WO2012013846A1 - Brazo telerrobótico de configuración paralela para aplicaciones de cirugia minima invasiva - Google Patents

Brazo telerrobótico de configuración paralela para aplicaciones de cirugia minima invasiva Download PDF

Info

Publication number
WO2012013846A1
WO2012013846A1 PCT/ES2011/070522 ES2011070522W WO2012013846A1 WO 2012013846 A1 WO2012013846 A1 WO 2012013846A1 ES 2011070522 W ES2011070522 W ES 2011070522W WO 2012013846 A1 WO2012013846 A1 WO 2012013846A1
Authority
WO
WIPO (PCT)
Prior art keywords
minimally invasive
invasive surgery
arm
applications
parallel configuration
Prior art date
Application number
PCT/ES2011/070522
Other languages
English (en)
French (fr)
Inventor
Jose Maria Sabater Navarro
Eduardo Fernandez Jover
Nicolas Garcia Aracil
Carlos Perez Vidal
Jose María AZORIN POVEDA
Original Assignee
Universidad Miguel Hernandez
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad Miguel Hernandez filed Critical Universidad Miguel Hernandez
Publication of WO2012013846A1 publication Critical patent/WO2012013846A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/302Surgical robots specifically adapted for manipulations within body cavities, e.g. within abdominal or thoracic cavities
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B34/00Computer-aided surgery; Manipulators or robots specially adapted for use in surgery
    • A61B34/30Surgical robots
    • A61B2034/304Surgical robots including a freely orientable platform, e.g. so called 'Stewart platforms'

