WO2012113748A1 - Verwendung von schichtaufbauten in windkraftanlagen - Google Patents

Verwendung von schichtaufbauten in windkraftanlagen Download PDF

Info

Publication number
WO2012113748A1
WO2012113748A1 PCT/EP2012/052847 EP2012052847W WO2012113748A1 WO 2012113748 A1 WO2012113748 A1 WO 2012113748A1 EP 2012052847 W EP2012052847 W EP 2012052847W WO 2012113748 A1 WO2012113748 A1 WO 2012113748A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
optionally
plastic
reaction mixture
fiber
Prior art date
Application number
PCT/EP2012/052847
Other languages
English (en)
French (fr)
Inventor
Stefan Lindner
Klaus Franken
Dirk Passmann
Peter Nordmann
Original Assignee
Bayer Materialscience Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bayer Materialscience Ag filed Critical Bayer Materialscience Ag
Priority to CA2828035A priority Critical patent/CA2828035A1/en
Priority to PL12706797T priority patent/PL2678151T3/pl
Priority to MX2013009565A priority patent/MX2013009565A/es
Priority to ES12706797.3T priority patent/ES2646391T3/es
Priority to EP12706797.3A priority patent/EP2678151B1/de
Priority to CN201280010441.9A priority patent/CN103619579B/zh
Priority to US14/001,207 priority patent/US9085990B2/en
Priority to BR112013021601A priority patent/BR112013021601A2/pt
Priority to DK12706797.3T priority patent/DK2678151T3/da
Priority to AU2012219675A priority patent/AU2012219675B2/en
Publication of WO2012113748A1 publication Critical patent/WO2012113748A1/de

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/282Selecting composite materials, e.g. blades with reinforcing filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/26Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it also being fibrous or filamentary
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/28Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer impregnated with or embedded in a plastic substance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D1/00Wind motors with rotation axis substantially parallel to the air flow entering the rotor 
    • F03D1/06Rotors
    • F03D1/065Rotors characterised by their construction elements
    • F03D1/0675Rotors characterised by their construction elements of the blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05CINDEXING SCHEME RELATING TO MATERIALS, MATERIAL PROPERTIES OR MATERIAL CHARACTERISTICS FOR MACHINES, ENGINES OR PUMPS OTHER THAN NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES
    • F05C2225/00Synthetic polymers, e.g. plastics; Rubber
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/49336Blade making
    • Y10T29/49337Composite blade

