WO2012079537A1 - 一种基于g.709的多级复用路由控制方法和网关网元 - Google Patents

一种基于g.709的多级复用路由控制方法和网关网元 Download PDF

Info

Publication number
WO2012079537A1
WO2012079537A1 PCT/CN2011/084149 CN2011084149W WO2012079537A1 WO 2012079537 A1 WO2012079537 A1 WO 2012079537A1 CN 2011084149 W CN2011084149 W CN 2011084149W WO 2012079537 A1 WO2012079537 A1 WO 2012079537A1
Authority
WO
WIPO (PCT)
Prior art keywords
multiplexing
stage
capability
level
network element
Prior art date
Application number
PCT/CN2011/084149
Other languages
English (en)
French (fr)
Inventor
付锡华
张新灵
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP11849034.1A priority Critical patent/EP2642766B1/en
Priority to JP2013543518A priority patent/JP5710781B2/ja
Priority to US13/994,300 priority patent/US20130294773A1/en
Publication of WO2012079537A1 publication Critical patent/WO2012079537A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J2203/00Aspects of optical multiplex systems other than those covered by H04J14/05 and H04J14/07
    • H04J2203/0001Provisions for broadband connections in integrated services digital network using frames of the Optical Transport Network [OTN] or using synchronous transfer mode [STM], e.g. SONET, SDH
    • H04J2203/0051Network Node Interface, e.g. tandem connections, transit switching
    • H04J2203/0053Routing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/16Time-division multiplex systems in which the time allocation to individual channels within a transmission cycle is variable, e.g. to accommodate varying complexity of signals, to vary number of channels transmitted
    • H04J3/1605Fixed allocated frame structures
    • H04J3/1652Optical Transport Network [OTN]
    • H04J3/1664Optical Transport Network [OTN] carrying hybrid payloads, e.g. different types of packets or carrying frames and packets in the paylaod
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0073Provisions for forwarding or routing, e.g. lookup tables
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/1301Optical transmission, optical switches
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13141Hunting for free outlet, circuit or channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13196Connection circuit/link/trunk/junction, bridge, router, gateway
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q2213/00Indexing scheme relating to selecting arrangements in general and for multiplex systems
    • H04Q2213/13242Broadcast, diffusion, multicast, point-to-multipoint (1 : N)

