan-1-one), α-aminoalkylphenone (eg, 2-methyl-1- (4 -Methylthiophenyl) -2-morpholinopropan-1-one, 2-benzyl-2-dimethylamino-1- (4-morpholinofe Nyl) -butanone-1,2- (dimethylamino) -2-[(4-methylphenyl) methyl] -1- [4- (4-morpholinyl) phenyl] -1-butanone) Initiators; acyl phosphine oxide photopolymerization initiators such as 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide; bis (η5- Titanocene photopolymerization initiators such as 2,4-cyclopentadien-1-yl) -bis (2,6-difluoro-3- (1H-pyrrol-1-yl) -phenyl) titanium; oxime esters (for example, 1 2-octanedione, 1- [4- (phenylthio)-, 2- (O-benzoyloxime)], ethanone, 1- [9-ethi -6- (2-methylbenzoyl) -9H-carbazol-3-yl]-, 1- (0-acetyloxime)), oxyphenylacetic acid ester (for example, oxyphenylacetic acid, 2- [2-oxo-2- Other photopolymerization initiators such as phenylacetoxyethoxy] ethyl ester and oxyphenylacetic acid, 2- (2-hydroxyethoxy) ethyl ester).
 前記光重合開始剤の添加量としては、前記多官能重合性単量体100重量部に対し、約0.5~10重量部とすることが好ましい。より好ましくは約2~3重量部である。 The addition amount of the photopolymerization initiator is preferably about 0.5 to 10 parts by weight with respect to 100 parts by weight of the polyfunctional polymerizable monomer. More preferably, it is about 2 to 3 parts by weight.
 本発明に用いる多官能重合性単量体を光により硬化させる場合、光重合開始剤とともに増感剤として塩基性化合物を用いることができる。塩基性化合物としてはアミン化合物を用いることが好ましく、前記アミン化合物としては、特に制限されないが、具体的には、モノメチルアミン、ジメチルアミン、トリメチルアミン、モノエチルアミン、ジエチルアミン、トリエチルアミン、モノプロピルアミン、ジメチルプロピルアミン、モノエタノールアミン、ジエタノールアミン、エチレンジアミン、ジエチレントリアミン、ジメチルアミノエチルメタクリレート、ポリエチレンイミン等が挙げられる。これらの中で特に三級アミン化合物が好適である。 When the polyfunctional polymerizable monomer used in the present invention is cured by light, a basic compound can be used as a sensitizer together with a photopolymerization initiator. As the basic compound, an amine compound is preferably used, and the amine compound is not particularly limited. Specifically, monomethylamine, dimethylamine, trimethylamine, monoethylamine, diethylamine, triethylamine, monopropylamine, dimethylpropyl are used. Examples include amine, monoethanolamine, diethanolamine, ethylenediamine, diethylenetriamine, dimethylaminoethyl methacrylate, and polyethyleneimine. Of these, tertiary amine compounds are particularly preferred.
 前記三級アミン化合物としては、トリエタノールアミン、トリイソプロパノールアミン、トリブタノールアミン、メチルジエタノールアミン、メチルジイソプロパノールアミン、メチルジブタノールアミン、エチルジエタノールアミン、エチルジイソプロパノールアミン、エチルジブタノールアミン、プロピルジエタノールアミン、プロピルジイソプロパノールアミン、プロピルジブタノールアミン、ジメチルエタノールアミン、ジメチルイソプロパノールアミン、ジメチルブタノールアミン、ジエチルエタノールアミン、ジエチルイソプロパノールアミン、ジエチルブタノールアミン、ジプロピルエタノールアミン、ジプロピルイソプロパノールアミン、ジプロピルブタノールアミン、ジブチルエタノールアミン、ジブチルイソプロパノールアミン、ジブチルブタノールアミン、メチルエチルエタノールアミン、メチルエチルイソプロパノールアミン、メチルエチルブタノールアミン、ベンジルジエタノールアミン、N-フェニルジエタノールアミン、テトラエタノールエチレンジアミン、テトラプロパノールエチレンジアミン等が挙げられる。また、これら水酸基含有三級アミン化合物にエチレンオキサイドを付加させてポリエチレングリコール鎖を導入したもの、水酸基含有三級アミン化合物に水酸基と反応性を有する官能基を含有するモノマーを付加させて重合性二重結合を導入したもの、ポリマー又はオリゴマーに三級アミノ基を導入したもの等も用いることができる。これらのアミン化合物は単独又は2種以上を組み合わせて用いることができる。 Examples of the tertiary amine compound include triethanolamine, triisopropanolamine, tributanolamine, methyldiethanolamine, methyldiisopropanolamine, methyldibutanolamine, ethyldiethanolamine, ethyldiisopropanolamine, ethyldibutanolamine, propyldiethanolamine, propyl Diisopropanolamine, propyldibutanolamine, dimethylethanolamine, dimethylisopropanolamine, dimethylbutanolamine, diethylethanolamine, diethylisopropanolamine, diethylbutanolamine, dipropylethanolamine, dipropylisopropanolamine, dipropylbutanolamine, dibutylethanol Amine, dibutylisopropano Triethanolamine, dibutyl butanolamine, methyl ethyl ethanolamine, methyl ethyl isopropanolamine, methyl ethyl butanol amine, benzyl diethanolamine, N- phenyl-diethanolamine, tetraethanol ethylenediamine, tetramethylenediamine propanol ethylenediamine, and the like. These hydroxyl group-containing tertiary amine compounds are added with ethylene oxide to introduce a polyethylene glycol chain, and the hydroxyl group-containing tertiary amine compound is added with a monomer containing a functional group reactive with a hydroxyl group to obtain a polymerizable group. What introduced the heavy bond, what introduce | transduced the tertiary amino group to the polymer or the oligomer, etc. can also be used. These amine compounds can be used alone or in combination of two or more.
 前記増感剤の使用量は、光重合開始剤100重量部に対し、約1~10重量部とすることが好ましい。より好ましくは約5~8重量部である。 The amount of the sensitizer used is preferably about 1 to 10 parts by weight with respect to 100 parts by weight of the photopolymerization initiator. More preferably, it is about 5 to 8 parts by weight.
 前記重合反応は、適当な溶媒中、熱重合の場合は加熱により、光重合の場合は紫外線の照射により実施することが好ましい。溶媒としては、前記アミン化合物と前記多官能重合性単量体を溶解するものであれば特に限定されないが、通常アルコール(例えば、メタノール、エタノール等)が好適に使用できる。熱重合の加熱は、通常約40~90℃、好ましくは約60~70℃で、通常約2~24時間、好ましくは約5~10時間で行われる。光重合の紫外線照射は、通常約200~400nm、好ましくは約250~360nmの波長を用いて、通常約30秒~10分、好ましくは約1~3分で行われる。なお、熱重合と光重合とは併用して行うこともでき、例えば熱重合の後に光重合を行うか、光重合させた後に熱重合するか、あるいは光重合と熱重合を同時に行うこともできる。 The polymerization reaction is preferably carried out in a suitable solvent by heating in the case of thermal polymerization and by irradiation with ultraviolet rays in the case of photopolymerization. The solvent is not particularly limited as long as it dissolves the amine compound and the polyfunctional polymerizable monomer, but usually an alcohol (for example, methanol, ethanol, etc.) can be preferably used. Heating in the thermal polymerization is usually performed at about 40 to 90 ° C., preferably about 60 to 70 ° C., usually about 2 to 24 hours, preferably about 5 to 10 hours. The ultraviolet irradiation of the photopolymerization is usually performed for about 30 seconds to 10 minutes, preferably about 1 to 3 minutes, using a wavelength of about 200 to 400 nm, preferably about 250 to 360 nm. In addition, thermal polymerization and photopolymerization can be performed in combination. For example, photopolymerization can be performed after thermal polymerization, thermal polymerization can be performed after photopolymerization, or photopolymerization and thermal polymerization can be performed simultaneously. .
 かくして、高分子重合体が生成すると同時に、該高分子重合体内に前記アミン化合物(B)が物理的又は化学的に固定化されてなる高分子膜が得られる。得られる高分子膜は、該三次元網目構造を有する高分子重合体の該網目構造内に前記アミン化合物(B)が封入され、固定化されているものが好適に挙げられる。前記高分子重合体が、前記架橋性アミン化合物による架橋構造を有していることにより、強度及びガス分離性等に優れた高分子膜が得られる。前記架橋性アミン化合物を使用することにより、膜厚を薄くする、膜に高圧をかける等しても、二酸化炭素ガス分離性能を有する前記アミン化合物(B)が相分離せず、分離効率等の点において好ましいガス分離膜が得られる。相分離の有無は、例えば、CuKα線(波長0.1542nm)を使用したX線小角散乱により確認することができる。散乱ベクトルが0.6nm-1以上にピークが認められない場合、200nm以下の相分離構造に起因する構造体は存在しないことから、特に優れたガス分離性能を維持できることがわかる。 Thus, a polymer film is obtained in which the amine compound (B) is physically or chemically immobilized in the polymer at the same time as the polymer is produced. Suitable examples of the obtained polymer film include those in which the amine compound (B) is sealed and fixed in the network structure of the polymer having the three-dimensional network structure. When the high molecular polymer has a cross-linked structure of the cross-linkable amine compound, a high polymer film having excellent strength and gas separation property can be obtained. By using the crosslinkable amine compound, the amine compound (B) having carbon dioxide gas separation performance does not phase-separate even if the film thickness is reduced, the membrane is subjected to high pressure, etc. A gas separation membrane that is preferable in this respect is obtained. The presence / absence of phase separation can be confirmed, for example, by X-ray small angle scattering using CuKα rays (wavelength 0.1542 nm). When no peak is observed at a scattering vector of 0.6 nm −1 or more, it can be seen that a particularly excellent gas separation performance can be maintained because there is no structure due to a phase separation structure of 200 nm or less.
<工程[II]>
 本発明の高分子膜は、前記したように、必要に応じて、支持体を設けていてもよい。必要に応じて、支持体を設ける場合の工程を以下に示す。本工程は、前記工程(1)で得られた高分子膜と多孔質支持膜を積層させてなる複合膜を得る工程である。高分子膜と多孔質支持膜を積層させる方法としては、それ自体公知の方法を採用することができ、例えばラミネート法等が挙げられ、ラミネート法としては、例えば公知のドライラミネート、ホットメルトラミネート等が挙げられる。具体的には、高分子膜と多孔質支持膜とを、通常φ(直径)20~60mm、好ましくはφ25~50mm程度に切り取り、接着剤又は接着フィルムを用いて張り合わせる方法である。
<Process [II]>
As described above, the polymer membrane of the present invention may be provided with a support as necessary. The process in the case of providing a support as needed is shown below. This step is a step of obtaining a composite membrane obtained by laminating the polymer membrane obtained in the step (1) and a porous support membrane. As a method of laminating the polymer membrane and the porous support membrane, a method known per se can be employed, and examples thereof include a laminating method. Examples of the laminating method include known dry laminating and hot melt laminating. Is mentioned. Specifically, the polymer membrane and the porous support membrane are usually cut to have a diameter (diameter) of 20 to 60 mm, preferably about 25 to 50 mm, and bonded together using an adhesive or an adhesive film.
