WO2012057406A1 - Non-invasive device and method for measuring bowel motility using bowel sound analysis - Google Patents

Non-invasive device and method for measuring bowel motility using bowel sound analysis Download PDF

Info

Publication number
WO2012057406A1
WO2012057406A1 PCT/KR2010/009614 KR2010009614W WO2012057406A1 WO 2012057406 A1 WO2012057406 A1 WO 2012057406A1 KR 2010009614 W KR2010009614 W KR 2010009614W WO 2012057406 A1 WO2012057406 A1 WO 2012057406A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
long sound
bowel
noise
invasive
Prior art date
Application number
PCT/KR2010/009614
Other languages
French (fr)
Korean (ko)
Inventor
송철규
서정환
김거식
유상훈
김민호
서자영
Original Assignee
전북대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 전북대학교산학협력단 filed Critical 전북대학교산학협력단
Publication of WO2012057406A1 publication Critical patent/WO2012057406A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/008Detecting noise of gastric tract, e.g. caused by voiding
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/42Detecting, measuring or recording for evaluating the gastrointestinal, the endocrine or the exocrine systems
    • A61B5/4222Evaluating particular parts, e.g. particular organs
    • A61B5/4255Intestines, colon or appendix
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes

Definitions

  • the present invention relates to an apparatus and method for measuring intestinal motility, and more particularly, to an apparatus and method for non-invasive diagnosis of intestinal motility using bowel sound signals generated by the movement of intestinal digestive substances and gases. will be.
  • the intestinal motility is diagnosed using Barr index, Blethyn index, colon transit time (CTT), and the most widely used method of diagnosing intestinal motility using CTT.
  • the method of diagnosing intestinal motility using CTT is performed by a subject swallowing a capsule containing a radiopaque marker, and then radiating the large intestine through X-ray or MRI after 1, 3, or 7 days. It is a method of diagnosing intestinal motility by checking the number of markers remaining.
  • the present invention is to solve the above problems, by using the characteristic parameters derived by analyzing the long-sound signal that is generated in the intestine using a feature variable to estimate the transit time (CTT) based on the quantitative motility It is an object of the present invention to provide an apparatus and method for measuring non-invasive bowel motility through diagnosing bowel sound.
  • another object of the present invention is to provide an apparatus and method for measuring non-invasive bowel motility through bowel analysis, which can reduce noise inevitably introduced to collect sound generated in the intestine.
  • the intestinal motility measuring apparatus in the non-invasive intestinal motility measurement device through the long sound analysis, the signal collection unit for measuring and outputting the long sound signal that is the sound generated in the intestine; A noise removing unit for removing noise from the long sound signal output from the signal collecting unit and outputting the noise; A variable extraction unit for extracting feature variables from the noise-removed long sound signal; A relation expression derivation unit for deriving a relation between the extracted feature variables and a previously measured colon transit time (CTT); And an intestinal motility diagnosis unit for diagnosing the exercise state of the intestine based on the derived relational expression.
  • CTT colon transit time
  • the method for measuring intestinal motility in the non-invasive method of diagnosing intestinal motility through the sound analysis of the bowel, comprising the steps of: measuring a long sound signal which is a sound generated in the intestine; Removing noise from the measured long sound signal; Extracting feature variables from the noise-free long sound signal; Deriving a relationship between the extracted feature variable and the colon transit time through a regression analysis; And diagnosing bowel motility using the derived relational expression.
  • the apparatus for removing noise from a long sound signal calculates a kurtosis vector of a long sound signal, which is a sound generated in a field, and sets the standard deviation of the vector as a critical point, Eliminating the signal is characterized in that to remove the time invariant signal.
  • the present invention has the effect of measuring the intestinal motility non-invasive and quantitatively by measuring and analyzing a long sound signal, which is a sound generated in the intestine, from the outside of the subject.
  • the present invention can measure the motility of the intestine in a short period of time through the long sound signal, there is an effect that helps in the early diagnosis and prognosis of the disease.
  • the present invention can measure the motility of the intestine within a short period of time without exposure to the radiation, there is an effect that can replace the use of conventional radiation equipment.
  • FIG. 1 is a block diagram showing the configuration of a non-invasive bowel motility measurement device through the sound analysis according to an embodiment of the present invention.
  • FIG 2 is an exemplary view showing a position for collecting a long sound signal according to an embodiment of the present invention.
  • FIG. 3 is an example of a graph showing a long sound signal measured in the present invention.
  • FIG. 4 is a flowchart illustrating a method for measuring non-invasive bowel motility through bowel analysis according to an embodiment of the present invention.
  • FIG. 5 is a flowchart specifically showing noise removing from a long sound signal in the flowchart of FIG. 4.
  • FIG. 1 is a block diagram showing the configuration of a non-invasive bowel motility measurement device through the sound analysis according to an embodiment of the present invention
  • Figure 2 is an illustration showing a position for collecting the long sound signal according to an embodiment of the present invention
  • 3 is an example of a graph showing a long sound signal measured in the present invention
  • FIG. 4 is a flowchart illustrating a method for measuring non-invasive field motility through long sound analysis according to an embodiment of the present invention
  • FIG. 5 is a flowchart illustrating the steps of removing noise from the long sound signal in the flowchart of FIG. 4.
  • the non-invasive bowel motility measurement device (A) through the long sound analysis in the non-invasive bowel motility measurement device through the long sound analysis, the sound generated in the intestine
  • a noise removing unit 200 which removes and outputs noise from the long sound signal output from the signal collecting unit 100
  • a relational expression deriving unit 400 for deriving a relational expression between the extracted feature variables and a previously measured colon transit time (CTT);
  • CTT colon transit time
  • an intestinal motility diagnosis unit 500 for diagnosing the exercise state of the intestine based on the derived relational expression.
  • the non-invasive bowel motility measurement method through the long sound analysis the step of collecting and measuring the long sound signal which is a sound generated in the intestine (S100); Removing invariant signals such as noise, especially heart sounds or respiratory sounds, from the collected and measured long sound (S200); Extracting feature variables from the noise-free long sound signal (S300); Deriving a relationship between the extracted feature variable and colon transit time (CTT) through regression analysis (S400); A method of diagnosing intestinal motility is performed by converting the extracted feature variable into an intestinal motility index, for example, a large intestine transit time, using the derived relational expression (S500).