Definitions

  • Multi-level multiplexing routing control method based on G.709 and gateway network element
  • the invention belongs to the field of optical network transmission, and in particular relates to a G.709-based multiplex routing control method and a gateway network element in an optical switching network automatic switching optical network.
  • Optical Transport Network is a "digital encapsulation" technology proposed in 1999 to solve the problem of high-capacity transmission of high-speed time division multiplexing (TDM) signals.
  • the OTN defined in the 2003 version provides functions such as transmission, multiplexing, protection, and monitoring management for the client layer signals.
  • the supported client layer signals are mainly synchronous transmission mode (STM-N), asynchronous transmission mode (ATM), and universal group.
  • Frame program (GFP) maps supported Ethernet signals with defined rate classes of 2.5G, 10G and 40G.
  • IP Internet Protocol
  • GE Gigabit Ethernet
  • the traditional OTN multiplexing system is very simple, with speed classes of 2.5G, 10G and 40G, corresponding to optical channel data units (ODU) 1, ODU2 and ODU3, respectively.
  • the service of the fixed bit rate (CBR, Constant Bit Rate) is mapped to the corresponding ODUk by means of asynchronous mapping (AMP) or bit synchronization mapping (BMP), and the packet service is mapped to the ODUk by GFP, and these ODUk are remapped. Go to the corresponding optical channel transmission unit (OTU) k.
  • AMP asynchronous mapping
  • BMP bit synchronization mapping
  • ODUk optical channel transmission unit
  • OFT optical channel transmission unit
  • low-rate ODUs can also be multiplexed into high-speed ODUs, as shown in Figure 1.
  • OTN introduces new concepts, namely high-order (HO, High Order) ODU and low-order (LO, Low Order) ODU, as shown in Figure 2, starting from the left in Figure 2, the first column Is LO ODU, the rate level in each box, such as ODU3, is marked as ODU3 (L), L is Low Order; the second column is high-order, the rate level in each box, such as ODU3, is marked as ODU3 (H), H is High Order.
  • the HO/LO is consistent with the concept of high-order/low-order containers in the Synchronous Digital Hierarchy (SDH).
  • SDH Synchronous Digital Hierarchy
  • the LO ODU is equivalent to the service layer and is used to adapt services of different rates and different formats.
  • the HO ODU is equivalent to the tunnel layer. Used to provide a certain bandwidth of transmission Capability, this hierarchical structure supports the separation of service boards and circuit boards, which provides greater flexibility and economy for network deployment.
  • G.709 Amendment 3 and G.sup 43 have changed a lot compared to G.709 in 2003. It introduces new signal types, including ODU0, ODU2e, ODU3el, ODU3e2, and flexible ODU ( ODUflex ) and ODU4.
  • ODU0 optical channel data unit
  • ODU0 can be independently cross-connected or mapped to higher-order ODUs (such as ODU1, ODU2, ODU3, and ODU4).
  • ODU4 was introduced at a rate of 104.355 Gb/s.
  • ODU1 is mapped to ODU2, ODU3, and ODU2 is mapped to ODU3 to maintain the original G.709 version of the 2.5G tributary timing mapping multiplexing mode.
  • the ODU1 is mapped to the ODU2 and ODU3 1.25G tributary timing, and the ODU2 is mapped to the ODU3 1.25G.
  • Branch timing; other new rates (ODU0, ODU2e, ODUflex) mapped to ODU1, ODU2, ODU3, ODU4 are all 1.25G tributary timing mapping multiplexing.
  • ODU2e can be mapped to ODU3el's 2.5G tributary timing, and ODU2e can also be mapped to ODU3el's 1.25G tributary timing.
  • Most low-order ODUs have the same number of branch timings in the higher order; however, ODU2e, ODU2e needs to occupy 9 1.25G branch timings or 5 2.5G branch timings in ODU3, while ODU2e is in ODU4 It takes eight 1.25G branch timings, of which ODTUG stands for Opie channel Data Tiibiitary Unit Group.
  • Figure 3 shows the detailed mapping multiplexing path structure of the G.709 standard and the G.sup43 standard.
  • ODUflex is currently expected to support new bit rates that are not efficiently mapped to ODU2, ODU3 or ODU4.
  • ODUflex is treated as a low-order ODU; an ODUflex occupies the number of tributary sequences of any integer multiple of the high-order ODUk.
  • the ODUflex bandwidth can be dynamically adjusted.
  • the recommended Packet ODUflex size is: nxl .24416 Gbit/s + 20ppm ( 1 ⁇ n ⁇ 80 ), while the CBR ODUflex size is 239/238 times the client signal rate.
  • the newly defined ODUflex no longer provides mapping for client signals that have been mapped to ODU0, ODU1, ODU2, and ODU3.
  • For CBR client signals it is preferred to map customer signals to ODUflex via BMP, ODUflex speed
  • the rate is 239/238 times the client signal rate (customer signal rate is 2.5G or more).
  • ODUflex n*1.24416G, where 1 n 80; ODUflex bits
  • the rate is an integer multiple of the number of branch timings of the high order ODUk.
  • the end-to-end label switching path may control many old devices and new devices at the same time.
  • the old devices can only support 2.5G tributary timing units, while the new devices can support both 2.5G tributary timing units and 1.25G tributary timing units.
  • An end-to-end ODUk service may pass through many old devices and new devices at the same time.
  • the old devices can only support 2.5G tributary timing units, while the new devices can support both 2.5G tributary timing units and 1.25G tributary timing units.
  • the interconnection and interoperability involved in managing the end-to-end service becomes a practical technical problem.
  • the technical problem to be solved by the present invention is to provide a G.709-based multi-stage multiplexing routing control method and a gateway network element in an optical switching network automatic switching optical network.
  • a multi-level multiplexing routing control method based on G.709 comprising:
  • the gateway network element broadcasts its own multi-stage multiplexing capability to its own routing domain or path computing entity by using an extended routing protocol to implement multi-level multiplexing configuration and management of the optical transport network through the gateway network element;
  • the level multiplexing capability includes a multiplexing hierarchy supported by a port of a link connected to the gateway network element and adaptation capability information.
  • the multi-stage multiplexing capability of the gateway network element is generated by the gateway network element by detecting the board and port information of the own node; or, the gateway network element receives the multi-stage multiplexing capability configured by the management plane. .
  • the routing protocol is an Open Shortest Path First Protocol (OSPF-TE) based on traffic engineering or an intermediate system and an intermediate system (IS-IS-TE) based on traffic engineering.
  • OSPF-TE Open Shortest Path First Protocol
  • IS-IS-TE intermediate system
  • the step of the gateway network element broadcasting the multi-level multiplexing capability to the routing domain or the path computing entity where the gateway network element is located by using the extended routing protocol includes:
  • the gateway network element carries the multi-stage multiplexing capability by extending in an extended interface switching capability descriptor, where the extended interface switching capability descriptor includes a bandwidth information field and a specific switching capability information field, where:
  • the specific exchange capability information field is used to indicate a signal type and multiplexing hierarchy information supported by a port of a link connected to the gateway network element;
  • the bandwidth information field is used to indicate bandwidth information of each level of signal type supported by a port of a link connected to the gateway network element.
  • the extended interface switching capability descriptor further carries a signal type field, where: when the signal type field is indicated as ODUj, the bandwidth information field includes N bandwidth representation lines, respectively indicating the priority Px, directly The number of available ODUjs multiplexed into the OTUj, and the number of available ODUjs multiplexed into the higher-rate ODUk under the priority Px, the ODUj being the ODU signal of the non-ODUflex; or
  • the specific exchange capability information field includes a multi-level multiplexing layer number field and M sub-fields, where:
  • the multi-level multiplexing layer number field indicates the number of multi-level multiplexing layers supported when the ODUj signal is mapped into the ODUk, where k and j are both natural numbers, and 1 ⁇ >";
  • Each of the M subfields describes a multi-stage multiplexing capability, and each subfield includes a multi-level multiplexing layer number information field and a multi-level multiplexing signal type information field, and the M indicates a supported multi-level The number of multiplexing capabilities, where:
  • the multi-stage multiplexing layer number information field is used to indicate a number of layers of multi-level multiplexing
  • the multi-stage multiplexed signal type information field is used to indicate each signal type and multiplexing relationship of a multi-stage multiplex.
  • the step of the gateway network element broadcasting the multi-level multiplexing capability to the routing domain or the path computing entity where the gateway network element is located by using the extended routing protocol includes:
  • the multi-level multiplexing constraint subtype length value carries the multi-stage multiplexing capability of the gateway network element, and the multi-level multiplexing constraint subtype length value includes a type field, a length field, and a multi-stage multiplexing capability information field, where:
  • the type field used to indicate a type of the subtype length value
  • the length field is used to indicate a length of the multi-level multiplexing capability information field
  • the multi-stage multiplexing capability information field is used to indicate a specific multi-stage multiplexing capability supported.
  • the multi-stage multiplexing capability information field includes M sub-fields, each sub-field describes a multi-stage multiplexing capability, and each sub-field includes a multi-level multiplexing layer number information field and a multi-stage multiplexing signal type information field.
  • the M represents the number of supported multi-stage multiplexing capabilities, where:
  • the multi-stage multiplexing layer number information field is used to indicate the number of layers of multi-stage multiplexing
  • the multi-stage multiplexed signal type information field is used to indicate each signal type of the multi-stage multiplexing.
  • a gateway network element includes a multi-stage multiplexing capability configuration module and a configuration and management module, wherein:
  • the multi-stage multiplexing capability configuration module is configured to broadcast the multi-level multiplexing capability of the gateway network element to a routing domain or a path computing entity where the gateway network element is located by using an extended routing protocol;
  • the configuration and management module is configured to: implement multi-level multiplexing configuration and management of the optical transport network by using the configured multi-stage multiplexing capability;
  • the multi-stage multiplexing capability includes a multiplexing level and adaptation capability information supported by a port of a link connected to the gateway network element.
  • the multi-stage multiplexing capability configuration module is further configured to: generate the multi-stage multiplexing capability by detecting the board and port information of the own node; or receive the multi-level multiplexing capability configured by the management plane.
  • the routing protocol is an open shortest path priority protocol based on traffic engineering.
  • OSPF-TE OSPF-TE
  • IS-IS-TE intermediate system and intermediate system
  • the multi-stage multiplexing capability configuration module is configured to broadcast its own multi-level multiplexing capability to a routing domain or a path computing entity where the gateway network element is located in the following manner: carrying the extended interface switching capability descriptor
  • the multi-stage multiplexing capability, the extended interface switching capability descriptor includes a bandwidth information field and a specific switching capability information field, where:
  • the specific exchange capability information field is used to indicate a signal type and multiplexing hierarchy information supported by a port of a link connected to the gateway network element;
  • the bandwidth information field is used to indicate bandwidth information of each level of signals supported by a port of a link connected to the gateway network element.
  • the interface switching capability descriptor further carries a signal type field.
  • the bandwidth information field includes N bandwidth representation lines, respectively indicating the number of available ODUjs that are directly multiplexed into the OTUj under the priority Px, and, under the priority Px, are multiplexed into The number of ODUjs of the ODUk of the higher rate, and the ODUj is the ODU signal of the non-ODUflex; or
  • the specific exchange capability information field includes a multi-level multiplexing layer number field and M sub-fields, where:
  • the multi-level multiplexing layer number field indicates the number of multi-level multiplexing layers supported when the ODUj signal is mapped into the ODUk, where k and j are both natural numbers, and 1 ⁇ >";
  • Each of the M subfields describes a multi-stage multiplexing capability, and each subfield includes a multi-level multiplexing layer number information field and a multi-level multiplexing signal type information field, and the M indicates a supported multi-level The number of multiplexing capabilities, where:
  • the multi-stage multiplexing layer number information field is used to indicate a multi-level multiplexing layer number; the multi-stage multiplexing signal type information field is used to indicate each signal type and multiplexing relationship of a multi-stage multiplexing .
  • the multi-stage multiplexing capability configuration module is configured to broadcast its own multi-level multiplexing capability to a routing domain or a path computing entity where the gateway network element is located by using an extended routing protocol in the following manner: extending the routing protocol To support carrying multi-level multiplexing capability, adding a multi-level multiplexing constraint subtype length value to the high-level type length value of the link-type link state broadcast data packet, using the multi-level multiplexing constraint subtype
  • the length value carries the multi-stage multiplexing capability of the gateway network element, where the multi-level multiplexing constraint subtype length value includes a type field, a length field, and a multi-level multiplexing capability information field, where:
  • the type field used to indicate a type of the subtype length value
  • the length field is used to indicate a length of the multi-level multiplexing capability information field
  • the multi-stage multiplexing capability information field is used to indicate a specific multi-stage multiplexing capability supported.
  • the multi-stage multiplexing capability information field includes M sub-fields, each sub-field describes a multi-stage multiplexing capability, and each sub-field includes a multi-level multiplexing layer number information field and a multi-stage multiplexing signal type information field.
  • the M represents the number of supported multi-stage multiplexing capabilities, where:
  • the multi-stage multiplexing layer number information field is used to indicate the number of layers of multi-stage multiplexing
  • the multi-stage multiplexed signal type information field is used to indicate each signal type of the multi-stage multiplexing.
  • the method provided by the embodiment of the invention implements multi-level multiplexing control. BRIEF abstract
  • Figure 1 is a schematic diagram of a mapping multiplexing structure of the G.709 standard published in 2003
  • Figure 2 is a schematic diagram of a mapping multiplexing structure of the G.709 Amendment 3 and G.sup 43 standards;
  • Figure 3 is a schematic diagram of the detailed mapping and multiplexing structure of the G.709 standard and the G.sup43 standard;
  • Figure 4 is a schematic diagram of the OTN network structure that the operator has invested in and deployed;
  • FIG. 5 is a schematic diagram of a network structure for introducing a network element of a gateway network element to support multi-stage multiplexing in order to add an OTN device supporting ODU0 and ODUflex signals to the existing network shown in FIG. Schematic diagram of an OTN network structure diagram;
  • FIG. 7 is a schematic diagram of a network structure in which a gateway network element supports multi-stage multiplexing in order to add an OTN device supporting ODU0 and ODUflex signals to the existing network shown in FIG. 4;
  • FIG. 8 is a coded diagram of a Multistages Multiplex Constraints Sub-TLV according to an embodiment of the present invention.
  • FIG. 9 is a network architecture diagram of the gateway network element after the OTN device supporting the ODU0 and ODUflex signals is added to the existing network shown in FIG. 4;
  • Figure 10 is an open shortest path priority protocol for Gateway 1 through traffic engineering.