 ラミネートに用いる接着剤としては、特に限定されないが、水系接着剤(例えば、α-オレフィン系接着剤、水性高分子-イソシアネート系接着剤等)、水分散系接着剤(例えば、アクリル樹脂エマルジョン接着剤、エポキシ樹脂エマルジョン接着剤、酢酸ビニル樹脂エマルジョン接着剤等)、溶剤系接着剤(例えば、ニトロセルロース接着剤、塩化ビニル樹脂溶剤系接着剤、クロロプレンゴム系接着剤等)、反応系接着剤(例えば、シアノアクリレート系接着剤、アクリル樹脂系接着剤、シリコーン系接着剤等)、ホットメルト接着剤(例えば、エチレン-酢酸ビニル樹脂ホットメルト接着剤、ポリアミド樹脂ホットメルト接着剤、ポリアミド樹脂ホットメルト接着剤、ポリオレフィン樹脂ホットメルト接着剤等)等が挙げられる。接着フィルムとしては、ポリビニルブチラール、ポリウレタン、エチレン-酢酸ビニル共重合体樹脂等の熱可塑性透明樹脂からなるフィルム等が挙げられる。本発明の高分子膜のガス透過性及び多孔質支持膜のガス透過性を妨げない範囲であれば、接着剤又は接着フィルムの層の厚さは特に限定されない。 The adhesive used for laminating is not particularly limited, but an aqueous adhesive (eg, α-olefin adhesive, aqueous polymer-isocyanate adhesive, etc.), an aqueous dispersion adhesive (eg, acrylic resin emulsion adhesive) , Epoxy resin emulsion adhesives, vinyl acetate resin emulsion adhesives, etc.), solvent adhesives (eg, nitrocellulose adhesives, vinyl chloride resin solvent adhesives, chloroprene rubber adhesives, etc.), reactive adhesives (eg, , Cyanoacrylate adhesives, acrylic resin adhesives, silicone adhesives, etc.), hot melt adhesives (eg, ethylene-vinyl acetate resin hot melt adhesives, polyamide resin hot melt adhesives, polyamide resin hot melt adhesives) , Polyolefin resin hot melt adhesive, etc.). Examples of the adhesive film include films made of a thermoplastic transparent resin such as polyvinyl butyral, polyurethane, and ethylene-vinyl acetate copolymer resin. The thickness of the adhesive or adhesive film layer is not particularly limited as long as it does not interfere with the gas permeability of the polymer membrane of the present invention and the gas permeability of the porous support membrane.
 本発明の他の態様は、前記で得られた高分子膜又は複合膜を用いて、二酸化炭素を含む混合ガスから、二酸化炭素を分離する方法である。すなわち、本発明のガス分離方法は、二酸化炭素を含む混合ガスを前記で得られた高分子膜又は複合膜に接触させて該混合ガス中の二酸化炭素を選択的に透過させる工程を含むことを特徴とする。当該ガス分離方法は、分離膜のガス供給側とガス透過側との間に圧力差を設けておくのが好ましい。この圧力差は、通常、ガス透過側を減圧にすることにより設けられる。また、本分離方法は、通常5~80℃、好ましくは室温~50℃の温度条件下で実施するのが望ましい。 Another aspect of the present invention is a method for separating carbon dioxide from a mixed gas containing carbon dioxide using the polymer membrane or composite membrane obtained above. That is, the gas separation method of the present invention includes a step of bringing the mixed gas containing carbon dioxide into contact with the polymer membrane or the composite membrane obtained above to selectively permeate carbon dioxide in the mixed gas. Features. In the gas separation method, it is preferable to provide a pressure difference between the gas supply side and the gas permeation side of the separation membrane. This pressure difference is usually provided by reducing the pressure on the gas permeation side. In addition, it is desirable to carry out the separation method under a temperature condition of usually 5 to 80 ° C., preferably room temperature to 50 ° C.
 本発明の分離方法に適用できる混合ガスは、二酸化炭素を含む混合ガスであれば特に制限されないが、二酸化炭素と他のガスとの分離性能を向上させるためには、混合ガスの相対湿度を30%以上、好ましくは60~100%に調製しておくのが好ましい。
 前記ガス分離方法は、例えば、火力発電所、鉄鋼プラント等で発生する燃焼排ガスから二酸化炭素(CO)を分離するのに適用することができる。
The mixed gas applicable to the separation method of the present invention is not particularly limited as long as it is a mixed gas containing carbon dioxide. However, in order to improve the separation performance between carbon dioxide and other gases, the relative humidity of the mixed gas is set to 30. % Or more, preferably 60 to 100%.
The gas separation method can be applied to, for example, separating carbon dioxide (CO 2 ) from combustion exhaust gas generated in a thermal power plant, a steel plant, or the like.
 以下に実施例を用いて本発明を説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
 [合成例1]
 10.0g(19.3mmol)のPAMAMデンドリマー(第0世代、シグマ・アルドリッチ社製)を10gの水に溶解した。氷冷下で、11.0g(77.4mmol)のグリシジルメタクリレートを滴下した。反応溶液を24時間氷冷下で撹拌し、下記式で示される目的化合物(以下、4GMAPとも略称する)を得た。
Figure JPOXMLDOC01-appb-C000086
[Synthesis Example 1]
10.0 g (19.3 mmol) of PAMAM dendrimer (0th generation, manufactured by Sigma-Aldrich) was dissolved in 10 g of water. Under ice-cooling, 11.0 g (77.4 mmol) of glycidyl methacrylate was added dropwise. The reaction solution was stirred under ice-cooling for 24 hours to obtain a target compound represented by the following formula (hereinafter also abbreviated as 4GMAP).
Figure JPOXMLDOC01-appb-C000086
 [合成例2]
 2.0g(1.40mmol)のPAMAMデンドリマー(第1世代、シグマ・アルドリッチ社製)を5gの水に溶解した。氷冷下で、1.59g(11.2mmol)のグリシジルメタクリレートを滴下した。反応溶液は24時間氷冷下で撹拌し、下記式で示される目的化合物(以下、8GMAPとも略称する)を得た。
Figure JPOXMLDOC01-appb-C000087
[Synthesis Example 2]
2.0 g (1.40 mmol) of PAMAM dendrimer (1st generation, Sigma-Aldrich) was dissolved in 5 g of water. 1.59 g (11.2 mmol) of glycidyl methacrylate was added dropwise under ice cooling. The reaction solution was stirred for 24 hours under ice cooling to obtain a target compound represented by the following formula (hereinafter also abbreviated as 8GMAP).
Figure JPOXMLDOC01-appb-C000087
 [合成例3]
 1.0g(0.31mmol)のPAMAMデンドリマー(第2世代、シグマ・アルドリッチ社製)を2gの水に溶解した。氷冷下で、0.70g(4.91mmol)のグリシジルメタクリレートを滴下した。反応溶液は24時間氷冷下で撹拌し、目的化合物16GMAP(構造式省略)を得た。
[Synthesis Example 3]
1.0 g (0.31 mmol) of PAMAM dendrimer (2nd generation, Sigma-Aldrich) was dissolved in 2 g of water. Under ice-cooling, 0.70 g (4.91 mmol) of glycidyl methacrylate was added dropwise. The reaction solution was stirred under ice cooling for 24 hours to obtain the target compound 16GMAP (structural formula omitted).
 [合成例4]
 (化合物(i)の合成)
 2-ヒドロキシエチルメタクリレート(HEMA、東京化成社製)3.02g(23.2mmol)とアシル化触媒として、20mgのN,N-ジメチル-4-アミノピリジン(DMAP、シグマ・アルドリッチ社製)を50mLのクロロホルムに溶解させた。5.15g(25.5mmol)のNPC(p-ニトロフェニルクロロホルメート)と2.58g(25.5mmol)のトリエチルアミンを50mLのクロロホルムに溶解させた溶液を調整した。この溶液を先のHEMA溶液に滴下し、16時間氷冷下で撹拌した。撹拌終了後、反応溶液を飽和炭酸水素水溶液、飽和食塩水、及び水でリンスすることによって、下記式で示される活性化HEMAを合成した。
Figure JPOXMLDOC01-appb-C000088
[Synthesis Example 4]
(Synthesis of Compound (i))
50 mL of 3.02 g (23.2 mmol) of 2-hydroxyethyl methacrylate (HEMA, manufactured by Tokyo Chemical Industry Co., Ltd.) and 20 mg of N, N-dimethyl-4-aminopyridine (DMAP, manufactured by Sigma-Aldrich) as an acylation catalyst In chloroform. A solution was prepared by dissolving 5.15 g (25.5 mmol) of NPC (p-nitrophenyl chloroformate) and 2.58 g (25.5 mmol) of triethylamine in 50 mL of chloroform. This solution was added dropwise to the previous HEMA solution and stirred for 16 hours under ice cooling. After completion of the stirring, the reaction solution was rinsed with a saturated aqueous bicarbonate solution, a saturated saline solution, and water to synthesize activated HEMA represented by the following formula.
Figure JPOXMLDOC01-appb-C000088
(架橋性アミン化合物4UMAPの合成)
 1.0g(1.93mmol)のPAMAMデンドリマー(第0世代、シグマ・アルドリッチ社製)を5mLのジメチルスルホキシドに溶解した。2.28g(7.72mmol)活性化HEMAを5mLのジメチルスルホキシドに溶解した。これら2つの溶液を混合し、24時間室温で反応させた。反応終了後、組成生物をヘキサン中に再沈殿させ、エタノールで抽出することによって下記式で示される目的化合物(以下、4UMAPとも略称する)を合成した。
Figure JPOXMLDOC01-appb-C000089
(Synthesis of crosslinkable amine compound 4UMAP)
1.0 g (1.93 mmol) of PAMAM dendrimer (0th generation, Sigma-Aldrich) was dissolved in 5 mL of dimethyl sulfoxide. 2.28 g (7.72 mmol) activated HEMA was dissolved in 5 mL dimethyl sulfoxide. These two solutions were mixed and allowed to react at room temperature for 24 hours. After completion of the reaction, the component organism was reprecipitated in hexane and extracted with ethanol to synthesize the target compound represented by the following formula (hereinafter also abbreviated as 4UMAP).
Figure JPOXMLDOC01-appb-C000089
 [合成例5]
 Wangらの報告(Journal of Membrane Science, 290, (2007) 250-258)に基づき、ペンタエリトリチルテトラブロミド(シグマ・アルドリッチ社製)に過剰のエチレンジアミンを反応させて、ペンタエリトリチルテトラエチレンジアミン(PETEDA)を合成し、精製した。次に、10g(32.8mmol)のPETEDAを20gの水に溶解させて得られた溶液を氷冷した。この溶液に18.7g(131.2mmol)のグリシジルメタクリレートを氷冷下で滴下した。反応溶液を24時間氷冷下で撹拌し、下記式で示される目的化合物(以下、GM4TAとも略称する)を得た。
Figure JPOXMLDOC01-appb-C000090
[Synthesis Example 5]
Based on the report of Wang et al. (Journal of Membrane Science, 290, (2007) 250-258), pentaerythrityl tetraethylenediamine (PETEDA) was reacted with pentaerythrityl tetrabromide (manufactured by Sigma-Aldrich) with excess ethylenediamine. ) Was synthesized and purified. Next, a solution obtained by dissolving 10 g (32.8 mmol) of PETEDA in 20 g of water was ice-cooled. To this solution, 18.7 g (131.2 mmol) of glycidyl methacrylate was added dropwise under ice cooling. The reaction solution was stirred for 24 hours under ice cooling to obtain a target compound represented by the following formula (hereinafter also abbreviated as GM4TA).