  • the signal collection unit 100 collects and measures a long sound signal through at least one or more electronic stethoscopes or microphones (S100).
  • the signal collection unit 100 in a state in which the subject maintains an empty stomach for at least 8 hours or more, after ingesting a predetermined amount of food, for 10 minutes every 10 hours after 1 hour, 4 hours, and 8 hours Measure
  • the signal collector 100 may measure the long sound at a specific position of the abdomen as shown in FIG. 2 using three electronic stethoscopes (or microphones).
  • the signal collection unit 100 includes an ascending colon (CH1), a descending colon (CH2), and a sigmoid colon (CH3) located in the abdomen of the subject. It is desirable to measure the long sound signal in place.
  • CH1 ascending colon
  • CH2 descending colon
  • CH3 sigmoid colon
  • the signal collector 100 includes the measured long sound signal analog / digital converter 110, and converts the measured long sound signal, which is the measured analog signal, into a digital signal.
  • the analog / digital converter 110 preferably converts the digital signal to a sampling frequency of 8 KHz in consideration of the frequency band of the long sound signal.
  • the signal collection unit 100 includes a fourth Butterworth bandpass filter 120 to remove or minimize signal fluctuation noise caused by breathing noise or unnecessary movement caused by the subject's breathing.
  • the frequency band of the fourth-order Butterworth bandpass filter 120 is preferably 5 ⁇ 600 Hz.
  • the sampling frequency, the type of filter, the order and the frequency band of the signal collector 100 can be adjusted according to the characteristics of the device used when measuring the long sound.
  • the noise removing unit 200 removes noise of the long sound signal output from the signal collecting unit 100 by using an kurtosis-based noise detection method (IKD) (S200).
  • IKD kurtosis-based noise detection method
  • the noise removing unit 200 calculates the kurtosis vector of the long sound signal, removes the time-invariant signal by removing a signal in the time domain corresponding to a point below the threshold, using the standard deviation of the vector as a critical point. This removes the noise from the long sound signal.
  • the IKD algorithm is for selectively extracting only non-stationary signals from the entire signal, and is calculated by calculating the kurtosis of the signals.
  • the kurtosis of a time-varying signal has a larger characteristic than the kurtosis of a stationary signal. Since the long sound signal corresponds to a time-varying signal, this algorithm can effectively remove the respiratory sound and the heart sound, which are a kind of time invariant signal mixed with the long sound.
  • the noise removing unit 200 includes removing the noise by calculating a kurtosis vector of the long sound signal (S210); Calculating a standard deviation (SD) of the calculated kurtosis vector (S220); Removing only a long sound signal of a region in which a value less than the standard deviation (SD) exists among the calculated kurtosis vectors (S230); Calculating a sum of squares of noise which is the removed long sound signal (S240); And repeating the above step until the calculated sum of squares is smaller than a preset reference value (S250).
  • SD standard deviation
  • S220 Removing only a long sound signal of a region in which a value less than the standard deviation (SD) exists among the calculated kurtosis vectors
  • S230 Calculating a sum of squares of noise which is the removed long sound signal
  • S240 Calculating a sum of squares of noise which is the removed long sound signal
  • S250 a preset reference value
  • m j and ⁇ j are mean and standard deviation, respectively, measured in long sound.
  • the noise removing unit 200 calculates the standard deviation of the derived K in a second step (S220), so that a signal within the j th sliding window region in which a value less than the calculated standard deviation exists among the derived K is present. Only remove (S230).
  • the noise removing unit 200 calculates a sum of squares of the total noise, which is a signal in a j-th sliding window region in which a value less than the calculated standard deviation is present, in operation S240. If the sum of squares is larger than the preset reference value, it is determined that extra noise is mixed in the long sound signal, and the steps 1 and 2 are repeated. If the sum is smaller than the preset reference value, the noise is almost eliminated to determine that the noise is almost eliminated.
  • the process of removing ends (S250).
  • the preset reference value is a value set arbitrarily by the user as a single kurtosis value such as 10 and 20, for example. At this time, the smaller the predetermined reference value, the more noise is removed, but the long sound signal may also be inevitably removed.
  • the variable extractor 300 extracts a feature variable from the long sound signal from which the noise is removed (S300).
  • the characteristic variable is jitter (J ch, t ) , which is the period variation rate between pitches of the long sound signal, shimmer (S ch, t ), which is the magnitude variation rate, and trace (T ch ), which is the change amount of the jitter and shimmer. Equation 2] to [Equation 4].
  • Pi, Ai, and N are the periods between the pitches of the long sound signals, the magnitudes between the peaks of the pitches, and the total number of pitches, respectively.
  • ch and t represent channels (CH1, CH2, CH3) and time (after 1, 4, 8 hours) for measuring long sound, respectively.
  • the Pi, Ai, N are obtained through the long sound signal graph as shown in FIG.
  • FIG. 3 is an example of a graph showing a long sound signal measured in the present invention.
  • the period and amplitude between pitches of the long sound signal according to the present invention can be obtained through a graph.
  • Feature variable which is obtained by the above method is, for a period of a degree of variability in the collected prolonged sound pitch (jitter), the size change rate (shimmer) and measuring time represents the amount of change (trace) of the two variables, total of 21 (J ch, t 9 gae , S ch, t 9 and 3 T ch ).
  • the relational expression deriving unit 400 derives a relational expression for quantitatively diagnosing intestinal motility using the feature variable extracted through the variable extracting unit 300 (S400).
  • the relational expression obtains the colon pass time as an output value using the extracted feature variable as an input value.
  • the intestinal motility diagnosis unit 500 converts a feature variable into an intestinal motility index, for example, a large intestine transit time (CTT), based on the derived relationship to diagnose the intestinal motility. That is, the motility of the intestine of the subject is diagnosed based on the estimated CTT value. For example, if the CTT value is in the normal range (in the paper, it is generally known that the normal range of CTT is about 20 to 40 hours), it is judged as normal intestinal motility, and outside this range, it is diagnosed as fast or delayed motility. .
  • CTT large intestine transit time
  • the present invention estimates colonic transit time (CTT) using characteristic variables derived by analyzing long-term signals, which are sounds generated in the intestine, and based on this, non-invasive field through long-term analysis that can quantitatively diagnose intestinal motility.
  • CTT colonic transit time

