WO2011162461A1 - Transparent electrode and a production method therefor - Google Patents

Transparent electrode and a production method therefor Download PDF

Info

Publication number
WO2011162461A1
WO2011162461A1 PCT/KR2010/009584 KR2010009584W WO2011162461A1 WO 2011162461 A1 WO2011162461 A1 WO 2011162461A1 KR 2010009584 W KR2010009584 W KR 2010009584W WO 2011162461 A1 WO2011162461 A1 WO 2011162461A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal film
transparent electrode
substrate
present
light transmittance
Prior art date
Application number
PCT/KR2010/009584
Other languages
French (fr)
Korean (ko)
Inventor
최경철
이성민
박오옥
최홍균
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Priority to KR1020137002098A priority Critical patent/KR101477291B1/en
Publication of WO2011162461A1 publication Critical patent/WO2011162461A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B5/00Non-insulated conductors or conductive bodies characterised by their form
    • H01B5/14Non-insulated conductors or conductive bodies characterised by their form comprising conductive layers or films on insulating-supports
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133305Flexible substrates, e.g. plastics, organic film
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/10Function characteristic plasmon

Definitions

  • the present invention relates to a transparent electrode and a method of manufacturing the same. More particularly, the present invention relates to a transparent electrode usable as an electrode, such as a display element or a flexible display, and a manufacturing method thereof.
  • an oxide-based compound such as Indium Tin Oxide (ITO) or Indium Zinc Oxide (IZO) having high light transmittance in the visible light band is used.
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • the transparent electrode made of the oxide-based compound as described above has a high resistance because of its low electrical conductivity, so when applied to a flat panel display or a thin film solar cell, the performance of the device is deteriorated and the size is disadvantageous. there was.
  • indium which is a major component of the oxide-based compound, has a scarcity, the burden of price increase is always present, and thus a new material that can replace the oxide-based compound is in the spotlight.
  • the light transmittance in the visible light band is very low, and thus it is difficult to use it as a material of a transparent electrode.
  • the metal film is an oxide such as ITO.
  • transparent electrodes have been developed by arranging between transparent films of inorganic series or inorganic films, such transparent electrodes have secured light transmittance in the visible light band, but are limited in securing sufficient electrical conductivity because the thickness of metal film is 10 nm or less. There was a problem that occurred.
  • the present invention has been made to solve the above problems, and instead of reducing the thickness of the metal film, it is sufficient to minimize the high light transmittance and electrical resistance in the visible light band by forming a plurality of fine holes arranged at predetermined intervals in the metal film. It is an object to provide a transparent electrode capable of maintaining electrical conductivity and a method of manufacturing the same.
  • a transparent electrode includes a substrate having a predetermined dielectric constant; And a metal film formed on the substrate, wherein the metal film includes a plurality of fine holes arranged at predetermined intervals to improve light transmittance due to surface plasmon resonance.
  • the method of manufacturing a transparent electrode comprises the steps of fusion bonding the plasma-etched particles to the metal film formed on the substrate; And removing the particles fused to the metal film to form a metal film having a plurality of micro holes arranged at predetermined intervals on the substrate.
  • the cost of manufacturing a transparent electrode is reduced because it is made of a metal which is less expensive than an oxide-based compound and has a low light resistance due to excellent light transmittance and high electrical conductivity in the visible light band which can be used as a transparent electrode. It has an effect that can be made.
  • the metal is made of a material and has a high ductility, it has an effect that can be utilized in a device such as a flexible display in which a conventional oxide-based transparent electrode is hardly applied.
  • FIG. 1 is a perspective view of a transparent electrode according to a preferred embodiment of the present invention
  • Figure 3 is a reference graph for the light transmittance according to the fine hole diameter of the transparent electrode according to an embodiment of the present invention
  • FIG. 4 is a reference graph for light transmittance according to a metal film thickness of a transparent electrode according to a preferred embodiment of the present invention.
  • FIG. 5 is a reference graph for light transmittance according to mutual spacing of each of the plurality of micro holes arranged on the metal film of the transparent electrode according to the preferred embodiment of the present invention
  • FIG. 6 is a perspective view of a transparent electrode according to another preferred embodiment of the present invention.
  • FIG. 7 is a reference graph of light transmittance in a visible light band of a transparent electrode according to another preferred embodiment of the present invention.
  • FIG. 8 is a flowchart illustrating a method of manufacturing a transparent electrode according to a preferred embodiment of the present invention.
  • FIG. 9 is a reference diagram for a method of manufacturing a transparent electrode according to a preferred embodiment of the present invention.
  • FIG. 1 is a perspective view of a transparent electrode according to a preferred embodiment of the present invention.
  • a transparent electrode 1a As shown in FIG. 1, a transparent electrode 1a according to a preferred embodiment of the present invention includes a substrate 10a and a metal film 20a.
  • the substrate 10a may be a flexible transparent plastic material such as polyether terephthlate (PET) and polyethersulfone (PES) having a predetermined dielectric constant.
  • PET polyether terephthlate
  • PES polyethersulfone
  • the material of the substrate 10a is not limited thereto, and when the substrate 10a is used as a transparent electrode that does not require flexible characteristics, the substrate 10a may be made of glass.
  • the metal film 20a may be formed on the substrate 10a, and a plurality of micro holes 25a may be formed, two-dimensionally arranged at predetermined intervals, for a light transmissive shape due to surface plasmon resonance.
  • the metal film 20a may be a silver metal film having a thickness of 20 nm to 50 nm, and the shape of the fine hole 25a may be a circular shape having a predetermined diameter.
  • the material of the metal film 20a is not limited thereto, and other metal materials, indium tin oxide (ITO), or indium zinc oxide (IZO) may be used as the material of the metal film 20a.
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • each of the plurality of micro holes 25a arranged in the metal film 20a may be 45 nm to 250 nm, and each of the plurality of micro holes 25a may have a diameter of 25 nm to 100 nm.
  • the reason for arranging the plurality of fine holes 25a at predetermined intervals in the metal film 20a of the transparent electrode 1a according to the preferred embodiment of the present invention will be described below with reference to FIG. 2.
  • the thickness of the metal film 20a of the transparent electrode 1a, the mutual spacing of each of the plurality of fine holes 25a, and the diameter of each of the plurality of fine holes 25a are presented within the above ranges. 5 to be described.
  • FIG. 2 is a reference diagram for a surface plasmon resonance phenomenon occurring around the micro holes arranged in the metal film.
  • surface plasmon resonance refers to a phenomenon in which the metal nanoparticles resonate with light having a specific wavelength in the visible or near infrared band so that the surface plasmons of the metal nanoparticles vibrate collectively.
  • FDTD finite difference time domain
  • 3 is a reference graph of the light transmittance according to the fine hole diameter of the transparent electrode of the present invention.
  • the thickness of the metal film 20a and the mutual spacing of each of the plurality of micro holes 25a arranged in the metal film 20a are fixed to 25 nm and 45 nm, respectively.