  • the (OSPF-TE) protocol broadcasts the multi-stage multiplexing capability supported by the node to the entire routing domain, and the coding scheme of the Multi Stages Multiplex Constraints Sub-TLV;
  • FIG. 11 is a schematic diagram of the Multi Stages Multiplex Constraints Sub-TLV coded by the Gateway 3 by using the OSPF-TE protocol to broadcast the multi-stage multiplexing capability supported by the node to the entire routing domain;
  • FIG 12 shows that Gateway 4 broadcasts the multi-level multiplexing capability supported by the node to the entire routing domain through the OSPF-TE protocol.
  • the Multi Stages Multiplex Constraints Sub-TLV code is displayed. Intention
  • Figure 13 is a schematic diagram of an 0TN network in which the operator has invested in a 10G, a 40G, and a 100GOTN network and interconnected with the 0TN network based on Figure 9.
  • FIG. 14 is a schematic diagram of coding of the gateway 5 to broadcast the multi-stage multiplexing capability supported by the node to the entire routing domain by using the OSPF-TE protocol;
  • FIG. 15 is a schematic diagram of coding of the gateway 7 broadcasting the multi-stage multiplexing capability supported by the node to the entire routing domain by using the OSPF-TE protocol;
  • Figure 16 is an internal structure diagram of a 0TN node providing multi-stage multiplexing capability
  • FIG. 18 is an ISCD extension mode for multi-stage multiplexing, the extension mode is for ODUflex;
  • FIG. 19 is a format definition of Switching Capability-specific information;
  • Figure 20 is an example of Switching Capability-specific information
  • Figure 21 is a topological example of a multi-stage multiplexed OTN network applied
  • Figure 22 is the bandwidth information indicated by the ISCD and the multi-level multiplexing information of the link between the A node and the B node;
  • Figure 23 is the bandwidth information indicated by the ISCD of the link between the node B and the node C and the multi-level multiplexing information
  • Figure 24 is the bandwidth information represented by the ISCD and the multi-level multiplexing information of the link between the node C and the node D;
  • Figure 26 is an end-to-end ODU0 service in which the source and sink are established as the A node and the D node;
  • Figure 27 is an end-to-end ODU0 service in which the source and sink are established as the A node and the E node.
  • OTN vl The subsequent result in OTN vl is that ODU1 maps directly to a branch timing of ODU3 without first mapping to 0DU2.
  • the motivation for this architecture is to reduce complexity.
  • the newly added OTN function is expected to be at a higher rate, so the single-stage multiplexing concept will be pushed forward more easily. That is, if the rates are all increasing, single-stage multiplexing can easily continue to be used in the OTN architecture.
  • two-stage multiplexing is expected to assist in introducing ODU0 and ODUflex signals into existing networks, thereby eliminating the need to update each node in the existing network.
  • Two-level multiplexing in one domain allows operators to apply new rate limiting to only those nodes that need to support these new rates.
  • Two-stage multiplexing is expected to be used to assist
  • the ODU0 and ODUflex signals are introduced into the existing network, eliminating the need to update every node in the existing network.
  • the Gateway network element needs to be introduced to support multi-level multiplexing.
  • the embodiment of the present invention proposes to introduce a gateway (Gateway) network element in an existing network or upgrade some existing network elements to a gateway network element, and implement multi-stage multiplexing (Multi Stage Multiplexing) on the gateway network elements to enable
  • the ODU0 and ODUflex applications are introduced into the deployed network, and the 1.25G TS network is interoperable with the deployed 2.5G TS network to complete the conversion between the 1.25G TS signal and the 2.5G TS signal. It not only protects the operator's existing OTN network investment, but also introduces new ODUk applications into the invested OTN network.
  • the network shown in FIG. 4 is upgraded to obtain the network shown in FIG. 5. Since the gateway network element is introduced in FIG. 5, it is not necessary to update each node in the existing network, and the gateway network element included in FIG. 5 supports two-stage multiplexing, thereby Allows ODU0/ODUflex to be supported in already deployed networks.
  • ODUO/ODUflex maps to ODU1 or ODU2 first, and then ODU1/ODU2 maps to ODU3. Nodes 4, 5, 6, 7 do not need to see ODUO/ODUflex, but directly exchange ODU1 or ODU2, thus protecting the existing operators.
  • the second potential secondary multiplexing application is a tunnel-based network design.
  • each ODU4 has 80 branch timings. Assume that a large number of ODU0 and ODUflex require 3-4 branch timings. If a large number of circuit services share the same end The endpoint (or even part of the entire path), from a management perspective, introduces a Gateway network element, which first multiplexes ODU0 and ODUflex to ODU2 or ODU3 to minimize the number of connections that need to be created at the intermediate node. ODU2/ODU3 effectively creates a tunnel through the ODU4 network used by ODUO/ODUflex.
  • the ODU4/ODUflex is visible only to non-gateway NEs.
  • secondary multiplexing increases the complexity of the gateway network element, it reduces the number of cross-connections that need to be configured at other non-gateway network element nodes.
  • the management plane and the control plane obtain detailed information of each link in the OTN network, and the detailed information includes the tributary timing granularity supported by the link, the maximum number of supported tributary timings (that is, the maximum bandwidth of the link), and the current The number of tributary sequences available for the link and the low-order signal types that the link can support.
  • each gateway network element supports different multi-level multiplexing capabilities, and is located between Gateway 1 and 4 nodes and between Gateway 3 and 7 nodes, because ODU0 can be mapped to ODU3 through two-stage multiplexing. In the Network 2 network (that is, ODU0 can be mapped to ODU1 or ODU2, and then ODU1 or ODU2 is mapped to ODU3).
  • the path computation entity can obtain the multi-level multiplexing capability of the network element by extending the automatic discovery protocol or routing protocol.
  • the embodiment of the present invention provides a route control method for the path computation entity to obtain the multi-level multiplexing capability information of the gateway network element, so that when the gateway network element is introduced into the existing OTN network, the path computation entity of the end-to-end ODUk service can
  • the end-to-end ODUk service determines the gateway network element that passes through and selects the appropriate multi-stage multiplexing capability on the gateway network element.
  • the G.709-based multiplex routing control method includes: the gateway network element carries its multi-stage multiplexing capability in a link state broadcast data packet, and the gateway network element is used by a routing protocol.
  • the multi-stage multiplexing capability is broadcasted to the routing domain or path computing entity in which it resides to implement multi-stage multiplexing configuration and management of the optical transport network through the gateway network element.
  • the routing protocol is an Open Shortest Path First Protocol (OSPF-TE) based on traffic engineering or an intermediate based traffic engineering. System and Intermediate System (IS-IS-TE).
  • OSPF-TE Open Shortest Path First Protocol
  • IS-IS-TE System and Intermediate System
  • the multi-stage multiplexing capability includes a multiplexing hierarchy supported by a port of a link connected to the gateway network element and adaptation capability information.
  • the multi-stage multiplexing capability of the gateway network element is generated by the gateway network element by detecting the board and port information of the own node, or is configured by the management plane to be received by the gateway network element.
  • the gateway network element receives the multi-stage multiplexing capability configured by the management plane, it also checks whether the data plane supports the multi-stage multiplexing capability configured by the management plane.
  • the routing protocol is extended to support multi-level multiplexing capability, and a multi-level complex is added to the top level TLV of the link state broadcast packet of the link type.
  • the type field used to indicate a type of the subtype length value
  • the length field is used to indicate a length of the multi-level multiplexing capability information field
  • the multi-stage multiplexing capability information field is used to indicate a specific multi-level multiplexing capability supported, where the multi-level multiplexing capability information field includes M sub-fields, and each sub-field describes a multi-level multiplexing capability.
  • Each subfield includes a multi-stage multiplexing layer number information field and a multi-stage multiplexing signal type information field, where M represents the number of supported multi-stage multiplexing capabilities, where:
  • the multi-stage multiplexing layer number information field is used to indicate the number of layers of multi-stage multiplexing
  • the multi-stage multiplexed signal type information field is used to indicate each signal type of the multi-stage multiplexing.
  • the embodiment of the present invention extends the routing protocol.
  • rfc2370 defines an opaque (Opaque) link state.
  • Link State Advertisement (LSA), which defines three types of Opaque LSAs based on the range of Opaque LSA flooding, which are LSAs of type 9, 10, and 11, respectively.
  • the 11 types of Opaque LSA can be flooded across the AS (Autonomous System); the 10 types of Opaque LSA flooding range cannot exceed the boundary associated with the LSA; the 9 types of Opaque LSA can only be localized. Flooding within a network or subnet.
  • the rfc3630 extends the Opaque LSA to define a new type of LSA to support LSA for traffic engineering.
  • the traffic engineering (TE) defined by rfc3630 LSA is an Opaque LSA and can only be flooded within the Area.
  • the rfc4203 adds four subtype length values (TLVs) to the rfc3630 to define the link type of the packet.
  • the Top Level TLV is used to support general multiprotocol label switching (GMPLS). Generalized Multiprotocol Label Switching, including Link Local/Remote Identifiers, Link Protection Type, Interface Switching Capability Descriptor, and Shared Risk Link Group (Additional Risk) Link Group).
  • GPLS general multiprotocol label switching
  • Generalized Multiprotocol Label Switching including Link Local/Remote Identifiers, Link Protection Type, Interface Switching Capability Descriptor, and Shared Risk Link Group (Additional Risk) Link Group).
  • the original rfc4203 is defined as shown in Table 1, but rfc4203 does not include a new Top Level TLV.
  • a sub-TLV is added to the Top Level TLV that defines the link of the rfc4203, and is named as a Multi-stage Multiplex Constraints Sub-TLV, as shown in Table 2 below.
  • the value of the Multi Stages Multiplex Constraints Sub-TLV is 17 or may be other values as needed, which is not limited in the embodiment of the present invention.
  • an embodiment of the present invention provides a method for encoding a Multi Stages Multiplex Constraints Sub-TLV, including a Type field, a Length field, and a multi-level multiplexing capability information field, where:
  • the Type field indicates the type of the object, and may have a value of 17, which is only an example here, and other values may be used as the value of the type field as needed;
  • the Length field is used to indicate a length of the multi-stage multiplexing capability information field
  • the multi-stage multiplexing capability information field includes M sub-fields, each of which indicates a multi-stage multiplexing capability; each sub-field includes a multi-level multiplexing layer number information (Num) field and multi-level multiplexing signal type information.
  • Num multi-level multiplexing layer number information
  • M multi-level multiplexing signal type information.
  • Num 1 represents a multi-level multiplexing level of the first multi-stage multiplexing capability supported, and Multi Stages Multiplexing Sub-TLV 1 represents a multi-stage multiplexing signal type of the first multi-stage multiplexing capability supported;
  • Num 2 represents a multi-level multiplexing level of the second multi-stage multiplexing capability supported, and Multi Stages Multiplexing Sub-TLV 2 represents a multi-stage multiplexing signal type of the second multi-stage multiplexing capability supported;
  • Num M represents the multi-level multiplexing level of the Mth multi-stage multiplexing capability supported, and Multi Stages Multiplexing Sub-TLV M represents the multi-stage multiplexing signal type of the Mth multi-stage multiplexing capability supported.
  • TLV Type is 17;
  • the Num 1 field indicates the level of the multi-stage multiplexing of the first multi-stage multiplexing capability (method) information supported, and 3 bits can be used (other bits can be used as needed, and the number of bits is not limited in the embodiment of the present invention) Said.
  • the encoding of the signal type is as follows:
  • the foregoing coding method is only an example, and the ODUk may be represented by other coding methods, which is not limited by the embodiment of the present invention.
  • Num 2 indicates the level of multi-level multiplexing of the second multi-stage multiplexing capability (method) information supported. For example, when ODU0-ODU1-ODU3 is to be represented, Num 2 is filled in 2, and then every 4 bits represent a certain An ODUk.
  • the Length field is ( Numl+1 ) *4+ ( Num2+1 ) *4+...+(Num
  • the gateway network element is introduced into the existing network, and the OTN device node implemented according to the latest version of the G.709 standard is deployed to form three 10G OTN networks and one 40G OTN.
  • the internet Four networks are classified into one routing domain.
  • the tributary timing size supported by each link on the 10G OTN network is 1.25G TS.
  • Three 10G OTN networks are interconnected with the 40G OTN network through gateways 1, Gateway 3, and Gateway 4, and the link between them is an OTU3 link.
  • the switching capability supported by each node in the three 10G OTN networks is also different.
  • the nodes 1, 2, 3, and Gateway 1 in the ODU 2 Network 1 only support the switching capabilities of ODU0, ODU1, and ODUflex.
  • Nodes 11, 12, 13, and Gateway 4 in ODU2 Network 4 only support ODU0, ODUflex, and ODU1 switching. ability.
  • Nodes 8, 9, 10, and Gateway 3 in ODU2 Network 3 only support the switching capability of ODU0 and ODUflex, because the operator only wants ODU2 Network 3 to be responsible for accessing only 1 GigE (ODu0) and 10 GigE (ODU2/ODU2e) services. Therefore, it is more economical to only make the ODU0/ODU2 exchange, and there is no need to exchange the ODU1.
  • the multi-level multiplexing capabilities supported by each gateway NE are as follows:
  • the multi-level multiplexing capabilities supported by the Gateway 1 network element include:
  • the multi-level multiplexing capabilities supported by the Gateway 3 network element include:
  • the multi-level multiplexing capabilities supported by the Gateway 4 network element include:
  • the Gateway 4 network element does not support ODUflex-ODU2-ODU3 multi-stage multiplexing.
  • the main operators consider that the relevant ODUflex application is limited to the ODU2 Network 4 network. There is no ODUflex beyond the ODU2 Network 4 network, that is, ODUflex.
  • the app does not pass through the ODU3 Network 2 . Therefore, the Gateway4 network element does not need to support ODUflex-ODU2-ODU3 multi-stage multiplexing.
  • Gateway 1 broadcasts the multi-level multiplexing capability supported by the node to the entire routing domain through the OSPF-TE protocol.
  • the Multi Stages Multiplex Constraints Sub-TLV encoding is shown in Figure 10.
  • Gateway 3 broadcasts the multi-level multiplexing capability supported by the node to the entire routing domain through the OSPF-TE protocol.
  • the Multi Stages Multiplex Constraints Sub-TLV encoding is shown in Figure 11.
  • Gateway 4 broadcasts the multi-level multiplexing capability supported by the node to the entire OSPF-TE protocol.
  • the Multi Stages Multiplex Constraints Sub-TLV code is shown in Figure 12.
  • the operator has newly expanded some OTN networks.
  • the new OTN network deployed by the operators is 10G ODU2 Network 5, 40G ODU3 Network. 7 and 100G ODU4 Network 6 three networks.
  • all nodes in the ODU4 Network 6 network only exchange ODU2 (10G) and ODU (40G) granularity.
  • ODU0/ODU1/ODUflex local services there are many ODU0/ODU1/ODUflex local services in the ODU2 Network 5 network (that is, these services are limited to the ODU 2 Network 5 network and will not pass through the ODU4 Network 6). If there are some ODUk services, such as nodes. 15 access to a GigE (OWU0), across the ODU4 Network 6, through the ODU4 Network 6's ultra-long-distance transmission capability, the service is transmitted to 21 nodes in the ODU3 Network 7.
  • ODU0 GigE
  • ODU2 Network 5 and ODU3 Network 7 establish ODU2 tunnels internally. Many local services cannot share these tunnels. For operators, end-to-end services such as ultra-long-distance transmission waste a lot of bandwidth. For this reason, the best method is to directly establish ODU2 or ODU3 tunnels between Gateway 5 and Gateway 7, which are shared by low-order rate services across ODU2 Network 5, ODU2 Network 6, and ODU3 Network 7, and these low-order services.