Abstract

The present invention relates to a non-invasive device and to a non-invasive method for measuring bowel motility using bowel sound analysis. The non-invasive device for measuring bowel motility through bowel sound analysis includes: a signal-collecting unit that measures and outputs sounds from the bowel, i.e. a bowel sound; a noise-canceling unit that removes noise from the bowel signal outputted from the unit for collecting signals and which outputs the signal; a parameter-extracting unit that extracts feature parameters from the bowel sound from which the noise was removed; a relationship-deriving unit that derives the relationship between the extracted feature parameters and the colon transit time (CTT) measured in advance; and a unit for diagnosing bowel motility that diagnoses the motility state of the bowel on the basis of the derived relationship.

Description

장음 분석을 통한 비침습적인 장 운동성 측정 장치 및 방법Apparatus and method for measuring noninvasive bowel motility through bowel analysis
본 발명은 장 운동성 측정 장치 및 방법에 관한 것으로, 특히 장 내 소화 물질과 가스의 이동에 의해 발생하는 장음(bowel sound) 신호를 이용하여 비침습적으로 장의 운동성을 진단할 수 있는 장치 및 방법에 관한 것이다.The present invention relates to an apparatus and method for measuring intestinal motility, and more particularly, to an apparatus and method for non-invasive diagnosis of intestinal motility using bowel sound signals generated by the movement of intestinal digestive substances and gases. will be.
일반적으로, 장의 운동성 진단법은 Barr 지수, Blethyn 지수, 대장 통과 시간 (colon transit time, CTT)을 이용하여 진단하는 방법이 있으며, 이 중 CTT를 이용하는 장의 운동성을 진단하는 방법이 가장 널리 사용되고 있다. In general, the intestinal motility is diagnosed using Barr index, Blethyn index, colon transit time (CTT), and the most widely used method of diagnosing intestinal motility using CTT.
CTT를 이용한 장의 운동성 진단 방법은, 피검자가 방사선 마커 (radiopaque marker)가 함유된 캡슐을 삼킨 후, 1일, 3일, 7일 후에 X-ray나 MRI를 촬영한 후 얻은 방사선 영상을 통해 대장에 남아 있는 마커의 개수를 확인함으로써 장의 운동성을 진단하는 방법이다. The method of diagnosing intestinal motility using CTT is performed by a subject swallowing a capsule containing a radiopaque marker, and then radiating the large intestine through X-ray or MRI after 1, 3, or 7 days. It is a method of diagnosing intestinal motility by checking the number of markers remaining.
그러나 이러한 방사선 장치 기반의 장의 운동성 진단법은 측정 시간이 1주일 정도로 길고, 검사 비용이 비싸며, 또한 빈번한 방사선 노출(최소 3회 이상)로 인한 부작용 등의 문제점이 있다.However, such a method for diagnosing motility of the intestine based on the radiation apparatus has a long measurement time of one week, expensive test, and side effects due to frequent radiation exposure (at least three times).
한편, 기존 장음 측정 기술에 관해서는 Sandler 등이 출원한 미국등록특허 6,776,776호(02.10.09.)와 6,228,040호(01.05.08)외에 일부 출원 및 등록되어 있다.On the other hand, the existing long sound measurement technology has been filed and registered in addition to US Patent Nos. 6,776,776 (02.10.09.) And 6,228,040 (01.05.08) filed by Sandler et al.
그러나 종래의 기술에서는 청진기형 장음 수집 장치와 음향학적 변수 도출 방법에 관한 내용만이 있어, 도출된 변수를 이용하여 장의 운동성을 정량적으로 진단할 수 있는 방법은 기술되지 않았다는 문제점이 있었다.However, in the related art, only a stethoscope-type sound collection device and a method for deriving an acoustic variable have a problem in that a method for quantitatively diagnosing motility using the derived variable has not been described.
또한 종래의 기술에서는 장음을 수집하는 과정에서 마이크와 피부 마찰로 인한 발생하는 잡음을 제거하는 과정이 없어서, 이러한 잡음 성분이 특징 변수에 반영된다는 문제점이 있었다.In addition, in the conventional technology, there is no process of removing noise generated by friction between the microphone and skin in the process of collecting long sound, and thus there is a problem that such a noise component is reflected in a feature variable.
따라서, 본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 장에서 발생하는 소리인 장음 신호를 분석하여 도출된 특징 변수를 이용하여 대장 통과 시간(CTT)를 추정하고 이를 기반으로 장 운동성을 정량적으로 진단할 수 있는 장음 분석을 통한 비침습적인 장 운동성 측정 장치 및 방법을 제공하는데 그 목적이 있다. Accordingly, the present invention is to solve the above problems, by using the characteristic parameters derived by analyzing the long-sound signal that is generated in the intestine using a feature variable to estimate the transit time (CTT) based on the quantitative motility It is an object of the present invention to provide an apparatus and method for measuring non-invasive bowel motility through diagnosing bowel sound.
또한, 본 발명은 장에서 발생하는 소리를 수집하는 데 불가피하게 유입되는 잡음을 줄일 수 있는 장음 분석을 통한 비침습적인 장 운동성 측정 장치 및 방법을 제공하는데 다른 목적이 있다. In addition, another object of the present invention is to provide an apparatus and method for measuring non-invasive bowel motility through bowel analysis, which can reduce noise inevitably introduced to collect sound generated in the intestine.
상기와 같은 목적을 달성하기 위해서, 본 발명에 따른 장 운동성 측정 장치는, 장음 분석을 통한 비침습적 장 운동성 측정 장치에 있어서, 장에서 발생하는 소리인 장음 신호를 측정하여 출력하는 신호 수집부와; 상기 신호 수집부로부터 출력된 장음 신호에서 잡음을 제거하여 출력하는 잡음 제거부와; 상기 잡음이 제거된 장음 신호에서 특징 변수를 추출하는 변수 추출부와; 상기 추출된 특징 변수들과 기 측정된 대장 통과 시간(Colon transit time, CTT) 간의 관계식을 도출하는 관계식 도출부와; 그리고 상기 도출된 관계식을 근거로 상기 장의 운동 상태를 진단하는 장 운동성 진단부를 포함하여 구성된다. In order to achieve the above object, the intestinal motility measuring apparatus according to the present invention, in the non-invasive intestinal motility measurement device through the long sound analysis, the signal collection unit for measuring and outputting the long sound signal that is the sound generated in the intestine; A noise removing unit for removing noise from the long sound signal output from the signal collecting unit and outputting the noise; A variable extraction unit for extracting feature variables from the noise-removed long sound signal; A relation expression derivation unit for deriving a relation between the extracted feature variables and a previously measured colon transit time (CTT); And an intestinal motility diagnosis unit for diagnosing the exercise state of the intestine based on the derived relational expression.
또한, 본 발명에 따른 장 운동성 측정 방법은, 장음 분석을 통한 비침습적 장 운동성 진단 방법에 있어서, 장에서 발생하는 소리인 장음 신호를 측정하는 단계와; 상기 측정된 장음 신호에서 잡음을 제거하는 단계와; 상기 잡음이 제거된 장음 신호에서 특징 변수를 추출하는 단계와; 회귀 분석을 통해 상기 추출된 특징 변수와 대장 통과 시간과의 관계식을 도출하는 단계와; 그리고 상기 도출된 관계식을 이용하여 장 운동성을 진단하는 단계를 포함하여 이루어진다. In addition, the method for measuring intestinal motility according to the present invention, in the non-invasive method of diagnosing intestinal motility through the sound analysis of the bowel, comprising the steps of: measuring a long sound signal which is a sound generated in the intestine; Removing noise from the measured long sound signal; Extracting feature variables from the noise-free long sound signal; Deriving a relationship between the extracted feature variable and the colon transit time through a regression analysis; And diagnosing bowel motility using the derived relational expression.
