WO2011161292A1 - Polymer and magnesium particle material for biomedical applications - Google Patents

Polymer and magnesium particle material for biomedical applications Download PDF

Info

Publication number
WO2011161292A1
WO2011161292A1 PCT/ES2011/070440 ES2011070440W WO2011161292A1 WO 2011161292 A1 WO2011161292 A1 WO 2011161292A1 ES 2011070440 W ES2011070440 W ES 2011070440W WO 2011161292 A1 WO2011161292 A1 WO 2011161292A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnesium particles
implant
μιτι
size
polymer
Prior art date
Application number
PCT/ES2011/070440
Other languages
Spanish (es)
French (fr)
Inventor
José Luis GONZÁLEZ CARRASCO
Marta MULTIGNER DOMÍNGUEZ
Marcela LIEBLICH RODRÍGUEZ
Marta MUÑOZ HERNÁNDEZ
Emilio Frutos Torres
Laura SALDAÑA QUERO
Nuria VILABOA DÍAZ
Original Assignee
Consejo Superior De Investigaciones Científicas (Csic)
Ciber-Bbn
Fundación De La Investigación Biomédica Del Hospital Universitario De La Paz
Fundación Universidad Alfonso X El Sabio
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Científicas (Csic), Ciber-Bbn, Fundación De La Investigación Biomédica Del Hospital Universitario De La Paz, Fundación Universidad Alfonso X El Sabio filed Critical Consejo Superior De Investigaciones Científicas (Csic)
Publication of WO2011161292A1 publication Critical patent/WO2011161292A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/40Composite materials, i.e. containing one material dispersed in a matrix of the same or different material
    • A61L27/44Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix
    • A61L27/446Composite materials, i.e. containing one material dispersed in a matrix of the same or different material having a macromolecular matrix with other specific inorganic fillers other than those covered by A61L27/443 or A61L27/46
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F2/00Filters implantable into blood vessels; Prostheses, i.e. artificial substitutes or replacements for parts of the body; Appliances for connecting them with the body; Devices providing patency to, or preventing collapsing of, tubular structures of the body, e.g. stents
    • A61F2/02Prostheses implantable into the body
    • A61F2/28Bones
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/58Materials at least partially resorbable by the body

Definitions

  • the present invention relates to a polymeric matrix material and biocompatible and reabsorbable magnesium particles with medical applications, in particular as osteosynthesis material and in bone tissue engineering.
  • Bioactive inorganic materials of clinical interest have a composition similar to the mineral phase of bone.
  • the reabsorption rate of bioactive and bioceramic glasses can be adjusted with crystalline hydroxyapatite for long periods of time, while there are other calcium phosphates that have a greater capacity to reabsorb but little resistance to withstand loads.
  • Biopolymers such as collagen and hyaluronic acid are materials in use for tissue reconstruction.
  • its weakness is related to the potential risk of disease transmission and Difficulties handling
  • synthetic polymers such as polycaprolactone (PCL), polyfumarates, polylactic acid (PLA), polyglycolic acid (PGA) and their copolymers (PLGA) are currently used for the manufacture of sutures, nails, screws and plates , constituting a very versatile alternative.
  • PCL polycaprolactone
  • PLA polyfumarates
  • PLA polylactic acid
  • PGA polyglycolic acid
  • PLGA copolymers
  • Tissue Engineering pursues the use of porous scaffolds, decorated or not with bioactive molecules, on which to grow cells to generate implantable constructs that promote tissue regeneration in the patient.
  • the vast majority of scaffolds developed are based on polymeric materials.
  • the present invention provides biodegradable material for the manufacture of useful devices such as osteosynthesis material or for bone regeneration, and its method of production.
  • a first aspect of the present invention relates to a material (from now on material of the invention) comprising the mixture of:
  • a polymeric matrix comprising a biodegradable polymer, and b. magnesium particles
  • This invention focuses on the development of hybrid materials based on biocompatible and biodegradable polymers loaded with Mg particles, with a degradation profile modulated by the volume and size fraction of the Mg particles. It is expected that, in this way, the rate of hydrogen release during the degradation process will be tolerated by human tissues, allowing the repair and / or regeneration of bone tissue as its reabsorption occurs.
  • Mg its biocompatibility and osteoconductive properties stand out.
  • the ions released during the degradation process are soluble in physiological media and are easily excreted in the urine.
  • the biodegradable polymers of the present invention may be natural or synthetic and, optionally, may include one or more bioactive agents.
  • the biodegradable polymer may be, but not only, polycaprolactone (PCL), polyfumarates, polylactic acid (PLA), polyglycolic acid (PGA) or any combination thereof.
  • the biodegradable polymer is selected from polycaprolactone (PCL), polyfumarates, polylactic acid (PLA), polyglycolic acid (PGA) and any combination thereof.
  • the biodegradable polymer is a copolymer comprising at least polylactic acid.
  • the weight ratio of polylactic acid to the other component of the copolymer is between 100: 0 to 60:40.
  • the magnesium present in the material of this invention may be present with or without alloy elements, it being preferable that it does not contain alloy elements.
  • the magnesium particles have a size between 50 and 500 ⁇ if their use in tissue engineering (bone regeneration) is considered. More preferably, the magnesium particles have a size between 50 and 250 ⁇ . On the other hand, the magnesium particles preferably have a size of less than 50 ⁇ if their use as osteosynthesis material (bone repair) is considered.
  • volume percentage of the magnesium particles with respect to the total material is less than or equal to 70%.
  • the polymer / Mg assembly has mechanical characteristics (strength, modulus) superior to that of dense or porous resorbable polymers.
  • the selection of the polymer will depend on its application, using semi-crystalline forms (L-polylactic acid, also known as L-PLA, PLLA or L-PLLA), when greater mechanical performance (or long degradation periods), or amorphous forms ( DL-PLA) since it is built by two isomeric forms of PLA, if lower mechanical loads (or shorter resorption times) are required.