Figure JPOXMLDOC01-appb-C000090
 [合成例6]
 10g(68.5mmol)のトリス(2-アミノエチル)アミン(東京化成社製)を30gの水に溶解させた溶液に29.2g(205.5mmol)のグリシジルメタクリレートを氷冷下で滴下して、反応溶液を氷冷下で24時間撹拌し、下記式で示される目的化合物(以下、GM3TAとも略称する)を得た。
Figure JPOXMLDOC01-appb-C000091
[Synthesis Example 6]
To a solution obtained by dissolving 10 g (68.5 mmol) of tris (2-aminoethyl) amine (manufactured by Tokyo Chemical Industry Co., Ltd.) in 30 g of water, 29.2 g (205.5 mmol) of glycidyl methacrylate was added dropwise under ice cooling. The reaction solution was stirred for 24 hours under ice-cooling to obtain a target compound represented by the following formula (hereinafter also abbreviated as GM3TA).
Figure JPOXMLDOC01-appb-C000091
[合成例7]
(トリアジン3OHデンドリマーの合成)
 イソシアヌル酸トリグリシジル10g(33.6mmol、東京化成社製)を30mlの無水メタノールに溶解し、氷冷した。この溶液に1,3-ジアミノ-2-プロパノールを36.4g(0.40mol、東京化成社製)滴下して3日間撹拌した。反応終了後、溶媒と過剰の1,3-ジアミノ-2-プロパノールを減圧留去して目的化合物(トリアジン3OHデンドリマー)を得た。
[Synthesis Example 7]
(Synthesis of triazine 3OH dendrimer)
10 g of triglycidyl isocyanurate (33.6 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.) was dissolved in 30 ml of anhydrous methanol and cooled on ice. To this solution, 36.4 g (0.40 mol, manufactured by Tokyo Chemical Industry Co., Ltd.) of 1,3-diamino-2-propanol was added dropwise and stirred for 3 days. After completion of the reaction, the solvent and excess 1,3-diamino-2-propanol were distilled off under reduced pressure to obtain the target compound (triazine 3OH dendrimer).
(3GMA6OHTAの合成)
 前記トリアジン3OHデンドリマー10g(17.6mmol)を30gの水に溶解させた溶液に7.50g(52.8mmol)のグリシジルメタクリレートを氷冷下で滴下して、反応溶液を氷冷下で24時間撹拌し、下記式で示される目的化合物(以下、3GMA6OHTAとも略称する)を得た。
Figure JPOXMLDOC01-appb-C000092
(Synthesis of 3GMA6OHTA)
7.50 g (52.8 mmol) of glycidyl methacrylate was added dropwise under ice cooling to a solution of 10 g (17.6 mmol) of the triazine 3OH dendrimer dissolved in 30 g of water, and the reaction solution was stirred for 24 hours under ice cooling. The target compound represented by the following formula (hereinafter also abbreviated as 3GMA6OHTA) was obtained.
Figure JPOXMLDOC01-appb-C000092
[合成例8]
(4OH―PAMAMデンドリマーの合成)
 エチレンジアミン10g(166mmol、東京化成社製)を30mlの無水メタノールに溶解し、氷冷した。この溶液にメチルアクリレートを143g(1.66mol、東京化成社製)滴下して1日間撹拌した。溶媒と過剰のメチルアクリレートを減圧留去した。得られた化合物10g(24.7mmol)を30mlの無水メタノールに溶解させ、この溶液に1,3-ジアミノ-2-プロパノールを36.4g(0.40mol、東京化成社製)滴下して7日間撹拌した。反応終了後、溶媒と過剰の1,3-ジアミノ-2-プロパノールを減圧留去して目的化合物(4OH―PAMAMデンドリマー)を得た。
[Synthesis Example 8]
(Synthesis of 4OH-PAMAM dendrimer)
10 g (166 mmol, manufactured by Tokyo Chemical Industry Co., Ltd.) of ethylenediamine was dissolved in 30 ml of anhydrous methanol and cooled with ice. To this solution, 143 g (1.66 mol, manufactured by Tokyo Chemical Industry Co., Ltd.) was added dropwise and stirred for 1 day. The solvent and excess methyl acrylate were distilled off under reduced pressure. 10 g (24.7 mmol) of the obtained compound was dissolved in 30 ml of anhydrous methanol, and 36.4 g (0.40 mol, manufactured by Tokyo Kasei Co., Ltd.) of 1,3-diamino-2-propanol was added dropwise to this solution for 7 days. Stir. After completion of the reaction, the solvent and excess 1,3-diamino-2-propanol were distilled off under reduced pressure to obtain the target compound (4OH-PAMAM dendrimer).
(4GMA4OHPの合成)
 前記4OH―PAMAMデンドリマー10g(15.7mmol)を30gの水に溶解させた溶液に8.92g(62.8mmol)のグリシジルメタクリレートを氷冷下で滴下して、反応溶液を氷冷下で24時間撹拌し、下記式で示される目的化合物(以下、4GMA4OHPとも略称する)を得た。
Figure JPOXMLDOC01-appb-C000093
(Synthesis of 4GMA4OHP)
To a solution of 10 g (15.7 mmol) of 4OH-PAMAM dendrimer dissolved in 30 g of water, 8.92 g (62.8 mmol) of glycidyl methacrylate was added dropwise under ice cooling, and the reaction solution was cooled under ice cooling for 24 hours. The mixture was stirred to obtain the target compound represented by the following formula (hereinafter also abbreviated as 4GMA4OHP).
Figure JPOXMLDOC01-appb-C000093
[合成例9]
 ヒドロキシポリエチレングリコールジメタクリレート(シグマ・アルドリッチ社製)10gを100mLのクロロホルムに溶解した。これにフルオレセインイソチオシアネート(FITC、ピアス社製)を1g加え24時間室温で撹拌することによって下記式で示される目的化合物(FITC-PEGMA)を得た。精製は不溶のFITCをろ過によって取り除いて反応溶媒をエバポレーターによって減圧留去した。
Figure JPOXMLDOC01-appb-C000094
[Synthesis Example 9]
10 g of hydroxy polyethylene glycol dimethacrylate (manufactured by Sigma-Aldrich) was dissolved in 100 mL of chloroform. 1 g of fluorescein isothiocyanate (FITC, manufactured by Pierce) was added thereto and stirred at room temperature for 24 hours to obtain the target compound (FITC-PEGMA) represented by the following formula. For purification, insoluble FITC was removed by filtration, and the reaction solvent was distilled off under reduced pressure by an evaporator.
Figure JPOXMLDOC01-appb-C000094
 [実施例1]
 下記式
Figure JPOXMLDOC01-appb-C000095
で示される第0世代のポリアミドアミン(PAMAM)デンドリマー(表面基:-CONHCHCHNH;アミノ基の数:4個;シグマ・アルドリッチ社製)2g、ポリエチレングリコールジメタクリレート(PEGDMA、分子量750、シグマ・アルドリッチ社製)1.7g(2.27mmol)、及び架橋剤として4GMAP(合成例1)300mg(0.28mmol)を水4gに溶解し、重合開始剤としてIRGACURE 2959(商品名、BASF社製、成分:1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン)を10mg加えた。これを膜厚250μmとなるよう流延し、360秒UV照射(λmax312nm、12mW/cm)することによって高分子膜を得た。得られた高分子膜の4GMAP含量は、7.5wt%であった。
[Example 1]
Following formula
Figure JPOXMLDOC01-appb-C000095
2 generation polyamidoamine (PAMAM) dendrimer (surface group: —CONHCH 2 CH 2 NH 2 ; number of amino groups: 4; manufactured by Sigma-Aldrich), polyethylene glycol dimethacrylate (PEGDMA, molecular weight 750) , Sigma-Aldrich) 1.7 g (2.27 mmol) and 4 GMAP (Synthesis Example 1) 300 mg (0.28 mmol) as a crosslinking agent are dissolved in 4 g of water, and IRGACURE 2959 (trade name, BASF) is used as a polymerization initiator. 10 mg of 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-2-methyl-1-propan-1-one) manufactured by the company was added. This was cast so as to have a film thickness of 250 μm, and a polymer film was obtained by performing UV irradiation for 360 seconds (λ max 312 nm, 12 mW / cm 2 ). The resulting polymer membrane had a 4GMAP content of 7.5 wt%.
[実施例2]
 膜厚を表3に記載の値にした以外は実施例1と同様にして高分子膜を得た(本発明品2~4)。
[Example 2]
A polymer film was obtained in the same manner as in Example 1 except that the film thickness was changed to the value shown in Table 3 (Invention products 2 to 4).
[実施例3]
 膜厚を表4に記載の値にした以外は実施例1と同様にして高分子膜を得た。該高分子膜と多孔質支持膜(ポリエーテルスルホン限外濾過膜、分画分子量300,000、ミリポア社製)とを積層し、複合膜を得た(本発明品5~10)。
[Example 3]
A polymer film was obtained in the same manner as in Example 1 except that the film thickness was changed to the value described in Table 4. The polymer membrane and a porous support membrane (polyethersulfone ultrafiltration membrane, fractional molecular weight 300,000, manufactured by Millipore) were laminated to obtain composite membranes (Invention products 5 to 10).
[実施例4]
 4GMAPの代わりに合成例5で得たGM4TA300mg(0.35mol)を用い、膜厚を60μmとした以外は実施例3と同様にして複合膜を得た(本発明品11)。
[Example 4]
A composite film was obtained in the same manner as in Example 3 except that 300 mg (0.35 mol) of GM4TA obtained in Synthesis Example 5 was used instead of 4GMAP, and the film thickness was changed to 60 μm (Product 11 of the present invention).
[実施例5]
 4GMAPの代わりに合成例6で得たGM3TA300mg(0.52mol)を用い、膜厚を42μmとした以外は実施例3と同様にして複合膜を得た(本発明品12)。
[Example 5]
A composite film was obtained in the same manner as in Example 3 except that 300 mg (0.52 mol) of GM3TA obtained in Synthesis Example 6 was used instead of 4GMAP, and the film thickness was changed to 42 μm (Product 12 of the present invention).
[実施例6]
 4GMAPの代わりに合成例7で得た3GMA6OHTA300mg(0.30mol)を用い、膜厚を52μmとした以外は実施例3と同様にして複合膜を得た(本発明品13)。
[Example 6]
A composite film was obtained in the same manner as in Example 3 except that 300 mg (0.30 mol) of 3GMA6OHTA obtained in Synthesis Example 7 was used instead of 4GMAP, and the film thickness was changed to 52 μm (Product 13 of the present invention).