그리고 본 발명에 따른 장음 신호에서 잡음을 제거하는 장치는, 장에서 발생하는 소리인 장음 신호의 첨도 벡터를 계산하고, 이 벡터의 표준편차를 임계점으로 하여, 임계점 미만의 지점에 해당하는 시간 영역의 신호를 제거함으로써 시 불변 신호를 제거하는 것을 특징으로 한다.   The apparatus for removing noise from a long sound signal according to the present invention calculates a kurtosis vector of a long sound signal, which is a sound generated in a field, and sets the standard deviation of the vector as a critical point, Eliminating the signal is characterized in that to remove the time invariant signal.
본 발명은 장에서 발생하는 소리인 장음 신호를 피검자의 외부에서 측정하여 분석함으로써, 장의 운동성을 비침습적이고 정량적으로 측정할 수 있는 효과가 있다. The present invention has the effect of measuring the intestinal motility non-invasive and quantitatively by measuring and analyzing a long sound signal, which is a sound generated in the intestine, from the outside of the subject.
또한, 본 발명은 장의 운동성을 단 기간 내에 장음 신호를 통해 측정할 수 있음으로, 질병의 조기 진단과 예후 판정에 도움을 주는 효과가 있다. In addition, the present invention can measure the motility of the intestine in a short period of time through the long sound signal, there is an effect that helps in the early diagnosis and prognosis of the disease.
또한, 본 발명은 방서선의 노출없이 장의 운동성을 단 기간 내에 장음 신호를 통해 측정할 수 있음으로, 종래의 방사선 장비의 사용을 대체할 수 있는 효과가 있다.In addition, the present invention can measure the motility of the intestine within a short period of time without exposure to the radiation, there is an effect that can replace the use of conventional radiation equipment.
도 1 은 본 발명의 일 실시예에 따른 장음 분석을 통한 비침습적 장 운동성 측정 장치의 구성을 나타낸 블록도이다. 1 is a block diagram showing the configuration of a non-invasive bowel motility measurement device through the sound analysis according to an embodiment of the present invention.
도 2 는 본 발명의 일 실시예에 따른 장음 신호를 수집하기 위한 위치를 나타낸 예시도이다. 2 is an exemplary view showing a position for collecting a long sound signal according to an embodiment of the present invention.
도 3은 본 발명에서 측정된 장음 신호를 나타낸 그래프의 한 예이다. 3 is an example of a graph showing a long sound signal measured in the present invention.
도 4 는 본 발명의 일 실시예에 따른 장음 분석을 통한 비침습적 장 운동성 측정 방법에 관한 순서도이다. 4 is a flowchart illustrating a method for measuring non-invasive bowel motility through bowel analysis according to an embodiment of the present invention.
도 5는 도 4의 순서도에서 장음 신호에서 잡음을 제거하는 단계를 구체적으로 나타낸 순서도이다. FIG. 5 is a flowchart specifically showing noise removing from a long sound signal in the flowchart of FIG. 4.
이하에서는 상기와 같이 구성된 본 발명에 따른 장음 분석을 이용한 장 운동성 측정 장치 및 방법의 바람직한 실시예를 첨부된 도면을 참조하여 상세히 설명하도록 한다. Hereinafter, with reference to the accompanying drawings, a preferred embodiment of the apparatus and method for measuring the bowel motility using the sound analysis according to the present invention configured as described above in detail.
그러나 본 발명의 권리범위는 하기의 실시예에 한정되는 것은 아니며, 본 발명의 기술적 요지를 벗어나지 않는 범위 내에서 당해 기술 분야의 통상적인 지식을 가진 자에 의하여 다양하게 변형하여 실시될 수 있음은 물론이다. 또한, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.However, the scope of the present invention is not limited to the following examples, and various modifications can be made by those skilled in the art without departing from the technical gist of the present invention. to be. In addition, the terms or words used in the specification and claims are not to be construed as limiting in their usual or dictionary meanings, and the inventors appropriately define the concept of terms in order to best explain their invention in the best way possible. It should be interpreted as meaning and concept corresponding to the technical idea of the present invention based on the principle to be possible.
또한, 본 발명에 관련된 공지 기능 및 그 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는, 그 구체적인 설명을 생략하였음을 유의해야 할 것이다.In addition, when it is determined that the detailed description of the known function and the configuration related to the present invention may unnecessarily obscure the subject matter of the present invention, it should be noted that the detailed description is omitted.
도 1은 본 발명의 일 실시예에 따른 장음 분석을 통한 비침습적 장 운동성 측정 장치의 구성을 나타낸 블록도이고, 도 2 는 본 발명의 일 실시예에 따른 장음 신호를 수집하기 위한 위치를 나타낸 예시도이고, 도 3은 본 발명에서 측정된 장음 신호를 나타낸 그래프의 한 예이고, 도 4 는 본 발명의 일 실시예에 따른 장음 분석을 통한 비침습적 장 운동성 측정 방법에 관한 순서도이고, 그리고 도 5는 도 4의 순서도에서 장음 신호에서 잡음을 제거하는 단계를 구체적으로 나타낸 순서도이다. 1 is a block diagram showing the configuration of a non-invasive bowel motility measurement device through the sound analysis according to an embodiment of the present invention, Figure 2 is an illustration showing a position for collecting the long sound signal according to an embodiment of the present invention 3 is an example of a graph showing a long sound signal measured in the present invention, FIG. 4 is a flowchart illustrating a method for measuring non-invasive field motility through long sound analysis according to an embodiment of the present invention, and FIG. 5 FIG. 4 is a flowchart illustrating the steps of removing noise from the long sound signal in the flowchart of FIG. 4.
도 1에 도시된 바와 같이, 본 발명의 일 실시예에 따른 장음 분석을 통한 비침습적 장 운동성 측정 장치(A)는, 장음 분석을 통한 비침습적 장 운동성 측정 장치에 있어서, 장에서 발생하는 소리인 장음 신호를 측정하여 출력하는 신호 수집부(100)와; 상기 신호 수집부(100)로부터 출력된 장음 신호에서 잡음을 제거하여 출력하는 잡음 제거부(200)와; 상기 잡음이 제거된 장음 신호에서 특징 변수를 추출하는 변수 추출부(300)와; 상기 추출된 특징 변수들과 기 측정된 대장 통과 시간(Colon transit time, CTT) 간의 관계식을 도출하는 관계식 도출부(400)와; 그리고 상기 도출된 관계식을 근거로 상기 장의 운동 상태를 진단하는 장 운동성 진단부(500)를 포함하여 구성된다. As shown in Figure 1, the non-invasive bowel motility measurement device (A) through the long sound analysis according to an embodiment of the present invention, in the non-invasive bowel motility measurement device through the long sound analysis, the sound generated in the intestine A signal collector 100 for measuring and outputting a long sound signal; A noise removing unit 200 which removes and outputs noise from the long sound signal output from the signal collecting unit 100; A variable extracting unit (300) for extracting feature variables from the noise-removed long sound signal; A relational expression deriving unit 400 for deriving a relational expression between the extracted feature variables and a previously measured colon transit time (CTT); And an intestinal motility diagnosis unit 500 for diagnosing the exercise state of the intestine based on the derived relational expression.
그리고 도 4에 도시된 바와 같이, 본 발명의 일 실시예에 따른 장음 분석을 통한 비침습적 장 운동성 측정 방법은, 장에서 발생하는 소리인 장음 신호를 수집 및 측정하는 단계(S100)와; 상기 수집 및 측정된 장음 소리에서 잡음, 특히 심음 또는 호흡음 등의 시 불변 신호를 제거하는 단계(S200)와; 상기 잡음이 제거된 장음 신호에서 특징 변수를 추출하는 단계(S300)와; 회귀 분석을 통해 상기 추출된 특징 변수와 대장 통과 시간(CTT)과의 관계식을 도출하는 단계(S400)와; 상기 도출된 관계식을 이용하여 상기 추출된 특징 변수를 장 운동성 지수, 예를 들어 대장 통과 시간으로 변환하여 장 운동성을 진단하는 단계(S500)를 포함하여 이루어진다. And, as shown in Figure 4, the non-invasive bowel motility measurement method through the long sound analysis according to an embodiment of the present invention, the step of collecting and measuring the long sound signal which is a sound generated in the intestine (S100); Removing invariant signals such as noise, especially heart sounds or respiratory sounds, from the collected and measured long sound (S200); Extracting feature variables from the noise-free long sound signal (S300); Deriving a relationship between the extracted feature variable and colon transit time (CTT) through regression analysis (S400); A method of diagnosing intestinal motility is performed by converting the extracted feature variable into an intestinal motility index, for example, a large intestine transit time, using the derived relational expression (S500).