Definitions

  • the present invention consists of a telerobotic arm of at least four degrees of freedom capable of performing the movements of the surgical tools in a minimally invasive surgery operation.
  • the robotic arm is preferably formed by five actuators, four of them to execute the 4 degrees of freedom and an additional 1 to control the tool exchange.
  • Each arm has a small size, along with a dynamic capacity sufficient for performing surgical tasks.
  • the present invention relates to the field of surgical systems with robotic assistance, surgical robots and automatic systems for computer-assisted surgery.
  • the minimally invasive surgery is characterized by the use of small incisions smaller than 10 mm so that the instruments penetrate the body through these incisions.
  • the trocars are placed, which are elements that allow the access of said instruments by restricting the kinematics of operation to a spherical joint plus a degree of freedom of translation along the axis of the surgical tool.
  • Robotic devices are defined as intrinsically safe because their mechanical design is based on two requirements, avoiding collisions between their elements and avoiding singularities within the work space of the robot tool. The most common solution is the use of the "remote center of motion" (RCM), which places the center
  • REPLACEMENT SHEET (Rule 26) Rotating the robot's wrist in the trocar. In this way there is no translation of this point, preventing any failure in the control of the robot causes any damage to the patient.
  • the invention provides improvements or innovations over existing devices.
  • the present invention has a PARALLEL kinematic structure, which grants rigidity and robustness to the device, allowing sufficient forces to be performed for the performance of surgical tasks, despite the reduced size thereof. Also, the present invention incorporates an automatic tool exchanger that allows the contribution of material to the surgical area automatically without the need of a surgeon in the room and saving a large amount of time on the currently used when you want to introduce a dressing inside the abdominal cavity.
  • the invention TELEROBOTIC ARM of parallel configuration for applications of minimally invasive surgery preferably, of four degrees of freedom, capable of performing the movements of the surgical tools in a minimally invasive surgery operation preferably consists of three elements, namely , a passive positioning arm (36) that mainly has a serial configuration in which each joint (37) is passive and is sensed to know the final position of the element (21) and can be locked so that the joints remain fixed during the operation, and which is anchored on the couch of the operating room and allows to position its end (21) on the patient; a tool exchanger consisting mainly of a motorized linear guide (25) placed at the end of the positioning arm (36), preferably at an angle of 60 ° with the last link in the arm (36), on which a carriage slides.
  • a passive positioning arm (36) that mainly has a serial configuration in which each joint (37) is passive and is sensed to know the final position of the element (21) and can be locked so that the joints remain fixed during the operation, and which is anchored on the couch of the operating room
  • the carriage It carries a magnetic actuator without rod (5) for the exchange of tools, the carriage is positioned exactly along the linear guide, allowing the alignment of the magnetic actuators (4) and (5), in order to control the car, the linear guide is sensed with limit switches (1 1) and (12); and, finally, a mechanism of parallel kinematic configuration, constituted, in turn, by three linear actuators with rod (1), (2) and (3) that make up a parallel platform.
  • the lower base (20) of this platform is a spherical joint formed by three elements (21), (22) and (23) whose center of rotation (10) coincides with the entrance hole of the surgical operation, increasing the safety of this type of operations.
  • the upper base (24) of this platform is subject to the three linear actuators (1), (2) and (3) which, moving on their stems (32), (33) and (34), produces the rotation of this platform. higher.
  • the invention has an electronic interface (28) located at the intersection between the stem and the axis of the surgical tool that allows the electronic connection of the memory wires so necessary for the control of the necessary degrees of freedom in the end of the surgical tool (26).
  • Figure 8 shows a clamp-type surgical tool whose degree of freedom is the movement of opening / closing clamp. This movement is controlled by the nitinol wires and springs (27) located on the tool's own axis and electrically connected to the interface (28).
  • the invention allows several arms to be used without having collision problems between them, since the passive part (the passive positioning arm) is static, and the movement of the moving part is restricted to the work space displayed in Figure 5.
  • the teleoperation scheme of this arm allows its integration into a bilateral teleoperation system, since it is possible to obtain the data of forces made by the robotic arm on the surgical tool thanks to the direct reading of the actuator intensity (1) , (2), (3) and (4).
  • Figure 1 General view of the telerobotic arm for minimally invasive surgery applications.
  • Figure 3. General view of a system consisting of two tele robotic arms
  • Figure 7 Isometric view and elevation of the tool exchanger system.
  • FIG. 1 Detail view of the electronic interface for the control of the end of the surgical tool.
  • PARALLEL CONFIGURATION TELEROBOTIC ARM is one in which the passive positioning arm is preferably formed by 3 or more extruded aluminum links.
  • the joints (37) are mounted on joints that could be of the modified cardan type (hook), so that a wide range of motion is obtained and the possibility of blocking (braking) said passive joints.
  • the linear guide (25) is placed in the housing provided for this purpose in a piece (21), so that the desired angle for positioning the guide is achieved.
  • the guide is preferably a 150 mm light-duty single-track guide, to which a DC motor (6) is coupled for the control of the linear carriage, this linear carriage is positioned exactly along the linear guide (25) and allows the alignment and approach of the actuator shafts (4) and (5).
  • a linear motor is placed on this car.
  • the actuator (4) is without any rod inside, and therefore there is initially no tool in the parallel mechanism.
  • the parallel device moves to place its main axis parallel to the axis of the linear guide, position (16).
  • the guide carriage is placed in the proper position to allow the movement of the rod (35) to insert this rod into the actuator (4).
  • the actuator (5) stops acting, so that when the carriage of the linear guide (25) moves up, the rod (35) leaves the actuator (5) and is controlled by the actuator (4).
  • the lower base of the parallel device is constructed with three pieces preferably made of Nylon or another type of low friction plastic, to achieve a spherical joint.
  • the cardan joints used are standard, while the actuators (1), (2) and (3) are preferably 80mm linear motors with a useful stroke and a minimum capacity of 2 Newtons.
  • the upper base is preferably constructed in methacrylate, and locates another actuator (4) of similar characteristics to the actuators (1), (2) and (3).
  • the stems (32 to 35) are the stems of the LM 1247 actuators, and the electronic interface and the surgical tool for minimally invasive surgery are added to the stem (35).
  • the wire muscles used to act the end of the surgical tool are desirably shaped memory alloy wires (27), these wires are placed inside the tube of the surgical tool and work with schemes of antagonistic muscles to act the end of the tool

Abstract

La presente invención consiste en un brazo telerobótico de, al menos, cuatro grados de libertad capaz de realizar los movimientos de las herramientas quirúrgicas en una operación de cirugía mínimamente invasiva. El brazo robótico está formado preferentemente por cinco actuadores, cuatro de ellos para ejecutar los 4 grados delibertad y adicional para controlar el intercambio de herramienta. Cada brazo tiene un 10 tamaño reducido, junto con una capacidad dinámica suficiente para la realización de las tareas quirúrgicas.

Description

BRAZO TELERROBOTICO DE CONFIGURACION PARALELA PARA APLICACIONES DE CIRUGIA MINIMA INVASIVA
La presente invención consiste en un brazo telerrobótico de, al menos, cuatro grados de libertad capaz de realizar los movimientos de las herramientas quirúrgicas en una operación de cirugía mínimamente invasiva. El brazo robótico está formado preferentemente por cinco actuadores, cuatro de ellos para ejecutar los 4 grados de libertad y 1 adicional para controlar el intercambio de herramienta. Cada brazo tiene un tamaño reducido, junto con una capacidad dinámica suficiente para la realización de las tareas quirúrgicas.
SECTOR TÉCNICO AL QUE SE REFIERE LA INVENCIÓN
El presente invento se refiere al campo de los sistemas quirúrgicos con asistencia robótica, robots quirúrgicos y sistemas automáticos para cirugía asistida por computador.
ANTECEDENTES DE LA INVENCIÓN
La cirugía mínima invasiva se caracteriza por la utilización de pequeñas incisiones menores de 10 mm de forma que los instrumentos penetran en el cuerpo atravesando dichas incisiones. En estos puntos de entrada se colocan los trocares, que son elementos que permiten el acceso de dichos instrumentos restringiendo la cinemática de operación a una articulación esférica más un grado de libertad de traslación a lo largo del eje de la herramienta quirúrgica. Los dispositivos robóticos se definen como intrínsecamente seguros porque su diseño mecánico se basa en dos requisitos, evitar colisiones entre sus elementos y evitar singularidades dentro del espacio de trabajo de la herramienta del robot. La solución más común es el uso del "remote center of motion" (RCM), que coloca el centro
HOJA DE REEMPLAZO (Regla 26) de rotación de la muñeca del robot en el trocar. De esta forma no se produce ninguna traslación de dicho punto, evitando que cualquier fallo en el control del robot provoque algún daño en el paciente.
Sobre esta idea, existen distintos sistemas robóticos como el denominado Bluedragon o el llamado WA-slave que colocan la intersección de los ejes de la muñeca sobre el punto trocar.
Actualmente, existen dispositivos robóticos más voluminosos, como el reivindicado con la patente US 5,855,583 conocido como "Method and apparatus form performing minimally" o la patente americana US 5,337,732 con título "Robotic Endoscopy" o incluso la patente americana "Automated endoscope system for optimal poistioning", no obstante, estos dispositivos son engorrosos y grandes y por tanto provocan problemas de ergonomía en el quirófano; sobre todo durante el cambio de herramienta, obligando a tener tiempos de preparación del robot y del paciente antes de la operación muy largos y generando problemas en la economía del quirófano.
También, se han generado dispositivos de pequeño tamaño, como el denominado MARS o el dispositivo de la Universidad de Hawaii o el llamado Light Endoscope-Holder Robot, no obstante, estos dispositivos poseen una capacidad muy pequeña para ejercer las fuerzas necesarias en algunos procedimientos quirúrgicos actuales, siendo difícilmente adaptables a determinadas realidades quirúrgicas.
Ante esta situación, la invención proporciona mejoras o innovaciones sobre los dispositivos existentes.
La presente invención posee una estructura cinemática PARALELA, que otorga rigidez y robustez al dispositivo, permitiendo ejercer fuerzas suficientes para la realización de las tareas quirúrgicas, a pesar del tamaño reducido del mismo. Asimismo, la presente invención incorpora un intercambiador de herramientas automático que permite el aporte de material a la zona quirúrgica de forma automática sin necesidad de la presencia de un cirujano en la sala y ahorrando una gran cantidad de tiempo sobre el actualmente utilizado cuando se quiere introducir un aposito al interior de la cavidad abdominal.
DESCRIPCIÓN DE LA INVENCIÓN La invención BRAZO TELEROBÓTICO de configuración paralela para aplicaciones de cirugía mínima invasiva, preferiblemente, de cuatro grados de libertad, capaz de realizar los movimientos de las herramientas quirúrgicas en una operación de cirugía mínimamente invasiva consiste preferentemente en tres elementos, a saber, un brazo posicionador pasivo (36) que posee principalmente una configuración serial en la que cada articulación (37) es pasiva y se encuentra sensorizada para conocer la posición final del elemento (21 ) pudiendo bloquearse para que las articulaciones permanezcan fijas durante la operación, y la cual se ancla en la camilla del quirófano y permite posicionar su extremo final (21 ) sobre el paciente; un intercambiador de herramientas constituido principalmente, por una guía lineal motorizada (25) colocada en el extremo final del brazo posicionador (36) guardando un ángulo preferentemente de 60° con el último eslabón del brazo (36), sobre la que desliza un carro que porta un actuador magnético sin vástago (5) para el intercambio de herramientas, el carro se posiciona de manera exacta a lo largo de la guía lineal, permitiendo el alineamiento de los actuadores magnéticos (4) y (5), con la finalidad de controlar el carro, la guía lineal se encuentra sensorizada con finales de carrera (1 1 ) y (12); y, por último, un mecanismo de configuración cinemática paralela, constituido, a su vez, por tres actuadores lineales con vástago (1 ), (2) y (3) que conforman una plataforma paralela. La base inferior (20) de esta plataforma es una articulación esférica formada por tres elementos (21 ), (22) y (23) cuyo centro de rotación (10) coincide con el orificio de entrada de la operación quirúrgica, aumentando la seguridad de este tipo de operaciones. La base superior (24) de esta plataforma se encuentra sujeta a los tres actuadores lineales (1 ), (2) y (3) que desplazándose sobre sus vástagos (32), (33) y (34) produce la rotación de esta plataforma superior.
Asimismo, la invención cuenta con una interíaz electrónica (28) ubicada en la intersección entre el vástago y el propio eje de la herramienta quirúrgica que permite el conexionado electrónico de los alambres de memoria de forma necesarios para el control de los grados de libertad necesarios en el extremo de la herramienta quirúrgica (26). Para ilustrar esto último, la figura 8 muestra una herramienta quirúrgica tipo pinza cuyo grado de libertad es el movimiento de abrir/cerrar pinza. Este movimiento se controla mediante los alambres y muelles de nitinol (27) ubicados en el propio eje de la herramienta y que se conectan eléctricamente en la interíaz (28).
En esta configuración, la invención permite utilizar varios brazos sin tener problemas de colisiones entre ellos, ya que la parte pasiva (el brazo posicionador pasivo) está estático, y el movimiento de la parte móvil queda restringido al espacio de trabajo visualizado en la figura 5. El esquema de teleoperación de este brazo permite su integración en un sistema bilateral de teleoperación, dado que es posible obtener el dato de fuerzas realizadas por el brazo robótico sobre la herramienta quirúrgica gracias a la lectura directa de la intensidad de los actuadores (1 ), (2), (3) y (4).
BREVE DESCRIPCIÓN DE LOS DIBUJOS
Figura 1 . Vista general del brazo telerobótico para aplicaciones de cirugía mínima invasiva.
Figura 2. Vista alzado del brazo telerobótico. Figura 3. Vista general de un sistema formado por dos brazos tele robóticos
Figura 4. Croquis en alzado del efector paralelo y el intercambiador de herramienta.
Figura 5. Croquis en alzado del espacio de trabajo del brazo teleoperador.
Figura 6. Vista detalle de la rótula esférica formada por tres piezas concéntricas
Figura 7. Vista isométrica y alzado del sistema intercambiador de herramienta.
Figura 8. Vista detalle de la interíaz electrónica para el control del extremo de la herramienta quirúrgica.
Figura 9. Esquema de control para la tele operación del brazo tele robótico. Leyenda de las figuras:
(1 ) actuador lineal 1 de la estructura paralela
(2) actuador lineal 2 de la estructura paralela
(3) actuador lineal 3 de la estructura paralela
(4) actuador lineal de la pata central para control de la herramienta
(5) actuador lineal para el intercambio de herramienta
(6) actuador eléctrico para control del carro portaherramientas
(10) punto de rotación e inserción de la herramienta en el paciente
(fulcrum)
(1 1 ) final de carrera del carro portaherramientas
(12) final de carrera del carro portaherramientas
(13) posición de la herramienta arriba
(14) posición de la herramienta abajo
(15) posición de intercambio de herramienta
(16) posición extrema del espacio de trabajo de la herramienta
(20) articulación esférica
(21 ) pieza base de la articulación esférica
(22) pieza intermedia de la articulación esférica (23) pieza superior de la articulación esférica
(24) base superior plataforma paralela
(25) guía lineal portaherramientas
(26) extremo final de una pinza quirúrgica
(27) muelle de compresión. Actuador SMA de Nitinol
(28) interfaz electrónica par control del actuador SMA de Nitinol
(32 a 34) vástagos de los motores (1 ),(2) y (3)
(35) vástago portaherramientas
(36) brazo posicionador pasivo para soporte
(37) articulaciones del brazo soporte pasivo
EXPOSICIÓN DETALLADA DE UN MODO DE REALIZACIÓN DE LA INVENCIÓN
Un modo de realización de la invención BRAZO TELEROBÓTICO DE CONFIGURACIÓN PARALELA es aquel en el que el brazo posicionador pasivo está formado preferentemente por 3 ó más eslabones de aluminio extrusionado. Las articulaciones (37) se montan sobre articulaciones que podrían ser del tipo cardan (hook) modificadas, de forma que se obtenga una gran amplitud de movimiento y la posibilidad de bloquear (frenar) dichas articulaciones pasivas. La guía lineal (25) se coloca en el alojamiento previsto para ello en una pieza (21 ), de forma que se consigue el ángulo pretendido para la colocación de la guía. La guía es preferentemente una guía monocarril ligera de carrera útil 150 mm, a la que se acopla un motor DC (6) para el control del carro lineal, este carro lineal se posiciona exactamente a lo largo de la guía lineal (25) y permite el alineamiento y acercamiento de los ejes de los actuadores (4) y (5). Sobre este carro se coloca un motor lineal. Para la inserción automática de una nueva herramienta, el actuador (4) se encuentra sin ningún vástago en su interior, y por tanto no hay inicialmente herramienta en el mecanismo paralelo. El dispositivo paralelo se desplaza hasta colocar su eje principal paralelo al eje de la guía lineal, posición (16). El carro de la guía se coloca en la posición adecuada para permitir que el movimiento del vástago (35) inserte este vástago en el actuador (4). Una vez el actuador (4) controla el vástago (35) y la herramienta quirúrgica, el actuador (5) deja de actuar, de forma que cuando el carro de la guía lineal (25) se desplace hacia arriba, el vástago (35) sale del actuador (5) y queda controlado por el actuador (4).
La base inferior del dispositivo paralelo se construye con tres piezas hechas preferiblemente en Nylon u otro tipo de plástico de baja fricción, para conseguir una articulación esférica. Las juntas cardan utilizadas son estándar, mientras que los actuadores (1 ), (2) y (3) son, preferiblemente motores lineales de 80mm de carrera útil y con una capacidad mínima de 2 Newtons. La base superior se construye preferiblemente en metracrilato, y ubica otro actuador (4) de características similares a los actuadores (1 ), (2) y (3). Los vástagos (32 a 35) son los vástagos de los actuadores LM 1247, y al vástago (35) se le añade en un extremo la interfaz electrónica y la herramienta quirúrgica para cirugía mínima invasiva.
Los músculos de alambre utilizados para actuar el extremo final de la herramienta quirúrgica son deseablemente alambres de aleaciones con memoria de forma (27), estos alambres se colocan en el interior del tubo de la herramienta quirúrgica y funcionan con esquemas de músculos antagonistas para poder accionar el extremo de la herramienta.