[実施例7]
 4GMAPの代わりに合成例8で得た4GMA4OHP300mg(0.25mol)を用い、膜厚を21μmとした以外は実施例3と同様にして複合膜を得た(本発明品14)
[Example 7]
A composite membrane was obtained in the same manner as in Example 3 except that 300 mg (0.25 mol) of 4GMA4OHP obtained in Synthesis Example 8 was used instead of 4GMAP, and the thickness was changed to 21 μm (Product 14 of the present invention).
[実施例8]
 4GMAPの代わりに合成例2で得た8GMAP300mg(1.17×10-4mol)を用い、膜厚を340μmとした以外は実施例1と同様にして高分子膜を得た(本発明品15)。
[Example 8]
A polymer film was obtained in the same manner as in Example 1 except that 300 mg (1.17 × 10 −4 mol) of 8GMAP obtained in Synthesis Example 2 was used instead of 4GMAP and the film thickness was changed to 340 μm (Invention Product 15 ).
[実施例9]
 4GMAPに加え、合成例9で得られたFITC-PEGMAを3wt%加えた以外は実施例1と同様にして高分子膜を得た(本発明品16)。
[Example 9]
A polymer membrane was obtained in the same manner as in Example 1 except that 3 wt% of FITC-PEGMA obtained in Synthesis Example 9 was added in addition to 4GMAP (Product 16 of the present invention).
[比較例1]
 架橋剤として4GMAPの代わりにトリメチロールプロパントリメタクリレート(TMPTMA、シグマ・アルドリッチ社製)300mg(0.89mmol)を用い、重合溶媒として水の代わりにエタノール4gを用い、重合開始剤としてIRGACURE 2959の代わりに1-ヒドロキシシクロヘキシルフェニルケトン(シグマ・アルドリッチ社製)10mgを用いた以外は実施例1と同様にして高分子膜を得た(比較品1)。得られた高分子膜のTMPTMA含量は15wt%であった。
[Comparative Example 1]
Instead of 4GMAP, 300 mg (0.89 mmol) of trimethylolpropane trimethacrylate (TMPTMA, manufactured by Sigma-Aldrich) was used as a crosslinking agent, 4 g of ethanol was used as a polymerization solvent, and IRGACURE 2959 was used as a polymerization initiator. A polymer membrane was obtained in the same manner as in Example 1 except that 10 mg of 1-hydroxycyclohexyl phenyl ketone (manufactured by Sigma-Aldrich) was used (Comparative product 1). The obtained polymer film had a TMPTMA content of 15 wt%.
[比較例2]
 4GMAPを用いない以外は実施例1と同様にして高分子膜を得た(比較品2)。
[Comparative Example 2]
A polymer membrane was obtained in the same manner as in Example 1 except that 4GMAP was not used (Comparative product 2).
[比較例3]
 膜厚を表3に記載の値にした以外は比較例1と同様にして高分子膜を得た(比較品3~5)。
[Comparative Example 3]
A polymer film was obtained in the same manner as in Comparative Example 1 except that the film thickness was changed to the value shown in Table 3 (Comparative products 3 to 5).
[比較例4]
 膜厚を表3の記載の値にした以外は比較例1と同様にして高分子膜を得た。該高分子膜と多孔質支持膜(ポリエーテルスルホン限外濾過膜、分画分子量300,000、ミリポア社製)とを積層し、複合膜を得た(比較品6及び7)。
[Comparative Example 4]
A polymer film was obtained in the same manner as in Comparative Example 1 except that the film thickness was changed to the value shown in Table 3. The polymer membrane and a porous support membrane (polyethersulfone ultrafiltration membrane, fractional molecular weight 300,000, manufactured by Millipore) were laminated to obtain composite membranes (Comparative products 6 and 7).
[比較例5]
 4GMAPを用いない以外は実施例9と同様にして高分子膜を得た(比較品8)。
[Comparative Example 5]
A polymer membrane was obtained in the same manner as in Example 9 except that 4GMAP was not used (Comparative product 8).
[試験例1]二酸化炭素と水素の分離試験
 実施例1で得た高分子膜(本発明品1)を用い、図1に概略図を示す装置を用いてCO分離能を測定した。すなわち、高分子膜が供給ガスと接触するように設置して、該高分子膜に表2に示すCO分圧の二酸化炭素ガスと水素ガスとの混合ガスを供給し、高分子膜を透過したガスの透過速度QCO2(m(STP)/m2 Pa s)を下記条件でガスクロマトグラフィーと流量計を用いて測定し、下記式に従って選択性αを算出した。試験に用いた高分子膜は、0.8cmとした。また、比較例1及び2で得た高分子膜(比較品1及び2)を用いて同様の試験を行った。結果を表2に示す。比較品2は、高分子膜の破損のためガスの透過速度及び選択性は測定不能であった。
Figure JPOXMLDOC01-appb-M000096
(式中、(XCO2は供給ガスのCOのモル分率を意味し、(XH2は供給ガスのHのモル分率を意味し、(XCO2は膜を透過したガス中のCOのモル分率を意味し、(XH2は膜を透過したガス中のHのモル分率を意味する。)
[Test Example 1] Separation test of carbon dioxide and hydrogen Using the polymer membrane obtained in Example 1 (Product 1 of the present invention), CO 2 separation ability was measured using the apparatus shown schematically in FIG. That is, the polymer membrane is placed in contact with the supply gas, and a mixed gas of carbon dioxide gas and hydrogen gas having a partial pressure of CO 2 shown in Table 2 is supplied to the polymer membrane and permeates the polymer membrane. The gas permeation rate Q CO2 (m 3 (STP) / m 2 Pas) was measured using a gas chromatography and a flow meter under the following conditions, and selectivity α was calculated according to the following equation. The polymer film used for the test was 0.8 cm 2 . Moreover, the same test was done using the polymer film (Comparative products 1 and 2) obtained in Comparative Examples 1 and 2. The results are shown in Table 2. In Comparative product 2, the gas permeation rate and selectivity were not measurable due to breakage of the polymer membrane.
Figure JPOXMLDOC01-appb-M000096
( Wherein (X CO2 ) f means the mole fraction of CO 2 in the feed gas, (X H2 ) f means the mole fraction of H 2 in the feed gas, and (X CO 2 ) p represents the membrane. (It means the mole fraction of CO 2 in the permeated gas, and (X H2 ) p means the mole fraction of H 2 in the gas permeated through the membrane.)
<ガス透過測定装置の設定条件>
 供給ガス量:約100ml/分、
測定温度:40℃、
供給ガス組成:CO/H=80/20(vol/vol)、
透過側循環ガス:He(加湿、相対湿度80%)、
相対湿度:80%、
圧力:供給側;560kPa、透過側;0kPa
<ガスクロマトグラフィー分析条件>
 製品:GC4000(GLサイエンス社製)
 Heキャリアーガス量:約10ml/分、
PDD検出器
プレカラム:Porapak Q 80/100 SUS 1/8”x 2.17 mm x 1.0 m
メインカラム:Active Carbon 60/80 SUS 1/8”x 2.17 mm x 1.0 m
放電カラム:Molecular Sieve 5A 60/80 1/8”x 2.17 mm x 3.0 m
<Setting conditions of gas permeation measuring device>
Supply gas amount: about 100 ml / min,
Measurement temperature: 40 ° C.
Supply gas composition: CO 2 / H 2 = 80/20 (vol / vol),
Permeation side circulation gas: He (humidification, relative humidity 80%),
Relative humidity: 80%
Pressure: supply side: 560 kPa, permeation side: 0 kPa
<Gas chromatography analysis conditions>
Product: GC4000 (manufactured by GL Sciences)
He carrier gas amount: about 10 ml / min,
PDD detector pre-column: Porapak Q 80/100 SUS 1/8 ”x 2.17 mm x 1.0 m
Main column: Active Carbon 60/80 SUS 1/8 ”x 2.17 mm x 1.0 m
Discharge column: Molecular Sieve 5A 60/80 1/8 ”x 2.17 mm x 3.0 m
Figure JPOXMLDOC01-appb-T000097
Figure JPOXMLDOC01-appb-T000097
 前記の結果から、本発明の高分子膜は、圧力差に耐える強度を有し、かつ優れた二酸化炭素選択性を有することが確認された。 From the above results, it was confirmed that the polymer membrane of the present invention has strength to withstand a pressure difference and has excellent carbon dioxide selectivity.
[試験例2]
 実施例2で得た高分子膜(本発明品2~4)を用い、図1に概略図を示す装置を用いて高分子膜のガス透過速度及び選択性を測定した。すなわち、高分子膜に表3に示すCO分圧の二酸化炭素ガスと水素ガスとの混合ガスを供給し、高分子膜又は複合膜を透過したガスのQH2、QCO2(m(STP)/m2 Pa s)を下記条件でガスクロマトグラフィーと流量計を用いて測定し、試験例1と同様にして選択性αを算出した。試験に用いた高分子膜は、0.8cmとした。また、比較例3で得た高分子膜(比較品3~5)を用いてそれぞれ同様の試験を行った。結果を表3に示す。
[Test Example 2]
Using the polymer membrane obtained in Example 2 (products 2 to 4 of the present invention), the gas permeation rate and selectivity of the polymer membrane were measured using the apparatus shown schematically in FIG. That is, a gas mixture of carbon dioxide gas having a partial pressure of CO 2 and hydrogen gas shown in Table 3 is supplied to the polymer membrane, and Q H2 , Q CO2 (m 3 (STP) of the gas permeated through the polymer membrane or the composite membrane. ) / M 2 Pas) was measured using a gas chromatography and a flow meter under the following conditions, and selectivity α was calculated in the same manner as in Test Example 1. The polymer film used for the test was 0.8 cm 2 . Further, the same test was performed using the polymer film obtained in Comparative Example 3 (Comparative products 3 to 5). The results are shown in Table 3.
<ガス透過測定装置の設定条件>
 供給ガス量:約100ml/分、
測定温度:40℃、
供給ガス組成:CO/H=80/20(vol/vol)、
透過側循環ガス:He(加湿、相対湿度80%)、
相対湿度:80%、
圧力:供給側;100~700kPa、透過側;0kPa
<ガスクロマトグラフィー分析条件>
 製品:GC4000(GLサイエンス社製)
 Heキャリアーガス量:約10ml/分、
PDD検出器
プレカラム:Porapak Q 80/100 SUS 1/8”x 2.17 mm x 1.0 m
メインカラム:Active Carbon 60/80 SUS 1/8”x 2.17 mm x 1.0 m
放電カラム:Molecular Sieve 5A 60/80 1/8”x 2.17 mm x 3.0 m
<Setting conditions of gas permeation measuring device>
Supply gas amount: about 100 ml / min,
Measurement temperature: 40 ° C.