상기 신호 수집부(100)는, 적어도 하나 이상의 전자 청진기 또는 마이크 등을 통해 장음 신호를 수집 및 측정한다(S100). The signal collection unit 100 collects and measures a long sound signal through at least one or more electronic stethoscopes or microphones (S100).
이때, 상기 신호 수집부(100)는 피검자가 최소 8시간 이상 공복 상태를 유지한 상태에서, 일정량의 음식물을 섭취한 후, 1시간, 4시간, 8시간이 지난 시간마다 10분간 장음을 복부에서 측정한다. In this case, the signal collection unit 100 in a state in which the subject maintains an empty stomach for at least 8 hours or more, after ingesting a predetermined amount of food, for 10 minutes every 10 hours after 1 hour, 4 hours, and 8 hours Measure
여기서, 상기 신호 수집부(100)는 각 3개의 전자 청진기(또는 마이크)를 이용하여 도 2에 도시된 바와 같이 복부의 특정 위치에서 장음을 측정하는 것이 바람직하다. Here, the signal collector 100 may measure the long sound at a specific position of the abdomen as shown in FIG. 2 using three electronic stethoscopes (or microphones).
도 2에 도시된 바와 같이, 상기 신호 수집부(100)는 피검자의 복부 중 상행 결장(ascending colon, CH1), 하행 결장(descending colon, CH2) 그리고 S자 결장(sigmoid colon, CH3)이 위치하는 곳에서 장음 신호를 측정하는 것이 바람직하다. As shown in FIG. 2, the signal collection unit 100 includes an ascending colon (CH1), a descending colon (CH2), and a sigmoid colon (CH3) located in the abdomen of the subject. It is desirable to measure the long sound signal in place.
상기 신호 수집부(100)는 상기 측정된 장음 신호를 아날로그/디지털 컨버터(110)를 포함하고 있어, 상기 측정된 아날로그 신호인 장음 신호를 디지털 신호로 변환시킨다. The signal collector 100 includes the measured long sound signal analog / digital converter 110, and converts the measured long sound signal, which is the measured analog signal, into a digital signal.
이때, 상기 아날로그/디지털 컨버터(110)는 상기 장음 신호의 주파수 대역을 고려하여 8 KHz의 샘플링 주파수로 디지털 신호를 변환하는 것이 바람직하다. In this case, the analog / digital converter 110 preferably converts the digital signal to a sampling frequency of 8 KHz in consideration of the frequency band of the long sound signal.
그리고 상기 신호 수집부(100)는 4차 버터워스 대역통과필터(120)를 포함하여, 피검자의 호흡에 의해서 생기는 호흡 잡음이나 불필요한 움직임으로 인한 신호 변동 잡음을 제거하거나 또는 최소화한다. 여기서, 상기 4차 버터워스 대역통과필터(120)의 주파수 대역은 5~600 Hz인 것이 바람직하다. The signal collection unit 100 includes a fourth Butterworth bandpass filter 120 to remove or minimize signal fluctuation noise caused by breathing noise or unnecessary movement caused by the subject's breathing. Here, the frequency band of the fourth-order Butterworth bandpass filter 120 is preferably 5 ~ 600 Hz.
한편, 상기 신호 수집부(100)의 샘플링 주파수, 필터의 종류, 차수 및 주파수 대역은 장음 측정 시 사용된 장치의 특성에 맞게 조정 가능하다On the other hand, the sampling frequency, the type of filter, the order and the frequency band of the signal collector 100 can be adjusted according to the characteristics of the device used when measuring the long sound.
상기 잡음 제거부(200)는 첨도-기반 잡음감지 방법(Iterative Kurtosis-based Detector, IKD)을 이용하여 신호 수집부(100)로부터 출력된 장음 신호의 잡음을 제거하는 기능을 수행한다(S200). The noise removing unit 200 removes noise of the long sound signal output from the signal collecting unit 100 by using an kurtosis-based noise detection method (IKD) (S200).
즉, 상기 잡음 제거부(200)는 상기 장음 신호의 첨도 벡터를 계산하고, 이 벡터의 표준편차를 임계점으로 하여, 임계점 미만의 지점에 해당하는 시간 영역의 신호를 제거함으로써 시 불변 신호를 제거함으로써, 장음 신호에서 잡음을 제거한다. That is, the noise removing unit 200 calculates the kurtosis vector of the long sound signal, removes the time-invariant signal by removing a signal in the time domain corresponding to a point below the threshold, using the standard deviation of the vector as a critical point. This removes the noise from the long sound signal.
이때, IKD 알고리즘은 전체 신호에서 시 변 특성(non-stationary)의 신호만을 선택적으로 추출하기 위한 것으로서, 신호의 첨도를 계산함으로써 이루어진다. 시변 신호의 첨도는 시 불변(stationary) 신호의 첨도에 비해 큰 특성이 있다. 장음 신호의 경우 시변 신호에 해당하므로, 이 알고리즘을 이용하면 장음에 섞여 있는 시 불변 신호의 일종인 호흡음, 심음 등을 효과적으로 제거할 수 있다. In this case, the IKD algorithm is for selectively extracting only non-stationary signals from the entire signal, and is calculated by calculating the kurtosis of the signals. The kurtosis of a time-varying signal has a larger characteristic than the kurtosis of a stationary signal. Since the long sound signal corresponds to a time-varying signal, this algorithm can effectively remove the respiratory sound and the heart sound, which are a kind of time invariant signal mixed with the long sound.
상기 IKD 알고리즘을 이용하여 잡음을 제거하는 단계를 도 5를 참조하여 상세히 설명하면 다음과 같다. The noise removal using the IKD algorithm will now be described in detail with reference to FIG. 5.
도 5에 도시된 바와 같이, 상기 잡음 제거부(200)가 잡음을 제거하는 단계는, 상기 장음 신호의 첨도 벡터를 계산하는 단계(S210)와; 상기 계산된 첨도 벡터의 표준편차(SD)를 계산하는 단계(S220)와; 상기 계산된 첨도 벡터 중에서 상기 표준편차(SD) 미만의 값이 존재하는 영역의 장음 신호만을 제거하는 단계(S230)와; 상기 제거된 장음 신호인 잡음의 제곱 합을 계산하는 단계(S240)와; 상기 계산된 제곱 합이 미리 설정된 기준 값보다 작을 때까지 위 단계를 반복하는 단계(S250)를 포함하여 이루어진다.As shown in FIG. 5, the noise removing unit 200 includes removing the noise by calculating a kurtosis vector of the long sound signal (S210); Calculating a standard deviation (SD) of the calculated kurtosis vector (S220); Removing only a long sound signal of a region in which a value less than the standard deviation (SD) exists among the calculated kurtosis vectors (S230); Calculating a sum of squares of noise which is the removed long sound signal (S240); And repeating the above step until the calculated sum of squares is smaller than a preset reference value (S250).
먼저, 상기 잡음 제거부(200)는 제 1 단계로, 아래의 [수학식 1]을 이용하여 현재 장음 신호의 첨도(K={Kj})를 계산한다(S210). 여기서, 상기 첨도(K={Kj})는 크기가 M인 j번째 슬라이딩 윈도우에서 측정된 첨도들(Kj)로 이루어진 벡터이다. mj 와 σj는 각각 장음에서 측정된 평균과 표준편차를 의미한다.First, the noise removing unit 200 calculates the kurtosis (K = {K j }) of the current long sound signal using Equation 1 below (S210). Here, the kurtosis (K = {K j }) is a vector composed of kurtosis (K j ) measured in a j-th sliding window having a size M. m j and σ j are mean and standard deviation, respectively, measured in long sound.
수학식 1
Figure PCTKR2010009614-appb-M000001
Equation 1
Figure PCTKR2010009614-appb-M000001
상기 잡음 제거부(200)는 제 2 단계로, 상기 도출된 K의 표준편차를 계산하여(S220), 상기 도출된 K중에서 상기 계산된 표준편차 미만의 값이 존재하는 j번째 슬라이딩 윈도우 영역 내의 신호만을 제거한다(S230).The noise removing unit 200 calculates the standard deviation of the derived K in a second step (S220), so that a signal within the j th sliding window region in which a value less than the calculated standard deviation exists among the derived K is present. Only remove (S230).