Definitions

  • the invention relates to the use of layer structures in the manufacture of rotor blades for wind turbines and rotor blades for wind turbines.
  • the main focus is on the quality of the rotor blades produced and a cost-effective production.
  • the previously known rotor blades for wind turbines consist of fiber-reinforced plastics based on resins as matrix material, such as polyester resins (UP), vinyl ester resins (VE), epoxy resins (EP).
  • UP polyester resins
  • VE vinyl ester resins
  • EP epoxy resins
  • the production of the sheets is mainly borrowed so that in each case a lower and an upper half of the wing are produced in one piece. These two halves are then placed on each other and glued. Struts or straps are glued in for reinforcement.
  • the rotor blades for wind turbines of the aforementioned resins are usually produced by hand lamination, hand lamination with the assistance of prepreg technology, by winding method or the vacuum-assisted Inf sion method.
  • manual lamination a mold is first prepared by applying a release agent and optionally a gelcoat to the mold surface. Subsequently, glass scrims with unidirectional or biaxial orientation are successively placed in the mold. Thereafter, the resin is applied to the scrim and manually pressed by rolling into the scrim. This step can be repeated accordingly.
  • straps can be incorporated as reinforcement material and other parts, such as lightning protection devices.
  • a so-called spacer layer usually made of balsa wood, polyvinyl chloride (PVC) - or polyurethane (PUR) foam, and a second glass fiber reinforced layer applied analogously to the first.
  • PVC polyvinyl chloride
  • PUR polyurethane
  • prepregs impregnated with resin prefabricated glass mats
  • the partial automation for the production of the prepregs which is carried out in comparison with the simple manual lamination, leads to improved quality consistency in rotor production
  • the protection of workers from the volatile compounds contained in the liquid resin mixtures requires a considerable effort (job security, etc.).
  • the molds are prepared by a release agent and possibly a gelcoat Then the dry fiber mats are put into the mold according to an exact manufacturing plan. The first layer will later be the outermost layer of the rotor blade, then the spacers will be inserted, whereupon fiber mats will be placed again
  • the resin is injected into the mold (space between foil and mold). This method has - as well as the two previously mentioned - the disadvantage that the necessary curing time to demolding of the component with up to 12 hours is very long and the
  • Object of the present invention was therefore to provide rotor blades available that do not have the aforementioned disadvantages and also cost in a shorter time and with better mechanical properties, such as a higher strength can be produced.
  • this object could be achieved by producing the rotor blades with polyurethane, which is obtainable by the reaction of polyisocyanate with glycerine-initiated polypropylene oxide polyol, as a plastic instead of the abovementioned resins.
  • polyurethane which is obtainable by the reaction of polyisocyanate with glycerine-initiated polypropylene oxide polyol, as a plastic instead of the abovementioned resins.
  • polyurethane is used as a plastic according to the invention; The fiber layers used in the outer shell are thus applied.
  • the invention relates to rotor blades for wind turbines, which have an outer shell, which consists at least partially of a layer structure with the following layers a) a release agent layer
  • Another object of the invention is a method for producing the rotor blades according to the invention for wind turbines, which have an outer shell, which consists at least partially of a layer structure with the following layers a) a release agent layer
  • the fiber layers are treated with a reaction mixture for the production of polyurethane as a plastic, wherein the reaction mixture is obtainable from the components
  • Another object of the invention is the use of a layer structure in the manufacture of rotor blades for wind turbines, wherein the layer structure comprises the following layers
  • Silicone or wax-containing release agents are preferably used for the release agent layer. These are known from the literature.
  • a release film may also be used as the release agent layer.
  • the gelcoat layer preferably consists of polyurethane, epoxy, unsaturated polyester or vinyl resins.
  • Fiber layer preferably Glasturawirrlagen, glass fiber fabrics and scrims, cut or ground glass or mineral fibers and fiber mats, nonwovens and knitted fabric based on polymer, mineral, carbon, basalt, steel, glass or Aramid fibers and mixtures thereof, particularly preferably glass fiber mats or glass fiber webs are used.
  • the fiber content in the polyurethane-provided fiber layer is preferably between 40 and 90 wt .-%, preferably between 50 and 80 wt .-% and particularly preferably between 60 and 75 wt .-%.
  • the fiber content can be determined in glass fiber reinforced components, for example by ashing.
  • Plastic foams such as, for example, PVC foams, PET foams or polymethacrylamide foams, wood, such as, for example, balsa wood or metal, may preferably be used as the spacer layer.
  • the optionally used plastic film f) can remain as a layer in the casing during the production of the rotor blade or be removed during demolding of half of the rotor blade. In particular, it serves to seal the mold half-shell, which is equipped with the aforementioned layers, in the production process for evacuation before filling with the liquid resin mixture.
  • auxiliary agents such as tear-off films (“peel films”) or flow aids, such as flow webs or slit films may be used, if desired, these may additionally be used to achieve a uniform impregnation of the fibrous layer e) They are preferred after production of the layer structure removed again to save weight in the finished rotor blade.
  • polyurethanes are obtainable by the reaction of polyisocyanates A) with compounds B) with at least two isocyanate-reactive hydrogen atoms.
  • a glycerol started polypropylene oxide (propoxylated glycerol) as component B) a polyurethane which shows a very slow increase in viscosity in the production, but can be cured quickly and in the finished glass fiber reinforced polyurethane significantly better mechanical properties than in the Use of the plastics used so far shows.
  • the reaction mixture used according to the invention is injected into the prepared evacuated layer structure.
  • the polyol formulation preferably contains as glycerine-initiated polypropylene oxide polyols those having an OH number of 250 to 1000 mg KOH / g, preferably from 300 to 800 mg KOH / g and more preferably from 350 to 500 mg KOH / g.
  • the viscosity of the polyols is preferably ⁇ 800 mPas (at 25 ° C.), preferably ⁇ 500 mPas (at 25 ° C.).
  • the weight percentage of glycerol in the starter mixture is preferably 50-100% by weight, preferably 80-100% by weight.
  • customary initiators such as, for example, 1,1,1-trimethylolpropane, triethanolamine, sorbitol, pentaerythritol, ethylene glycol, propylene glycol can only be used in combination with glycerol.
  • the polyisocyanate component used are the customary aliphatic, cycloaliphatic and, in particular, aromatic di- and / or polyisocyanates.
  • polyisocyanates examples include 1,4-butylene diisocyanate, 1,5-pentane diisocyanate, 1,6-hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), 2,2,4- and / or 2,4,4-trimethylhexamethylene diisocyanate, bis ( 4,4'-isocyanatocyclohexyl) methane or mixtures thereof with the remaining isomers, 1,4-cyclohexylene diisocyanate, 1,4-phenylene diisocyanate, 2,4- and / or 2,6-toluene diisocyanate (TDI),
