WO2012121438A1 - Method for recovering useful minerals from clastic resources such as sea sand and river sand - Google Patents

Method for recovering useful minerals from clastic resources such as sea sand and river sand Download PDF

Info

Publication number
WO2012121438A1
WO2012121438A1 PCT/KR2011/001667 KR2011001667W WO2012121438A1 WO 2012121438 A1 WO2012121438 A1 WO 2012121438A1 KR 2011001667 W KR2011001667 W KR 2011001667W WO 2012121438 A1 WO2012121438 A1 WO 2012121438A1
Authority
WO
WIPO (PCT)
Prior art keywords
minerals
magnet
mineral
magnetic
separated
Prior art date
Application number
PCT/KR2011/001667
Other languages
French (fr)
Korean (ko)
Inventor
신희영
채수천
배인국
김정윤
Original Assignee
한국지질자원연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국지질자원연구원 filed Critical 한국지질자원연구원
Publication of WO2012121438A1 publication Critical patent/WO2012121438A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/16Magnetic separation acting directly on the substance being separated with material carriers in the form of belts
    • B03C1/22Magnetic separation acting directly on the substance being separated with material carriers in the form of belts with non-movable magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/04Magnetic separation acting directly on the substance being separated with the material carriers in the form of trays or with tables
    • B03C1/08Magnetic separation acting directly on the substance being separated with the material carriers in the form of trays or with tables with non-movable magnets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/26Magnetic separation acting directly on the substance being separated with free falling material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/32Magnetic separation acting on the medium containing the substance being separated, e.g. magneto-gravimetric-, magnetohydrostatic-, or magnetohydrodynamic separation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B07SEPARATING SOLIDS FROM SOLIDS; SORTING
    • B07BSEPARATING SOLIDS FROM SOLIDS BY SIEVING, SCREENING, SIFTING OR BY USING GAS CURRENTS; SEPARATING BY OTHER DRY METHODS APPLICABLE TO BULK MATERIAL, e.g. LOOSE ARTICLES FIT TO BE HANDLED LIKE BULK MATERIAL
    • B07B13/00Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices
    • B07B13/08Grading or sorting solid materials by dry methods, not otherwise provided for; Sorting articles otherwise than by indirectly controlled devices according to weight
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation whereby the particles to be separated are in solid form

Definitions

  • the present invention relates to a technique for recovering useful minerals, and more particularly, to a process for separating and recovering various useful minerals contained in a debrisable resource such as an instructor or a sea lion from sand. .
  • Useful minerals such as ilmenite, rutile, zircon, silimanite, and monazite are used as essential raw materials in various industries. That is, in the case of titanium iron, it is used as a welding rod, a special magnetic material, or a sunscreen pigment, and a stir cone is used in ceramics, high-quality bearings, and ball mills.
  • Monazite in particular, contains a large amount of rare earth elements called industrial vitamins such as lanthanum, cerium and samarium.
  • An object of the present invention is to provide a method for recovering useful minerals in a debrisable resource which can effectively and economically separate useful minerals contained in debrisable resources such as maritime or instructors. .
  • the useful mineral recovery method in the debris resources according to the present invention for achieving the above object is to recover the useful minerals from the maritime or instructor, by using the relative weight difference of the minerals contained in the debris resources
  • FIG. 1 is a schematic flowchart of a method for recovering useful minerals in a debrisable resource according to an embodiment of the present invention.
  • FIG. 2 is a schematic perspective view of a spiral specific gravity sorting apparatus used in an embodiment of the present invention.
  • FIG. 3 is an enlarged perspective view of the guide member of the specific gravity screening apparatus shown in FIG. 2.
  • FIG. 4 is a side view showing a schematic configuration of a magnetic separator used in an embodiment of the present invention.
  • FIG. 5 is a plan view of the magnetic separator shown in FIG. 4.
  • FIG. 6 is a front view of the magnetic separator shown in FIG. 4.
  • the useful mineral recovery method in the debris resources according to the present invention for achieving the above object is to recover the useful minerals from the maritime or instructor, by using the relative weight difference of the minerals contained in the debris resources
  • the specific gravity screening step arranged in the vertical direction, the spiral channel is formed, the specific gravity screening is installed in the bottom exit of the channel two partition members in the width direction of the channel A device is installed, and the mixed liquid in which water is mixed with the debrisable resource flows from the top to the bottom along the spiral channel so that the minerals contained in the debrisable resource are distributed along the width direction of the channel by the relative weight difference.
  • the minerals in the debrisable resource are dispersed by the partition member into heavy minerals, intermediate minerals and light minerals, and the heavy minerals are collected and the intermediate minerals alone or by mixing the intermediate minerals and the light minerals.
  • the specific gravity screening device is arranged in plural numbers, and the minerals classified as intermediate or hard minerals in the specific gravity screening by the specific gravity screening device are continuously arranged in another specific gravity screening device. It is preferable to carry out the sorting process continuously by sorting the input heavy minerals remaining.
  • the magnetic force selection step a plurality of magnets are arranged, the first magnet having a relatively strong magnetic force of the magnets, the second magnet having a relatively small magnetic force, the first A third magnet having a magnetic force between the magnet and the magnetic force of the second magnet is sequentially disposed, the heavy minerals separated in the specific gravity selection step passes through the path in which the first magnet to the third magnet are sequentially arranged The minerals attached to the first magnets are separated, and the minerals not attached to the second magnets are separated and collected, and the minerals not attached to the second magnets are disposed on the third magnets. The minerals attached to the area and collected are separated and collected, and finally, the minerals attached to the third magnet and the non-attached minerals are collected separately.
  • An electromagnet may be disposed between the first magnet and the second magnet.
  • the magnetic force of the first magnet is 10,000 ⁇ 11,500G (Gauss)
  • the magnetic force of the second magnet is 2,500 ⁇ 4,000G
  • the magnetic force of the third magnet is 5,000 ⁇ 7,000G
  • the magnetic force of the electromagnet can be set in the range of 1000 ⁇ 4000G.
  • the target minerals collected without being attached to the first magnets include a zircon
  • the target minerals attached to the electromagnets include magnetite
  • the target minerals attached to the two magnets and collected include ilmenite
  • the target minerals collected without being attached by the third magnets include monazite.
  • a magnetic separator in an embodiment of the present invention, is used, wherein the magnetic separator includes a conveying belt circulated in one direction and a cylindrical magnet in contact with the inner circumferential surface of one end of the conveying belt, in the upper portion of the conveying belt. Some of the minerals transported in one direction are separated from the conveying belt without being attached by the magnetic force of the magnet at the end of the conveying belt, and some of the minerals are attached by the magnetic force of the magnet at the end of the conveying belt.
  • It comprises a separation unit which is transported to the lower portion of the conveying belt and separated from the conveying belt, a plurality of separation units are arranged in the magnetic separator, the transfer of the separation unit disposed on the leading end of the mineral path Minerals in any one of the minerals separated and separated into two parts by magnetic force in the belt Receiving a separate supply unit disposed at a rear end of the traveling path based mineral are preferably separated by a magnetic force again.
  • the transfer of each separation unit by supplying anion to the minerals attached to the lower portion of the transfer belt of each separation unit by the electrostatic force so that the minerals are separated from the transfer belt, the transfer of each separation unit It is preferable to blow the wind toward the mineral attached to the lower portion of the belt so that the mineral is separated from the transport belt.
  • the electrostatic screening step in order to subdivide the mineral group separated in the magnetic screening step, the difference in the electrical conductivity of the minerals included in the mineral group or the mineral groups After the minerals in friction are charged with different polarities, the charged minerals can be separated while passing through the negative electrode and the positive electrode.
  • a charge is applied to the minerals in the mineral groups, and the minerals pass between the positive electrode and the negative electrode. While separating the mineral group by using the difference in the amount of charge charged to the minerals.
  • the debrisable resource to be treated refers to mainly composed of broken pieces of rock or minerals, and unlike ores, the particles are already separated into pieces without needing to be crushed.
  • the object of treatment in the present invention includes all of these destructive resources, the present embodiment will be described with respect to sand distributed in the sea or river, that is, maritime or instructor.
  • FIG. 1 is a schematic flowchart of a method for recovering useful minerals in a debrisable resource according to an embodiment of the present invention.
  • the useful mineral recovery method M100 includes a specific gravity screening step M20, a magnetic screening step M30, and an electrostatic screening step M40.
  • the sea or instructor (hereinafter referred to as 'yarn' or 'saem'), which is to be separated, is collected from the sea or river bottom.
  • the yarn thus obtained is sorted according to the size of the particles through screening, as shown in FIG. 1. Specifically, only particles having a diameter of about 2 mm or less are separated by screening using a sieve net. Particles larger than 2 mm are preferably impurities such as rocks or are not separated by a single substance.
  • the specific gravity selection step (M20) is performed.
  • the specific gravity screening step M20 is divided into a primary specific gravity screening M21 and a second specific gravity screening M22.
  • Specific gravity screening uses the relative weight difference between the minerals contained in the yarn, which means that the yarn contains light minerals such as sand and heavy minerals such as ilmenite, monazite, rutile and zircon. Depending on the origin and characteristics of the content ratio is different, in general, based on 100kg yarn contains about 95 ⁇ 96kg of light sand components, heavy minerals of about 4 ⁇ 5kg content. Minerals targeted in the present invention are heavy minerals such as monazite, and these heavy minerals mainly form useful minerals.
  • FIG. 1 is a schematic perspective view of a spiral specific gravity screening apparatus according to a preferred embodiment of the present invention
  • Figure 3 is an enlarged perspective view of the guide member of the spiral specific gravity screening apparatus shown in FIG.
  • the spiral specific gravity selection apparatus 100 used in the present embodiment is to use that the yarn is separated by specific gravity in the process of the yarn descending through the spiral channel.
  • the spiral specific gravity screening device 100 includes a spiral body 10 and a partition member 20.
  • the spiral body 10 serves as a channel through which a mixed liquid in which yarn and water are mixed flows.
  • the spiral body 10 is formed along the vertical direction as a whole and is provided with an inlet portion 11 through which the mixed liquid flows.
  • the outlet part 12 which flows out is provided.
  • the waterway portion 13 is provided between the inlet portion 11 and the outlet portion 12.
  • the support rod 70 is fitted to the central portion of the spiral body 10.
  • the channel 13 of the spiral body 10 is formed in a spiral shape so that the mixed solution can be separated by specific gravity in the process of flowing into the inlet 11 of the spiral body 10 and exiting the outlet 12. do. That is, the mixed liquid introduced into the inlet 11 flows toward the outlet 12 while rotating along the channel 13 formed in a helical shape, so that the particles having a small specific gravity are separated by the centrifugal force in the width direction of the channel 13. Therefore, it is gradually pushed outward, and the particles having a high specific gravity remain inside in the width direction of the channel portion 13.
  • the mixed liquid reaching the outlet portion 12 through the waterway portion 13 is dispersed along the width direction of the waterway portion 13 so that heavy particles gather on the inside and light particles gather on the outside. Since the sand component of the yarn is light and useful minerals are heavy, useful minerals are concentrated inside the outlet part 12.
  • heavy particles containing useful minerals are dark in color, and light particles, mainly sand, are white in color.
  • the inner side of the water channel 13 has a dark color, and the outer side has a bright color.
  • the outlet part 12 is provided with a partition member 20 so as to separate and discharge the mixed liquids which are sequentially arranged along the width direction of the waterway part 13 by specific gravity.
  • Only one partition member 20 may be disposed at the outlet portion 12, but in the present apparatus, two partition members 20 are disposed along the width direction of the outlet portion 12, and the mixed liquid is separated into three groups according to specific gravity and discharged.
  • the heavy group disposed inside of the three groups is referred to as heavy minerals
  • the light group disposed outside of the water channel is referred to as light minerals
  • the minerals placed in the middle of the channel are referred to as intermediate minerals.
  • the guide member 40 is provided with a plurality of guide tubes 41 so that the mixed liquid separated into a plurality of branches by the partition member 20 can be discharged to the outside, respectively. Is installed on the lower side. Each guide tube 41 is connected to the discharge pipe (42). Heavy minerals are collected in a separate reservoir (not shown) through the discharge pipe (42).
  • the intermediate mineral or the hard mineral is not discarded after one specific gravity selection step M20, but performs specific gravity selection again. That is, some of the useful minerals may remain in the minerals separated into intermediate or hard minerals, so that the useful minerals may not be disposed of in the intermediate minerals and the hard minerals by performing specific gravity selection once or twice. do.
  • a plurality of specific gravity selection apparatuses 100 are arranged to perform specific gravity selection again on minerals classified as intermediate or hard minerals. After 2 or 3 specific gravity screening, the minerals classified as intermediate minerals as light minerals are used as aggregates, and the heavy minerals are put into subsequent processes.
  • the intermediate minerals and the heavy minerals may be added to the subsequent process.
  • the intermediate minerals and the heavy minerals may be added to the subsequent process.
  • only one partition member is used to classify the mineral into two hard minerals as light minerals
  • only the heavy minerals may be added to the subsequent process. That is, the number of groups of minerals dispersed along the width direction of the waterway part 13 by the specific gravity selection may be classified, and which group may be appropriately selected according to the conditions of the yarn. have.
  • an outlet port (not shown) is formed in the middle of the channel portion 13 of the spiral body 10 so that the mixed liquid descends along the channel portion 13 in which the mixed liquid falls.
  • Some mixed liquor including light minerals may be discharged to the outside.
  • the secondary specific gravity screening (M22) may be performed on a heavy mineral by using a so-called shaking table (not shown).
  • a so-called shaking table not shown.
  • the shaking table generates vibration while constantly reciprocating the inclined table to separate the heavy minerals into relatively heavy minerals and light minerals.
  • the shaking table has a rectangular shape in which one side is longer than the other side, and the upper right corner is placed at the highest position, and the lower left corner is disposed at the lowest position.
  • two long sides form an upper side and a lower side
  • two short sides form both sides.
  • corrugation is formed in the surface.
  • the shaking table of the above-described configuration is vibrated by a motor or the like, when the liquid mixture of heavy minerals and water is supplied to the shaking table from the upper right corner, the light minerals move closer to the lower left corner of the shaking table, but the heavy minerals Will move to the lower side. As a result, minerals are dispersed by weight along the lower side of the shaking table.
  • the minerals moved from the lower side to the right side are mainly useful minerals, and the minerals moved to the left side are collected as light sand components and collected separately to collect heavy minerals.
  • the second specific gravity screening (M22) may be selectively performed as necessary.
  • the magnetic force selection step M30 is performed.
  • the specific gravity screening step (M20) is preferably carried out at the site where the yarn is collected in consideration of economical factors such as transportation costs, and the subsequent magnetic screening step (M30) and electrostatic screening step (M40) may be performed on site, It can also be carried by transporting heavy minerals to a place that can provide a stable environment for magnetic screening processes such as plants.
  • the magnetic separation step (M30) to perform the separation by using the difference in the magnetism of the various minerals contained in the heavy minerals. More specifically, the principle that the minerals attached to the magnet is changed according to the strength of the magnet. As will be explained in detail later, this property of minerals is called magnetic sensitivity. For example, magnetite with high sensitivity can be attached to very weak magnets, but monazite is only attached to very strong magnets. . In the magnetic separation step (M30), the magnetic difference of the minerals as described above is used.
  • Magnetic separation using magnets can be performed by various apparatuses and methods.
  • a magnetic separator having an improved structure can be used to classify minerals from heavy minerals into a plurality of groups by a continuous process.
  • FIG. 4 is a side view showing a schematic configuration of a magnetic separator used in an embodiment of the present invention
  • Figure 5 is a plan view of the magnetic separator shown in Figure 4
  • Figure 6 is a front view of the magnetic separator shown in Figure 4 .
  • the magnetic separator 200 used in one embodiment of the present invention includes a feeder 210, first to third separation units 220, 230, 240, and a cross separation unit 250.
  • the feeder 210 temporarily receives the raw material, that is, the heavy minerals separated from the yarns, and supplies the feeder 210 to the first separation unit 220 to be described later. Inside the feeder 210 is formed a receiving portion for temporarily receiving the heavy mineral (s). A discharge part is formed at a lower part of the accommodation part, and the discharge part may be opened and closed by a stopper (not shown) so that heavy minerals may be discharged from the feeder 210.
  • the feeder 210 supplies a constant speed and a certain amount of heavy mineral (s) to the first separation unit 220 to be described later.
  • the heavy minerals s discharged from the feeder 210 are guided by the discharge guide 211 and transferred to the first separation unit 220.
  • the discharge guide 211 is inclined downward in a plate shape.
  • the discharge guide 211 is oscillated in the left and right direction, so that the heavy minerals (S) placed on the upper surface of the discharge guide 211 can be spread widely in the left and right width direction.
  • the magnetic separator 200 includes a plurality of separation units, including three of the first separation unit 220, the second separation unit 230, and the third separation unit 240. Three separation units are arranged along the vertical direction. That is, the first separation unit 220 is disposed at the highest position, and the second separation unit 230 is disposed at the lowest position of the third separation unit 240 in the middle.
  • Heavy minerals (s) discharged from the feeder 210 forms a path from the first separation unit 220 to the third separation unit 230 through the second separation unit 230, passing through each separation unit
  • the sea ash is divided into two parts again according to the magnetic strength, a part of which is collected by the collector 239, and the other part is supplied to the third separation unit 240.
  • the third separation unit 240 is collected in separate collectors 248 and 249 according to the magnetic strength.
  • three separation units are installed, but in another embodiment, the separation units may be installed in various numbers such as two, four, five, and the like.
  • the first separation unit 220, the second separation unit 230 and the third separation unit 240 are called differently, but have substantially the same configuration, only the strength of the magnet is different.
  • first to third separation units 220, 230, and 240 are provided with transfer belts 221, 231, and 241, respectively.
  • Cylindrical first magnets 222, second magnets 232, and third magnets 242 are disposed inside one end of the transfer belts 221, 231, and 241, respectively, and serve as pulleys (driven pulleys).
  • a motor (not shown) is connected to the pulleys 223, 233, and 243 disposed at the other end of each separation unit, thereby providing driving force for circulating the conveying belts 221, 231, and 241 by rotating the pulleys 223, 233, and 243.
  • the cylindrical magnets 222, 232 and 242 which serve as pulleys are not fixedly installed, but can be replaced by cylindrical magnets having different magnetic strengths.
  • each of the first and second separation units 220 and 230 includes one collector 229 and 239, but the third separation unit 240 disposed at the end of the heavy mineral path has two collectors 248 and 249. .
  • each separation unit and the collector is provided with a guide for guiding the minerals discharged from each separation unit to the collector or another separation unit.
  • a collector 229 and a second separation unit 230 are disposed below the first separation unit 220, between the transfer belt 221 and the collector 229 of the first separation unit 220 and between the first and second separation units 220.
  • Guide bars 225 and 226 are respectively installed between the transfer belt 221 of the separation unit 220 and the transfer belt 231 of the second separation unit 230.
  • the guides 225 and 226 are disposed to be inclined downward in a plate shape to guide the minerals discharged from the conveyance belt 221 of the first separation unit 220 to the collector 229 and the second separation unit 230, respectively.
  • guide units 235 and 236 are installed in the second separation unit 230, and guide units 245 and 246 for guiding minerals with two collectors 248 and 249 are also installed in the third separation unit 240.
  • Heavy minerals (s) transported along the transport belt of each separation unit passes through the upper side of the cylindrical first, second and third magnets located at the ends of the transport belt, and minerals that are not affected by the magnetic force of the magnet are transported.
  • the separation unit is released from the end of the belt.
  • the minerals reacting to the magnetic force of the magnet is continuously attached to the conveyance belt to move downward, and fall out of the conveyance belt until it is out of the influence of the magnetic force.
  • the minerals attached to the magnets installed in each separation unit are separated from the conveying belt after the conveying belt is moved downward while attached to the conveying belt, but the minerals not attached to the magnet are conveyed from the upper part to the lower part.
  • the minerals are separated into two parts according to their magnetism.
  • a demagnetizer (270, demagnetizer) is installed at the lower end of the guide stand 226 installed between the transfer belt 221 of the first separation unit 220 and the transfer belt 231 of the second separation unit 230.
  • the magnetic force of the first magnet 222 installed in the first separation unit 220 is 11,000 gauss, which is much greater than the magnetic force of the second and third magnets (1,000 to 7,000 gauss) installed in the other separation units. .
  • the mineral is attached to the first magnet 222 installed in the first separation unit 220 and then transferred to the second separation unit 230, the mineral is transferred to the first magnet 222 of the first separation unit 220. Remaining magnets remain by, and thus the residual magnets remaining in the minerals interfere with the correct separation action by the second magnet of the second separation unit 230.
  • a known demagnetizer 270 is installed below the guide stand 226 to remove the residual magnetic remaining in the mineral. That is, the mineral is magnetized by a magnet having a large magnetic force, and the arrangement in which the particles in the mineral are separated and aligned in the N pole and the S pole is arranged by a demagnetizer.
  • a demagnetizer is installed between the first separation unit and the second separation unit, but the residual magnetic remaining in the mineral at the rear end of the magnet having the greatest magnetic force on the path of the mineral in performing the magnetic separation step according to the present invention. Just remove.
  • an ionizer (i) and a blower (b) are attached to the lower portions of the transfer belts (221, 231, 241) of the first, second, and third separation units (220, 230, 240) to supply charge and air toward the lower surface of the transfer belt.
  • the minerals may be attached to the transport belt by the electrostatic force. That is, the minerals should be separated from the conveyance belt by gravity by going through the region of the magnet from the upper portion of the conveyance belt, and the minerals can remain attached to the conveyance belt by electrostatic force.
  • the charge is applied to the minerals attached to the lower portion of the transport belt to release the electrostatic force.
  • a blower (b) for blowing air into the lower portion of the conveying belt so as to be separated from the conveying belt by applying a physical force to the mineral is disposed.
  • the magnetic separator 200 used in the present invention includes a cross separation unit 250.
  • the cross separation unit 250 is installed on the transfer belt 231 of the second separation unit 230, and includes a cross transfer belt 251 and two pulleys 252 and 253.
  • the cross transfer belt 251 is disposed to cross the transfer belt 231 of the second separation unit 230, and two pulleys 252 and 253 are wound around both ends of the cross transfer belt 251 to cross the transfer belt 251. ) And cloud contact.
  • the cross transfer belt 251 is circulated by the pulley 252 rotated by a motor (not shown).
  • the magnet 254 is installed inside the cross separation unit 250.
  • the lower surface of the magnet 254 is disposed to face the lower surface of the cross transfer belt 251. Accordingly, some of the minerals transferred along the transfer belt 231 of the second separation unit 230 are attracted by the magnetic force of the magnet 254 installed in the cross separation unit 250 and attached to the cross transfer belt 251. .
  • the magnetic separator 200 having the above-described configuration includes the first to third separation units 220, 230, and 240 and the cross separation unit 250 to perform four separation operations on minerals.
  • the action In order for the action to be significantly progressed so that the useful minerals mixed in the minerals are finely selected, it is necessary to set the magnetic strength of the magnets attached to the separation units 220 to 250 according to the properties of the useful minerals. That is, it is possible to set the magnetic force of the magnet to be installed in each separation unit only if technical and empirical data on the degree to which each useful mineral is affected by the magnetic force is secured.
  • Magnetism is expressed by the amount of magnetic and magnetic moment, and the strength of the magnet is generally expressed by the magnitude of the magnetic moment rather than the magnetic amount.
  • Magnetic moment is a vector quantity of magnitude and direction, and the direction is from the S (-) pole to the N (+) pole.
  • ferro-magnetism In general, they are classified into ferro-magnetism, antiferro-magnetism, para-magnetism, and dia-magnetism according to the arrangement of magnetic moments. If the magnetic moments are arranged in one direction, the force is very strong, and it is called Ferro-Magnetism.
  • the magnetic moments of the magnetic spins are arranged in opposite directions to the neighboring magnetic moments, but the magnetisms that are magnetized by the difference due to the magnitude of the magnetic moments are classified as Ferri Magnetism.
  • the magnetic moment of magnetic spin is the same size as the neighbor but the direction is reversed so that the overall magnetic moment becomes zero. It is called antiferro-magnetism.
  • the material having the property of increasing the strength of the internal magnetic field by aligning in the same direction as the direction of the external magnetic field is para-magnetism, and has a weak negative autonomy with no spin as dia-magnetism. Classify.
  • the magnetic moment may be obtained by a constant equation based on magnetic sensitivity, magnetic field strength and particle diameter.
  • Table 7 shows the classification of useful minerals by the above classification system.
  • 7 is a table showing the content and magnetic sensitivity of useful minerals contained in the heavy minerals separated by specific gravity screening.
  • the molten mineral includes the most of ilmenite and magnetite, and includes a large number of silica sand and silimite, which may be classified as sand components.
  • Magnetically, magnetite and ilmenite have the highest magnetic sensitivity, and the zircon and rutile are almost nonmagnetic.
  • useful minerals to be separated and recovered from the heavy minerals are mainly magnetite, ilmenite, zircon, rutile and monazite.
  • the applicant determines the strength of the magnetic force to be applied to the target mineral to be selected from the heavy minerals, based on the technical considerations regarding the strength of the magnetic force, the sensitivity of the useful minerals, etc. described above (determining the strength of the magnet installed in each separation unit) Many experiments were performed. Representative experimental examples are described.
  • the minerals that can be specifically obtained at a magnetic force of 10,000G or more are rutile and zircon, except for these minerals attached to the magnetic force of 10,000G, but they are not attached. 10,000G could serve as a reference point. Similarly, it was able to select ilmenite based on 3,000 G, and was able to significantly separate ilmenite at 4,000 G and epidot at 7,000 G.
  • the target minerals to be finally selected from the heavy minerals were determined, and the strength of the magnet for selecting these target minerals was also determined. The results are shown in the table of FIG.
  • the main target minerals to be separated through the magnetic separator in the present invention are largely classified into five categories, the ferromagnetic magnetite, the heavy magnetic ilmenite, the weak magnetic epidot, horn blend and hematite, And rutile and monazite, which are magnetically weak, and zircon, which are nonmagnetic.
  • Magnetite is a ferromagnetic material attached to magnets even in weak magnetic forces of 1,000G to 2,000G. Therefore, it is not necessary to use a magnet higher than 2,000G, but less than 1,000G may have a weak magnetic force, which may reduce the separation efficiency.
  • the magnetite is selected using a magnetic force of 1,500 G.
  • Ilmenite a magnetic material
  • a magnetic material is screened with magnetic force of 3,000G and can be expanded to 2,500G to 4,000G.
  • magnetic force less than 2,500 G will decrease the magnetic adhesion rate of ilmenite, and if it exceeds 4,000 G, it is not desirable to use higher magnetic force than necessary.
  • the weak magnetic epidots, horn blends, and hematites can be separated from 5,500 G and from 5,000 to 7,000 G. However, if less than 5,000G, the weak magnetic material is not easy to separate, and exceeding 7,000G is unnecessary because of excessive magnetic force.
  • rutile which can be classified as nonmagnetic
  • monazite have very low magnetic sensitivities and can be separated using a high magnetic force of 8,000 to 10,000G. Since the non-magnetic zircon is not attached to the magnet, the magnetic separator will behave together with the sand component, and can be separated from the sand later in the electrostatic screening.
  • magnets may be installed in each separation unit 220, 230, 240, 250 of the magnetic separator 200 used in the present invention.
  • the first magnet 222 of the first separation unit 220 is first disposed on the progress path of the heavy mineral (s) to have a magnetic force of 11,000G.
  • the magnetic material of the heavy mineral (s) is all attached to the first magnet 222 of the first separation unit 220 is supplied to the second separation unit 230, the non-magnetic stir cone to the first magnet 222 It is collected in collector 229 without being attached.
  • the collector 229 may include some rutile.
  • the magnetic substance and the nonmagnetic substance are separated from each other to separate the zircon which is the target mineral. If rutile is included significantly can be separated in the electrostatic screening step to be described later.
  • the magnet 254 of the cross separation unit 250 can change the magnetic force in the range of 1,000 ⁇ 4,000G as an electromagnet, in this embodiment is set to 1,500G.
  • the magnetite which is a ferromagnetic material, is transported by the magnetic force of 1,500 G in the heavy minerals s being transferred from the transfer belt 231 of the second separation unit 230 and attached to the cross transfer belt 251 of the cross separation unit 250.
  • the remaining minerals continue to move toward the second magnet 232 of the second separation unit 230.
  • the magnetite attached to the cross transfer belt 251 by the magnet 254 of the cross separation unit 250 is separated from the cross transfer belt 251 after falling out of the area of the magnet 254 and freely dropped to the collector 259. Is collected.
  • magnetite which is a target mineral
  • first separation unit 220 and the cross-separation unit 250 pass through, almost non-magnetic and ferromagnetic substances are selected.
  • second separation unit 230 and the third separation unit 240 select the neutral and weak magnetic material.
  • the second magnet 232 of the second separation unit 230 is set to 3,000G, and selects the ilmenite which is a heavy magnetic material. That is, the ilmenite, which is a magnetic substance, is attached to the second magnet 232 of the second separation unit 230 and moved to the lower side of the conveying belt 231, and then gathered in the collector 239, and the weak magnetic rutile, The monazite, epidot, horn blend, and hematite are not attached to the second magnet 32 and are directly separated from the transfer belt 231 of the second separation unit 230 and supplied to the third separation unit 240.
  • a third magnet 242 having a magnetic force of 5,500 G is installed, and epidots, horn blends, and hematites among the weak magnetic bodies are attached to the third magnet 242 to transfer belt 241.
  • Rutile and monazite, which are weaker than these, are collected in the collector 248 and are not attached to the third magnet 242, but are immediately removed from the transfer belt 241 and collected in another collector 249. do. That is, in the third separation unit 240, the mineral having a relatively strong magnetic and the mineral having a relatively weak magnetic are mutually selected in the weak magnetic body.
  • Each collector 229,239,248,249,259 is a collection of minerals separated by the magnets 222,232,242,252, but they do not purely contain the target minerals and some other minerals. That is, in the collector 39 in which ilmenite, which is a magnetic substance, is collected, a part of the magnetite, which is a ferromagnetic substance, and an epidot, which is a weak magnetic substance, are mixed. This is not simply a matter of magnetism, but due to various variables such as the size and weight of each mineral particle. In other words, it is possible to effectively separate the useful minerals by magnetic screening, it is possible to further increase the purity through the subsequent process. Therefore, it is also possible to perform magnetic screening again on the minerals collected in each bin. After the magnetic screening, the blackout screening step M40 is performed.
  • each mineral group is subdivided again by using the electrical properties of each mineral group separated in the magnetic screening step (M30).
  • the zircon is used as the target mineral, but the rubbing container 229 is generally mixed with rutile together with the zircon. In the case where a plurality of minerals are mixed in this collection, electrostatic screening is required.
  • the target mineral is magnetite, and if the collection box 254 contains almost no other minerals, there is no need to perform electrostatic screening. However, most of the collection, although there is a difference in content, other minerals are mixed in addition to the target minerals.
  • the electrostatic screening is performed for all the mineral groups separated from the magnetic screening.
  • Electrostatic screening uses the difference in electrical properties of minerals.
  • electrostatic screening may be performed by using a difference in electrical conductivity.
  • the charge is charged on the mineral surface, and the surface charge of the highly conductive minerals among the minerals is discharged through the ground electrode immediately, thus losing the charge.
  • the minerals are separated from the rollers, and in the case of minerals having no electrical conductivity, the charges remain on the surface as they are, so that the minerals are attached to the rollers for a certain period of time.
  • the negative electrode is disposed adjacent to the roller, the time attached to the roller becomes long due to the electric repulsive force. In this way, the difference between the electrical conductivity can be used to classify the minerals.
  • rutile and zircon are both rarely magnetic and are not separated from each other by magnetic separation.
  • rutile has high electrical conductivity
  • zircon has no electrical conductivity, and thus, two minerals can be effectively separated by electrostatic separation.
  • rutile is often mixed in addition to the monazite as the target mineral.
  • Monazite like rutile, is weak in magnetism.
  • monazite is not electrically conductive, but rutile is highly conductive and can be effectively separated through electrostatic separation.
  • a friction method may be used in the method of charging the mineral with charge.
  • the minerals When the minerals are rubbed together, the minerals may be charged with a negative charge or a positive charge on the surface, depending on their electrical properties.
  • the minerals In the state where charges are charged with different polarities, when the electric field between the negative electrode and the positive electrode is passed, the minerals are attracted to the electrode having the opposite polarity by the electric attraction, and thus the minerals can be effectively separated.
  • the above-described two kinds of electrostatic screening methods may be used, or a method using the difference in the amount of charges charged to the minerals may be adopted. That is, when negative charges are charged to minerals, the amount of charges charged on the surface differs according to the electrical characteristics of the minerals. In this state, when the negative electrode passes between the panels disposed on the lower side and the positive electrode is disposed on the lower side, the minerals move along the inclined plane and are separated between the electrodes. The negatively charged minerals are moved by the repulsive force. Minerals which rise toward the positive electrode and are charged with a relatively small amount of negative charge are brought closer to the lower panel. By using these points, passing the minerals between the electrode panels can effectively separate the plurality of minerals.
  • the electrostatic screening can perform the separation operation precisely according to the presence or absence of electrical conductivity, more specifically, the size or work function (work function, in the case of frictional charging) of the electrical conductivity.
  • This electrostatic screening allows the minerals to be finally separated into a single mineral.
  • useful minerals can be effectively separated into individual mineral units from destructive resources such as maritime or instructors through specific gravity screening, magnetic screening, and electrostatic screening.