Supply gas composition: CO 2 / H 2 = 80/20 (vol / vol),
Permeation side circulation gas: He (humidification, relative humidity 80%),
Relative humidity: 80%
Pressure: Supply side: 100 to 700 kPa, Permeation side: 0 kPa
<Gas chromatography analysis conditions>
Product: GC4000 (manufactured by GL Sciences)
He carrier gas amount: about 10 ml / min,
PDD detector pre-column: Porapak Q 80/100 SUS 1/8 ”x 2.17 mm x 1.0 m
Main column: Active Carbon 60/80 SUS 1/8 ”x 2.17 mm x 1.0 m
Discharge column: Molecular Sieve 5A 60/80 1/8 ”x 2.17 mm x 3.0 m
Figure JPOXMLDOC01-appb-T000098
Figure JPOXMLDOC01-appb-T000098
 前記の結果から、本発明品は比較品に比べ、高いCO選択性を有することが確認された。 From the above results, it was confirmed that the product of the present invention has higher CO 2 selectivity than the comparative product.
[試験例3]
 実施例3で得た複合膜(本発明品5~10)を用い、図1に概略図を示す装置を用いて複合膜のガス透過速度及び選択性を測定した。すなわち、高分子膜層が供給ガスと接触するように設置して、試験例2と同様の条件で測定し、試験例1と同様にして選択性αを算出した。また、比較例4で得た高分子膜(比較品6及び7)を用いてそれぞれ同様の試験を行った。結果を表3に示す。
[Test Example 3]
Using the composite membrane (Products 5 to 10 of the present invention) obtained in Example 3, the gas permeation rate and selectivity of the composite membrane were measured using the apparatus shown schematically in FIG. That is, the polymer membrane layer was placed in contact with the supply gas, measured under the same conditions as in Test Example 2, and the selectivity α was calculated in the same manner as in Test Example 1. In addition, the same test was performed using the polymer films obtained in Comparative Example 4 (Comparative products 6 and 7). The results are shown in Table 3.
Figure JPOXMLDOC01-appb-T000099
Figure JPOXMLDOC01-appb-T000099
 前記の結果から、薄膜化すると比較品はガス分離能を全く有しないのに対し、本発明品は薄膜化しても有効に二酸化炭素を分離できることが確認された。 From the above results, it was confirmed that when the film was thinned, the comparative product had no gas separation ability, whereas the product of the present invention could effectively separate carbon dioxide even when the film was thinned.
[試験例4]
 実施例8で得た本発明品15及び比較例1で得た比較品1をそれぞれエタノールに1日浸漬した。浸漬後の高分子マトリクスの走査電子顕微鏡(Hitachi S-4800)像を図4に示す。本発明品15は空孔が見られず、相溶状態を保っているのに対し、比較品1は空孔が多くみられ、相分離が確認された。このことから、本発明品は、相分離を起こさず、QCO2>10-12(m3/mPa s)かつα>10の優れたガス分離性能を維持できることが確認された。
[Test Example 4]
Invention product 15 obtained in Example 8 and Comparative product 1 obtained in Comparative Example 1 were each immersed in ethanol for 1 day. FIG. 4 shows a scanning electron microscope (Hitachi S-4800) image of the polymer matrix after immersion. In the product 15 of the present invention, no vacancies were observed and a compatible state was maintained, whereas in the comparative product 1, many vacancies were observed, and phase separation was confirmed. From this, it was confirmed that the product of the present invention did not cause phase separation and could maintain excellent gas separation performance of Q CO2 > 10 −12 (m 3 / m 2 Pa s) and α> 10.
[試験例5]
 実施例9で得た本発明品16及び比較例5で得た比較品8を共焦点スキャンレーザー(カールツァイス社製LSM700)によって観察した。図5は表面より10μm内部の蛍光画像である(解像度200nm、スケールバーは5μmを表す。)。明部はFITC-PEGMAで着色された高分子重合体を、暗部はデンドリマー(アミン化合物(B))を示す。4GMAP(アミン化合物(A))を含む本発明品16は相分離構造が全く見られないのに対し、4GMAPを含まない比較品8では数ミクロン程度の相分離構造(マクロ相分離)が見られることが確認された。このことから、本発明品は、相分離を起こさず、優れたガス分離性能を維持できることが確認された。
[Test Example 5]
The product 16 of the present invention obtained in Example 9 and the comparative product 8 obtained in Comparative Example 5 were observed with a confocal scan laser (LSM700 manufactured by Carl Zeiss). FIG. 5 is a fluorescent image 10 μm inside from the surface (resolution 200 nm, scale bar represents 5 μm). The bright part represents a high molecular polymer colored with FITC-PEGMA, and the dark part represents a dendrimer (amine compound (B)). The product 16 of the present invention containing 4GMAP (amine compound (A)) shows no phase separation structure, whereas the comparative product 8 containing no 4GMAP shows a phase separation structure of about several microns (macrophase separation). It was confirmed. From this, it was confirmed that the product of the present invention does not cause phase separation and can maintain excellent gas separation performance.
[試験例6]
 実施例1で得た本発明品1のX線小角散乱を、リガク社製Nanoビューワーを用いて測定した。光路長は1,250mmであり、200nm以下の散乱体を検出できる。結果を図6に示す。縦軸は散乱強度、横軸は散乱ベクトルq(Å―1)を示す。散乱によるピークが観察されず、200nm以下の相分離構造に起因する構造体は存在しないことが確認された。このことから、本発明品は、相分離を起こさず、優れたガス分離性能を維持できることが確認された。
[Test Example 6]
The X-ray small angle scattering of the product 1 of the present invention obtained in Example 1 was measured using a Nano viewer manufactured by Rigaku Corporation. The optical path length is 1,250 mm, and scatterers of 200 nm or less can be detected. The results are shown in FIG. The vertical axis represents the scattering intensity, and the horizontal axis represents the scattering vector q (Å −1 ). No peak due to scattering was observed, and it was confirmed that there was no structure due to a phase separation structure of 200 nm or less. From this, it was confirmed that the product of the present invention does not cause phase separation and can maintain excellent gas separation performance.
 本発明の高分子膜は、二酸化炭素を他のガスから分離するための用途に使用されるものであり、例えば、火力発電所、鉄鋼プラント等で発生する燃焼排ガスからのCO分離等において有用である。 The polymer membrane of the present invention is used in applications for separating carbon dioxide from other gases, and is useful for, for example, CO 2 separation from combustion exhaust gas generated in thermal power plants, steel plants, etc. It is.
 1  高分子膜
 2  ガス透過セル
 3  圧力計
 4  恒温槽
 5  加湿器
 6  背圧弁
DESCRIPTION OF SYMBOLS 1 Polymer membrane 2 Gas permeation cell 3 Pressure gauge 4 Thermostatic bath 5 Humidifier 6 Back pressure valve

Claims (16)

  1.  分岐末端にアクリル基及び/又はメタクリル基を3点以上分子内に有することを特徴とする架橋性アミン化合物。 A crosslinkable amine compound having three or more acrylic and / or methacrylic groups in the molecule at the branch end.
  2.  下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    (式中、Aは炭素数1~3の二価有機残基を示し、pは0又は1の整数を示す。)
    で示される基、下記式(2)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Aは炭素数1~3の二価有機残基を示し、qは0又は1の整数を示す。)
    で示される基、下記式(3)
    Figure JPOXMLDOC01-appb-C000003
    (式中、A及びAは炭素数1~3の二価有機残基を示し、r及びsは0又は1の整数を示す。)
    で示される基、及び下記式(4)
    Figure JPOXMLDOC01-appb-C000004
    (式中、A及びAは炭素数1~3の二価有機残基を示し、tは0又は1の整数を示す。)
    で示される基からなる群から選ばれる1種以上の基を有するアミン化合物(A)と、以下の(i)及び(ii)からなる群から選ばれる1種以上の化合物とを反応させて得られることを特徴とする請求項1記載の架橋性アミン化合物。
    (i)アクリル酸エステル及び/又はメタクリル酸エステルとハロホルメートとを反応させて得られる化合物;
    (ii)水酸基、カルボキシル酸基、グリシジル基、イソシアネート基、イソシアヌレート基、カルボジイミド基、アルデヒド基、アミノ基及びアルコキシシリル基からなる群から選ばれる1種以上の基を有する、アクリル酸エステル及び/又はメタクリル酸エステル。
    Following formula (1)
    Figure JPOXMLDOC01-appb-C000001
    (In the formula, A 1 represents a divalent organic residue having 1 to 3 carbon atoms, and p represents an integer of 0 or 1.)
    A group represented by formula (2):
    Figure JPOXMLDOC01-appb-C000002
    (In the formula, A 2 represents a divalent organic residue having 1 to 3 carbon atoms, and q represents an integer of 0 or 1.)
    A group represented by formula (3):
    Figure JPOXMLDOC01-appb-C000003
    (In the formula, A 3 and A 4 represent a divalent organic residue having 1 to 3 carbon atoms, and r and s represent an integer of 0 or 1.)
    And a group represented by the following formula (4)
    Figure JPOXMLDOC01-appb-C000004
    (In the formula, A 5 and A 6 represent a divalent organic residue having 1 to 3 carbon atoms, and t represents an integer of 0 or 1.)
    Obtained by reacting an amine compound (A) having one or more groups selected from the group consisting of groups represented by the following groups with one or more compounds selected from the following groups (i) and (ii): The crosslinkable amine compound according to claim 1, wherein
    (i) a compound obtained by reacting an acrylic ester and / or methacrylic ester with a haloformate;
    (ii) an acrylic ester having at least one group selected from the group consisting of a hydroxyl group, a carboxylic acid group, a glycidyl group, an isocyanate group, an isocyanurate group, a carbodiimide group, an aldehyde group, an amino group, and an alkoxysilyl group; Or methacrylate.
  3.  アミン化合物(A)が、前記式(1)~(4)で示される基からなる群から選ばれる3点以上の基を有することを特徴とする請求項2に記載の架橋性アミン化合物。 3. The crosslinkable amine compound according to claim 2, wherein the amine compound (A) has three or more groups selected from the group consisting of groups represented by the formulas (1) to (4).