  • 1,5-naphthylene diisocyanate 2,2'- and / or 2,4'- and / or 4,4'-diphenylmethane diisocyanate (MDI) and / or higher homologues (pMDI) thereof, 1,3- and / or 1, 4-Bis- (2-isocyanato-prop-2-yl) -benzene (TMXDI), 1,3-bis (isocyanatomethyl) benzene (XDI).
  • isocyanate is preferably diphenylmethane diisocyanate (MDI) and in particular mixtures of diphenylmethane diisocyanate and polyphenylene polymethylene polyisocyanate (pMDI).
  • the mixtures of diphenylmethane diisocyanate and polyphenylenepolymethylene polyisocyanate have a preferred monomer content of between 50 and 100% by weight, preferably between 60 and 95% by weight, more preferably between 70 and 90% by weight.
  • the NCO content of the polyisocyanate used should preferably be above 25% by weight, preferably above 30% by weight, particularly preferably above 31.4% by weight.
  • the MDI used should have a content of 2,2'-diphenylmethane diisocyanate and 2,4'-diphenylmethane diisocyanate of at least 3 wt .-%, preferably at least 20 wt .-%.
  • the viscosity of the isocyanate should preferably be ⁇ 250 mPas (at 25 ° C.), preferably ⁇ 100 mPas (at 25 ° C.) and particularly preferably ⁇ 30 mPas (at 25 ° C.).
  • the polyurethane reaction mixture may preferably contain fillers, such as carbon nanotubes, barium sulfate, titanium dioxide, short glass fibers, or natural fibrous or plate-like minerals, such as the known reactive components and additives and additives. Wollastonite or Muskowite included. Stabilizers, defoamers, catalysts and latent catalysts are preferably used as additives and additives. Other known additives and additives can be used as needed.
  • fillers such as carbon nanotubes, barium sulfate, titanium dioxide, short glass fibers, or natural fibrous or plate-like minerals, such as the known reactive components and additives and additives. Wollastonite or Muskowite included.
  • Stabilizers, defoamers, catalysts and latent catalysts are preferably used as additives and additives. Other known additives and additives can be used as needed.
  • Suitable polyurethane systems are especially those which are transparent. Since in the production of larger moldings a low viscosity is necessary for a uniform filling of the mold and wetting of the fibers, polyurethane systems are therefore particularly suitable which have a viscosity of ⁇ 5000 mPas (at 35 ° C., 60 minutes after mixing the components), preferably ⁇ 4000 mPas, more preferably ⁇ 3500 mPas and directly after mixing the components of the reactive mixture have a viscosity of 30 to 500 mPas (at 35 ° C), preferably between 40 and 150 mPas (at 35 ° C) and more preferably between 50 and 100 mPas (at 35 ° C).
  • the reaction ratio between isocyanate component and polyol formulation is preferably selected such that the ratio of the number of isocyanate groups to the number of isocyanate-reactive groups in the reaction mixture is between 0.9 and 1.5, preferably between 1.0 and 1.2 between 1.02 and 1.15.
  • the polyurethane obtained preferably has a tensile strength according to DIN EN ISO 527 of more than 70 MPa, preferably more than 80 MPa, in order to withstand the high mechanical stresses in a rotor blade.
  • the reaction mixture of isocyanate component and polyol component is injected at a temperature between 20 and 80 ° C, more preferably between 25 and 40 ° C. After charging the reaction mixture, the curing of the polyurethane can be accelerated by heating the mold.
  • the injected reaction mixture of isocyanate component and compounds having at least two isocyanate-reactive hydrogen atoms at a temperature between 40 and 160 ° C, preferably between 60 and 120 ° C, more preferably between 70 and 90 ° C, cured.
  • moldings (panels) of different polyurethane systems were prepared and compared to a standard epoxy resin system.
  • the polyols were degassed at a pressure of 1 mbar for 60 minutes and then treated with Desmodur® VP.PU 60RE11 and degassed for about 5 minutes at a pressure of 1 mbar and then poured into the plate molds.
  • the thickness of the plates was 4 mm.
  • the plates were poured at room temperature and annealed overnight in a drying oven heated to 80 ° C. This gave transparent plates.
  • the epitaxial resin system Larit RIM 135 and the hardener Larit RIMH 137 were degassed, poured into plates and annealed overnight. The quantities and properties are shown in the table.
  • the polyurethane plates 1 to 4 could be removed from the mold after only 2 hours without deformation, in Comparative Example 5, this was possible only after a much longer time of about 12 hours.
  • glass fiber reinforced polyurethane materials can be produced by the vacuum infusion process with a glass fiber content of about 60 wt .-%.
  • Teflon tube Glass fiber content of about 65% by weight, based on the later component was reached.
  • One side of the Teflon tube was immersed in the reaction mixture and vacuum was applied to the other side of the tube with an oil pump so that the reaction mixture was sucked into the tube. After the tubes were filled, they were annealed for 10 hours at 70 ° C. The Teflon tube was removed in each case and obtained a transparent fiber-reinforced molded body.
  • the viscosity was determined 60 minutes after mixing the components at a constant temperature of 35 ° C with a rotary viscometer at a shear rate of 60 1 / s. In the production of larger moldings, a low viscosity is necessary for a certain time for a uniform filling of the mold. starting compound
  • Polyol Glycerine-initiated polypropylene oxide polyol having a functionality of 3 and an OH number of 450 mg KOH / g and a viscosity of 420 mPas (at 25 ° C).
  • Polyol 2 Glycerine-initiated polypropylene oxide polyol having a functionality of 3 and an OH number of 400 mg KOH / g and a viscosity of 370 mPas (at 25 ° C).
  • TMP Trimethylolpropane
  • Polyol 4 glycerol and sorbitol (weight ratio 30 to 70) started polypropylene oxide polyol with an OH number of 430 mg KOH / g and a viscosity of about 9000 mPas (at 20 ° C).
  • Desmodur® VP.PU 60RE11 is a mixture of diphenylmethane-4,4'-diisocyanate (MDI) with isomers and higher functional homologues with an NCO content of 32.6% by weight; Viscosity at 25 ° C: 20 mPas.
  • Larit RIM 135 (L-135i) and Larit RIMH 137 are products of Lange + Ritter.
  • Larit RIM 135 is an epoxy resin based on a bisphenol A-epichlorohydrin resin and a 1,6-hexanediol diglycidyl ether with an epoxide equivalent of 166-185 g / equivalent
  • RIMH 137 is a hardener based on IPDA (isophorone diamine) and alkyl ether amines with one Amine number of 400-600 mg KOH / g.
  • the inventive examples 1 and 2 show at a short demolding of 2 hours a very good combination of a slow increase in viscosity at a low initial viscosity at 35 ° C with a viscosity at 35 ° C of less than 5000 mPas after 60 minutes, which is for the production of is very important to large fiber-reinforced structural components, and at the same time has very good mechanical properties, such as a strength of over 70 MPa.
  • Comparative Examples 3 and 4 show a significantly faster viscosity increase with a slightly higher initial viscosity at 35 ° C and a viscosity at 35 ° C of well over 5000 mPas after 60 minutes, which makes the production of large fiber-reinforced components very difficult.
  • Comparative Example 5 shows a very slow increase in viscosity, but at the same time a significantly longer demolding time (about 12 hours) than Example 1 and 2 (about 2 hours). This leads to low productivity. In addition, the mechanical properties with a strength of less than 70 MPa are poor.