Abstract

Disclosed is a method for recovering useful minerals from liberated clastic resources, such as sea sand and river sand. The method for recovering useful resources within the clastic resources according to the present invention comprises: a specific gravity sorting step for separating the clastic resources into at least two mineral groups of heavy minerals and light minerals, using the relative weight difference of the minerals included in the clastic resources; a magnetic force sorting step for separating the heavy minerals into a plurality of mineral groups using the selective attachment to a plurality of magnets, according to the difference of magnetism for the minerals within the heavy minerals, while continuously migrating the heavy minerals separated from the specific gravity sorting step to a channel having a plurality of magnets, each with different sizes of magnetic force; and an electrostatic sorting step for sorting target minerals again from at least one of the mineral groups from the plurality of mineral groups, by using the difference in electric property of the minerals included in each of the mineral groups separated in the magnetic force sorting step.

Description

해사 및 강사 등의 쇄설성 자원으로부터 유용광물을 회수하는 방법How to recover useful minerals from destructive resources such as maritime and instructors
본 발명은 유용광물을 회수하기 위한 기술에 관한 것으로서, 더욱 상세하게는 강사 또는 해사와 같은 쇄설성(碎屑性) 자원에 포함되어 있는 다양한 유용광물을 모래로부터 분리하여 회수하기 위한 공정에 관한 것이다. The present invention relates to a technique for recovering useful minerals, and more particularly, to a process for separating and recovering various useful minerals contained in a debrisable resource such as an instructor or a sea lion from sand. .
티탄철석(ilmenite), 루틸(rutile), 저어콘(zircon), 실리마나이트(silimanite), 모나자이트(monazite) 등의 유용광물은 여러 종류의 산업에 있어서 필수적인 원료로 활용된다. 즉, 티탄철석의 경우 용접봉이나 특수자성재료 또는 자외선차단안료로 이용되고, 저어콘은 세라믹이나 고급베어링, 볼밀에 사용된다. 특히 모나자이트의 경우 란타늄, 세륨, 사마리움 등 산업의 비타민이라고 불리우는 희토류 원소를 다량 함유하고 있다. Useful minerals such as ilmenite, rutile, zircon, silimanite, and monazite are used as essential raw materials in various industries. That is, in the case of titanium iron, it is used as a welding rod, a special magnetic material, or a sunscreen pigment, and a stir cone is used in ceramics, high-quality bearings, and ball mills. Monazite, in particular, contains a large amount of rare earth elements called industrial vitamins such as lanthanum, cerium and samarium.
그러나 우리나라에서는 상기 광물들을 거의 전량을 수입에 의존하고 있는 실정이며, 근래에는 세계적으로 원료광물의 가격이 폭등하여 가격이 대폭 상승하고 있는 추세이다. 예를 들어, 루틸과 실리마나이트의 경우 1톤당 200불, 저어콘의 경우 1톤당 900불에 육박하고 있다. 더욱이, 최근 자원 보유국의 자원 무기화 추세의 확산에 따라, 자원 보유국들은 수출세 인상, 외자의 자원개발 참가 규제 등의 수출 억제정책 확대를 통해 자국 자원의 유출방지를 강구하고 있는 실정이다. However, in Korea, almost all of the minerals are relied on imports, and in recent years, the price of raw minerals has soared in the world, and the price has increased significantly. For example, rutile and silimite are priced at $ 200 a tonne and Zercon at $ 900 a tonne. Moreover, with the recent proliferation of resource weaponization by resource-holding countries, resource-holding countries are seeking to prevent the leakage of their resources by expanding export suppression policies, such as increasing export taxes and regulating foreign investment in resource development.
반면, 우리나라의 경우 고부가가치 산업에서 다양하게 활용되는 희유광물이 육상에 거의 존재하지 않기 때문에 각종 핵심 소재 및 부품을 거의 전량 해외에서 수입하는 바, 선진국 및 자원 보유국의 자원 무기화와 독점적 가격인상에 큰 영향을 받을 수 있다. 이에 국내의 희유광물에 대한 채취기술 개발이 요청되고 있으며, 그 일환으로 해사 또는 강사 등 쇄설성 자원에 대한 관심이 높아지고 있다. On the other hand, in Korea, since rare minerals, which are widely used in high value-added industries, do not exist on land, almost all of the core materials and parts are imported from abroad. May be affected. As a result, it is requested to develop a collection technology for rare minerals in Korea, and as part of this, interest in debris resources such as maritime or instructors is increasing.
국내의 해안이나 강가에 있는 모래에는 티탄철석, 모나자이트 등의 유용광물이 함유되어 있는 것으로 조사되고 있다. 예컨대 해사 중 1.5%는 상기한 유용광물로 이루어져 있다고 알려져 있다. 한편, 2007년 건설부자료에 따르면 2300만톤의 해사가 건설재로 개발 및 사용된다고 보고되고 있으며, 2300만 톤에는 대략 50만톤의 유용광물이 포함되어 있으며, 이 유용광물의 경제적 가치는 2008년 기준 거의 1조에 달하는 것이다. It is investigated that sand in coastal or riverside of Korea contains useful minerals such as titanium iron and monazite. For example, 1.5% of the sea sand is known to consist of the above useful minerals. Meanwhile, according to the 2007 Ministry of Construction data, 23 million tons of seawater is reported to be developed and used as construction materials, and 23 million tons contain about 500,000 tons of useful minerals, and the economic value of these useful minerals is as of 2008. It's almost a trillion.
이에 해사나 강사와 같은 쇄설성 자원이 골재에 섞여 건설재로 버려지는 것을 방지하고, 이들로부터 회유광물 등 유용광물을 회수하는 기술이 요청되고 있다. 무엇보다도, 모래 등 쇄설성 자원은 광산에서 채굴된 광석과 달리 이미 광물들이 단체분리되어 있다는 점과, 하나의 타겟 광물이 주로 분포하고 있는 광석과 달리 모래 내에는 다양한 종류의 유용 광물이 포함되어 있다는 점을 고려한 기술 개발이 요청된다. Accordingly, there is a demand for a technique for preventing the disposal of debris-like resources such as maritime and instructors into aggregates, and recovering useful minerals such as oil minerals from them. First of all, unlike the ore mined from the mine, the debrisable resource such as sand is already divided into minerals, and unlike the ore in which one target mineral is mainly distributed, sand contains various kinds of useful minerals. In view of this, technical development is required.
본 발명은 상기한 문제점을 해결하기 위한 것으로서, 해사 또는 강사와 같은 쇄설성 자원에 포함되어 있는 유용광물들을 효과적이며 경제적으로 분리할 수 있는 쇄설성 자원 내 유용광물 회수방법을 제공하는데 그 목적이 있다. An object of the present invention is to provide a method for recovering useful minerals in a debrisable resource which can effectively and economically separate useful minerals contained in debrisable resources such as maritime or instructors. .
상기 목적을 달성하기 위한 본 발명에 따른 쇄설성 자원 내 유용광물 회수방법은 해사 또는 강사로부터 유용광물을 회수하기 위한 것으로서, 상기 쇄설성 자원에 포함된 광물들의 상대적인 무게 차이를 이용하여 상기 쇄설성 자원을 적어도 2개의 광물군인 중광물과 경광물로 분리하는 비중선별단계, 서로 다른 크기의 자력을 가지는 복수의 자석이 배치되어 있는 경로로 상기 비중선별단계에서 분리된 중광물을 연속적으로 이동시키면서, 상기 중광물 내의 광물들이 가지는 자성의 차이에 따라 상기 복수의 자석에 선택적으로 부착되는 것을 이용하여 상기 중광물을 복수의 광물군으로 분리하는 자력선별단계 및 상기 자력선별단계에서 분리된 각 광물군에 포함된 광물들의 전기적 성질의 차이를 이용하여 상기 복수의 광물군 중 적어도 하나의 광물군으로부터 목표광물을 다시 선별하는 정전선별단계를 포함하여 이루어진다. The useful mineral recovery method in the debris resources according to the present invention for achieving the above object is to recover the useful minerals from the maritime or instructor, by using the relative weight difference of the minerals contained in the debris resources The specific gravity separation step of separating the at least two mineral groups as heavy minerals and hard minerals, while moving the heavy minerals separated in the specific gravity selection step in a path in which a plurality of magnets having different magnetic forces are arranged, It is included in each mineral group separated in the magnetic separation step and the magnetic separation step of separating the heavy minerals into a plurality of mineral groups by using a selective attachment to the plurality of magnets according to the magnetic properties of the minerals in the heavy minerals At least one mineral group of the plurality of mineral groups by using a difference in electrical properties of the minerals And an electrostatic screening step of reselecting the target mineral from the.
본 발명에서는 해사 또는 강사와 같이 단체분리되어 있는 쇄설성 자원으로부터 희유광물 등과 같은 유용광물을 경제적이며 효율적으로 분리 및 회수할 수 있다는 이점이 있다. In the present invention, there is an advantage that it is possible to economically and efficiently separate and recover useful minerals, such as rare minerals, from the segregated resources separated into groups such as maritime or instructors.
본 발명에서는 비중선별, 자력선별 및 정전선별을 이용하여 단일 광물 단위로 유용광물을 회수할 수 있어 회수되는 광물의 순도가 향상된다는 이점이 있다. In the present invention, by using specific gravity screening, magnetic screening and electrostatic screening, it is possible to recover useful minerals in a single mineral unit, which has the advantage that the purity of the recovered minerals is improved.
도 1은 본 발명의 일 실시예에 따른 쇄설성 자원 내 유용광물 회수방법에 대한 개략적 흐름도이다. 1 is a schematic flowchart of a method for recovering useful minerals in a debrisable resource according to an embodiment of the present invention.
도 2는 본 발명의 일 실시예에서 사용하는 나선형 비중선별장치의 개략적 사시도이다. 2 is a schematic perspective view of a spiral specific gravity sorting apparatus used in an embodiment of the present invention.
도 3은 도 2에 도시된 비중선별장치의 가이드부재에 대한 확대사시도이다. 3 is an enlarged perspective view of the guide member of the specific gravity screening apparatus shown in FIG. 2.
도 4는 본 발명의 일 실시예에서 사용하는 자력선별기의 개략적 구성이 나타나 있는 측면도이다. 4 is a side view showing a schematic configuration of a magnetic separator used in an embodiment of the present invention.
도 5는 도 4에 도시된 자력선별기의 평면도이다.FIG. 5 is a plan view of the magnetic separator shown in FIG. 4.
도 6은 도 4에 도시된 자력선별기의 정면도이다. FIG. 6 is a front view of the magnetic separator shown in FIG. 4.
도 7은 중광물 내의 유용광물 함유량과 자성 감응도를 나타낸 표이다.7 is a table showing useful mineral content and magnetic sensitivity in heavy minerals.
도 8은 목표광물을 선별하기 위한 자석의 세기를 나타낸 표이다. 8 is a table showing the strength of the magnet for selecting the target minerals.
상기 목적을 달성하기 위한 본 발명에 따른 쇄설성 자원 내 유용광물 회수방법은 해사 또는 강사로부터 유용광물을 회수하기 위한 것으로서, 상기 쇄설성 자원에 포함된 광물들의 상대적인 무게 차이를 이용하여 상기 쇄설성 자원을 적어도 2개의 광물군인 중광물과 경광물로 분리하는 비중선별단계, 서로 다른 크기의 자력을 가지는 복수의 자석이 배치되어 있는 경로로 상기 비중선별단계에서 분리된 중광물을 연속적으로 이동시키면서, 상기 중광물 내의 광물들이 가지는 자성의 차이에 따라 상기 복수의 자석에 선택적으로 부착되는 것을 이용하여 상기 중광물을 복수의 광물군으로 분리하는 자력선별단계 및 상기 자력선별단계에서 분리된 각 광물군에 포함된 광물들의 전기적 성질의 차이를 이용하여 상기 복수의 광물군 중 적어도 하나의 광물군으로부터 목표광물을 다시 선별하는 정전선별단계를 포함하여 이루어진다. The useful mineral recovery method in the debris resources according to the present invention for achieving the above object is to recover the useful minerals from the maritime or instructor, by using the relative weight difference of the minerals contained in the debris resources The specific gravity separation step of separating the at least two mineral groups as heavy minerals and hard minerals, while moving the heavy minerals separated in the specific gravity selection step in a path in which a plurality of magnets having different magnetic forces are arranged, It is included in each mineral group separated in the magnetic separation step and the magnetic separation step of separating the heavy minerals into a plurality of mineral groups by using a selective attachment to the plurality of magnets according to the magnetic properties of the minerals in the heavy minerals At least one mineral group of the plurality of mineral groups by using a difference in electrical properties of the minerals And an electrostatic screening step of reselecting the target mineral from the.
본 발명의 일 실시예에 따르면, 상기 비중선별단계에서는, 상하방향으로 배치되며 나선형의 수로가 형성되어 있으며, 상기 수로의 하부측 출구에는 상기 수로의 폭 방향을 따라 2개의 격벽부재가 설치된 비중선별장치를 설치하고, 상기 쇄설성 자원에 물을 혼합한 혼합액을 상기 나선형 수로를 따라 상부에서 하부로 흘러가게 하여 상기 쇄설성 자원 내에 포함된 광물들이 상대적 무게 차에 의해 상기 수로의 폭 방향을 따라 분산되게 함으로써, 상기 쇄설성 자원 내 광물들은 상기 격벽부재에 의하여 중광물, 중간광물 및 경광물로 분산되도록 하며, 상기 중광물은 수거하고, 상기 중간광물 단독으로 또는 상기 중간광물과 경광물을 혼합하여 다시 상기 비중선별장치에 투입함으로써, 상기 중간광물과 경광물 내에 일부 잔존하는 중광물을 분리한다. According to an embodiment of the present invention, in the specific gravity screening step, arranged in the vertical direction, the spiral channel is formed, the specific gravity screening is installed in the bottom exit of the channel two partition members in the width direction of the channel A device is installed, and the mixed liquid in which water is mixed with the debrisable resource flows from the top to the bottom along the spiral channel so that the minerals contained in the debrisable resource are distributed along the width direction of the channel by the relative weight difference. The minerals in the debrisable resource are dispersed by the partition member into heavy minerals, intermediate minerals and light minerals, and the heavy minerals are collected and the intermediate minerals alone or by mixing the intermediate minerals and the light minerals. By re-injecting into the specific gravity screening device, some of the heavy minerals remaining in the intermediate mineral and the hard mineral are separated.
또한 본 발명의 일 실시예에서, 상기 비중선별장치는 연속적으로 복수 개 배치되며, 상기 비중선별장치에 의한 비중선별시 상기 중간광물 또는 경광물로 분류된 광물들은 연속적으로 배치된 다른 비중선별장치에 투입되어 잔존하는 중광물을 선별함으로써, 선별공정을 연속적으로 수행하는 것이 바람직하다. In addition, in one embodiment of the present invention, the specific gravity screening device is arranged in plural numbers, and the minerals classified as intermediate or hard minerals in the specific gravity screening by the specific gravity screening device are continuously arranged in another specific gravity screening device. It is preferable to carry out the sorting process continuously by sorting the input heavy minerals remaining.
또한 본 발명의 일 실시예에서, 상기 자력선별단계에서는 복수의 자석이 배치되되, 상기 자석들 중 상대적으로 가장 센 자력을 가지는 제1자석, 상대적으로 가장 작은 자력을 가지는 제2자석, 상기 제1자석과 제2자석의 자력 사이의 자력을 가지는 제3자석이 순차적으로 배치되며, 상기 비중선별단계에서 분리된 상기 중광물은 상기 제1자석 내지 상기 제3자석이 순차적으로 배치된 경로를 통과하며 분리되되, 상기 제1자석에 부착된 광물들은 상기 제2자석이 배치된 영역으로 이송하고 부착되지 않은 광물은 분리하여 수집하며, 상기 제2자석에 부착되지 않은 광물은 상기 제3자석이 배치된 영역으로 이송하며 부착된 광물은 분리하여 수집하고, 최종적으로 상기 제3자석에 부착된 광물과 부착되지 않은 광물을 분리하여 수집한다. In addition, in an embodiment of the present invention, in the magnetic force selection step, a plurality of magnets are arranged, the first magnet having a relatively strong magnetic force of the magnets, the second magnet having a relatively small magnetic force, the first A third magnet having a magnetic force between the magnet and the magnetic force of the second magnet is sequentially disposed, the heavy minerals separated in the specific gravity selection step passes through the path in which the first magnet to the third magnet are sequentially arranged The minerals attached to the first magnets are separated, and the minerals not attached to the second magnets are separated and collected, and the minerals not attached to the second magnets are disposed on the third magnets. The minerals attached to the area and collected are separated and collected, and finally, the minerals attached to the third magnet and the non-attached minerals are collected separately.
그리고 상기 제1자석과 제2자석 사이에 전자석이 배치될 수 있다. An electromagnet may be disposed between the first magnet and the second magnet.
본 발명의 일 실시예에 따르면, 상기 제1자석의 자력은 10,000~11,500G(가우스) 이며, 상기 제2자석의 자력은 2,500~4,000G이며, 상기 제3자석의 자력은 5,000~7,000G이며, 상기 전자석의 자력은 1000~4000G 범위로 설정할 수 있다. According to one embodiment of the invention, the magnetic force of the first magnet is 10,000 ~ 11,500G (Gauss), the magnetic force of the second magnet is 2,500 ~ 4,000G, the magnetic force of the third magnet is 5,000 ~ 7,000G and , The magnetic force of the electromagnet can be set in the range of 1000 ~ 4000G.