  • the rate services are each scheduled directly within the ODU2 Network 5 and ODU2 Network 6 networks, without the need to pre-establish ODU2 or ODU3 tunnels.
  • the multi-stage multiplexing capabilities supported by the newly introduced gateway NEs are as follows:
  • the multi-level multiplexing capabilities supported by the Gateway 5 network element include: ODU0-ODU2-ODU4
  • the multi-level multiplexing capabilities supported by the Gateway 7 network element include:
  • the Gateway 5 broadcasts the multi-level multiplexing capability supported by the node to the entire routing domain through the OSPF-TE protocol.
  • the Multi Stages Multiplex Constraints Sub-TLV encoding is shown in Figure 14.
  • Gateway 7 broadcasts the multi-level multiplexing capability supported by the node to the entire routing domain through the OSPF-TE protocol.
  • the Multi Stages Multiplex Constraints Sub-TLV encoding is shown in Figure 15.
  • the multi-stage multiplexing capability of the OTN node shown in Figure 16 is shown in Table 3.
  • Table 3 shows the representation of the multi-stage multiplexing capability of Figure 16.
  • MHF Use multi-stage multiplexing or single-stage multiplexing. When 1 is used, it means multi-level multiplexing. When it is 0, it means single-stage multiplexing. Here, it is only an example, and it can also be expressed in other ways.
  • MH The level of specific multiplexing, including signal type and multiplexing level.
  • the second column of the first row indicates that the maximum number of supported ODU3 is 1, the second column indicates that the number of currently available ODU3 is 1, the third column indicates that 0 ODU3 has been allocated, and the fourth column indicates that the single-level is used. Reuse, but since ODU3 is the most direct ODUk container, there is no need to reuse it into other ODUk containers.
  • each OTU3 port can only support one ODU3 (40G)
  • one ODU3 can support 4 ODU2 (10G)
  • each ODU2 can support 4 ODUIs (2.5G)
  • each ODU1 can support 2 ODUOs (1.25). G).
  • the table in Table 3 therefore shows that the maximum number of OTU3 ports that can support each container is: ODU3: 1 , ODU2: 4, ODU1 : 16, ODU0: 32.
  • Table 4 shows the multi-level multiplexing adaptation capability of Unitl, Unit2, and Unit3 when three 10GigE (ODU2) services and one STM-16 service are added from the network element G1 and pass through the OTU3 link. Change, change result
  • OTU3 port 2 Unit 1 : ODU3 (40G), 2.5G TS
  • Example for the OTN node shown in Fig. 16 there is another representation method of multi-stage multiplexing capability, as shown in Table 5.
  • Table 5 shows another way to represent the multi-stage multiplexing capability of Figure 16.
  • 0TU3 Port 2 Unit 1 : 0DU3 (40G), 2.
  • 5G TS 5G TS
  • Table 3 indicates ODU2, ODU1, and ODUO directly or indirectly supported by the OTU3 port;
  • Table 5 indicates ODU2 and ODU1 supported by the OTU3 port; each ODU1 and ODU2 ODU0 can also be directly supported.
  • the ISCD Interface Switching Capability Descriptor
  • the extended ISCD can be used to advertise the multi-level multiplexing capability of the gateway network element to the routing domain in which it resides. Or path calculation entity.
  • Figure 18 is an ISCD extension for ODUflex.
  • the following fields are included: Switching Capability, Encoding Type, Signal Type, Reserved, Bandwidth Information, and Switching Capability-specific information.
  • the specific exchange capability information field is used to indicate a signal type and multiplexing hierarchy information supported by a port of a link connected to the gateway network element, where the bandwidth information field is used to indicate connection with the gateway network element. The bandwidth information of each type of signal supported by the port of the connected link.
  • Switching Capability TDM
  • Encoding Type G.709 for the two extension methods.
  • the embodiment of the present invention is not limited, and other signal types except ODUflex may be used; Other ODU signals other than ODUflex may also be included.
  • OTU2 ODUflex indicates ODUflex complex ODU2 is used,
  • OTU3 ODUflex means ODUflex is multiplexed into ODU3,
  • OTU4 ODUflex means ODUflex is multiplexed into ODU4,
  • Generic ODUflex means that ODUflex is multiplexed into ODU2, ODU3 and ODU4, and does not care about the specific timing of the branch timing of these ODUk containers.
  • the signal type is not limited to the embodiment of the present invention, and the specific signal is multiplexed into the ODUflex.
  • the bandwidth information field specifically includes:
  • the ISCD extension mode of FIG. 17 defines eight priority bandwidth representation lines, respectively.
  • Priority includes resource retention and preemption priority.
  • the ISCD extension mode of Figure 18 also defines eight priority bandwidth representation lines.
  • the Switching Capability-specific information field is defined as shown in Figure 19, including:
  • the signal QDU0 can be multiplexed as follows: ODU0 ODU1- ODU3; ODU0- ODU2- ODU3, then Number is 2.
  • each subfield including a multi-level multiplexing layer number information (MSMH) field and more Level multiplexed signal type information (MSMC) field, where
  • MSMH multi-level multiplexing layer number information
  • MSMC Level multiplexed signal type information
  • the multi-stage multiplexing layer number information field is used to indicate a number of layers of multi-level multiplexing
  • the multi-stage multiplexed signal type information field is used to indicate each signal type and multiplexing relationship of a multi-stage multiplex.
  • MSMH1 includes MSMH1, MSMH2, MSMH M and corresponding MSMC 1 , MSMC 2... MSMC M.
  • MSMC 1, MSMC 2... MSMC M corresponds to MSMH 1, MSMH2, ..., MSMH M, respectively, indicating detailed multi-level multiplexing hierarchy information, and the length of MSMC is equal to (MSMH+1) * 4.
  • the foregoing coding method is only an example, and the ODUk may be represented by other coding modes, which is not limited by the embodiment of the present invention.
  • An implementation of Switching Capability-specific information is shown in FIG. 20, which shows ODU0-ODU1-ODU2-ODU3-ODU4 multi-stage multiplexing information. Where 1 indicates that only one multi-level multiplexing hierarchy is supported, 4 (which should use 0100, here abbreviated as 4) indicates the number of layers of the multi-stage multiplexing, 0000 indicates ODU0, 0001 indicates ODU1, 0010 indicates ODU2, and 0011 indicates ODU3.
  • 0100 means ODU4, together ODUO-ODUl -ODU2-ODU3-ODU4 radicals. If there is also multi-stage multiplexing of ODUO-ODUl-ODU2, in Figure 20, the Number field should be 2, after 0100, add 0011 (indicating multi-level multiplexing level 2 ) , and 0000, 0001, 0010, which represent 0DU0, 0DU1 and ODU2, respectively.
  • This embodiment presents a specific OTN network topology.
  • a complete and comprehensive embodiment is presented to guide the application of the invention.
  • one of the links is formed by binding an OTU2 and OTU3 link between the A and B nodes.
  • Figure 22 is the bandwidth information represented by the ISCD and the multi-level multiplexing information of the link between the A node and the B node.
  • Figure 23 is the bandwidth information represented by the ISCD and the multi-level multiplexing information of the link between the Node B and the Node C.
  • Figure 24 is the bandwidth information and multi-level multiplexing information indicated by the ISCD of the link between the node C and the node D.
  • Figure 25 is the bandwidth information represented by the ISCD and the multi-level multiplexing information of the link between the node C and the node E.
  • the priority information is omitted.
  • the supported priority and the bandwidth under each priority can be filled in.
  • the specific format of the number of multiplex layers (MH) is shown in Fig. 19, and only the representations are omitted in Fig. 22-29.
  • Figure 26 is an end-to-end ODU0 service in which the source and sink are respectively A and D nodes.
  • multi-stage multiplexing ODUO-ODUl-ODU2 is required at the A node and the D node, and it needs to be in the A and D nodes.
  • the newly established ODU1 tunnel is advertised as a topology link to the routing domain, leaving one ODU0 available.
  • Figure 27 is an end-to-end ODU0 service in which the source and sink are respectively A and E nodes.
  • multi-stage multiplexing ODU0-ODU2-ODU3 is required at the A node and the E node, and needs to be in the A and D nodes.
  • the newly established ODU2 tunnel is published as a topology link to the routing domain, and 7 ODU0s are available and 3 ODU1s are available.
  • the embodiment of the present invention further provides a gateway network element, where the gateway network element is configured to: carry the multi-stage multiplexing capability of the gateway network element in a link state broadcast data packet, and use the routing protocol to connect the gateway
  • the multi-stage multiplexing capability of the network element is broadcasted to a routing domain or a path computing entity where the gateway network element is located, and the multi-stage multiplexing capability includes a multiplexing hierarchy supported by a port of a link connected to the gateway network element. And adaptation capability information.
  • the gateway network element is further configured to: generate the multi-stage multiplexing capability according to the board and port information of the detecting the own node; or receive the multi-stage multiplexing capability configured by the management plane.
  • the routing protocol is an open shortest path first protocol based on traffic engineering, OSPF-TE or a traffic engineering based intermediate system and an intermediate system IS-IS-TE.
  • the gateway network element is configured to: carry the multi-stage multiplexing capability by using an extended interface switching capability descriptor, where the extended interface switching capability descriptor includes a bandwidth information field and a specific switching capability information field, where The specific exchange capability information field is used to indicate a signal type and multiplexing hierarchy information supported by a port of a link connected to the gateway network element, where the bandwidth information field is used to indicate a port of a link connected to the gateway network element. Bandwidth information for the supported levels of the signal.
  • the bandwidth information field includes N bandwidth representation lines, respectively indicating that the ODUk directly multiplexed into the OTUk is available under the priority Px. And the number of available ODUjs multiplexed into the higher rate ODUk under the priority Px; when the signal type field indicates that the ODUflex is multiplexed into one or more of the ODU2, ODU3, ODU4, the bandwidth
  • the specific exchange capability information field includes a multi-level multiplexing layer number field and M sub-fields, where:
  • Multi-level multiplexing layer number field indicating the number of multi-level multiplexing levels supported by the ODUj signal into ODUk and k > j;
  • the M subfields, each subfield describing a multi-stage multiplexing capability, each subfield packet The multi-level multiplexing layer number information field and the multi-stage multiplexing signal type information field are included, and the M represents the number of supported multi-stage multiplexing capabilities, where:
  • the multi-stage multiplexing layer number information field is used to indicate a multi-level multiplexing layer number; the multi-stage multiplexing signal type information field is used to indicate each signal type and multiplexing relationship of a multi-stage multiplexing .
  • the embodiment of the present invention further provides a gateway network element, including a multi-level multiplexing capability configuration module, and a configuration and management module, where:
  • the multi-stage multiplexing capability configuration module is configured to broadcast the multi-level multiplexing capability of the gateway network element to a routing domain or a path computing entity where the gateway network element is located by using an extended routing protocol;
  • the configuration and management module is configured to: implement multi-level multiplexing configuration and management of the optical transport network by using the configured multi-stage multiplexing capability;
  • the multi-stage multiplexing capability includes a multiplexing level and adaptation capability information supported by a port of a link connected to the gateway network element.
  • the multi-stage multiplexing capability configuration module is further configured to: generate the multi-stage multiplexing capability by detecting the board and port information of the own node; or receive the multi-level multiplexing capability configured by the management plane.
  • the routing protocol is an Open Shortest Path First Protocol (OSPF-TE) based on traffic engineering or an intermediate system and an intermediate system (IS-IS-TE) based on traffic engineering.
  • OSPF-TE Open Shortest Path First Protocol
  • IS-IS-TE intermediate system
  • the multi-stage multiplexing capability configuration module is configured to broadcast its own multi-level multiplexing capability to a routing domain or a path computing entity where the gateway network element is located in the following manner: carrying the extended interface switching capability descriptor
  • the multi-stage multiplexing capability, the extended interface switching capability descriptor includes a bandwidth information field and a specific switching capability information field, where:
  • the specific exchange capability information field is used to indicate a signal type and multiplexing hierarchy information supported by a port of a link connected to the gateway network element;
  • the bandwidth information field is used to indicate that the port of the link connected to the gateway network element is supported by Bandwidth information for each level of the signal.
  • the interface switching capability descriptor further carries a signal type field.
  • the bandwidth information field includes N bandwidth representation lines, respectively indicating the number of available ODUjs that are directly multiplexed into the OTUj under the priority Px, and, under the priority Px, are multiplexed into The number of ODUjs of the ODUk of the higher rate, and the ODUj is the ODU signal of the non-ODUflex; or
  • the specific exchange capability information field includes a multi-level multiplexing layer number field and M sub-fields, where:
  • the multi-level multiplexing layer number field indicates the number of multi-level multiplexing layers supported when the ODUj signal is mapped into the ODUk, where k and j are both natural numbers, and 1 ⁇ >";
  • Each of the M subfields describes a multi-stage multiplexing capability, and each subfield includes a multi-level multiplexing layer number information field and a multi-level multiplexing signal type information field, and the M indicates a supported multi-level The number of multiplexing capabilities, where:
  • the multi-stage multiplexing layer number information field is used to indicate a number of layers of multi-level multiplexing
  • the multi-stage multiplexed signal type information field is used to indicate each signal type and multiplexing relationship of a multi-stage multiplex.
  • the multi-stage multiplexing capability configuration module is configured to broadcast its own multi-level multiplexing capability to a routing domain or a path computing entity where the gateway network element is located by using an extended routing protocol in the following manner: extending the routing protocol To support carrying multi-level multiplexing capability, adding a multi-level multiplexing constraint subtype length value to the high-level type length value of the link-type link state broadcast data packet, using the multi-level multiplexing constraint subtype
  • the length value carries the multi-stage multiplexing capability of the gateway network element, where the multi-level multiplexing constraint subtype length value includes a type field, a length field, and a multi-level multiplexing capability information field, where: The type field, used to indicate a type of the subtype length value;
  • the length field is used to indicate a length of the multi-level multiplexing capability information field
  • the multi-stage multiplexing capability information field is used to indicate a specific multi-stage multiplexing capability supported.
  • the multi-stage multiplexing capability information field includes M sub-fields, each sub-field describes a multi-stage multiplexing capability, and each sub-field includes a multi-level multiplexing layer number information field and a multi-stage multiplexing signal type information field.
  • the M represents the number of supported multi-stage multiplexing capabilities, where:
  • the multi-stage multiplexing layer number information field is used to indicate the number of layers of multi-stage multiplexing
  • the multi-stage multiplexed signal type information field is used to indicate each signal type of the multi-stage multiplexing.
  • the method provided by the embodiment of the present invention implements multi-stage multiplexing control. Therefore, the present invention has strong industrial applicability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