Abstract

Die Erfindung betrifft die Verwendung von Schichtaufbauten bei der Herstellung von Rotorblättern für Windkraftanlagen sowie Rotorblätter für Windkraftanlagen.

Description

Verwendung von Schichtaufbauten in Windkraftanlagen
Die Erfindung betrifft die Verwendung von Schichtaufbauten bei der Herstellung von Rotorblättern für Windkraftanlagen sowie Rotorblätter für Windkraftanlagen.
Energie aus Windkraft gewinnt immer mehr an Bedeutung, so dass Windkraftanlagen, insbeson- dere die Rotorblätter und deren Herstellung intensiv untersucht und weiterentwickelt werden. Ein
Hauptaugenmerk liegt dabei in der Qualität der hergestellten Rotorblätter und einer kostengünstigen Herstellung. Die bisher bekannten Rotorblätter für Windkraftanlagen bestehen aus faserverstärkten Kunststoffen auf der Basis von Harzen als Matrixmaterial, wie beispielsweise Polyesterharze (UP), Vinylesterharze (VE), Epoxidharze (EP). Die Herstellung der Blätter erfolgt hauptsäch- lieh so, dass jeweils eine untere und eine obere Hälfte des Flügels in einem Stück hergestellt werden. Diese beiden Hälften werden anschließend aufeinander gelegt und verklebt. Zur Verstärkung werden Streben oder Gurte mit eingeklebt.
Bei der Herstellung der Flügelhälften werden zuerst Faserverbundwerkstoffe hergestellt, die aushärten müssen. Dieser Aushärteprozess ist sehr zeitaufwendig und nachteilig für eine schnelle Ge- samtfertigung. Die Rotorblätter für Windkraftanlagen aus den vorgenannten Harzen werden üblicherweise durch Handlaminieren, Handlaminieren mit Unterstützung durch Prepregtechnologie, durch Wickelverfahren oder das vakuumunterstützte Inf sionsverfahren hergestellt. Beim Handlaminieren wird zunächst eine Form präpariert, indem ein Trennmittel und gegebenenfalls ein Gel- coat auf die Formoberfläche aufgetragen werden. Anschließend werden nacheinander Glasgelege mit unidirektionaler oder biaxialer Orientierung in die Form gelegt. Danach wird das Harz auf das Gelege aufgetragen und manuell durch Rollen in das Gelege eingedrückt. Dieser Schritt kann entsprechend oft wiederholt werden. Zusätzlich können Gurte als Verstärkungsmaterial und sonstige Teile, wie z.B. Blitzschutzeinrichtungen eingearbeitet werden. Auf diese erste glasfaserverstärkte Schicht wird eine sogenannte Distanzschicht, in der Regel aus Balsaholz, Polyvinylchlorid (PVC)- oder Polyurethan (PUR)-Schaum, und eine zweite glasfaserverstärkte Schicht analog der ersten aufgetragen. Dieses Verfahren hat zwar den Vorteil, dass die Maschineninvestitionen gering und die Fehlererkennung und Korrekturmöglichkeit einfach sind, jedoch ist die Fertigung zu lohnintensiv, wodurch die Kosten des Verfahrens sehr hoch sind und die langen Fertigungszeiten führen zu mehr Fehlern und zu einem hohen Aufwand zur Qualitätssicherung. Das Handlaminierverfahren mit Unterstützung durch Prepregtechnologie erfolgt ähnlich wie das einfache Handlaminierverfahren. Hierbei werden jedoch die sogenannten Prepregs (mit Harz getränkte vorgefertigte Glasmatten) außerhalb der Form hergestellt und dann in der Rotorblattform positioniert. Die gegenüber dem einfachen Handlaminieren durchgeführte Teilautomatisierung zur Fertigung der Prepregs führt zwar zu einer verbesserten Qualitätskonstanz bei der Rotorfertigung, jedoch erfordert der Schutz der Arbeiter vor den in den flüssigen Harzmischungen enthaltenen leichtflüchtigen Verbindungen einen nicht unerheblichen Aufwand (Arbeitsplatzsicherheit etc.).
Beim Harzinjektions verfahren (auch als„Resin Transfer Molding" (RTM) oder„Vakuumunterstütztes Resin Transfer Molding" (VA RTM) oder„SCRIMP Process" (Seemann Composites Resin Infusion Molding Process) werden die Formen präpariert, indem ein Trennmittel und eventuell ein Gelcoat aufgetragen werden. Anschließend werden die trockenen Fasermatten nach einem genauen Fertigungsplan in die Form gelegt. Die erste eingelegte Schicht wird später die nach außen gelegene Schicht des Rotorblattes ergeben. Anschließend werden die Distanzmaterialien eingelegt, worauf wieder Fasermatten platziert werden, die dann die innere Schicht der fertigen Rotorhälfte/- Rotorhalbschale bilden. Für die Herstellung von großen Formteilen, wie Rotorblättern wird bevorzugt mit vakuumunterstützten Infusionsverfahren gearbeitet. Mit einer vakuumfesten Folie wird dann die gesamte Form hermetisch geschlossen. Aus der so präparierten Form wird die Luft aus Fasermatten und Distanzmaterialien entzogen, bevor an verschiedenen Stellen das Harz in die Form (Raum zwischen Folie und Form) injiziert wird. Dieses Verfahren hat - wie auch die beiden vorher genannten - den Nachteil, dass die notwendige Aushärtezeit bis zur Entformung des Bauteils mit bis zu 12 Stunden sehr lang ist und die Produktivität der Anlagen dadurch sehr stark eingeschränkt ist.
Aufgabe der vorliegenden Erfindung war es daher, Rotorblätter zur Verfügung zu stellen, die die vorgenannten Nachteile nicht aufweisen und zudem kostengünstig in kürzerer Zeit und mit besseren mechanischen Eigenschaften, wie zum Beispiel einer höheren Festigkeit hergestellt werden können.
Diese Aufgabe konnte überraschenderweise dadurch gelöst werden, dass die Rotorblätter mit Polyurethan, das durch die Reaktion von Polyisocyanat mit Glyzerin gestartetem Polypropylen- oxidpolyol erhältlich ist, als Kunststoff anstelle der oben genannten Harze hergestellt werden. Insbesondere in der äußeren Hülle des Rotorblattes wird erfindungsgemäß Polyurethan als Kunststoff verwendet; die eingesetzten Faserschichten in der äußeren Hülle werden damit beaufschlagt.
Gegenstand der Erfindung sind Rotorblätter für Windkraftanlagen, die eine äußere Hülle aufweisen, die zumindest teilweise aus einem Schichtaufbau mit folgenden Schichten besteht a) eine Trennmittelschicht
b) gegebenenfalls eine Gelcoatschicht
c) eine mit Kunststoff behandelte Faserschicht
d) gegebenenfalls eine Distanzhalterschicht
e) eine mit Kunststoff versehene Faserschicht f) gegebenenfalls eine Kunststofffolie
und die dadurch gekennzeichnet ist, dass als Kunststoff Polyurethan eingesetzt wird, das erhältlich ist durch Umsetzung eines Reaktionsgemisches aus
A) einem oder mehreren Polyisocyanaten
B) einer Polyolformulierung enthaltend ein oder mehrere mit Glyzerin gestartete Polypropylenoxidpolyole
C) gegebenenfalls Additiven und/oder Zusatzmittteln
D) gegebenenfalls Füllstoffen.
Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung der erfindungsgemäßen Rotorblätter für Windkraftanlagen, die eine äußere Hülle aufweisen, die zumindest teilweise aus einem Schichtaufbau mit folgenden Schichten besteht a) eine Trennmittelschicht
b) gegebenenfalls eine Gelcoatschicht
c) eine mit Kunststoff behandelte Faserschicht
d) gegebenenfalls eine Distanzhalterschicht
e) eine mit Kunststoff versehene Faserschicht
f) gegebenenfalls eine Kunststofffolie
dadurch gekennzeichnet, dass die Faserschichten mit einem Reaktionsgemisch zur Herstellung von Polyurethan als Kunststoff behandelt werden, wobei das Reaktionsgemisch erhältlich ist aus den Komponenten
A) einem oder mehreren Polyisocyanaten
B) einer Polyolformulierung enthaltend ein oder mehrere mit Glyzerin gestartete