  4.  前記架橋性アミン化合物が、下記式(5)
    Figure JPOXMLDOC01-appb-C000005
    で示される化合物、下記式(6)
    Figure JPOXMLDOC01-appb-C000006
    で示される化合物、下記式(7)
    Figure JPOXMLDOC01-appb-C000007
    で示される化合物、下記式(8)
    Figure JPOXMLDOC01-appb-C000008
    で示される化合物、下記式(9)
    Figure JPOXMLDOC01-appb-C000009
    で示される化合物、下記式(10)
    Figure JPOXMLDOC01-appb-C000010
    で示される化合物及び下記式(11)
    Figure JPOXMLDOC01-appb-C000011
    で示される化合物からなる群から選ばれる少なくとも1種以上の化合物であることを特徴とする請求項1記載の架橋性アミン化合物。
    The crosslinkable amine compound is represented by the following formula (5):
    Figure JPOXMLDOC01-appb-C000005
    A compound represented by formula (6):
    Figure JPOXMLDOC01-appb-C000006
    A compound represented by formula (7):
    Figure JPOXMLDOC01-appb-C000007
    A compound represented by formula (8):
    Figure JPOXMLDOC01-appb-C000008
    A compound represented by formula (9):
    Figure JPOXMLDOC01-appb-C000009
    A compound represented by formula (10):
    Figure JPOXMLDOC01-appb-C000010
    And a compound represented by the following formula (11)
    Figure JPOXMLDOC01-appb-C000011
    The crosslinkable amine compound according to claim 1, which is at least one compound selected from the group consisting of compounds represented by the formula:
  5.  請求項1~4のいずれか一項に記載の架橋性アミン化合物を架橋剤に用いて架橋されてなる、多官能重合性単量体を重合させて得られる高分子重合体内に、下記式(1)
    Figure JPOXMLDOC01-appb-C000012
    (式中、Aは炭素数1~3の二価有機残基を示し、pは0又は1の整数を示す。)
    で示される基、下記式(2)
    Figure JPOXMLDOC01-appb-C000013
    (式中、Aは炭素数1~3の二価有機残基を示し、qは0又は1の整数を示す。)
    で示される基、下記式(3)
    Figure JPOXMLDOC01-appb-C000014
    (式中、A及びAは炭素数1~3の二価有機残基を示し、r及びsは0又は1の整数を示す。)
    で示される基、及び下記式(4)
    Figure JPOXMLDOC01-appb-C000015
    (式中、A及びAは炭素数1~3の二価有機残基を示し、tは0又は1の整数を示す。)
    で示される基からなる群から選ばれる1種以上の基を有するアミン化合物(B)が含有されてなることを特徴とする高分子膜。
    A high molecular weight polymer obtained by polymerizing a polyfunctional polymerizable monomer, which is crosslinked using the crosslinkable amine compound according to any one of claims 1 to 4 as a crosslinking agent, has the following formula ( 1)
    Figure JPOXMLDOC01-appb-C000012
    (In the formula, A 1 represents a divalent organic residue having 1 to 3 carbon atoms, and p represents an integer of 0 or 1.)
    A group represented by formula (2):
    Figure JPOXMLDOC01-appb-C000013
    (In the formula, A 2 represents a divalent organic residue having 1 to 3 carbon atoms, and q represents an integer of 0 or 1.)
    A group represented by formula (3):
    Figure JPOXMLDOC01-appb-C000014
    (In the formula, A 3 and A 4 represent a divalent organic residue having 1 to 3 carbon atoms, and r and s represent an integer of 0 or 1.)
    And a group represented by the following formula (4)
    Figure JPOXMLDOC01-appb-C000015
    (In the formula, A 5 and A 6 represent a divalent organic residue having 1 to 3 carbon atoms, and t represents an integer of 0 or 1.)
    A polymer film comprising an amine compound (B) having at least one group selected from the group consisting of groups represented by the formula:
  6.  アミン化合物(B)が、前記式(1)~(4)で示される基からなる群から選ばれる3以上の基を有することを特徴とする請求項5に記載の高分子膜。 6. The polymer film according to claim 5, wherein the amine compound (B) has three or more groups selected from the group consisting of groups represented by the formulas (1) to (4).
  7.  アミン化合物(B)が、ポリアミドアミン系デンドリマーであることを特徴とする請求項5又は6に記載の高分子膜。 The polymer film according to claim 5 or 6, wherein the amine compound (B) is a polyamidoamine-based dendrimer.
  8.  ポリアミドアミン系デンドリマーが、下記式
    Figure JPOXMLDOC01-appb-C000016
    からなる群から選ばれる少なくとも1種以上の第0世代デンドリマー、又はこれらに対応する第1~5世代デンドリマーであることを特徴とする請求項7記載の高分子膜。
    The polyamidoamine dendrimer has the following formula:
    Figure JPOXMLDOC01-appb-C000016
    8. The polymer film according to claim 7, wherein the polymer film is at least one kind of 0th generation dendrimer selected from the group consisting of 1st to 5th generation dendrimers corresponding thereto.
  9.  多官能重合性単量体が、多官能(メタ)アクリルアミド、多官能(メタ)アクリレート、多官能ビニルエーテル及びジビニルベンゼンからなる群から選ばれる1種以上であることを特徴とする請求項5~8のいずれか一項に記載の高分子膜。 The polyfunctional polymerizable monomer is one or more selected from the group consisting of polyfunctional (meth) acrylamide, polyfunctional (meth) acrylate, polyfunctional vinyl ether and divinylbenzene. The polymer film according to any one of the above.
  10.  CuKα線(波長0.1542nm)を使用したX線小角散乱により、散乱ベクトルが0.6nm-1以上にピークがないことを特徴とする請求項5~9のいずれか一項に記載の高分子膜。 The polymer according to any one of claims 5 to 9, wherein the scattering vector has no peak at 0.6 nm -1 or more by X-ray small angle scattering using CuKα rays (wavelength 0.1542 nm). film.
  11.  該高分子膜が、ガス分離膜であることを特徴とする請求項5~10のいずれか一項に記載の高分子膜。 The polymer membrane according to any one of claims 5 to 10, wherein the polymer membrane is a gas separation membrane.
  12.  請求項1~4のいずれか一項に記載の架橋性アミン化合物及び下記式(1)
    Figure JPOXMLDOC01-appb-C000017
    (式中、Aは炭素数1~3の二価有機残基を示し、pは0又は1の整数を示す。)
    で示される基、下記式(2)
    Figure JPOXMLDOC01-appb-C000018
    (式中、Aは炭素数1~3の二価有機残基を示し、qは0又は1の整数を示す。)
    で示される基、下記式(3)
    Figure JPOXMLDOC01-appb-C000019
    (式中、A及びAは炭素数1~3の二価有機残基を示し、r及びsは0又は1の整数を示す。)
    で示される基、及び下記式(4)
    Figure JPOXMLDOC01-appb-C000020
    (式中、A及びAは炭素数1~3の二価有機残基を示し、tは0又は1の整数を示す。)
    で示される基からなる群から選ばれる1種以上の基を有するアミン化合物(B)の存在下に、多官能重合性単量体を重合反応させることにより、生成する高分子重合体内に前記アミン化合物(B)を固定化させる工程を含むことを特徴とする高分子膜の製造方法。
    The crosslinkable amine compound according to any one of claims 1 to 4 and the following formula (1)
    Figure JPOXMLDOC01-appb-C000017
    (In the formula, A 1 represents a divalent organic residue having 1 to 3 carbon atoms, and p represents an integer of 0 or 1.)
    A group represented by formula (2):
    Figure JPOXMLDOC01-appb-C000018
    (In the formula, A 2 represents a divalent organic residue having 1 to 3 carbon atoms, and q represents an integer of 0 or 1.)
    A group represented by formula (3):
    Figure JPOXMLDOC01-appb-C000019
    (In the formula, A 3 and A 4 represent a divalent organic residue having 1 to 3 carbon atoms, and r and s represent an integer of 0 or 1.)
    And a group represented by the following formula (4)
    Figure JPOXMLDOC01-appb-C000020
    (In the formula, A 5 and A 6 represent a divalent organic residue having 1 to 3 carbon atoms, and t represents an integer of 0 or 1.)
    In the presence of an amine compound (B) having one or more groups selected from the group consisting of the groups represented by the above formula, the amine is introduced into the polymer produced by polymerizing a polyfunctional polymerizable monomer. A method for producing a polymer film, comprising a step of immobilizing the compound (B).
  13.  重合反応に先立って、下記式(1)
    Figure JPOXMLDOC01-appb-C000021
    (式中、Aは炭素数1~3の二価有機残基を示し、pは0又は1の整数を示す。)
    で示される基、下記式(2)
    Figure JPOXMLDOC01-appb-C000022
    (式中、Aは炭素数1~3の二価有機残基を示し、qは0又は1の整数を示す。)
    で示される基、下記式(3)
    Figure JPOXMLDOC01-appb-C000023
    (式中、A及びAは炭素数1~3の二価有機残基を示し、r及びsは0又は1の整数を示す。)
    で示される基、及び下記式(4)
    Figure JPOXMLDOC01-appb-C000024
    (式中、A及びAは炭素数1~3の二価有機残基を示し、tは0又は1の整数を示す。)
    で示される基からなる群から選ばれる1種以上の基を有するアミン化合物(A)と、以下の(i)及び(ii)からなる群から選ばれる1種以上の化合物とを反応させる工程を有することを特徴とする請求項12記載の製造方法。
    (i)アクリル酸エステル及び/又はメタクリル酸エステルとハロホルメートとを反応させて得られる架橋用化合物;
    (ii)水酸基、カルボキシル基、グリシジル基、イソシアネート基、イソシアヌレート基、カルボジイミド基、アルデヒド基、アミノ基及びアルコキシシリル基からなる群から選ばれる1種以上の基を有する、アクリル酸エステル及び/又はメタクリル酸エステル。
    Prior to the polymerization reaction, the following formula (1)
    Figure JPOXMLDOC01-appb-C000021
    (In the formula, A 1 represents a divalent organic residue having 1 to 3 carbon atoms, and p represents an integer of 0 or 1.)
    A group represented by formula (2):
    Figure JPOXMLDOC01-appb-C000022
    (In the formula, A 2 represents a divalent organic residue having 1 to 3 carbon atoms, and q represents an integer of 0 or 1.)
    A group represented by formula (3):
    Figure JPOXMLDOC01-appb-C000023
    (In the formula, A 3 and A 4 represent a divalent organic residue having 1 to 3 carbon atoms, and r and s represent an integer of 0 or 1.)
    And a group represented by the following formula (4)
    Figure JPOXMLDOC01-appb-C000024
    (In the formula, A 5 and A 6 represent a divalent organic residue having 1 to 3 carbon atoms, and t represents an integer of 0 or 1.)
    A step of reacting an amine compound (A) having one or more groups selected from the group consisting of groups represented by formula (1) and one or more compounds selected from the group consisting of (i) and (ii) below: 13. The manufacturing method according to claim 12, further comprising:
    (i) a crosslinking compound obtained by reacting an acrylic ester and / or methacrylic ester with a haloformate;
    (ii) Acrylic acid ester having at least one group selected from the group consisting of hydroxyl group, carboxyl group, glycidyl group, isocyanate group, isocyanurate group, carbodiimide group, aldehyde group, amino group and alkoxysilyl group, and / or Methacrylic acid ester.
  14.  アミン化合物(B)が、ポリアミドアミン系デンドリマーであることを特徴とする請求項12又は13に記載の高分子膜の製造方法。 The method for producing a polymer film according to claim 12 or 13, wherein the amine compound (B) is a polyamidoamine-based dendrimer.
  15.  ポリアミドアミン系デンドリマーが、下記式
    Figure JPOXMLDOC01-appb-C000025
    からなる群から選ばれる少なくとも1種以上の第0世代デンドリマー、又はこれらに対応する第1~5世代デンドリマーであることを特徴とする請求項14記載の高分子膜の製造方法。
    The polyamidoamine dendrimer has the following formula:
    Figure JPOXMLDOC01-appb-C000025
    15. The method for producing a polymer film according to claim 14, wherein the polymer film is at least one kind of 0th generation dendrimer selected from the group consisting of 1st to 5th generation dendrimers.