Claims

REIVINDICACIONES
1 . BRAZO TELEROBÓTICO de configuración paralela para 5 aplicaciones de cirugía mínima invasiva caracterizado por disponer de, al menos, cuatro grados de libertad, de los cuales, al menos, tres son movimientos de orientación y uno es el movimiento de traslación a lo largo del eje de una herramienta quirúrgica, así como de una interfaz mecánica que permite el intercambio de estas o herramientas de forma automática.
2. BRAZO TELEROBÓTICO de configuración paralela para aplicaciones de cirugía mínima invasiva según reivindicación 1 caracterizado porque el intercambiador automático de herramientas quirúrgicas se basa en el uso de dos motores lineales ((4) y (5)),5 uno de los cuales se sitúa en un carro motorizado instalado sobre una guía lineal, que permite el intercambio de herramientas quirúrgicas con un vástago magnético (34) en el extremo opuesto a la pinza quirúrgica. El otro motor controla la traslación de la herramienta quirúrgica durante la operación.
0 3. BRAZO TELEROBÓTICO de configuración paralela para aplicaciones de cirugía mínima invasiva, según las reivindicaciones 1 y 2, caracterizado porque los grados de libertad de orientación se disponen de forma que el punto de rotación de la herramienta quirúrgica coincide en todo momento con el orificio de entrada al 5 paciente, evitando de esa forma los posibles daños por desgarro del orificio de entrada.
4. BRAZO TELEROBÓTICO de configuración paralela para aplicaciones de cirugía mínima invasiva, según las reivindicaciones 1 , 2 y 3 caracterizado por disponer de una interfaz electrónica que 0 permite el control de grados de libertad adicionales que existan en el extremo de una herramienta quirúrgica motorizada. BRAZO TELEROBÓTICO de configuración paralela para aplicaciones de cirugía mínima invasiva, según las reivindicaciones 1 , 2, 3 y 4, caracterizado por disponer de una articulación esférica formada por tres piezas concéntricas cuyo centro de rotación coincide con el orificio de entrada en una operación de cirugía mínima invasiva.
BRAZO TELEROBÓTICO de configuración paralela para aplicaciones de cirugía mínima invasiva según las reivindicaciones 1 , 2, 3, 4 y 5, caracterizado por disponer de un sistema de control que evita el uso de sensores de fuerza o contacto intra-abdominales mediante la lectura de la intensidad de los actuadores lineales.
BRAZO TELEROBÓTICO de configuración paralela para aplicaciones de cirugía mínima invasiva, según las reivindicaciones 1 , 2, 3, 4, 5 y 6 caracterizado por formar parte de un sistema robótico constituido por DOS o MAS unidades robóticas y que permitan realizar operaciones de cirugía mínima invasiva, trabajando de forma cooperativa y evitando las colisiones entre los diferentes brazos.
PCT/ES2011/070522 2010-07-30 2011-07-15 Brazo telerrobótico de configuración paralela para aplicaciones de cirugia minima invasiva WO2012013846A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201001008 2010-07-30
ES201001008A ES2390436B1 (es) 2010-07-30 2010-07-30 Brazo telerrobotico de configuracion paralela para aplicaciones de cirugia minima invasiva

Publications (1)

Publication Number Publication Date
WO2012013846A1 true WO2012013846A1 (es) 2012-02-02

Family

ID=45529453

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070522 WO2012013846A1 (es) 2010-07-30 2011-07-15 Brazo telerrobótico de configuración paralela para aplicaciones de cirugia minima invasiva

Country Status (2)

Country Link
ES (1) ES2390436B1 (es)
WO (1) WO2012013846A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108742851A (zh) * 2018-07-02 2018-11-06 哈尔滨理工大学 一种高精度微创三轴内窥镜的结构设计

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021147267A1 (zh) * 2020-01-23 2021-07-29 诺创智能医疗科技(杭州)有限公司 手术机械臂及手术机器人

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020045905A1 (en) * 1998-12-08 2002-04-18 Gerbi Craig Richard Tool guide and method for introducing an end effector to a surgical site in minimally invasive surgery
US20050183532A1 (en) * 2004-02-25 2005-08-25 University Of Manitoba Hand controller and wrist device
US20070233052A1 (en) * 1998-02-24 2007-10-04 Hansen Medical, Inc. Interchangeable surgical instrument
WO2008070685A2 (en) * 2006-12-05 2008-06-12 Allegiance Corporation Instrument positioning/holding devices
EP2133036A1 (en) * 2007-03-30 2009-12-16 Osaka University Medical manipulator device and actuator suitable for the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070233052A1 (en) * 1998-02-24 2007-10-04 Hansen Medical, Inc. Interchangeable surgical instrument
US20020045905A1 (en) * 1998-12-08 2002-04-18 Gerbi Craig Richard Tool guide and method for introducing an end effector to a surgical site in minimally invasive surgery
US20050183532A1 (en) * 2004-02-25 2005-08-25 University Of Manitoba Hand controller and wrist device
WO2008070685A2 (en) * 2006-12-05 2008-06-12 Allegiance Corporation Instrument positioning/holding devices
EP2133036A1 (en) * 2007-03-30 2009-12-16 Osaka University Medical manipulator device and actuator suitable for the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SABATER, J. M. ET AL.: "A new spherical wrist for minimally invasive robotic surgery. ROBOTICS (ISR)", 2010 41ST INTERNATIONAL SYMPOSIUM ON AND 2010 6TH GERMAN CONFERENCE ON ROBOTICS (ROBOTIK), 7 June 2010 (2010-06-07) - 9 June 2010 (2010-06-09), pages 1 - 6 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108742851A (zh) * 2018-07-02 2018-11-06 哈尔滨理工大学 一种高精度微创三轴内窥镜的结构设计

Also Published As

Publication number Publication date
ES2390436A1 (es) 2012-11-13
ES2390436B1 (es) 2013-09-30

Similar Documents

Publication Publication Date Title
US11278364B2 (en) Surgical system entry guide
ES2388029B1 (es) Sistema robótico para cirugia laparoscópica.
ES2689093T3 (es) Sistema robótico médico con brazo manipulador del tipo de coordenadas cilíndricas
ES2898434T3 (es) Brazo quirúrgico
JP3686947B2 (ja) 能動鉗子用高剛性鉗子先端部構体およびそれを具える能動鉗子
EP3410974A1 (en) Surgical master-slave robot
TWI620548B (zh) Surgical system
PL237444B1 (pl) Robot hybrydowy
ES2390436B1 (es) Brazo telerrobotico de configuracion paralela para aplicaciones de cirugia minima invasiva
ES2695274T3 (es) Soporte de instrumento médico
LI et al. Structure Design and Workspace Analysis of Robotic Arm for Minimally Invasive Surgical Robot
WO2018236306A2 (en) SURGICAL ROBOT COMPRISING MOBILE ARMS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11811873

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11811873

Country of ref document: EP

Kind code of ref document: A1