Polypropylenoxidpolyole
C) gegebenenfalls Additiven und/oder Zusatzmittteln
D) gegebenenfalls Füllstoffen.
Ein weiterer Gegenstand der Erfindung ist die Verwendung eines Schichtaufbaus bei der Herstellung von Rotorblättern für Windkraftanlagen, wobei der Schichtaufbau folgende Schichten aufweist
a) eine Trennmittelschicht b) gegebenenfalls eine Gelcoatschicht
c) eine mit Kunststoff behandelte Faserschicht
d) gegebenenfalls eine Distanzhalterschicht
e) eine mit Kunststoff versehene Faserschicht
f) gegebenenfalls eine Kunststofffolie und dadurch gekennzeichnet ist, dass als Kunststoff Polyurethan eingesetzt wird, das erhältlich ist durch Umsetzung eines Reaktionsgemisches aus
A) einem oder mehreren Polyisocyanaten
B) einer Polyolformulierung enthaltend ein oder mehrere mit Glyzerin gestartete
Polypropylenoxidpolyole
C) gegebenenfalls Additiven und/oder Zusatzmittteln
D) gegebenenfalls Füllstoffen.
Für die Trennmittelschicht werden bevorzugt silikon- oder wachshaltige Trennmittel eingesetzt. Diese sind aus der Literatur bekannt. Gegebenenfalls kann als Trennmittelschicht auch eine Trennfolie verwendet werden.
Die Gelcoatschicht besteht vorzugsweise aus Polyurethan-, Epoxid-, ungesättigten Polyester- oder Vinylharzen.
Als Faserschicht können vorzugsweise Glasfaserwirrlagen, Glasfasergewebe und -gelege, geschnittene oder gemahlene Glas- oder Mineral-Fasern sowie Fasermatten, -vliese und -gewirke auf der Basis von Polymer-, Mineral-, Kohlenstoff-, Basalt-, Stahl-, Glas- bzw. Aramidfasern sowie deren Mischungen, besonders bevorzugt Glasfasermatten oder Glasfaservliese eingesetzt werden. Der Faseranteil in der mit Polyurethan versehenen Faserschicht beträgt vorzugsweise zwischen 40 und 90 Gew.-%, bevorzugt zwischen 50 und 80 Gew.-% und besonders bevorzugt zwischen 60 und 75 Gew.-%. Der Faseranteil kann bei Glasfaser verstärkten Bauteilen beispielsweise durch Veraschung bestimmt werden. Als Distanzhalterschicht können bevorzugt Kunststoffschäume, wie beispielsweise PVC-Schäume, PET-Schäume oder Polymetharcylimid-Schäume, Holz, wie beispielsweise Balsaholz oder Metall verwendet werden.
Die optional eingesetzte Kunststofffolie f) kann bei der Herstellung des Rotorblattes als Schicht in der Umhüllung verbleiben oder bei der Entformung der Hälfte des Rotorblattes entfernt werden. Sie dient insbesondere dazu, die Formhalbschale, die mit den zuvor genannten Schichten bestückt ist, im Herstellungsprozess zur Evakuierung vor dem Füllen mit dem flüssigen Harzgemisch abzudichten. Zwischen der mit Kunststoff versehenen Faserschicht e) und der Kunststofffolie f) können gegebenenfalls noch Hilfsmittel, wie z.B. Abreißfolien („Peelfolien") oder Fließhilfsmittel, wie beispielsweise Fließgewebe oder Schlitzfolien eingesetzt werden. Bei Bedarf können diese zusätzlich eingesetzt werden, um eine gleichmäßige Tränkung der Faserschicht e) zu erreichen. Sie werden nach der Herstellung des Schichtaufbaus bevorzugt wieder entfernt, um im fertigen Rotorblatt Gewicht zu sparen.
Als Kunststoff wird Polyurethan eingesetzt. Polyurethane sind erhältlich durch die Umsetzung von Polyisocyanaten A) mit Verbindungen B) mit mindestens zwei gegenüber Isocyanaten reaktiven Wasserstoffatomen. Überraschenderweise konnte durch die Verwendung eines Glyzerin gestarteten Polypropylenoxidpolyols (propoxyliertes Glyzerin) als Komponente B) ein Polyurethan erhalten werden, das bei der Herstellung einen sehr langsamen Viskositätsanstieg zeigt, sich aber schnell aushärten lässt und das im fertigen glasfaserverstärkten Polyurethan deutlich bessere mechanische Eigenschaften als bei der Verwendung der bisher eingesetzten Kunststoffe zeigt.
Die erfindungsgemäß eingesetzte Reaktionsmischung wird in den vorbereiteten evakuierten Schichtaufbau injiziert. Die Polyolformulierung enthält vorzugsweise als mit Glyzerin gestartete Polypropylenoxidpolyole solche, die eine OH-Zahl von 250 bis 1000 mg KOH/g, bevorzugt von 300 bis 800 mg KOH/g und besonders bevorzugt von 350 bis 500 mg KOH/g aufweisen. Die Viskosität der Polyole ist vorzugsweise < 800 mPas (bei 25°C), bevorzugt < 500 mPas (bei 25°C). Bei der Verwendung von mehreren Startern zur Herstellung von Polypropylenoxidpolyolen beträgt der Gewichsanteil des Glyzerins in der Startermischung vorzugsweise 50-100 Gew.- %, bevorzugt 80-100 Gew.-%.
Besonders bevorzugt sind rein Glyzerin gestartete Polypropylenoxidpolyole.
Andere übliche Starter, wie beispielsweise 1, 1, 1-Trimethylolpropan, Triethanolamin, Sorbit, Pentaerythrit, Ethylenglykol, Propylenglykol können nur in Kombination mit Glyzerin eingesetzt werden. Als Polyisocyanatkomponente kommen die üblichen aliphatischen, cycloaliphatischen und insbesondere aromatischen Di- und/oder Polyisocyanate zum Einsatz. Beispiele solcher geeigneten Polyisocyanate sind 1,4-Butylendiisocyanat, 1,5-Pentandiisocyanat, 1,6-Hexamethylendiisocyanat (HDI), Isophorondiisocyanat (IPDI), 2,2,4- und/oder 2,4,4-Trimethylhexamethylendiisocyanat, Bis(4,4'-isocyanatocyclohexyl)methan oder dessen Mischungen mit den übrigen Isomeren, 1,4- Cyclohexylendiisocyanat, 1,4-Phenylendiisocyanat, 2,4- und/oder 2,6-Toluylendiisocyanat (TDI),
1,5-Naphthylendiisocyanat, 2,2'-und/oder 2,4'- und/oder 4,4'-Diphenylmethandiisocyanat (MDI) und/oder höhere Homologe (pMDI) davon, 1,3- und/oder l,4-Bis-(2-isocyanato-prop-2-yl)-benzol (TMXDI), l,3-Bis-(isocyanatomethyl)benzol (XDI). Als Isocyanat wird vorzugsweise Diphenylmethandiisocyanat (MDI) und insbesondere Gemische aus Diphenylmethandiisocyanat und Polyphenylenpolymethylenpolyisocyanat (pMDI) verwendet. Die Gemische aus Diphenylmethandiisocyanat und Polyphenylenpolymethylenpolyisocyanat (pMDI) haben einen bevorzugten Monomergehalt zwischen 50 und 100 Gew.-%, bevorzugt zwischen 60 und 95 Gew.- %, besonders bevorzugt zwischen 70 und 90 Gew.-%. Der NCO-Gehalt des verwendeten Polyisocyanates sollte vorzugsweise über 25 Gew.-%, bevorzugt über 30 Gew.-%, besonders bevorzugt über 31,4 Gew.% liegen. Vorzugsweise sollte das eingesetzte MDI einen Gehalt an 2,2'- Diphenylmethandiisocyanat und an 2,4'- Diphenylmethandiisocyanat von zusammen mindestens 3 Gew.-%, bevorzugt mindestens 20 Gew.-% aufweisen. Die Viskosität des Isocyanates sollte vorzugsweise < 250 mPas (bei 25°C), bevorzugt von < 100 mPas (bei 25°C) und besonders bevorzugt von < 30 mPas (bei 25 °C) sein.
Die Polyurethanreaktionsmischung kann bevorzugt neben den bekannten reaktiven Komponenten und Additiven und Zusatzmitteln vorzugsweise Füllstoffe, wie Kohlenstoffnanoröhrchen, Bariumsulfat, Titandioxid, Kurzglasfasern oder natürliche faser- oder plättchenförmige Minerale, wie z.B. Wollastonite oder Muskowite enthalten. Als Additive und Zusatzmittel werden vorzugsweise Stabilisatoren, Entschäumer, Katalysatoren und latente Katalysatoren eingesetzt. Weitere bekannte Additive und Zusatzmittel können bei Bedarf verwendet werden.