상기 잡음 제거부(200)는 제 3 단계로, 상기 제거된 계산된 표준편차 미만의 값이 존재하는 j번째 슬라이딩 윈도우 영역 내의 신호인 총 잡음의 제곱의 합을 계산하여(S240), 상기 계산된 제곱 합이 미리 설정된 기준 값보다 클 경우 장음 신호에 여분의 잡음이 섞여 있는 것으로 판단하여 상기 제 1, 2 단계를 반복하고, 상기 미리 설정된 기준 값보다 작을 경우 잡음이 거의 제거된 것으로 판단하여 잡음을 제거하는 과정을 종료한다(S250). In operation S240, the noise removing unit 200 calculates a sum of squares of the total noise, which is a signal in a j-th sliding window region in which a value less than the calculated standard deviation is present, in operation S240. If the sum of squares is larger than the preset reference value, it is determined that extra noise is mixed in the long sound signal, and the steps 1 and 2 are repeated. If the sum is smaller than the preset reference value, the noise is almost eliminated to determine that the noise is almost eliminated. The process of removing ends (S250).
여기서, 상기 미리 설정된 기준 값은 예를 들어 10, 20 처럼 단일 첨도값으로 사용자가 임의로 설정하는 값이다. 이때, 상기 미리 설정된 기준 값이 작을수록 제거되는 잡음이 많아지나 이와 함께 장음 신호도 불가피하게 제거될 수 있으므로, 사용자가 적절히 설정해서 사용해야 한다. Here, the preset reference value is a value set arbitrarily by the user as a single kurtosis value such as 10 and 20, for example. At this time, the smaller the predetermined reference value, the more noise is removed, but the long sound signal may also be inevitably removed.
상기 변수 추출부(300)는 상기 잡음이 제거된 장음 신호에서, 특징 변수를 추출한다(S300). 상기 특징 변수는 상기 장음 신호의 피치 간 주기 변동률인 jitter(Jch,t)와, 크기 변동률인 shimmer(Sch,t), 그리고 상기 jitter와 shimmer의 변화량인 trace(Tch)로 하기의 [수학식 2] ~ [수학식 4]에 의해서 구해진다.The variable extractor 300 extracts a feature variable from the long sound signal from which the noise is removed (S300). The characteristic variable is jitter (J ch, t ) , which is the period variation rate between pitches of the long sound signal, shimmer (S ch, t ), which is the magnitude variation rate, and trace (T ch ), which is the change amount of the jitter and shimmer. Equation 2] to [Equation 4].
수학식 2
Figure PCTKR2010009614-appb-M000002
Equation 2
Figure PCTKR2010009614-appb-M000002
수학식 3
Figure PCTKR2010009614-appb-M000003
Equation 3
Figure PCTKR2010009614-appb-M000003
수학식 4
Figure PCTKR2010009614-appb-M000004
Equation 4
Figure PCTKR2010009614-appb-M000004
여기서, Pi, Ai, N은 각각 장음신호 각 피치간 주기와 각 피치의 피크 간 크기 그리고 총 피치 개수이다. 그리고 ch와 t는 각각 장음을 측정한 채널(CH1, CH2, CH3)과 시간(1, 4, 8시간 후)을 나타낸다. Pi, Ai, and N are the periods between the pitches of the long sound signals, the magnitudes between the peaks of the pitches, and the total number of pitches, respectively. And ch and t represent channels (CH1, CH2, CH3) and time (after 1, 4, 8 hours) for measuring long sound, respectively.
상기 Pi, Ai, N은 도 3에 도시된 바와 같이 장음 신호 그래프를 통해서 구해진다. The Pi, Ai, N are obtained through the long sound signal graph as shown in FIG.
도 3은 본 발명에서 측정된 장음 신호를 나타낸 그래프의 한 예이다. 3 is an example of a graph showing a long sound signal measured in the present invention.
도 3에 도시된 바와 같이, 본 발명에 따른 장음 신호의 피치 간 주기와 진폭은 그래프를 통해서 구할 수 있다.As shown in FIG. 3, the period and amplitude between pitches of the long sound signal according to the present invention can be obtained through a graph.
위와 같은 방법으로 구해지는 특징 변수는, 수집된 장음의 피치의 주기 변동률(jitter), 크기 변동률(shimmer)과 측정 시간 동안 두 변수의 변화량(trace)을 나타내며 총 21개(Jch,t 9개, Sch,t 9개, Tch 3개)로 도출된다. Feature variable which is obtained by the above method is, for a period of a degree of variability in the collected prolonged sound pitch (jitter), the size change rate (shimmer) and measuring time represents the amount of change (trace) of the two variables, total of 21 (J ch, t 9 gae , S ch, t 9 and 3 T ch ).
본 발명에서 이와 같이 추출된 21가지의 변수 이외에도 음향 신호의 피치 분석을 통해 얻을 수 있는 다른 변수(중심 주파수, 평균 주파수 등)들도 사용될 수 있음은 당연하다.In addition to the 21 variables thus extracted in the present invention, it is natural that other variables (center frequency, average frequency, etc.) obtained through the pitch analysis of the acoustic signal may be used.
상기 관계식 도출부(400)는 상기 변수 추출부(300)를 통해 추출한 특징 변수를 이용하여 장 운동성을 정량적으로 진단하기 위한 관계식을 도출한다(S400). 이때, 상기 관계식은 상기 추출된 특징 변수를 입력 값으로 하여 출력 값으로 대장 통과 시간을 구한다. 여기서, 상기 관계식은 상기 대장 통과 시간(CTT)과 추출된 변수 간의 회귀 분석을 통해 도출된다. 즉, 일반화된 CTT 추정 관계식인 "y = a1x1 + a2x2 + a3x3 + ..." 의 형태에 상기 측정된 특징 변수들을 입력하여 피검자의 CTT를 추정할 수 있다. 이때, y는 CTT, a?는 계수, x?는 특징변수이다. The relational expression deriving unit 400 derives a relational expression for quantitatively diagnosing intestinal motility using the feature variable extracted through the variable extracting unit 300 (S400). In this case, the relational expression obtains the colon pass time as an output value using the extracted feature variable as an input value. Here, the relationship is derived through regression analysis between the colon transit time (CTT) and the extracted variables. That is, the CTT of the examinee may be estimated by inputting the measured feature variables in the form of a generalized CTT estimation relation "y = a1x1 + a2x2 + a3x3 + ...". Where y is CTT, a? Is a coefficient, and x? Is a feature variable.
그리고 장 운동성 진단부(500)는 상기 도출된 관계식을 근거로 특징 변수를 장 운동성 지수, 예를 들어 대장 통과 시간(CTT)으로 변환하여 장의 운동성을 진단한다. 즉, 상기 추정된 CTT 값을 근거로 피검자의 장의 운동성을 진단한다. 예를 들어, CTT 값이 정상 범위(논문에는, 일반적으로 CTT의 정상범위는 대략 20~40시간 정도인 것으로 알려져 있음)에 있으면 정상적인 장 운동성으로 판단하고, 이 범위 외에는 fast 또는 delayed 운동성으로 진단한다. In addition, the intestinal motility diagnosis unit 500 converts a feature variable into an intestinal motility index, for example, a large intestine transit time (CTT), based on the derived relationship to diagnose the intestinal motility. That is, the motility of the intestine of the subject is diagnosed based on the estimated CTT value. For example, if the CTT value is in the normal range (in the paper, it is generally known that the normal range of CTT is about 20 to 40 hours), it is judged as normal intestinal motility, and outside this range, it is diagnosed as fast or delayed motility. .
이상으로 본 발명의 기술적 사상을 예시하기 위한 바람직한 실시 예와 관련하여 설명하고 도시하였지만, 본 발명은 이와 같이 도시되고 설명된 그대로의 구성 및 작용에만 국한되는 것이 아니며, 기술적 사상의 범주를 일탈함이 없이 본 발명에 대해 다수의 변경 및 수정 가능함을 당업자들은 잘 이해할 수 있을 것이다. 따라서, 그러한 모든 적절한 변경 및 수정과 균등물들도 본 발명의 범위에 속하는 것으로 간주 되어야 할 것이다.As described above and described with reference to a preferred embodiment for illustrating the technical idea of the present invention, the present invention is not limited to the configuration and operation as shown and described as described above, it is a deviation from the scope of the technical idea It will be apparent to those skilled in the art that many changes and modifications can be made to the invention without departing from the scope of the invention. Accordingly, all such suitable changes, modifications, and equivalents should be considered to be within the scope of the present invention.
본 발명은 장에서 발생하는 소리인 장음 신호를 분석하여 도출된 특징 변수를 이용하여 대장 통과 시간(CTT)를 추정하고 이를 기반으로 장 운동성을 정량적으로 진단할 수 있는 장음 분석을 통한 비침습적인 장 운동성 측정 장치 및 방법에 관한 것으로, 장 운동성 측정 장치 산업에 이용가능하다. The present invention estimates colonic transit time (CTT) using characteristic variables derived by analyzing long-term signals, which are sounds generated in the intestine, and based on this, non-invasive field through long-term analysis that can quantitatively diagnose intestinal motility. TECHNICAL FIELD This invention relates to an apparatus and method for measuring mobility.