  • the plurality of fine holes 25a are not arranged in a state where the thickness of the metal film 20a and the mutual spacing of the plurality of fine holes 25a arranged in the metal film 20a are fixed to each other. Comparing the light transmittance of the film 20a and the metal film 20a in which the plurality of fine holes 25a having diameters of 20 nm, 30 nm, and 36 nm are arranged, the metal film having the plurality of fine holes 25a arranged therein ( 20a may have a high light transmittance in the visible light band when compared to the metal film 20a in which the micro holes 25a are not arranged, and the size of the micro holes 25a and the light transmittance in the visible light band. It can be seen that is proportional to.
  • the overall aperture ratio increases as the diameter of each of the plurality of micro holes 25a arranged in the metal film 20a increases, so that the light transmittance in the visible light region also increases, but conversely is arranged in the metal film 20a.
  • Increasing the diameter of each of the plurality of micro holes 25a excessively decreases the intensity of plasmon resonance, thereby reducing light transmittance.
  • each of the plurality of fine holes 25a arranged in the metal film 20a is increased, the area of the metal film 20a is reduced, and thus the electrical conductivity is lowered, thereby increasing the resistance.
  • the diameter of each of the plurality of fine holes 25a arranged in 20a is preferably 25 nm to 100 nm, which is the range given above.
  • FIG. 4 is a reference graph of light transmittance according to a metal film thickness of a transparent electrode according to a preferred embodiment of the present invention.
  • the diameter of each of the plurality of micro holes 25a arranged in the metal film 20a and the mutual spacing of each of the plurality of micro holes 25a arranged in the metal film 20a are fixed to 30 nm and 60 nm, respectively. It was.
  • the diameters of the plurality of fine holes 25a arranged in the metal film 20a and the mutual spacing of each of the plurality of fine holes 25 formed in the metal film 20 are kept constant.
  • the thickness of the metal film 20a is changed to 20 nm, 50 nm, and 100 nm, respectively, and the light transmittances in the visible light bands are compared, the thickness of the metal film 20a increases, and thus the plurality of metal films 20a are arranged in the metal film 20a. Since the intensity of plasmon resonance generated around each of the fine holes 25a increases, light transmittance in the visible light band may increase.
  • the thickness of the metal film 20a when the thickness of the metal film 20a is increased, the light transmittance in the visible light band is increased, but accordingly, the light transmittance of the metal film 20a itself is reduced, so that the thickness of the metal film 20a is in the range of 20 nm to the previously presented range. 50 nm is preferred.
  • FIG 5 is a light transmittance graph according to the mutual spacing of each of the plurality of micro holes arranged in the metal film of the transparent electrode according to the preferred embodiment of the present invention.
  • the thickness of the metal film 20a in FIG. 5 was fixed to 100 nm.
  • the mutual spacing of the plurality of micro holes 25a arranged in the metal film 20a with the thickness of the metal film 20a fixed at 100 nm is 45 nm, 60 nm, 100 nm, and 350 nm, respectively.
  • the light transmittance in the visible light band increases as the mutual spacing of each of the plurality of micro holes 25a arranged in the metal film 20a increases.
  • the light transmittance in the visible light band is increased, but the area where the light transmittance is increased due to the plasmon resonance phenomenon is red. Since the red-shift is excessively increased when the mutual spacing of each of the plurality of micro holes 25a arranged in the metal film 20a is excessively increased, the area where the light transmittance is increased is over the infrared band instead of the visible light band. It can be confirmed that it is not suitable for the electrode.
  • the mutual spacing of each of the plurality of micro holes 25a arranged in the metal film 20a is in the range given above, and the range in which the light transmittance increases due to the plasmon resonance phenomenon lies in the visible light band. desirable.
  • FIG. 6 is a perspective view of a transparent electrode according to another preferred embodiment of the present invention.
  • the flexible transparent electrode 1b is formed on the substrate 10b and has a predetermined spacing for improving light transmittance due to surface plasmon resonance.
  • the transparent inorganic film 30b is formed on the metal film 20b including the plurality of fine holes 25b arranged in (eg, two-dimensional array).
  • the transparent inorganic layer 30b may be formed of a silicon dioxide (SiO 2) material or the same material as the substrate 10b.
  • FIG. 7 is a reference graph of light transmittance in a visible light band of a transparent electrode according to another exemplary embodiment of the present invention.
  • the thickness of the metal film 20b is fixed to 50 nm in FIG. 7, and the transparent inorganic film 30b of silicon dioxide is formed on the metal film 20b as illustrated in FIG. 7 (bold line in FIG. 7). Part) It can be seen that the light transmittance in the visible light region is better than that in the case where the transparent inorganic film 30b is not formed (solid line part in FIG. 7).
  • the size of the plasmon resonance is further increased by the cross-coupled surface plasmon. It becomes possible to manufacture an electrode.
  • FIG. 8 is a flowchart illustrating a method of manufacturing a transparent electrode according to an exemplary embodiment of the present invention
  • FIG. 9 is a reference diagram of a method of manufacturing a transparent electrode according to an exemplary embodiment of the present invention.
  • a method of manufacturing a flexible transparent electrode having a metal film according to a preferred embodiment of the present invention is as follows.
  • Plasma-etched colloidal self-assembling nanoparticles P1 arranged on a predetermined substrate (eg, a glass or metal substrate) in S10 (FIGS. 9A and 9B).
  • S10 self-assembled nanoparticles (for example, nanoparticles of gold material or nanoparticles of other metal material having a higher melting point than silver) may be arranged in the form of a plurality of layers of two or more layers,
  • the plasma etching is performed to form a plurality of fine holes 25a arranged in the metal film 20a at predetermined intervals and each having a predetermined size, and thus an oxygen plasma etching method may be used.
  • the self-assembled nanoparticles P2 etched in S20 are fused to the upper portion of the metal film 20a. ((C) and (d) of FIG. 9).
  • S20 is a method of attaching the etched self-assembled nanoparticles (P2) to the lower surface of the viscous PDMS (PolyDiMethylSiloxane) after transition to PDMS (Fig. 9 (c)) is formed in advance on the substrate 10a
  • the etched self-assembled nanoparticles P2 are brought into contact with the seed metal layer sl, which is etched, and heated by a heater disposed on the bottom surface of the substrate 10a to etch the self-assembled self-assembled particles attached to the bottom surface of the PDMS.
  • the nanoparticles P2 are separated from the bottom surface of the PDMS, the nanoparticles P2 are fused onto the seed metal layer sl (FIG. 9D), and the metal plating layer is formed on the seed metal layer sl by electroplating. (el) forming a step (e) of FIG.
  • the seed metal layer sl and the metal plating layer el may be silver metal layers.
  • the method may further include etching the seed metal layer sl of the metal film 20a so that the fine holes 25a formed in the metal film 20a pass through the metal film 20a after S30. 9 (g))
  • the transparent electrodes 1a and 1b of the present invention are a metal film 20a in which a plurality of fine holes 25a and 25b having a predetermined interval are arranged on a glass or a flexible transparent plastic substrate 10a and 10b having a predetermined dielectric constant.
  • 20b or a transparent inorganic film 30b of the same material as the silicon dioxide material or the substrate 10b is formed on the metal film 20b on which the plurality of fine holes 25b having a predetermined interval are arranged.
  • the surface plasmon resonance phenomenon occurring around each of the plurality of micro holes 25a and 25b improves light transmittance in the visible light band and minimizes resistance due to the high electrical conductivity of the metal itself. Since the manufacturing cost is lower than the transparent electrode of the compound material of the series, the manufacturing cost of the transparent electrode (for example, a transparent electrode used in a flat panel display or a thin film solar cell) can be greatly reduced.
  • the ductility is excellent in comparison with the transparent electrode of the conventional oxide-based compound material, when the transparent electrode of the present invention is configured on a flexible transparent plastic substrate, the flexible electrode of the conventional oxide-based compound material could not be applied. It has the effect which can be utilized for a display.