Geeignete Polyurethansysteme sind insbesondere solche, die transparent sind. Da bei der Herstellung größerer Formteile eine niedrige Viskosität für eine gleichmäßige Füllung der Form und Benetzung der Fasern notwendig ist, sind daher Polyurethansysteme besonders geeignet, die eine Viskosität von < 5000 mPas (bei 35°C; 60 min. nach Vermischen der Komponenten), bevorzugt < 4000 mPas, besonders bevorzugt < 3500 mPas aufweisen und die direkt nach dem Vermischen der Komponenten der Reaktivmischung eine Viskosität von 30 bis 500 mPas (bei 35 °C), bevorzugt zwischen 40 und 150 mPas (bei 35 °C) und besonders bevorzugt zwischen 50 und 100 mPas (bei 35 °C) aufweisen. Vorzugsweise wird das Umsetzungsverhältnis zwischen Iso- cyanatkomponente und Polyolformulierung so gewählt, dass im Reaktionsgemisch das Verhältnis von Anzahl an Isocyanatgruppen zu Anzahl an gegenüber Isocyanat reaktiven Gruppen zwischen 0,9 und 1,5, bevorzugt zwischen 1,0 und 1,2, besonders bevorzugt zwischen 1,02 und 1, 15 liegt.
Das erhaltene Polyurethan hat vorzugsweise eine Festigkeit im Zugversuch nach DIN EN ISO 527 von über 70 MPa, bevorzugt über 80 MPa, um den hohen mechanischen Beanspruchungen in einem Rotorblatt standzuhalten.
In einer bevorzugten Ausführungsform wird die Reaktionsmischung aus Isocyanatkomponente und Polyolkomponente bei einer Temperatur zwischen 20 und 80 °C, besonders bevorzugt zwischen 25 und 40 °C, injiziert. Nach dem Einfüllen der Reaktionsmischung kann das Aushärten des Polyurethans durch Heizen der Form beschleunigt werden. In einer bevorzugten Ausführungsform wird die injizierte Reaktionsmischung aus Isocyanatkomponente und Verbindungen mit mindestens zwei gegenüber Isocyanaten reaktiven Wasserstoffatomen bei einer Temperatur zwischen 40 und 160 °C, bevorzugt zwischen 60 und 120 °C, besonders bevorzugt zwischen 70 und 90 °C, ausgehärtet.
Die Erfindung soll anhand der nachfolgenden Beispiele näher erläutert werden.
Beispiele
Um die Matrixeigenschaften zu bestimmen wurden Formkörper (Platten) aus verschiedenen Polyurethansystemen hergestellt und mit einem Standard Epoxid-Harzsystem verglichen. Die Polyole wurden bei einem Druck von 1 mbar für 60 Minuten entgast und danach mit Desmodur® VP.PU 60RE11 versetzt und für ca. 5 Minuten bei einem Druck von 1 mbar entgast und danach in die Plattenformen gegossen. Die Dicke der Platten war 4 mm. Die Platten wurden bei Raumtemperatur gegossen und über Nacht in einem auf 80 °C geheizten Trockenschrank getempert. Man erhielt transparente Platten. Analog wurden das Epoxid-Harzsystem aus Larit RIM 135 und dem Härter Larit RIMH 137 entgast, in Platten gegossen und über Nacht getempert. Die Mengenangaben und Eigenschaften sind der Tabelle zu entnehmen.
Aus den Platten wurden Probenkörper für einen Zugversuch nach DIN EN ISO 527 hergestellt und der E-Modul und die Festigkeit bestimmt.
Die Polyurethan-Platten 1 bis 4 konnten bereits nach 2 Stunden ohne Deformation entformt werden, bei Vergleichsbeispiel 5 war dies erst nach einer deutlich längeren Zeit von etwa 12 Stunden möglich.
Mit der Zusammensetzung aus Beispiel 1 und 2 können transparente, glasfaserverstärkte Polyurethanwerkstoffe durch das Vakuuminfusionsverfahren mit einem Glasfasergehalt von über 60 Gew.-% hergestellt werden.
Für die Herstellung faserverstärkter Formkörper durch Vakuuminfusion wurde ein Teflonrohr mit einem Durchmesser von 6 mm mit Glasfaserrovings (Vetrotex® EC2400 P207) gefüllt, so dass ein
Glasfasergehalt von ca. 65 Gewichts-%, bezogen auf das spätere Bauteil, erreicht wurde. Eine Seite des Teflonrohres wurde in die Reaktionsmischung getaucht und an der anderen Seite des Rohres wurde mit einer Ölpumpe Vakuum angelegt, so dass die Reaktionsmischung in das Rohr gesogen wurde. Nachdem die Rohre befüllt waren, wurden sie für 10 Stunden bei 70 °C getempert. Das Teflonrohr wurde jeweils entfernt und ein transparenter mit Fasern verstärkter Formkörper erhalten.
Die Viskosität wurde 60 Minuten nach dem Vermischen der Komponenten bei einer konstanten Temperatur von 35 °C mit einem Rotationsviskosimeter bei einer Scherrate von 60 1/s bestimmt. Bei der Herstellung größerer Formteile ist eine bestimmte Zeit lang eine niedrige Viskosität für eine gleichmäßige Füllung der Form notwendig. Ausgangsverbindung
Polyoll : Glyzerin gestartetes Polypropylenoxidpolyol mit einer Funktionalität von 3 und einer OH- Zahl von 450 mg KOH/g und einer Viskosität von 420 mPas (bei 25 °C).
Polyol2: Glyzerin gestartetes Polypropylenoxidpolyol mit einer Funktionalität von 3 und einer OH- Zahl von 400 mg KOH/g und einer Viskosität von 370 mPas (bei 25 °C).
Polyol3: Trimethylolpropan (TMP) gestartetes Polypropylenoxidpolyol mit einer Funktionalität von 3 und einer OH-Zahl von 380 mg KOH/g und einer Viskosität von 650 mPas (bei 25°C).
Polyol4: Glyzerin und Sorbit (Gewichtsverhältnis 30 zu 70) gestartetes Polypropylenoxidpolyol mit einer OH-Zahl von 430 mg KOH/g und einer Viskosität von ca. 9000 mPas (bei 20°C).
Desmodur® VP.PU 60RE11 ist ein Gemisch von Diphenylmethan-4,4'-diisocyanat (MDI) mit Isomeren und höherfunktionellen Homologen mit einem NCO-Gehalt von 32,6 Gew.-%; Viskosität bei 25 °C: 20 mPas. Larit RIM 135 (L-135i) und Larit RIMH 137 sind Produkte der Firma Lange+Ritter. Larit RIM 135 ist ein Epoxid-Resin auf Basis eines Bisphenol-A-Epichlorhydrinharzes und eines 1,6- Hexandioldiglycidylethers mit einem Epoxidäquivalent von 166-185 g/Äquivalent und RIMH 137 ist ein Härter auf Basis von IPDA (Isophorondiamin) und Alkyletheraminen mit einer Aminzahl von 400-600 mg KOH/g.
Alle Mengenangaben in der folgenden Tabelle sind in Gewichsteilen.
Tabelle:
Beispiel 1 Beispiel2 Vergleichs- Vergleichs- Vergleichsbeispiel3 beispiel4 beispiels
Polyoll 200
Polyol2 200
Polyol3 200 170
Polyol4 30
Desmodur ® 227 202 192 196
VP.PU 60RE11
Molares Verhältnis 110/100 110/100 110/100 110/100
NCO/OH
Larit RIM 135 300 Larit RIMH 137 90
Viskosität direkt nach 65 66 74 91 126 dem Vermischen bei
35°C [mPas]
Viskosität 60 min. 3490 1420 7190 14300 234 nach dem Vermischen
bei 35°C [mPas]
Zugversuch: E-Modul 3038 2936 2990 n.b. 2950
[MPa]
Zugversuch: 80,3 72,9 69, 1 n.b. 68
Festigkeit [MPa]
nicht bestimmt, da die Viskosität nach 60 Minuten zu hoch war.
Die erfindungsgemäßen Beispiele 1 und 2 zeigen bei einer kurzen Entformzeit von 2 Stunden eine sehr gute Kombination von einem langsamen Viskositätsanstieg bei einer niedrigen Anfangsviskosität bei 35°C mit einer Viskosität bei 35°C von unter 5000 mPas nach 60 Minuten, was für die Herstellung von großen faserverstärkten Konstruktionsbauteilen sehr wichtig ist, und gleichzeitig sehr gute mechanische Eigenschaften, wie z.B. eine Festigkeit von über 70 MPa. Im Gegensatz dazu zeigen die Vergleichsbeispiele 3 und 4 einen deutlich schnelle ren Viskositätsanstieg bei einer etwas höheren Anfangsviskosität bei 35°C und einer Viskosität bei 35°C von weit über 5000 mPas nach 60 Minuten, was die Herstellung von großen faserverstärkten Bauteilen sehr erschwert. Vergleichsbeispiel 5 zeigt zwar einen sehr langsamen Viskositätsanstieg, aber gleichzeitig eine deutlich längere Entformzeit (etwa 12 Stunden) als Beispiel 1 und 2 (etwa 2 Stunden). Dies führt zu einer niedrigen Produktivität. Außerdem sind die mechanischen Eigenschaften mit einer Festigkeit von unter 70 MPa schlecht.