Claims (17)

  1. 장음 분석을 통한 비침습적 장 운동성 측정 장치에 있어서,In the non-invasive intestinal motility measurement device through the analysis of long sound,
    장에서 발생하는 소리인 장음 신호를 측정하여 출력하는 신호 수집부와; A signal collector which measures and outputs a long sound signal, which is a sound generated in the intestine;
    상기 신호 수집부로부터 출력된 장음 신호에서 잡음을 제거하여 출력하는 잡음 제거부와;A noise removing unit for removing noise from the long sound signal output from the signal collecting unit and outputting the noise;
    상기 잡음이 제거된 장음 신호에서 특징 변수를 추출하는 변수 추출부와; A variable extraction unit for extracting feature variables from the noise-removed long sound signal;
    상기 추출된 특징 변수들과 기 측정된 대장 통과 시간(Colon transit time, CTT) 간의 관계식을 도출하는 관계식 도출부와; 그리고 A relation expression derivation unit for deriving a relation between the extracted feature variables and a previously measured colon transit time (CTT); And
    상기 도출된 관계식을 근거로 상기 장의 운동 상태를 진단하는 장 운동성 진단부를 포함하는 장음 분석을 통한 비침습적 장 운동성 측정 장치.Non-invasive intestinal motility measurement device through the sound analysis, including a bowel motility diagnostic unit for diagnosing the motion state of the intestine based on the derived relational expression.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 신호 수집부는, 복부 중 상행 결장(ascending colon), 하행 결장(descending colon) 그리고 S자 결장(sigmoid colon)이 위치하는 곳에서 장음 신호를 측정하는 것을 특징으로 하는 장음 분석을 통한 비침습적 장 운동성 측정 장치.The signal collection unit, non-invasive bowel motility through the long sound analysis, characterized in that to measure the long bowel signal in the ascending colon (descending colon) and sigmoid colon (sigmoid colon) located in the abdomen Measuring device.
  3. 제 1 항에 있어서, The method of claim 1,
    상기 신호 수집부는, 상기 장음 신호를 아날로그 신호에서 디지털 신호로 변환하는 아날로그/디지털 컨버터를 포함하는 것을 특징으로 하는 장음 분석을 통한 비침습적 장 운동성 측정 장치.The signal collector, the non-invasive field motility measurement device through the long sound analysis, characterized in that it comprises an analog / digital converter for converting the long sound signal from an analog signal to a digital signal.
  4. 제 3 항에 있어서, The method of claim 3, wherein
    상기 아날로그/디지털 컨버터는, 8 KHz의 샘플링 주파수로 상기 장음 신호를 디지털 신호로 변환하는 것을 특징으로 하는 장음 분석을 통한 비침습적 장 운동성 측정 장치.The analog / digital converter, the non-invasive field motility measurement device through the long sound analysis, characterized in that for converting the long sound signal into a digital signal at a sampling frequency of 8 KHz.
  5. 제 1 항에 있어서,The method of claim 1,
    상기 신호 수집부는, 상기 장음 신호에서 호흡잡음 또는 피검자의 불필요한 움직임으로 인한 잡음을 제거하는 대역통과필터를 포함하는 것을 특징으로 하는 장음 분석을 통한 비침습적 장 운동성 측정 장치.The signal collection unit, the non-invasive field motility measurement device through the long sound analysis, characterized in that it comprises a band pass filter for removing noise due to respiratory noise or unnecessary movement of the subject from the long sound signal.
  6. 제 5 항에 있어서,The method of claim 5,
    상기 대역통과필터는, 4차 버터워스 대역통과필터인 것을 특징으로 하는 장음 분석을 통한 비침습적 장 운동성 측정 장치.The band pass filter is a non-invasive field motility measurement device through the long sound analysis, characterized in that the fourth-order Butterworth band pass filter.
  7. 제 1 항에 있어서,The method of claim 1,
    상기 잡음 제거부는,The noise removing unit,
    상기 장음 신호의 첨도 벡터를 계산하고, 이 벡터의 표준편차를 임계점으로 하여, 임계점 미만의 지점에 해당하는 시간 영역의 신호를 제거함으로써 시 불변 신호를 제거하는 것을 특징으로 하는 장음 분석을 통한 비침습적 장 운동성 측정 장치.The non-invasive analysis of the long sound signal is performed by calculating a kurtosis vector of the long sound signal, and removing time-varying signals by removing a signal in a time domain corresponding to a point below the threshold, using the standard deviation of the vector as a critical point. Intestinal motility measurement device.
  8. 제 1 항에 있어서,The method of claim 1,
    상기 변수 추출부는,The variable extraction unit,
    상기 잡음이 제거된 장음 신호의 피치 간 주기 변동률인 jitter와, 크기 변동률인 shimmer 그리고 상기 jitter와 shimmer의 변화량인 trace를 특징 변수로 추출하는 것을 특징으로 하는 장음 분석을 통한 비침습적 장 운동성 측정 장치.The apparatus for measuring non-invasive field motility through long sound analysis, characterized by extracting the jitter, which is the period variation rate between pitches of the noise-removed long sound signal, the shimmer which is the magnitude variation rate, and the trace, which is a change amount of the jitter and shimmer, as feature variables.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 변수 추출부는, 공복 상태에서 음식물을 섭취한 후, 각각 1시간, 4시간, 8시간 후에 측정된 장에서 발생하는 소리를 바탕으로 상기 특징 변수를 추출하는 것을 특징으로 하는 장음 분석을 통한 비침습적 장 운동성 측정 장치.The variable extracting unit, after ingesting the food in a fasting state, non-invasive through the analysis of long-term sound, characterized in that for extracting the feature variable based on the sound generated in the intestine measured after 1 hour, 4 hours, 8 hours respectively Intestinal motility measurement device.
  10. 제 1 항에 있어서,The method of claim 1,
    상기 관계식 도출부는,The relational expression derivation unit,
    상기 추출된 특징 변수와 대장 통과 시간 간의 회귀 분석을 통해 관계식을 도출하는 것을 특징으로 하는 장음 분석을 통한 비침습적 장 운동성 측정 장치.Non-invasive bowel motility measurement device through the long sound analysis, characterized in that to derive a relationship through the regression analysis between the extracted feature variable and colon transit time.
  11. 제 1 항에 있어서,The method of claim 1,
    상기 장 운동성 진단부는,The bowel motility diagnostic unit,
    상기 도출된 관계식을 근거로 특징 변수를 장 운동성 지수로 변환하는 것을 특징으로 하는 장음 분석을 통한 비침습적 장 운동성 측정 장치.Non-invasive bowel motility measurement device through the sound analysis, characterized in that for converting the feature variable to the intestinal motility index based on the derived relational expression.
  12. 장음 분석을 통한 비침습적 장 운동성 진단 방법에 있어서,In the method of diagnosing non-invasive bowel motility through the analysis of bowel sound,
    장에서 발생하는 소리인 장음 신호를 측정하는 단계와;Measuring a long sound signal, which is a sound generated in the intestine;
    상기 측정된 장음 신호에서 잡음을 제거하는 단계와;Removing noise from the measured long sound signal;
    상기 잡음이 제거된 장음 신호에서 특징 변수를 추출하는 단계와;Extracting feature variables from the noise-free long sound signal;
    회귀 분석을 통해 상기 추출된 특징 변수와 대장 통과 시간과의 관계식을 도출하는 단계와;Deriving a relation between the extracted feature variable and the colon transit time through a regression analysis;
    상기 도출된 관계식을 이용하여 장 운동성을 진단하는 단계를 포함하는 장음 분석을 통한 비침습적 장 운동성 측정 장치.Non-invasive bowel motility measurement device through the analysis of the bowel sound comprising the step of diagnosing bowel motility using the derived equation.
  13. 제 12 항에 있어서,The method of claim 12,
    상기 잡음을 제거하는 단계는,Removing the noise,
    상기 장음 신호의 첨도 벡터를 계산하는 단계와;Calculating a kurtosis vector of the long sound signal;
    상기 계산된 첨도 벡터의 표준편차를 계산하는 단계와;Calculating a standard deviation of the calculated kurtosis vector;
    상기 계산된 첨도 벡터 중에서 상기 표준편차 미만의 값이 존재하는 영역의 장음 신호만을 제거하는 단계와;Removing only a long sound signal of a region having a value less than the standard deviation among the calculated kurtosis vectors;
    상기 제거된 장음 신호인 잡음의 제곱 합을 계산하는 단계와; 그리고 Calculating a sum of squares of noise that is the removed long sound signal; And
    상기 계산된 제곱 합이 미리 설정된 기준 값보다 작을 때까지 위 단계를 반복하는 것을 특징으로 하는 장음 분석을 통한 비침습적 장 운동성 측정 방법.And repeating the above steps until the calculated sum of squares is smaller than a predetermined reference value.
  14. 제 12 항에 있어서,The method of claim 12,
    상기 측정된 소리를 디지털로 변환하고, 대역통과필터를 통과시키는 단계를 더 포함하는 것을 특징으로 하는 장음 분석을 통한 비침습적 장 운동성 측정 방법.And converting the measured sound into a digital signal and passing a band pass filter.
  15. 제 12 항에 있어서,The method of claim 12,
    상기 잡음은, 심음 또는 호흡음 등의 시 불변 신호인 것을 특징으로 하는 장음 분석을 통한 비침습적 장 운동성 측정 방법.The noise is a non-invasive bowel motility measurement method through the analysis of the long sound, characterized in that in the constant signal, such as the heart sound or breathing sound.
  16. 장음 분석을 통한 비침습적 장 운동성 측정 장치에 있어서,In the non-invasive intestinal motility measurement device through the analysis of long sound,
    장에서 발생하는 소리인 장음 신호를 측정하여 출력하는 신호 수집부와; A signal collector which measures and outputs a long sound signal, which is a sound generated in the intestine;
    상기 장음 신호에서 특징 변수를 추출하는 변수 추출부와; A variable extraction unit for extracting feature variables from the long sound signal;
    상기 추출된 특징 변수들과 기 측정된 대장 통과 시간(Colon transit time, CTT) 간의 관계식을 도출하는 관계식 도출부와; 그리고 A relation expression derivation unit for deriving a relation between the extracted feature variables and a previously measured colon transit time (CTT); And
    상기 도출된 관계식을 근거로 상기 장의 운동 상태를 진단하는 장 운동성 진단부를 포함하는 장음 분석을 통한 비침습적 장 운동성 측정 장치.Non-invasive intestinal motility measurement device through the sound analysis, including a bowel motility diagnostic unit for diagnosing the motion state of the intestine based on the derived relational expression.
  17. 장에서 발생하는 소리인 장음 신호의 첨도 벡터를 계산하고, 이 벡터의 표준편차를 임계점으로 하여, 임계점 미만의 지점에 해당하는 시간 영역의 신호를 제거함으로써 시 불변 신호를 제거하는 것을 특징으로 하는 장음 신호에서 잡음을 제거하는 장치.A long sound characterized in that a time-invariant signal is removed by calculating a kurtosis vector of a long sound signal, which is a sound generated in the field, and removing a signal in a time domain corresponding to a point below the threshold, using the standard deviation of the vector as a critical point. A device that removes noise from a signal.
PCT/KR2010/009614 2010-10-26 2010-12-31 Non-invasive device and method for measuring bowel motility using bowel sound analysis WO2012057406A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0104339 2010-10-26
KR20100104339A KR101183709B1 (en) 2010-10-26 2010-10-26 Apparatus and method for the non-invasive estimation of bowel motility