Abstract

The present invention relates to a flexible transparent electrode having a metal film and to a production method therefor. More specifically the invention relates to a flexible transparent electrode having a metal film that can be used as an electrode for a display element or a flexible display or the like, and to a production method therefor. The present invention comprises: a substrate having a predetermined dielectric constant; and a metal film formed on the upper part of the substrate, wherein the metal film comprises a plurality of micro-holes disposed at predetermined intervals in order to improve the optical transparency by means of surface plasmon resonance. As compared with oxide-based compounds, the present invention has advantageous effects in that the production costs of transparent electrodes can be reduced because an inexpensive metal is used as the raw material and there is outstanding optical transparency in the visible light band at which the invention can be used as a transparent electrode and there is a low resistance characteristic due to high electrical conductivity.

Description

투명 전극 및 이의 제조 방법Transparent electrode and manufacturing method thereof
본 발명은 투명 전극 및 이의 제조 방법에 관한 것이다. 보다 상세하게는 디스플레이 소자 또는 플렉시블 디스플레이 등의 전극으로 사용가능한 투명 전극 및 이의 제조 방법에 관한 것이다.The present invention relates to a transparent electrode and a method of manufacturing the same. More particularly, the present invention relates to a transparent electrode usable as an electrode, such as a display element or a flexible display, and a manufacturing method thereof.
일반적으로 평판형 디스플레이나 박막형 태양 전지에 사용되는 투명 전극의 경우 저항을 최소화할 수 있는 높은 전기 전도도와 가시광 대역(380nm~780nm)에서의 높은 광투과도 등이 필수적으로 요구되며, 이에 따라 투명 전극의 소재로써 가시광 대역에서 높은 광투과도를 갖는 Indium Tin Oxide(ITO) 또는 Indium Zinc Oxide(IZO)와 같은 산화물 계열의 화합물이 사용된다.In general, in the case of transparent electrodes used in flat panel displays or thin film solar cells, high electrical conductivity and high light transmittance in the visible light band (380 nm to 780 nm) are required to minimize resistance. As a material, an oxide-based compound such as Indium Tin Oxide (ITO) or Indium Zinc Oxide (IZO) having high light transmittance in the visible light band is used.
그러나, 상기와 같은 산화물 계열의 화합물을 소재로 제조된 투명전극의 경우 전기 전도도가 낮기 때문에 높은 저항을 가지므로 평판형 디스플레이나 박막형 태양 전지에 적용되는 경우 장치의 성능을 저하시키고 대형화가 불리한 문제점이 있었다.However, the transparent electrode made of the oxide-based compound as described above has a high resistance because of its low electrical conductivity, so when applied to a flat panel display or a thin film solar cell, the performance of the device is deteriorated and the size is disadvantageous. there was.
또한, 산화물 계열 화합물의 주요 성분인 Indium이 희소성을 가지므로 이에따른 가격 상승의 부담이 상시 존재하게 되어 산화물 계열의 화합물을 대체할 수 있는 새로운 소재로써 금속이 새롭게 각광받는 추세에 있다.In addition, since indium, which is a major component of the oxide-based compound, has a scarcity, the burden of price increase is always present, and thus a new material that can replace the oxide-based compound is in the spotlight.
그러나, 금속의 경우 역으로 가시광 대역에서의 광투과도가 매우 낮기 때문에 투명전극의 소재로써 활용하는데 어려움이 있으며, 이를 극복하기 위하여 10nm 이하의 두께를 갖는 금속막을 형성한 후 상기 금속막을 ITO와 같은 산화물 계열의 투명막 또는 무기물 계열의 투명막 사이에 배열하여 구성한 투명 전극이 개발되었으나 이러한 투명 전극의 경우에도 가시광 대역에서의 광투과도는 확보되는 반면 금속막의 두께가 10nm 이하인 관계로 충분한 전기 전도도 확보에 한계가 발생하는 문제점이 있었다.However, in the case of metal, the light transmittance in the visible light band is very low, and thus it is difficult to use it as a material of a transparent electrode. To overcome this problem, after forming a metal film having a thickness of 10 nm or less, the metal film is an oxide such as ITO. Although transparent electrodes have been developed by arranging between transparent films of inorganic series or inorganic films, such transparent electrodes have secured light transmittance in the visible light band, but are limited in securing sufficient electrical conductivity because the thickness of metal film is 10 nm or less. There was a problem that occurred.
본 발명은 상기와 같은 문제점을 해결하고자 안출된 것으로 금속막의 두께를 줄이는 대신 금속막에 소정 간격으로 배열된 복수의 미세홀을 형성함으로써 가시광 대역에서의 높은 광투과도와 전기 저항을 최소화할 수 있는 충분한 전기 전도도를 유지하는 것이 가능한 투명 전극 및 이의 제조 방법을 제공하는 것을 목적으로 한다.The present invention has been made to solve the above problems, and instead of reducing the thickness of the metal film, it is sufficient to minimize the high light transmittance and electrical resistance in the visible light band by forming a plurality of fine holes arranged at predetermined intervals in the metal film. It is an object to provide a transparent electrode capable of maintaining electrical conductivity and a method of manufacturing the same.
상기 목적을 달성하기 위한 본 발명의 바람직한 실시예에 다른 투명 전극은 소정의 유전율을 갖는 기판; 및 상기 기판 상부에 형성되는 금속막을 포함하며, 상기 금속막은 표면 플라즈몬 공명에 의한 광투과성 향상을 위해 소정 간격으로 배열된 복수의 미세 홀을 포함하는 것을 특징으로 한다.According to a preferred embodiment of the present invention for achieving the above object, a transparent electrode includes a substrate having a predetermined dielectric constant; And a metal film formed on the substrate, wherein the metal film includes a plurality of fine holes arranged at predetermined intervals to improve light transmittance due to surface plasmon resonance.
또한, 본 발명의 바람직한 실시예에 따른 투명 전극의 제조 방법은 플라즈마 에칭된 파티클들을 기판 상부에 형성된 금속막에 융착시키는 단계; 및 상기 금속막에 융착된 파티클들을 제거하는 단계를 포함하는 방식으로 상기 기판 상부에 소정 간격으로 배열된 복수의 미세홀을 갖는 금속막을 형성하는 것을 특징으로 한다.In addition, the method of manufacturing a transparent electrode according to a preferred embodiment of the present invention comprises the steps of fusion bonding the plasma-etched particles to the metal film formed on the substrate; And removing the particles fused to the metal film to form a metal film having a plurality of micro holes arranged at predetermined intervals on the substrate.
본 발명에 의하면 산화물 계열의 화합물과 비교하여 가격이 저렴한 금속을 소재로 하면서도 투명 전극으로써 활용 가능한 가시광 대역에서의 우수한 광투과도와 높은 전기 전도도에 의한 저저항 특성을 가지므로 투명 전극의 제조 비용을 감소시킬 수 있는 효과를 갖는다.According to the present invention, the cost of manufacturing a transparent electrode is reduced because it is made of a metal which is less expensive than an oxide-based compound and has a low light resistance due to excellent light transmittance and high electrical conductivity in the visible light band which can be used as a transparent electrode. It has an effect that can be made.
또한, 금속을 소재로 제조되어 높은 연성을 가지므로 종래의 산화물 계열의 투명 전극이 적용되기 힘들었던 플렉시블 디스플레이 등의 장치에 활용 가능한 효과를 갖는다.In addition, since the metal is made of a material and has a high ductility, it has an effect that can be utilized in a device such as a flexible display in which a conventional oxide-based transparent electrode is hardly applied.
도 1은 본 발명의 바람직한 실시예에 따른 투명 전극의 사시도,1 is a perspective view of a transparent electrode according to a preferred embodiment of the present invention,
도 2는 금속막에 배열된 미세 홀 주변에서 발생하는 표면 플라즈몬 공명 현상에 대한 참고도, 2 is a reference diagram for the surface plasmon resonance phenomenon occurring around the micro holes arranged in the metal film,
도 3은 본 발명의 바람직한 실시예에 따른 투명 전극의 미세 홀 직경에 따른 광투과도에 대한 참고 그래프,Figure 3 is a reference graph for the light transmittance according to the fine hole diameter of the transparent electrode according to an embodiment of the present invention,
도 4는 본 발명의 바람직한 실시예에 따른 투명 전극의 금속막 두께에 따른 광투과도에 대한 참고 그래프,4 is a reference graph for light transmittance according to a metal film thickness of a transparent electrode according to a preferred embodiment of the present invention;
도 5는 본 발명의 바람직한 실시예에 따른 투명 전극의 금속막 상부에 배열된 복수의 미세 홀 각각의 상호 간격에 따른 광투과도에 대한 참고 그래프,5 is a reference graph for light transmittance according to mutual spacing of each of the plurality of micro holes arranged on the metal film of the transparent electrode according to the preferred embodiment of the present invention;
도 6은 본 발명의 또 다른 바람직한 실시예에 따른 투명 전극의 사시도,6 is a perspective view of a transparent electrode according to another preferred embodiment of the present invention,
도 7은 본 발명의 또 다른 바람직한 실시예에 따른 투명 전극의 가시광 대역에서의 광투과도에 대한 참고 그래프,7 is a reference graph of light transmittance in a visible light band of a transparent electrode according to another preferred embodiment of the present invention;
도 8은 본 발명의 바람직한 실시예에 따른 투명 전극의 제조 방법에 대한 순서도, 및8 is a flowchart illustrating a method of manufacturing a transparent electrode according to a preferred embodiment of the present invention, and
도 9는 본 발명의 바람직한 실시예에 따른 투명 전극의 제조 방법에 대한 참고도이다.9 is a reference diagram for a method of manufacturing a transparent electrode according to a preferred embodiment of the present invention.
이하, 본 발명의 바람직한 실시예를 첨부된 도면들을 참조하여 상세하게 설명한다. 우선 각 도면의 구성 요소들에 참조 부호를 첨가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어서, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다. 또한, 이하에서 본 발명의 바람직한 실시예를 설명할 것이나, 본 발명의 기술적 사상은 이에 한정하거나 제한되지 않고 당업자에 의해 실시될 수 있음은 물론이다.Hereinafter, exemplary embodiments of the present invention will be described in detail with reference to the accompanying drawings. First, in adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even if displayed on different drawings. In addition, in describing the present invention, when it is determined that the detailed description of the related well-known configuration or function may obscure the gist of the present invention, the detailed description thereof will be omitted. In addition, preferred embodiments of the present invention will be described below, but the technical idea of the present invention may be implemented by those skilled in the art without being limited or limited thereto.
도 1은 본 발명의 바람직한 실시예에 따른 투명 전극의 사시도 이다.1 is a perspective view of a transparent electrode according to a preferred embodiment of the present invention.
도 1에 도시된 바와 같이 본 발명의 바람직한 실시예에 따른 투명 전극(1a)은 기판(10a)과 금속막(20a)을 포함한다.As shown in FIG. 1, a transparent electrode 1a according to a preferred embodiment of the present invention includes a substrate 10a and a metal film 20a.
기판(10a)은 소정의 유전율을 갖는 PET(PolyEthylene Terephthlate)와 PES(PolyEtherSulfone) 같은 플렉시블한 투명 플라스틱 재질일 수 있다.The substrate 10a may be a flexible transparent plastic material such as polyether terephthlate (PET) and polyethersulfone (PES) having a predetermined dielectric constant.
다만, 기판(10a)의 재질은 이에 한정되지 않고 플렉시블 특성이 요구되지 않는 투명 전극으로 이용되는 경우 유리 재질의 기판(10a)을 활용할 수 있다.However, the material of the substrate 10a is not limited thereto, and when the substrate 10a is used as a transparent electrode that does not require flexible characteristics, the substrate 10a may be made of glass.
금속막(20a)은 기판(10a) 상부에 형성되며 표면 플라즈몬 공명에 의한 광투과성 형상을 위해 소정 간격으로 2차원 배열된 복수의 미세 홀(25a)이 형성될 수 있다.The metal film 20a may be formed on the substrate 10a, and a plurality of micro holes 25a may be formed, two-dimensionally arranged at predetermined intervals, for a light transmissive shape due to surface plasmon resonance.
이때, 금속막(20a)은 20nm 내지 50nm의 두께를 갖는 은 금속막 일 수 있고, 미세 홀(25a)의 형태는 소정 직경의 원형일 수 있다.In this case, the metal film 20a may be a silver metal film having a thickness of 20 nm to 50 nm, and the shape of the fine hole 25a may be a circular shape having a predetermined diameter.
다만, 금속막(20a)의 소재는 이에 한정되는 것은 아니며, 금속막(20a)의 소재로써 기타 금속물질, Indium Tin Oxide(ITO), 또는 Indium Zinc Oxide(IZO)을 사용할 수 있다.However, the material of the metal film 20a is not limited thereto, and other metal materials, indium tin oxide (ITO), or indium zinc oxide (IZO) may be used as the material of the metal film 20a.
또한, 금속막(20a)에 배열된 복수의 미세 홀(25a) 각각의 상호 간격은 45nm 내지 250nm일 수 있으며, 복수의 미세 홀(25a)의 각각의 직경은 25nm 내지 100nm일 수 있다.In addition, the mutual spacing of each of the plurality of micro holes 25a arranged in the metal film 20a may be 45 nm to 250 nm, and each of the plurality of micro holes 25a may have a diameter of 25 nm to 100 nm.
또한, 본 발명의 바람직한 실시예에 따른 투명 전극(1a)의 금속막(20a)에 소정 간격으로 복수의 미세 홀(25a)을 배열하는 이유는 이하 도 2에서 설명하도록 하고, 본 발명의 바람직한 실시예에 따른 투명 전극(1a)의 금속막(20a) 두께, 복수의미세 홀(25a) 각각의 상호 간격, 및 복수의 미세 홀(25a) 각각의 직경을 상기 범위로 제시하는 이유는 이하 도 3 내지 도 5에서 설명하도록 한다.In addition, the reason for arranging the plurality of fine holes 25a at predetermined intervals in the metal film 20a of the transparent electrode 1a according to the preferred embodiment of the present invention will be described below with reference to FIG. 2. According to an example, the thickness of the metal film 20a of the transparent electrode 1a, the mutual spacing of each of the plurality of fine holes 25a, and the diameter of each of the plurality of fine holes 25a are presented within the above ranges. 5 to be described.
도 2는 금속막에 배열된 미세 홀 주변에서 발생하는 표면 플라즈몬 공명 현상에 대한 참고도이다.2 is a reference diagram for a surface plasmon resonance phenomenon occurring around the micro holes arranged in the metal film.
여기에서, 표면 플라즈몬 공명(Surface plasmon resonance)이란 금속 나노 입자가 가시광선 대역 내지 근적외선 대역의 특정 파장을 갖는 빛과 공명하여 금속 나노 입자의 표면 플라즈몬이 집단으로 진동하는 현상을 의미하며, 도 2에 도시된 바와 같이 389nm의 파장을 기준으로 금속막(20a)에 배열된 미세 홀(25a) 주변에서의 FDTD(Finite Difference Time Domain) 시뮬레이션 결과 관찰되는 전기장 분포를 참고하면 미세 홀(25a) 주변(도 2의 실선 부분)에서 전기장이 크게 강화되는 것을 확인할 수 있다.Here, surface plasmon resonance refers to a phenomenon in which the metal nanoparticles resonate with light having a specific wavelength in the visible or near infrared band so that the surface plasmons of the metal nanoparticles vibrate collectively. Referring to the electric field distribution observed as a result of the finite difference time domain (FDTD) simulation around the micro holes 25a arranged in the metal film 20a based on the wavelength of 389 nm, as shown in FIG. It can be seen that the electric field is greatly strengthened in the solid line portion of 2.
이와 같이, 미세 홀(25a)의 크기보다 더 넓은 영역에서 발생하는 표면 플라즈몬 공명 현상에 의해 빛의 흡수와 빛의 방출이 발생하며 이에 따라 미세 홀(25a)을 통하여 보다 많은 양의 빛을 투과시키는 것이 가능해진다.As such, absorption of light and emission of light are generated by surface plasmon resonance occurring in a wider area than the size of the fine hole 25a. Accordingly, a larger amount of light is transmitted through the fine hole 25a. It becomes possible.
따라서, 금속막(20a)에 소정 간격으로 복수의 미세 홀(25a)을 배열하는 경우 가시광 대역에서 광투과도가 크게 향상될 수 있다.Therefore, when the plurality of fine holes 25a are arranged in the metal film 20a at predetermined intervals, light transmittance in the visible light band may be greatly improved.
도 3은 본 발명의 투명 전극의 미세 홀 직경에 따른 광투과도에 대한 참고 그래프이다.3 is a reference graph of the light transmittance according to the fine hole diameter of the transparent electrode of the present invention.
이때, 도 3에서 금속막(20a)의 두께와 금속막(20a)에 배열된 복수의 미세 홀(25a) 각각의 상호 간격은 각각 25nm와 45nm로 고정하였다.At this time, the thickness of the metal film 20a and the mutual spacing of each of the plurality of micro holes 25a arranged in the metal film 20a are fixed to 25 nm and 45 nm, respectively.
도 3에 도시된 바와 같이 금속막(20a)의 두께와 금속막(20a)에 배열된 복수 의 미세홀(25a) 각각의 상호 간격을 고정한 상태에서 복수의 미세 홀(25a)이 배열되지 않은 금속막(20a)과 각각 20nm, 30nm, 및 36nm의 직경을 갖는 복수의 미세 홀(25a)이 배열된 금속막(20a)의 광투과도를 비교해보면 복수의 미세 홀(25a)이 배열된 금속막(20a)의 경우 미세 홀(25a)이 배열되지 않은 금속막(20a) 과의 비교시에 가시광 대역에서 높은 광투과도를 갖는 것을 확인할 수 있으며, 미세 홀(25a)의 크기와 가시광 대역의 광투과도 크기가 비례하는 것을 확인할 수 있다.As shown in FIG. 3, the plurality of fine holes 25a are not arranged in a state where the thickness of the metal film 20a and the mutual spacing of the plurality of fine holes 25a arranged in the metal film 20a are fixed to each other. Comparing the light transmittance of the film 20a and the metal film 20a in which the plurality of fine holes 25a having diameters of 20 nm, 30 nm, and 36 nm are arranged, the metal film having the plurality of fine holes 25a arranged therein ( 20a may have a high light transmittance in the visible light band when compared to the metal film 20a in which the micro holes 25a are not arranged, and the size of the micro holes 25a and the light transmittance in the visible light band. It can be seen that is proportional to.
여기에서, 금속막(20a)에 배열된 복수의 미세 홀(25a) 각각의 직경의 증가에 따라 전체적인 개구율이 증가하므로 가시광 영역에서의 광투과도 또한 증가하지만, 역으로 금속막(20a)에 배열된 복수의 미세 홀(25a) 각각의 직경을 과도하게 증가시키는 경우 플라즈몬 공명의 세기가 줄어들어 이에 따라 광투과도가 감소한다.Here, the overall aperture ratio increases as the diameter of each of the plurality of micro holes 25a arranged in the metal film 20a increases, so that the light transmittance in the visible light region also increases, but conversely is arranged in the metal film 20a. Increasing the diameter of each of the plurality of micro holes 25a excessively decreases the intensity of plasmon resonance, thereby reducing light transmittance.
또한, 금속막(20a)에 배열된 복수의 미세 홀(25a)의 각각의 직경을 증가시키면 금속막(20a)의 면적이 감소하게 되고, 이에 따라 전기 전도도가 낮아져 저항이 증가하게 되므로 금속막(20a)에 배열된 복수의 미세 홀(25a)의 각각의 직경은 앞서 제시된 범위인 25nm 내지 100nm가 바람직하다.In addition, when the diameter of each of the plurality of fine holes 25a arranged in the metal film 20a is increased, the area of the metal film 20a is reduced, and thus the electrical conductivity is lowered, thereby increasing the resistance. The diameter of each of the plurality of fine holes 25a arranged in 20a is preferably 25 nm to 100 nm, which is the range given above.
도 4는 본 발명의 바람직한 실시예에 따른 투명 전극의 금속막 두께에 따른 광투과도에 대한 참고 그래프이다.4 is a reference graph of light transmittance according to a metal film thickness of a transparent electrode according to a preferred embodiment of the present invention.
이때, 도 4에서 금속막(20a)에 배열된 복수의 미세 홀(25a) 각각의 직경과 금속막(20a)에 배열된 복수의 미세 홀(25a) 각각의 상호 간격은 각각 30nm와 60nm로 고정하였다.At this time, the diameter of each of the plurality of micro holes 25a arranged in the metal film 20a and the mutual spacing of each of the plurality of micro holes 25a arranged in the metal film 20a are fixed to 30 nm and 60 nm, respectively. It was.
도 4에 도시된 바와 같이 금속막(20a)에 배열된 복수의 미세 홀(25a) 각각의 직경과 금속막(20)에 형성된 복수 개의 미세 홀(25) 각각의 상호 간격은 일정하게 한 상태에서 금속막(20a)의 두께를 각각 20nm, 50nm, 및 100nm로 변경하여 각각의 가시광 대역에서의 광투과도를 비교해보면 금속막(20a)의 두께가 증가함에 따라 금속막(20a)에 배열된 복수의 미세 홀(25a) 각각의 주변에서 발생되는 플라즈몬 공명의 세기가 증가하므로 가시광 대역에서의 광투과도가 증가하는 것을 확인할 수 있다.As shown in FIG. 4, the diameters of the plurality of fine holes 25a arranged in the metal film 20a and the mutual spacing of each of the plurality of fine holes 25 formed in the metal film 20 are kept constant. When the thickness of the metal film 20a is changed to 20 nm, 50 nm, and 100 nm, respectively, and the light transmittances in the visible light bands are compared, the thickness of the metal film 20a increases, and thus the plurality of metal films 20a are arranged in the metal film 20a. Since the intensity of plasmon resonance generated around each of the fine holes 25a increases, light transmittance in the visible light band may increase.
이와 같이, 금속막(20a)의 두께를 증가시키면 가시광 대역에서의 광투과도가 증가하지만 이에 따라 금속막(20a) 자체의 광투과도가 감소하므로 금속막(20a)의 두께는 앞서 제시된 범위인 20nm 내지 50nm가 바람직하다.As such, when the thickness of the metal film 20a is increased, the light transmittance in the visible light band is increased, but accordingly, the light transmittance of the metal film 20a itself is reduced, so that the thickness of the metal film 20a is in the range of 20 nm to the previously presented range. 50 nm is preferred.
도 5는 본 발명의 바람직한 실시예에 따른 투명 전극의 금속막에 배열된 복수의 미세 홀 각각의 상호 간격에 따른 광투과도 그래프이다.5 is a light transmittance graph according to the mutual spacing of each of the plurality of micro holes arranged in the metal film of the transparent electrode according to the preferred embodiment of the present invention.
이때, 도 5에서 금속막(20a) 두께는 100nm로 고정하였다.At this time, the thickness of the metal film 20a in FIG. 5 was fixed to 100 nm.
도 5에 도시된 바와 같이 금속막(20a)의 두께를 100nm로 고정한 상태에서 금속막(20a)에 배열된 복수의 미세 홀(25a) 각각의 상호 간격을 각각 45nm, 60nm, 100nm, 및 350nm로 변경하여 각각의 가시광 대역에서의 광투과도를 비교해보면 금속막(20a)에 배열된 복수의 미세 홀(25a) 각각의 상호 간격이 증가함에 따라 가시광 대역에서의 광투과도가 증가하는 것을 확인할 수 있다.As shown in FIG. 5, the mutual spacing of the plurality of micro holes 25a arranged in the metal film 20a with the thickness of the metal film 20a fixed at 100 nm is 45 nm, 60 nm, 100 nm, and 350 nm, respectively. As a result of comparing the light transmittance in each visible light band, it can be seen that the light transmittance in the visible light band increases as the mutual spacing of each of the plurality of micro holes 25a arranged in the metal film 20a increases.
이와 같이, 금속막(20a)에 배열된 복수의 미세 홀(25a) 각각의 상호 간격을 증가시키면 가시광 대역에서의 광투과도가 증가하지만 이에 따라 프라즈몬 공명현상에 의해 광투과도가 증가되는 영역이 적색 편이(Red-Shft)되므로 금속막(20a)에 배열된 복수의 미세 홀(25a) 각각의 상호 간격을 과도하게 증가시키는 경우 광투과도가 증가되는 영역이 가시광 대역이 아닌 적외선 대역에 걸치게 되므로 투명 전극에 적합하지 않은 것을 확인할 수 있다.As such, when the mutual spacing of each of the plurality of micro holes 25a arranged in the metal film 20a is increased, the light transmittance in the visible light band is increased, but the area where the light transmittance is increased due to the plasmon resonance phenomenon is red. Since the red-shift is excessively increased when the mutual spacing of each of the plurality of micro holes 25a arranged in the metal film 20a is excessively increased, the area where the light transmittance is increased is over the infrared band instead of the visible light band. It can be confirmed that it is not suitable for the electrode.
따라서, 금속막(20a)에 배열된 복수의 미세 홀(25a) 각각의 상호 간격은 앞서 제시된 범위로써 플라즈몬 공명 현상에 의해 광투과도가 증가하는 영역이 가시광선 대역에 놓이게 되는 범위인 45nm 내지 250nm가 바람직하다.Accordingly, the mutual spacing of each of the plurality of micro holes 25a arranged in the metal film 20a is in the range given above, and the range in which the light transmittance increases due to the plasmon resonance phenomenon lies in the visible light band. desirable.
도 6은 본 발명의 또 다른 바람직한 실시예에 따른 투명 전극의 사시도 이다.6 is a perspective view of a transparent electrode according to another preferred embodiment of the present invention.
도 6에 도시된 바와 같이 본 발명의 또 다른 바람직한 실시예에 따른 금속막을 갖는 플렉시블 투명 전극(1b)의 경우 기판(10b)의 상부에 형성되며 표면 플라즈몬 공명에 의한 광투과성 향상을 위해 소정의 간격으로 배열(예를 들어, 2차원 배열)된 복수의 미세 홀(25b)을 포함하는 금속막(20b) 상부에 투명 무기막(30b)이 형성된 구조를 갖는다.As shown in FIG. 6, in the case of the flexible transparent electrode 1b having the metal film according to another preferred embodiment of the present invention, the flexible transparent electrode 1b is formed on the substrate 10b and has a predetermined spacing for improving light transmittance due to surface plasmon resonance. The transparent inorganic film 30b is formed on the metal film 20b including the plurality of fine holes 25b arranged in (eg, two-dimensional array).
이때, 투명 무기막(30b)은 이산화 규소(SiO2) 소재 또는 기판(10b)과 동일한 소재로 형성될 수 있다.In this case, the transparent inorganic layer 30b may be formed of a silicon dioxide (SiO 2) material or the same material as the substrate 10b.
도 7은 본 발명의 또 다른 바람직한 실시예에 따른 투명 전극의 가시광 대역에서의 광투과도에 대한 참고 그래프이다.7 is a reference graph of light transmittance in a visible light band of a transparent electrode according to another exemplary embodiment of the present invention.
이때, 도 7에서 금속막(20b)의 두께는 50nm로 고정하였으며 도 7에 도시된 바와 같이 금속막(20b) 상부에 이산화 규소 소재의 투명 무기막(30b)이 형성된 경우(도 7의 굵은선 부분) 투명 무기막(30b)이 형성되지 않은 경우(도 7의 실선 부분)와 비교시에 가시광 영역에서의 광투과도가 보다 우수한 것을 확인할 수 있다.In this case, the thickness of the metal film 20b is fixed to 50 nm in FIG. 7, and the transparent inorganic film 30b of silicon dioxide is formed on the metal film 20b as illustrated in FIG. 7 (bold line in FIG. 7). Part) It can be seen that the light transmittance in the visible light region is better than that in the case where the transparent inorganic film 30b is not formed (solid line part in FIG. 7).
또한, 도면 상에는 도시되지 않았으나 투명 무기막(30b)을 기판(10b)과 동일한 소재로 형성하는 경우 Cross-coupled surface plasmon에 의해 플라즈몬 공명의 크기가 더욱 커지므로 가시광 대역에서의 높은 광투과도를 갖는 투명 전극을 제조하는 것이 가능해진다.In addition, although not shown in the drawing, when the transparent inorganic film 30b is formed of the same material as the substrate 10b, the size of the plasmon resonance is further increased by the cross-coupled surface plasmon. It becomes possible to manufacture an electrode.
도 8은 본 발명의 바람직한 실시예에 따른 투명 전극의 제조 방법에 대한 순서도, 도 9는 본 발명의 바람직한 실시예에 따른 투명 전극의 제조 방법에 대한 참고도이다.8 is a flowchart illustrating a method of manufacturing a transparent electrode according to an exemplary embodiment of the present invention, and FIG. 9 is a reference diagram of a method of manufacturing a transparent electrode according to an exemplary embodiment of the present invention.
도 8과 도 9를 참조하여 본 발명의 바람직한 실시예에 따른 금속막을 갖는 플렉시블 투명 전극의 제조 방법을 설명하면 다음과 같다.Referring to FIGS. 8 and 9, a method of manufacturing a flexible transparent electrode having a metal film according to a preferred embodiment of the present invention is as follows.
S10에서 소정 기판(예를 들어, 유리 또는 금속 기판) 상에 배열된 교질(Colloidal)의 자기 조립 나노 파티클(P1)들을 플라즈마 에칭한다.(도 9의 (a),(b))Plasma-etched colloidal self-assembling nanoparticles P1 arranged on a predetermined substrate (eg, a glass or metal substrate) in S10 (FIGS. 9A and 9B).
이때, S10에서 자기 조립 나노 파티클(P1)들(예를 들어, 금 소재의 나노 파티클 또는 은보다 높은 녹는점을 갖는 기타 금속 소재의 나노 파티클)은 2층 이상의 복수 층 형태로 배열될 수 있으며, 상기 플라즈마 에칭은 금속막(20a)에 소정 간격으로 배열되며 각각 소정 크기를 갖는 복수의 미세 홀(25a)을 형성하기 위해 이루어지는 것으로써, 산소 플라즈마 에칭 방식을 사용할 수 있다.At this time, in S10 self-assembled nanoparticles (P1) (for example, nanoparticles of gold material or nanoparticles of other metal material having a higher melting point than silver) may be arranged in the form of a plurality of layers of two or more layers, The plasma etching is performed to form a plurality of fine holes 25a arranged in the metal film 20a at predetermined intervals and each having a predetermined size, and thus an oxygen plasma etching method may be used.
S20에서 에칭된 자기 조립 나노 파티클(P2)들을 금속막(20a) 상부에 융착한다.(도 9의 (c),(d))The self-assembled nanoparticles P2 etched in S20 are fused to the upper portion of the metal film 20a. ((C) and (d) of FIG. 9).
이때, S20은 에칭된 자기 조립 나노 파티클(P2)들을 점성을 갖는 PDMS(PolyDiMethylSiloxane)의 하부면에 부착시키는 방법으로 PDMS에 전이한 후(도 9의 (c)) 기판(10a) 상부에 미리 형성되어 있는 시드 금속층(sl) 상부에 에칭된 자기 조립 나노 파티클(P2)들을 접촉시키고, 기판(10a) 하부면에 배치된 히터(Heater) 로 가열하여 PDMS의 하부면에 부착되어 있던 에칭된 자기 조립 나노 파티클(P2)이 PDMS의 하부면으로부터 이탈된 후 시드 금속층(sl) 상부에 융착되도록 하는 단계(도 9의 (d)), 및 도금(Electroplating)에 의해 시드 금속층(sl) 상부에 금속 도금층(el)을 형성하는 단계(도 9의 (e))를 포함할 수 있다.At this time, S20 is a method of attaching the etched self-assembled nanoparticles (P2) to the lower surface of the viscous PDMS (PolyDiMethylSiloxane) after transition to PDMS (Fig. 9 (c)) is formed in advance on the substrate 10a The etched self-assembled nanoparticles P2 are brought into contact with the seed metal layer sl, which is etched, and heated by a heater disposed on the bottom surface of the substrate 10a to etch the self-assembled self-assembled particles attached to the bottom surface of the PDMS. After the nanoparticles P2 are separated from the bottom surface of the PDMS, the nanoparticles P2 are fused onto the seed metal layer sl (FIG. 9D), and the metal plating layer is formed on the seed metal layer sl by electroplating. (el) forming a step (e) of FIG.
이때, 시드 금속층(sl)과 금속 도금층(el)은 은 금속층일 수 있다.In this case, the seed metal layer sl and the metal plating layer el may be silver metal layers.
S30에서 에칭된 자기 조립 나노 파티클(P2)들을 제거하면, 시드 금속층(sl)과 시드 금속층(sl) 상부에 형성된 금속 도금층(el)을 포함하는 금속막(20a)에 미세홀(25a)들이 형성된 후 종료된다.(도 9의 (f))When the self-assembled nanoparticles P2 etched in S30 are removed, fine holes 25a are formed in the metal film 20a including the seed metal layer sl and the metal plating layer el formed on the seed metal layer sl. Then, the process ends (FIG. 9F).
이때, S30에 이어서 금속막(20a)에 형성된 미세홀(25a)들이 금속막(20a)을 관통하도록 금속막(20a)의 시드 금속층(sl)을 에칭하는 단계를 더 포함할 수 있다.(도 9의 (g))In this case, the method may further include etching the seed metal layer sl of the metal film 20a so that the fine holes 25a formed in the metal film 20a pass through the metal film 20a after S30. 9 (g))
본 발명의 투명 전극(1a,1b)은 소정의 유전율을 갖는 유리 또는 플렉시블 투명 플라스틱 기판(10a,10b) 상부에 소정의 간격을 갖는 복수의 미세 홀(25a,25b)을 배열한 금속막(20a,20b)을 형성하거나 또는 소정의 간격을 갖는 복수의 미세 홀(25b)이 배열된 금속막(20b) 상부에 이산화 규소 소재 또는 기판(10b)과 동일한 소재의 투명 무기막(30b)을 형성한 구조를 갖는다.The transparent electrodes 1a and 1b of the present invention are a metal film 20a in which a plurality of fine holes 25a and 25b having a predetermined interval are arranged on a glass or a flexible transparent plastic substrate 10a and 10b having a predetermined dielectric constant. 20b or a transparent inorganic film 30b of the same material as the silicon dioxide material or the substrate 10b is formed on the metal film 20b on which the plurality of fine holes 25b having a predetermined interval are arranged. Has a structure.
따라서, 복수의 미세 홀(25a,25b) 각각의 주변에서 발생하는 표면 플라즈몬 공명 현상에 의해 가시광 대역에서의 광투과도가 향상되고 금속 자체의 높은 전기 전도도로 인해 저항을 최소화하며, 종래에 사용되는 산화물 계열의 화합물 소재의 투명 전극에 비해 제조 비용이 저렴하므로 투명 전극(예를 들어, 평판형 디스플레이나 박막형 태양 전지에 사용되는 투명 전극)의 제조 비용을 크게 낮출 수 있다.Accordingly, the surface plasmon resonance phenomenon occurring around each of the plurality of micro holes 25a and 25b improves light transmittance in the visible light band and minimizes resistance due to the high electrical conductivity of the metal itself. Since the manufacturing cost is lower than the transparent electrode of the compound material of the series, the manufacturing cost of the transparent electrode (for example, a transparent electrode used in a flat panel display or a thin film solar cell) can be greatly reduced.
또한, 종래의 산화물 계열의 화합물 소재의 투명 전극과 비교시에 연성이 우수하므로 플렉시블 투명 플라스틱 기판 상에 본 발명의 투명 전극을 구성하는 경우종래의 산화물 계열의 화합물 소재의 투명 전극이 적용될 수 없었던 플렉시블 디스플레이 등에 활용 가능한 효과를 갖는다.In addition, since the ductility is excellent in comparison with the transparent electrode of the conventional oxide-based compound material, when the transparent electrode of the present invention is configured on a flexible transparent plastic substrate, the flexible electrode of the conventional oxide-based compound material could not be applied. It has the effect which can be utilized for a display.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위 내에서 다양한 수정, 변경, 및 치환이 가능할 것이다. 따라서 본 발명에 개시된 실시예 및 첨부된 도면들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시예 및 첨부된 도면들에 의해서 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구 범위에 의해서 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리 범위에 포함되는 것으로 해석되어야 할 것이다.The above description is merely illustrative of the technical idea of the present invention, and various modifications, changes, and substitutions may be made by those skilled in the art without departing from the essential characteristics of the present invention. It will be possible. Accordingly, the embodiments disclosed in the present invention and the accompanying drawings are not intended to limit the technical spirit of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by the embodiments and the accompanying drawings. . The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the scope equivalent thereto should be construed as being included in the scope of the present invention.

Claims (9)

  1. 소정의 유전율을 갖는 기판; 및A substrate having a predetermined dielectric constant; And
    상기 기판 상부에 형성되는 금속막을 포함하며,It includes a metal film formed on the substrate,
    상기 금속막은 표면 플라즈몬 공명에 의한 광투과성 향상을 위해 소정 간격으로 배열된 복수의 미세 홀을 포함하는 것을 특징으로 하는 투명 전극.The metal film is a transparent electrode, characterized in that it comprises a plurality of fine holes arranged at a predetermined interval to improve light transmittance by surface plasmon resonance.
  2. 제 1항에 있어서,The method of claim 1,
    상기 금속막은 20nm 내지 50nm의 두께를 갖는 것을 특징으로 하는 투명 전극.The metal film is a transparent electrode, characterized in that having a thickness of 20nm to 50nm.
  3. 제 1항에 있어서,The method of claim 1,
    상기 금속막은 은 금속막인 것을 특징으로 하는 투명 전극.The metal film is a transparent electrode, characterized in that the silver metal film.
  4. 제 1항에 있어서,The method of claim 1,
    상기 복수의 미세 홀 각각의 상호 간격은 45nm 내지 250nm인 것을 특징으로 하는 투명 전극.The mutual spacing of each of the plurality of micro holes is 45nm to 250nm, characterized in that the transparent electrode.
  5. 제 1항에 있어서,The method of claim 1,
    상기 복수의 미세 홀 각각의 직경은 25nm 내지 100nm인 것을 특징으로 하는 금속막을 갖는 투명 전극.The diameter of each of the plurality of micro holes is a transparent electrode having a metal film, characterized in that 25nm to 100nm.
  6. 제 1항에 있어서,The method of claim 1,
    상기 금속막 상부에 형성되는 투명 무기막을 더 포함하는 것을 특징으로 하는 투명 전극.The transparent electrode further comprises a transparent inorganic film formed on the metal film.
  7. 제 1항에 있어서,The method of claim 1,
    상기 기판은 플렉시블 투명 플라스틱 재질인 것을 특징으로 하는 투명 전극.The substrate is a transparent electrode, characterized in that the flexible transparent plastic material.
  8. 제 1항에 있어서,The method of claim 1,
    상기 기판은 유리 재질인 것을 특징으로 하는 투명 전극.The substrate is a transparent electrode, characterized in that the glass material.
  9. 플라즈마 에칭된 파티클들을 기판 상부에 형성된 금속막에 융착시키는 단계; 및Fusing the plasma etched particles to a metal film formed on the substrate; And
    상기 금속막에 융착된 파티클들을 제거하는 단계Removing particles fused to the metal film
    를 포함하는 방식으로 상기 기판 상부에 소정 간격으로 배열된 복수의 미세홀을 갖는 금속막을 형성하는 것을 특징으로 하는 투명 전극의 제조 방법.Method for manufacturing a transparent electrode, characterized in that to form a metal film having a plurality of fine holes arranged at a predetermined interval on the substrate in a manner including a.
PCT/KR2010/009584 2010-06-25 2010-12-30 Transparent electrode and a production method therefor WO2011162461A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020137002098A KR101477291B1 (en) 2010-06-25 2010-12-30 Transparent electrode and a production method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0060668 2010-06-25
KR20100060668 2010-06-25

Publications (1)

Publication Number Publication Date
WO2011162461A1 true WO2011162461A1 (en) 2011-12-29

Family

ID=45371608

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2010/009584 WO2011162461A1 (en) 2010-06-25 2010-12-30 Transparent electrode and a production method therefor

Country Status (2)

Country Link
KR (1) KR101477291B1 (en)
WO (1) WO2011162461A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109471283A (en) * 2017-09-07 2019-03-15 乐金显示有限公司 Liquid crystal disply device and its preparation method including liquid crystal capsule
CN113496790A (en) * 2021-07-06 2021-10-12 浙江大学 Flexible transparent electrode

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101743341B1 (en) 2015-01-30 2017-06-07 포항공과대학교 산학협력단 Method for producing a transparent electrode
KR101714862B1 (en) * 2015-03-05 2017-03-09 재단법인대구경북과학기술원 Transparent magnetic with metal membrane structure using surface plasmon by metal nano hole array and method for manufacturing the transparent magnetic
CN105489632A (en) * 2016-01-15 2016-04-13 京东方科技集团股份有限公司 Organic light-emitting diode (OLED) array substrate, manufacturing method thereof, OLED display panel and OLED display device
KR20180032734A (en) 2016-09-22 2018-04-02 삼성디스플레이 주식회사 Manufacturing method of curved liquid crystal display device and the curved liquid crystal display device assembled thereby
KR20180033377A (en) 2016-09-23 2018-04-03 삼성디스플레이 주식회사 Display apparatus
KR102191074B1 (en) * 2019-05-03 2020-12-15 공주대학교 산학협력단 Method of forming nano protrusion structure using colloidal particle

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020172820A1 (en) * 2001-03-30 2002-11-21 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
KR20050112584A (en) * 2004-05-27 2005-12-01 삼성에스디아이 주식회사 Plasma display panel
KR20090016154A (en) * 2007-08-10 2009-02-13 삼성전자주식회사 Color selective active polarizer and magnetic display panel empolying the same
KR20100046447A (en) * 2008-10-27 2010-05-07 삼성전기주식회사 Electrode of dye-sensitized solar cell, manufacturing method thereof and dye-sensitized solar cell

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020172820A1 (en) * 2001-03-30 2002-11-21 The Regents Of The University Of California Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
KR20050112584A (en) * 2004-05-27 2005-12-01 삼성에스디아이 주식회사 Plasma display panel
KR20090016154A (en) * 2007-08-10 2009-02-13 삼성전자주식회사 Color selective active polarizer and magnetic display panel empolying the same
KR20100046447A (en) * 2008-10-27 2010-05-07 삼성전기주식회사 Electrode of dye-sensitized solar cell, manufacturing method thereof and dye-sensitized solar cell

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109471283A (en) * 2017-09-07 2019-03-15 乐金显示有限公司 Liquid crystal disply device and its preparation method including liquid crystal capsule
CN113496790A (en) * 2021-07-06 2021-10-12 浙江大学 Flexible transparent electrode
CN113496790B (en) * 2021-07-06 2022-04-22 浙江大学 Flexible transparent electrode

Also Published As

Publication number Publication date
KR101477291B1 (en) 2014-12-29
KR20130036300A (en) 2013-04-11

Similar Documents

Publication Publication Date Title
WO2011162461A1 (en) Transparent electrode and a production method therefor
TWI726659B (en) Touch panel and display
TWI698778B (en) Touch panel and roll sheet of touch sensor
EP3049905B1 (en) Silver nanostructure-based optical stacks and touch sensors with uv protection
KR102021215B1 (en) Transparent conductive film, transparent conductive film laminate, and touch panel
US11119611B2 (en) Film touch sensor for enhancing image quality
KR101816134B1 (en) Flexible color filter integrated with touch sensor and organic light emitting display having the same and manufacturing method thereof
US20170098490A1 (en) Base material with a transparent conductive film, method for manufacturing the same, touch panel, and solar cell
TWI728402B (en) Touch panel
CN110462861A (en) It is incorporated to the electronic building brick and its manufacturing method of laminated substrate
US10932364B2 (en) Transparent conductive film
WO2014153895A1 (en) Capacitive transparent conducting film and manufacturing method therefor
WO2019132243A1 (en) Method for producing transparent electrode
KR20140075816A (en) Light-transmitting electroconductive film, method for producing same, and use therefor
KR101472961B1 (en) Touch sensing electrode
WO2016051695A1 (en) Film having transparent conductive film, film having transparent wiring, transparent shield film, touch panel, and display device
WO2015163535A1 (en) Photomask for manufacturing light-transmitting conductor having nanostructured pattern and method for manufacturing same
KR20130082234A (en) Flexible substrate comprising a magnetic substance and the preparing process of a flexible display using the same
TWM579327U (en) Touch-sensing cover
WO2014017691A1 (en) Interface panel for display and method for manufacturing same
KR20150060277A (en) Hybrid type flexible substrate for display and method of fabricating thereof
WO2016148514A1 (en) Conductive structure and electronic device comprising same
WO2018214640A1 (en) Liquid crystal display panel and method for manufacturing same
KR20100125986A (en) Manufacturing of transparent metal layer for dispaly device using carbon nanotube
WO2016148515A1 (en) Conductive structure and electronic device comprising same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10853744

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137002098

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 10853744

Country of ref document: EP

Kind code of ref document: A1