Claims

Patentansprüche
1. Verwendung eines Schichtaufbaus bei der Herstellung von Rotorblättern für Windkraftanlagen, wobei der Schichtaufbau folgende Schichten aufweist a) eine Trennmittelschicht b) gegebenenfalls eine Gelcoatschicht c) eine mit Kunststoff behandelte Faserschicht d) gegebenenfalls eine Distanzhalterschicht e) eine mit Kunststoff versehene Faserschicht f) gegebenenfalls eine Kunststofffolie dadurch gekennzeichnet, dass als Kunststoff Polyurethan eingesetzt wird, das erhältlich ist durch Umsetzung eines Reaktionsgemisches aus
A) einem oder mehreren Polyisocyanaten
B) einer Polyolformulierung enthaltend ein oder mehrere mit Glyzerin gestartete
Polypropylenoxidpolyole
C) gegebenenfalls Additiven und/oder Zusatzmittteln
D) gegebenenfalls Füllstoffen.
2. Rotorblätter für Windkraftanlagen, die eine Umhüllung aufweisen, die zumindest teilweise aus einem Schichtaufbau mit folgenden Schichten besteht a) eine Trennmittelschicht b) gegebenenfalls eine Gelcoatschicht c) eine mit Kunststoff behandelte Faserschicht d) gegebenenfalls eine Distanzhalterschicht e) eine mit Kunststoff versehene Faserschicht f) gegebenenfalls eine Kunststofffolie dadurch gekennzeichnet, dass als Kunststoff Polyurethan eingesetzt wird, das erhältlich ist durch Umsetzung eines Reaktionsgemisches aus
A) einem oder mehreren Polyisocyanaten
B) einer Polyolformulierung enthaltend ein oder mehrere mit Glyzerin gestartete
Polypropylenoxidpolyole
C) gegebenenfalls Additiven und/oder Zusatzmittteln
D) gegebenenfalls Füllstoffen.
3. Verfahren zur Herstellung von Rotorblättern gemäß Anspruch 2 für Windkraftanlagen, die eine Umhüllung aufweisen, die zumindest teilweise aus einem Schichtaufbau mit folgenden Schichten besteht a) eine Trennmittelschicht b) gegebenenfalls eine Gelcoatschicht c) eine mit Kunststoff behandelte Faserschicht d) gegebenenfalls eine Distanzhalterschicht e) eine mit Kunststoff versehene Faserschicht f) gegebenenfalls eine Kunststofffolie, dadurch gekennzeichnet, dass die Faserschichten mit einem Reaktionsgemisch zur Herstellung von Polyurethan als Kunststoff behandelt werden, wobe i das Reaktionsgemisch erhältlich ist aus den Komponenten
A) einem oder mehreren Polyisocyanaten
B) einer Polyolformulierung enthaltend ein oder mehrere mit Glyzerin gestartete
Polypropylenoxidpolyole
C) gegebenenfalls Additiven und/oder Zusatzmittteln
D) gegebenenfalls Füllstoffen.
4. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass das Reaktionsgemisch als Isocyanat Diphenylmethandiisocyanat und/oder Polyphenylenpolymethylenpolyisocyanat mit einem NCO-Gehalt von mehr als 25 Gew.-% enthält.
5. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass das Reaktionsgemisch als mit Glyzerin gestartetes Polypropylenoxidpolyol eine Verbindung mit einer OH-Zahl von 300 bis 800 mg KOH/g enthält.
6. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass das Reaktionsgemisch bei einer Temperatur zwischen 20 und 80°C in die Faserschichten appliziert wird.
7. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass das Reaktionsgemisch bei einer Temperatur zwischen 40 und 160 °C ausgehärtet wird.
8. Verfahren gemäß Anspruch 3, dadurch gekennzeichnet, dass bei einer konstanten Temperatur von 35°C das Reaktionsgemisch 60 Minuten nach dem Vermischen eine Viskosität < 5000 mPas aufweist.
PCT/EP2012/052847 2011-02-25 2012-02-20 Verwendung von schichtaufbauten in windkraftanlagen WO2012113748A1 (de)

Priority Applications (10)

Application Number Priority Date Filing Date Title
CA2828035A CA2828035A1 (en) 2011-02-25 2012-02-20 Use of layer structures in wind energy plants
PL12706797T PL2678151T3 (pl) 2011-02-25 2012-02-20 Zastosowanie struktur warstwowych w turbinach wiatrowych
MX2013009565A MX2013009565A (es) 2011-02-25 2012-02-20 Uso de estructuras de capas en plantas de energia eolica.
ES12706797.3T ES2646391T3 (es) 2011-02-25 2012-02-20 Uso de estructuras estratificadas en plantas de energía eólica
EP12706797.3A EP2678151B1 (de) 2011-02-25 2012-02-20 Verwendung von schichtaufbauten in windkraftanlagen
CN201280010441.9A CN103619579B (zh) 2011-02-25 2012-02-20 多层结构在风力发电装置中的应用
US14/001,207 US9085990B2 (en) 2011-02-25 2012-02-20 Use of layer structures in wind power plants
BR112013021601A BR112013021601A2 (pt) 2011-02-25 2012-02-20 uso de estruturas em camadas para centrais de energia eólica
DK12706797.3T DK2678151T3 (da) 2011-02-25 2012-02-20 Anvendelse af lagdelte opbygninger i vindmøller
AU2012219675A AU2012219675B2 (en) 2011-02-25 2012-02-20 Use of layer structures in wind energy plants

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011004723.9 2011-02-25
DE102011004723A DE102011004723A1 (de) 2011-02-25 2011-02-25 Verwendung von Schichtaufbauten in Windkraftanlagen

Publications (1)

Publication Number Publication Date
WO2012113748A1 true WO2012113748A1 (de) 2012-08-30