  16.  二酸化炭素を含む混合ガスを、請求項5~11のいずれかに記載の高分子膜に接触させて、該混合ガス中の二酸化炭素を選択的に透過させる工程を含むことを特徴とする二酸化炭素の分離方法。 A carbon dioxide comprising a step of bringing a mixed gas containing carbon dioxide into contact with the polymer membrane according to any one of claims 5 to 11 to selectively permeate carbon dioxide in the mixed gas. Separation method.
PCT/JP2012/058521 2011-03-31 2012-03-30 Crosslinkable amine compound, polymer membrane using crosslinkable amine compound, and method for producing polymer membrane WO2012133737A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-080427 2011-03-31
JP2011080427 2011-03-31

Publications (1)

Publication Number Publication Date
WO2012133737A1 true WO2012133737A1 (en) 2012-10-04

Family

ID=46931435

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/058521 WO2012133737A1 (en) 2011-03-31 2012-03-30 Crosslinkable amine compound, polymer membrane using crosslinkable amine compound, and method for producing polymer membrane

Country Status (1)

Country Link
WO (1) WO2012133737A1 (en)

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140329884A1 (en) * 2013-05-01 2014-11-06 Massachusetts Institute Of Technology 1,3,5-triazinane-2,4,6-trione derivatives and uses thereof
US9181321B2 (en) 2013-03-14 2015-11-10 Shire Human Genetic Therapies, Inc. CFTR mRNA compositions and related methods and uses
US9193827B2 (en) 2010-08-26 2015-11-24 Massachusetts Institute Of Technology Poly(beta-amino alcohols), their preparation, and uses thereof
US9227917B2 (en) 2012-08-13 2016-01-05 Massachusetts Institute Of Technology Amine-containing lipidoids and uses thereof
US9238716B2 (en) 2011-03-28 2016-01-19 Massachusetts Institute Of Technology Conjugated lipomers and uses thereof
US9308281B2 (en) 2011-06-08 2016-04-12 Shire Human Genetic Therapies, Inc. MRNA therapy for Fabry disease
US9512073B2 (en) 2011-10-27 2016-12-06 Massachusetts Institute Of Technology Amino acid-, peptide-and polypeptide-lipids, isomers, compositions, and uses thereof
US9522176B2 (en) 2013-10-22 2016-12-20 Shire Human Genetic Therapies, Inc. MRNA therapy for phenylketonuria
US9556110B2 (en) 2008-11-07 2017-01-31 Massachusetts Institute Of Technology Aminoalcohol lipidoids and uses thereof
US9629804B2 (en) 2013-10-22 2017-04-25 Shire Human Genetic Therapies, Inc. Lipid formulations for delivery of messenger RNA
EP3046956A4 (en) * 2013-09-19 2017-05-17 Microvention, Inc. Polymer films
US9840479B2 (en) 2014-07-02 2017-12-12 Massachusetts Institute Of Technology Polyamine-fatty acid derived lipidoids and uses thereof
US9850269B2 (en) 2014-04-25 2017-12-26 Translate Bio, Inc. Methods for purification of messenger RNA
WO2018008580A1 (en) * 2016-07-06 2018-01-11 セメダイン株式会社 Curable composition and product
US9907880B2 (en) 2015-03-26 2018-03-06 Microvention, Inc. Particles
US9938367B2 (en) 2013-09-19 2018-04-10 Terumo Corporation Polymer particles
US9957499B2 (en) 2013-03-14 2018-05-01 Translate Bio, Inc. Methods for purification of messenger RNA
US10022455B2 (en) 2014-05-30 2018-07-17 Translate Bio, Inc. Biodegradable lipids for delivery of nucleic acids
US10118980B1 (en) 2013-11-08 2018-11-06 Terumo Corporation Polymer particles
US10138213B2 (en) 2014-06-24 2018-11-27 Translate Bio, Inc. Stereochemically enriched compositions for delivery of nucleic acids
US10201632B2 (en) 2016-09-28 2019-02-12 Terumo Corporation Polymer particles
US10201618B2 (en) 2015-06-19 2019-02-12 Massachusetts Institute Of Technology Alkenyl substituted 2,5-piperazinediones, compositions, and uses thereof
NO20180619A1 (en) * 2018-04-30 2019-10-31 Sintef Tto As Surface modified membranes
CN110799492A (en) * 2017-04-28 2020-02-14 爱康泰生治疗公司 Novel carbonyl lipid and lipid nanoparticle formulations for delivery of nucleic acids
US10576166B2 (en) 2009-12-01 2020-03-03 Translate Bio, Inc. Liver specific delivery of messenger RNA
US11135556B2 (en) 2019-03-04 2021-10-05 Saudi Arabian Oil Company Crosslinked polyethylene glycol polymer membranes for gas separation
US11174500B2 (en) 2018-08-24 2021-11-16 Translate Bio, Inc. Methods for purification of messenger RNA
US11173190B2 (en) 2017-05-16 2021-11-16 Translate Bio, Inc. Treatment of cystic fibrosis by delivery of codon-optimized mRNA encoding CFTR
US11224642B2 (en) 2013-10-22 2022-01-18 Translate Bio, Inc. MRNA therapy for argininosuccinate synthetase deficiency
US11253605B2 (en) 2017-02-27 2022-02-22 Translate Bio, Inc. Codon-optimized CFTR MRNA
US11254936B2 (en) 2012-06-08 2022-02-22 Translate Bio, Inc. Nuclease resistant polynucleotides and uses thereof
CN114656714A (en) * 2022-03-01 2022-06-24 山东清田塑工有限公司 High-strength easily-recycled mulching film and preparation method thereof
US11524932B2 (en) 2017-08-17 2022-12-13 Acuitas Therapeutics, Inc. Lipids for use in lipid nanoparticle formulations
US11542225B2 (en) 2017-08-17 2023-01-03 Acuitas Therapeutics, Inc. Lipids for use in lipid nanoparticle formulations

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070751A (en) * 2008-08-19 2010-04-02 Kawamura Inst Of Chem Res Porous organic polymer material and method for producing the same
JP2010070753A (en) * 2008-08-19 2010-04-02 Kawamura Inst Of Chem Res Organic-inorganic composite and method for producing the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010070751A (en) * 2008-08-19 2010-04-02 Kawamura Inst Of Chem Res Porous organic polymer material and method for producing the same
JP2010070753A (en) * 2008-08-19 2010-04-02 Kawamura Inst Of Chem Res Organic-inorganic composite and method for producing the same

Cited By (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10189802B2 (en) 2008-11-07 2019-01-29 Massachusetts Institute Of Technology Aminoalcohol lipidoids and uses thereof
US11414393B2 (en) 2008-11-07 2022-08-16 Massachusetts Institute Of Technology Aminoalcohol lipidoids and uses thereof
US9556110B2 (en) 2008-11-07 2017-01-31 Massachusetts Institute Of Technology Aminoalcohol lipidoids and uses thereof
US10844028B2 (en) 2008-11-07 2020-11-24 Massachusetts Institute Of Technology Aminoalcohol lipidoids and uses thereof
US10576166B2 (en) 2009-12-01 2020-03-03 Translate Bio, Inc. Liver specific delivery of messenger RNA
US9193827B2 (en) 2010-08-26 2015-11-24 Massachusetts Institute Of Technology Poly(beta-amino alcohols), their preparation, and uses thereof
US10117934B2 (en) 2011-03-28 2018-11-06 Massachusetts Institute Of Technology Conjugated lipomers and uses thereof
US10933139B2 (en) 2011-03-28 2021-03-02 Massachusetts Institute Of Technology Conjugated lipomers and uses thereof
US9238716B2 (en) 2011-03-28 2016-01-19 Massachusetts Institute Of Technology Conjugated lipomers and uses thereof
US9597413B2 (en) 2011-06-08 2017-03-21 Shire Human Genetic Therapies, Inc. Pulmonary delivery of mRNA
US11951181B2 (en) 2011-06-08 2024-04-09 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US11547764B2 (en) 2011-06-08 2023-01-10 Translate Bio, Inc. Lipid nanoparticle compositions and methods for MRNA delivery
US9308281B2 (en) 2011-06-08 2016-04-12 Shire Human Genetic Therapies, Inc. MRNA therapy for Fabry disease
US11052159B2 (en) 2011-06-08 2021-07-06 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US10507249B2 (en) 2011-06-08 2019-12-17 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US11185595B2 (en) 2011-06-08 2021-11-30 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US10238754B2 (en) 2011-06-08 2019-03-26 Translate Bio, Inc. Lipid nanoparticle compositions and methods for MRNA delivery
US11951180B2 (en) 2011-06-08 2024-04-09 Translate Bio, Inc. Lipid nanoparticle compositions and methods for MRNA delivery
US11951179B2 (en) 2011-06-08 2024-04-09 Translate Bio, Inc. Lipid nanoparticle compositions and methods for MRNA delivery
US10413618B2 (en) 2011-06-08 2019-09-17 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US10350303B1 (en) 2011-06-08 2019-07-16 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US11730825B2 (en) 2011-06-08 2023-08-22 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US11291734B2 (en) 2011-06-08 2022-04-05 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US11338044B2 (en) 2011-06-08 2022-05-24 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US10888626B2 (en) 2011-06-08 2021-01-12 Translate Bio, Inc. Lipid nanoparticle compositions and methods for mRNA delivery
US10086013B2 (en) 2011-10-27 2018-10-02 Massachusetts Institute Of Technology Amino acid-, peptide- and polypeptide-lipids, isomers, compositions, and uses thereof
US11458158B2 (en) 2011-10-27 2022-10-04 Massachusetts Institute Of Technology Amino acid-, peptide- and polypeptide-lipids, isomers, compositions, and uses thereof
US9512073B2 (en) 2011-10-27 2016-12-06 Massachusetts Institute Of Technology Amino acid-, peptide-and polypeptide-lipids, isomers, compositions, and uses thereof
US10682374B2 (en) 2011-10-27 2020-06-16 Massachusetts Intstitute Of Technology Amino acid-, peptide- and polypeptide-lipids, isomers, compositions, and uses thereof
US11254936B2 (en) 2012-06-08 2022-02-22 Translate Bio, Inc. Nuclease resistant polynucleotides and uses thereof
US9439968B2 (en) 2012-08-13 2016-09-13 Massachusetts Institute Of Technology Amine-containing lipidoids and uses thereof
US9227917B2 (en) 2012-08-13 2016-01-05 Massachusetts Institute Of Technology Amine-containing lipidoids and uses thereof
US11692189B2 (en) 2013-03-14 2023-07-04 Translate Bio, Inc. Methods for purification of messenger RNA
US10420791B2 (en) 2013-03-14 2019-09-24 Translate Bio, Inc. CFTR MRNA compositions and related methods and uses
US10876104B2 (en) 2013-03-14 2020-12-29 Translate Bio, Inc. Methods for purification of messenger RNA
US9181321B2 (en) 2013-03-14 2015-11-10 Shire Human Genetic Therapies, Inc. CFTR mRNA compositions and related methods and uses
US11510937B2 (en) 2013-03-14 2022-11-29 Translate Bio, Inc. CFTR MRNA compositions and related methods and uses