一种基于G.709的多级复用路由控制方法和网关网元,该方法包括:网关网元通过扩展路由协议将所述网关网元的多级复用能力广播到所述网关网元所在的路由域或路径计算实体,以通过所述网关网元实现光传送网的多级复用配置与管理;所述多级复用能力包括与该网关网元连接的链路的端口所支持的复用层次以及适配能力信息。

Description

一种基于 G.709的多级复用路由控制方法和网关网元
技术领域
本发明属于光网络传输领域, 尤其涉及一种光传送网自动交换光网络 中, 基于 G.709的复用路由控制方法和网关网元。
背景技术
光传送网( OTN )是在 1999年为解决高速时分复用( TDM, Time Division Multiplexing )信号的大容量传送问题而提出的一种 "数字包封"技术。 2003 版定义的 OTN可以为客户层信号提供传送、 复用、保护和监控管理等功能, 所支持的客户层信号主要是同步传输模式 ( STM-N )、异步传输模式 ( ATM ) 和通过通用组帧程序(GFP )映射支持的以太网信号, 其定义的速率等级为 2.5G、 10G和 40G。 随着传送网络承载信号的互联网协议( IP ) 化以及 10G LAN接口的普及, 10万兆以太网 (GE )在 OTN上的承载成为一个重要问 题, 因此国际电信联盟 (ITU-T ) 于 2007 年开发了对 G.709 的补充标准 ( G.sup43 ) , 定义了 OTN传送 10GE信号的方式。
传统 OTN的复用体系非常简单, 速率等级为 2.5G, 10G和 40G, 分别 对应光通道数据单元( ODU ) 1 , ODU2和 ODU3。 固定码率( CBR, Constant Bit Rate ) 的业务釆用异步映射(AMP )或者比特同步映射(BMP )方式映 射到相应的 ODUk, 分组(Packet )业务釆用 GFP方式映射到 ODUk, 这些 ODUk再映射到相应的光通道传输单元(OTU ) k中。 当然, 低速率等级的 ODU也可复用到高速率等级的 ODU中, 如图 1所示。
为了适应多业务, OTN引入了新的概念, 即高阶(HO, High Order ) ODU和低阶(LO, Low Order ) ODU, 如图 2所示, 图 2中从左边数起, 第一列是 LO ODU,每个框中的速率等级,比如 ODU3 ,都标示为 ODU3 (L), L即是 Low Order; 第二列是高阶, 每个框中的速率等级, 比如 ODU3 , 都 标示为 ODU3 (H), H即是 High Order。 HO/LO与同步数字体系 (SDH ) 中 的高阶 /低阶容器的概念是一致的, LO ODU相当于业务层, 用于适配不同 速率和不同格式的业务, HO ODU相当于隧道层,用于提供一定带宽的传送 能力, 这种层次化的结构支持业务板卡与线路板卡分离,从而可为网络部署 带来更大的灵活性和经济性。
G.709修订( Amendment ) 3和 G.sup 43相对于 2003年的 G.709, 发生 了很大的变化, 它引入了新的信号类型, 包括 ODU0、 ODU2e、 ODU3el、 ODU3e2、 灵活的 ODU ( ODUflex ) 以及 ODU4。 首先引入了一个速率为 1.244Gb/s的新的光通道数据单元 ODU0, ODU0 可以独立进行交叉连接, 也可映射到高阶 ODU中 (如 ODU1、 ODU2、 ODU3和 ODU4 )。 为了适应 将来 100GE业务的传送, 引入了 ODU4, 速率为 104.355Gb/s。
ODU1映射到 ODU2、 ODU3 以及 ODU2映射到 ODU3保持原 G.709 版本的 2.5G支路时序映射复用方式,增加 ODU1映射到 ODU2和 ODU3的 1.25G支路时序, 增加 ODU2映射到 ODU3的 1.25G支路时序; 其他新的速 率(ODU0、 ODU2e、 ODUflex ) 映射到 ODUl、 ODU2、 ODU3、 ODU4都 釆用 1.25G 支路时序映射复用方式。 根据 G.sup 43 , ODU2e 可以映射到 ODU3el的 2.5G支路时序, ODU2e还可以映射到 ODU3el的 1.25G支路时 序。 大多数的低阶 ODU在高阶里具有相同的支路时序个数; 然而 ODU2e 例夕卜, ODU2e在 ODU3需要占用 9个 1.25G支路时序或者 5个 2.5G支路时 序, 而 ODU2e在 ODU4需要占用 8个 1.25G支路时序, 其中, ODTUG表 示光通道数据单元组( Op ie channel Data Tiibiitary Unit Group ) 。 图 3是 G.709标准以及 G.sup43标准的详细映射复用路径结构。
灵活的( Flexible ) ODU的思想最初在 2008年 9月份 ITU-T Ql 1/SG15 中间会议和 2008年 12月份 ITU-T SG15全会上被广泛讨论。 Flexible ODU 的最初想法是为任意比特速率的客户信号提供 OTN 的比特透明传输。 ODUflex目前被期望用来支持那些不能很有效地映射到 ODU2、 ODU3或者 ODU4的新的比特速率。 ODUflex被当作一个低阶 ODU; —个 ODUflex占 用高阶 ODUk任意整数倍的支路时序个数。 ODUflex带宽可动态地被调整。
目前推荐 Packet ODUflex大小为: nxl .24416 Gbit/s+20ppm ( 1 < n < 80 ),而 CBR ODUflex大小为客户信号速率的 239/238倍。新定义的 ODUflex 不再为已经映射到 ODU0、 ODUl、 ODU2和 ODU3的客户信号提供映射。 对于 CBR客户信号,首选通过 BMP将客户信号映射到 ODUflex, ODUflex速 率为客户信号速率的 239/238倍(客户信号速率 2.5G以上), 对于分组业务 客户信号, 目前讨论使用 GFP将客户信号映射到 ODUflex; ODUflex = n*1.24416G , 其中 1 n 80; ODUflex比特速率为高阶 ODUk的支路 时序个数的整数倍。
在 2003年版本 G.709标准发布后, 经过几年的发展, OTN设备被大量 地部署, 而最新的 G.709标准又发生了很大的变化, 新部署的 OTN设备加 载控制平面后,一条端到端的标签交换路径可能同时控制很多旧设备与新设 备, 旧设备只能支持 2.5G支路时序单元, 而新设备既可以支持 2.5G支路时 序单元又可以支持 1.25G支路时序单元;一条端到端标签交换路径经过旧设 备与新设备时, 管理端到端业务时所涉及到的互联互通, 成为一个现实存在 的技术问题。
如图 4所示, 该网络已经部署的 OTN网络, OTN网络中的所有节点设 备实现都基于 2003年发布 G.709标准版本,网络里的每个节点不支持 ODU0 和 ODUflex, 而且基于 2.5G支路时序 ( TS ) 。 随着数据业务的大量应用, 运营商需要在现有网络里弓 I入 ODU0和 ODUflex应用,将 ODU0和 ODUflex 应用引入现有网络时,存在支持 1.25G TS的网络与已经部署的支持 2.5G TS 网络互通的问题, 如果没有其他技术引入,运营商不得不升级现有网络中的 所有节点以支持 ODU0和 ODUflex, 这将势必破坏运营商已经投资的 OTN 网络。 其中, XC表示交叉连接 Cross Connection
一条端到端的 ODUk业务可能同时经过很多旧设备与新设备, 旧设备 只能支持 2.5G支路时序单元,而新设备既可以支持 2.5G支路时序单元又可 以支持 1.25G支路时序单元; 一条端到端 ODUk经过旧设备与新设备时,管 理端到端业务时所涉及到的互联互通,成为一个现实存在的技术问题。同时, 还存在将 ODU0和 ODUflex业务引入 OTN网络, 并与已经部署的网络进行 互联互通的问题。
发明内容
本发明要解决的技术问题是提供一种光传送网自动交换光网络中,基于 G.709的多级复用路由控制方法和网关网元。 一种基于 G.709的多级复用路由控制方法, 包括:
网关网元通过扩展路由协议将自身的多级复用能力广播到自身所在的 路由域或路径计算实体,以通过所述网关网元实现光传送网的多级复用配置 与管理;所述多级复用能力包括与该网关网元连接的链路的端口所支持的复 用层次以及适配能力信息。
其中,所述网关网元的多级复用能力由所述网关网元通过检测自身节点 的单板和端口信息生成; 或者, 由所述网关网元接收由管理平面配置的多级 复用能力。
其中, 所述路由协议为基于流量工程的开放最短路径优先协议 ( OSPF-TE )或者基于流量工程的中间系统与中间系统( IS-IS-TE ) 。
其中,网关网元通过扩展路由协议将自身多级复用能力广播到所述网关 网元所在的路由域或路径计算实体的步骤包括:
所述网关网元通过在扩展的接口交换能力描述符中携带所述多级复用 能力 ,所述扩展的接口交换能力描述符包括带宽信息字段和具体交换能力信 息字段, 其中:
所述具体交换能力信息字段用于指示与所述网关网元连接的链路的端 口所支持的信号类型及复用层次信息;
所述带宽信息字段用于指示与所述网关网元连接的链路的端口所支持 的各级信号类型的带宽信息。
其中, 所述扩展的接口交换能力描述符中还携带信号类型字段, 其中: 所述信号类型字段指示为 ODUj时,所述带宽信息字段包括 N个带宽表 示行, 分别指示优先级 Px下, 直接复用进 OTUj的 ODUj可用个数, 以及, 优先级 Px下, 复用进更高速率的 ODUk的 ODUj的可用个数, 所述 ODUj 为非 ODUflex的 ODU信号; 或者,
所述信号类型字段指示为其他信号复用进 ODUflex 时, 所述带宽信息 字段包括 N个带宽表示行, 分别指示优先级 Px下, 可用的支路时序个数, 以及,优先级 Px下,支路时序的最大个数,其中, k,j ,N为自然数, χ=0,...,Ν-1。
其中, N=8, j=0,l,2,3,4,2e。 其中, 所述具体交换能力信息字段包括多级复用层数个数字段和 M个 子字段, 其中:
所述多级复用层数个数字段表示 ODUj信号映射进 ODUk时, 所支持 的多级复用层次个数, 其中, k和 j均为自然数, 且1^ >」;
M个所述子字段中的每个子字段描述一个多级复用能力, 每个子字段 包括多级复用层数信息字段和多级复用信号类型信息字段, 所述 M表示所 支持的多级复用能力的个数, 其中:
所述多级复用层数信息字段, 用于指示一个多级复用的层数;
所述多级复用信号类型信息字段,用于指示一个多级复用的各信号类型 及复用关系。
其中,网关网元通过扩展路由协议将自身多级复用能力广播到所述网关 网元所在的路由域或路径计算实体的步骤包括:
对所述路由协议进行扩展,使其支持携带多级复用能力, 在链路类型的 链路状态广播数据包的高层类型长度值里增加一个多级复用约束子类型长 度值,使用所述多级复用约束子类型长度值携带所述网关网元的多级复用能 力, 所述多级复用约束子类型长度值包括类型字段、 长度字段和多级复用能 力信息字段, 其中:
所述类型字段, 用于指示该子类型长度值的类型;
所述长度字段, 用于指示多级复用能力信息字段的长度;
所述多级复用能力信息字段, 用于指示所支持的具体的多级复用能力。 其中, 所述多级复用能力信息字段中包括 M个子字段, 每个子字段描 述一个多级复用能力 ,每个子字段包括多级复用层数信息字段和多级复用信 号类型信息字段, 所述 M表示所支持的多级复用能力的个数, 其中:
所述多级复用层数信息字段, 用于指示多级复用的层数;
所述多级复用信号类型信息字段, 用于指示多级复用的各信号类型。
一种网关网元, 包括多级复用能力配置模块及配置与管理模块, 其中: 所述多级复用能力配置模块设置为:通过扩展路由协议将所述网关网元 的多级复用能力广播到所述网关网元所在的路由域或路径计算实体;
所述配置与管理模块设置为:通过配置的多级复用能力实现光传送网的 多级复用配置与管理;
其中,所述多级复用能力包括与所述网关网元连接的链路的端口所支持 的复用层次以及适配能力信息。
其中, 所述多级复用能力配置模块还设置为: 通过检测自身节点的单板 和端口信息生成所述多级复用能力; 或者,接收由管理平面所配置的多级复 用能力。
其中, 所述路由协议为基于流量工程的开放最短路径优先协议
( OSPF-TE )或基于流量工程的中间系统与中间系统(IS-IS-TE ) 。
其中,所述多级复用能力配置模块设置成按照以下方式将自身多级复用 能力广播到所述网关网元所在的路由域或路径计算实体:在扩展的接口交换 能力描述符中携带所述多级复用能力,所述扩展的接口交换能力描述符包括 带宽信息字段和具体交换能力信息字段, 其中:
所述具体交换能力信息字段用于指示与所述网关网元连接的链路的端 口所支持的信号类型及复用层次信息;
所述带宽信息字段用于指示与所述网关网元连接的链路的端口所支持 的各级信号的带宽信息。
其中, 所述接口交换能力描述符还携带信号类型字段;
所述信号类型字段指示为 ODUj时,所述带宽信息字段包括 N个带宽表 示行, 分别指示优先级 Px下, 直接复用进 OTUj的 ODUj可用个数, 以及, 优先级 Px下, 复用进更高速率的 ODUk的 ODUj的可用个数, 所述 ODUj 为非 ODUflex的 ODU信号; 或者,
所述信号类型字段指示为其他信号复用进 ODUflex 时, 所述带宽信息 字段包括 N个带宽表示行, 分别指示优先级 Px下, 可用的支路时序个数, 以及, 优先级 Px下, 支路时序的最大个数, 其中, k、 j和 N均为自然数, χ=0, . . . ,Ν-1„ 其中, N=8, j=0,l,2,3,4,2e。
其中, 所述具体交换能力信息字段包括多级复用层数个数字段和 M个 子字段, 其中:
所述多级复用层数个数字段表示 ODUj信号映射进 ODUk时, 所支持 的多级复用层次个数, 其中, k和 j均为自然数, 且1^ >」;
M个所述子字段中的每个子字段描述一个多级复用能力, 每个子字段 包括多级复用层数信息字段和多级复用信号类型信息字段, 所述 M表示所 支持的多级复用能力的个数, 其中:
所述多级复用层数信息字段, 用于指示一个多级复用的层数; 所述多级复用信号类型信息字段,用于指示一个多级复用的各信号类型 及复用关系。
其中,所述多级复用能力配置模块设置成按照以下方式通过扩展路由协 议将自身多级复用能力广播到所述网关网元所在的路由域或路径计算实体: 对所述路由协议进行扩展,使其支持携带多级复用能力, 在链路类型的 链路状态广播数据包的高层类型长度值里增加一个多级复用约束子类型长 度值,使用所述多级复用约束子类型长度值携带所述网关网元的多级复用能 力, 所述多级复用约束子类型长度值包括类型字段、 长度字段和多级复用能 力信息字段, 其中:
所述类型字段, 用于指示该子类型长度值的类型;
所述长度字段, 用于指示多级复用能力信息字段的长度;
所述多级复用能力信息字段, 用于指示所支持的具体的多级复用能力。 其中, 所述多级复用能力信息字段中包括 M个子字段, 每个子字段描 述一个多级复用能力 ,每个子字段包括多级复用层数信息字段和多级复用信 号类型信息字段, 所述 M表示所支持的多级复用能力的个数, 其中:
所述多级复用层数信息字段, 用于指示多级复用的层数;
所述多级复用信号类型信息字段, 用于指示多级复用的各信号类型。 本发明实施例提供的方法, 实现了多级复用控制。 附图概述
图 1是 2003年出版的 G.709标准所具有的映射复用结构示意图; 图 2是 G.709 Amendment3和 G.sup 43标准所具有的映射复用结构示意 图;
图 3是 G.709标准以及 G.sup43标准的详细映射复用结构示意图; 图 4是运营商已经投资部署完毕的 OTN网络结构示意图;
图 5是为了将支持 ODU0和 ODUflex信号的 OTN设备加入到图 4所示 的现有的网络而引入网关网元,网关网元支持多级复用的网络结构示意图之 图 6 于隧道的网络设计的一个 OTN网络结构图示意图;
图 7是为了将支持 ODU0和 ODUflex信号的 OTN设备加入到图 4所示 的现有的网络而引入网关网元,网关网元支持多级复用的网络结构示意图之 二;
图 8 是本发明实施例提出的一种多级复用约束子类型长度值 (Multi Stages Multiplex Constraints Sub-TLV ) 的编码图;
图 9是为了将支持 ODU0和 ODUflex信号的 OTN设备加入到图 4所示 的现有的网络而引入网关网元后的网络架构图;
图 10 是 Gateway 1 通过基于流量工程的开放最短路径优先协议
( OSPF-TE )协议将本节点上支持的多级复用能力广播到整个路由域里, Multi Stages Multiplex Constraints Sub-TLV的编码示意图;
图 11是 Gateway 3通过 OSPF-TE协议将本节点上支持的多级复用能力 广播到整个路由域里, Multi Stages Multiplex Constraints Sub-TLV的编码示 意图;
图 12是 Gateway 4通过 OSPF-TE协议将本节点上支持的多级复用能力 广播到整个路由域里, Multi Stages Multiplex Constraints Sub-TLV的编码示 意图;
图 13是运营商又投资建设了一个 10G、 一个 40G和一个 100GOTN网 络, 与基于图 9的 0TN网络进行互联而组成的一个 0TN网络示意图;
图 14是 Gateway 5通过 OSPF-TE协议将本节点上支持的多级复用能力 广播到整个路由域里的编码示意图;
图 15是 Gateway 7通过 OSPF-TE协议将本节点上支持的多级复用能力 广播到整个路由域里的编码示意图;
图 16是一个提供多级复用能力的 0TN节点内部结构图;
图 17是表示多级复用的一种 ISCD扩展方式, 该扩展方式针对 ODUk ( k= ODU0, 1, 2, 3, 4, 2 ) ;
图 18是表示多级复用的一种 ISCD扩展方式,该扩展方式针对 ODUflex; 图 19是 Switching Capability-specific information的格式定义;
图 20是 Switching Capability-specific information的一个例子;
图 21是应用了多级复用 OTN网络的一个拓朴例子;
图 22是 A节点与 B节点之间的链路通过 ISCD表示的带宽信息以及多 级复用信息;
图 23是节点 B与节点 C之间的链路通过 ISCD表示的带宽信息以及多 级复用信息;
图 24是节点 C与节点 D之间的链路通过 ISCD表示的带宽信息以及多 级复用信息;
图 25是节点 C与节点 E之间的链路通过 ISCD表示的带宽信息以及多 级复用信息;
图 26是建立源宿为 A节点与 D节点的一条端到端 ODU0业务; 图 27是建立源宿为 A节点与 E节点的一条端到端 ODU0业务。 本发明的较佳实施方式