그리고 상기 비중선별단계에서 얻어진 중광물을 자력선별함에 있어서, 상기 제1자석에 부착되지 않고 수집되는 목표광물은 저어콘을 포함하며, 상기 전자석에 부착되어 수집되는 목표광물은 마그네타이트를 포함하며, 상기 제2자석에 부착되어 수집되는 목표광물은 일메나이트를 포함하며, 상기 제3자석에 의하여 부착되지 않고 수집되는 목표광물은 모나자이트를 포함한다. In the magnetic force selection of the heavy minerals obtained in the specific gravity screening step, the target minerals collected without being attached to the first magnets include a zircon, and the target minerals attached to the electromagnets include magnetite. The target minerals attached to the two magnets and collected include ilmenite, and the target minerals collected without being attached by the third magnets include monazite.
한편, 본 발명의 일 실시예에서, 상기 제1자석에 부착된 후 상기 제2자석이 배치된 영역으로 이송되기 위해 상기 제1자석으로부터 분리된 광물들의 잔류자기를 탈자기에 의하여 제거하는 것이 바람직하다. On the other hand, in one embodiment of the present invention, it is preferable to remove the residual magnetic of the minerals separated from the first magnet in order to be transferred to the region where the second magnet is disposed after being attached to the first magnet by a demagnetizer Do.
또한 본 발명의 일 실시예에서는 자력선별기를 사용하며, 상기 자력선별기는, 일방향으로 순환되는 이송벨트와, 상기 이송벨트의 일단부 내주면에 구름접촉되는 원통형 자석을 구비하여, 상기 이송벨트의 상부에서 일방향으로 이송되던 광물 중 일부는 상기 이송벨트의 단부에서 상기 자석의 자력에 의하여 부착되지 않고 상기 이송벨트로부터 이탈되며, 상기 광물 중 나머지 일부는 상기 이송벨트의 단부에서 상기 자석의 자력에 의하여 부착되어 상기 이송벨트의 하부로 이송된 후 상기 이송벨트로부터 이탈되는 분리유닛을 포함하여 이루어지며, 상기 자력선별기에는 상기 분리유닛이 복수 개 배치되어, 상기 광물의 진행경로 상 선단에 배치된 분리유닛의 이송벨트에서 자력에 의하여 두 부분으로 분리되어 이탈된 광물 중 어느 한 부분의 광물을 상기 광물의 진행 경로 상 후단에 배치된 분리유닛이 공급받아 다시 자력에 의하여 분리하는 것이 바람직하다. In addition, in an embodiment of the present invention, a magnetic separator is used, wherein the magnetic separator includes a conveying belt circulated in one direction and a cylindrical magnet in contact with the inner circumferential surface of one end of the conveying belt, in the upper portion of the conveying belt. Some of the minerals transported in one direction are separated from the conveying belt without being attached by the magnetic force of the magnet at the end of the conveying belt, and some of the minerals are attached by the magnetic force of the magnet at the end of the conveying belt. It comprises a separation unit which is transported to the lower portion of the conveying belt and separated from the conveying belt, a plurality of separation units are arranged in the magnetic separator, the transfer of the separation unit disposed on the leading end of the mineral path Minerals in any one of the minerals separated and separated into two parts by magnetic force in the belt Receiving a separate supply unit disposed at a rear end of the traveling path based mineral are preferably separated by a magnetic force again.
그리고 본 발명의 일 실시예에 따르면, 정전기력에 의해 상기 각 분리유닛의 이송벨트의 하부에 부착되어 있는 상기 광물에 음이온을 공급하여 상기 광물이 상기 이송벨트로부터 분리되도록 하며, 상기 각 분리유닛의 이송벨트 하부에는 부착되어 있는 상기 광물을 향해 바람을 불어 넣어 상기 광물이 상기 이송벨트로부터 분리되도록 하는 것이 바람직하다. And according to an embodiment of the present invention, by supplying anion to the minerals attached to the lower portion of the transfer belt of each separation unit by the electrostatic force so that the minerals are separated from the transfer belt, the transfer of each separation unit It is preferable to blow the wind toward the mineral attached to the lower portion of the belt so that the mineral is separated from the transport belt.
한편, 본 발명의 일 실시예에 따르면, 상기 정전선별단계에서는 상기 자력선별단계에서 분리된 광물군을 다시 세분하기 위하여, 광물군 내 포함된 광물들의 전기전도성의 차이를 이용하거나, 상기 광물군들 내의 광물들이 마찰되면서 서로 다른 극성으로 대전시킨 후 상기 대전된 광물들이 음전극과 양전극 사이를 통과하게 하면서 분리할 수 있다. Meanwhile, according to an embodiment of the present invention, in the electrostatic screening step, in order to subdivide the mineral group separated in the magnetic screening step, the difference in the electrical conductivity of the minerals included in the mineral group or the mineral groups After the minerals in friction are charged with different polarities, the charged minerals can be separated while passing through the negative electrode and the positive electrode.
또한 본 발명의 일 실시예에서, 상기 정전선별단계에서는 상기 자력선별단계에서 분리된 광물군을 다시 세분하기 위하여, 상기 광물군들 내의 광물에 하전을 가하고, 상기 광물들이 양전극과 음전극 사이를 통과하게 하면서 상기 광물들에 하전된 전하량의 차이를 이용하여 상기 광물군을 분리할 수 있다. In an embodiment of the present invention, in the electrostatic screening step, in order to subdivide the mineral group separated in the magnetic screening step, a charge is applied to the minerals in the mineral groups, and the minerals pass between the positive electrode and the negative electrode. While separating the mineral group by using the difference in the amount of charge charged to the minerals.
이하, 첨부된 도면을 참조하여, 본 발명의 일 실시예에 따른 쇄설성 자원 내 유용광물 회수방법에 대하여 더욱 상세히 설명한다. Hereinafter, with reference to the accompanying drawings, it will be described in more detail with respect to the useful mineral recovery method in the debrisable resources according to an embodiment of the present invention.
본 발명에서 처리 대상이 되는 쇄설성 자원이라 함은 암석이나 광물들의 부서진 조각으로 주로 구성되는 것을 말하며, 광석과 달리 분쇄할 필요가 없이 입자들이 이미 단체분리되어 있는 특징이 있다. 본 발명에서의 처리 대상은 이러한 쇄설성 자원을 모두 포함하는 것이지만, 본 실시예에서는 바다나 강에 분포하는 모래, 즉 해사나 강사를 대상으로 하여 설명하기로 한다. In the present invention, the debrisable resource to be treated refers to mainly composed of broken pieces of rock or minerals, and unlike ores, the particles are already separated into pieces without needing to be crushed. Although the object of treatment in the present invention includes all of these destructive resources, the present embodiment will be described with respect to sand distributed in the sea or river, that is, maritime or instructor.
도 1은 본 발명의 일 실시예에 따른 쇄설성 자원 내 유용광물 회수방법에 대한 개략적 흐름도이다. 1 is a schematic flowchart of a method for recovering useful minerals in a debrisable resource according to an embodiment of the present invention.
도 1을 참조하면, 본 발명의 일 실시예에 따른 쇄설성 자원 내 유용광물 회수방법(M100)은 비중선별단계(M20), 자력선별단계(M30) 및 정전선별단계(M40)를 포함한다. Referring to FIG. 1, the useful mineral recovery method M100 according to an embodiment of the present invention includes a specific gravity screening step M20, a magnetic screening step M30, and an electrostatic screening step M40.
우선, 분리대상이 되는 해사 또는 강사(이하, '해사' 또는 '강사'를 통칭하여 '원사'라고 함)를 바다 또는 강 바닥에서 채취한다. 이렇게 채취된 원사는, 도 1에 나타나 바와 같이, 스크리닝을 통해 입자의 크기에 따른 분류를 수행한다. 구체적으로는 체망을 사용하여 스크리닝(screening)을 행함으로써 대략 직경 2mm 이하의 입자만을 분리해낸다. 2mm 초과하는 입자는 암석 등 불순물이거나 단체분리가 되어 있지 않은 것이므로 제거하는 것이 바람직하다. First, the sea or instructor (hereinafter referred to as 'yarn' or 'saem'), which is to be separated, is collected from the sea or river bottom. The yarn thus obtained is sorted according to the size of the particles through screening, as shown in FIG. 1. Specifically, only particles having a diameter of about 2 mm or less are separated by screening using a sieve net. Particles larger than 2 mm are preferably impurities such as rocks or are not separated by a single substance.
스크리닝이 끝나면, 비중선별단계(M20)를 수행한다. 본 실시예에서 비중선별단계(M20)는 1차 비중선별(M21)과 2차 비중선별(M22)로 나누어진다. After the screening, the specific gravity selection step (M20) is performed. In the present embodiment, the specific gravity screening step M20 is divided into a primary specific gravity screening M21 and a second specific gravity screening M22.
비중선별(은 원사 내에 포함되어 있는 광물들 사이의 상대적인 무게차를 이용하는 것이다. 즉, 원사에는 모래성분과 같은 가벼운 광물들과 일메나이트, 모나자이트, 루틸, 저어콘 등의 무거운 광물들이 혼재해 있다. 원사의 산지와 특성에 따라서 함량비는 차이가 있지만, 일반적으로 원사 100kg을 기준으로 하면 가벼운 모래 성분이 대략 95~96kg 정도의 함량으로 포함되며, 무거운 광물이 대략 4~5kg 정도의 함량으로 포함된다. 본 발명에서 타겟이 되는 광물은 모나자이트 등의 무거운 광물이며, 이러한 무거운 광물들은 주로 유용광물을 이룬다. Specific gravity screening uses the relative weight difference between the minerals contained in the yarn, which means that the yarn contains light minerals such as sand and heavy minerals such as ilmenite, monazite, rutile and zircon. Depending on the origin and characteristics of the content ratio is different, in general, based on 100kg yarn contains about 95 ~ 96kg of light sand components, heavy minerals of about 4 ~ 5kg content. Minerals targeted in the present invention are heavy minerals such as monazite, and these heavy minerals mainly form useful minerals.
원사 내 다양한 성분들의 무게의 차이를 이용한 분리방법은 다양한데, 본 실시예에서는 도 2 및 도 3에 도시된 나선형 비중선별장치(100)를 이용하여 비중선별을 실시한다. 도 2는 본 발명의 바람직한 실시예에 따른 나선형 비중선별장치의 개략적 사시도이며, 도 3은 도 2에 도시된 나선형 비중선별장치의 가이드부재에 대한 확대사시도이다. Separation method using a difference in the weight of the various components in the yarn is various, in the present embodiment is carried out specific gravity screening using the spiral specific gravity screening apparatus 100 shown in Figs. Figure 2 is a schematic perspective view of a spiral specific gravity screening apparatus according to a preferred embodiment of the present invention, Figure 3 is an enlarged perspective view of the guide member of the spiral specific gravity screening apparatus shown in FIG.
본 실시예에서 사용하는 나선형 비중선별장치(100)는 나선형(spiral)의 수로를 통해 원사가 하강하는 과정에서 비중에 의하여 원사가 분리되는 것을 이용하는 것이다. The spiral specific gravity selection apparatus 100 used in the present embodiment is to use that the yarn is separated by specific gravity in the process of the yarn descending through the spiral channel.
도 2 및 도 3을 참조하면, 나선형 비중선별장치(100)는 스파이럴 본체(10)와 격벽부재(20)를 구비한다.2 and 3, the spiral specific gravity screening device 100 includes a spiral body 10 and a partition member 20.
스파이럴 본체(10)는 원사와 물이 혼합되어 있는 혼합액이 흘러가는 수로 역할을 수행하는 것으로서, 전체적으로 상하방향을 따라 길게 형성되어 상측에는 혼합액이 유입되는 입구부(11)가 마련되며, 하측에는 혼합액이 유출되는 출구부(12)가 마련된다. 입구부(11)와 출구부(12) 사이에는 수로부(13)가 마련된다. 스파이럴 본체(10)를 지지하기 위하여 스파이럴 본체(10)의 중앙부에는 지지봉(70)이 끼워져 있다. The spiral body 10 serves as a channel through which a mixed liquid in which yarn and water are mixed flows. The spiral body 10 is formed along the vertical direction as a whole and is provided with an inlet portion 11 through which the mixed liquid flows. The outlet part 12 which flows out is provided. The waterway portion 13 is provided between the inlet portion 11 and the outlet portion 12. In order to support the spiral body 10, the support rod 70 is fitted to the central portion of the spiral body 10.
또한 혼합액이 스파이럴 본체(10)의 입구부(11)로 유입되어 출구부(12)로 유출되는 과정에서 비중에 의하여 분리될 수 있도록, 스파이럴 본체(10)의 수로부(13)는 나선형으로 형성된다. 즉, 입구부(11)로 유입된 혼합액은 나선형으로 형성된 수로부(13)를 따라 회전하면서 출구부(12)측으로 유동되므로, 원심력에 의하여 비중이 작은 입자들은 수로부(13)의 폭 방향을 따라 외측으로 점차 밀려나가게 되고, 비중이 큰 입자들은 수로부(13)의 폭 방향을 따라 내측에 잔류하게 된다. 이에, 수로부(13)를 거쳐 출구부(12)에 도달한 혼합액은 수로부(13)의 폭 방향을 따라 분산되어 내측에는 무거운 입자들이 모여 있으며, 외측에는 가벼운 입자들이 모여 있게 된다. 원사 중 모래성분은 가벼우며, 유용광물들은 무거우므로, 출구부(12)의 내측에는 유용광물들이 집중된다. In addition, the channel 13 of the spiral body 10 is formed in a spiral shape so that the mixed solution can be separated by specific gravity in the process of flowing into the inlet 11 of the spiral body 10 and exiting the outlet 12. do. That is, the mixed liquid introduced into the inlet 11 flows toward the outlet 12 while rotating along the channel 13 formed in a helical shape, so that the particles having a small specific gravity are separated by the centrifugal force in the width direction of the channel 13. Therefore, it is gradually pushed outward, and the particles having a high specific gravity remain inside in the width direction of the channel portion 13. Thus, the mixed liquid reaching the outlet portion 12 through the waterway portion 13 is dispersed along the width direction of the waterway portion 13 so that heavy particles gather on the inside and light particles gather on the outside. Since the sand component of the yarn is light and useful minerals are heavy, useful minerals are concentrated inside the outlet part 12.
일반적으로 유용광물을 포함하는 무거운 입자들은 어두운 색을 띠게 되고, 모래를 주성분으로 하는 가벼운 입자들은 백색을 띤다. 스파이럴 본체(10)의 출구부를 통해 배출되는 혼합액을 관찰하면, 수로부(13)의 내측은 어두운 색을 띠고 있으며, 외측은 밝은 색을 띤다. In general, heavy particles containing useful minerals are dark in color, and light particles, mainly sand, are white in color. When the mixed solution discharged through the outlet of the spiral body 10 is observed, the inner side of the water channel 13 has a dark color, and the outer side has a bright color.
그리고 출구부(12)에는 비중에 의하여 수로부(13)의 폭 방향을 따라 차례로 배열된 혼합액을 분리하여 배출시킬 수 있도록 격벽부재(20)가 설치된다. 격벽부재(20)는 출구부(12)에 하나만 배치될 수도 있지만, 본 장치에서는 출구부(12)의 폭 방향을 따라 2개 배치하여 혼합액은 비중에 따라 3개의 군으로 분리되어 배출된다. 이하에서는 3개의 군 중 내측에 배치되는 무거운 군을 중광물, 수로의 외측에 배치되는 가벼운 군을 경광물, 수로의 가운데에 배치되는 광물을 중간광물로 호칭한다. In addition, the outlet part 12 is provided with a partition member 20 so as to separate and discharge the mixed liquids which are sequentially arranged along the width direction of the waterway part 13 by specific gravity. Only one partition member 20 may be disposed at the outlet portion 12, but in the present apparatus, two partition members 20 are disposed along the width direction of the outlet portion 12, and the mixed liquid is separated into three groups according to specific gravity and discharged. Hereinafter, the heavy group disposed inside of the three groups is referred to as heavy minerals, and the light group disposed outside of the water channel is referred to as light minerals, and the minerals placed in the middle of the channel are referred to as intermediate minerals.
물론, 좀 더 세분하여 혼합액을 분리하고자 하는 경우 격벽부재를 3개 이상 배치할 수도 있다. Of course, when more finely divided to separate the liquid mixture may be arranged three or more partition members.
격벽부재(20)에 의하여 복수의 갈래로 상호 분리된 혼합액이 각각 외부로 배출될 수 있도록 복수의 가이드관(41)이 구비되어 있는 가이드부재(40)가 스파이럴 본체(10) 출구부(12)의 하측에 설치된다. 각 가이드관(41)에는 배출관(42)이 연결된다. 중광물은 배출관(42)을 통해 별도의 저장조(미도시) 등에 수집된다. The guide member 40 is provided with a plurality of guide tubes 41 so that the mixed liquid separated into a plurality of branches by the partition member 20 can be discharged to the outside, respectively. Is installed on the lower side. Each guide tube 41 is connected to the discharge pipe (42). Heavy minerals are collected in a separate reservoir (not shown) through the discharge pipe (42).
그러나, 중간광물 또는 경광물은 한 번의 비중선별단계(M20) 후에 폐기되는 것이 아니라 재차 비중선별을 수행한다. 즉, 중간광물 또는 경광물로 분리된 광물들 중에는 유용광물이 일부 잔류할 수 있기 때문에, 1회 내지 2회에 걸쳐 다시 비중선별을 수행함으로써 유용광물이 중간광물과 경광물에 포함되어 폐기되지 않도록 한다. However, the intermediate mineral or the hard mineral is not discarded after one specific gravity selection step M20, but performs specific gravity selection again. That is, some of the useful minerals may remain in the minerals separated into intermediate or hard minerals, so that the useful minerals may not be disposed of in the intermediate minerals and the hard minerals by performing specific gravity selection once or twice. do.
이를 위하여, 본 실시예에서는 비중선별장치(100)를 복수 개 배치하여, 중간광물 또는 경광물로 분류된 광물들에 대하여 비중선별을 다시 수행한다. 이렇게 2회 또는 3회의 비중선별을 거친 후 최종적으로 경광물로 중간광물로 분류된 광물들은 골재 등으로 사용되며, 중광물은 후속 공정에 투입된다. To this end, in the present embodiment, a plurality of specific gravity selection apparatuses 100 are arranged to perform specific gravity selection again on minerals classified as intermediate or hard minerals. After 2 or 3 specific gravity screening, the minerals classified as intermediate minerals as light minerals are used as aggregates, and the heavy minerals are put into subsequent processes.