  • Copolymers could also be used to modulate both mechanical properties and degradation rates.
  • the L-PLA has an elastic modulus of 3 GPa, while combining the DL-PLA with polycaprolactone (PCL) in a 60PLA 40PCL ratio, a manually moldable material is obtained.
  • a second aspect of the present invention relates to a process for obtaining the material of the invention, which comprises the steps:
  • step (a) processing of the product obtained in step (a).
  • step (a) is carried out by a technique that can be, but not exclusively, gel casting, dissolution and casting with particle release, membrane lamination, phase separation, lyophilization, fiber bonding, extrusion, etc.
  • the mixing of step (a) is performed by a technique that is selected from gel casting, dissolution and casting with particle release, membrane lamination, phase separation, lyophilization, fiber bonding and extrusion.
  • step (a) comprises the addition of an organic solvent. More preferably, the solvent employed is chloroform. While any organic solvent that facilitates the dispersion of magnesium particles in the polymer matrix can be used.
  • the process comprises an additional stage of evaporation of the solvent used in step (a) and subsequent processing of the product obtained in this additional stage.
  • evaporation is performed by orbital agitation.
  • a laminar product can be obtained, which can be prepared by cutting before processing. Any polymer forming method known to any person skilled in the art is processed.
  • step (b) is a thermomechanical processing of compaction and molding.
  • thermomechanical processing of step (b) is performed at a temperature range of between 100 and 200 ° C.
  • thermomechanical processing of step (b) is performed at a temperature range of between 130 and 170 ° C.
  • the present invention relates to the use of the material of the invention for the manufacture of a biomedical implant or device.
  • the present invention relates to a biomedical implant or device manufactured from the material of the present invention.
  • the implant is to allow bone repair, as an osteosynthesis material, more preferably when the magnesium particles are smaller than 50 ⁇ .
  • the implant is for the regeneration of bone tissue in bone tissue engineering, more preferably the magnesium particles have a size between 50 and 500 ⁇ , it being preferable that the magnesium particles have a size between 50 and 250 ⁇ .
  • the magnesium particles Being a dense material, the possibility that the polymer / Mg set collapse and modify its architecture due to the effect of mechanical loads in vivo would be lower, which would facilitate it to play its role as scaffold while regeneration and vascularization of the bone tissue on the surface.
  • Fig. 1 Optical microscopy images corresponding to: A) appearance of the Mg-loaded polymer specimens; and B) cross section thereof; Image C corresponds to an electronic scanning image showing a detail of the polymer / Mg interface.
  • Fig. 3 Voltage-displacement curve for the L-PLLA with and without magnesium.
  • Fig. 4 Viability of human mesenchymal stem cells cultured on L-PLLA / Mg samples. The results are expressed as a percentage of the cell viability measured after 1 day, to which an arbitrary value of 100 was assigned.
  • a polylactic acid composite material in its L-isomeric form (L-PLLA) and a nominal volume fraction of 30% Mg has been prepared.
  • the mixture has been produced after dissolving the polymer in chloroform. Once dissolved it has been mixed with the Mg powder, with an average size of about 250 microns, and then evaporation of the solvent.
  • the images in Figure 1 show the appearance of the material after mixing (A), and the cross sections examined in the optical (B) and electron microscope (C).
  • the mechanical properties of polymers are generally insufficient for use as a biomaterial, whether for application as scaffolding, as filler material, etc. Therefore, the combination of polymer / metal mechanical properties is necessary to increase the mechanical performance that the polymer alone is unable to offer, and resemble those of the bone.
  • the mechanical characterization has been carried out through instrumented indentation techniques, which allow the hardness and elastic modulus of the composite material to be measured simultaneously. The measurements have been made using a Nanotest 600 ultra-microindentator with a Berkovich type diamond tip. Its Young's modulus (Ei) and Poisson's coefficients (v ⁇ ) are 1,141 GPa and 0,07, respectively.
  • Table 1 shows the values of the hardness (H), the reduced Young's modulus (E R ), and the Young's modulus (E) for the polymer with and without magnesium, v represents the value of the Poisson coefficient used for the calculation of the module.
  • Table 1 Hardness and module values determined from ultra-microindentation measurements.
  • the elastic modulus of the L-PLLA depends on the degree of polymerization of the monomer chains. It should be noted that with a volume fraction of 30% Mg, the value of the elastic modulus almost triples, approaching the value corresponding to the cortical bone.
  • Table 2 shows the values of elastic limits ( ⁇ ) and maximum load (Omax) recorded in the compression test.
  • Table 2 Average values of elastic limit ( ⁇ ) and maximum load (a max ) recorded in the compression test Comparing the values of Young's modulus and the tension corresponding to the elastic limit, obtained for the magnesium reinforced polymer with the corresponding to the trabecular bone, it can be seen how magnesium reinforcement allows to obtain polymer / metal composite materials with mechanical properties similar to those of human bone, thus allowing a better load transfer between this artificial material and bone tissue.
  • Biocompatibility assays The in vitro biocompatibility of the magnesium reinforced polymer has been tested using human mesenchymal stem cells from bone marrow. The cells were grown for up to 15 days on the L- samples PLLA Mg, previously incubated in culture medium for at least 1 h. After these incubation times the metabolic activity was quantified, as a parameter associated with cell viability, using the commercial reagent AlamarBIue TM. Figure 4 shows that cell viability increases with the culture time on polymer / metal composites.

Abstract

The present invention relates to a polymeric matrix and magnesium particle material that is biocompatible and absorbable and has medical applications, specifically as a material for osteosynthesis and in tissue engineering for regenerating dry tissue.

Description

MATERIAL COMPUESTO DE POLÍMERO Y PARTÍCULAS DE MAGNESIO PARA APLICACIONES BIOMÉDICAS  COMPOSITE MATERIAL OF POLYMER AND MAGNESIUM PARTICLES FOR BIOMEDICAL APPLICATIONS
La presente invención se refiere a un material de matriz polimérica y partículas de magnesio biocompatible y reabsorbible con aplicaciones médicas, en concreto como material de osteosíntesis y en la ingeniería tisular ósea. The present invention relates to a polymeric matrix material and biocompatible and reabsorbable magnesium particles with medical applications, in particular as osteosynthesis material and in bone tissue engineering.
ESTADO DE LA TÉCNICA ANTERIOR La búsqueda de nuevas estrategias y materiales para la reparación y regeneración del tejido óseo dañado es una prioridad motivada por el desafío socio-económico que se deriva del incremento en patologías óseas asociadas al envejecimiento de la población en las sociedades avanzadas. En los años 50 se buscaban materiales bioinertes, con una interacción mínima con el entorno biológico. La segunda generación de biomateriales, en los ochenta, propició el desarrollo de materiales bioactivos que perseguían una reacción controlada con el entorno. A partir del año 2000, el objetivo ha sido desarrollar biomateriales de tercera generación que permitan la regeneración de los tejidos en lugar de su sustitución. Muchos de los materiales desarrollados son cerámicos bioactivos, vidrios bioactivos, polímeros sintéticos o biológicos, y sus compuestos. STATE OF THE PREVIOUS TECHNIQUE The search for new strategies and materials for the repair and regeneration of damaged bone tissue is a priority motivated by the socio-economic challenge that derives from the increase in bone pathologies associated with the aging of the population in advanced societies. In the 50s bioinert materials were sought, with minimal interaction with the biological environment. The second generation of biomaterials, in the eighties, led to the development of bioactive materials that pursued a controlled reaction with the environment. Since 2000, the objective has been to develop third generation biomaterials that allow tissue regeneration instead of replacement. Many of the materials developed are bioactive ceramics, bioactive glasses, synthetic or biological polymers, and their compounds.
Los materiales inorgánicos bioactivos de interés clínico tienen una composición similar a la fase mineral del hueso. La velocidad de reabsorción de los vidrios bioactivos y biocerámicos se puede ajustar con hidroxiapatita cristalina durante largos periodos de tiempo, mientras que existen otros fosfatos cálcicos que tienen una mayor capacidad para reabsorberse pero poca resistencia para soportar cargas. Bioactive inorganic materials of clinical interest have a composition similar to the mineral phase of bone. The reabsorption rate of bioactive and bioceramic glasses can be adjusted with crystalline hydroxyapatite for long periods of time, while there are other calcium phosphates that have a greater capacity to reabsorb but little resistance to withstand loads.
Los polímeros biológicos tales como colágeno y ácido hialurónico son materiales en uso para la reconstrucción de tejidos. Sin embargo, su debilidad está relacionada con el riesgo potencial de transmisión de enfermedades y las dificultades para su manipulación. Por otro lado, los polímeros sintéticos tales como policaprolactona (PCL), polifumaratos, ácido poliláctico (PLA), ácido poliglicólico (PGA) y sus copolímeros (PLGA), se emplean en la actualidad para la fabricación de suturas, clavos, tornillos y placas, constituyendo una alternativa muy versátil. Aunque sus productos de degradación son metabolizados y eliminados por el organismo, cuando se encuentran en concentraciones muy elevadas pueden provocar un descenso local del pH, comprometiendo la viabilidad de los tejidos. En general, la naturaleza frágil de los materiales cerámicos bioactivos y las bajas propiedades mecánicas de los polímeros biodegradables desaconseja su uso en aplicaciones en las que se precise soportar altas cargas, como en la mayoría de las aplicaciones ortopédicas. Los materiales compuestos de origen orgánico-inorgánico tienden a mimetizar la naturaleza del hueso combinando la tenacidad de un polímero con la resistencia a compresión de un cerámico, lo que da lugar a materiales con mejores propiedades mecánicas y perfiles de degradación. Como materiales de refuerzo se han utilizado tanto hidroxiapatita como biovidrios (ME Navarro, Desarrollo y Caracterización de Materiales Biodegradables para Regeneración Ósea, Tesis Doctoral, UPC, 2005). La utilización de materiales compuestos cargados con metales ha sido poco investigada en este campo. Sin embargo, parece ser una forma efectiva de controlar la degradación del metal, tal como se ha observado durante la degradación de nanocompuestos de Cu con polietilenos de baja densidad (S Cai, Xia X, Xie C, Biomaterials 26 (2005) 2671 - 2676). Biological polymers such as collagen and hyaluronic acid are materials in use for tissue reconstruction. However, its weakness is related to the potential risk of disease transmission and Difficulties handling On the other hand, synthetic polymers such as polycaprolactone (PCL), polyfumarates, polylactic acid (PLA), polyglycolic acid (PGA) and their copolymers (PLGA), are currently used for the manufacture of sutures, nails, screws and plates , constituting a very versatile alternative. Although its degradation products are metabolized and eliminated by the body, when they are in very high concentrations they can cause a local decrease in pH, compromising the viability of the tissues. In general, the fragile nature of bioactive ceramic materials and the low mechanical properties of biodegradable polymers discourage their use in applications where high loads are required, as in most orthopedic applications. Composite materials of organic-inorganic origin tend to mimic the nature of the bone by combining the toughness of a polymer with the compressive strength of a ceramic, which results in materials with better mechanical properties and degradation profiles. As reinforcement materials, both hydroxyapatite and biovidrios have been used (ME Navarro, Development and Characterization of Biodegradable Materials for Bone Regeneration, Doctoral Thesis, UPC, 2005). The use of composite materials loaded with metals has been little investigated in this field. However, it appears to be an effective way to control metal degradation, as observed during the degradation of Cu nanocomposites with low density polyethylenes (S Cai, Xia X, Xie C, Biomaterials 26 (2005) 2671-2676 ).
Cabe destacar el desarrollo de materiales metálicos degradables para componentes sometidos a cargas. Las aleaciones de Mg, ampliamente investigadas en la actualidad, se introdujeron en la primera mitad del siglo pasado. Su principal ventaja en relación con otros biomateriales metálicos es su baja densidad (1 ,7-2,0 g/cm3). Adicionalmente, su tenacidad a la fractura es superior a la de los materiales cerámicos, con un valor del módulo elástico (41 - 45 GPa) muy próximo al del hueso natural (<20 GPa). Uno de los problemas asociados a su utilización estuvo relacionado con su rápida velocidad de corrosión in vivo (D. Williams, Med. Device Technol. 17 (2006), 9, p8-10), que producía una acumulación importante de hidrógeno (1 litro por gramo de Mg). Debido a este problema su utilización entró en desuso con el desarrollo de los aceros inoxidables. En la actualidad son numerosos los esfuerzos que se están haciendo para disminuir su velocidad de degradación y aumentar sus propiedades mecánicas (MP Staiger, AM Pietak, J Huadmai, G Dias, Biomaterials 27 (2006) 1728-1734 y en WD Müller, ML Nascimento, M Sedéis, M. Corsico, L.M. Gassa, MAF Lorenzo de Melé, Mal Res. 10 (2007) 5-10]. Desafortunadamente esto se está consiguiendo a partir de la introducción de elementos de aleación que, una vez degradado el implante, podrían plantear problemas de biocompatibilidad. Note the development of degradable metal materials for components subjected to loads. Mg alloys, widely investigated today, were introduced in the first half of the last century. Its main advantage in relation to other metal biomaterials is its low density (1, 7-2.0 g / cm 3 ). Additionally, its fracture toughness is higher than that of ceramic materials, with an elastic modulus value (41 - 45 GPa) very close to that of natural bone (<20 GPa). One of the problems associated with its use was related to its rapid rate of corrosion in vivo (D. Williams, Med. Device Technol. 17 (2006), 9, p8-10), which produced a significant accumulation of hydrogen (1 liter per gram of Mg). Due to this problem, its use became obsolete with the development of stainless steels. At present there are numerous efforts being made to decrease its degradation rate and increase its mechanical properties (MP Staiger, AM Pietak, J Huadmai, G Dias, Biomaterials 27 (2006) 1728-1734 and in WD Müller, ML Nascimento , M Sedéis, M. Corsico, LM Gassa, MAF Lorenzo de Melé, Mal Res. 10 (2007) 5-10] Unfortunately this is being achieved from the introduction of alloy elements that, once the implant has been degraded, They could pose biocompatibility problems.
La Ingeniería Tisular persigue la utilización de andamios porosos, decorados o no con moléculas bioactivas, sobre los que cultivar células para generar constructos implantables que promuevan la regeneración del tejido en el paciente. La gran mayoría de los andamios desarrollados se basan en materiales de naturaleza polimérica. Tissue Engineering pursues the use of porous scaffolds, decorated or not with bioactive molecules, on which to grow cells to generate implantable constructs that promote tissue regeneration in the patient. The vast majority of scaffolds developed are based on polymeric materials.
Un aspecto esencial para garantizar la osteoconducción en los andamios reside en que su porosidad esté interconectada (Hing et Al. J. Mater. Sci.: Mater. Med. 16, (2005) 469-475), para permitir no sólo la colonización celular, sino también una adecuada vascularización. Se considera que para una adecuada colonización y vascularización el tamaño del poro debe estar en el rango de 200 a 500 μιτι. Sin embargo, este requerimiento está limitado por la necesidad de que el andamio tenga una adecuada resistencia mecánica a la compresión y un valor del módulo elástico igual o ligeramente superior al del hueso para evitar que se colapse una vez sometido a cargas in vivo. El efecto de la porosidad en el módulo elástico es diferente para los distintos tipos de materiales, siendo los materiales metálicos los únicos que ofrecen una combinación de rigidez y porosidad próximas a las del hueso (40-80%). Consecuentemente, son numerosos los estudios realizados recientemente con materiales porosos de naturaleza metálica (Ti, Mg, NiTi). Entre ellos, sólo el Mg puede considerarse biodegradable. Su utilización en ambientes acuosos está desaconsejado por la rápida velocidad de degradación, tal y como se ha comentado anteriormente. An essential aspect to guarantee osteoconduction in scaffolding is that its porosity is interconnected (Hing et al. J. Mater. Sci .: Mater. Med. 16, (2005) 469-475), to allow not only cell colonization , but also adequate vascularization. It is considered that for proper colonization and vascularization the pore size should be in the range of 200 to 500 μιτι. However, this requirement is limited by the need for the scaffold to have an adequate mechanical resistance to compression and an elastic modulus value equal to or slightly greater than that of the bone to prevent it from collapsing once subjected to in vivo loads. The effect of porosity on the elastic modulus is different for different types of materials, with metallic materials being the only ones that offer a combination of stiffness and porosity close to those of the bone (40-80%). Consequently, there have been numerous recent studies with porous materials of a metallic nature (Ti, Mg, NiTi). Among them, only Mg can be considered biodegradable. Its use in aqueous environments is discouraged by the rapid degradation rate, as previously mentioned.
DESCRIPCIÓN DE LA INVENCIÓN DESCRIPTION OF THE INVENTION
La presente invención proporciona material biodegradable para la fabricación de dispositivos útiles como material de osteosíntesis o para la regeneración ósea, y su procedimiento de obtención. The present invention provides biodegradable material for the manufacture of useful devices such as osteosynthesis material or for bone regeneration, and its method of production.
Un primer aspecto de la presente invención se refiere a un material (a partir de ahora material de la invención) que comprende la mezcla de: A first aspect of the present invention relates to a material (from now on material of the invention) comprising the mixture of:
a. una matriz polimérica que comprende un polímero biodegradable, y b. partículas de magnesio.  to. a polymeric matrix comprising a biodegradable polymer, and b. magnesium particles
Esta invención se centra en el desarrollo de materiales híbridos basados en polímeros biocompatibles y biodegradables cargados con partículas de Mg, con un perfil de degradación modulado por la fracción en volumen y tamaño de las partículas de Mg. Es de esperar que, de esta forma, la velocidad de liberación del hidrógeno durante el proceso de degradación sea tolerada por los tejidos humanos, permitiendo la reparación y/o regeneración del tejido óseo a medida que se produce su reabsorción. Entre las ventajas que presenta la utilización de Mg destacan su biocompatibilidad y sus propiedades osteoconductoras. Además, los iones liberados durante el proceso de degradación son solubles en medios fisiológicos y se excretan fácilmente a través de la orina. This invention focuses on the development of hybrid materials based on biocompatible and biodegradable polymers loaded with Mg particles, with a degradation profile modulated by the volume and size fraction of the Mg particles. It is expected that, in this way, the rate of hydrogen release during the degradation process will be tolerated by human tissues, allowing the repair and / or regeneration of bone tissue as its reabsorption occurs. Among the advantages of using Mg, its biocompatibility and osteoconductive properties stand out. In addition, the ions released during the degradation process are soluble in physiological media and are easily excreted in the urine.
Los polímeros biodegradables de la presente invención pueden ser naturales o sintéticos y, opcionalmente, pueden incluir uno o más agentes bioactivos. En una realización preferida el polímero biodegradable puede ser, pero no únicamente, policaprolactona (PCL), polifumaratos, ácido poliláctico (PLA), ácido poliglicólico (PGA) o cualquiera de sus combinaciones. Preferentemente, el polímero biodegradable se selecciona entre policaprolactona (PCL), polifumaratos, ácido poliláctico (PLA), ácido poliglicólico (PGA) y cualquiera de sus combinaciones. The biodegradable polymers of the present invention may be natural or synthetic and, optionally, may include one or more bioactive agents. In a preferred embodiment the biodegradable polymer may be, but not only, polycaprolactone (PCL), polyfumarates, polylactic acid (PLA), polyglycolic acid (PGA) or any combination thereof. Preferably, the biodegradable polymer is selected from polycaprolactone (PCL), polyfumarates, polylactic acid (PLA), polyglycolic acid (PGA) and any combination thereof.
En una realización más preferida el polímero biodegradable es un copolímero que comprende al menos ácido poliláctico. Y en una realización más preferida la relación en peso de ácido poliláctico respecto al otro componente del copolímero es de entre 100:0 a 60:40. In a more preferred embodiment the biodegradable polymer is a copolymer comprising at least polylactic acid. And in a more preferred embodiment the weight ratio of polylactic acid to the other component of the copolymer is between 100: 0 to 60:40.
El magnesio presente en el material de esta invención puede estar presente con o sin elementos de aleación, siendo preferible que no contenga elementos de aleación. The magnesium present in the material of this invention may be present with or without alloy elements, it being preferable that it does not contain alloy elements.
Preferiblemente las partículas de magnesio tienen un tamaño de entre 50 y 500 μιτι si se considera su uso en ingeniería de tejidos (regeneración ósea). De forma más preferible, las partículas de magnesio tienen un tamaño entre 50 y 250 μιτι. Por otro lado, las partículas de magnesio preferiblemente tienen un tamaño inferior a 50 μιτι si se considera su uso como material de osteosíntesis (reparación ósea). Preferably the magnesium particles have a size between 50 and 500 μιτι if their use in tissue engineering (bone regeneration) is considered. More preferably, the magnesium particles have a size between 50 and 250 μιτι. On the other hand, the magnesium particles preferably have a size of less than 50 μιτι if their use as osteosynthesis material (bone repair) is considered.
En otra realización preferida el porcentaje en volumen de las partículas de magnesio respecto al material total es menor o igual al 70%. In another preferred embodiment the volume percentage of the magnesium particles with respect to the total material is less than or equal to 70%.
El conjunto polímero/Mg presenta unas características mecánicas (resistencia, módulo) superiores a la de los polímeros reabsorbibles densos o porosos. La selección del polímero dependerá de su aplicación, utilizando formas semicristalinas (ácido L-poliláctico, también conocido como L-PLA, PLLA o L- PLLA ), cuando se requieran mayores prestaciones mecánicas (o plazos largos de degradación), o formas amorfas (DL-PLA) ya que está construido por las dos formas isoméricas del PLA, si se requieren menores cargas mecánicas (o tiempos menores de reabsorción). También podrían utilizarse copolímeros para modular tanto las propiedades mecánicas como velocidades de degradación. Por ejemplo el L-PLA tiene un módulo elástico de 3 GPa, mientras que al combinar el DL-PLA con policaprolactona (PCL) en una proporción 60PLA 40PCL, se obtiene un material moldeable manualmente. The polymer / Mg assembly has mechanical characteristics (strength, modulus) superior to that of dense or porous resorbable polymers. The selection of the polymer will depend on its application, using semi-crystalline forms (L-polylactic acid, also known as L-PLA, PLLA or L-PLLA), when greater mechanical performance (or long degradation periods), or amorphous forms ( DL-PLA) since it is built by two isomeric forms of PLA, if lower mechanical loads (or shorter resorption times) are required. Copolymers could also be used to modulate both mechanical properties and degradation rates. For example, the L-PLA has an elastic modulus of 3 GPa, while combining the DL-PLA with polycaprolactone (PCL) in a 60PLA 40PCL ratio, a manually moldable material is obtained.
Un segundo aspecto de la presente invención se refiere a un procedimiento de obtención del material de la invención, que comprende las etapas: A second aspect of the present invention relates to a process for obtaining the material of the invention, which comprises the steps:
a. mezclado del polímero formador de la matriz y de las partículas de magnesio, y  to. mixing of the matrix forming polymer and magnesium particles, and
b. procesado del producto obtenido en la etapa (a).  b. processing of the product obtained in step (a).
En una realización preferida el mezclado de la etapa (a) se realiza por una técnica que puede ser, pero no exclusivamente, gel casting, disolución y colada con liberación de partículas, laminación de membranas, separación de fases, liofilización, unión de fibras, extrusión, etc. Preferentemente, el mezclado de la etapa (a) se realiza por una técnica que se selecciona entre gel casting, disolución y colada con liberación de partículas, laminación de membranas, separación de fases, liofilización, unión de fibras y extrusión. In a preferred embodiment the mixing of step (a) is carried out by a technique that can be, but not exclusively, gel casting, dissolution and casting with particle release, membrane lamination, phase separation, lyophilization, fiber bonding, extrusion, etc. Preferably, the mixing of step (a) is performed by a technique that is selected from gel casting, dissolution and casting with particle release, membrane lamination, phase separation, lyophilization, fiber bonding and extrusion.
Preferiblemente la etapa (a) comprende la adición de un solvente orgánico. Más preferiblemente, el disolvente empleado es cloroformo. Si bien se puede emplear cualquier disolvente orgánico que facilite la dispersión de las partículas de magnesio en la matriz polimérica. Preferably step (a) comprises the addition of an organic solvent. More preferably, the solvent employed is chloroform. While any organic solvent that facilitates the dispersion of magnesium particles in the polymer matrix can be used.
En otra realización preferida, el procedimiento comprende una etapa adicional de evaporación del disolvente utilizado en la etapa (a) y posterior procesado del producto obtenido en esta etapa adicional. Preferiblemente, la evaporación se realiza por agitación orbital. Tras la evaporación se puede obtener un producto laminar que se puede preparar mediante troceado previo al procesado siendo este procesado cualquier método de conformado de polímeros conocidos por cualquier experto en la materia. In another preferred embodiment, the process comprises an additional stage of evaporation of the solvent used in step (a) and subsequent processing of the product obtained in this additional stage. Preferably, evaporation is performed by orbital agitation. After evaporation, a laminar product can be obtained, which can be prepared by cutting before processing. Any polymer forming method known to any person skilled in the art is processed.
En otra realización preferida el procesado de la etapa (b) es un procesado termomecánico de compactación y moldeado. En una realización más preferida el procesado termomecánico de la etapa (b) se realiza a un intervalo de temperaturas de entre 100 y 200°C. Y en una realización aún más preferida el procesado termomecánico de la etapa (b) se realiza a un intervalo de temperaturas de entre 130 y 170°C. In another preferred embodiment the processing of step (b) is a thermomechanical processing of compaction and molding. In a more preferred embodiment the thermomechanical processing of step (b) is performed at a temperature range of between 100 and 200 ° C. And in an even more preferred embodiment the thermomechanical processing of step (b) is performed at a temperature range of between 130 and 170 ° C.
En un tercer aspecto, la presente invención se refiere al uso del material de la invención para la fabricación de un implante o dispositivo biomédico. In a third aspect, the present invention relates to the use of the material of the invention for the manufacture of a biomedical implant or device.
En un cuarto aspecto, la presente invención se refiere a un implante o dispositivo biomédico fabricado a partir del material de la presente invención. In a fourth aspect, the present invention relates to a biomedical implant or device manufactured from the material of the present invention.
Preferiblemente el implante es para permitir la reparación ósea, como material de osteosíntesis, más preferiblemente cuando las partículas de magnesio tienen un tamaño inferior a 50 μιτι. De acuerdo con otra realización preferible, el implante es para la regeneración del tejido óseo en la ingeniería tisular ósea, más preferiblemente las partículas de magnesio tienen un tamaño de entre 50 y 500 μιτι, siendo preferible que las partículas de magnesio tengan un tamaño entre 50 y 250 μιτι. Al ser un material denso, la posibilidad de que el conjunto pol ímero/Mg colapse y modifique su arquitectura por efecto de las cargas mecánicas in vivo sería inferior, lo que facilitaría que desempeñara su papel de andamio en tanto se produce la regeneración y vascularización del tejido óseo en la superficie. La utilización de un material completamente biodegradable ofrece ventajas importantes en relación con el uso de aleaciones metálicas convencionales como eliminación del efecto de protección de carga ("stress shielding") y posibilidad de diagnóstico post-operatorio utilizando campos electromagnéticos. A lo largo de la descripción y las reivindicaciones la palabra "comprende" y sus variantes no pretenden excluir otras características técnicas, aditivos, componentes o pasos. Para los expertos en la materia, otros objetos, ventajas y características de la invención se desprenderán en parte de la descripción y en parte de la práctica de la invención. Los siguientes ejemplos y dibujos se proporcionan a modo de ilustración, y no se pretende que sean limitativos de la presente invención. Preferably the implant is to allow bone repair, as an osteosynthesis material, more preferably when the magnesium particles are smaller than 50 μιτι. According to another preferred embodiment, the implant is for the regeneration of bone tissue in bone tissue engineering, more preferably the magnesium particles have a size between 50 and 500 μιτι, it being preferable that the magnesium particles have a size between 50 and 250 μιτι. Being a dense material, the possibility that the polymer / Mg set collapse and modify its architecture due to the effect of mechanical loads in vivo would be lower, which would facilitate it to play its role as scaffold while regeneration and vascularization of the bone tissue on the surface. The use of a completely biodegradable material offers important advantages in relation to the use of conventional metal alloys such as elimination of the effect of load protection ("stress shielding") and the possibility of post-operative diagnosis using electromagnetic fields. Throughout the description and the claims the word "comprises" and its variants are not intended to exclude other technical characteristics, additives, components or steps. For those skilled in the art, other objects, advantages and features of the invention will be derived partly from the description and partly from the practice of the invention. The following examples and drawings are provided by way of illustration, and are not intended to be limiting of the present invention.
DESCRIPCIÓN DE LAS FIGURAS DESCRIPTION OF THE FIGURES
Fig. 1. Imágenes de microscopía óptica correspondientes a: A) aspecto de las probetas de polímero cargado con Mg; y B) sección transversal de la misma; La imagen C se corresponde con una imagen electrónica de barrido mostrando un detalle de la interíaz polímero/Mg. Fig. 1. Optical microscopy images corresponding to: A) appearance of the Mg-loaded polymer specimens; and B) cross section thereof; Image C corresponds to an electronic scanning image showing a detail of the polymer / Mg interface.
Fig. 2. Variación de la carga en función de la profundidad para el L-PLLA y el L- PLLA/Mg. Fig. 2. Variation of the load as a function of the depth for the L-PLLA and the L-PLLA / Mg.
Fig.3. Curva tensión-desplazamiento para el L-PLLA con y sin magnesio. Fig. 3. Voltage-displacement curve for the L-PLLA with and without magnesium.
Fig. 4. Viabilidad de células madre mesenquimales humanas cultivadas sobre muestras de L-PLLA/Mg. Los resultados se expresan como porcentaje de la viabilidad celular medida al cabo de 1 día, a la que se asignó un valor arbitrario de 100. Fig. 4. Viability of human mesenchymal stem cells cultured on L-PLLA / Mg samples. The results are expressed as a percentage of the cell viability measured after 1 day, to which an arbitrary value of 100 was assigned.
EJEMPLOS EXAMPLES
A continuación se ilustrará la invención mediante unos ensayos realizados por los inventores, que ponen de manifiesto la especificidad y efectividad del material de la invención y de su procedimiento de obtención para la fabricación de un biomaterial de regeneración ósea. Síntesis del material The invention will now be illustrated by tests carried out by the inventors, which show the specificity and effectiveness of the material of the invention and its method of obtaining for the manufacture of a bone regeneration biomaterial. Material Synthesis
Se ha preparado un material compuesto de acido poliláctico en su forma L- isomérica (L-PLLA) y una fracción en volumen nominal del 30% de Mg. La mezcla se ha producido previa disolución del polímero en cloroformo. Una vez disuelto se ha procedido al mezclado con el polvo de Mg, con un tamaño medio de unas 250 mieras, y a continuación a la evaporación del disolvente. Las imágenes de la Figura 1 muestran el aspecto del material después de la mezcla (A), y las secciones transversales examinadas en el microscopio óptico (B) y electrónico (C). A polylactic acid composite material in its L-isomeric form (L-PLLA) and a nominal volume fraction of 30% Mg has been prepared. The mixture has been produced after dissolving the polymer in chloroform. Once dissolved it has been mixed with the Mg powder, with an average size of about 250 microns, and then evaporation of the solvent. The images in Figure 1 show the appearance of the material after mixing (A), and the cross sections examined in the optical (B) and electron microscope (C).
Una vez secado, se ha procedido a su troceado y posterior moldeo por extrusión a una temperatura de 160°C. El análisis microstructural pone de manifiesto una distribución homogénea del polvo de Mg. Once dried, it has been cut and then extruded by extrusion at a temperature of 160 ° C. Microstructural analysis shows a homogeneous distribution of Mg powder.
Medida de propiedades del material Measurement of material properties
Las propiedades mecánicas que presentan los polímeros son en general insuficientes para su uso como biomaterial, ya sea para su aplicación como andamio, como material de relleno, etc. Por lo tanto, se hace necesaria la combinación de propiedades mecánicas polímero/metal para incrementar las prestaciones mecánicas que por si solo el polímero es incapaz de ofrecer, y asemejarlas a las del hueso. La caracterización mecánica ha sido efectuada a través de técnicas de indentación instrumentadas, que permiten medir de forma simultánea la dureza y el módulo elástico del material compuesto. Las medidas han sido realizadas empleando un ultramicroindentador Nanotest 600 con una punta de diamante tipo Berkovich. Su módulo de Young (Ei) y los coeficientes de Poisson (v¡) son 1 141 GPa y 0,07, respectivamente. Los ensayos de indentación han sido efectuados en diferentes muestras de L- PLLA y L-PLLA/Mg empleando cargas de 500 mN, velocidades de deformación en las curvas de carga y descarga de 12,5 nms"1 y 15 s de presión con el valor máximo alcanzado en la curva de carga (500 mN). Tal y como se puede ver en la Figura 2, las curvas de carga y descarga presentan sustanciales diferencias. Por una parte, la mayor penetración en el caso del L-PLLA pone de manifiesto su menor dureza. Por otra parte, la pendiente correspondiente a la curva de descarga para el material compuesto es mayor que para el caso del pol ímero, lo que indica que el módulo de Young correspondiente al material compuesto es superior al del polímero. The mechanical properties of polymers are generally insufficient for use as a biomaterial, whether for application as scaffolding, as filler material, etc. Therefore, the combination of polymer / metal mechanical properties is necessary to increase the mechanical performance that the polymer alone is unable to offer, and resemble those of the bone. The mechanical characterization has been carried out through instrumented indentation techniques, which allow the hardness and elastic modulus of the composite material to be measured simultaneously. The measurements have been made using a Nanotest 600 ultra-microindentator with a Berkovich type diamond tip. Its Young's modulus (Ei) and Poisson's coefficients (v¡) are 1,141 GPa and 0,07, respectively. Indentation tests have been carried out on different samples of L-PLLA and L-PLLA / Mg using loads of 500 mN, deformation rates in the loading and unloading curves of 12.5 nms "1 and 15 s of pressure with the maximum value reached in the load curve (500 mN) As can be seen in Figure 2, the loading and unloading curves have substantial differences, on the one hand, the greater penetration in the case of the L-PLLA puts it shows its lower hardness.On the other hand, the slope corresponding to the discharge curve for the composite material is greater than in the case of the polymer, which indicates that Young's modulus corresponding to the composite material is greater than that of the polymer.
En la Tabla 1 se recogen los valores de la dureza (H), del módulo de Young reducido (ER), y del módulo de Young (E) para el polímero con y sin magnesio, v representa el valor del coeficiente de Poisson utilizado para el calculo del módulo. Table 1 shows the values of the hardness (H), the reduced Young's modulus (E R ), and the Young's modulus (E) for the polymer with and without magnesium, v represents the value of the Poisson coefficient used for the calculation of the module.
Figure imgf000012_0001
Figure imgf000012_0001
Tabla 1 : Valores de dureza y módulo determinados a partir de medidas de ultramicroindentación. Table 1: Hardness and module values determined from ultra-microindentation measurements.
El módulo elástico del L-PLLA depende del grado de polimerización que presentan las cadenas de monómeros. Cabe destacar que con una fracción en volumen de un 30% de Mg prácticamente se triplica el valor del módulo elástico, acercándose al valor correspondiente al hueso cortical. The elastic modulus of the L-PLLA depends on the degree of polymerization of the monomer chains. It should be noted that with a volume fraction of 30% Mg, the value of the elastic modulus almost triples, approaching the value corresponding to the cortical bone.
Los ensayos de compresión ponen de manifiesto un claro aumento de la tensión máxima alcanzada durante el ensayo. En la Figura 3 se puede apreciar como durante el ensayo de compresión el polímero sin magnesio no sufre deformación alguna, presentando por tanto ruptura frágil, sin embargo el polímero reforzado con magnesio manifiesta deformación plástica semejante a la que presentan los metales. En ninguno de los ensayos de compresión efectuados en las muestras de L-PLLA/Mg se alcanzó la rotura, manifestando deformación en barrilete. Compression tests show a clear increase in the maximum tension reached during the test. In Figure 3 you can see as during the compression test the polymer without magnesium does not undergo any deformation, thus presenting a fragile rupture, however the polymer reinforced with magnesium shows plastic deformation similar to that of the metals. In none of the compression tests carried out on the L-PLLA / Mg samples, breakage was achieved, showing deformation in the skipjack.
En la Tabla 2 se recogen los valores de limites elástico (σο) y carga máxima (Omax) registrados en el ensayo de compresión. Table 2 shows the values of elastic limits (σο) and maximum load (Omax) recorded in the compression test.
Figure imgf000013_0001
Figure imgf000013_0001
Tabla 2: Valores medios de límite elástico (σο) y carga máxima (amax) registrados en el ensayo de compresión Comparando los valores del módulo de Young y de la tensión correspondiente al límite elástico, obtenidos para el polímero reforzado con magnesio con los correspondientes al hueso trabecular, se puede comprobar como el refuerzo con magnesio permite obtener materiales compuestos polímero/metal con propiedades mecánicas semejantes a las del hueso humano, permitiendo de este modo una mejor transferencia de carga entre este material artificial y el tejido óseo. Table 2: Average values of elastic limit (σο) and maximum load (a max ) recorded in the compression test Comparing the values of Young's modulus and the tension corresponding to the elastic limit, obtained for the magnesium reinforced polymer with the corresponding to the trabecular bone, it can be seen how magnesium reinforcement allows to obtain polymer / metal composite materials with mechanical properties similar to those of human bone, thus allowing a better load transfer between this artificial material and bone tissue.
Ensayos de biocompatiblidad La biocompatibilidad in vitro del polímero reforzado con magnesio se ha ensayado empleando células madre mesenquimales humanas procedentes de médula ósea. Las células se cultivaron hasta 15 días sobre las muestras de L- PLLA Mg, incubadas previamente en medio de cultivo durante al menos 1 h. Al cabo de estos tiempos de incubación se cuantificó la actividad metabólica, como parámetro asociado a la viabilidad celular, empleando el reactivo comercial AlamarBIue™. La Figura 4 muestra que la viabilidad celular incrementa con el tiempo de cultivo sobre los materiales compuestos polímero/metal. Biocompatibility assays The in vitro biocompatibility of the magnesium reinforced polymer has been tested using human mesenchymal stem cells from bone marrow. The cells were grown for up to 15 days on the L- samples PLLA Mg, previously incubated in culture medium for at least 1 h. After these incubation times the metabolic activity was quantified, as a parameter associated with cell viability, using the commercial reagent AlamarBIue ™. Figure 4 shows that cell viability increases with the culture time on polymer / metal composites.