Family

ID=45787171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/052847 WO2012113748A1 (de) 2011-02-25 2012-02-20 Verwendung von schichtaufbauten in windkraftanlagen

Country Status (12)

Country Link
US (1) US9085990B2 (de)
EP (1) EP2678151B1 (de)
CN (1) CN103619579B (de)
AU (1) AU2012219675B2 (de)
BR (1) BR112013021601A2 (de)
CA (1) CA2828035A1 (de)
DE (1) DE102011004723A1 (de)
DK (1) DK2678151T3 (de)
ES (1) ES2646391T3 (de)
MX (1) MX2013009565A (de)
PL (1) PL2678151T3 (de)
WO (1) WO2012113748A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105492760A (zh) * 2013-08-28 2016-04-13 乌本产权有限公司 用于风能设备的转子叶片元件、转子叶片及其制造方法和具有转子叶片的风能设备
WO2019053061A1 (en) 2017-09-12 2019-03-21 Covestro Deutschland Ag COMPOSITE MATERIAL COMPRISING A POLYURETHANE-POLYACRYLATE RESIN MATRIX
EP3549670A1 (de) 2018-04-06 2019-10-09 Covestro Deutschland AG Verfahren zur herstellung eines polyurethan-poly(meth)acrylat-harzes

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009058101A1 (de) * 2009-12-12 2011-06-16 Bayer Materialscience Ag Verwendung von Schichtaufbauten in Windkraftanlagen
DE102015105336A1 (de) * 2015-04-08 2016-10-13 Peter Dolibog Mehrschichtiger Formkörper aus Kunststoffen mit unterschiedlichen Eigenschaften und Verfahren zu seiner Herstellung
WO2016207191A1 (de) * 2015-06-24 2016-12-29 Covestro Deutschland Ag Polyurethansysteme für schichtaufbauten in windkraftanlagen
CN108248170A (zh) * 2016-12-29 2018-07-06 比亚迪股份有限公司 一种复合材料及其制备方法和应用
CN115667348A (zh) * 2020-05-18 2023-01-31 巴斯夫欧洲公司 聚氨酯形成体系、包含聚氨酯形成体系和纤维增强材料的复合材料及其生产方法和用途

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125012A1 (de) * 2009-04-30 2010-11-04 Basf Se Verwendung eines verbundwerkstoffes auf basis eines einkomponenten-polyurethanklebstoffes
WO2012022683A1 (de) * 2010-08-16 2012-02-23 Bayer Materialscience Ag Faserverbundbauteil und ein verfahren zu dessen herstellung

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0790276A3 (de) * 1996-02-14 1998-05-13 Basf Aktiengesellschaft Verfahren zur Herstellung von flächigen Polyurethan-Formteilen
DE20211026U1 (de) * 2001-12-17 2002-10-02 Bayer Ag Verbundteile aus Deckschichten und Polyurethan-Sandwichmaterialien
DE102004030196A1 (de) * 2004-06-22 2006-01-19 Bayer Materialscience Ag Verfahren zur Herstellung von Polyurethan-Formkörpern
US8402652B2 (en) * 2005-10-28 2013-03-26 General Electric Company Methods of making wind turbine rotor blades
DE102009058101A1 (de) * 2009-12-12 2011-06-16 Bayer Materialscience Ag Verwendung von Schichtaufbauten in Windkraftanlagen
DE102010041256A1 (de) * 2010-09-23 2012-03-29 Evonik Degussa Gmbh Prepregs auf der Basis lagerstabiler reaktiven oder hochreaktiven Polyurethanzusammensetzung mit fixierter Folie sowie die daraus hergestellten Composite-Bauteil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010125012A1 (de) * 2009-04-30 2010-11-04 Basf Se Verwendung eines verbundwerkstoffes auf basis eines einkomponenten-polyurethanklebstoffes
WO2012022683A1 (de) * 2010-08-16 2012-02-23 Bayer Materialscience Ag Faserverbundbauteil und ein verfahren zu dessen herstellung

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105492760A (zh) * 2013-08-28 2016-04-13 乌本产权有限公司 用于风能设备的转子叶片元件、转子叶片及其制造方法和具有转子叶片的风能设备
WO2019053061A1 (en) 2017-09-12 2019-03-21 Covestro Deutschland Ag COMPOSITE MATERIAL COMPRISING A POLYURETHANE-POLYACRYLATE RESIN MATRIX
EP3549670A1 (de) 2018-04-06 2019-10-09 Covestro Deutschland AG Verfahren zur herstellung eines polyurethan-poly(meth)acrylat-harzes
WO2019193152A1 (en) 2018-04-06 2019-10-10 Covestro Deutschland Ag Manufacturing method for a polyurethane-poly(meth)acrylate resin

Also Published As

Publication number Publication date
DE102011004723A1 (de) 2012-08-30
EP2678151A1 (de) 2014-01-01
AU2012219675A1 (en) 2013-09-12
PL2678151T3 (pl) 2018-01-31
MX2013009565A (es) 2013-09-06
BR112013021601A2 (pt) 2016-11-16
ES2646391T3 (es) 2017-12-13
CN103619579B (zh) 2015-07-08
AU2012219675B2 (en) 2015-12-17
EP2678151B1 (de) 2017-08-09
US9085990B2 (en) 2015-07-21
CN103619579A (zh) 2014-03-05
CA2828035A1 (en) 2012-08-30
US20130330202A1 (en) 2013-12-12
DK2678151T3 (da) 2017-11-20

Similar Documents

Publication Publication Date Title
EP2509790B1 (de) Verwendung von schichtaufbauten in windkraftanlagen
EP2678151B1 (de) Verwendung von schichtaufbauten in windkraftanlagen
EP2885331B1 (de) Faserverstärkte verbundbauteile und deren herstellung
EP2606079B1 (de) Faserverbundbauteil und ein verfahren zu dessen herstellung
EP2768891B1 (de) Faserverstärktes polyisocyanuratbauteil und ein verfahren zu dessen herstellung
WO2012163845A1 (de) Faserverbundbauteil und ein verfahren zu dessen herstellung
EP3423516B1 (de) Verfahren zur herstellung von faserverbundbauteilen
EP3313910B1 (de) Polyurethansysteme für schichtaufbauten in windkraftanlagen
EP3137537B1 (de) Faserverbundbauteile und deren herstellung
EP2920220A1 (de) Verfahren zur herstellung von verbundbauteilen
EP0006557A2 (de) Verfahren zur Herstellung von glasfaserverstärkten Kunststoffschichten und deren Verwendung bei der Konstruktion von Sandwichbauteilen
WO2021048334A1 (de) Pu-kompositharze
EP2708354A1 (de) Verfahren zur Herstellung von Sandwichelementen
WO2011117186A1 (de) Verkleidungen für windkraftanlagen und verfahren zu deren herstellung

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12706797

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2012706797

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2012706797

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/009565

Country of ref document: MX

ENP Entry into the national phase

Ref document number: 2828035

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14001207

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2012219675

Country of ref document: AU

Date of ref document: 20120220

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013021601

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013021601

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130823