US9713626B2 (en) 2013-03-14 2017-07-25 Rana Therapeutics, Inc. CFTR mRNA compositions and related methods and uses
US11820977B2 (en) 2013-03-14 2023-11-21 Translate Bio, Inc. Methods for purification of messenger RNA
US9957499B2 (en) 2013-03-14 2018-05-01 Translate Bio, Inc. Methods for purification of messenger RNA
WO2014179562A1 (en) * 2013-05-01 2014-11-06 Massachusetts Institute Of Technology 1,3,5-triazinane-2,4,6-trione derivatives and uses thereof
US9315472B2 (en) * 2013-05-01 2016-04-19 Massachusetts Institute Of Technology 1,3,5-triazinane-2,4,6-trione derivatives and uses thereof
US20140329884A1 (en) * 2013-05-01 2014-11-06 Massachusetts Institute Of Technology 1,3,5-triazinane-2,4,6-trione derivatives and uses thereof
US11104772B2 (en) 2013-09-19 2021-08-31 Microvention, Inc. Polymer films
US11135167B2 (en) 2013-09-19 2021-10-05 Terumo Corporation Polymer particles
US9938367B2 (en) 2013-09-19 2018-04-10 Terumo Corporation Polymer particles
US10227463B2 (en) 2013-09-19 2019-03-12 Microvention, Inc. Polymer films
US10144793B2 (en) 2013-09-19 2018-12-04 Terumo Corporation Polymer particles
US11786630B2 (en) 2013-09-19 2023-10-17 Terumo Corporation Polymer particles
EP3046956A4 (en) * 2013-09-19 2017-05-17 Microvention, Inc. Polymer films
US10052284B2 (en) 2013-10-22 2018-08-21 Translate Bio, Inc. Lipid formulations for delivery of messenger RNA
US11377642B2 (en) 2013-10-22 2022-07-05 Translate Bio, Inc. mRNA therapy for phenylketonuria
US9629804B2 (en) 2013-10-22 2017-04-25 Shire Human Genetic Therapies, Inc. Lipid formulations for delivery of messenger RNA
US9522176B2 (en) 2013-10-22 2016-12-20 Shire Human Genetic Therapies, Inc. MRNA therapy for phenylketonuria
US10959953B2 (en) 2013-10-22 2021-03-30 Translate Bio, Inc. Lipid formulations for delivery of messenger RNA
US10493031B2 (en) 2013-10-22 2019-12-03 Translate Bio, Inc. Lipid formulations for delivery of messenger RNA
US11890377B2 (en) 2013-10-22 2024-02-06 Translate Bio, Inc. Lipid formulations for delivery of messenger RNA
US11224642B2 (en) 2013-10-22 2022-01-18 Translate Bio, Inc. MRNA therapy for argininosuccinate synthetase deficiency
US10208295B2 (en) 2013-10-22 2019-02-19 Translate Bio, Inc. MRNA therapy for phenylketonuria
US11261274B2 (en) 2013-11-08 2022-03-01 Terumo Corporation Polymer particles
US10118980B1 (en) 2013-11-08 2018-11-06 Terumo Corporation Polymer particles
US10519264B2 (en) 2013-11-08 2019-12-31 Terumo Corporation Polymer particles
US11059841B2 (en) 2014-04-25 2021-07-13 Translate Bio, Inc. Methods for purification of messenger RNA
US10155785B2 (en) 2014-04-25 2018-12-18 Translate Bio, Inc. Methods for purification of messenger RNA
US9850269B2 (en) 2014-04-25 2017-12-26 Translate Bio, Inc. Methods for purification of messenger RNA
US11884692B2 (en) 2014-04-25 2024-01-30 Translate Bio, Inc. Methods for purification of messenger RNA
US10286082B2 (en) 2014-05-30 2019-05-14 Translate Bio, Inc. Biodegradable lipids for delivery of nucleic acids
US10493166B2 (en) 2014-05-30 2019-12-03 Translate Bio, Inc. Biodegradable lipids for delivery of nucleic acids
US10286083B2 (en) 2014-05-30 2019-05-14 Translate Bio, Inc. Biodegradable lipids for delivery of nucleic acids
US10293057B2 (en) 2014-05-30 2019-05-21 Translate Bio, Inc. Biodegradable lipids for delivery of nucleic acids
US11433144B2 (en) 2014-05-30 2022-09-06 Translate Bio, Inc. Biodegradable lipids for delivery of nucleic acids
US10022455B2 (en) 2014-05-30 2018-07-17 Translate Bio, Inc. Biodegradable lipids for delivery of nucleic acids
US10912844B2 (en) 2014-05-30 2021-02-09 Translate Bio, Inc. Biodegradable lipids for delivery of nucleic acids
US11104652B2 (en) 2014-06-24 2021-08-31 Translate Bio, Inc. Stereochemically enriched compositions for delivery of nucleic acids
US10138213B2 (en) 2014-06-24 2018-11-27 Translate Bio, Inc. Stereochemically enriched compositions for delivery of nucleic acids
US9840479B2 (en) 2014-07-02 2017-12-12 Massachusetts Institute Of Technology Polyamine-fatty acid derived lipidoids and uses thereof
US10792390B2 (en) 2015-03-26 2020-10-06 Microvention, Inc. Particles
US10155064B2 (en) 2015-03-26 2018-12-18 Microvention, Inc. Particles
US10543295B2 (en) 2015-03-26 2020-01-28 Microvention, Inc. Particles
US9907880B2 (en) 2015-03-26 2018-03-06 Microvention, Inc. Particles
US11857694B2 (en) 2015-03-26 2024-01-02 Microvention, Inc. Particles
US10695444B2 (en) 2015-06-19 2020-06-30 Massachusetts Institute Of Technology Alkenyl substituted 2,5-piperazinediones, compositions, and uses thereof
US10201618B2 (en) 2015-06-19 2019-02-12 Massachusetts Institute Of Technology Alkenyl substituted 2,5-piperazinediones, compositions, and uses thereof
JPWO2018008580A1 (en) * 2016-07-06 2019-04-25 セメダイン株式会社 Curable composition and product
WO2018008580A1 (en) * 2016-07-06 2018-01-11 セメダイン株式会社 Curable composition and product
CN109789239A (en) * 2016-09-28 2019-05-21 泰尔茂株式会社 Polymer beads
US10632226B2 (en) 2016-09-28 2020-04-28 Terumo Corporation Polymer particles
US10328175B2 (en) 2016-09-28 2019-06-25 Terumo Corporation Polymer particles
US10201632B2 (en) 2016-09-28 2019-02-12 Terumo Corporation Polymer particles
CN109789239B (en) * 2016-09-28 2021-01-22 泰尔茂株式会社 Polymer particles
US11110198B2 (en) 2016-09-28 2021-09-07 Terumo Corporation Polymer particles
US11617814B2 (en) 2016-09-28 2023-04-04 Terumo Corporation Methods of treatment comprising administering polymer particles configured for intravascular delivery of pharmaceutical agents
US11759545B2 (en) 2016-09-28 2023-09-19 Terumo Corporation Polymer particles
US10729805B2 (en) 2016-09-28 2020-08-04 Terumo Corporation Drug delivery polymer particles with hydrolytically degradable linkages
US11253605B2 (en) 2017-02-27 2022-02-22 Translate Bio, Inc. Codon-optimized CFTR MRNA
CN110799492B (en) * 2017-04-28 2023-06-27 爱康泰生治疗公司 Novel carbonyl lipid and lipid nanoparticle formulations for delivery of nucleic acids
US11820728B2 (en) 2017-04-28 2023-11-21 Acuitas Therapeutics, Inc. Carbonyl lipids and lipid nanoparticle formulations for delivery of nucleic acids
CN110799492A (en) * 2017-04-28 2020-02-14 爱康泰生治疗公司 Novel carbonyl lipid and lipid nanoparticle formulations for delivery of nucleic acids
US11173190B2 (en) 2017-05-16 2021-11-16 Translate Bio, Inc. Treatment of cystic fibrosis by delivery of codon-optimized mRNA encoding CFTR
US11542225B2 (en) 2017-08-17 2023-01-03 Acuitas Therapeutics, Inc. Lipids for use in lipid nanoparticle formulations
US11524932B2 (en) 2017-08-17 2022-12-13 Acuitas Therapeutics, Inc. Lipids for use in lipid nanoparticle formulations
US11679356B2 (en) 2018-04-30 2023-06-20 Sintef Tto As Surface modified membranes for gas separation, and a method for preparing thereof
NO20180619A1 (en) * 2018-04-30 2019-10-31 Sintef Tto As Surface modified membranes
US11174500B2 (en) 2018-08-24 2021-11-16 Translate Bio, Inc. Methods for purification of messenger RNA
US11135556B2 (en) 2019-03-04 2021-10-05 Saudi Arabian Oil Company Crosslinked polyethylene glycol polymer membranes for gas separation
CN114656714A (en) * 2022-03-01 2022-06-24 山东清田塑工有限公司 High-strength easily-recycled mulching film and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2012133737A1 (en) Crosslinkable amine compound, polymer membrane using crosslinkable amine compound, and method for producing polymer membrane
JP5314291B2 (en) Polymer membrane and method for producing the same
JP5945478B2 (en) Separation membrane, composite separation membrane and method for producing separation membrane
JP5526055B2 (en) Gas separation membrane, gas separation membrane manufacturing method, gas mixture separation method, gas separation membrane module, and gas separation device
US10336873B2 (en) Functional polymer membrane, manufacturing method therefor, ion exchange membrane and proton conductive membrane equipped with functional polymer membrane, and ion exchange device
US8992668B2 (en) Gas separation membrane and method for producing the same, and method for separating gas mixture, gas separation membrane module and gas separation apparatus using the same
KR101136943B1 (en) The method of preparation for hydrophilic water filtration membrane having improved antifouling and hydrophilic water filtration membrane according to the method
JP6235479B2 (en) CO2 gas separation membrane and method for producing the same
US9238204B2 (en) Gas separation composite membrane and gas separating module, gas separation apparatus and gas separation method using the same
US9272248B2 (en) Gas separation composite membrane, and gas separating module, gas separation apparatus and gas separation method using the same
JP2009241006A (en) Composite membrane and its manufacturing method
CN111542384B (en) Polymer blend membranes for acid gas separation
US9764293B2 (en) Gas separation composite membrane, method of producing the same, gas separating module using the same, and gas separation apparatus and gas separation method
JP5969169B2 (en) Composite separation membrane
JP2011041938A (en) Gas separating membrane and composite membrane, their manufacturing method, module using the same and separator
JP5893578B2 (en) Functional composite membrane and method for producing the same, ion exchange membrane and proton conducting membrane provided with functional composite membrane
JP5459205B2 (en) Composite semipermeable membrane and method for producing the same
WO2018030114A1 (en) Gas separation membrane, gas separation membrane module and gas separation device
WO2018020949A1 (en) Gas separation membrane, gas separation membrane module and gas separation device
WO2011122560A1 (en) Composite semipermeable membrane
WO2013080890A1 (en) Gas separation membrane, method for manufacturing same, and gas separation membrane module using same
JPH0523820B2 (en)

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12765391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12765391

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP