WO2012002408A1 - Method for producing propylene oxide - Google Patents

Method for producing propylene oxide Download PDF

Info

Publication number
WO2012002408A1
WO2012002408A1 PCT/JP2011/064858 JP2011064858W WO2012002408A1 WO 2012002408 A1 WO2012002408 A1 WO 2012002408A1 JP 2011064858 W JP2011064858 W JP 2011064858W WO 2012002408 A1 WO2012002408 A1 WO 2012002408A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
sulfide
production method
noble metal
solvents
Prior art date
Application number
PCT/JP2011/064858
Other languages
French (fr)
Japanese (ja)
Inventor
史一 山下
水野 雅彦
Original Assignee
住友化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友化学株式会社 filed Critical 住友化学株式会社
Publication of WO2012002408A1 publication Critical patent/WO2012002408A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • C07D301/02Synthesis of the oxirane ring
    • C07D301/03Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds
    • C07D301/04Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen
    • C07D301/06Synthesis of the oxirane ring by oxidation of unsaturated compounds, or of mixtures of unsaturated and saturated compounds with air or molecular oxygen in the liquid phase
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/42Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing iron group metals, noble metals or copper
    • B01J29/44Noble metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • B01J31/0218Sulfides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/02Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
    • B01J31/0215Sulfur-containing compounds
    • B01J31/0222Sulfur-containing compounds comprising sulfonyl groups
    • B01J35/19
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/04Compounds containing oxirane rings containing only hydrogen and carbon atoms in addition to the ring oxygen atoms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/70Oxidation reactions, e.g. epoxidation, (di)hydroxylation, dehydrogenation and analogues
    • B01J2231/72Epoxidation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the present invention relates to a method for producing propylene oxide.
  • a palladium-treated TS-1 crystal catalyst is slurried with methanol / water, and liquid propylene and a mixed gas containing hydrogen, oxygen and nitrogen are fed into the slurry to produce propylene oxide. How to do is described.
  • the present invention [1] Noble metal catalyst, crystalline titanosilicate having MFI structure and formula (I): R 1 —S (O) n —R 2 (I) (In the formula, R 1 and R 2 each independently represent a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may have a substituent and contain a hetero atom. (N represents an integer of 0 to 2)
  • the production method according to [1], wherein the crystalline titanosilicate having an MFI structure is TS-1.
  • the present invention relates to a noble metal catalyst, a crystalline titanosilicate having an MFI structure and the formula (I): R 1 -S (O) n -R 2 (I)
  • n represents an integer of 0-2.
  • the organic sulfur compound represented by the formula (I) include a sulfide compound in which n is 0 in the formula (I), a sulfoxide compound in which n is 1 in the formula (I), and n in the formula (I) 2
  • the sulfone compound which is is mentioned.
  • R 1 And R 2 Each independently represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may have a substituent or may contain a hetero atom.
  • a hetero atom includes a nitrogen atom, an oxygen atom, and a sulfur atom.
  • the hydrocarbon group containing a hetero atom means a group in which a part of atoms or atomic groups constituting the hydrocarbon group is replaced with a hetero atom.
  • Examples of the unsubstituted hydrocarbon group include an unsubstituted alkyl group having 1 to 20 carbon atoms, an unsubstituted aryl group having 4 to 20 carbon atoms, and an unsubstituted alkenyl group having 2 to 20 carbon atoms.
  • Examples of the unsubstituted alkyl group having 1 to 20 carbon atoms include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl And linear or branched alkyl groups having 1 to 20 carbon atoms such as a group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group and icosyl group.
  • the methylene group contained in these alkyl groups may be replaced with a hetero atom.
  • C1-20 such as an alkyl group having 1 to 20 carbon atoms may be referred to as “C1-20”.
  • the aryl group may be a heteroaryl group containing a hetero atom such as a nitrogen atom, an oxygen atom, or a sulfur atom as a ring constituent atom.
  • Examples of the unsubstituted aryl group having 4 to 20 carbon atoms include phenyl group, biphenyl group, 1-naphthyl group, 2-naphthyl group, furanyl group and pyridyl group.
  • Examples of the unsubstituted alkenyl group having 2 to 20 carbon atoms include ethenyl group, 1-propenyl group, 2-propenyl group, 1-methylethenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group and 1-hexenyl group. , Heptenyl group, octenyl group, nonenyl group and decenyl group.
  • the methylene group contained in these alkenyl groups may be replaced with a hetero atom.
  • the hydrocarbon group having a substituent means a group in which one or more hydrogen atoms of an unsubstituted hydrocarbon group are replaced with a substituent.
  • An alkyl group having a substituent means a group in which one or more hydrogen atoms of an unsubstituted alkyl group is replaced with a substituent, and an aryl group having a substituent is one or more of an unsubstituted aryl group
  • a alkenyl group having a substituent means a group in which one or more hydrogen atoms of an unsubstituted alkenyl group are replaced with a substituent.
  • substituents include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxy group (—OH); methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy Group, octyloxy group, nonyloxy group, decyloxy group, undecyloxy group, dodecyloxy group, tridecyloxy group, tetradecyloxy group, pentadecyloxy group, hexadecyloxy group, heptadecyloxy group, octadecyloxy group, An alkoxy group having 1 to 20 carbon atoms such as nonadecyloxy group and icosyloxy group; an aryloxy group having 6 to 20 carbon atoms such as phenoxy group, biphenyloxy group, 1-naphthoxy group and 2-n
  • a sulfide compound in which n is 0 is represented by the formula (1) R 1 -S-R 2 (1) (Wherein R 1 And R 2 Represents the same meaning as described above. ) It is a compound shown by these.
  • the sulfide compound represented by the formula (1) dialkyl sulfide, alkylaryl sulfide, diaryl sulfide, and sulfide compounds in which the alkyl group and / or aryl group of these sulfide compounds have a substituent are preferable.
  • Di (C1-C20 alkyl) sulfide, (C1-C20 alkyl) (C6-C20 aryl) sulfide, di (C6-C20 aryl) sulfide, and the alkyl group and / or aryl group of these sulfide compounds have a substituent. More preferred are sulfide compounds, such as di (C1-C5 alkyl) sulfide, (C1-C5 alkyl) (C6-C10 aryl) sulfide, di (C6-C10 aryl) sulfide, and alkyl groups and / or aryls of these sulfide compounds.
  • a sulfide compound in which the group has a hydroxy group is particularly preferred.
  • the sulfide compound represented by the formula (1) include dimethyl sulfide, diethyl sulfide, dipropyl sulfide, isopropyl methyl sulfide, diisopropyl sulfide, dibutyl sulfide, tert-butyl methyl sulfide, di-tert-butyl sulfide, bis (methylthio) methane.
  • the sulfoxide compound in which n is 1 is represented by the formula (2) R 1 -S (O) -R 2 (2) (Wherein R 1 And R 2 Represents the same meaning as described above. ) It is a compound shown by these.
  • Examples of the sulfoxide compound represented by the formula (2) include dialkyl sulfoxide, alkylaryl sulfoxide, diaryl sulfoxide, and sulfoxide compounds in which the alkyl group and / or aryl group of these sulfoxide compounds have a substituent.
  • (C1-C20 alkyl) sulfoxide, (C1-C20 alkyl) (C6-C20 aryl) sulfoxide and di (C6-C20 aryl) sulfoxide are preferred, (C1-C5 alkyl) sulfoxide, (C1-C5 alkyl) (C6- C10 aryl) sulfoxide and di (C6-C10 aryl) sulfoxide are more preferred.
  • Examples of the sulfoxide compound represented by the formula (2) include dimethyl sulfoxide, diethyl sulfoxide, dipropyl sulfoxide, dibutyl sulfoxide, tetramethylene sulfoxide, diphenyl sulfoxide, methylphenyl sulfoxide, phenyl vinyl sulfoxide, dibenzyl sulfoxide, methyl (methylsulfinyl) methyl.
  • Examples include sulfide and 1,2-bis (phenylsulfinyl) ethane.
  • the sulfone compound in which n is 2 is represented by the formula (3) R 1 -S (O) 2 -R 2 (3) (Wherein R 1 And R 2 Represents the same meaning as described above. ) It is a compound shown by these.
  • the sulfone compound represented by formula (3) include dialkyl sulfone, alkylaryl sulfone, diaryl sulfone, cyclic sulfone having an alkylene structure, and sulfone compounds in which the alkyl group and / or aryl group of these sulfone compounds have a substituent. Can be mentioned.
  • Di (C1-C20 alkyl) sulfone, (C1-C20 alkyl) (C6-C20 aryl) sulfone and di (C6-C20 aryl) sulfone are preferred, and di (C1-C5 alkyl) sulfone, (C1-C5 alkyl) ( More preferred are C6-C10 aryl) sulfone and di (C6-C10 aryl) sulfone.
  • Examples of the sulfone compound represented by the formula (3) include dimethyl sulfone, ethyl methyl sulfone, isopropyl methyl sulfone, dipropyl sulfone, dibutyl sulfone, 2-hydroxymethyl ethyl sulfone, 3-sulfolene, divinyl sulfone, sulfolane, methyl phenyl sulfone, Ethylphenylsulfone, phenylvinylsulfone, diphenylsulfone, bis (vinylsulfonyl) methane, 4,4-dioxo-1,4-oxathiane, 3-methylsulfolane, methylsulfonylacetonitrile, 4-chlorophenylmethylsulfone, (phenylsulfonyl) acetic acid Examples include ethyl and allyl phenyl sulfone
  • dimethyl sulfone, diphenyl sulfone and sulfolane are preferable, and diphenyl sulfone is more preferable.
  • the organic sulfur compound represented by the formula (I) is dissolved in a solvent described later.
  • a method in which the organic sulfur compound represented by the formula (I) is supported on a noble metal catalyst described later and supplied.
  • the sulfide compound, the sulfoxide compound, or the compound converted into the sulfone compound by being oxidized with oxygen or reduced with hydrogen in the reaction system may be supplied into the reaction system.
  • the amount of the organic sulfur compound represented by formula (I) in the reaction of hydrogen, oxygen and propylene is usually in the range of 0.1 ⁇ mol / kg to 500 mmol / kg, preferably 1 ⁇ mol / kg to 1 kg of the solvent.
  • the range is 50 mmol / kg, and more preferably 1 ⁇ mol / kg to 5 mmol / kg.
  • the noble metal catalyst include catalysts containing noble metals such as palladium, platinum, ruthenium, rhodium, iridium, osmium, gold and the like.
  • the noble metal catalyst may contain one kind of noble metal or may contain two or more kinds of noble metals. An alloy or a mixture of two or more kinds of noble metals may be included.
  • a mixture of noble metals other than palladium such as platinum, gold, rhodium, iridium, osmium, and palladium, and other noble metals and palladium
  • noble metal at least one noble metal selected from the group consisting of palladium, platinum and gold is preferable, and palladium, a mixture of palladium and gold, and a mixture of palladium and platinum are more preferable.
  • a noble metal colloid such as a palladium colloid may be used as a noble metal catalyst.
  • noble metal colloids commercially available ones may be used, or those prepared by dispersing noble metal particles with a dispersing agent such as citric acid, polyvinyl alcohol, polyvinyl pyrrolidone, sodium hexametaphosphate or the like may be used.
  • a dispersing agent such as citric acid, polyvinyl alcohol, polyvinyl pyrrolidone, sodium hexametaphosphate or the like
  • a noble metal catalyst a catalyst in which a noble metal is supported on a carrier is preferably used.
  • Examples of the carrier include crystalline titanosilicate having an MFI structure, which will be described later, silica, alumina, titania, zirconia, niobia and other oxides; niobic acid, zirconium acid, tungstic acid, titanic acid and other hydroxides; and activated carbon , Carbon such as carbon black, graphite and carbon nanotubes. Two or more kinds of carriers may be used. Preferable carriers include crystalline titanosilicate having an MFI structure and carbon described later, and activated carbon is more preferable.
  • Examples of the compound containing a noble metal include tetravalent palladium compounds such as sodium hexachloropalladium (IV) tetrahydrate and potassium hexachloropalladium (IV); and palladium (II) chloride, palladium (II) bromide, acetic acid Palladium (II), palladium acetylacetonate (II), dichlorobis (benzonitrile) palladium (II), dichlorobis (acetonitrile) palladium (II), dichloro (bis (diphenylphosphino) ethane) palladium (II), dichlorobis (tri Phenylphosphine) palladium (II), dichlorotetraamminepalladium (II), dibromotetraamminepalladium (II), dichloro (cycloocta-1,5-diene) palladium (II), palladium trifluoroacetate Divalent palladium compound
  • the noble metal compound supported on the carrier is preferably reduced.
  • a method of reducing in a liquid phase or a gas phase using a reducing agent can be mentioned.
  • a reducing agent includes hydrogen.
  • a preferable reaction temperature (reduction temperature) in the gas phase reduction is in the range of 0 to 500 ° C.
  • the noble metal compound is supported on a carrier. Thereafter, heat treatment may be performed in an inert gas atmosphere.
  • the reduction temperature varies depending on the type of the noble metal compound.
  • the reduction temperature when dichlorotetraamminepalladium (II) is used as the noble metal compound is preferably in the range of 100 to 500 ° C., more preferably in the range of 200 to 350 ° C.
  • the reducing agent include hydrogen, hydrazine monohydrate, formaldehyde, and sodium borohydride.
  • reduction may be performed by adding an alkali.
  • the reaction conditions for the liquid phase reduction can be selected appropriately depending on the types of the noble metal compound and the carrier and the type and amount of the reducing agent used.
  • the content of the noble metal in the supported noble metal catalyst is usually in the range of 0.01 to 20% by mass, and preferably in the range of 0.1 to 10% by mass.
  • the amount of the noble metal catalyst used in the reaction of hydrogen, oxygen and propylene is preferably 0.00001 to 1% by mass, more preferably 0.0001 to 0.1% by mass, based on the solvent.
  • the organic sulfur compound represented by the formula (I) may be further supported on the noble metal catalyst supported on the support.
  • the noble metal catalyst on which the organic sulfur compound represented by the formula (I) is supported can be prepared, for example, according to the method described in Advanced Synthesis and Catalysis 350, 406-410 (2008).
  • the obtained solid is washed with alcohol and, if necessary, other organic solvents. Can be obtained.
  • the supported amount of the organic sulfur compound represented by the formula (I) is preferably in the range of 0.01 to 25% by mass in terms of sulfur atom. More preferably, it is in the range of 0.01 to 5% by mass.
  • the reaction of hydrogen, oxygen and propylene is carried out in the presence of a crystalline titanosilicate having an MFI structure in addition to the noble metal catalyst and the organic sulfur compound represented by the formula (I).
  • Titanosilicate is a general term for silicates having tetracoordinate Ti (titanium atoms), and has a porous structure.
  • the titanosilicate used in the production method of the present invention substantially means a titanosilicate having tetracoordinated Ti, and the ultraviolet-visible absorption spectrum in the wavelength region of 200 nm to 400 nm is maximum in the wavelength region of 210 nm to 230 nm. (See, for example, Chemical Communications 1026-1027, (2002) FIGS. 2D and 2E).
  • the ultraviolet-visible absorption spectrum can be measured by a diffuse reflection method using an ultraviolet-visible spectrophotometer equipped with a diffuse reflection device.
  • the crystalline titanosilicate having an MFI structure means a crystalline titanosilicate having an MFI structure as a structure code of IZA (International Zeolite Society), and specifically includes TS-1.
  • a general method for synthesizing crystalline titanosilicate having an MFI structure is to hydrolyze a titanium compound and a silicon compound using a surfactant as a mold agent or a structure-directing agent, and hydrothermal synthesis as necessary. In this method, the surfactant is removed by calcination or extraction after crystallization or pore regularity is improved.
  • a crystalline titanosilicate having a preferred MFI structure is TS-1.
  • a crystalline titanosilicate having an MFI structure activated by pretreatment with a hydrogen peroxide solution can also be used.
  • a method in which a hydrogen peroxide solution having a hydrogen peroxide concentration in the range of 0.0001% by mass to 50% by mass and a crystalline titanosilicate having an MFI structure are brought into contact is preferably a mixed solvent of water and an organic solvent.
  • the mass ratio of noble metal catalyst to crystalline titanosilicate having MFI structure in the reaction of hydrogen, oxygen and propylene is 0.01 to 100 mass. % Is preferable, and a range of 0.1 to 100% by mass is more preferable.
  • the reaction of hydrogen, oxygen and propylene is usually carried out in a solvent.
  • the solvent water, an organic solvent or a mixed solvent thereof is preferable.
  • the organic solvent include alcohol solvents, ketone solvents, nitrile solvents, ether solvents, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, halogenated hydrocarbon solvents, ester solvents, and glycol solvents, and alcohol solvents are preferable. Two or more organic solvents can be used in combination.
  • Alcohol solvents include linear or branched saturated aliphatic alcohols and aromatic alcohols.
  • alkyl alcohols having 1 to 4 carbon atoms such as methanol, ethanol, isopropanol, and tert-butanol
  • aryl alcohols having 6 to 10 carbon atoms preferably alkyl alcohols having 1 to 4 carbon atoms, More preferred.
  • the ketone solvent include aliphatic ketones having 3 to 6 carbon atoms such as acetone, 2-butanone, 3-methyl-2-butanone, and 3-pentanone, and acetophenone.
  • nitrile solvent include aliphatic nitriles having 2 to 4 carbon atoms such as acetonitrile, propionitrile, isobutyronitrile, butyronitrile, and benzonitrile.
  • ether solvent examples include alkyl ethers having 3 to 8 carbon atoms such as diethyl ether, diisopropyl ether, dimethoxymethane, trimethyl orthoformate, and anisole.
  • aliphatic hydrocarbon solvent examples include aliphatic hydrocarbon solvents having 5 to 10 carbon atoms such as hexane and heptane.
  • aromatic hydrocarbon solvent examples include aromatic hydrocarbon solvents having 6 to 15 carbon atoms such as benzene, toluene and xylene.
  • halogenated hydrocarbon solvent examples include halogenated aliphatic hydrocarbons having 1 to 4 carbon atoms such as dichloromethane, 1,2-dichloroethane, chloroform, and carbon tetrachloride.
  • ester solvent examples include carboxylic acid alkyl esters having 3 to 6 carbon atoms such as ethyl acetate, ethyl propionate, propyl acetate, and methyl isobutyrate.
  • glycol solvent examples include alkylene glycols having 2 to 4 carbon atoms such as ethylene glycol, propylene glycol, and diethylene glycol. Of these, a mixed solvent of water and an alcohol solvent is preferable.
  • the ratio of water and alcohol solvent (water: alcohol solvent) in the mixed solvent of water and alcohol is preferably in the range of 90:10 to 0.01: 99.99, and is in the range of 50:50 to 0.1: 99.9. The range is more preferable, and the range of 40:60 to 5:95 is particularly preferable. It is preferable to carry out the reaction in a state where the organic sulfur compound represented by the formula (I) is dissolved in a solvent.
  • oxygen include molecular oxygen such as oxygen gas.
  • the oxygen gas may be an oxygen gas produced by a pressure swing method, or may be a high-purity oxygen gas produced by cryogenic separation or the like. Moreover, air may be used as oxygen.
  • hydrogen hydrogen gas is generally used.
  • Oxygen gas and hydrogen gas can be diluted with an inert gas that does not hinder the progress of the reaction.
  • Inert gases include nitrogen, argon, carbon dioxide, methane, ethane and propane.
  • the flow rate of oxygen gas, the flow rate of hydrogen gas, and the concentration of the inert gas that dilutes these gases may be appropriately adjusted according to other conditions such as the amount of propylene used and the reaction scale.
  • propylene is preferably at a concentration of 0.01 to 1000 g with respect to 1 L of the solvent used for the reaction.
  • the reactor used for the reaction include a flow-type fixed bed reactor and a flow-type slurry complete mixing reactor.
  • the reaction temperature is usually in the range of 0 to 150 ° C., preferably in the range of 40 to 90 ° C.
  • the reaction pressure is a gauge pressure and is usually in the range of 0.1 MPa to 20 MPa, preferably in the range of 1 MPa to 10 MPa.
  • propylene oxide can be taken out by distillation separation of the liquid phase or gas phase taken out from the reactor.
  • the reaction it is preferable to carry out the reaction in the presence of an additive exhibiting an effect of suppressing the by-production of propane such as a polycyclic compound and a quinoid compound in the reaction system.
  • an additive exhibiting an effect of suppressing the by-production of propane such as a polycyclic compound and a quinoid compound in the reaction system.
  • the propylene oxide selectivity based on hydrogen hereinafter sometimes referred to as hydrogen-based selectivity
  • the additive include polycyclic compounds such as anthracene, tetracene, 9-methylanthracene, naphthalene, tetracene, and diphenyl ether (see, for example, JP-A-2009-23998), anthraquinone, and 9,10-phenanthraquinone.
  • Quinoid compounds such as benzoquinone and 2-ethylanthraquinone (for example, see JP-A-2008-106030).
  • condensed polycyclic aromatic compounds such as anthracene, tetracene, 9-methylanthracene, naphthalene, tetracene, anthraquinone, 9,10-phenanthraquinone, and 2-ethylanthraquinone are preferable, and anthraquinone is more preferable.
  • the amount of the additive used is preferably in the range of 0.001 mmol / kg to 500 mmol / kg, more preferably in the range of 0.01 mmol / kg to 50 mmol / kg per 1 kg of the solvent used in the reaction.
  • the reaction may be carried out in the presence of a salt containing ammonium ion, alkylammonium ion or alkylarylammonium ion (hereinafter, these salts may be referred to as “ammonium salt”) in the reaction system.
  • ammonium salt containing ammonium ion, alkylammonium ion or alkylarylammonium ion
  • ammonium salt ammonium sulfate salt, ammonium hydrogen sulfate salt, ammonium hydrogen carbonate salt, ammonium phosphate salt, ammonium hydrogen phosphate salt, ammonium dihydrogen phosphate, ammonium hydrogen pyrophosphate, ammonium pyrophosphate, ammonium halide
  • ammonium salts of inorganic acids such as salts and ammonium nitrate
  • ammonium salts of organic acids such as ammonium acetate.
  • diammonium hydrogen phosphate is preferable.
  • the amount of ammonium salt used is usually in the range of 0.001 mmol / kg to 100 mmol / kg per kg of the solvent used in the reaction.
  • the production method of the present invention is excellent in propylene oxide selectivity based on hydrogen (hydrogen-based selectivity). In addition, the amount of propylene oxide produced per hour per weight of the crystalline titanosilicate having an MFI structure is excellent.
  • the reaction mixture contains by-products such as unreacted propylene and propane in addition to the target propylene oxide, and the target propylene oxide is removed from the reaction mixture by known separation means and purification means. Can be separated.
  • separation means and purification means include distillation separation.
  • Example 1 The autoclave having a capacity of 0.3 L was charged with TS-1 (Catalyst Society Reference Catalyst, ARC-TS1AS (1)) and the Pd / AC catalyst obtained in Reference Example 1, and then the autoclave was sealed.
  • TS-1 Catalyst Society Reference Catalyst, ARC-TS1AS (1)
  • a raw material gas having a volume ratio of propylene / oxygen / hydrogen / nitrogen of 7.2 / 4.0 / 4.2 / 85.6 is supplied at an feeding rate of 20 L / hour and anthraquinone 0.07 mmol / kg.
  • a liquid phase and a gas phase were continuously extracted from the autoclave through a filter.
  • the residence time in the autoclave was 90 minutes.
  • the temperature of the mixture in the autoclave was adjusted to 60 ° C. and the pressure was adjusted to 0.8 MPa (gauge pressure).
  • the amount of TS-1 and Pd / AC catalyst used is adjusted so that the amount of TS-1 is 1.2g and the amount of Pd / AC catalyst is 0.08g with respect to 133g of solvent supplied in the autoclave. did.
  • the propylene oxide (PO) production activity per unit mass of titanosilicate was 5.2 mmol-PO / g-tita.
  • the S (sulfur) content in the Pd / AC catalyst determined by ICP emission analysis was 0.041% by mass.
  • 0.6 g of the obtained Pd / AC catalyst and 8 mL of a methanol solution containing 0.021 g of diphenyl sulfide were charged into a 10 mL two-necked eggplant flask. The resulting mixture was stirred at room temperature for 5 days under air atmosphere. The obtained suspension was filtered, washed with methanol and diethyl ether, and vacuum-dried at 50 ° C. for 2 hours to obtain diphenyl sulfide-containing Pd / AC catalyst (Pd / AC catalyst carrying diphenyl sulfide). .
  • Example 2 In Example 1, instead of a water / methanol solution containing 0.07 mmol / kg of anthraquinone and 5.4 ⁇ mol / kg of diphenyl sulfide, a water / methanol solution containing 0.07 mmol / kg of anthraquinone and not containing diphenyl sulfide was used.
  • the reaction was conducted in the same manner as in Example 1 except that the Pd / AC catalyst obtained in Reference Example 2 was used instead of the Pd / AC catalyst obtained in Reference Example 1.
  • the liquid phase and gas phase extracted from the autoclave 5 hours after the start of the reaction were analyzed by gas chromatography.
  • the propylene oxide (PO) production activity per unit mass of titanosilicate was 4.8 mmol-PO / g-titano. It was silicate and time, and the hydrogen standard selectivity (molar amount of propylene oxide produced / molar amount of hydrogen consumed) was 20%.
  • Example 1 In Example 1, instead of a water / methanol solution containing 0.07 mmol / kg of anthraquinone and 5.4 ⁇ mol / kg of diphenyl sulfide, a water / methanol solution containing 0.07 mmol / kg of anthraquinone without containing diphenyl sulfide was used. The reaction was performed in the same manner as in Example 1 except that. The liquid phase and gas phase extracted from the autoclave after 5 hours from the start of the reaction were analyzed by gas chromatography. As a result, the propylene oxide (PO) production activity per unit mass of titanosilicate was 4.4 mmol-PO / g-tita. It was no silicate and time, and the hydrogen standard selectivity was 18%.
  • PO propylene oxide

Abstract

Disclosed is a method for producing propylene oxide that comprises a process of reacting hydrogen, oxygen and propylene in the presence of a precious metal catalyst, crystalline titanosilicate with MFI structure and an organic sulfur compound represented by Formula (I): R1-S(O)n-R2 (I) (in the formula, R1 and R2 each independently represent C1 to C20 hydrocarbon groups and said hydrocarbon groups may have substituting groups or comprise heteroatoms. n represents an integer 0-2.)

Description

プロピレンオキサイドの製造方法Propylene oxide production method
 本発明は、プロピレンオキサイドの製造方法に関する。 The present invention relates to a method for producing propylene oxide.
 WO2004/026852には、パラジウム処理したTS−1結晶触媒を、メタノール/水でスラリー化し、該スラリーに、液体プロピレンと、水素、酸素および窒素を含む混合ガスとをフィードして、プロピレンオキサイドを製造する方法が記載されている。 In WO2004 / 026852, a palladium-treated TS-1 crystal catalyst is slurried with methanol / water, and liquid propylene and a mixed gas containing hydrogen, oxygen and nitrogen are fed into the slurry to produce propylene oxide. How to do is described.
 本発明は、
[1] 貴金属触媒、MFI構造を有する結晶性チタノシリケートおよび式(I):
 R−S(O)−R     (I)
(式中、RおよびRは、それぞれ独立に、炭素数1~20の炭化水素基を表わし、該炭化水素基は、置換基を有していてもよく、また、ヘテロ原子を含有していてもよい。nは0~2の整数を表わす。)
で示される有機硫黄化合物の存在下、水素、酸素およびプロピレンを反応させる工程を含むプロピレンオキサイドの製造方法;
[2] MFI構造を有する結晶性チタノシリケートが、TS−1である[1]に記載の製造方法;
[3] 有機硫黄化合物が、スルフィド化合物である[1]または[2]に記載の製造方法;
[4] スルフィド化合物が、ジアルキルスルフィド、アルキルアリールスルフィドまたはジアリールスルフィドである[3]に記載の製造方法;
[5] 水素、酸素およびプロピレンの反応を溶媒の存在下に行う[1]~[4]のいずれかに記載の製造方法;
[6] 有機硫黄化合物が溶媒に溶解している[5]に記載の製造方法;
[7] 溶媒が、アルコール溶媒、ケトン溶媒、ニトリル溶媒、エーテル溶媒、脂肪族炭化水素溶媒、芳香族炭化水素溶媒、ハロゲン化炭化水素溶媒、エステル溶媒、グリコール溶媒および水からなる群より選ばれる少なくとも1種である[5]または[6]に記載の製造方法;
[8] 溶媒が、メタノールと水との混合溶媒である[5]または[6]に記載の製造方法;
[9] 水素、酸素およびプロピレンの反応を、アントラキノンの存在下で行う[1]~[8]のいずれかに記載の製造方法;
[10]    貴金属触媒が、貴金属を担体に担持した触媒である[1]~[9]のいずれか記載の製造方法;
[11]    貴金属触媒が、パラジウム、白金、ルテニウム、ロジウム、イリジウム、オスミウムおよび金からなる群より選ばれる少なくとも1種の貴金属を含む触媒である[1]~[10]のいずれかに記載の製造方法;
[12]    担体が活性炭である[10]または[11]に記載の製造方法;
[13]    担体が、有機硫黄化合物が担持された担体である[10]~[12]のいずれかに記載の製造方法;等を提供するものである。
The present invention
[1] Noble metal catalyst, crystalline titanosilicate having MFI structure and formula (I):
R 1 —S (O) n —R 2 (I)
(In the formula, R 1 and R 2 each independently represent a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may have a substituent and contain a hetero atom. (N represents an integer of 0 to 2)
A process for producing propylene oxide, comprising a step of reacting hydrogen, oxygen and propylene in the presence of an organic sulfur compound represented by the formula:
[2] The production method according to [1], wherein the crystalline titanosilicate having an MFI structure is TS-1.
[3] The production method according to [1] or [2], wherein the organic sulfur compound is a sulfide compound;
[4] The production method according to [3], wherein the sulfide compound is dialkyl sulfide, alkylaryl sulfide, or diaryl sulfide;
[5] The production method according to any one of [1] to [4], wherein the reaction of hydrogen, oxygen, and propylene is performed in the presence of a solvent;
[6] The production method according to [5], wherein the organic sulfur compound is dissolved in a solvent;
[7] The solvent is at least selected from the group consisting of alcohol solvents, ketone solvents, nitrile solvents, ether solvents, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, halogenated hydrocarbon solvents, ester solvents, glycol solvents, and water. The production method according to [5] or [6], which is one type;
[8] The production method according to [5] or [6], wherein the solvent is a mixed solvent of methanol and water;
[9] The production method according to any one of [1] to [8], wherein the reaction of hydrogen, oxygen, and propylene is performed in the presence of anthraquinone;
[10] The production method according to any one of [1] to [9], wherein the noble metal catalyst is a catalyst having a noble metal supported on a support;
[11] The production according to any one of [1] to [10], wherein the noble metal catalyst is a catalyst containing at least one noble metal selected from the group consisting of palladium, platinum, ruthenium, rhodium, iridium, osmium and gold. Method;
[12] The production method according to [10] or [11], wherein the carrier is activated carbon;
[13] The production method according to any one of [10] to [12], wherein the carrier is a carrier on which an organic sulfur compound is supported.
 本発明は、貴金属触媒、MFI構造を有する結晶性チタノシリケートおよび式(I):
 R−S(O)−R      (I)
で示される有機硫黄化合物の存在下、水素、酸素およびプロピレンを反応させる工程を含むプロピレンオキサイドの製造方法である。
 式(I)中、nは0~2の整数を表わす。
 式(I)で示される有機硫黄化合物としては、式(I)において、nが0であるスルフィド化合物、式(I)において、nが1であるスルホキシド化合物および式(I)において、nが2であるスルホン化合物が挙げられる。
 式(I)で示される有機硫黄化合物は、1種のみを用いてもよいし、異なる二種以上を混合して用いてもよい。
 式(I)中、RおよびRは、それぞれ独立に、炭素数1~20の炭化水素基を表わし、該炭化水素基は、置換基を有していてもよく、また、ヘテロ原子を含有していてもよい。ヘテロ原子としては、窒素原子、酸素原子および硫黄原子が挙げられる。ヘテロ原子を含有する炭化水素基とは、該炭化水素基を構成する原子または原子団の一部がヘテロ原子に置き換わった基を意味する。
 無置換の炭化水素基としては、炭素数1~20の無置換アルキル基、炭素数4~20の無置換アリール基および炭素数2~20の無置換アルケニル基が挙げられる。
 炭素数1~20の無置換アルキル基としては、メチル基、エチル基、プロピル基、ブチル基、ペンチル基、ヘキシル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基、トリデシル基、テトラデシル基、ペンタデシル基、ヘキサデシル基、ヘプタデシル基、オクタデシル基、ノナデシル基およびイコシル基等の直鎖もしくは分岐を有する炭素数1~20のアルキル基が挙げられる。これらアルキル基に含まれるメチレン基は、ヘテロ原子に置き換わっていてもよい。
 なお、本明細書において、炭素数1~20のアルキル基などの「炭素数1~20」を「C1−20」と記すことがある。
 前記アリール基は、窒素原子、酸素原子、硫黄原子等のヘテロ原子を環構成原子として含むヘテロアリール基であってもよい。
 炭素数4~20の無置換アリール基としては、フェニル基、ビフェニル基、1−ナフチル基、2−ナフチル基、フラニル基およびピリジル基が挙げられる。
 炭素数2~20の無置換アルケニル基としては、エテニル基、1−プロペニル基、2−プロペニル基、1−メチルエテニル基、1−ブテニル基、2−ブテニル基、3−ブテニル基、1−ヘキセニル基、ヘプテニル基、オクテニル基、ノネニル基およびデセニル基が挙げられる。これらアルケニル基に含まれるメチレン基は、ヘテロ原子に置き換わっていてもよい。
 置換基を有する炭化水素基とは、無置換の炭化水素基の一つ以上の水素原子が置換基に置き換わった基を意味する。置換基を有するアルキル基とは、無置換のアルキル基の一つ以上の水素原子が置換基に置き換わった基を意味し、置換基を有するアリール基とは、無置換のアリール基の一つ以上の水素原子が置換基に置き換わった基を意味し、置換基を有するアルケニル基とは、無置換のアルケニル基の一つ以上の水素原子が置換基に置き換わった基を意味する。
 置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン原子;ヒドロキシ基(−OH);メトキシ基、エトキシ基、プロポキシ基、ブトキシ基、ペンチルオキシ基、ヘキシルオキシ基、ヘプチルオキシ基、オクチルオキシ基、ノニルオキシ基、デシルオキシ基、ウンデシルオキシ基、ドデシルオキシ基、トリデシルオキシ基、テトラデシルオキシ基、ペンタデシルオキシ基、ヘキサデシルオキシ基、ヘプタデシルオキシ基、オクタデシルオキシ基、ノナデシルオキシ基、イコシルオキシ基等の炭素数1~20のアルコキシ基;フェノキシ基、ビフェニルオキシ基、1−ナフトキシ基、2−ナフトキシ基等の炭素数6~20のアリールオキシ基;アミノ基(−NH)、メチルアミノ基、エチルアミノ基等のモノ(C1−20アルキル)アミノ基;ジメチルアミノ基、ジエチルアミノ基等のジ(C1−20アルキル)アミノ基;カルボキシ基(−COOH);メトキシカルボニル基、エトキシカルボニル基、プロポキシカルボニル基、ブトキシカルボニル基、ペンチルオキシカルボニル基、ヘキシルオキシカルボニル基、ヘプチルオキシカルボニル基、オクチルオキシカルボニル基、ノニルオキシカルボニル基、デシルオキシカルボニル基、ウンデシルオキシカルボニル基、ドデシルオキシカルボニル基、トリデシルオキシカルボニル基、テトラデシルオキシカルボニル基、ペンタデシルオキシカルボニル基、ヘキサデシルオキシカルボニル基、ヘプタデシルオキシカルボニル基、オクタデシルオキシカルボニル基、ノナデシルオキシカルボニル基、イコシルオキシカルボニル基等の炭素数2~21のアルコキシカルボニル基;フェノキシカルボニル基、ビフェニルオキシカルボニル基、1−ナフトキシカルボニル基、2−ナフトキシカルボニル基等の炭素数7~20のアリールオキシカルボニル基;アセチル基、プロピオニル基等の炭素数2~21のアルカノイル基;フェニルカルボニル基、ビフェニルカルボニル基、1−ナフチルカルボニル基、2−ナフチルカルボニル基等の炭素数7~20のアリールカルボニル基;ホルミル基(−CHO);メチルチオ基、エチルチオ基等の(C1−20アルキル)チオ基;フェニルチオ基等の(C6−20アリール)チオ基;メチルスルフィニル基、エチルスルフィニル基等の(C1−20アルキル)スルフィニル基;フェニルスルフィニル基等の(C6−20アリール)スルフィニル基;フェニルスルフェニル基等の(C6−20アリール)スルフェニル基;メチルスルホニル基、エチルスルホニル基等の(C1−20アルキル)スルホニル基およびフェニルスルホニル基等の(C6−20アリール)スルホニル基が挙げられる。
 式(I)において、nが0であるスルフィド化合物は、式(1)
 R−S−R    (1)
(式中、RおよびRは、前記と同じ意味を表す。)
で示される化合物である。
 式(1)で示されるスルフィド化合物としては、ジアルキルスルフィド、アルキルアリールスルフィド、ジアリールスルフィド、および、これらスルフィド化合物のアルキル基および/またはアリール基が置換基を有するスルフィド化合物が好ましい。ジ(C1−C20アルキル)スルフィド、(C1−C20アルキル)(C6−C20アリール)スルフィド、ジ(C6−C20アリール)スルフィド、および、これらスルフィド化合物のアルキル基および/またはアリール基が置換基を有するスルフィド化合物がより好ましく、ジ(C1−C5アルキル)スルフィド、(C1−C5アルキル)(C6−C10アリール)スルフィド、ジ(C6−C10アリール)スルフィド、および、これらスルフィド化合物のアルキル基および/またはアリール基がヒドロキシ基を有するスルフィド化合物が特に好ましい。
 式(1)で示されるスルフィド化合物としては、ジメチルスルフィド、ジエチルスルフィド、ジプロピルスルフィド、イソプロピルメチルスルフィド、ジイソプロピルスルフィド、ジブチルスルフィド、tert−ブチルメチルスルフィド、ジ−tert−ブチルスルフィド、ビス(メチルチオ)メタン、チオジグリコール、2−(エチルチオ)エタノール、2−(イソプロピルチオ)エタノール、2,2’−チオジエタノール、3,6−ジチア−1,8−オクタンジオール、チオモルホリン、エチルビニルスルフィド、テトラヒドロチオフェン、ジフェニルスルフィド、メチルフェニルスルフィド、4−メトキシチオアニソール、2−(フェニルチオ)エタノール、メトキシメチルフェニルスルフィド、ビス(4−ヒドロキシフェニル)スルフィド、ビス(4−アミノフェニル)スルフィド、ビス(2−アミノフェニル)スルフィド、ビス(フェニルチオ)メタン、チオキサントン、2−クロロチオキサントン、チアントレン、2−アミノフェニルフェニルスルフィド、4,4’−ジピリジルスルフィド、1,2−ビス(フェニルチオ)エタン、フェニルトリフルオロメチルスルフィド、フェニルビニルスルフィド、アリルフェニルスルフィド、2−(メチルチオ)アニリン、2−(メチルチオ)ピリジン、2−フルオロチオアニソール、2−クロロチオアニソール、2−ブロモチオアニソール、4−ブロモチオアニソール、4−(メチルチオ)ベンズアルデヒド、(フェニルチオ)アセトニトリル、2−メトキシチオアニソール、2−メチル−3−(メチルチオ)フランおよびチオ酢酸S−フェニルが挙げられる。
 なかでも、ジブチルスルフィド、2,2’−チオジエタノール、メチルフェニルスルフィドおよびジフェニルスルフィドが好ましく、メチルフェニルスルフィドおよびジフェニルスルフィドがより好ましい。
 式(I)において、nが1であるスルホキシド化合物は、式(2)
 R−S(O)−R    (2)
(式中、RおよびRは、前記と同じ意味を表す。)
で示される化合物である。
 式(2)で示されるスルホキシド化合物としては、ジアルキルスルホキシド、アルキルアリールスルホキシド、ジアリールスルホキシド、および、これらスルホキシド化合物のアルキル基および/またはアリール基が置換基を有するスルホキシド化合物が挙げられる。(C1−C20アルキル)スルホキシド、(C1−C20アルキル)(C6−C20アリール)スルホキシドおよびジ(C6−C20アリール)スルホキシドが好ましく、(C1−C5アルキル)スルホキシド、(C1−C5アルキル)(C6−C10アリール)スルホキシドおよびジ(C6−C10アリール)スルホキシドがより好ましい。
 式(2)で示されるスルホキシド化合物としては、ジメチルスルホキシド、ジエチルスルホキシド、ジプロピルスルホキシド、ジブチルスルホキシド、テトラメチレンスルホキシド、ジフェニルスルホキシド、メチルフェニルスルホキシド、フェニルビニルスルホキシド、ジベンジルスルホキシド、メチル(メチルスルフィニル)メチルスルフィドおよび1,2−ビス(フェニルスルフィニル)エタンが挙げられる。
 式(I)において、nが2であるスルホン化合物は、式(3)
 R−S(O)−R   (3)
(式中、RおよびRは、前記と同じ意味を表す。)
で示される化合物である。
 式(3)で示されるスルホン化合物としては、ジアルキルスルホン、アルキルアリールスルホン、ジアリールスルホン、アルキレン構造を有する環状スルホン、および、これらスルホン化合物のアルキル基および/またはアリール基が置換基を有するスルホン化合物が挙げられる。ジ(C1−C20アルキル)スルホン、(C1−C20アルキル)(C6−C20アリール)スルホンおよびジ(C6−C20アリール)スルホンが好ましく、ジ(C1−C5アルキル)スルホン、(C1−C5アルキル)(C6−C10アリール)スルホンおよびジ(C6−C10アリール)スルホンがより好ましい。
 式(3)で示されるスルホン化合物としては、ジメチルスルホン、エチルメチルスルホン、イソプロピルメチルスルホン、ジプロピルスルホン、ジブチルスルホン、2−ヒドロキシメチルエチルスルホン、3−スルホレン、ジビニルスルホン、スルホラン、メチルフェニルスルホン、エチルフェニルスルホン、フェニルビニルスルホン、ジフェニルスルホン、ビス(ビニルスルホニル)メタン、4,4−ジオキソ−1,4−オキサチアン、3−メチルスルホラン、メチルスルホニルアセトニトリル、4−クロロフェニルメチルスルホン、(フェニルスルホニル)酢酸エチルおよびアリルフェニルスルホンが挙げられる。なかでも、ジメチルスルホン、ジフェニルスルホンおよびスルホランが好ましく、ジフェニルスルホンがより好ましい。
 式(I)で示される有機硫黄化合物の水素と酸素とプロピレンとの反応の反応系内への供給方法としては、式(I)で示される有機硫黄化合物を、後述する溶媒に溶解させて得られる溶液として供給する方法、および、後述する貴金属触媒に、式(I)で示される有機硫黄化合物を担持させて、供給する方法が挙げられる。また、反応系内で酸素により酸化または水素により還元されることによって、前記スルフィド化合物、スルホキシド化合物またはスルホン化合物に変換される化合物を反応系内へ供給してもよい。
 水素と酸素とプロピレンとの反応における式(I)で示される有機硫黄化合物の使用量は、溶媒1kgあたり、通常、0.1μmol/kg~500mmol/kgの範囲であり、好ましくは1μmol/kg~50mmol/kgの範囲であり、より好ましくは1μmol/kg~5mmol/kgの範囲である。
 貴金属触媒としては、パラジウム、白金、ルテニウム、ロジウム、イリジウム、オスミウム、金等の貴金属を含む触媒が挙げられる。貴金属触媒は、1種類の貴金属を含んでいてもよいし、二種以上の貴金属を含んでいてもよい。二種以上の貴金属からなる合金または混合物を含んでいてもよく、具体的には、白金、金、ロジウム、イリジウム、オスミウム等のパラジウム以外の貴金属とパラジウムとの混合物、前記以外の貴金属とパラジウムとの合金が挙げられる。
 貴金属としては、パラジウム、白金および金からなる群より選ばれる少なくとも1種の貴金属が好ましく、パラジウム、パラジウムと金との混合物、および、パラジウムと白金との混合物がより好ましい。
 パラジウムコロイド等の貴金属コロイドを貴金属触媒として用いてもよい。かかる貴金属コロイドは、市販のものを使用してもよいし、貴金属粒子を、クエン酸、ポリビニルアルコール、ポリビニルピロリドン、ヘキサメタリン酸ナトリウム等の分散剤で分散させることにより調製したものを用いてもよい。
 貴金属触媒としては、好ましくは、担体に貴金属を担持した形態の触媒が用いられる。担体としては、後述するMFI構造を有する結晶性チタノシリケート、シリカ、アルミナ、チタニア、ジルコニアおよびニオビア等の酸化物;ニオブ酸、ジルコニウム酸、タングステン酸およびチタン酸等の水酸化物;および、活性炭、カーボンブラック、グラファイトおよびカーボンナノチューブ等の炭素が挙げられる。二種以上の担体を用いてもよい。
 好ましい担体としては、後述するMFI構造を有する結晶性チタノシリケートおよび炭素が挙げられ、活性炭がより好ましい。
 担体に貴金属を担持する方法としては、貴金属を含む化合物を溶媒に溶解することにより調製した溶液に担体を含浸した後、還元する方法、および、貴金属のコロイド溶液に担体を含浸した後、必要に応じて不活性ガス下で焼成する方法が挙げられる。
 貴金属を含む化合物としては、ヘキサクロロパラジウム(IV)酸ナトリウム四水和物、ヘキサクロロパラジウム(IV)酸カリウム等の4価のパラジウム化合物;および、塩化パラジウム(II)、臭化パラジウム(II)、酢酸パラジウム(II)、パラジウムアセチルアセトナート(II)、ジクロロビス(ベンゾニトリル)パラジウム(II)、ジクロロビス(アセトニトリル)パラジウム(II)、ジクロロ(ビス(ジフェニルホスフィノ)エタン)パラジウム(II)、ジクロロビス(トリフェニルホスフィン)パラジウム(II)、ジクロロテトラアンミンパラジウム(II)、ジブロモテトラアンミンパラジウム(II)、ジクロロ(シクロオクタ−1,5−ジエン)パラジウム(II)、パラジウムトリフルオロアセテート(II)等の2価パラジウム化合物が挙げられる。
 担体に担持された貴金属化合物は、還元することが好ましい。具体的には、還元剤を用いて、液相あるいは気相中で還元する方法が挙げられる。気相で還元する場合(気相還元)の還元剤としては、水素が挙げられる。気相還元の際の、好ましい反応温度(還元温度)は、0~500℃の範囲である。不活性ガス雰囲気下、熱分解時でアンモニアガスを発生する貴金属化合物を用いた場合は、発生するアンモニアガスを還元剤として用いることが可能であり、この場合には、貴金属化合物を担体に担持した後、不活性ガス雰囲気下で熱処理すればよい。還元温度は、貴金属化合物の種類によって異なり、例えば、貴金属化合物としてジクロロテトラアンミンパラジウム(II)を用いた場合の還元温度は、100~500℃の範囲が好ましく、200~350℃の範囲がより好ましい。
 液相で還元する場合(液相還元)の還元剤としては、水素、ヒドラジン1水和物、ホルムアルデヒドおよび水素化ホウ素ナトリウムが挙げられる。ヒドラジン1水和物やホルムアルデヒドを用いる場合は、アルカリを添加して還元を行ってもよい。液相還元の反応条件は、貴金属化合物および担体の種類、用いる還元剤の種類および量に応じて、適切な条件を選択することができる。
 担持貴金属触媒における貴金属の含有量は、通常、0.01~20質量%の範囲であり、0.1~10質量%の範囲が好ましい。
 水素と酸素とプロピレンとの反応における貴金属触媒の使用量は、溶媒に対して、0.00001~1質量%が好ましく、0.0001~0.1質量%がより好ましい。
 担体に担持された貴金属触媒を用いる場合、式(I)で示される有機硫黄化合物を、担体に担持された貴金属触媒にさらに担持してもよい。式(I)で示される有機硫黄化合物が担持された貴金属触媒は、例えば、Advanced Synthesis and Catalysis 350,406−410 (2008)に記載された方法に準じて調製することができる。具体的には、担体に担持された貴金属触媒と式(I)で示される有機硫黄化合物とを、アルコール中で攪拌した後、得られた固体をアルコールおよび必要に応じて他の有機溶媒で洗浄することにより得ることができる。式(I)で示される有機硫黄化合物が担持された貴金属触媒において、式(I)で示される有機硫黄化合物の担持量は、硫黄原子換算で、好ましくは0.01~25質量%の範囲であり、より好ましくは0.01~5質量%の範囲である。
 水素と酸素とプロピレンとの反応は、貴金属触媒および式(I)で示される有機硫黄化合物に加え、MFI構造を有する結晶性チタノシリケートの存在下に実施される。
 チタノシリケートとは、4配位Ti(チタン原子)を持つシリケートの総称であり、多孔構造を有する。本発明の製造方法において用いられるチタノシリケートは、実質的に4配位Tiを持つチタノシリケートを意味し、200nm~400nmの波長領域における紫外可視吸収スペクトルが、210nm~230nmの波長領域で最大の吸収ピークが現れるものを意味する(例えば、Chemical Communications 1026−1027,(2002) 図2(d)、(e)参照)。上記紫外可視吸収スペクトルは、拡散反射装置を備えた紫外可視分光光度計を用いて、拡散反射法により測定することができる。
 MFI構造を有する結晶性チタノシリケートとは、IZA(国際ゼオライト学会)の構造コードでMFI構造を有する結晶性チタノシリケートを意味し、具体的にはTS−1が挙げられる。
 MFI構造を有する結晶性チタノシリケートを合成する一般的な方法は、型剤あるいは構造規定剤として界面活性剤を用いて、チタン化合物とケイ素化合物とを加水分解させ、必要に応じて水熱合成等で結晶化あるいは細孔規則性を向上させた後、焼成あるいは抽出により界面活性剤を除去する方法である。
 好ましいMFI構造を有する結晶性チタノシリケートは、TS−1である。
 MFI構造を有する結晶性チタノシリケートを過酸化水素溶液で予め処理することにより活性化させたものを使用することもできる。具体的な処理方法としては、過酸化水素の濃度が0.0001質量%~50質量%の範囲の過酸化水素溶液とMFI構造を有する結晶性チタノシリケートとを接触させる方法が挙げられる。過酸化水素溶液の溶媒は、水と有機溶媒との混合溶媒が好ましい。
 水素と酸素とプロピレンとの反応におけるMFI構造を有する結晶性チタノシリケートに対する貴金属触媒の質量比(貴金属触媒の質量/MFI構造を有する結晶性チタノシリケートの質量)は、0.01~100質量%の範囲が好ましく、0.1~100質量%の範囲がより好ましい。
 水素と酸素とプロピレンとの反応は、通常溶媒中で実施される。溶媒としては、水、有機溶媒またはこれらの混合溶媒が好ましい。有機溶媒としては、アルコール溶媒、ケトン溶媒、ニトリル溶媒、エーテル溶媒、脂肪族炭化水素溶媒、芳香族炭化水素溶媒、ハロゲン化炭化水素溶媒、エステル溶媒およびグリコール溶媒が挙げられ、アルコール溶媒が好ましい。二種以上の有機溶媒を組み合わせて用いることができる。
 アルコール溶媒としては、直鎖または分岐鎖飽和脂肪族アルコールおよび芳香族アルコールが挙げられる。具体的には、メタノール、エタノール、イソプロパノール、tert−ブタノール等の炭素数1~4のアルキルアルコールおよび炭素数6~10のアリールアルコールが挙げられ、炭素数1~4のアルキルアルコールが好ましく、メタノールがより好ましい。
 ケトン溶媒としては、アセトン、2−ブタノン、3−メチル−2−ブタノン、3−ペンタノン等の炭素数3~6の脂肪族ケトンおよびアセトフェノンが挙げられる。
 ニトリル溶媒としては、アセトニトリル、プロピオニトリル、イソブチロニトリル、ブチロニトリル等の炭素数2~4の脂肪族ニトリルおよびベンゾニトリルが挙げられる。
 エーテル溶媒としては、ジエチルエーテル、ジイソプロピルエーテル、ジメトキシメタン、オルトギ酸トリメチル等の炭素数3~8のアルキルエーテルおよびアニソールが挙げられる。
 脂肪族炭化水素溶媒としては、ヘキサン、ヘプタン等の炭素数5~10の脂肪族炭化水素溶媒が挙げられる。
 芳香族炭化水素溶媒としては、ベンゼン、トルエン、キシレン等の炭素数6~15の芳香族炭化水素溶媒が挙げられる。
 ハロゲン化炭化水素溶媒としては、ジクロロメタン、1,2−ジクロロエタン、クロロホルム、四塩化炭素等の炭素数1~4のハロゲン化脂肪族炭化水素が挙げられる。
 エステル溶媒としては、酢酸エチル、プロピオン酸エチル、酢酸プロピル、イソ酪酸メチル等の炭素数3~6のカルボン酸アルキルエステルが挙げられる。
 グリコール溶媒としては、エチレングリコール、プロピレングリコール、ジエチレングリコール等の炭素数2~4のアルキレングリコールが挙げられる。
 なかでも、水とアルコール溶媒との混合溶媒が好ましい。水とアルコールとの混合溶媒における水とアルコール溶媒の比率(水:アルコール溶媒)は、90:10~0.01:99.99の範囲が好ましく、50:50~0.1:99.9の範囲がより好ましく、40:60~5:95の範囲が特に好ましい。
 式(I)で示される有機硫黄化合物が溶媒に溶解している状態で反応を実施することが好ましい。
 酸素としては、酸素ガス等の分子状酸素が挙げられる。酸素ガスは、圧力スウィング法で製造した酸素ガスであってもよいし、深冷分離等で製造した高純度酸素ガスであってもよい。また、酸素としては空気を用いてよい。
 水素としては、一般に、水素ガスが用いられる。
 酸素ガスおよび水素ガスは、反応の進行を妨げない不活性ガスで希釈して用いることもできる。不活性ガスとしては、窒素、アルゴン、二酸化炭素、メタン、エタンおよびプロパンが挙げられる。酸素ガスの流通量、水素ガスの流通量およびこれらガスを希釈する不活性ガスの濃度は、用いるプロピレンの物質量や反応スケール等の他の条件に応じて適宜調節すればよい。
 酸素と水素の分圧比は、通常、酸素:水素=1:50~50:1の範囲であり、好ましくは、1:5~5:1の範囲である。
 プロピレンの使用量は、酸素に対するモル比(=プロピレン:酸素)で表すと、通常、1:5~5:1の範囲である。反応を連続形式で行う場合、プロピレンは、反応に用いられる溶媒1Lに対して、0.01g~1000gの濃度であることが好ましい。
 反応に用いる反応器としては、流通式固定床反応器および流通式スラリー完全混合反応器が挙げられる。
 反応温度は、通常0~150℃の範囲であり、好ましくは40~90℃の範囲である。
 反応圧力は、ゲージ圧力で、通常0.1MPa~20MPaの範囲であり、好ましくは1MPa~10MPaの範囲である。
 反応終了後、反応器から取り出した液相もしくは気相を蒸留分離することによりプロピレンオキサイドを取り出すことができる。
 多環化合物、キノイド化合物等のプロパンの副生を抑制する効果を示す添加剤を反応系内に共存させて、反応を実施することが好ましい。添加剤を反応系内に共存させると、水素を基準とするプロピレンオキサイドの選択率(以下、水素基準選択率と記すことがある。)がさらに向上する傾向があることから好ましい。添加剤としては、アントラセン、テトラセン、9−メチルアントラセン、ナフタレン、テトラセン、ジフェニルエーテル等の多環化合物(例えば、特開2009−23998号公報参照。)、および、アントラキノン、9,10−フェナントラキノン、ベンゾキノン、2−エチルアントラキノン等のキノイド化合物(例えば、特開2008−106030号公報参照。)が挙げられる。なかでも、アントラセン、テトラセン、9−メチルアントラセン、ナフタレン、テトラセン、アントラキノン、9,10−フェナントラキノン、2−エチルアントラキノン等の縮合多環芳香族化合物が好ましく、アントラキノンがより好ましい。
 添加剤の使用量は、反応に用いられる溶媒1kgあたり、0.001mmol/kg~500mmol/kgの範囲が好ましく、0.01mmol/kg~50mmol/kgの範囲がより好ましい。
 アンモニウムイオン、アルキルアンモニウムイオンまたはアルキルアリールアンモニウムイオンを含む塩(以下、これらの塩を「アンモニウム塩」と記すことがある。)を反応系内に共存させて、反応を実施してもよい。アンモニウム塩を反応系内に共存させることにより、水素基準選択率がより向上する傾向がある。アンモニウム塩としては、硫酸アンモニウム塩、硫酸水素アンモニウム塩、炭酸水素アンモニウム塩、リン酸アンモニウム塩、リン酸水素アンモニウム塩、リン酸2水素アンモニウム塩、ピロリン酸水素アンモニウム塩、ピロリン酸アンモニウム塩、ハロゲン化アンモニウム塩、硝酸アンモニウム塩等の無機酸のアンモニウム塩、および、酢酸アンモニウム塩等の有機酸のアンモニウム塩が挙げられる。なかでも、リン酸水素2アンモニウム塩が好ましい。
 アンモニウム塩の使用量は、反応に用いられる溶媒1kgあたり、通常、0.001mmol/kg~100mmol/kgの範囲である。
 本発明の製造方法は、水素を基準とするプロピレンオキサイドの選択率(水素基準選択率)に優れる。また、MFI構造を有する結晶性チタノシリケート重量あたり、1時間あたりのプロピレンオキサイドの生成量も優れる。
 反応混合物には、目的物であるプロピレンオキサイドに加え、未反応のプロピレンやプロパン等の副生成物が含まれており、反応混合物から、公知の分離手段や精製手段により、目的とするプロピレンオキサイドを分離することができる。かかる分離手段や精製手段としては、蒸留分離が挙げられる。
The present invention relates to a noble metal catalyst, a crystalline titanosilicate having an MFI structure and the formula (I):
R 1 -S (O) n -R 2 (I)
A process for reacting hydrogen, oxygen and propylene in the presence of an organic sulfur compound represented by the formula:
In the formula (I), n represents an integer of 0-2.
Examples of the organic sulfur compound represented by the formula (I) include a sulfide compound in which n is 0 in the formula (I), a sulfoxide compound in which n is 1 in the formula (I), and n in the formula (I) 2 The sulfone compound which is is mentioned.
As the organic sulfur compound represented by the formula (I), only one kind may be used, or two or more different kinds may be mixed and used.
In formula (I), R 1 And R 2 Each independently represents a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may have a substituent or may contain a hetero atom. A hetero atom includes a nitrogen atom, an oxygen atom, and a sulfur atom. The hydrocarbon group containing a hetero atom means a group in which a part of atoms or atomic groups constituting the hydrocarbon group is replaced with a hetero atom.
Examples of the unsubstituted hydrocarbon group include an unsubstituted alkyl group having 1 to 20 carbon atoms, an unsubstituted aryl group having 4 to 20 carbon atoms, and an unsubstituted alkenyl group having 2 to 20 carbon atoms.
Examples of the unsubstituted alkyl group having 1 to 20 carbon atoms include methyl, ethyl, propyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl And linear or branched alkyl groups having 1 to 20 carbon atoms such as a group, tetradecyl group, pentadecyl group, hexadecyl group, heptadecyl group, octadecyl group, nonadecyl group and icosyl group. The methylene group contained in these alkyl groups may be replaced with a hetero atom.
In the present specification, “C1-20” such as an alkyl group having 1 to 20 carbon atoms may be referred to as “C1-20”.
The aryl group may be a heteroaryl group containing a hetero atom such as a nitrogen atom, an oxygen atom, or a sulfur atom as a ring constituent atom.
Examples of the unsubstituted aryl group having 4 to 20 carbon atoms include phenyl group, biphenyl group, 1-naphthyl group, 2-naphthyl group, furanyl group and pyridyl group.
Examples of the unsubstituted alkenyl group having 2 to 20 carbon atoms include ethenyl group, 1-propenyl group, 2-propenyl group, 1-methylethenyl group, 1-butenyl group, 2-butenyl group, 3-butenyl group and 1-hexenyl group. , Heptenyl group, octenyl group, nonenyl group and decenyl group. The methylene group contained in these alkenyl groups may be replaced with a hetero atom.
The hydrocarbon group having a substituent means a group in which one or more hydrogen atoms of an unsubstituted hydrocarbon group are replaced with a substituent. An alkyl group having a substituent means a group in which one or more hydrogen atoms of an unsubstituted alkyl group is replaced with a substituent, and an aryl group having a substituent is one or more of an unsubstituted aryl group And a alkenyl group having a substituent means a group in which one or more hydrogen atoms of an unsubstituted alkenyl group are replaced with a substituent.
Examples of the substituent include halogen atoms such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxy group (—OH); methoxy group, ethoxy group, propoxy group, butoxy group, pentyloxy group, hexyloxy group, heptyloxy Group, octyloxy group, nonyloxy group, decyloxy group, undecyloxy group, dodecyloxy group, tridecyloxy group, tetradecyloxy group, pentadecyloxy group, hexadecyloxy group, heptadecyloxy group, octadecyloxy group, An alkoxy group having 1 to 20 carbon atoms such as nonadecyloxy group and icosyloxy group; an aryloxy group having 6 to 20 carbon atoms such as phenoxy group, biphenyloxy group, 1-naphthoxy group and 2-naphthoxy group; amino group (—NH 2 ), Mono (C1-20 alkyl) amino groups such as methylamino group and ethylamino group; di (C1-20 alkyl) amino groups such as dimethylamino group and diethylamino group; carboxy group (—COOH); methoxycarbonyl group, Ethoxycarbonyl group, propoxycarbonyl group, butoxycarbonyl group, pentyloxycarbonyl group, hexyloxycarbonyl group, heptyloxycarbonyl group, octyloxycarbonyl group, nonyloxycarbonyl group, decyloxycarbonyl group, undecyloxycarbonyl group, dodecyloxy Carbonyl group, tridecyloxycarbonyl group, tetradecyloxycarbonyl group, pentadecyloxycarbonyl group, hexadecyloxycarbonyl group, heptadecyloxycarbonyl group, octadecyloxycarbonyl C2-C21 alkoxycarbonyl groups such as nyl group, nonadecyloxycarbonyl group, icosyloxycarbonyl group; phenoxycarbonyl group, biphenyloxycarbonyl group, 1-naphthoxycarbonyl group, 2-naphthoxycarbonyl group, etc. Aryloxycarbonyl group having 7 to 20 carbon atoms; alkanoyl group having 2 to 21 carbon atoms such as acetyl group and propionyl group; carbon numbers such as phenylcarbonyl group, biphenylcarbonyl group, 1-naphthylcarbonyl group and 2-naphthylcarbonyl group 7-20 arylcarbonyl groups; formyl group (—CHO); (C1-20 alkyl) thio group such as methylthio group and ethylthio group; (C6-20 aryl) thio group such as phenylthio group; methylsulfinyl group, ethylsulfinyl (C1-20 alkyl) sulfur such as a group Nyl group; (C6-20 aryl) sulfinyl group such as phenylsulfinyl group; (C6-20 aryl) sulfenyl group such as phenylsulfenyl group; (C1-20 alkyl) sulfonyl group such as methylsulfonyl group and ethylsulfonyl group And (C6-20 aryl) sulfonyl group such as phenylsulfonyl group.
In the formula (I), a sulfide compound in which n is 0 is represented by the formula (1)
R 1 -S-R 2 (1)
(Wherein R 1 And R 2 Represents the same meaning as described above. )
It is a compound shown by these.
As the sulfide compound represented by the formula (1), dialkyl sulfide, alkylaryl sulfide, diaryl sulfide, and sulfide compounds in which the alkyl group and / or aryl group of these sulfide compounds have a substituent are preferable. Di (C1-C20 alkyl) sulfide, (C1-C20 alkyl) (C6-C20 aryl) sulfide, di (C6-C20 aryl) sulfide, and the alkyl group and / or aryl group of these sulfide compounds have a substituent. More preferred are sulfide compounds, such as di (C1-C5 alkyl) sulfide, (C1-C5 alkyl) (C6-C10 aryl) sulfide, di (C6-C10 aryl) sulfide, and alkyl groups and / or aryls of these sulfide compounds. A sulfide compound in which the group has a hydroxy group is particularly preferred.
Examples of the sulfide compound represented by the formula (1) include dimethyl sulfide, diethyl sulfide, dipropyl sulfide, isopropyl methyl sulfide, diisopropyl sulfide, dibutyl sulfide, tert-butyl methyl sulfide, di-tert-butyl sulfide, bis (methylthio) methane. Thiodiglycol, 2- (ethylthio) ethanol, 2- (isopropylthio) ethanol, 2,2′-thiodiethanol, 3,6-dithia-1,8-octanediol, thiomorpholine, ethyl vinyl sulfide, tetrahydrothiophene , Diphenyl sulfide, methylphenyl sulfide, 4-methoxythioanisole, 2- (phenylthio) ethanol, methoxymethylphenyl sulfide, bis (4-hydroxyphenyl) sulfur Fido, bis (4-aminophenyl) sulfide, bis (2-aminophenyl) sulfide, bis (phenylthio) methane, thioxanthone, 2-chlorothioxanthone, thianthrene, 2-aminophenylphenyl sulfide, 4,4′-dipyridyl sulfide, 1,2-bis (phenylthio) ethane, phenyltrifluoromethyl sulfide, phenyl vinyl sulfide, allyl phenyl sulfide, 2- (methylthio) aniline, 2- (methylthio) pyridine, 2-fluorothioanisole, 2-chlorothioanisole, 2-bromothioanisole, 4-bromothioanisole, 4- (methylthio) benzaldehyde, (phenylthio) acetonitrile, 2-methoxythioanisole, 2-methyl-3- (methylthio) furan and thio S-phenyl acetate is mentioned.
Of these, dibutyl sulfide, 2,2′-thiodiethanol, methylphenyl sulfide and diphenyl sulfide are preferable, and methylphenyl sulfide and diphenyl sulfide are more preferable.
In the formula (I), the sulfoxide compound in which n is 1 is represented by the formula (2)
R 1 -S (O) -R 2 (2)
(Wherein R 1 And R 2 Represents the same meaning as described above. )
It is a compound shown by these.
Examples of the sulfoxide compound represented by the formula (2) include dialkyl sulfoxide, alkylaryl sulfoxide, diaryl sulfoxide, and sulfoxide compounds in which the alkyl group and / or aryl group of these sulfoxide compounds have a substituent. (C1-C20 alkyl) sulfoxide, (C1-C20 alkyl) (C6-C20 aryl) sulfoxide and di (C6-C20 aryl) sulfoxide are preferred, (C1-C5 alkyl) sulfoxide, (C1-C5 alkyl) (C6- C10 aryl) sulfoxide and di (C6-C10 aryl) sulfoxide are more preferred.
Examples of the sulfoxide compound represented by the formula (2) include dimethyl sulfoxide, diethyl sulfoxide, dipropyl sulfoxide, dibutyl sulfoxide, tetramethylene sulfoxide, diphenyl sulfoxide, methylphenyl sulfoxide, phenyl vinyl sulfoxide, dibenzyl sulfoxide, methyl (methylsulfinyl) methyl. Examples include sulfide and 1,2-bis (phenylsulfinyl) ethane.
In the formula (I), the sulfone compound in which n is 2 is represented by the formula (3)
R 1 -S (O) 2 -R 2 (3)
(Wherein R 1 And R 2 Represents the same meaning as described above. )
It is a compound shown by these.
Examples of the sulfone compound represented by formula (3) include dialkyl sulfone, alkylaryl sulfone, diaryl sulfone, cyclic sulfone having an alkylene structure, and sulfone compounds in which the alkyl group and / or aryl group of these sulfone compounds have a substituent. Can be mentioned. Di (C1-C20 alkyl) sulfone, (C1-C20 alkyl) (C6-C20 aryl) sulfone and di (C6-C20 aryl) sulfone are preferred, and di (C1-C5 alkyl) sulfone, (C1-C5 alkyl) ( More preferred are C6-C10 aryl) sulfone and di (C6-C10 aryl) sulfone.
Examples of the sulfone compound represented by the formula (3) include dimethyl sulfone, ethyl methyl sulfone, isopropyl methyl sulfone, dipropyl sulfone, dibutyl sulfone, 2-hydroxymethyl ethyl sulfone, 3-sulfolene, divinyl sulfone, sulfolane, methyl phenyl sulfone, Ethylphenylsulfone, phenylvinylsulfone, diphenylsulfone, bis (vinylsulfonyl) methane, 4,4-dioxo-1,4-oxathiane, 3-methylsulfolane, methylsulfonylacetonitrile, 4-chlorophenylmethylsulfone, (phenylsulfonyl) acetic acid Examples include ethyl and allyl phenyl sulfone. Of these, dimethyl sulfone, diphenyl sulfone and sulfolane are preferable, and diphenyl sulfone is more preferable.
As a method for supplying the organic sulfur compound represented by the formula (I) into the reaction system of the reaction of hydrogen, oxygen and propylene, the organic sulfur compound represented by the formula (I) is dissolved in a solvent described later. And a method in which the organic sulfur compound represented by the formula (I) is supported on a noble metal catalyst described later and supplied. In addition, the sulfide compound, the sulfoxide compound, or the compound converted into the sulfone compound by being oxidized with oxygen or reduced with hydrogen in the reaction system may be supplied into the reaction system.
The amount of the organic sulfur compound represented by formula (I) in the reaction of hydrogen, oxygen and propylene is usually in the range of 0.1 μmol / kg to 500 mmol / kg, preferably 1 μmol / kg to 1 kg of the solvent. The range is 50 mmol / kg, and more preferably 1 μmol / kg to 5 mmol / kg.
Examples of the noble metal catalyst include catalysts containing noble metals such as palladium, platinum, ruthenium, rhodium, iridium, osmium, gold and the like. The noble metal catalyst may contain one kind of noble metal or may contain two or more kinds of noble metals. An alloy or a mixture of two or more kinds of noble metals may be included. Specifically, a mixture of noble metals other than palladium, such as platinum, gold, rhodium, iridium, osmium, and palladium, and other noble metals and palladium These alloys are mentioned.
As the noble metal, at least one noble metal selected from the group consisting of palladium, platinum and gold is preferable, and palladium, a mixture of palladium and gold, and a mixture of palladium and platinum are more preferable.
A noble metal colloid such as a palladium colloid may be used as a noble metal catalyst. As such noble metal colloids, commercially available ones may be used, or those prepared by dispersing noble metal particles with a dispersing agent such as citric acid, polyvinyl alcohol, polyvinyl pyrrolidone, sodium hexametaphosphate or the like may be used.
As the noble metal catalyst, a catalyst in which a noble metal is supported on a carrier is preferably used. Examples of the carrier include crystalline titanosilicate having an MFI structure, which will be described later, silica, alumina, titania, zirconia, niobia and other oxides; niobic acid, zirconium acid, tungstic acid, titanic acid and other hydroxides; and activated carbon , Carbon such as carbon black, graphite and carbon nanotubes. Two or more kinds of carriers may be used.
Preferable carriers include crystalline titanosilicate having an MFI structure and carbon described later, and activated carbon is more preferable.
As a method of supporting the noble metal on the support, a method of impregnating the support with a solution prepared by dissolving a compound containing a noble metal in a solvent and then reducing, and after impregnating the support with a colloidal solution of the noble metal, it is necessary. Accordingly, a method of firing under an inert gas can be mentioned.
Examples of the compound containing a noble metal include tetravalent palladium compounds such as sodium hexachloropalladium (IV) tetrahydrate and potassium hexachloropalladium (IV); and palladium (II) chloride, palladium (II) bromide, acetic acid Palladium (II), palladium acetylacetonate (II), dichlorobis (benzonitrile) palladium (II), dichlorobis (acetonitrile) palladium (II), dichloro (bis (diphenylphosphino) ethane) palladium (II), dichlorobis (tri Phenylphosphine) palladium (II), dichlorotetraamminepalladium (II), dibromotetraamminepalladium (II), dichloro (cycloocta-1,5-diene) palladium (II), palladium trifluoroacetate Divalent palladium compound (II) and the like.
The noble metal compound supported on the carrier is preferably reduced. Specifically, a method of reducing in a liquid phase or a gas phase using a reducing agent can be mentioned. In the case of reducing in the gas phase (gas phase reduction), a reducing agent includes hydrogen. A preferable reaction temperature (reduction temperature) in the gas phase reduction is in the range of 0 to 500 ° C. When a noble metal compound that generates ammonia gas during pyrolysis under an inert gas atmosphere, it is possible to use the generated ammonia gas as a reducing agent. In this case, the noble metal compound is supported on a carrier. Thereafter, heat treatment may be performed in an inert gas atmosphere. The reduction temperature varies depending on the type of the noble metal compound. For example, the reduction temperature when dichlorotetraamminepalladium (II) is used as the noble metal compound is preferably in the range of 100 to 500 ° C., more preferably in the range of 200 to 350 ° C.
When reducing in the liquid phase (liquid phase reduction), examples of the reducing agent include hydrogen, hydrazine monohydrate, formaldehyde, and sodium borohydride. When hydrazine monohydrate or formaldehyde is used, reduction may be performed by adding an alkali. The reaction conditions for the liquid phase reduction can be selected appropriately depending on the types of the noble metal compound and the carrier and the type and amount of the reducing agent used.
The content of the noble metal in the supported noble metal catalyst is usually in the range of 0.01 to 20% by mass, and preferably in the range of 0.1 to 10% by mass.
The amount of the noble metal catalyst used in the reaction of hydrogen, oxygen and propylene is preferably 0.00001 to 1% by mass, more preferably 0.0001 to 0.1% by mass, based on the solvent.
When the noble metal catalyst supported on the support is used, the organic sulfur compound represented by the formula (I) may be further supported on the noble metal catalyst supported on the support. The noble metal catalyst on which the organic sulfur compound represented by the formula (I) is supported can be prepared, for example, according to the method described in Advanced Synthesis and Catalysis 350, 406-410 (2008). Specifically, after stirring the noble metal catalyst supported on the carrier and the organic sulfur compound represented by the formula (I) in alcohol, the obtained solid is washed with alcohol and, if necessary, other organic solvents. Can be obtained. In the noble metal catalyst on which the organic sulfur compound represented by the formula (I) is supported, the supported amount of the organic sulfur compound represented by the formula (I) is preferably in the range of 0.01 to 25% by mass in terms of sulfur atom. More preferably, it is in the range of 0.01 to 5% by mass.
The reaction of hydrogen, oxygen and propylene is carried out in the presence of a crystalline titanosilicate having an MFI structure in addition to the noble metal catalyst and the organic sulfur compound represented by the formula (I).
Titanosilicate is a general term for silicates having tetracoordinate Ti (titanium atoms), and has a porous structure. The titanosilicate used in the production method of the present invention substantially means a titanosilicate having tetracoordinated Ti, and the ultraviolet-visible absorption spectrum in the wavelength region of 200 nm to 400 nm is maximum in the wavelength region of 210 nm to 230 nm. (See, for example, Chemical Communications 1026-1027, (2002) FIGS. 2D and 2E). The ultraviolet-visible absorption spectrum can be measured by a diffuse reflection method using an ultraviolet-visible spectrophotometer equipped with a diffuse reflection device.
The crystalline titanosilicate having an MFI structure means a crystalline titanosilicate having an MFI structure as a structure code of IZA (International Zeolite Society), and specifically includes TS-1.
A general method for synthesizing crystalline titanosilicate having an MFI structure is to hydrolyze a titanium compound and a silicon compound using a surfactant as a mold agent or a structure-directing agent, and hydrothermal synthesis as necessary. In this method, the surfactant is removed by calcination or extraction after crystallization or pore regularity is improved.
A crystalline titanosilicate having a preferred MFI structure is TS-1.
A crystalline titanosilicate having an MFI structure activated by pretreatment with a hydrogen peroxide solution can also be used. As a specific treatment method, a method in which a hydrogen peroxide solution having a hydrogen peroxide concentration in the range of 0.0001% by mass to 50% by mass and a crystalline titanosilicate having an MFI structure are brought into contact. The solvent of the hydrogen peroxide solution is preferably a mixed solvent of water and an organic solvent.
The mass ratio of noble metal catalyst to crystalline titanosilicate having MFI structure in the reaction of hydrogen, oxygen and propylene (mass of noble metal catalyst / mass of crystalline titanosilicate having MFI structure) is 0.01 to 100 mass. % Is preferable, and a range of 0.1 to 100% by mass is more preferable.
The reaction of hydrogen, oxygen and propylene is usually carried out in a solvent. As the solvent, water, an organic solvent or a mixed solvent thereof is preferable. Examples of the organic solvent include alcohol solvents, ketone solvents, nitrile solvents, ether solvents, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, halogenated hydrocarbon solvents, ester solvents, and glycol solvents, and alcohol solvents are preferable. Two or more organic solvents can be used in combination.
Alcohol solvents include linear or branched saturated aliphatic alcohols and aromatic alcohols. Specific examples include alkyl alcohols having 1 to 4 carbon atoms such as methanol, ethanol, isopropanol, and tert-butanol, and aryl alcohols having 6 to 10 carbon atoms, preferably alkyl alcohols having 1 to 4 carbon atoms, More preferred.
Examples of the ketone solvent include aliphatic ketones having 3 to 6 carbon atoms such as acetone, 2-butanone, 3-methyl-2-butanone, and 3-pentanone, and acetophenone.
Examples of the nitrile solvent include aliphatic nitriles having 2 to 4 carbon atoms such as acetonitrile, propionitrile, isobutyronitrile, butyronitrile, and benzonitrile.
Examples of the ether solvent include alkyl ethers having 3 to 8 carbon atoms such as diethyl ether, diisopropyl ether, dimethoxymethane, trimethyl orthoformate, and anisole.
Examples of the aliphatic hydrocarbon solvent include aliphatic hydrocarbon solvents having 5 to 10 carbon atoms such as hexane and heptane.
Examples of the aromatic hydrocarbon solvent include aromatic hydrocarbon solvents having 6 to 15 carbon atoms such as benzene, toluene and xylene.
Examples of the halogenated hydrocarbon solvent include halogenated aliphatic hydrocarbons having 1 to 4 carbon atoms such as dichloromethane, 1,2-dichloroethane, chloroform, and carbon tetrachloride.
Examples of the ester solvent include carboxylic acid alkyl esters having 3 to 6 carbon atoms such as ethyl acetate, ethyl propionate, propyl acetate, and methyl isobutyrate.
Examples of the glycol solvent include alkylene glycols having 2 to 4 carbon atoms such as ethylene glycol, propylene glycol, and diethylene glycol.
Of these, a mixed solvent of water and an alcohol solvent is preferable. The ratio of water and alcohol solvent (water: alcohol solvent) in the mixed solvent of water and alcohol is preferably in the range of 90:10 to 0.01: 99.99, and is in the range of 50:50 to 0.1: 99.9. The range is more preferable, and the range of 40:60 to 5:95 is particularly preferable.
It is preferable to carry out the reaction in a state where the organic sulfur compound represented by the formula (I) is dissolved in a solvent.
Examples of oxygen include molecular oxygen such as oxygen gas. The oxygen gas may be an oxygen gas produced by a pressure swing method, or may be a high-purity oxygen gas produced by cryogenic separation or the like. Moreover, air may be used as oxygen.
As hydrogen, hydrogen gas is generally used.
Oxygen gas and hydrogen gas can be diluted with an inert gas that does not hinder the progress of the reaction. Inert gases include nitrogen, argon, carbon dioxide, methane, ethane and propane. The flow rate of oxygen gas, the flow rate of hydrogen gas, and the concentration of the inert gas that dilutes these gases may be appropriately adjusted according to other conditions such as the amount of propylene used and the reaction scale.
The partial pressure ratio of oxygen and hydrogen is usually in the range of oxygen: hydrogen = 1: 50 to 50: 1, and preferably in the range of 1: 5 to 5: 1.
The amount of propylene used is usually in the range of 1: 5 to 5: 1 when expressed as a molar ratio to oxygen (= propylene: oxygen). When the reaction is carried out in a continuous manner, propylene is preferably at a concentration of 0.01 to 1000 g with respect to 1 L of the solvent used for the reaction.
Examples of the reactor used for the reaction include a flow-type fixed bed reactor and a flow-type slurry complete mixing reactor.
The reaction temperature is usually in the range of 0 to 150 ° C., preferably in the range of 40 to 90 ° C.
The reaction pressure is a gauge pressure and is usually in the range of 0.1 MPa to 20 MPa, preferably in the range of 1 MPa to 10 MPa.
After completion of the reaction, propylene oxide can be taken out by distillation separation of the liquid phase or gas phase taken out from the reactor.
It is preferable to carry out the reaction in the presence of an additive exhibiting an effect of suppressing the by-production of propane such as a polycyclic compound and a quinoid compound in the reaction system. When the additive is allowed to coexist in the reaction system, the propylene oxide selectivity based on hydrogen (hereinafter sometimes referred to as hydrogen-based selectivity) tends to be further improved, which is preferable. Examples of the additive include polycyclic compounds such as anthracene, tetracene, 9-methylanthracene, naphthalene, tetracene, and diphenyl ether (see, for example, JP-A-2009-23998), anthraquinone, and 9,10-phenanthraquinone. Quinoid compounds such as benzoquinone and 2-ethylanthraquinone (for example, see JP-A-2008-106030). Of these, condensed polycyclic aromatic compounds such as anthracene, tetracene, 9-methylanthracene, naphthalene, tetracene, anthraquinone, 9,10-phenanthraquinone, and 2-ethylanthraquinone are preferable, and anthraquinone is more preferable.
The amount of the additive used is preferably in the range of 0.001 mmol / kg to 500 mmol / kg, more preferably in the range of 0.01 mmol / kg to 50 mmol / kg per 1 kg of the solvent used in the reaction.
The reaction may be carried out in the presence of a salt containing ammonium ion, alkylammonium ion or alkylarylammonium ion (hereinafter, these salts may be referred to as “ammonium salt”) in the reaction system. By making an ammonium salt coexist in the reaction system, the hydrogen-based selectivity tends to be further improved. As ammonium salt, ammonium sulfate salt, ammonium hydrogen sulfate salt, ammonium hydrogen carbonate salt, ammonium phosphate salt, ammonium hydrogen phosphate salt, ammonium dihydrogen phosphate, ammonium hydrogen pyrophosphate, ammonium pyrophosphate, ammonium halide Examples thereof include ammonium salts of inorganic acids such as salts and ammonium nitrate, and ammonium salts of organic acids such as ammonium acetate. Of these, diammonium hydrogen phosphate is preferable.
The amount of ammonium salt used is usually in the range of 0.001 mmol / kg to 100 mmol / kg per kg of the solvent used in the reaction.
The production method of the present invention is excellent in propylene oxide selectivity based on hydrogen (hydrogen-based selectivity). In addition, the amount of propylene oxide produced per hour per weight of the crystalline titanosilicate having an MFI structure is excellent.
The reaction mixture contains by-products such as unreacted propylene and propane in addition to the target propylene oxide, and the target propylene oxide is removed from the reaction mixture by known separation means and purification means. Can be separated. Such separation means and purification means include distillation separation.
 以下、実施例により、本発明を具体的に説明するが、本発明はこれら実施例に限定されない、
[参考例1:貴金属触媒(Pd/活性炭(AC)触媒)の調製]
 2Lの水で予め洗浄した活性炭(和光純薬製)6gと、水300mLとを、1Lナスフラスコ中に仕込んだ。得られた混合物を、空気雰囲気下、室温で撹拌した。攪拌後の懸濁液に、パラジウム(Pd)コロイド0.60mmolを含む水分散液100mLを、空気雰囲気下、室温でゆっくり滴下した。滴下終了後、得られた懸濁液を、空気雰囲気下、室温で8時間撹拌した。攪拌終了後、ロータリーエバポレータで水を除去し、80℃で6時間真空乾燥し、さらに、窒素雰囲気下、300℃で6時間焼成して、Pd/AC触媒を得た。ICP発光分析により求めたPd/AC触媒中のPd含量は、0.95質量%であった。
[実施例1]
 容量0.3Lのオートクレーブに、TS−1(触媒学会参照触媒、ARC−TS1AS(1))および参考例1で得られたPd/AC触媒を仕込んだ後、オートクレーブを密閉した。オートクレーブ中に、プロピレン/酸素/水素/窒素の体積比が7.2/4.0/4.2/85.6である原料ガスを、20L/時間の供給速度で、アントラキノン0.07mmol/kgおよびジフェニルスルフィド5.4μmol/kgを含む水/メタノール溶液(水/メタノール=20/80(質量比))を、108mL/時間の供給速度で、それぞれ供給し、反応を行った。オートクレーブから、フィルターを介して液相および気相を連続的に抜き出した。オートクレーブ中の滞留時間は90分間であった。この間、オートクレーブ中の混合物の温度は60℃、圧力は0.8MPa(ゲージ圧)に調整した。
 オートクレーブ内に供給された溶媒133gに対して、TS−1の量が1.2g、Pd/AC触媒の量が0.08gとなるように、TS−1およびPd/AC触媒の使用量を調節した。
 反応開始から5時間後にオートクレーブから抜き出した液相および気相を、ガスクロマトグラフィーにより分析した結果、チタノシリケート単位質量あたりのプロピレンオキサイド(PO)生成活性は、5.2mmol−PO/g−チタノシリケート・時間であり、水素基準選択率(生成したプロピレンオキサイドのモル量/消費した水素のモル量)は25%であった。
[参考例2:貴金属触媒(ジフェニルスルフィド含有Pd/AC触媒)の調製]
 予め10Lの熱水(100℃)で洗浄した活性炭(和光純薬製)20gを、150℃、窒素気流下で6時間乾燥させた。乾燥後の活性炭6gと水1Lとを、1Lナスフラスコ中に仕込んだ。得られた混合物を、空気雰囲気下、室温(約20℃)で撹拌した。攪拌後の懸濁液に、パラジウム(Pd)コロイド0.60mmolを含む水分散液100mLを、空気雰囲気下、室温でゆっくり滴下した。滴下終了後、さらに懸濁液を、空気雰囲気下、室温で8時間撹拌した。攪拌終了後、ロータリーエバポレータで水を除去し、80℃で6時間真空乾燥させて、黒色粉末を得た。
 得られた黒色粉末を、水2Lで洗浄し、さらに、熱水(100℃)3Lで洗浄した後、150℃で、窒素気流下、6時間乾燥させて、Pd/AC触媒を得た。ICP発光分析により求めたPd/AC触媒中のS(硫黄)含量は、0.041質量%であった。
 得られたPd/AC触媒0.6gと、ジフェニルスルフィド0.021gを含むメタノール溶液8mLとを、10mL二ツ口ナスフラスコ中に仕込んだ。得られた混合物を、空気雰囲気下、室温で5日間攪拌した。得られた懸濁液をろ過した後、メタノールおよびジエチルエーテルで洗浄し、50℃で2時間真空乾燥し、ジフェニルスルフィド含有Pd/AC触媒(ジフェニルスルフィドが担持されたPd/AC触媒)を得た。ICP発光分析の結果、得られたジフェニルスルフィド含有Pd/AC触媒中のPd含量は1.06質量%であり、S(硫黄)含量は0.067質量%であることが分かった。
[実施例2]
 実施例1において、アントラキノン0.07mmol/kgおよびジフェニルスルフィド5.4μmol/kgを含む水/メタノール溶液に代えて、ジフェニルスルフィドを含まず、アントラキノン0.07mmol/kgを含む水/メタノール溶液を用い、参考例1で得られたPd/AC触媒に代えて、参考例2で得られたジフェニルスルフィド含有Pd/AC触媒を用いた以外は実施例1と同様に反応を行った。
 反応開始から5時間後にオートクレーブから抜き出した液相および気相を、ガスクロマトグラフィーにより分析した結果、チタノシリケート単位質量あたりのプロピレンオキサイド(PO)生成活性は4.8mmol−PO/g−チタノシリケート・時間であり、水素基準選択率(生成したプロピレンオキサイドのモル量/消費した水素のモル量)は20%であった。
[比較例1]
 実施例1において、アントラキノン0.07mmol/kgおよびジフェニルスルフィド5.4μmol/kgを含む水/メタノール溶液に代えて、ジフェニルスルフィドを含まず、アントラキノン0.07mmol/kgを含む水/メタノール溶液を用いた以外は実施例1と同様に反応を行った。
 反応開始から5時間後にオートクレーブから抜き出した液相および気相を、ガスクロマトグラフィーにより分析した結果、チタノシリケート単位質量あたりのプロピレンオキサイド(PO)生成活性は、4.4mmol−PO/g−チタノシリケート・時間であり、水素基準選択率は18%であった。
Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited to these examples.
[Reference Example 1: Preparation of noble metal catalyst (Pd / activated carbon (AC) catalyst)]
6 g of activated carbon (manufactured by Wako Pure Chemical Industries) previously washed with 2 L of water and 300 mL of water were charged into a 1 L eggplant flask. The resulting mixture was stirred at room temperature under an air atmosphere. To the suspension after stirring, 100 mL of an aqueous dispersion containing 0.60 mmol of palladium (Pd) colloid was slowly added dropwise at room temperature in an air atmosphere. After completion of the dropwise addition, the resulting suspension was stirred for 8 hours at room temperature in an air atmosphere. After the stirring, water was removed with a rotary evaporator, vacuum dried at 80 ° C. for 6 hours, and further calcined at 300 ° C. for 6 hours in a nitrogen atmosphere to obtain a Pd / AC catalyst. The Pd content in the Pd / AC catalyst determined by ICP emission analysis was 0.95% by mass.
[Example 1]
The autoclave having a capacity of 0.3 L was charged with TS-1 (Catalyst Society Reference Catalyst, ARC-TS1AS (1)) and the Pd / AC catalyst obtained in Reference Example 1, and then the autoclave was sealed. In the autoclave, a raw material gas having a volume ratio of propylene / oxygen / hydrogen / nitrogen of 7.2 / 4.0 / 4.2 / 85.6 is supplied at an feeding rate of 20 L / hour and anthraquinone 0.07 mmol / kg. Then, a water / methanol solution (water / methanol = 20/80 (mass ratio)) containing 5.4 μmol / kg of diphenyl sulfide was supplied at a supply rate of 108 mL / hour to carry out the reaction. A liquid phase and a gas phase were continuously extracted from the autoclave through a filter. The residence time in the autoclave was 90 minutes. During this time, the temperature of the mixture in the autoclave was adjusted to 60 ° C. and the pressure was adjusted to 0.8 MPa (gauge pressure).
The amount of TS-1 and Pd / AC catalyst used is adjusted so that the amount of TS-1 is 1.2g and the amount of Pd / AC catalyst is 0.08g with respect to 133g of solvent supplied in the autoclave. did.
As a result of analyzing the liquid phase and gas phase extracted from the autoclave 5 hours after the start of the reaction by gas chromatography, the propylene oxide (PO) production activity per unit mass of titanosilicate was 5.2 mmol-PO / g-tita. It was no silicate and time, and the hydrogen standard selectivity (molar amount of propylene oxide produced / molar amount of hydrogen consumed) was 25%.
[Reference Example 2: Preparation of noble metal catalyst (diphenyl sulfide-containing Pd / AC catalyst)]
20 g of activated carbon (manufactured by Wako Pure Chemical Industries) previously washed with 10 L of hot water (100 ° C.) was dried at 150 ° C. under a nitrogen stream for 6 hours. 6 g of activated carbon after drying and 1 L of water were charged into a 1 L eggplant flask. The resulting mixture was stirred at room temperature (about 20 ° C.) under an air atmosphere. To the suspension after stirring, 100 mL of an aqueous dispersion containing 0.60 mmol of palladium (Pd) colloid was slowly added dropwise at room temperature in an air atmosphere. After completion of the dropwise addition, the suspension was further stirred at room temperature for 8 hours in an air atmosphere. After completion of the stirring, water was removed with a rotary evaporator and vacuum dried at 80 ° C. for 6 hours to obtain a black powder.
The obtained black powder was washed with 2 L of water, further washed with 3 L of hot water (100 ° C.), and then dried at 150 ° C. in a nitrogen stream for 6 hours to obtain a Pd / AC catalyst. The S (sulfur) content in the Pd / AC catalyst determined by ICP emission analysis was 0.041% by mass.
0.6 g of the obtained Pd / AC catalyst and 8 mL of a methanol solution containing 0.021 g of diphenyl sulfide were charged into a 10 mL two-necked eggplant flask. The resulting mixture was stirred at room temperature for 5 days under air atmosphere. The obtained suspension was filtered, washed with methanol and diethyl ether, and vacuum-dried at 50 ° C. for 2 hours to obtain diphenyl sulfide-containing Pd / AC catalyst (Pd / AC catalyst carrying diphenyl sulfide). . As a result of ICP emission analysis, it was found that the Pd content in the obtained diphenyl sulfide-containing Pd / AC catalyst was 1.06% by mass, and the S (sulfur) content was 0.067% by mass.
[Example 2]
In Example 1, instead of a water / methanol solution containing 0.07 mmol / kg of anthraquinone and 5.4 μmol / kg of diphenyl sulfide, a water / methanol solution containing 0.07 mmol / kg of anthraquinone and not containing diphenyl sulfide was used. The reaction was conducted in the same manner as in Example 1 except that the Pd / AC catalyst obtained in Reference Example 2 was used instead of the Pd / AC catalyst obtained in Reference Example 1.
The liquid phase and gas phase extracted from the autoclave 5 hours after the start of the reaction were analyzed by gas chromatography. As a result, the propylene oxide (PO) production activity per unit mass of titanosilicate was 4.8 mmol-PO / g-titano. It was silicate and time, and the hydrogen standard selectivity (molar amount of propylene oxide produced / molar amount of hydrogen consumed) was 20%.
[Comparative Example 1]
In Example 1, instead of a water / methanol solution containing 0.07 mmol / kg of anthraquinone and 5.4 μmol / kg of diphenyl sulfide, a water / methanol solution containing 0.07 mmol / kg of anthraquinone without containing diphenyl sulfide was used. The reaction was performed in the same manner as in Example 1 except that.
The liquid phase and gas phase extracted from the autoclave after 5 hours from the start of the reaction were analyzed by gas chromatography. As a result, the propylene oxide (PO) production activity per unit mass of titanosilicate was 4.4 mmol-PO / g-tita. It was no silicate and time, and the hydrogen standard selectivity was 18%.
 本発明の製造方法によれば、より高い水素基準選択率でプロピレンオキサイドを製造することができる。 According to the production method of the present invention, it is possible to produce propylene oxide with a higher hydrogen standard selectivity.

Claims (13)

  1.  貴金属触媒、MFI構造を有する結晶性チタノシリケートおよび式(I):
     R−S(O)−R     (I)
    (式中、RおよびRは、それぞれ独立に、炭素数1~20の炭化水素基を表わし、該炭化水素基は、置換基を有していてもよく、また、ヘテロ原子を含有していてもよい。nは0~2の整数を表わす。)
    で示される有機硫黄化合物の存在下、水素、酸素およびプロピレンを反応させる工程を含むプロピレンオキサイドの製造方法。
    Noble metal catalyst, crystalline titanosilicate with MFI structure and formula (I):
    R 1 —S (O) n —R 2 (I)
    (In the formula, R 1 and R 2 each independently represent a hydrocarbon group having 1 to 20 carbon atoms, and the hydrocarbon group may have a substituent and contain a hetero atom. (N represents an integer of 0 to 2)
    A process for producing propylene oxide, comprising a step of reacting hydrogen, oxygen and propylene in the presence of the organic sulfur compound represented by formula (1).
  2.  MFI構造を有する結晶性チタノシリケートが、TS−1である請求項1に記載の製造方法。 The manufacturing method according to claim 1, wherein the crystalline titanosilicate having an MFI structure is TS-1.
  3.  有機硫黄化合物が、スルフィド化合物である請求項1または2に記載の製造方法。 The production method according to claim 1 or 2, wherein the organic sulfur compound is a sulfide compound.
  4.  スルフィド化合物が、ジアルキルスルフィド、アルキルアリールスルフィドまたはジアリールスルフィドである請求項3に記載の製造方法。 The production method according to claim 3, wherein the sulfide compound is a dialkyl sulfide, an alkylaryl sulfide or a diaryl sulfide.
  5.  水素、酸素およびプロピレンの反応を溶媒の存在下に行う請求項1~4のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 4, wherein the reaction of hydrogen, oxygen and propylene is carried out in the presence of a solvent.
  6.  有機硫黄化合物が溶媒に溶解している請求項5に記載の製造方法。 The production method according to claim 5, wherein the organic sulfur compound is dissolved in a solvent.
  7.  溶媒が、アルコール溶媒、ケトン溶媒、ニトリル溶媒、エーテル溶媒、脂肪族炭化水素溶媒、芳香族炭化水素溶媒、ハロゲン化炭化水素溶媒、エステル溶媒、グリコール溶媒および水からなる群より選ばれる少なくとも1種である請求項5または6に記載の製造方法。 The solvent is at least one selected from the group consisting of alcohol solvents, ketone solvents, nitrile solvents, ether solvents, aliphatic hydrocarbon solvents, aromatic hydrocarbon solvents, halogenated hydrocarbon solvents, ester solvents, glycol solvents, and water. The manufacturing method according to claim 5 or 6.
  8.  溶媒が、メタノールと水との混合溶媒である請求項5または6に記載の製造方法。 The production method according to claim 5 or 6, wherein the solvent is a mixed solvent of methanol and water.
  9.  水素、酸素およびプロピレンの反応を、アントラキノンの存在下で行う請求項1~8のいずれかに記載の製造方法。 The production method according to any one of claims 1 to 8, wherein the reaction of hydrogen, oxygen and propylene is carried out in the presence of anthraquinone.
  10.  貴金属触媒が、貴金属を担体に担持した触媒である請求項1~9のいずれか記載の製造方法。 10. The production method according to claim 1, wherein the noble metal catalyst is a catalyst having a noble metal supported on a carrier.
  11.  貴金属触媒が、パラジウム、白金、ルテニウム、ロジウム、イリジウム、オスミウムおよび金からなる群より選ばれる少なくとも1種の貴金属を含む触媒である請求項1~10のいずれかに記載の製造方法。 11. The production method according to claim 1, wherein the noble metal catalyst is a catalyst containing at least one kind of noble metal selected from the group consisting of palladium, platinum, ruthenium, rhodium, iridium, osmium and gold.
  12.  担体が活性炭である請求項10に記載の製造方法。 The production method according to claim 10, wherein the carrier is activated carbon.
  13.  担体が、有機硫黄化合物が担持された担体である請求項10に記載の製造方法。 The production method according to claim 10, wherein the carrier is a carrier on which an organic sulfur compound is supported.
PCT/JP2011/064858 2010-06-28 2011-06-22 Method for producing propylene oxide WO2012002408A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-146038 2010-06-28
JP2010146038A JP2012006887A (en) 2010-06-28 2010-06-28 Method of manufacturing propylene oxide

Publications (1)

Publication Number Publication Date
WO2012002408A1 true WO2012002408A1 (en) 2012-01-05

Family

ID=45402113

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/064858 WO2012002408A1 (en) 2010-06-28 2011-06-22 Method for producing propylene oxide

Country Status (2)

Country Link
JP (1) JP2012006887A (en)
WO (1) WO2012002408A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115155653A (en) * 2022-08-12 2022-10-11 华东理工大学 Sulfur-assistant-modified titanium-silicon molecular sieve-supported gold catalyst and preparation method and application thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025666A2 (en) * 1997-11-14 1999-05-27 Du Pont Pharmaceuticals Company Process for the selective oxidation of organic compounds
JP2005131470A (en) * 2003-10-28 2005-05-26 Nippon Shokubai Co Ltd Metal fine particle supported body
WO2005092501A2 (en) * 2004-03-09 2005-10-06 Lyondell Chemical Technology, L.P. Polymer-encapsulated titanium zeolites for oxidation reactions
JP2006083152A (en) * 2004-08-19 2006-03-30 Daikin Ind Ltd Method for producing hexafluoropropylene oxide
WO2007126139A1 (en) * 2006-04-27 2007-11-08 Sumitomo Chemical Company, Limited Method for producing epoxy compound
WO2010074315A1 (en) * 2008-12-26 2010-07-01 Sumitomo Chemical Company, Limited Method for producing propylene oxide

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999025666A2 (en) * 1997-11-14 1999-05-27 Du Pont Pharmaceuticals Company Process for the selective oxidation of organic compounds
JP2005131470A (en) * 2003-10-28 2005-05-26 Nippon Shokubai Co Ltd Metal fine particle supported body
WO2005092501A2 (en) * 2004-03-09 2005-10-06 Lyondell Chemical Technology, L.P. Polymer-encapsulated titanium zeolites for oxidation reactions
JP2006083152A (en) * 2004-08-19 2006-03-30 Daikin Ind Ltd Method for producing hexafluoropropylene oxide
WO2007126139A1 (en) * 2006-04-27 2007-11-08 Sumitomo Chemical Company, Limited Method for producing epoxy compound
WO2010074315A1 (en) * 2008-12-26 2010-07-01 Sumitomo Chemical Company, Limited Method for producing propylene oxide

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115155653A (en) * 2022-08-12 2022-10-11 华东理工大学 Sulfur-assistant-modified titanium-silicon molecular sieve-supported gold catalyst and preparation method and application thereof

Also Published As

Publication number Publication date
JP2012006887A (en) 2012-01-12

Similar Documents

Publication Publication Date Title
Trukhan et al. Oxidation of 2, 3, 6-trimethylphenol over Ti-and V-containing mesoporous mesophase catalysts: structure–activity/selectivity correlation
JPS6230122B2 (en)
EP1901993A2 (en) Improvements in catalysts
US20090264665A1 (en) Process for producing propylene oxide
JP2007314521A (en) Method for producing epoxy compound
US20110021795A1 (en) Producion method of propylene oxide
Fukudome et al. Oxidative dehydrogenation of alkanes over vanadium oxide prepared with V (t-BuO) 3O and Si (OEt) 4 in the presence of polyethyleneglycol
WO2006108492A1 (en) Process for oxidizing organic substrates by means of singlet oxygen using a modified molybdate ldh catalyst
JP2015533344A (en) Direct synthesis of hydrogen peroxide
WO2012002408A1 (en) Method for producing propylene oxide
JP2010168358A (en) Method for producing propylene oxide
Zhang et al. Oxidation reactions catalyzed by polyoxomolybdate salts
MXPA04009693A (en) Process for converting alcohols to carbonyl compounds.
KR20120139675A (en) Method for producing propylene oxide
US5334789A (en) Oxychlorination catalyst process for preparing the catalyst and method of oxychlorination with use of the catalyst
KR101602696B1 (en) Direct synthesis of hydrogen peroxide from hydrogen and oxygen using size controlled cubic Pd nanoparticle supported catalysts
EP2873645B1 (en) Method for producing hydrogen peroxide
CN115872845B (en) Preparation method of menthone
JP6634179B1 (en) Method for producing epoxy alkane and solid oxidation catalyst
KR20210055670A (en) Palladium-containing composition and method for producing hydrogen peroxide
JP2008081488A (en) Method for producing propylene oxide
JP2008143803A (en) Method for preparing propylene oxide
JPH0827055A (en) Palladium-copper complex and production of carbonyl compound by using the same complex
JP4586193B2 (en) Method for producing phenol
JP2012236806A (en) Method for producing carbonic ester compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11800870

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11800870

Country of ref document: EP

Kind code of ref document: A1