下面结合附图和具体实施例进一步说明本发明。 OTN标准一直都支持单级 0DU复用。 在 OTN vl里的后续结果就是 ODU1直接映射到 ODU3的一个支路时序, 无需先映射到 0DU2。 该体系架 构的动机是减少复杂性。 在该体系架构的正常演进过程中, 新增加的 OTN 功能被期望更高的速率, 因而单级复用概念将更容易地往前被推进。也就是 说, 如果速率都是往上增加的话, 单级复用可能很容易继续在 OTN体系架 构里被使用。 将 ODU0和 ODUflex引入 OTN层次架构里, 使得新增加的 ODUk信号速率都比现有速率低得多, 这将带来一些不同的挑战, 因为新增 加的速率可以是现有速率的客户。 因此, 存在很清晰的应用, 两级复用被期 望辅助将 ODU0和 ODUflex信号引入到现有的网络, 从而无需更新现有网 络里的每个节点。在一个域里使用两级复用能够允许运营商将新速率限制应 用到只有需要支持这些新速率的那些节点上。 两级复用被期望用来辅助将
ODU0和 ODUflex信号引入到现有的网络,从而无需更新现有网络里的每个 节点。 但需要引入 Gateway网元, 支持多级复用。
本发明实施例提出在现有网络里引入网关 (Gateway ) 网元或者将现有 某些网元升级为网关网元, 在这些网关网元上实现多级复用 (Multi Stage Multiplexing ) , 以能够将 ODU0和 ODUflex应用引入已经部署的网络里, 并解决 1.25G TS 的网络与已经部署的支持 2.5G TS 网络互联互通, 完成 1.25G TS信号与 2.5G TS信号之间的转换。 既保护运营商已有的 OTN网络 投资, 又能够将新的 ODUk应用引入到已投资的 OTN网络中。
对图 4所示网络进行升级得到图 5所示网络, 图 5由于引入网关网元, 从而无需更新现有网络里的每个节点, 图 5 中包含的网关网元支持两级复 用, 从而允许在已经部署的网络里支持 ODU0/ODUflex。 ODUO/ODUflex先 映射到 ODU1或者 ODU2, 紧跟着 ODU1/ODU2映射到 ODU3; 节点 4, 5, 6, 7无需见到 ODUO/ODUflex, 而直接交换 ODU1或者 ODU2, 从而保护 了运营商的已有投资, 又能够引入新的应用和业务,对运营商已有网络投资 进行了增值。
除了网络升级场景以外,第二个潜在的二级复用应用是基于隧道的网络 设计。 在一个 ODU4网络里, 每个 ODU4都有 80个支路时序。 假设大量的 ODU0和 ODUflex需要 3-4个支路时序。如果大量的电路业务共享相同的终 端点(或者甚至整条路径的一部分),从管理角度来看, 引入网关(Gateway ) 网元, 将 ODU0和 ODUflex首先复用到 ODU2或者 ODU3以最小化需要在 中间节点创建的连接数量。 ODU2/ODU3很有效地创建一条 ODUO/ODUflex 所使用的穿过 ODU4网络的隧道。如图 6所示的 ODU4网络, ODUO/ODUflex 只对非网关网元可见。 虽然二级复用增加了网关网元的复杂性,但它减少了 需要在其他非网关网元节点配置交叉连接的数目。
管理平面和控制平面获得 OTN网络中每条链路的详细信息, 该详细信 息包括链路支持的支路时序粒度大小、 支持的支路时序最大个数(也就是链 路的最大带宽)、 当前链路可用的支路时序个数以及链路所能够支持的低阶 信号类型。 但对于图 7中, 每个网关网元支持的多级复用能力不相同, 位于 Gateway 1与 4节点以及 Gateway 3与 7节点之间的链路, 因为 ODU0能够 通过两级复用映射到 ODU3 Network 2网络中(也就是 ODU0可映射到 ODU1 或者 ODU2, 再将 ODU1或 ODU2映射到 ODU3里) , 所以, 如果仅仅知 道这些链路所支持的低阶信号是不足够用于路径计算实体计算路由 ,还需要 知道 ODU0通过什么方式映射到 ODU 3 Network 2网络中,也就是 Gateway 1和 4节点以及 Gateway 3和 7节点之间的链路支持的多级复用能力必须让 路径计算实体知道。 所以, 在管理平面或者控制平面计算一条端到端的 ODUk业务前, 必须获得网络里的网关网元的多级复用能力。 另外, 控制平 面里的路径计算实体可通过扩展自动发现协议或者路由协议获得网元的多 级复用能力。
因此,本发明实施例提出了路径计算实体获取网关网元支持多级复用能 力信息的路由控制方法, 以便将网关网元引入现有 OTN 网络时, 端到端 ODUk业务的路径计算实体能够为端到端 ODUk业务确定所经过的网关网 元, 以及在网关网元上选择恰当的多级复用能力。
本发明实施例所提供的一种基于 G.709的复用路由控制方法, 包括: 网关网元在链路状态广播数据包中携带其多级复用能力,通过路由协议 将所述网关网元的多级复用能力广播到其所在的路由域或路径计算实体,以 通过所述网关网元实现光传送网的多级复用配置与管理。所述路由协议为基 于流量工程的开放最短路径优先协议( OSPF-TE )或者基于流量工程的中间 系统与中间系统( IS-IS-TE )。 所述多级复用能力包括与该网关网元连接的 链路的端口所支持的复用层次以及适配能力信息。 其中,所述网关网元的多级复用能力由所述网关网元通过检测自身节点 的单板和端口信息生成; 或者由管理平面所配置后由所述网关网元接收。 其 中, 所述网关网元接收管理平面所配置的多级复用能力时,还校验数据平面 是否支持所述管理平面所配置的多级复用能力。
其中, 对所述路由协议进行扩展, 使其支持携带多级复用能力, 在链路 ( link )类型的链路状态广播数据包的高层类型长度值( Top Level TLV )里 增加一个多级复用约束子类型长度值 ( Multi Stages Multiplex Constraints Sub-TLV ) , 使用所述 Multi Stages Multiplex Constraints Sub-TLV携带所述 网关网元的多级复用能力, 所述 Multi Stages Multiplex Constraints Sub-TLV 包括类型字段、 长度字段和多级复用能力信息字段, 其中:
所述类型字段, 用于指示该子类型长度值的类型;
所述长度字段, 用于指示多级复用能力信息字段的长度;
所述多级复用能力信息字段, 用于指示所支持的具体的多级复用能力, 所述多级复用能力信息字段中包括 M个子字段, 每个子字段描述一个多级 复用能力,每个子字段包括多级复用层数信息字段和多级复用信号类型信息 字段, 所述 M表示所支持的多级复用能力的个数, 其中:
所述多级复用层数信息字段, 用于指示多级复用的层数;
所述多级复用信号类型信息字段, 用于指示多级复用的各信号类型。
下面将通过实施例进一步说明本发明。
实施例 1
为了能够通过路由协议( OSPF-TE或者 IS-IS-TE,基于流量工程的开放 最短路径优先协议或者基于流量工程的中间系统与中间系统)将网关网元的 多级复用能力信息广播到其所在的路由域里,本发明实施例对路由协议进行 了扩展。
根据现有技术和标准, rfc2370定义了不透明的 (Opaque )链路状态广 播( Link State Advertisement, LSA ) , 它根据 Opaque LSA可洪泛的范围, 定义了三种 Opaque LSA类型, 分别是 9, 10, 11类型的 LSA。 11类型的 Opaque LSA可在整个自治系统( AS , Autonomous System )范围内洪泛; 10 类型的 Opaque LSA洪泛范围不能超越该 LSA所关联的边界(Area ) ; 9类 型的 Opaque LSA只能在本地网络或者子网内洪泛。 rfc3630对 Opaque LSA 进行了扩展, 定义一种新类型的 LSA, 以支持流量工程的 LSA, rfc3630定 义的流量工程(TE ) LSA是一种 Opaque LSA, 并且只能在 Area范围内洪 泛。
rfc4203向 rfc3630定义链路( link )类型的数据包的高层类型长度值( Top Level TLV )里增加了 4个子类型长度值( Type Length Value, TLV ) , 用于 支持通用多协议标签交换 (GMPLS , Generalized Multiprotocol Label Switching), 包括本地 /远程链路标识( Link Local/Remote Identifiers ) 、 链路 保护类型 (Link Protection Type ) 、 接口交换能力描述(Interface Switching Capability Descriptor )和共享风险链路组( Shared Risk Link Group ) 。 原有 rfc4203的定义如下表 1所示, 但 rfc4203并没有加入新的 Top Level TLV。
rfc4203中定义的 Top Level TLV
Figure imgf000015_0001
本发明实施例提出了向 rfc4203定义 link的 Top Level TLV里再增加一 个子 TLV , 命名为多级复用约束子类型长度值 (Multi Stages Multiplex Constraints Sub-TLV ) , 如下表 2所示。
表 2 本发明实施例新增子 TLV Sub-TLV Type 长度(Length ) 名称(Name )
17 variable Multi Stages Multiplex
Constraints Sub-TLV 其中上述实施例中, Multi Stages Multiplex Constraints Sub-TLV的 Type 取值为 17 , 也可根据需要取其他值, 本发明实施例对此不作限定。
如图 8所示,本发明实施例提出了一种 Multi Stages Multiplex Constraints Sub-TLV的编码方法, 包括 Type (类型 )字段、 Length (长度 )字段和多级 复用能力信息字段, 其中:
所述 Type字段, 指示该对象的类型, 可取值为 17 , 此处仅为示例, 也 可根据需要将其他值作为类型字段的值;
所述 Length字段, 用于指示多级复用能力信息字段的长度;
所述多级复用能力信息字段, 包括 M个子字段, 每个子字段指示一个 多级复用能力; 每个子字段中包括多级复用层数信息(Num )字段和多级复 用信号类型信息 (Multi Stages Multiplexing Sub-TLV)字段,分别指示多级复用 的层数和多级复用的各信号类型, M为所指定的多级复用能力个数。
比如, Num 1表示支持的第一个多级复用能力的多级复用的层次, Multi Stages Multiplexing Sub-TLV 1表示支持的第一个多级复用能力的多级复用 的信号类型; Num 2表示支持的第二个多级复用能力的多级复用的层次, Multi Stages Multiplexing Sub-TLV 2表示支持的第二个多级复用能力的多级 复用的信号类型; 依此类推, Num M表示支持的第 M个多级复用能力的多 级复用的层次, Multi Stages Multiplexing Sub-TLV M表示支持的第 M个多 级复用能力的多级复用的信号类型。
下面给出 Multi Stages Multiplex Constraints Sub-TLV的一个编码方式。
Sub TLV Type为 17;
Num 1字段表示支持的第一个多级复用能力(方法)信息的多级复用的 层次, 可使用 3个比特(可根据需要使用其他比特数, 本发明实施例对比特 数不作限定)表示。 比如要表示 ODU0-ODU2-ODU3时, Num 1填写为 2, 其后每 4个比特位 (可根据需要使用其他比特数, 本发明实施例对比特数不 作限定)表示某一个 ODUk ( k=0, l, 2, 2e, flex, 3, 4 ) , 共有三组。 其中信号 类型的编码如下所示:
0000: ODU0
0001 : ODU1
0010: ODU2
0011 : ODU3
0100: ODU4
0101 : ODU2e
0110: ODUflex
上述编码方式仅为示例, 也可釆用其他编码方式表示 ODUk, 本发明实 施例对此不作限定。
Num 2表示支持的第二个多级复用能力(方法)信息的多级复用的层次, 比如要表示 ODU0-ODU1-ODU3时, Num 2填写为 2, 其后每 4个比特位表 示某一个 ODUk。
Length (长度) 字段为 ( Numl+1 ) *4+ ( Num2+1 ) *4+...+(Num
M+l)*4+M*3 , 其中 M为多级复用能力个数。
实施例 2
如图 9所示, 在图 4基础上, 将网关网元引入到现有网络, 并部署根据 最新版本 G.709标准实现的 OTN设备节点后, 组成 3个 10G的 OTN网络 和一个 40G的 OTN网络。 4个网络被划入到一个路由域。
10G的 OTN网络上的每条链路支持的支路时序大小粒度为 1.25G TS。 其中 3个 10G的 OTN网络通过网关网元 Gateway 1、 Gateway 3和 Gateway 4 与 40G的 OTN网络互联, 之间的链路是 OTU3链路。 三个 10G的 OTN网 络中每个节点支持的交换能力也不相同,其中 ODU 2 Network l中的节点 1、 2、 3、 Gateway 1只支持 ODU0、 ODU1和 ODUflex的交换能力。 ODU2 Network 4中的节点 11、 12、 13和 Gateway 4只支持 ODU0、 ODUflex和 ODU1交换 能力。 ODU2 Network 3中的节点 8、 9、 10和 Gateway 3只支持 ODU0和 ODUflex的交换能力, 原因是运营商只想 ODU2 Network 3 只负责接入 1 GigE ( ODU0 )和 10 GigE ( ODU2/ODU2e )业务, 所以只做 ODU0/ODU2 交换更为经济,就没有必要做 ODU1的交换。其中各网关网元支持的多级复 用能力如下所示:
Gateway 1网元支持的多级复用能力包括:
ODU0-ODU1-ODU3
ODU0-ODU2-ODU3
ODU1-ODU2-ODU3
ODUflex-ODU2-ODU3
Gateway 3网元支持的多级复用能力包括:
ODU0-ODU2-ODU3
ODUflex-ODU2-ODU3
Gateway 4网元支持的多级复用能力包括:
ODU0-ODU1-ODU3
ODU0-ODU2-ODU3
Gateway 4网元之所以不支持 ODUflex-ODU2-ODU3多级复用, 主要运 营商考虑相关的 ODUflex应用只限于 ODU2 Network 4网络内部, 不存在超 过 ODU2 Network 4网络范围外的 ODUflex, 也就是说 ODUflex应用不会经 过 ODU3 Network 2 。 所 以 Gateway4 网 元 没有 必要 支持 ODUflex-ODU2-ODU3多级复用。
因此, Gateway 1通过 OSPF-TE协议将本节点上支持的多级复用能力广 播到整个路由域里, Multi Stages Multiplex Constraints Sub-TLV编码如图 10 所示。
Gateway 3通过 OSPF-TE协议将本节点上支持的多级复用能力广播到整 个路由域里, Multi Stages Multiplex Constraints Sub-TLV编码如图 11所示。
Gateway 4通过 OSPF-TE协议将本节点上支持的多级复用能力广播到整 个路由域里, Multi Stages Multiplex Constraints Sub-TLV编码如图 12所示。
实施例 3
运营商在图 9所示的已经投资的 OTN网络基础上, 新扩建了一些 OTN 网络, 如图 13所示, 运营商部署的新的 OTN网络, 分别是 10G的 ODU2 Network 5、 40G的 ODU3 Network 7和 100G的 ODU4 Network 6三个网络。 为了减少 ODU4 Network 6网络内部针对 ODU0和 ODUflex等端到端业务的 交叉连接个数, ODU4 Network 6网络内的所有节点只做 ODU2 ( 10G )和 ODU ( 40G )粒度的交换能力。
其中 ODU2 Network 5网络内部存在很多的 ODU0/ODU1 /ODUflex的本 地业务(也就是说这些业务局限在 ODU 2 Network 5网络内部, 不会穿过 ODU4 Network 6 ) , 如果存在一些 ODUk业务, 比如在节点 15接入一个 GigE ( ODU0 ) , 需要跨过 ODU4 Network 6, 通过 ODU4 Network 6的超 长距离传输能力,将业务传输到 ODU3 Network 7中 21节点。利用现有技术, 可在节点 15和 21节点之间直接建立一条 ODU2的隧道,再在节点 15和 21 上直接将 ODU0复用和解复用到 ODU2隧道里。但是该方法存在一些缺陷, 因为如果需要超长距离传输的 ODU0业务不是很多的情况下(比如只存在一 条这样的 ODU0端到端业务), 专门为这些低速率、 需要超长距离传输的业 务在 ODU2 Network 5和 ODU3 Network 7内部建立 ODU2的隧道, 而很多 本地业务并不能共享这些隧道的情况下,对运营商来说, 为了这样的超长距 离传输的端到端业务浪费了很多带宽。 为此, 最好的方法是在 Gateway 5和 Gateway 7之间直接建立 ODU2或者 ODU3的隧道, 这些隧道被跨越 ODU2 Network 5、 ODU2 Network 6和 ODU3 Network 7的低阶速率业务共享, 而 这些低阶速率业务各自在 ODU2 Network 5和 ODU2 Network 6网络内部直 接被调度, 无需预先建立 ODU2或者 ODU3隧道。 但需要引入网关网元, 在 Gateway 5和 Gateway 7上先将 ODU0/ODU1 /ODUflex映射到 ODU2或者 ODU3 , 再将 ODU2或者 ODU3映射到 ODU4。
如图 13所示, 其中新引入的网关网元支持的多级复用能力如下所示:
Gateway 5网元支持的多级复用能力包括: ODU0-ODU2-ODU4
ODU0-ODU3-ODU4
ODU1-ODU2-ODU4
ODU1-ODU3-ODU4
ODUflex-ODU2-ODU4
ODUflex-ODU3-ODU4
Gateway 7网元支持的多级复用能力包括:
ODU0-ODU2-ODU4
ODU0-ODU3-ODU4
ODUflex-ODU2-ODU4
ODUflex-ODU3-ODU4
因此, Gateway 5通过 OSPF-TE协议将本节点上支持的多级复用能力广 播到整个路由域里, Multi Stages Multiplex Constraints Sub-TLV编码如图 14 所示。