Publications (1)

Publication Number Publication Date
WO2012057406A1 true WO2012057406A1 (en) 2012-05-03

Family

ID=45994097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009614 WO2012057406A1 (en) 2010-10-26 2010-12-31 Non-invasive device and method for measuring bowel motility using bowel sound analysis

Country Status (2)

Country Link
KR (1) KR101183709B1 (en)
WO (1) WO2012057406A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104305961A (en) * 2014-10-20 2015-01-28 清华大学 Bowel sounds monitoring and recognizing system
WO2015117035A1 (en) * 2014-01-30 2015-08-06 University Of Florida Research Foundation, Inc. Methods and systems for feeding readiness diagnosis
US9179887B2 (en) 2010-04-16 2015-11-10 University Of Tennessee Research Foundation Systems and methods for predicting gastrointestinal impairment
CN111407307A (en) * 2020-04-17 2020-07-14 华中科技大学同济医学院附属协和医院 Electric stimulation massage device and electric stimulation massage method for enterokinesia
US11918408B2 (en) 2019-04-16 2024-03-05 Entac Medical, Inc. Enhanced detection and analysis of biological acoustic signals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301679A (en) * 1991-05-31 1994-04-12 Taylor Microtechnology, Inc. Method and system for analysis of body sounds
US6228040B1 (en) * 1998-08-04 2001-05-08 Western Research Company, Inc. Method and apparatus for diagnosis of irritable bowel syndrome
US6776766B2 (en) * 1996-04-03 2004-08-17 Rush-Presbyterian-St. Luke's Medical Center Method and apparatus for characterizing gastrointestinal sounds
US20080306355A1 (en) * 2006-11-20 2008-12-11 Smithkline Beecham Corporation Method and System for Monitoring Gastrointestinal Function and Physiological Characteristics

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5301679A (en) * 1991-05-31 1994-04-12 Taylor Microtechnology, Inc. Method and system for analysis of body sounds
US6776766B2 (en) * 1996-04-03 2004-08-17 Rush-Presbyterian-St. Luke's Medical Center Method and apparatus for characterizing gastrointestinal sounds
US6228040B1 (en) * 1998-08-04 2001-05-08 Western Research Company, Inc. Method and apparatus for diagnosis of irritable bowel syndrome
US20080306355A1 (en) * 2006-11-20 2008-12-11 Smithkline Beecham Corporation Method and System for Monitoring Gastrointestinal Function and Physiological Characteristics

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9179887B2 (en) 2010-04-16 2015-11-10 University Of Tennessee Research Foundation Systems and methods for predicting gastrointestinal impairment
US10603006B2 (en) 2010-04-16 2020-03-31 University Of Tennessee Research Foundation Systems and methods for predicting gastrointestinal impairment
US11801030B2 (en) 2010-04-16 2023-10-31 University Of Tennessee Research Foundation Systems and methods for predicting gastrointestinal impairment
WO2015117035A1 (en) * 2014-01-30 2015-08-06 University Of Florida Research Foundation, Inc. Methods and systems for feeding readiness diagnosis
US10478116B2 (en) 2014-01-30 2019-11-19 University Of Florida Research Foundation, Inc. Methods and systems for feeding readiness diagnosis
CN104305961A (en) * 2014-10-20 2015-01-28 清华大学 Bowel sounds monitoring and recognizing system
US11918408B2 (en) 2019-04-16 2024-03-05 Entac Medical, Inc. Enhanced detection and analysis of biological acoustic signals
CN111407307A (en) * 2020-04-17 2020-07-14 华中科技大学同济医学院附属协和医院 Electric stimulation massage device and electric stimulation massage method for enterokinesia

Also Published As

Publication number Publication date
KR20120061143A (en) 2012-06-13
KR101183709B1 (en) 2012-09-17

Similar Documents

Publication Publication Date Title
WO2012057406A1 (en) Non-invasive device and method for measuring bowel motility using bowel sound analysis
WO2019088462A1 (en) System and method for generating blood pressure estimation model, and blood pressure estimation system and method
US8992435B2 (en) System and method for classifying a heart sound
WO2018012770A1 (en) Exercise management method and system using electromyography sensor
WO2017082461A2 (en) Heartbeat detection signal processing method for ultrasound doppler fetus monitoring device
WO2019182273A1 (en) Sleep apnea severity testing device
CN103153183A (en) Apparatus and method for diagnosing obstructive sleep apnea
CN107616798A (en) A kind of gait asymmetry detection method based on acceleration of gravity
EP0836415A1 (en) Method and apparatus for characterizing gastrointestinal sounds
WO2001008560A1 (en) Method and apparatus for diagnosis of irritable bowel syndrome
WO2020004720A1 (en) Method, system, and non-transitory computer-readable recording medium for calculating information relating to urination
WO2010140746A1 (en) Method for acquiring an electrocardiogram signal, and electrocardiogram apparatus using same
JP2002541895A (en) System and method for detecting motor activity of smooth muscle
WO2014021515A1 (en) Method and apparatus for evaluating health of fetus
WO2020111464A1 (en) Method for identifying preterm birth risk on basis of uterus electromyogram
WO2013086615A1 (en) Device and method for detecting congenital dysphagia
WO2018048072A1 (en) Apparatus for eliminating motion artifacts by using ppg signal and method thereof
Sonmezocak et al. Detection of EMG signals by neural networks using autoregression and wavelet entropy for bruxism diagnosis
JP2020529234A (en) Methods and Devices for Determining Signal Quality for Dysphagia Classification Models
KR20170004804A (en) A method for estimating respiratory and heart rate using dual cameras on a smart phone
KR101151191B1 (en) Method for sending information for the non-invasive estimation of bowel motility
KR101151152B1 (en) Apparatus for removing noise from bowel sound
JP7452855B2 (en) Swallowing movement prediction method and system using time-series data prediction
Kim et al. Awareness system for bowel motility estimation based on artificial neural network of bowel sounds
WO2023113491A1 (en) Capsule endoscope location prediction system and method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10859020

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10859020

Country of ref document: EP

Kind code of ref document: A1