다만, 본 실시예에서는 중광물만을 후속공정에 투입하지만, 실시예에 따라서는 중간광물과 중광물을 후속공정에 투입할 수도 있다. 또한 하나의 격벽부재만을 이용하여 광물을 경광물로 중광물의 2개로만 분류하는 경우에는 중광물만을 후속공정에 투입할 수 있다. 즉, 비중선별에 의하여 수로부(13)의 폭 방향을 따라 분산된 광물들을 몇 개의 군으로 분류하고, 분류된 군에서 어떤 군을 후속 공정에 투입할 것인지는 원사의 조건에 따라 적절하게 선택될 수 있다. However, in the present embodiment, only the heavy minerals are added to the subsequent process, but depending on the embodiment, the intermediate minerals and the heavy minerals may be added to the subsequent process. In addition, when only one partition member is used to classify the mineral into two hard minerals as light minerals, only the heavy minerals may be added to the subsequent process. That is, the number of groups of minerals dispersed along the width direction of the waterway part 13 by the specific gravity selection may be classified, and which group may be appropriately selected according to the conditions of the yarn. have.
한편, 다른 실시예에서는 분리효율을 향상시키기 위하여, 스파이럴 본체(10)의 수로부(13)의 중간에 배출구(미도시)를 형성하여 혼합액이 하강하는 수로부(13)를 따라 하강하는 중간에 일부의 혼합액(가벼운 광물을 포함)을 외부로 배출시킬 수도 있다.  Meanwhile, in another embodiment, in order to improve separation efficiency, an outlet port (not shown) is formed in the middle of the channel portion 13 of the spiral body 10 so that the mixed liquid descends along the channel portion 13 in which the mixed liquid falls. Some mixed liquor (including light minerals) may be discharged to the outside.
상기한 바와 같은 1차 비중선별(M21)이 완료되면, 중광물에 대해서 이른바 쉐이킹 테이블(shaking table, 미도시)을 이용하여 2차 비중선별(M22)을 수행할 수 있다. 많은 실험적 고찰을 수행한 결과, 1차 비중선별에 의해 중광물로 분류된 광물들 내에도 대략 30% 정도의 모래 성분이 남아 있는 바, 2차 비중선별을 통해 모래성분 등 가벼운 광물들을 제거할 수 있다. When the primary specific gravity screening (M21) as described above is completed, the secondary specific gravity screening (M22) may be performed on a heavy mineral by using a so-called shaking table (not shown). As a result of many experimental considerations, about 30% of sand remains in minerals classified as heavy minerals by primary specific gravity screening. Therefore, light minerals such as sand components can be removed through secondary specific gravity screening. have.
쉐이킹 테이블은 경사진 테이블을 일정하게 왕복이동시키면서 진동을 발생시켜 중광물을 다시 상대적으로 무거운 광물과 가벼운 광물로 분리하게 된다. The shaking table generates vibration while constantly reciprocating the inclined table to separate the heavy minerals into relatively heavy minerals and light minerals.
쉐이킹 테이블은 일측변이 타측보다 긴 직사각형 형상으로 우측 상부의 모서리가 가장 높은 위치에 놓이고, 좌측 하부의 모서리가 가장 낮은 위치에 놓이도록 배치된다. 그리고 직사각형에서 두 개의 긴 변이 상변과 하변을 이루며, 두 개의 짧은 변이 양측변을 형성한다. 그리고 표면에는 요철이 형성되어 있다.The shaking table has a rectangular shape in which one side is longer than the other side, and the upper right corner is placed at the highest position, and the lower left corner is disposed at the lowest position. In the rectangle, two long sides form an upper side and a lower side, and two short sides form both sides. And unevenness | corrugation is formed in the surface.
상기한 구성의 쉐이킹 테이블이 모터 등에 의해 진동하는 가운데, 우측 상부 모서리로부터 중광물과 물을 혼합한 혼합액을 쉐이킹 테이블에 공급하면 가벼운 광물들은 쉐이킹 테이블의 좌측 하부 모서리에 근접하게 이동되지만, 무거운 광물들은 하변으로 이동하게 된다. 결국, 쉐이킹 테이블의 하변을 따라 무게별로 광물이 분산하게 된다. While the shaking table of the above-described configuration is vibrated by a motor or the like, when the liquid mixture of heavy minerals and water is supplied to the shaking table from the upper right corner, the light minerals move closer to the lower left corner of the shaking table, but the heavy minerals Will move to the lower side. As a result, minerals are dispersed by weight along the lower side of the shaking table.
이에 하변에서 우측으로 이동된 광물들은 주로 유용광물이며, 좌측으로 이동된 광물들은 가벼운 모래 성분으로 파악하여 이들을 분리하여 수거함으로써 중광물만을 수집할 수 있다. 다만, 2차 비중선별(M22)은 필요에 따라 선택적으로 수행하면 된다. Therefore, the minerals moved from the lower side to the right side are mainly useful minerals, and the minerals moved to the left side are collected as light sand components and collected separately to collect heavy minerals. However, the second specific gravity screening (M22) may be selectively performed as necessary.
상기한 바와 같이, 비중선별단계(M20)가 완료되면 자력선별단계(M30)를 수행한다. 비중선별단계(M20)는 이송비용 등 경제성을 고려하여 원사를 채취하는 현장에서 수행하는 것이 바람직하며, 후속공정인 자력선별단계(M30)와 정전선별단계(M40)는 현장에서 수행할 수도 있지만, 플랜트 등 자력선별 공정에 안정적인 환경을 제공할 수 있는 곳으로 중광물을 이송하여 수행할 수도 있다. As described above, when the specific gravity selection step M20 is completed, the magnetic force selection step M30 is performed. The specific gravity screening step (M20) is preferably carried out at the site where the yarn is collected in consideration of economical factors such as transportation costs, and the subsequent magnetic screening step (M30) and electrostatic screening step (M40) may be performed on site, It can also be carried by transporting heavy minerals to a place that can provide a stable environment for magnetic screening processes such as plants.
자력선별단계(M30)에서는 중광물 내에 포함되어 있는 다양한 광물들의 자성의 차이를 이용하여 분리를 수행한다. 보다 구체적으로는 자석의 세기에 따라 그 자석에 부착되는 광물들이 달라지는 원리를 이용한다. 뒤에서 상세하게 설명하겠지만, 광물의 이러한 성질을 자성 감응도라고 하는데, 예컨대 감응도가 센 마그네타이트의 경우 매우 약한 자력을 가진 자석에도 부착될 수 있지만, 모나자이트의 경우 매우 강한 자력을 지닌 자석에만 부착되는 특징이 있다. 자력선별단계(M30)에서는 위와 같은 광물들의 자성 차이를 이용한다. In the magnetic separation step (M30) to perform the separation by using the difference in the magnetism of the various minerals contained in the heavy minerals. More specifically, the principle that the minerals attached to the magnet is changed according to the strength of the magnet. As will be explained in detail later, this property of minerals is called magnetic sensitivity. For example, magnetite with high sensitivity can be attached to very weak magnets, but monazite is only attached to very strong magnets. . In the magnetic separation step (M30), the magnetic difference of the minerals as described above is used.
자석을 이용한 자력선별은 다양한 장치와 방법에 의해 수행될 수 있는데, 본 실시예에서는 연속적인 공정에 의해 중광물로부터 복수의 그룹으로 광물을 분류할 수 있도록 구조가 개선된 자력선별기를 사용한다. Magnetic separation using magnets can be performed by various apparatuses and methods. In this embodiment, a magnetic separator having an improved structure can be used to classify minerals from heavy minerals into a plurality of groups by a continuous process.
이하, 첨부된 도면을 참조하여, 자력선별기와 함께 자력선별단계(M30)에 대해서 상세하게 설명한다.Hereinafter, the magnetic force selection step M30 together with the magnetic force separator will be described in detail with reference to the accompanying drawings.
도 4는 본 발명의 일 실시예에서 사용하는 자력선별기의 개략적 구성이 나타나 있는 측면도이며, 도 5는 도 4에 도시된 자력선별기의 평면도이고, 도 6은 도 4에 도시된 자력선별기의 정면도이다. 4 is a side view showing a schematic configuration of a magnetic separator used in an embodiment of the present invention, Figure 5 is a plan view of the magnetic separator shown in Figure 4, Figure 6 is a front view of the magnetic separator shown in Figure 4 .
도 4 내지 도 6을 참조하면, 본 발명의 일 실시예에서 사용하는 자력선별기(200)는 피더(210)와 제1~3분리유닛(220,230,240) 및 교차분리유닛(250)을 구비하여 이루어진다. 4 to 6, the magnetic separator 200 used in one embodiment of the present invention includes a feeder 210, first to third separation units 220, 230, 240, and a cross separation unit 250.
피더(210)는 선별의 대상이 되는 원료, 즉 원사에서 분리된 중광물을 일시적으로 수용하며, 후술할 제1분리유닛(220)으로 공급하기 위한 것이다. 피더(210)의 내부에는 중광물(s)가 일시적으로 수용되는 수용부가 형성된다. 수용부의 하부에는 배출부가 형성되며, 이 배출부는 마개(미도시)에 의하여 개폐됨으로써 피더(210)로부터 중광물이 배출될 수 있다. 피더(210)에서는 일정한 속도와 일정한 양의 중광물(s)을 후술할 제1분리유닛(220)으로 공급한다. The feeder 210 temporarily receives the raw material, that is, the heavy minerals separated from the yarns, and supplies the feeder 210 to the first separation unit 220 to be described later. Inside the feeder 210 is formed a receiving portion for temporarily receiving the heavy mineral (s). A discharge part is formed at a lower part of the accommodation part, and the discharge part may be opened and closed by a stopper (not shown) so that heavy minerals may be discharged from the feeder 210. The feeder 210 supplies a constant speed and a certain amount of heavy mineral (s) to the first separation unit 220 to be described later.
피더(210)로부터 배출된 중광물(s)은 배출가이드(211)에 의하여 가이드되어 제1분리유닛(220)으로 이송되는데, 이 배출가이드(211)는 판 형상으로 하방향으로 경사지게 배치되어 있다. 또한, 배출가이드(211)는 좌우방향으로 진동됨으로써, 배출가이드(211)의 상면에 놓여진 중광물(s)이 좌우의 폭 방향으로 넓게 퍼질 수 있도록 한다. The heavy minerals s discharged from the feeder 210 are guided by the discharge guide 211 and transferred to the first separation unit 220. The discharge guide 211 is inclined downward in a plate shape. . In addition, the discharge guide 211 is oscillated in the left and right direction, so that the heavy minerals (S) placed on the upper surface of the discharge guide 211 can be spread widely in the left and right width direction.
본 자력선별기(200)는 복수의 분리유닛을 구비하는데, 제1분리유닛(220), 제2분리유닛(230) 및 제3분리유닛(240)의 3개를 구비한다. 3개의 분리유닛은 상하방향을 따라 배치된다. 즉, 제1분리유닛(220)이 가장 높은 곳에 배치되며, 제2분리유닛(230)은 가운데, 제3분리유닛(240)이 가장 낮은 곳에 배치된다. The magnetic separator 200 includes a plurality of separation units, including three of the first separation unit 220, the second separation unit 230, and the third separation unit 240. Three separation units are arranged along the vertical direction. That is, the first separation unit 220 is disposed at the highest position, and the second separation unit 230 is disposed at the lowest position of the third separation unit 240 in the middle.
피더(210)로부터 배출된 중광물(s)은 제1분리유닛(220)으로부터 제2분리유닛(230)을 거쳐 제3분리유닛(230)까지 진행되는 경로를 형성하는데, 각 분리유닛을 통과할 때마다 자성에 따라 중광물(s)의 일부가 분리되는 구성이다. 즉, 제1분리유닛(220)에서 자성의 크기에 따라 2부분으로 분리된 중광물 중 일부분은 수집기(229)에 의하여 수집되고, 나머지 일부분은 다시 제2분리유닛(230)으로 공급된다. 제2분리유닛(230)에서는 해사는 다시 자성의 세기에 따라 2부분으로 나누어져 일부는 수집기(239)에 수집되고 다른 일부는 제3분리유닛(240)으로 공급된다. 최종적으로 제3분리유닛(240)에서는 자성의 세기에 따라 각각 별도의 수집기(248) 및 수집기(249)에 수집된다. 본 실시예에서는 3개의 분리유닛을 설치하였지만, 다른 실시예에서는 2개, 4개, 5개 등 다양한 개수로 분리유닛을 설치할 수 있다. Heavy minerals (s) discharged from the feeder 210 forms a path from the first separation unit 220 to the third separation unit 230 through the second separation unit 230, passing through each separation unit Each time a portion of the heavy minerals (s) is separated according to the magnetic properties. That is, a part of the heavy minerals separated into two parts according to the magnetic size in the first separation unit 220 is collected by the collector 229, and the remaining part is supplied to the second separation unit 230 again. In the second separation unit 230, the sea ash is divided into two parts again according to the magnetic strength, a part of which is collected by the collector 239, and the other part is supplied to the third separation unit 240. Finally, the third separation unit 240 is collected in separate collectors 248 and 249 according to the magnetic strength. In the present embodiment, three separation units are installed, but in another embodiment, the separation units may be installed in various numbers such as two, four, five, and the like.
제1분리유닛(220), 제2분리유닛(230) 및 제3분리유닛(240)은 각각 다르게 호칭되지만 실질적으로는 동일한 구성을 가지고 있으며, 다만 자석의 세기만이 다를 뿐이다. The first separation unit 220, the second separation unit 230 and the third separation unit 240 are called differently, but have substantially the same configuration, only the strength of the magnet is different.
즉 제1~3분리유닛(220,230,240)은 각각 이송벨트(221,231,241)를 구비한다. 이송벨트(221,231,241)의 일단부 내측에는 각각 원통형의 제1자석(222), 제2자석(232) 및 제3자석(242)이 배치되어 풀리(종동풀리)와 같은 작용을 수행한다. 그리고 각 분리유닛의 타단부에 배치된 풀리(223,233,243)에는 모터(미도시)가 연결되어 풀리(223,233,243)를 회전시킴으로써 이송벨트(221,231,241)를 순환시키는 구동력을 제공한다. 한편, 풀리 역할을 함께 수행하는 원통형 자석(222,232,242)은 고정되게 설치되는 것이 아니라, 자력의 세기가 다른 원통형 자석으로 교체가능하다. That is, the first to third separation units 220, 230, and 240 are provided with transfer belts 221, 231, and 241, respectively. Cylindrical first magnets 222, second magnets 232, and third magnets 242 are disposed inside one end of the transfer belts 221, 231, and 241, respectively, and serve as pulleys (driven pulleys). A motor (not shown) is connected to the pulleys 223, 233, and 243 disposed at the other end of each separation unit, thereby providing driving force for circulating the conveying belts 221, 231, and 241 by rotating the pulleys 223, 233, and 243. On the other hand, the cylindrical magnets 222, 232 and 242 which serve as pulleys are not fixedly installed, but can be replaced by cylindrical magnets having different magnetic strengths.
또한, 제1,2분리유닛(220,230)은 각각 하나의 수집기(229,239)를 구비하지만, 중광물의 진행 경로 상 최말단에 배치된 제3분리유닛(240)은 2개의 수집기(248,249)를 구비한다. In addition, each of the first and second separation units 220 and 230 includes one collector 229 and 239, but the third separation unit 240 disposed at the end of the heavy mineral path has two collectors 248 and 249. .
각 분리유닛과 수집기 사이에는 각 분리유닛으로부터 배출된 광물들을 수집기 또는 다른 분리유닛으로 가이드하기 위한 가이드대가 설치된다. 예컨대, 제1분리유닛(220)의 하측에는 수집기(229)와 제2분리유닛(230)이 배치되는데, 제1분리유닛(220)의 이송벨트(221)와 수집기(229) 사이 및 제1분리유닛(220)의 이송벨트(221)와 제2분리유닛(230)의 이송벨트(231) 사이에는 각각 가이드대(225,226)가 설치된다. 이 가이드대(225,226)는 판 형상으로 하향 경사지게 배치되어, 제1분리유닛(220)의 이송벨트(221)로부터 배출되는 광물들을 각각 수집기(229) 및 제2분리유닛(230)으로 가이드한다. 마찬가지로 제2분리유닛(230)에서도 가이드대(235,236)가 설치되며, 제3분리유닛(240)에도 2개개의 수집기(248,249)로 광물을 가이드하는 가이드대(245,246)가 설치된다. Between each separation unit and the collector is provided with a guide for guiding the minerals discharged from each separation unit to the collector or another separation unit. For example, a collector 229 and a second separation unit 230 are disposed below the first separation unit 220, between the transfer belt 221 and the collector 229 of the first separation unit 220 and between the first and second separation units 220. Guide bars 225 and 226 are respectively installed between the transfer belt 221 of the separation unit 220 and the transfer belt 231 of the second separation unit 230. The guides 225 and 226 are disposed to be inclined downward in a plate shape to guide the minerals discharged from the conveyance belt 221 of the first separation unit 220 to the collector 229 and the second separation unit 230, respectively. Similarly, guide units 235 and 236 are installed in the second separation unit 230, and guide units 245 and 246 for guiding minerals with two collectors 248 and 249 are also installed in the third separation unit 240.
각 분리유닛의 이송벨트를 따라 이송되는 중광물(s)은 이송벨트의 단부에 위치한 원통형의 제1,2,3자석의 상측을 통과하게 되는데, 이 자석의 자력에 영향을 받지 않는 광물은 이송벨트의 단부에서 분리유닛을 이탈하게 된다. 그러나, 자석의 자력에 반응하는 광물은 계속적으로 이송벨트에 부착되어 하측으로 이동을 하게 되며, 자력의 영향를 벗어나면 비로소 이송벨트로부터 하방으로 낙하하게 된다. Heavy minerals (s) transported along the transport belt of each separation unit passes through the upper side of the cylindrical first, second and third magnets located at the ends of the transport belt, and minerals that are not affected by the magnetic force of the magnet are transported. The separation unit is released from the end of the belt. However, the minerals reacting to the magnetic force of the magnet is continuously attached to the conveyance belt to move downward, and fall out of the conveyance belt until it is out of the influence of the magnetic force.
즉, 각 분리유닛에 설치된 자석에 부착되는 광물은 이송벨트에 부착된 상태로 이송벨트가 하방으로 이동된 후에 이송벨트로부터 분리되지만, 자석에 부착되지 않는 광물은 이송벨트가 상부에서 하부로 이동되는 순간 이송벨트로부터 분리됨으로써, 광물들은 자성에 따라 2부분으로 분리된다. That is, the minerals attached to the magnets installed in each separation unit are separated from the conveying belt after the conveying belt is moved downward while attached to the conveying belt, but the minerals not attached to the magnet are conveyed from the upper part to the lower part. By separating from the feed belt, the minerals are separated into two parts according to their magnetism.
한편, 제1분리유닛(220)의 이송벨트(221)와 제2분리유닛(230)의 이송벨트(231) 사이에 설치된 가이드대(226)의 하단에는 탈자기(270, demagnetizer)가 설치된다. 후술하겠지만, 본 실시예에서는 제1분리유닛(220)에 설치된 제1자석(222)의 자력은 11,000가우스로 다른 분리유닛들에 설치된 제2,3자석의 자력(1,000~7,000가우스)보다 매우 크다. On the other hand, a demagnetizer (270, demagnetizer) is installed at the lower end of the guide stand 226 installed between the transfer belt 221 of the first separation unit 220 and the transfer belt 231 of the second separation unit 230. . As will be described later, in this embodiment, the magnetic force of the first magnet 222 installed in the first separation unit 220 is 11,000 gauss, which is much greater than the magnetic force of the second and third magnets (1,000 to 7,000 gauss) installed in the other separation units. .
즉, 제1분리유닛(220)에 설치된 제1자석(222)에 한 번 부착된 후 제2분리유닛(230)으로 이송된 광물에는 제1분리유닛(220)의 제1자석(222)에 의한 잔류자기가 남아 있게 되며, 이렇게 광물에 남아 있는 잔류자기는 제2분리유닛(230)의 제2자석에 의한 정확한 분리작용을 방해하게 된다.That is, once the mineral is attached to the first magnet 222 installed in the first separation unit 220 and then transferred to the second separation unit 230, the mineral is transferred to the first magnet 222 of the first separation unit 220. Remaining magnets remain by, and thus the residual magnets remaining in the minerals interfere with the correct separation action by the second magnet of the second separation unit 230.
이에 제1분리유닛(220)으로부터 제2분리유닛(230)으로 이송되는 과정에서 가이드대(226)의 하방에 공지의 탈자기(270)를 설치하여, 광물에 남아 있는 잔류자기를 제거한다. 즉, 자력이 큰 자석에 의하여 광물이 자화되어 광물 내 입자가 N극과 S극으로 분리되어 정렬되어 있는 형태를 탈자기에 의해 배열을 교란시키는 것이다. 본 장치에서는 제1분리유닛과 제2분리유닛 사이에 탈자기가 설치되었지만, 본 발명에 따른 자력분리단계를 수행함에 있어서 광물의 진행 경로 상 가장 큰 자력을 가지는 자석의 후단에서 광물에 남아 있는 잔류자기를 제거하면 된다. In the process of being transferred from the first separation unit 220 to the second separation unit 230, a known demagnetizer 270 is installed below the guide stand 226 to remove the residual magnetic remaining in the mineral. That is, the mineral is magnetized by a magnet having a large magnetic force, and the arrangement in which the particles in the mineral are separated and aligned in the N pole and the S pole is arranged by a demagnetizer. In the present apparatus, a demagnetizer is installed between the first separation unit and the second separation unit, but the residual magnetic remaining in the mineral at the rear end of the magnet having the greatest magnetic force on the path of the mineral in performing the magnetic separation step according to the present invention. Just remove.
또한, 제1,2,3분리유닛(220,230,240)의 각 이송벨트(221,231,241)의 하부에는 이오나이저(i)와 블로워(b)가 부착되어 이송벨트의 하면을 향해 전하와 공기를 공급한다. 중광물이 이송되는 과정에서 광물이 정전기력에 의해 이송벨트에 부착될 수 있다. 즉, 이송벨트의 상부로부터 자석의 영역을 통과하여 하부로 가면 광물들은 중력에 의해 이송벨트로부터 이탈해야 되는데, 정전기력에 의해 광물이 계속 이송벨트에 부착된 상태를 유지할 수 있다. 이에 본 발명에서는 이오나이저(i)에서 전하를 이송벨트의 하부로 공급함으로써, 이송벨트의 하부에 부착되어 있는 광물에 전하를 부여하여 정전기력이 해제되도록 한다. In addition, an ionizer (i) and a blower (b) are attached to the lower portions of the transfer belts (221, 231, 241) of the first, second, and third separation units (220, 230, 240) to supply charge and air toward the lower surface of the transfer belt. In the process of transporting heavy minerals, the minerals may be attached to the transport belt by the electrostatic force. That is, the minerals should be separated from the conveyance belt by gravity by going through the region of the magnet from the upper portion of the conveyance belt, and the minerals can remain attached to the conveyance belt by electrostatic force. In the present invention, by supplying the charge to the lower portion of the transport belt in the ionizer (i), the charge is applied to the minerals attached to the lower portion of the transport belt to release the electrostatic force.
그리고, 광물에 물리적인 힘을 가하여 이송벨트로부터 이탈할 수 있도록 공기를 이송벨트 하부로 불어 넣기 위한 블로워(b)를 배치한다. Then, a blower (b) for blowing air into the lower portion of the conveying belt so as to be separated from the conveying belt by applying a physical force to the mineral is disposed.
한편, 본 발명에 사용되는 자력선별기(200)는 교차분리유닛(250)을 구비한다. 교차분리유닛(250)은 제2분리유닛(230)의 이송벨트(231) 상부에 설치되는 것으로서, 교차이송벨트(251)와 두 개의 풀리(252,253)를 구비한다. 교차이송벨트(251)는 제2분리유닛(230)의 이송벨트(231)와 교차하게 배치되며, 두 개의 풀리(252,253)는 교차이송벨트(251)의 양단부 내측에 감기어 교차이송벨트(251)와 구름접촉된다. 모터(미도시)에 의하여 회전되는 풀리(252)에 의하여 교차이송벨트(251)는 순환된다. Meanwhile, the magnetic separator 200 used in the present invention includes a cross separation unit 250. The cross separation unit 250 is installed on the transfer belt 231 of the second separation unit 230, and includes a cross transfer belt 251 and two pulleys 252 and 253. The cross transfer belt 251 is disposed to cross the transfer belt 231 of the second separation unit 230, and two pulleys 252 and 253 are wound around both ends of the cross transfer belt 251 to cross the transfer belt 251. ) And cloud contact. The cross transfer belt 251 is circulated by the pulley 252 rotated by a motor (not shown).
그리고 교차분리유닛(250)의 내측에도 자석(254)이 설치된다. 이 자석(254)의 하면은 교차이송벨트(251)의 하면에 근접하여 대면하게 배치된다. 이에 따라, 제2분리유닛(230)의 이송벨트(231)를 따라 이송되는 광물 중 일부는 교차분리유닛(250)에 설치된 자석(254)의 자력에 흡인되어 교차이송벨트(251)에 부착된다. In addition, the magnet 254 is installed inside the cross separation unit 250. The lower surface of the magnet 254 is disposed to face the lower surface of the cross transfer belt 251. Accordingly, some of the minerals transferred along the transfer belt 231 of the second separation unit 230 are attracted by the magnetic force of the magnet 254 installed in the cross separation unit 250 and attached to the cross transfer belt 251. .
지금까지 설명한 바와 같이, 상기한 구성으로 이루어진 자력선별기(200)는 제1~3분리유닛(220,230,240)과 교차분리유닛(250)을 구비하여 광물에 대해서 4번의 분리작용을 수행하는데, 4번의 분리작용이 각각 유의미하게 진행되어 광물 내에 혼합되어 있는 유용광물이 세밀하게 선별되기 위해서는 각 분리유닛(220~250)에 부착된 자석의 자력 세기를 유용광물의 특성에 맞게 설정할 필요가 있다. 즉, 각 유용광물이 자력에 영향을 받는 정도에 대한 기술적, 실증적 데이터가 확보되어야 각 분리유닛에 설치될 자석의 자력을 설정할 수 있다. As described so far, the magnetic separator 200 having the above-described configuration includes the first to third separation units 220, 230, and 240 and the cross separation unit 250 to perform four separation operations on minerals. In order for the action to be significantly progressed so that the useful minerals mixed in the minerals are finely selected, it is necessary to set the magnetic strength of the magnets attached to the separation units 220 to 250 according to the properties of the useful minerals. That is, it is possible to set the magnetic force of the magnet to be installed in each separation unit only if technical and empirical data on the degree to which each useful mineral is affected by the magnetic force is secured.
자성에 대하여 간략하게 설명한다. 자성은 자기량과 자기모멘트의 양에 의하여 표시하는데, 자석의 세기는 자기량 보다는 자기모멘트의 크기로 표시하는 것이 일반적이다. 자기 모멘트 (Magnetic Moment)는 크기와 방향을 가지는 벡터량으로 방향은 S (-) 극에서 N (+) 극으로 향한다. 일반적으로 자기 모멘트 (자기 Spin) 의 배열에 따라 강자성 (Ferro-Magnetism), 반강자성 (Antiferro-Magnetism), 상자성 (Para-Magnetism), 반자성 (Dia-Magnetism) 으로 분류한다. 자기모멘트가 한쪽 방향으로 배열되어 있으면 힘이 매우 강하며, 페로 마그네티즘 (Ferro-Magnetism) 이라고 한다. 자기 Spin 의 자기 모멘트가 이웃하는 자기 모멘트와 서로 반대방향으로 배열되지만 자기 모멘트의 크기가 달라서 그 차이만큼 자화되는 자성은 페리 마그네티즘 (Ferri Magnetism)으로 분류한다. 또한, 자기 Spin 의 자기모멘트가 이웃하는 것과 크기는 같으나 방향이 반대로 배열되어 전체적인 자기모멘트가 0 이 되는 자성은 반강자성 (Antiferro-Magnetism)이라고 하고, 자기 Spin 의 방향성이 없어 자체적으로 자기의 세기가 없으나, 외부 자기장의 방향과 같은 방향으로 정렬시킴으로써 내부 자기장의 세기를 증가시키는 성질을 갖는 물질을 상자성 (Para-Magnetism), Spin 이 없어 미약한 음의 대자율을 갖는 것을 반자성 (Dia-Magnetism)으로 분류한다. 또한, 자기모멘트는 자성감응도, 자기장의 세기 및 입자직경에 의하여 일정한 수식으로 구해지기도 한다. Briefly describe the magnetism. Magnetism is expressed by the amount of magnetic and magnetic moment, and the strength of the magnet is generally expressed by the magnitude of the magnetic moment rather than the magnetic amount. Magnetic moment is a vector quantity of magnitude and direction, and the direction is from the S (-) pole to the N (+) pole. In general, they are classified into ferro-magnetism, antiferro-magnetism, para-magnetism, and dia-magnetism according to the arrangement of magnetic moments. If the magnetic moments are arranged in one direction, the force is very strong, and it is called Ferro-Magnetism. The magnetic moments of the magnetic spins are arranged in opposite directions to the neighboring magnetic moments, but the magnetisms that are magnetized by the difference due to the magnitude of the magnetic moments are classified as Ferri Magnetism. In addition, the magnetic moment of magnetic spin is the same size as the neighbor but the direction is reversed so that the overall magnetic moment becomes zero. It is called antiferro-magnetism. However, the material having the property of increasing the strength of the internal magnetic field by aligning in the same direction as the direction of the external magnetic field is para-magnetism, and has a weak negative autonomy with no spin as dia-magnetism. Classify. In addition, the magnetic moment may be obtained by a constant equation based on magnetic sensitivity, magnetic field strength and particle diameter.
위와 같은 분류체계에 의하여 유용광물을 분류한 표가 도 7에 나타나 있다. 도 7은 비중선별에서 분리된 중광물에 포함된 유용광물의 함유량과 자성 감응도를 나타낸 표이다. 도 7의 표를 참조하면, 용광물에는 일메나이트와 마그네타이트가 가장 많이 포함되어 있으며, 모래 성분으로 분류될 수 있는 규사와 실리마나이트도 다수 포함되어 있다. 자성으로 볼 때 마그네타이트와 일메나이트가 가장 큰 자성감응도를 가지며, 저어콘과 루타일은 거의 비자성체임을 알 수 있다. Table 7 shows the classification of useful minerals by the above classification system. 7 is a table showing the content and magnetic sensitivity of useful minerals contained in the heavy minerals separated by specific gravity screening. Referring to the table of FIG. 7, the molten mineral includes the most of ilmenite and magnetite, and includes a large number of silica sand and silimite, which may be classified as sand components. Magnetically, magnetite and ilmenite have the highest magnetic sensitivity, and the zircon and rutile are almost nonmagnetic.
중광물 내의 함유량을 함께 고려하면, 중광물로부터 주요하게 분리 및 회수해야할 유용광물은 마그네타이트, 일메나이트, 저어콘, 루타일 및 모나자이트이다. Considering the content in the heavy minerals together, useful minerals to be separated and recovered from the heavy minerals are mainly magnetite, ilmenite, zircon, rutile and monazite.
본 출원인은 앞에서 기술한 자력의 세기, 유용광물의 감응도 등에 관한 기술적 고찰에 근거하여, 중광물로부터 선별하고자 하는 목표광물에 적용될 자력의 세기를 결정(각 분리유닛에 설치되는 자석의 세기를 결정하는 것과 동일)하기 위하여 많은 실험을 수행하였다. 대표적인 실험 예를 설명한다. The applicant determines the strength of the magnetic force to be applied to the target mineral to be selected from the heavy minerals, based on the technical considerations regarding the strength of the magnetic force, the sensitivity of the useful minerals, etc. described above (determining the strength of the magnet installed in each separation unit) Many experiments were performed. Representative experimental examples are described.
영종도에서 채취한 해사를 비중선별 한 후 4개의 시료(200g 1개 및 50g 3개)에 대하여, 1,000G로부터 11,000G 까지 자력을 가지는 여러 자석을 이용하여, 자력이 낮은 자석으로부터 순차적으로 높은 자력을 가지는 자석 순으로 배치하여 해사를 분류하는 방식과, 가장 센 자석을 먼저 배치한 후 그 뒤로는 자석이 낮은 순으로 배치하는 방식 등 다양한 배치방식을 통해 실험하였다. 자석은 1,500G, 3,000G, 5,000G, 7,000G 및 10,000G 등을 이용하였다. After specific gravity screening of the sea samples collected from Yeongjong Island, four magnets (one 200g and three 50g) were used to obtain high magnetic force sequentially from low-magnetism magnets using several magnets with magnetic force from 1,000G to 11,000G. Branches were arranged in magnet order to sort seawater, and the strongest magnets were placed first and then the magnets were placed in descending order. Magnets used were 1,500G, 3,000G, 5,000G, 7,000G and 10,000G.
본 실험에 의하여 확인한 결과, 10,000G 이상의 자력에서 특정하게 얻어질 수 있는 광물은 루타일 및 저어콘으로, 이들을 제외한 나머지 광물들은 10,000G의 자력에 모두 부착되었으나 이들은 부착되지 않았다. 10,000G가 기준점으로 작용할 수 있었다. 마찬가지로 3,000G를 기준으로 일메나이트를 선별할 수 있었고, 일메나이트는 4,000G, 에피도트는 7,000G 정도에서 유의미하게 분리할 수 있었다. As a result of this experiment, the minerals that can be specifically obtained at a magnetic force of 10,000G or more are rutile and zircon, except for these minerals attached to the magnetic force of 10,000G, but they are not attached. 10,000G could serve as a reference point. Similarly, it was able to select ilmenite based on 3,000 G, and was able to significantly separate ilmenite at 4,000 G and epidot at 7,000 G.
위와 같은 실증적 고찰을 기초로 최종적으로 중광물로부터 선별하고자 하는 목표광물을 결정하였으며, 이 목표광물을 선별하기 위한 자석의 세기도 결정하였다. 그 결과가 도 8의 표에 나타나 있다. Based on the above empirical considerations, the target minerals to be finally selected from the heavy minerals were determined, and the strength of the magnet for selecting these target minerals was also determined. The results are shown in the table of FIG.
도 8의 표를 참조하면, 본 발명에서 자력선별기를 통해 분리하고자 하는 주요 목표광물은 크게 5개 분류인데, 강자성체인 마그네타이트, 중자성체인 일메나이트, 약자성체인 에피도트, 혼블렌드 및 헤마타이트, 그리고 약자성체인 루타일과 모나자이트 및 비자성체인 저어콘이다. Referring to the table of FIG. 8, the main target minerals to be separated through the magnetic separator in the present invention are largely classified into five categories, the ferromagnetic magnetite, the heavy magnetic ilmenite, the weak magnetic epidot, horn blend and hematite, And rutile and monazite, which are magnetically weak, and zircon, which are nonmagnetic.
마그네타이트의 경우 강자성체로 1,000G 내지 2,000G의 약한 자력에도 자석에 부착된다. 이에 2,000G 이상의 높은 자석을 사용할 필요가 없지만 1,000G 미만은 자력이 너무 약하여 분리효율이 떨어질 수 있다. 이에 1,500G의 자력으로 마그네타이트를 선별한다. Magnetite is a ferromagnetic material attached to magnets even in weak magnetic forces of 1,000G to 2,000G. Therefore, it is not necessary to use a magnet higher than 2,000G, but less than 1,000G may have a weak magnetic force, which may reduce the separation efficiency. The magnetite is selected using a magnetic force of 1,500 G.
중자성체인 일메나이트는 3,000G의 자력으로 선별하며, 2,500G ~ 4,000G 범위로 확대할 수 있다. 그러나 2,500G 미만의 자력의 경우 일메나이트의 자석 부착율이 감소할 것이며, 4,000G를 초과하는 경우 필요 이상의 높은 자력을 사용하는 것이므로 바람직하지 못하다.Ilmenite, a magnetic material, is screened with magnetic force of 3,000G and can be expanded to 2,500G to 4,000G. However, magnetic force less than 2,500 G will decrease the magnetic adhesion rate of ilmenite, and if it exceeds 4,000 G, it is not desirable to use higher magnetic force than necessary.
약자성체인 에피도트와 혼블렌드 및 헤마타이트는 5,500G에서 분리가능하며, 5,000~7,000G에서도 분리가능하다. 다만, 5,000G 미만에서는 약자성체는 분리가 쉽지 않으며, 7,000G를 초과하는 것은 과다한 자력이므로 불필요하다. The weak magnetic epidots, horn blends, and hematites can be separated from 5,500 G and from 5,000 to 7,000 G. However, if less than 5,000G, the weak magnetic material is not easy to separate, and exceeding 7,000G is unnecessary because of excessive magnetic force.
마찬가지로 루타일(비자성체로 분류할 수도 있음)과 모나자이트는 자성감응도가 매우 낮아 8,000~10,000G의 높은 자력을 이용해야 분리가능하다. 비자성체인 저어콘은 자석에 부착되지 않으므로 자력선별기에서는 모래성분과 함께 거동될 것이며, 추후 정전선별 등에서 모래와 상호 분리될 수 있다. Likewise, rutile (which can be classified as nonmagnetic) and monazite have very low magnetic sensitivities and can be separated using a high magnetic force of 8,000 to 10,000G. Since the non-magnetic zircon is not attached to the magnet, the magnetic separator will behave together with the sand component, and can be separated from the sand later in the electrostatic screening.
상기한 바와 같이, 목표광물과 이 목표광물을 선별하기 위해 필요한 자력의 세기가 결정된 상태에서, 본 발명에서 사용하는 자력선별기(200)의 각 분리유닛(220,230,240,250)에 자석을 설치할 수 있다. As described above, in the state where the target minerals and the strength of the magnetic force required for selecting the target minerals are determined, magnets may be installed in each separation unit 220, 230, 240, 250 of the magnetic separator 200 used in the present invention.
중광물(s)의 진행 경로 상 첫 번째 배치되는 제1분리유닛(220)의 제1자석(222)은 11,000G의 자력을 가지도록 한다. 이에 중광물(s) 중 자성체는 모두 제1분리유닛(220)의 제1자석(222)에 부착되어 제2분리유닛(230)으로 공급되며, 비자성체인 저어콘이 제1자석(222)에 부착되지 않고 수집기(229)에 수집된다. 그리고 수집기(229)에는 루타일이 일부 포함될 수 있다. The first magnet 222 of the first separation unit 220 is first disposed on the progress path of the heavy mineral (s) to have a magnetic force of 11,000G. The magnetic material of the heavy mineral (s) is all attached to the first magnet 222 of the first separation unit 220 is supplied to the second separation unit 230, the non-magnetic stir cone to the first magnet 222 It is collected in collector 229 without being attached. In addition, the collector 229 may include some rutile.
제1분리유닛에서는 자성체와 비자성체를 상호 분리함으로써, 목표광물인 저어콘을 분리해낼 수 있다. 루타일이 유의미하게 포함되어 있는 경우에는 후술할 정전선별단계에서 분리할 수 있다. In the first separation unit, the magnetic substance and the nonmagnetic substance are separated from each other to separate the zircon which is the target mineral. If rutile is included significantly can be separated in the electrostatic screening step to be described later.
제1분리유닛(220)으로부터 제2분리유닛(230)의 이송벨트(231)로 공급된 중광물은 교차분리유닛(250)의 이송벨트(251)와 만나게 된다. 교차분리유닛(250)의 자석(254)은 전자석으로서 1,000~4,000G 범위에서 자력을 변경할 수 있는데, 본 실시예에서는 1,500G로 설정되어 있다. 이에 제2분리유닛(230)의 이송벨트(231)에서 이송중인 중광물(s) 중 강자성체인 마그네타이트는 1,500G의 자력에 의하여 흡인되어 교차분리유닛(250)의 교차이송벨트(251)에 부착되며, 나머지 광물들은 제2분리유닛(230)의 제2자석(232)쪽으로 계속 이동된다. 교차분리유닛(250)의 자석(254)에 의하여 교차이송벨트(251)에 부착된 마그네타이트는 자석(254)의 영역을 벗어난 뒤 교차이송벨트(251)로부터 이탈 및 자유낙하되어 수집기(259)로 수집된다. The heavy minerals supplied from the first separation unit 220 to the transfer belt 231 of the second separation unit 230 meet the transfer belt 251 of the cross separation unit 250. The magnet 254 of the cross separation unit 250 can change the magnetic force in the range of 1,000 ~ 4,000G as an electromagnet, in this embodiment is set to 1,500G. The magnetite, which is a ferromagnetic material, is transported by the magnetic force of 1,500 G in the heavy minerals s being transferred from the transfer belt 231 of the second separation unit 230 and attached to the cross transfer belt 251 of the cross separation unit 250. The remaining minerals continue to move toward the second magnet 232 of the second separation unit 230. The magnetite attached to the cross transfer belt 251 by the magnet 254 of the cross separation unit 250 is separated from the cross transfer belt 251 after falling out of the area of the magnet 254 and freely dropped to the collector 259. Is collected.
즉, 교차분리유닛에서는 목표광물인 마그네타이트가 선별되며, 제1분리유닛(220)과 교차분리유닛(250)을 거치게 되면 비자성체와 강자성체가 거의 대부분 선별된다. 이후, 제2분리유닛(230)과 제3분리유닛(240)에서는 중자성체와 약자성체를 선별한다. That is, in the cross-separation unit, magnetite, which is a target mineral, is selected, and when the first separation unit 220 and the cross-separation unit 250 pass through, almost non-magnetic and ferromagnetic substances are selected. Thereafter, the second separation unit 230 and the third separation unit 240 select the neutral and weak magnetic material.
제2분리유닛(230)의 제2자석(232)은 3,000G로 설정되며, 중자성체인 일메나이트를 선별한다. 즉, 중자성체인 일메나이트는 제2분리유닛(230)의 제2자석(232)에 부착되어 이송벨트(231)의 하측으로 이동된 후에 수집기(239)에 모여지며, 약자성체인 루타일, 모나자이트, 에피도트, 혼블렌드, 헤마타이트는 제2자석(32)에 부착되지 않고 바로 제2분리유닛(230)의 이송벨트(231)로부터 이탈되어 제3분리유닛(240)으로 공급된다. The second magnet 232 of the second separation unit 230 is set to 3,000G, and selects the ilmenite which is a heavy magnetic material. That is, the ilmenite, which is a magnetic substance, is attached to the second magnet 232 of the second separation unit 230 and moved to the lower side of the conveying belt 231, and then gathered in the collector 239, and the weak magnetic rutile, The monazite, epidot, horn blend, and hematite are not attached to the second magnet 32 and are directly separated from the transfer belt 231 of the second separation unit 230 and supplied to the third separation unit 240.
제3분리유닛(240)에서는 5,500G의 자력을 가지는 제3자석(242)이 설치되며, 약자성체 중 에피도트, 혼블렌드, 헤마타이트는 제3자석(242)에 부착되어 이송벨트(241)의 하부로 이송된 뒤 수집기(248)에 수집되고, 이들보다 더 약자성체인 루타일과 모나자이트는 제3자석(242)에 부착되지 않고 바로 이송벨트(241)에서 이탈되어 다른 수집기(249)에 수집된다. 즉, 제3분리유닛(240)에서는 약자성체 내에서 상대적으로 강한 자성을 가진 광물과 상대적으로 약한 자성을 가진 광물들을 상호 선별해낸다. In the third separation unit 240, a third magnet 242 having a magnetic force of 5,500 G is installed, and epidots, horn blends, and hematites among the weak magnetic bodies are attached to the third magnet 242 to transfer belt 241. Rutile and monazite, which are weaker than these, are collected in the collector 248 and are not attached to the third magnet 242, but are immediately removed from the transfer belt 241 and collected in another collector 249. do. That is, in the third separation unit 240, the mineral having a relatively strong magnetic and the mineral having a relatively weak magnetic are mutually selected in the weak magnetic body.
각 수집기(229,239,248,249,259)에는 각 자석(222,232,242,252)에 의하여 분리된 광물들이 모여져 있지만, 이들은 순수하게 목표광물들만 포함되어 있지는 않으며 일부 다른 광물들이 포함되어 있다. 즉, 중자성체인 일메나이트가 모인 수집기(39)에는 강자성체인 마그네타이트 일부와 약자성체인 에피도트 등이 섞여 있게 된다. 이는 단순히 자성의 문제가 아니라 각 광물입자의 크기, 무게 등 다양한 변수에 의한 것이다. 즉, 자력선별에 의해서 유용광물들을 효과적으로 분리할 수 있으며, 후속공정을 통해 순도를 더욱 증대시킬 수 있다. 따라서, 각 수거함에 수집된 광물을 대상으로 재차 자력선별을 수행할 수도 있다. 그리고 자력선별 후에는 정전선별단계(M40)를 수행한다. Each collector 229,239,248,249,259 is a collection of minerals separated by the magnets 222,232,242,252, but they do not purely contain the target minerals and some other minerals. That is, in the collector 39 in which ilmenite, which is a magnetic substance, is collected, a part of the magnetite, which is a ferromagnetic substance, and an epidot, which is a weak magnetic substance, are mixed. This is not simply a matter of magnetism, but due to various variables such as the size and weight of each mineral particle. In other words, it is possible to effectively separate the useful minerals by magnetic screening, it is possible to further increase the purity through the subsequent process. Therefore, it is also possible to perform magnetic screening again on the minerals collected in each bin. After the magnetic screening, the blackout screening step M40 is performed.
정전선별단계(M40)에서는 자력선별단계(M30)에서 분리된 각 광물군의 전기적 성질을 이용하여 각 광물군을 다시 세분한다. 다만, 자력선별단계(M30)에서 분리된 모든 광물군에 대해서 정전선별을 수행할 필요는 없으며, 복수의 광물이 혼합되어 있는 경우에 정전선별을 수행한다. 예컨대, 자력선별기(200)의 제1분리유닛(220)에서는 저어콘을 목표광물로 삼았지만, 수거함(229)에는 저어콘과 함께 루타일이 일부 섞여있는 것이 일반적이다. 이렇게 수거함에 복수의 광물이 혼합되어 있는 경우 정전선별이 요구된다. 다만, 교차분리유닛에서는 목표광물이 마그네타이트이며, 수거함(254)에 다른 광물이 거의 포함되어 있지 않다면 정전선별을 수행할 필요가 없다. 그러나 대부분의 수거함에는 함량의 차이는 있지만, 목표광물 이외에 다른 광물이 많이 혼합되어 있다. 이에 바람직하게는 자력선별에서 분리된 모든 광물군에 대해서 정전선별을 수행한다. In the electrostatic screening step (M40), each mineral group is subdivided again by using the electrical properties of each mineral group separated in the magnetic screening step (M30). However, it is not necessary to perform electrostatic screening for all the mineral groups separated in the magnetic screening step M30, and performs electrostatic screening when a plurality of minerals are mixed. For example, in the first separation unit 220 of the magnetic separator 200, the zircon is used as the target mineral, but the rubbing container 229 is generally mixed with rutile together with the zircon. In the case where a plurality of minerals are mixed in this collection, electrostatic screening is required. In the cross-separation unit, however, the target mineral is magnetite, and if the collection box 254 contains almost no other minerals, there is no need to perform electrostatic screening. However, most of the collection, although there is a difference in content, other minerals are mixed in addition to the target minerals. Preferably, the electrostatic screening is performed for all the mineral groups separated from the magnetic screening.
정전선별은 광물이 가지는 전기적 성질 차이를 이용하는 것이다. 예컨대 전기전도도의 차이를 이용하여 정전선별을 수행할 수 있다. 즉, 접지전극으로 작용하는 롤러의 표면을 따라 광물을 이송시키면서 광물에 하전을 하면 광물 표면에 전하가 차징되는데, 광물들 중 전기전도성이 높은 광물들의 표면 전하는 즉시 접지전극을 통해 방전되므로 전하를 잃은 광물은 롤러로부터 이탈되는데, 전기전도성이 없는 광물의 경우 표면에 전하를 그대로 유지하므로 롤러에 부착된 상태를 일정 시간 더 유지한 후 이탈된다. 특히, 롤러에 인접하여 음전극이 배치되는 경우는 전기적 반발력으로 인해 롤러에 부착된 시간이 길어진다. 이렇게 전기전도도의 차이를 이용하여 광물을 상호 분류할 수 있다. Electrostatic screening uses the difference in electrical properties of minerals. For example, electrostatic screening may be performed by using a difference in electrical conductivity. In other words, when the mineral is charged while transporting the mineral along the surface of the roller serving as the ground electrode, the charge is charged on the mineral surface, and the surface charge of the highly conductive minerals among the minerals is discharged through the ground electrode immediately, thus losing the charge. The minerals are separated from the rollers, and in the case of minerals having no electrical conductivity, the charges remain on the surface as they are, so that the minerals are attached to the rollers for a certain period of time. In particular, when the negative electrode is disposed adjacent to the roller, the time attached to the roller becomes long due to the electric repulsive force. In this way, the difference between the electrical conductivity can be used to classify the minerals.
예컨대, 루타일과 저어콘은 둘 다 자성이 희박하여, 자력분리에 의해서 상호 분리되지 않는 경우가 많다. 그러나, 루타일은 전기전도성이 높은 반면 저어콘은 전기전도성이 없어 정전분리에 의하여 두 광물은 효과적으로 분리될 수 있다. For example, rutile and zircon are both rarely magnetic and are not separated from each other by magnetic separation. However, rutile has high electrical conductivity, whereas zircon has no electrical conductivity, and thus, two minerals can be effectively separated by electrostatic separation.
마찬가지로 자력분리기(200)의 제3분리유닛(240)에서 수거함(249)에는 목표광물인 모나자이트 이외에 루타일이 섞여 있는 경우가 많다. 모나자이트도 루타일과 마찬가지로 자성이 약하기 때문이다. 그러나, 모나자이트는 전기전도성이 없지만 루타일은 전기전도성이 높아 정전분리를 통해 효과적으로 분리가능하다. Likewise, in the collection unit 249 of the third separation unit 240 of the magnetic separator 200, rutile is often mixed in addition to the monazite as the target mineral. Monazite, like rutile, is weak in magnetism. However, monazite is not electrically conductive, but rutile is highly conductive and can be effectively separated through electrostatic separation.
한편, 광물에 전하를 차징하는 방식에서 마찰방식을 이용할 수도 있다. 광물을 상호 마찰시키면 광물들은 전기적 특성에 따라 표면에 음전하가 대전될 수도 있고 양전하가 대전될 수도 있다. 이렇게 서로 다른 극성으로 전하가 차징된 상태에서, 음전극과 양전극 사이의 전기장을 통과시키면 광물들은 전기적 인력에 의해 반대의 극성을 가지는 전극쪽으로 끌려가는 바, 광물들을 효과적으로 분리할 수 있다. Meanwhile, a friction method may be used in the method of charging the mineral with charge. When the minerals are rubbed together, the minerals may be charged with a negative charge or a positive charge on the surface, depending on their electrical properties. In the state where charges are charged with different polarities, when the electric field between the negative electrode and the positive electrode is passed, the minerals are attracted to the electrode having the opposite polarity by the electric attraction, and thus the minerals can be effectively separated.
본 실시예에서는 상기한 2가지 방식의 정전선별방법을 사용할 수도 있으며, 광물들에 하전되는 전하량의 차이를 이용하는 방식을 채택할 수도 있다. 즉, 광물에 음전하를 대전시키면 광물들의 전기적 특성에 따라 표면에 하전되는 전하량이 서로 다르다. 이러한 상태에서 음전극이 하부에 양전극이 상부에 배치되며 하방으로 기울어지게 설치된 패널 사이를 통과시키면, 광물들은 경사면을 따라 이동하여 전극들 사이를 이탈하게 되는데, 음전하가 많이 차징된 광물들은 반발력에 의해서 전극 사이에서 양전극 쪽으로 상승하고 상대적으로 작은 양의 음전하가 차징된 광물은 하부 패널 쪽에 근접하게 된다. 이러한 점을 이용하여 광물을 전극 패널 사이를 통과시키면 복수의 광물을 효과적으로 분리할 수 있다.In the present embodiment, the above-described two kinds of electrostatic screening methods may be used, or a method using the difference in the amount of charges charged to the minerals may be adopted. That is, when negative charges are charged to minerals, the amount of charges charged on the surface differs according to the electrical characteristics of the minerals. In this state, when the negative electrode passes between the panels disposed on the lower side and the positive electrode is disposed on the lower side, the minerals move along the inclined plane and are separated between the electrodes. The negatively charged minerals are moved by the repulsive force. Minerals which rise toward the positive electrode and are charged with a relatively small amount of negative charge are brought closer to the lower panel. By using these points, passing the minerals between the electrode panels can effectively separate the plurality of minerals.
상기한 바와 같은 정전선별은 전기전도성의 유무, 보다 세밀하게는 전기전도성의 크기나 일함수(work function, 마찰대전의 경우)에 따라 정밀하게 분리작업을 수행할 수 있다. 이러한 정전선별에 의해 광물들은 단일 광물로 최종 분리될 수 있다. As described above, the electrostatic screening can perform the separation operation precisely according to the presence or absence of electrical conductivity, more specifically, the size or work function (work function, in the case of frictional charging) of the electrical conductivity. This electrostatic screening allows the minerals to be finally separated into a single mineral.
이상에서 설명한 바와 같이, 본 발명에서는 비중선별, 자력선별 및 정전선별을 통해 해사 또는 강사와 같은 쇄설성 자원으로부터 유용광물을 개별 광물 단위로효과적으로 분리할 수 있다. As described above, in the present invention, useful minerals can be effectively separated into individual mineral units from destructive resources such as maritime or instructors through specific gravity screening, magnetic screening, and electrostatic screening.
본 발명은 첨부된 도면에 도시된 일 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 당해 기술분야에서 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 타 실시예가 가능하다는 점을 이해할 수 있을 것이다. 따라서, 본 발명의 진정한 보호 범위는 첨부된 청구 범위에 의해서만 정해져야 할 것이다. Although the present invention has been described with reference to one embodiment shown in the accompanying drawings, this is merely exemplary, and it will be understood by those skilled in the art that various modifications and equivalent other embodiments are possible therefrom. Could be. Accordingly, the true scope of protection of the invention should be defined only by the appended claims.

Claims (14)

  1. 해사 또는 강사를 포함하는 쇄설성 자원으로부터 유용광물을 회수하기 위한 것으로서, As for recovering useful minerals from destructive resources, including maritime or instructors,
    상기 쇄설성 자원에 포함된 광물들의 상대적인 무게 차이를 이용하여 상기 쇄설성 자원을 적어도 2개의 광물군인 중광물과 경광물로 분리하는 비중선별단계;A specific gravity separation step of separating the debris resource into at least two mineral groups, heavy and hard minerals, by using a relative weight difference of the minerals contained in the debris resource;
    서로 다른 크기의 자력을 가지는 복수의 자석이 배치되어 있는 경로로 상기 비중선별단계에서 분리된 중광물을 연속적으로 이동시키면서, 상기 중광물 내의 광물들이 가지는 자성의 차이에 따라 상기 복수의 자석에 선택적으로 부착되는 것을 이용하여 상기 중광물을 복수의 광물군으로 분리하는 자력선별단계; 및 By selectively moving the heavy minerals separated in the specific gravity selection step along a path in which a plurality of magnets having different magnetic forces are arranged, the plurality of magnets are selectively attached to the plurality of magnets according to the difference in magnetic properties of the minerals in the heavy minerals. Magnetic separation step of separating the heavy minerals into a plurality of mineral groups by using the attached; And
    상기 자력선별단계에서 분리된 각 광물군에 포함된 광물들의 전기적 성질의 차이를 이용하여 상기 복수의 광물군 중 적어도 하나의 광물군으로부터 목표광물을 다시 선별하는 정전선별단계;를 포함하여 이루어진 것을 특징으로 하는 쇄설성 자원 내 유용광물 회수방법. And an electrostatic screening step of reselecting a target mineral from at least one mineral group of the plurality of mineral groups by using a difference in electrical properties of minerals included in each mineral group separated in the magnetic force selection step. A method for recovering useful minerals in a destructive resource.
  2. 제1항에 있어서,The method of claim 1,
    상기 비중선별단계에서는,In the specific gravity selection step,
    상하방향으로 배치되며 나선형의 수로가 형성되어 있으며, 상기 수로의 하부측 출구에는 상기 수로의 폭 방향을 따라 2개의 격벽부재가 설치된 비중선별장치를 설치하고, It is arranged in the vertical direction and a spiral waterway is formed, and a non-separation device having two partition members installed along the width direction of the waterway is installed at an outlet of the lower side of the waterway,
    상기 쇄설성 자원에 물을 혼합한 혼합액을 상기 나선형 수로를 따라 상부에서 하부로 흘러가게 하여 상기 쇄설성 자원 내에 포함된 광물들이 상대적 무게 차에 의해 상기 수로의 폭 방향을 따라 분산되게 함으로써, 상기 쇄설성 자원 내 광물들은 상기 격벽부재에 의하여 중광물, 중간광물 및 경광물로 분산되도록 하며, The mixed solution of water mixed with the debrisable resource flows from the top to the bottom along the helical channel so that the minerals contained in the debrisable resource are dispersed along the width direction of the channel by the relative weight difference. Minerals in the sex resources are dispersed by the partition member into heavy minerals, intermediate minerals and hard minerals,
    상기 중광물은 수거하고, 상기 중간광물 단독으로 또는 상기 중간광물과 경광물을 혼합하여 다시 상기 비중선별장치에 투입함으로써, 상기 중간광물과 경광물 내에 일부 잔존하는 중광물을 분리하는 것을 특징으로 하는 쇄설성 자원 내 유용광물 회수방법. The heavy minerals are collected, and the intermediate minerals alone, or the intermediate minerals and the light minerals are mixed and added to the specific gravity screening device to separate the heavy minerals remaining in the intermediate minerals and the light minerals. Recovery of useful minerals in debrisable resources.
  3. 제2항에 있어서,The method of claim 2,
    상기 비중선별장치는 연속적으로 복수 개 배치되며, The specific gravity screening device is arranged in plurality in succession,
    상기 비중선별장치에 의한 비중선별시 상기 중간광물 또는 경광물로 분류된 광물들은 연속적으로 배치된 다른 비중선별장치에 투입되어 잔존하는 중광물을 선별함으로써, 선별공정을 연속적으로 수행하는 것을 특징으로 하는 쇄설성 자원 내 유용광물 회수방법.Minerals classified as intermediate or hard minerals are sorted by the specific gravity sorting device by the specific gravity sorting device, and the remaining heavy minerals are sorted into another specific gravity sorting device arranged in succession to perform the sorting process continuously. Recovery of useful minerals in debrisable resources.
  4. 제1항에 있어서, The method of claim 1,
    상기 자력선별단계에서는 복수의 자석이 배치되되, 상기 자석들 중 상대적으로 가장 센 자력을 가지는 제1자석, 상대적으로 가장 작은 자력을 가지는 제2자석, 상기 제1자석과 제2자석의 자력 사이의 자력을 가지는 제3자석이 순차적으로 배치되며, In the magnetic force selection step, a plurality of magnets are disposed, the first magnet having a relatively strong magnetic force of the magnets, the second magnet having a relatively small magnetic force, between the magnetic force of the first magnet and the second magnet The third magnet having magnetic force is disposed sequentially,
    상기 비중선별단계에서 분리된 상기 중광물은 상기 제1자석 내지 상기 제3자석이 순차적으로 배치된 경로를 통과하며 분리되되,The heavy minerals separated in the specific gravity selection step are separated while passing through a path in which the first magnets to the third magnets are sequentially arranged,
    상기 제1자석에 부착된 광물들은 상기 제2자석이 배치된 영역으로 이송하고 부착되지 않은 광물은 분리하여 수집하며, 상기 제2자석에 부착되지 않은 광물은 상기 제3자석이 배치된 영역으로 이송하며 부착된 광물은 분리하여 수집하고, 최종적으로 상기 제3자석에 부착된 광물과 부착되지 않은 광물을 분리하여 수집하는 것을 특징으로 하는 쇄설성 자원 내 유용광물 회수방법. Minerals attached to the first magnet are transferred to the region where the second magnet is disposed, and minerals not attached to the second magnet are collected and collected, and minerals not attached to the second magnet are transferred to the region where the third magnet is disposed. And the attached minerals are collected separately, and finally, the minerals attached to the third magnet and the non-attached minerals are collected and collected separately.
  5. 제4항에 있어서,The method of claim 4, wherein
    상기 제1자석과 제2자석 사이에 전자석이 배치되는 것을 특징으로 하는 쇄설성 자원 내 유용광물 회수방법. The useful mineral recovery method in the debris resource, characterized in that the electromagnet is disposed between the first magnet and the second magnet.
  6. 제5항에 있어서,The method of claim 5,
    상기 제1자석의 자력은 10,000~11,500G(가우스) 이며, 상기 제2자석의 자력은 2,500~4,000G이며, 상기 제3자석의 자력은 5,000~7,000G이며, 상기 전자석의 자력은 1000~4000G 범위인 것을 특징으로 하는 쇄설성 자원 내 유용광물 회수방법.The magnetic force of the first magnet is 10,000 ~ 11,500G (Gauss), the magnetic force of the second magnet is 2,500 ~ 4,000G, the magnetic force of the third magnet is 5,000 ~ 7,000G, the magnetic force of the electromagnet is 1000 ~ 4000G A useful mineral recovery method in a debrisable resource, characterized in that the range.
  7. 제5항에 있어서,The method of claim 5,
    상기 비중선별단계에서 얻어진 중광물을 자력선별함에 있어서,In magnetic separation of the heavy minerals obtained in the specific gravity selection step,
    상기 제1자석에 부착되지 않고 수집되는 목표광물은 저어콘을 포함하며,The target mineral collected without being attached to the first magnet includes a zircon,
    상기 전자석에 부착되어 수집되는 목표광물은 마그네타이트를 포함하며,The target mineral collected by being attached to the electromagnet includes magnetite,
    상기 제2자석에 부착되어 수집되는 목표광물은 일메나이트를 포함하며,The target mineral collected by being attached to the second magnet includes ilmenite,
    상기 제3자석에 의하여 부착되지 않고 수집되는 목표광물은 모나자이트를 포함하는 것을 특징으로 하는 쇄설성 자원 내 유용광물 회수방법. The target mineral collected without being attached by the third magnet is a useful mineral recovery method in the debrisable resource, characterized in that it comprises a monazite.
  8. 제4항에 있어서,The method of claim 4, wherein
    상기 제1자석에 부착된 후 상기 제2자석이 배치된 영역으로 이송되기 위해 상기 제1자석으로부터 분리된 광물들의 잔류자기를 탈자기에 의하여 제거하는 것을 특징으로 하는 쇄설성 자원 내 유용광물 회수방법.Method of recovering the useful minerals in the debrisable resource, characterized in that by removing the residual magnetic of the minerals separated from the first magnet in order to be transferred to the area where the second magnet is disposed after being attached to the first magnet. .
  9. 제4항에 있어서,The method of claim 4, wherein
    상기 자력선별단계는 자력선별기에 의하여 수행되며,The magnetic separation step is performed by a magnetic separator,
    상기 자력선별기는, The magnetic separator,
    일방향으로 순환되는 이송벨트와, 상기 이송벨트의 일단부 내주면에 구름접촉되는 원통형 자석을 구비하여, 상기 이송벨트의 상부에서 일방향으로 이송되던 광물 중 일부는 상기 이송벨트의 단부에서 상기 자석의 자력에 의하여 부착되지 않고 상기 이송벨트로부터 이탈되며, 상기 광물 중 나머지 일부는 상기 이송벨트의 단부에서 상기 자석의 자력에 의하여 부착되어 상기 이송벨트의 하부로 이송된 후 상기 이송벨트로부터 이탈되는 분리유닛을 포함하여 이루어지며, It is provided with a conveying belt circulated in one direction, and a cylindrical magnet in contact with the inner peripheral surface of one end of the conveying belt, some of the minerals conveyed in one direction from the upper portion of the conveying belt to the magnetic force of the magnet at the end of the conveying belt Is separated from the conveyance belt without being attached by, the remaining portion of the mineral is attached by the magnetic force of the magnet at the end of the conveying belt includes a separation unit which is separated from the conveying belt after being conveyed to the lower portion of the conveying belt Is done by
    상기 자력선별기에는 상기 분리유닛이 복수 개 배치되어, 상기 광물의 진행경로 상 선단에 배치된 분리유닛의 이송벨트에서 자력에 의하여 두 부분으로 분리되어 이탈된 광물 중 어느 한 부분의 광물을 상기 광물의 진행 경로 상 후단에 배치된 분리유닛이 공급받아 다시 자력에 의하여 분리하는 것을 특징으로 하는 쇄설성 자원 내 유용광물 회수방법. In the magnetic separator, a plurality of separation units are disposed, and minerals of any one of the minerals separated and separated into two parts by magnetic force in a transfer belt of the separation unit disposed at the distal end of the mineral path are separated from the minerals. A method for recovering useful minerals in a debris resource, characterized in that the separation unit disposed at the rear end of the progress path is supplied and separated again by magnetic force.
  10. 제9항에 있어서,The method of claim 9,
    정전기력에 의해 상기 각 분리유닛의 이송벨트의 하부에 부착되어 있는 상기 광물에 음이온을 공급하여 상기 광물이 상기 이송벨트로부터 분리되도록 하는 것을 특징으로 하는 쇄설성 자원 내 유용광물 회수방법. And anion is supplied to the minerals attached to the lower portion of the transfer belt of each separation unit by electrostatic force so that the minerals are separated from the transfer belt.
  11. 제9항에 있어서,The method of claim 9,
    상기 각 분리유닛의 이송벨트 하부에는 부착되어 있는 상기 광물을 향해 바람을 불어 넣어 상기 광물이 상기 이송벨트로부터 분리되도록 하는 것을 특징으로 하는 쇄설성 자원 내 유용광물 회수방법. A method of recovering useful minerals in a debrisable resource, characterized in that the minerals are separated from the conveying belt by blowing wind toward the minerals attached to the lower portion of the conveying belt of each separating unit.
  12. 제1항에 있어서,The method of claim 1,
    상기 정전선별단계에서는 상기 자력선별단계에서 분리된 광물군을 다시 세분하기 위하여, 상기 광물군 내 포함된 광물들의 전기전도성의 차이를 이용하는 것을 특징으로 하는 쇄설성 자원 내 유용광물 회수방법. In the electrostatic screening step, to recover the mineral group separated in the magnetic screening step, using the difference in the electrical conductivity of the minerals contained in the mineral group, the useful mineral recovery method in the debris resource.
  13. 제1항에 있어서,The method of claim 1,
    상기 정전선별단계에서는 상기 자력선별단계에서 분리된 광물군을 다시 세분하기 위하여, 상기 광물군들 내의 광물들이 마찰되면서 서로 다른 극성으로 대전시킨 후, 상기 대전된 광물들이 음전극과 양전극 사이를 통과하게 하면서 분리하는 것을 특징으로 하는 쇄설성 자원 내 유용광물 회수방법. In the electrostatic screening step, in order to subdivide the mineral group separated in the magnetic screening step, the minerals in the mineral groups are charged with different polarities while rubbing, and then the charged minerals pass between the negative electrode and the positive electrode. A method for recovering useful minerals in a debris resource, characterized by separating.
  14. 제1항에 있어서,The method of claim 1,
    상기 정전선별단계에서는 상기 자력선별단계에서 분리된 광물군을 다시 세분하기 위하여, 상기 광물군들 내의 광물에 하전을 가하고, 상기 광물들이 양전극과 음전극 사이를 통과하게 하면서 상기 광물들에 하전된 전하량의 차이를 이용하여 상기 광물군을 분리하는 것을 특징으로 하는 쇄설성 자원 내 유용광물 회수방법. In the electrostatic screening step, in order to subdivide the mineral group separated in the magnetic screening step, the minerals in the mineral groups are charged, and the minerals pass between the positive electrode and the negative electrode, and thus the amount of charge charged to the minerals. A method for recovering useful minerals in a debris resource, characterized in that separating the mineral group using a difference.
PCT/KR2011/001667 2011-03-10 2011-03-10 Method for recovering useful minerals from clastic resources such as sea sand and river sand WO2012121438A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020110021246A KR101241789B1 (en) 2011-03-10 2011-03-10 Method for separating valuable mineral from clastic resources such as sea sand or river sand
KR10-2011-0021246 2011-03-10

Publications (1)

Publication Number Publication Date
WO2012121438A1 true WO2012121438A1 (en) 2012-09-13

Family

ID=46798379

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/001667 WO2012121438A1 (en) 2011-03-10 2011-03-10 Method for recovering useful minerals from clastic resources such as sea sand and river sand

Country Status (2)

Country Link
KR (1) KR101241789B1 (en)
WO (1) WO2012121438A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020187826A1 (en) * 2019-03-20 2020-09-24 Lig Gmbh Method and device for separating feedstock

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101355583B1 (en) 2013-10-04 2014-01-24 한국지질자원연구원 Simplicity valuable mineral decollator and valuable mineral separating method using thereof
KR101533071B1 (en) * 2014-12-22 2015-07-02 한국지질자원연구원 Equipment for mineral separation using weight of the mineral
KR102068818B1 (en) * 2019-07-17 2020-01-21 한국지질자원연구원 Recovery method of high-grade ilmenite by complex separation
CN111992330B (en) * 2020-07-06 2023-02-28 安徽凤矿硅砂集团有限公司 Port sea sand processing technology

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943368A (en) * 1988-11-15 1990-07-24 Pittsburgh Mineral & Environmental Technology, Inc. Nonmetallic abrasive blasting material recovery process including an electrostatic separation step
US5205414A (en) * 1991-06-17 1993-04-27 Edward Martinez Process for improving the concentration of non-magnetic high specific gravity minerals
JPH11157846A (en) * 1997-11-27 1999-06-15 Central Glass Co Ltd Preparation of cullet reusable as glass raw material and equipment therefor
US20070272596A1 (en) * 2006-05-25 2007-11-29 Titanium Corporation Inc. Process for recovering heavy minerals from oil sand tailings
KR100856800B1 (en) * 2007-07-11 2008-09-05 한국지질자원연구원 Horizontal type electrostatic separation device
KR100958547B1 (en) * 2008-07-31 2010-05-18 한국지질자원연구원 Spiral gravity separator
KR20100108049A (en) * 2009-03-27 2010-10-06 최종오 Refining method of raw ore for poly silicon

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1024282A (en) 1996-07-11 1998-01-27 Naoki Shigetani Method for recovering fine-grain nonferrous metal or the like contained in waste incineration ash and shredder dust
KR100948490B1 (en) 2009-11-27 2010-03-18 서흥인테크(주) The selection method recycling plastic

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4943368A (en) * 1988-11-15 1990-07-24 Pittsburgh Mineral & Environmental Technology, Inc. Nonmetallic abrasive blasting material recovery process including an electrostatic separation step
US5205414A (en) * 1991-06-17 1993-04-27 Edward Martinez Process for improving the concentration of non-magnetic high specific gravity minerals
JPH11157846A (en) * 1997-11-27 1999-06-15 Central Glass Co Ltd Preparation of cullet reusable as glass raw material and equipment therefor
US20070272596A1 (en) * 2006-05-25 2007-11-29 Titanium Corporation Inc. Process for recovering heavy minerals from oil sand tailings
KR100856800B1 (en) * 2007-07-11 2008-09-05 한국지질자원연구원 Horizontal type electrostatic separation device
KR100958547B1 (en) * 2008-07-31 2010-05-18 한국지질자원연구원 Spiral gravity separator
KR20100108049A (en) * 2009-03-27 2010-10-06 최종오 Refining method of raw ore for poly silicon

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
N. BABU ET AL., JOURNAL OF MINERAL & MATERIALS CHARACTERIZATION & ENGINEERING, vol. 8, no. 2, 2009, pages 149 - 159 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020187826A1 (en) * 2019-03-20 2020-09-24 Lig Gmbh Method and device for separating feedstock
US11833525B2 (en) 2019-03-20 2023-12-05 Lig Gmbh Method and apparatus for separating feed material

Also Published As

Publication number Publication date
KR101241789B1 (en) 2013-03-14
KR20120103156A (en) 2012-09-19

Similar Documents

Publication Publication Date Title
WO2012121438A1 (en) Method for recovering useful minerals from clastic resources such as sea sand and river sand
KR101241790B1 (en) Method for separating valuable mineral from clastic resources such as sea sand or river sand
CA2834663C (en) Process and device for separation of all non-magnetic particles from a conglomerate of metal scrap in order to achieve pure iron scrap
JP6690565B2 (en) Magnetic force sorting method and device
US3690454A (en) Method and apparatus for magnetic concentration with ferromagnetic soft iron bodies
WO2012121437A1 (en) Magnetic force sorting device
CN105032609A (en) Iron ore iron-increasing and silicon-reduction process
KR101136567B1 (en) Magnetic separator
WO2017119559A1 (en) Multi-stage eddy current separator
RU64947U1 (en) TWO-STAGE MAGNETIC SEPARATOR FOR THE ENRICHMENT OF DRY LOAN MAGNETIC ORES
JP2014200723A (en) Separation method and separation device of ferromagnetic body
KR101909622B1 (en) Mineral dressing method using electromagnetic field reaction, and mineral dressing device thereof
WO2016187860A1 (en) Anhydrous type mineral sorting apparatus
JP6662275B2 (en) Method and apparatus for magnetic separation of particulate matter
JP2018122219A (en) Magnetic separation device
US20220048042A1 (en) Material feed process and assembly for a rotary magnetic separator
JP5842853B2 (en) Method and apparatus for separating ferromagnetic material
RU68363U1 (en) MAGNETIC TWO-CASED DRUM SEPARATOR FOR ENRICHMENT OF DRY BULK WEAK MAGNETIC ORES
Lee et al. Application and type of magnetic separator
Karmazin Theoretical assessment of technological potential of magnetic and electrical separation
CN104858056B (en) A kind of Waterless mineral sorting equipment
CN114392832B (en) Recovery process of zircon in seashore ore sand
Maxwell Magnetic separation—The prospects for superconductivity
CN111185301B (en) Dry-type environment-friendly ore dressing system and ore dressing method
CN2212454Y (en) Magnetic heavy screening machine

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11860618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11860618

Country of ref document: EP

Kind code of ref document: A1