Gateway 7通过 OSPF-TE协议将本节点上支持的多级复用能力广播到整 个路由域里, Multi Stages Multiplex Constraints Sub-TLV编码如图 15所示。
实施例 4
如图 16所示,它是一个支持多级复用能力的 OTN节点,其中 ODUi( i=0, 1, flex ) 映射到 ODU3时, 支持 ODU0-ODU1-ODU3; ODU0-ODU2-ODU3; ODUflex-ODU2-ODU3 ;0DU1 -ODU2-ODU3 等多级复用层次, 但不支持 ODU0-ODU1 -ODU2-ODU3。
图 16所示的 OTN节点的多级复用能力如表 3所示。
表 3表示图 16多级复用能力的表示方法 OTU3端口 2,单元 (Unit) 1: ODU3(40G), 2.5G TS
Figure imgf000021_0001
其中, 表格中各项说明如下:
最大( MAX ) :支持 ODUi的最大个数
可用 (Available ) : 目前 ODUi的可用个数
已分配( Allocated ) : 目前已经分配的 ODUi个数
MHF: 釆用多级复用还是单级复用, 为 1时表示多级复用, 为 0时表示 单级复用; 此处仅为示例, 也可以釆用其他方式表示。
MH: 具体复用的层次, 包括信号类型及复用层次。
以第一个表格第一行进行说明。 第一行的第二列指示支持 ODU3 的最 大个数为 1 , 第二列指示目前可用 ODU3的个数为 1 , 第三列指示目前已经 分配出去 0个 ODU3 , 第四列指示釆用单级复用,但由于 ODU3是最直接的 ODUk容器, 无需再复用到其他 ODUk容器。
由于一个 OTU3端口只能支持一个 ODU3 ( 40G ) , 而一个 ODU3可以 支持 4个 ODU2 ( 10G ) , 每个 ODU2又可支持 4个 ODUI ( 2.5G ) , 每个 ODU1又可支持 2个 ODUO ( 1.25G ) 。 因此表 3 的表格就显示了一个 OTU3端口可以支持各个容器最大数目 为: ODU3: 1 , ODU2: 4, ODU1 : 16, ODU0: 32。
当有三个 lOGigE ( ODU2 )业务和一个 STM-16 ( ODU0 )业务从网元 G1加入并经过 OTU3链路时, Unitl、 Unit2和 Unit3的多级复用适配能力将 发生变化, 变化后的结果如表 4所示。
表 4针对表 3的表示方法,当有三个 10GigE( ODU2 )业务和一个 STM-16 业务从网元 G1加入并经过 OTU3链路时, Unitl、 Unit2和 Unit3的多级复 用适配能力将发生变化, 变化后的结果
OTU3端口 2,单元 ( Unit) 1 : ODU3(40G), 2.5G TS
Figure imgf000022_0001
当有三个 lOGigE ( ODU2 )业务和一个 STM-16 ( ODU0 )业务从网元
G1加入并经过 OTU3链路时, 也就是三个 ODU2 (相当于 24个 ODU0, 12 个 ODU1 )和一个 ODU1 (相当于 2个 ODU0 )被占用, 还剩 6个 ODU0或 者 3个 0DU1。 所以该 OTU3端口就无法支持一个 ODU3 , 同时由于一个 ODU2的带宽等于 8个 ODU0或者 4个 ODU1 ,而目前只剩 6个 ODU0或者 3个 ODU1 , 所以该 OTU3端口也无法支持一个 ODU2。 因此, 最后的结果 显示在表 4。
实施例 针对图 16所示 OTN节点, 还有另外一种多级复用能力的表示方法, 如 表 5所示。
表 5另外一种表示图 16多级复用能力的表示方法 0TU3 端口 2, 单元 1 : 0DU3 (40G) , 2. 5G TS
Figure imgf000023_0001
当有三个 lOGigE ( ODU2 )业务和一个 STM-16业务从网元 G1加入并 经过 OTU3链路时, Unitl、 Unit2和 Unit3的多级复用适配能力将发生变化, 变化后的结果如表 6所示。 表 6是针对表 5的表示方法, 当有三个 10GigE ( ODU2 )业务和一个 STM-16 业务从网元 G1加入并经过 OTU3链路时, Unitl、 Unit2和 Unit3的多级复 用适配能力将发生变化, 变化后的结果 0TU3 端口 2, 单元 1 : 0DU3 (40G)
Figure imgf000024_0001
其中, 表 5与表 3所述表示方式的区别主要在于: 表 3通过表示 OTU3 端口直接或者间接支持的 ODU2、 ODU1和 ODUO; 表 5通过表示 OTU3端 口支持的 ODU2和 ODU1;每个 ODU1和 ODU2还可以再直接支持的 ODU0。
实施例 6
本实施例扩展 ISCD ( Interface Switching Capability Descriptor, 接口交 换能力描述符) , 以携带多级复用能力, 通过扩展后的 ISCD, 可以将网关 网元的多级复用能力发布到其所在的路由域或路径计算实体。
扩展后的 ISCD分别如图 17和图 18所示。 图 17是针对除了 ODUflex 以外的 ODUk( k= 0, 1, 2, 3, 4, 2e )的 ISCD扩展方式,而图 18是针对 ODUflex 的 ISCD扩展方式。 其中, 包括如下字段: 交换能力 (Switching Capability), 编码类型 ( Encoding Type ) 、 信号类型 ( Signal Type ) 、 保留 (Reserved ) 、 带宽信息和具体交换能力信息 ( Switching Capability-specific information ) 。 所述具体交换能力信息字段用于指示与该网关网元连接的链路的端口所支 持的信号类型及复用层次信息,所述带宽信息字段用于指示与该网关网元连 接的链路的端口所支持的各级信号类型的带宽信息。
其中, 两种扩展方式的 Switching Capability = TDM, Encoding Type = G.709。 但针对图 17的扩展方式, Signal Type =ODUj , j=0, 1, 2, 3, 4, 2e, 当 然本发明实施例不作限定, 除 ODUflex外的其他信号类型均可; 当然, 不限 于此,也可包括 ODUflex外的其他 ODU信号,针对图 18的扩展方式, Signal Type指示为其他信号复用进 ODUflex, 比如 Signal Type = OTU2 ODUflex, OTU3 ODUflex、 OTU4 ODUflex、 Generic ODUflex; OTU2 ODUflex表示 ODUflex复用进 ODU2, OTU3 ODUflex表示 ODUflex复用进 ODU3 , OTU4 ODUflex表示 ODUflex复用进 ODU4 , 而 Generic ODUflex表示 ODUflex复 用进 ODU2、 ODU3和 ODU4时,不关心这些 ODUk容器的支路时序具体大 小。 针对图 18 的扩展方式, Signal Type 中具体如何指示其他信号复用进 ODUflex本发明实施例不作限定,具体哪些信号复用进 ODUflex本发明实施 例不作限定。
带宽信息字段具体包括: 图 17的 ISCD扩展方式分别定义了 8个优先 级的带宽表示行, Number of ODUj (OTUj) at Px ( x=0...7 )表示在优先级 Px 下, ODUj (该 ODUj直接复用进 OTUj ) 的可用个数, 而 Number of ODUj (ODUk) at Px ( x=0...7 )表示在优先级 Px下, ODUj (该 ODUj复用进更高 速率的 ODUk ) 的可用个数。 优先级包括资源保持和抢占优先级。 图 18的 ISCD扩展方式也定义了 8个优先级的带宽表示行, Available Number of TS at Px ( x=0...7 )表示在优先级 Px下, 可用的支路时序个数; Max Number of TS at Px ( x=0...7 )表示在优先级 Px下, 支路时序的最大个数。 8个仅为示例, 也可以定义根据需要定义 Ν个带宽表示行, Ν为自然数, 或者, 只定义一 个带宽表示行, 表示所有优先级下的带宽一致。
针对图 17 和图 18 的 ISCD扩展方式, Switching Capability-specific information (具体交换能力信息)字段的定义是相同的,如图 19所示, 包括:
Number(多级复用层次个数):八个比特,表示 ODUj信号映射进 ODUk ( k >j )时, 所支持的多级复用层次个数。 比如, 对信号 QDU0, 可以进行 如下复用: ODU0 ODU1- ODU3; ODU0- ODU2- ODU3, 则 Number为 2。
M个子字段, 每个子字段包括多级复用层数信息 (MSMH )字段和多 级复用信号类型信息 (MSMC )字段, 其中,
所述多级复用层数信息字段, 用于指示一个多级复用的层数;
所述多级复用信号类型信息字段,用于指示一个多级复用的各信号类型 及复用关系。
具体地 , 包括 MSMH1 ,MSMH2 , MSMH M以及对应的 MSMC 1 , MSMC 2... MSMC M。
MSMH 1, MSMH2, ... , MSMH M均为四个比特( 4个比特仅为示例,可 根据需要变化),指示某个多级复用层次数,比如 MSMH = 1时,表示 ODUj 通过单级复用映射进 ODUk (比如 ODU0-ODU3 ) ; MSMH = 4时, 表示 ODUj通过四级复用映射进 ODUK比如 ODU0-ODU1-ODU2-ODU3-ODU4 )。
MSMC 1, MSMC 2... MSMC M分别与 MSMH 1, MSMH2, ... , MSMH M对应, 指示详细多级复用层次信息, MSMC的长度等于 (MSMH+1) * 4。 每个 ODUk (k=0, 1, 2, 3, 4, 2e, flex)通过四个比特位来表示, 其中信号类型 的编码如下所示:
0000: ODU0
0001 : ODU1
0010: ODU2
0011 : ODU3
0100: ODU4
0101 : ODU2e
0110: ODUflex
上述编码方式仅为示例, 也可釆用其他编码方式表示 ODUk, 本发明实 施例对此不作限定。 Switching Capability-specific information的一个实施例如 图 20所示,它表示 ODU0-ODU1-ODU2-ODU3-ODU4多级复用信息。其中, 1表示仅支持一个多级复用层次, 4 (应该使用 0100, 此处简写为 4 )表示 该多级复用的层数, 0000表示 ODU0,0001表示 ODU1,0010表示 ODU2, 0011 表 示 ODU3 , 0100 表 示 ODU4 , 合 起 来 表 示 ODUO-ODUl -ODU2-ODU3-ODU4„ 如果还存在 ODUO-ODUl -ODU2的多级 复用, 则图 20中, Number字段应为 2, 在 0100后, 新增 0011 (表示多级 复用层次 2 ) , 以及 0000, 0001 , 0010, 分别表示 0DU0, 0DU1和 ODU2。
实施例 7
本实施例给出一个具体的 OTN网络拓朴图, 综合前面所述的实施例, 给出一个完整和全面的实施例, 以指导该发明的应用。
如图 21所示, 其中有一条链路是通过绑定 A、 B节点之间一条 OTU2 和 OTU3链路而成。
图 22是 A节点与 B节点之间的链路通过 ISCD表示的带宽信息以及多 级复用信息。
图 23是节点 B与节点 C之间的链路通过 ISCD表示的带宽信息以及多 级复用信息。
图 24是节点 C与节点 D之间的链路通过 ISCD表示的带宽信息以及多 级复用信息。
图 25是节点 C与节点 E之间的链路通过 ISCD表示的带宽信息以及多 级复用信息。
上述各图中, 省略了优先级信息, 实际应用时, 可以填写所支持的优先 级及各优先级下的带宽, 此处不再举例。 复用层数(MH ) 的具体格式参见 图 19, 图 22 - 29中仅省略表示。
图 26是建立源宿分别为 A节点与 D节点的一条端到端 ODU0业务,为 此需要在 A节点与 D节点处使用多级复用 ODUO-ODUl -ODU2, 并且需要 在 A与 D节点之间先建立一条 ODU1的隧道。 新建立的 ODU1隧道作为一 条拓朴链路发布到路由域中, 还剩下一个 ODU0可用。
图 27是建立源宿分别为 A节点与 E节点的一条端到端 ODU0业务,为 此需要在 A节点与 E节点处使用多级复用 ODU0-ODU2-ODU3 , 并且需要 在 A与 D节点之间先建立一条 ODU2的隧道。 新建立的 ODU2隧道作为一 条拓朴链路发布到路由域中, 还剩下 7个 ODU0可用以及 3个 ODU1可用。 本发明实施例还提供了一种网关网元, 所述网关网元设置为: 在链路状 态广播数据包中携带所述网关网元的多级复用能力,并通过路由协议将所述 网关网元的多级复用能力广播到所述网关网元所在的路由域或路径计算实 体,所述多级复用能力包括与所述网关网元连接的链路的端口所支持的复用 层次以及适配能力信息。
其中, 所述网关网元还设置为: 根据检测自身节点的单板和端口信息生 成所述多级复用能力; 或者接收管理平面所配置的多级复用能力。
其中,所述路由协议为基于流量工程的开放最短路径优先协议 OSPF-TE 或基于流量工程的中间系统与中间系统 IS-IS-TE。
其中, 所述网关网元设置为: 使用扩展的接口交换能力描述符携带所述 多级复用能力, 其中, 所述扩展的接口交换能力描述符包括带宽信息字段和 具体交换能力信息字段,所述具体交换能力信息字段用于指示与该网关网元 连接的链路的端口所支持的信号类型及复用层次信息,所述带宽信息字段用 于指示与该网关网元连接的链路的端口所支持的各级信号的带宽信息。
其中, 所述接口交换能力描述符还携带信号类型字段:
当信号类型字段为 ODUk,且 j=0,l ,2,3,4,2e时:所述带宽信息字段包括 N 个带宽表示行, 分别指示优先级 Px下, 直接复用进 OTUk的 ODUk可用个 数, 以及, 优先级 Px下, 复用进更高速率的 ODUk的 ODUj的可用个数; 当信号类型字段指示 ODUflex复用进 ODU2、 ODU3、 ODU4中的一个 或多个时,所述带宽信息字段包括 N个带宽表示行,分别指示优先级 Px下, 可用的支路时序个数, 以及, 优先级 Px下, 支路时序的最大个数, 其中, χ=0, . . . ,Ν-1 , N为自然数。
其中, 所述具体交换能力信息字段包括多级复用层数个数字段和 M个 子字段, 其中:
多级复用层数个数字段, 表示 ODUj信号映射进 ODUk , 且 k > j时, 所支持的多级复用层次个数;
所述 M个子字段, 每个子字段描述一个多级复用能力, 每个子字段包 括多级复用层数信息字段和多级复用信号类型信息字段, 所述 M表示所支 持的多级复用能力的个数, 其中:
所述多级复用层数信息字段, 用于指示一个多级复用的层数; 所述多级复用信号类型信息字段,用于指示一个多级复用的各信号类型 及复用关系。
具体可参考方法实施例中的描述, 此处不再赘述。
本发明实施例还提供了一种网关网元, 包括多级复用能力配置模块及 配置与管理模块, 其中:
所述多级复用能力配置模块设置为:通过扩展路由协议将所述网关网元 的多级复用能力广播到所述网关网元所在的路由域或路径计算实体;
所述配置与管理模块设置为:通过配置的多级复用能力实现光传送网的 多级复用配置与管理;
其中,所述多级复用能力包括与所述网关网元连接的链路的端口所支持 的复用层次以及适配能力信息。
其中, 所述多级复用能力配置模块还设置为: 通过检测自身节点的单板 和端口信息生成所述多级复用能力; 或者,接收由管理平面所配置的多级复 用能力。
其中, 所述路由协议为基于流量工程的开放最短路径优先协议 ( OSPF-TE )或基于流量工程的中间系统与中间系统( IS-IS-TE ) 。
其中,所述多级复用能力配置模块设置成按照以下方式将自身多级复用 能力广播到所述网关网元所在的路由域或路径计算实体:在扩展的接口交换 能力描述符中携带所述多级复用能力,所述扩展的接口交换能力描述符包括 带宽信息字段和具体交换能力信息字段, 其中:
所述具体交换能力信息字段用于指示与所述网关网元连接的链路的端 口所支持的信号类型及复用层次信息;
所述带宽信息字段用于指示与所述网关网元连接的链路的端口所支持 的各级信号的带宽信息。
其中, 所述接口交换能力描述符还携带信号类型字段;
所述信号类型字段指示为 ODUj时,所述带宽信息字段包括 N个带宽表 示行, 分别指示优先级 Px下, 直接复用进 OTUj的 ODUj可用个数, 以及, 优先级 Px下, 复用进更高速率的 ODUk的 ODUj的可用个数, 所述 ODUj 为非 ODUflex的 ODU信号; 或者,
所述信号类型字段指示为其他信号复用进 ODUflex 时, 所述带宽信息 字段包括 N个带宽表示行, 分别指示优先级 Px下, 可用的支路时序个数, 以及, 优先级 Px下, 支路时序的最大个数, 其中, k、 j和 N均为自然数, χ=0, . . . ,Ν-1。
其中, N=8 , j=0,l ,2,3,4,2e。
其中, 所述具体交换能力信息字段包括多级复用层数个数字段和 M个 子字段, 其中:
所述多级复用层数个数字段表示 ODUj信号映射进 ODUk时, 所支持 的多级复用层次个数, 其中, k和 j均为自然数, 且1^ >」;
M个所述子字段中的每个子字段描述一个多级复用能力, 每个子字段 包括多级复用层数信息字段和多级复用信号类型信息字段, 所述 M表示所 支持的多级复用能力的个数, 其中:
所述多级复用层数信息字段, 用于指示一个多级复用的层数;
所述多级复用信号类型信息字段,用于指示一个多级复用的各信号类型 及复用关系。
其中,所述多级复用能力配置模块设置成按照以下方式通过扩展路由协 议将自身多级复用能力广播到所述网关网元所在的路由域或路径计算实体: 对所述路由协议进行扩展,使其支持携带多级复用能力, 在链路类型的 链路状态广播数据包的高层类型长度值里增加一个多级复用约束子类型长 度值,使用所述多级复用约束子类型长度值携带所述网关网元的多级复用能 力, 所述多级复用约束子类型长度值包括类型字段、 长度字段和多级复用能 力信息字段, 其中: 所述类型字段, 用于指示该子类型长度值的类型;
所述长度字段, 用于指示多级复用能力信息字段的长度;
所述多级复用能力信息字段, 用于指示所支持的具体的多级复用能力。 其中, 所述多级复用能力信息字段中包括 M个子字段, 每个子字段描 述一个多级复用能力 ,每个子字段包括多级复用层数信息字段和多级复用信 号类型信息字段, 所述 M表示所支持的多级复用能力的个数, 其中:
所述多级复用层数信息字段, 用于指示多级复用的层数;
所述多级复用信号类型信息字段, 用于指示多级复用的各信号类型。
工业实用性 本发明实施例提供的方法, 实现了多级复用控制。 因此本发明具有很强 的工业实用性。

Claims

权 利 要 求 书
1、 一种基于 G.709的多级复用路由控制方法, 包括:
网关网元通过扩展路由协议将自身的多级复用能力广播到自身所在的 路由域或路径计算实体,以通过所述网关网元实现光传送网的多级复用配置 与管理;所述多级复用能力包括与该网关网元连接的链路的端口所支持的复 用层次以及适配能力信息。
2、 如权利要求 1所述的多级复用路由控制方法, 其中, 所述网关网元 的多级复用能力由所述网关网元通过检测自身节点的单板和端口信息生成; 或者, 由所述网关网元接收由管理平面配置的多级复用能力。
3、 如权利要求 1所述的多级复用路由控制方法, 其中, 所述路由协议 为基于流量工程的开放最短路径优先协议(OSPF-TE )或者基于流量工程的 中间系统与中间系统 ( IS-IS-TE ) 。
4、 如权利要求 1-3 中任一项所述的多级复用路由控制方法, 其中, 网 关网元通过扩展路由协议将自身多级复用能力广播到所述网关网元所在的 路由域或路径计算实体的步骤包括:
所述网关网元通过在扩展的接口交换能力描述符中携带所述多级复用 能力 ,所述扩展的接口交换能力描述符包括带宽信息字段和具体交换能力信 息字段, 其中:
所述具体交换能力信息字段用于指示与所述网关网元连接的链路的端 口所支持的信号类型及复用层次信息;
所述带宽信息字段用于指示与所述网关网元连接的链路的端口所支持 的各级信号类型的带宽信息。
5、 如权利要求 4所述的多级复用路由控制方法, 其中, 所述扩展的接 口交换能力描述符中还携带信号类型字段, 其中:
所述信号类型字段指示为 ODUj时,所述带宽信息字段包括 N个带宽表 示行, 分别指示优先级 Px下, 直接复用进 OTUj的 ODUj可用个数, 以及, 优先级 Px下, 复用进更高速率的 ODUk的 ODUj的可用个数, 所述 ODUj 为非 ODUflex的 ODU信号; 或者, 所述信号类型字段指示为其他信号复用进 ODUflex 时, 所述带宽信息 字段包括 N个带宽表示行, 分别指示优先级 Px下, 可用的支路时序个数, 以及,优先级 Px下,支路时序的最大个数,其中, k,j ,N为自然数, χ=0,...,Ν-1。
6、 如权利要求 5所述的多级复用路由控制方法, 其中,
N=8, j=0,l,2,3,4,2e。
7、 如权利要求 4所述的多级复用路由控制方法, 其中, 所述具体交换 能力信息字段包括多级复用层数个数字段和 M个子字段, 其中:
所述多级复用层数个数字段表示 ODUj信号映射进 ODUk时, 所支持 的多级复用层次个数, 其中, k和 j均为自然数, 且1^ >」;
M个所述子字段中的每个子字段描述一个多级复用能力, 每个子字段 包括多级复用层数信息字段和多级复用信号类型信息字段, 所述 M表示所 支持的多级复用能力的个数, 其中:
所述多级复用层数信息字段, 用于指示一个多级复用的层数;
所述多级复用信号类型信息字段,用于指示一个多级复用的各信号类型 及复用关系。
8、 如权利要求 1-3 中任一项所述的多级复用路由控制方法, 其中, 网 关网元通过扩展路由协议将自身多级复用能力广播到所述网关网元所在的 路由域或路径计算实体的步骤包括:
对所述路由协议进行扩展,使其支持携带多级复用能力, 在链路类型的 链路状态广播数据包的高层类型长度值里增加一个多级复用约束子类型长 度值,使用所述多级复用约束子类型长度值携带所述网关网元的多级复用能 力, 所述多级复用约束子类型长度值包括类型字段、 长度字段和多级复用能 力信息字段, 其中:
所述类型字段, 用于指示该子类型长度值的类型;
所述长度字段, 用于指示多级复用能力信息字段的长度;
所述多级复用能力信息字段, 用于指示所支持的具体的多级复用能力。
9、 如权利要求 8所述的多级复用路由控制方法, 其中, 所述多级复用 能力信息字段中包括 M个子字段, 每个子字段描述一个多级复用能力, 每 个子字段包括多级复用层数信息字段和多级复用信号类型信息字段,所述 M 表示所支持的多级复用能力的个数, 其中:
所述多级复用层数信息字段, 用于指示多级复用的层数;
所述多级复用信号类型信息字段, 用于指示多级复用的各信号类型。
10、 一种网关网元, 包括多级复用能力配置模块及配置与管理模块, 其中:
所述多级复用能力配置模块设置为:通过扩展路由协议将所述网关网元 的多级复用能力广播到所述网关网元所在的路由域或路径计算实体;
所述配置与管理模块设置为:通过配置的多级复用能力实现光传送网的 多级复用配置与管理;
其中,所述多级复用能力包括与所述网关网元连接的链路的端口所支持 的复用层次以及适配能力信息。
11、 如权利要求 10所述的网关网元, 其中,
所述多级复用能力配置模块还设置为:通过检测自身节点的单板和端口 信息生成所述多级复用能力;或者,接收由管理平面所配置的多级复用能力。
12、 如权利要求 10所述的网关网元, 其中, 所述路由协议为基于流量 工程的开放最短路径优先协议( OSPF-TE )或基于流量工程的中间系统与中 间系统 ( IS-IS-TE ) 。
13、 如权利要求 10-12中任一项所述的网关网元, 其中,
所述多级复用能力配置模块设置成按照以下方式将自身多级复用能力 广播到所述网关网元所在的路由域或路径计算实体:在扩展的接口交换能力 描述符中携带所述多级复用能力,所述扩展的接口交换能力描述符包括带宽 信息字段和具体交换能力信息字段, 其中:
所述具体交换能力信息字段用于指示与所述网关网元连接的链路的端 口所支持的信号类型及复用层次信息;
所述带宽信息字段用于指示与所述网关网元连接的链路的端口所支持 的各级信号的带宽信息。
14、 如权利要求 13所述的网关网元, 其中,
所述接口交换能力描述符还携带信号类型字段;
所述信号类型字段指示为 ODUj时,所述带宽信息字段包括 N个带宽表 示行, 分别指示优先级 Px下, 直接复用进 OTUj的 ODUj可用个数, 以及, 优先级 Px下, 复用进更高速率的 ODUk的 ODUj的可用个数, 所述 ODUj 为非 ODUflex的 ODU信号; 或者,
所述信号类型字段指示为其他信号复用进 ODUflex 时, 所述带宽信息 字段包括 N个带宽表示行, 分别指示优先级 Px下, 可用的支路时序个数, 以及, 优先级 Px下, 支路时序的最大个数, 其中, k、 j和 N均为自然数, χ=0, . . . ,Ν-1„
15、 如权利要求 14所述的网关网元, 其中, N=8 , j=0,l ,2,3,4,2e。
16、 如权利要求 13所述的网关网元, 其中, 所述具体交换能力信息字 段包括多级复用层数个数字段和 M个子字段, 其中:
所述多级复用层数个数字段表示 ODUj信号映射进 ODUk时, 所支持 的多级复用层次个数, 其中, k和 j均为自然数, 且1^ >」;
M个所述子字段中的每个子字段描述一个多级复用能力, 每个子字段 包括多级复用层数信息字段和多级复用信号类型信息字段, 所述 M表示所 支持的多级复用能力的个数, 其中:
所述多级复用层数信息字段, 用于指示一个多级复用的层数;
所述多级复用信号类型信息字段,用于指示一个多级复用的各信号类型 及复用关系。
17、 如权利要求 10-12中任一项所述的多级复用路由控制方法, 其中, 所述多级复用能力配置模块设置成按照以下方式通过扩展路由协议将自身 多级复用能力广播到所述网关网元所在的路由域或路径计算实体:
对所述路由协议进行扩展,使其支持携带多级复用能力, 在链路类型的 链路状态广播数据包的高层类型长度值里增加一个多级复用约束子类型长 度值,使用所述多级复用约束子类型长度值携带所述网关网元的多级复用能 力, 所述多级复用约束子类型长度值包括类型字段、 长度字段和多级复用能 力信息字段, 其中:
所述类型字段, 用于指示该子类型长度值的类型;
所述长度字段, 用于指示多级复用能力信息字段的长度;
所述多级复用能力信息字段, 用于指示所支持的具体的多级复用能力。
18、 如权利要求 17所述的多级复用路由控制方法, 其中, 所述多级复 用能力信息字段中包括 M个子字段, 每个子字段描述一个多级复用能力, 每个子字段包括多级复用层数信息字段和多级复用信号类型信息字段,所述 M表示所支持的多级复用能力的个数, 其中:
所述多级复用层数信息字段, 用于指示多级复用的层数;
所述多级复用信号类型信息字段, 用于指示多级复用的各信号类型。
PCT/CN2011/084149 2010-12-17 2011-12-16 一种基于g.709的多级复用路由控制方法和网关网元 WO2012079537A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP11849034.1A EP2642766B1 (en) 2010-12-17 2011-12-16 G.709 based multi-level multiplexing routing control method and gateway network element
JP2013543518A JP5710781B2 (ja) 2010-12-17 2011-12-16 G.709に基づく多段多重ルーティング制御方法及びゲートウェイネットワーク要素
US13/994,300 US20130294773A1 (en) 2010-12-17 2011-12-16 G.709 Based Multi-Level Multiplexing Routing Control Method and Gateway Network Element

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010594787.0A CN102572618B (zh) 2010-12-17 2010-12-17 一种基于g.709的多级复用路由控制方法和网关网元
CN201010594787.0 2010-12-17

Publications (1)

Publication Number Publication Date
WO2012079537A1 true WO2012079537A1 (zh) 2012-06-21

Family

ID=46244121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084149 WO2012079537A1 (zh) 2010-12-17 2011-12-16 一种基于g.709的多级复用路由控制方法和网关网元

Country Status (5)

Country Link
US (1) US20130294773A1 (zh)
EP (1) EP2642766B1 (zh)
JP (1) JP5710781B2 (zh)
CN (1) CN102572618B (zh)
WO (1) WO2012079537A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183429A (ja) * 2013-03-19 2014-09-29 Anritsu Corp ネットワーク試験装置及びネットワーク試験方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102202247B (zh) * 2010-03-25 2015-07-22 中兴通讯股份有限公司 一种基于g.709的多级复用的信令控制方法和系统
US9270650B2 (en) 2011-06-03 2016-02-23 Oracle International Corporation System and method for providing secure subnet management agent (SMA) in an infiniband (IB) network
US9401963B2 (en) * 2012-06-04 2016-07-26 Oracle International Corporation System and method for supporting reliable connection (RC) based subnet administrator (SA) access in an engineered system for middleware and application execution
CN103716108B (zh) 2012-09-29 2018-08-03 中兴通讯股份有限公司 光传送网的数据映射方法及装置
CN105099595B (zh) * 2015-08-04 2018-12-25 瑞斯康达科技发展股份有限公司 一种光传送网otn设备的业务映射方法及装置
CN110445568B (zh) * 2016-12-23 2021-04-20 华为技术有限公司 一种时钟传输方法及相关设备
CN117376145A (zh) * 2022-06-30 2024-01-09 中兴通讯股份有限公司 细粒度能力的洪泛方法、细粒度的配置方法,节点及介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101389146A (zh) * 2007-09-13 2009-03-18 华为技术有限公司 光传送网同步交叉调度的方法和装置

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6317439B1 (en) * 1999-06-03 2001-11-13 Fujitsu Network Communications, Inc. Architecture for a SONET line unit including optical transceiver, cross-connect and synchronization subsystem
US6671271B1 (en) * 1999-06-03 2003-12-30 Fujitsu Network Communications, Inc. Sonet synchronous payload envelope pointer control system
US7889675B2 (en) * 2003-01-31 2011-02-15 Tellabs Operations, Inc. Method and system for multi-layer network routing
JP3830953B2 (ja) * 2002-10-02 2006-10-11 富士通株式会社 伝送システム
EP1463235B1 (en) * 2003-03-24 2005-03-16 Alcatel OSPF monitor and monitoring process
US8532137B1 (en) * 2003-03-26 2013-09-10 At&T Intellectual Property Ii, L.P. Network architecture for a packet aware transport network
EP1499049B1 (en) * 2003-07-18 2008-02-20 Alcatel Lucent Network restoration
EP1613123B1 (en) * 2004-07-02 2006-06-14 Alcatel Transport network restoration method supporting extra traffic
CN100531191C (zh) * 2004-09-06 2009-08-19 华为技术有限公司 Ngn网络传送层业务实现方法和系统
US7602820B2 (en) * 2005-02-01 2009-10-13 Time Warner Cable Inc. Apparatus and methods for multi-stage multiplexing in a network
CN100413259C (zh) * 2006-02-07 2008-08-20 华为技术有限公司 一种自动实现串联连接监测的方法和装置
US8451846B1 (en) * 2006-04-19 2013-05-28 Juniper Networks, Inc. LSP hierarchy for MPLS networks
WO2008082352A1 (en) * 2006-12-29 2008-07-10 Telefonaktiebolaget Lm Ericsson (Publ) Automatic distribution of server and gateway information for pool configuration
US8625607B2 (en) * 2007-07-24 2014-01-07 Time Warner Cable Enterprises Llc Generation, distribution and use of content metadata in a network
US8665749B2 (en) * 2008-02-04 2014-03-04 Zte Corporation Method and apparatus for realizing source routing in a blocking cross network
JP5245845B2 (ja) * 2009-01-14 2013-07-24 富士通株式会社 伝送装置、伝送方法および伝送プログラム
CN102318238B (zh) * 2009-05-11 2014-12-31 华为技术有限公司 光传输网中的数据传送方法、系统及设备
BR112012000839A2 (pt) * 2009-07-16 2019-09-24 Ericsson Telefon Ab L M métodos para operar um primeiro nó em uma rede orientada por conexão para prover recuperação de tráfego, e para recuperação de tráfego em uma rede orientada por conexão, aparelho para uso em um primeiro nó de uma rede orientada por conexão, entidade de controle para uma rede orientada por conexão, e, instruções legíveis por máquina.
WO2011049962A1 (en) * 2009-10-19 2011-04-28 Huawei Technologies Co., Ltd. Method for generalized multi-protocol label switching routing to support wavelength switched optical network signal characteristics and network element compatibility constraints
CN102201973B (zh) * 2010-03-25 2015-08-12 中兴通讯股份有限公司 一种基于g.709的多级复用路由控制方法和网关网元
US8582582B2 (en) * 2010-03-26 2013-11-12 Infinera Corporation In-band control plane and management functionality in optical level one virtual private networks
US8699873B2 (en) * 2010-05-13 2014-04-15 Fujitsu Limited Identifying fault locations in a network
CN102316007B (zh) * 2010-07-05 2016-08-03 中兴通讯股份有限公司 电光多层网络的路由信息获取方法及装置
US10320510B2 (en) * 2010-10-05 2019-06-11 Infinera Corporation TE-link bandwidth model of ODU switch capable OTN interfaces

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101389146A (zh) * 2007-09-13 2009-03-18 华为技术有限公司 光传送网同步交叉调度的方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
FU, XIHUA ET AL.: "OSPF-TE Extension for Multi Stages Multiplexing Configuration in G.709 Optical Transport Network", IETF, 26 April 2010 (2010-04-26), XP015068320, Retrieved from the Internet <URL:http://tools.ietf.org/html/draft-fuxh-ccamp-multi-stage-multiplex-config-ospf-00> [retrieved on 20120302] *
FU, XIHUA ET AL.: "RSVP-TE Extension for Multi Stages Multiplexing Configuration in G.709 Optical Transport Network", IETF, 26 April 2010 (2010-04-26), XP015068322, Retrieved from the Internet <URL:http://tools.ietf.org/html/draft-fuxh-ccamp-multi-stage-multiplex-config-rsvp-00> [retrieved on 20120302] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183429A (ja) * 2013-03-19 2014-09-29 Anritsu Corp ネットワーク試験装置及びネットワーク試験方法

Also Published As

Publication number Publication date
CN102572618A (zh) 2012-07-11
JP2014509461A (ja) 2014-04-17
JP5710781B2 (ja) 2015-04-30
US20130294773A1 (en) 2013-11-07
EP2642766A4 (en) 2014-03-26
EP2642766B1 (en) 2019-03-20
EP2642766A1 (en) 2013-09-25
CN102572618B (zh) 2015-09-16

Similar Documents

Publication Publication Date Title
EP2552122B1 (en) Method for Establishing End-To-End Service in an Optical Transport Network
WO2012079537A1 (zh) 一种基于g.709的多级复用路由控制方法和网关网元
US8144620B2 (en) Method and system for implementing network connection service
US20140016925A1 (en) Resizing a path in a connection-oriented network
WO2011116597A1 (zh) 一种基于g.709的多级复用路由控制方法和网关网元
WO2014026532A1 (zh) 一种基于嵌套管道的交叉连接统一描述方法
CN102202247B (zh) 一种基于g.709的多级复用的信令控制方法和系统
WO2011003252A1 (zh) 基于g.709的标签交换路径的通用标签生成方法和装置
WO2011116596A1 (zh) 一种基于g.709的复用路由计算方法和路径计算装置
CN101951531B (zh) 一种基于g.709的标签交换路径的互联互通方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11849034

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013543518

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2011849034

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13994300

Country of ref document: US