Claims

REIVINDICACIONES
Material que comprende la mezcla de: Material comprising the mixture of:
a. una matriz polimérica que comprende un polímero biodegradable, y b. partículas de magnesio.  to. a polymeric matrix comprising a biodegradable polymer, and b. magnesium particles
Material según la reivindicación 1 , donde el polímero biodegradable se selecciona de entre policaprolactona, polifumaratos, ácido poliláctico, ácido poliglicólico y cualquiera de sus combinaciones. Material according to claim 1, wherein the biodegradable polymer is selected from polycaprolactone, polyfumarates, polylactic acid, polyglycolic acid and any combination thereof.
Material según una cualquiera de las reivindicaciones 1 ó 2, donde el polímero biodegradable es un copolímero que comprende al menos ácido poliláctico. Material according to any one of claims 1 or 2, wherein the biodegradable polymer is a copolymer comprising at least polylactic acid.
Material según la reivindicación 3, donde la relación en peso de ácido poliláctico respecto al otro componente del copolímero es de entre 100:0 a 60:40. Material according to claim 3, wherein the weight ratio of polylactic acid to the other component of the copolymer is between 100: 0 to 60:40.
Material según una cualquiera de las reivindicaciones 1 a 4, donde el porcentaje en volumen de las partículas de magnesio al respecto del material total es menor o igual al 70%. Material according to any one of claims 1 to 4, wherein the volume percentage of the magnesium particles with respect to the total material is less than or equal to 70%.
Material según una cualquiera de las reivindicaciones 1 a 5, donde las partículas de magnesio tienen un tamaño de entre 50 y 500 μιτι. Material according to any one of claims 1 to 5, wherein the magnesium particles have a size between 50 and 500 μιτι.
Material según la reivindicación 6, donde las partículas de magnesio tienen un tamaño de entre 50 y 250 μιτι. Material according to claim 6, wherein the magnesium particles have a size between 50 and 250 μιτι.
8. Material según una cualquiera de las reivindicaciones 1 a 5, donde las partículas de magnesio tienen un tamaño inferior a 50 μιτι. 8. Material according to any one of claims 1 to 5, wherein the magnesium particles have a size of less than 50 μιτι.
9. Procedinniento de obtención del material tal como se define en una cualquiera de las reivindicaciones 1 a 8, que comprende las etapas: 9. Procedure for obtaining the material as defined in any one of claims 1 to 8, comprising the steps:
a. mezclado del polímero formador de la matriz y de las partículas de magnesio, y  to. mixing of the matrix forming polymer and magnesium particles, and
b. procesado del producto obtenido en la etapa (a).  b. processing of the product obtained in step (a).
10. Procedimiento según la reivindicación 9, donde el mezclado de la etapa (a) se realiza por una técnica que se selecciona entre gel casting, disolución y colada con liberación de partículas, laminación de membranas, separación de fases, liofilización, unión de fibras y extrusión. 10. Method according to claim 9, wherein the mixing of step (a) is performed by a technique that is selected from gel casting, dissolution and casting with particle release, membrane lamination, phase separation, lyophilization, fiber bonding and extrusion.
1 1 . Procedimiento según una cualquiera de las reivindicaciones 9 o 10, donde el procedimiento comprende la adición de un disolvente orgánico en la etapa (a). eleven . Process according to any one of claims 9 or 10, wherein the process comprises the addition of an organic solvent in step (a).
12. Procedimiento según la reivindicación 1 1 , donde el disolvente empleado en la etapa (a) es cloroformo. 12. A process according to claim 1, wherein the solvent used in step (a) is chloroform.
13. Procedimiento según una cualquiera de las reivindicaciones 1 1 o 12, donde el procedimiento comprende una etapa adicional de evaporación del disolvente adicionado en la etapa (a), y posteriormente se procesa el producto obtenido en esta etapa adicional. 13. Process according to any one of claims 1 or 12, wherein the process comprises an additional stage of evaporation of the solvent added in step (a), and subsequently the product obtained in this additional stage is processed.
14. Procedimiento según la reivindicación 13, donde la evaporación del disolvente en la etapa adicional se realiza por agitación orbital. 14. Method according to claim 13, wherein evaporation of the solvent in the additional step is carried out by orbital stirring.
15. Procedimiento según una cualquiera de las reivindicaciones 9 a 14, el procesado de la etapa (b) es un procesado termomecánico de compactación y moldeado. 15. Method according to any one of claims 9 to 14, the processing of step (b) is a thermomechanical processing of compaction and molding.
16. Procedimiento según la reivindicación 15, donde el procesado termomecánico de la etapa (b) se realiza a un intervalo de temperaturas de entre 100 °C y 200 °C. 17. Procedimiento según la reivindicación 16, donde el procesado termomecánico de la etapa (b) se realiza a un intervalo de temperaturas de entre 130 °C y 170 °C. 16. The method according to claim 15, wherein the thermomechanical processing of step (b) is carried out at a temperature range between 100 ° C and 200 ° C. 17. Method according to claim 16, wherein the thermomechanical processing of step (b) is performed at a temperature range between 130 ° C and 170 ° C.
18. - Uso del material tal como se define en una cualquiera de las reivindicaciones 1 a 8 para fabricar un implante o dispositivo biomédico. 18. - Use of the material as defined in any one of claims 1 to 8 to manufacture a biomedical implant or device.
19. - Implante o dispositivo biomédico fabricado a partir de un material tal como se define en una cualquiera de las reivindicaciones 1 a 8. 20.- Implante fabricado a partir de un material tal como se define en una cualquiera de las reivindicaciones 1 a 5 para utilizar en la reparación de tejido óseo como material de osteosíntesis. 19. - Implant or biomedical device manufactured from a material as defined in any one of claims 1 to 8. 20.- Implant manufactured from a material as defined in any one of claims 1 to 5 for use in bone tissue repair as osteosynthesis material.
21 . - Implante según la reivindicación 20, donde las partículas de magnesio tienen un tamaño inferior a 50 μιτι twenty-one . - Implant according to claim 20, wherein the magnesium particles have a size of less than 50 μιτι
22. - Implante fabricado a partir de un material tal como se define en una cualquiera de las reivindicaciones 1 a 5, para utilizar en la regeneración de tejido óseo en ingeniería tisular ósea. 22. - Implant manufactured from a material as defined in any one of claims 1 to 5, for use in the regeneration of bone tissue in bone tissue engineering.
23. - Implante según la reivindicación 22, donde las partículas de magnesio tienen un tamaño de entre 50 y 500 μιτι. 23. - Implant according to claim 22, wherein the magnesium particles have a size between 50 and 500 μιτι.
24. Implante según la reivindicación 23, donde las partículas de magnesio tienen un tamaño de entre 50 y 250 μιτι. 24. Implant according to claim 23, wherein the magnesium particles have a size between 50 and 250 μιτι.
PCT/ES2011/070440 2010-06-21 2011-06-20 Polymer and magnesium particle material for biomedical applications WO2011161292A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201030950 2010-06-21
ES201030950A ES2372341B8 (en) 2010-06-21 2010-06-21 COMPOSITE MATERIAL OF POLYMER AND MAGNESIUM PARTICLES FOR BIOMEDICAL APPLICATIONS.

Publications (1)

Publication Number Publication Date
WO2011161292A1 true WO2011161292A1 (en) 2011-12-29

Family

ID=45370883

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070440 WO2011161292A1 (en) 2010-06-21 2011-06-20 Polymer and magnesium particle material for biomedical applications

Country Status (2)

Country Link
ES (1) ES2372341B8 (en)
WO (1) WO2011161292A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015142631A1 (en) * 2014-03-17 2015-09-24 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Magnesium composite-containing scaffolds to enhance tissue regeneration
EP3299037A1 (en) * 2016-09-27 2018-03-28 Regedent AG Barrier system and method of forming a barrier system, a method of regenerating a bone and a reinforcement member

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020127265A1 (en) * 2000-12-21 2002-09-12 Bowman Steven M. Use of reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
US20060024377A1 (en) * 2004-01-16 2006-02-02 Ying Jackie Y Composite materials for controlled release of water soluble products
US20070191963A1 (en) * 2002-12-12 2007-08-16 John Winterbottom Injectable and moldable bone substitute materials
US20080249638A1 (en) * 2007-04-05 2008-10-09 Cinvention Ag Biodegradable therapeutic implant for bone or cartilage repair

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020127265A1 (en) * 2000-12-21 2002-09-12 Bowman Steven M. Use of reinforced foam implants with enhanced integrity for soft tissue repair and regeneration
US20070191963A1 (en) * 2002-12-12 2007-08-16 John Winterbottom Injectable and moldable bone substitute materials
US20060024377A1 (en) * 2004-01-16 2006-02-02 Ying Jackie Y Composite materials for controlled release of water soluble products
US20080249638A1 (en) * 2007-04-05 2008-10-09 Cinvention Ag Biodegradable therapeutic implant for bone or cartilage repair

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015142631A1 (en) * 2014-03-17 2015-09-24 University Of Pittsburgh-Of The Commonwealth System Of Higher Education Magnesium composite-containing scaffolds to enhance tissue regeneration
EP3119447A4 (en) * 2014-03-17 2017-11-08 University of Pittsburgh - Of the Commonwealth System of Higher Education Magnesium composite-containing scaffolds to enhance tissue regeneration
EP3299037A1 (en) * 2016-09-27 2018-03-28 Regedent AG Barrier system and method of forming a barrier system, a method of regenerating a bone and a reinforcement member

Also Published As

Publication number Publication date
ES2372341B8 (en) 2013-09-27
ES2372341A1 (en) 2012-01-18
ES2372341B1 (en) 2013-01-24

Similar Documents

Publication Publication Date Title
Liu et al. Delivery of growth factors using a smart porous nanocomposite scaffold to repair a mandibular bone defect
JP5881669B2 (en) Collagen / hydroxyapatite composite skeleton and method for producing the same
Si et al. Controlled degradable chitosan/collagen composite scaffolds for application in nerve tissue regeneration
Okamoto et al. Synthetic biopolymer nanocomposites for tissue engineering scaffolds
Dong et al. Degradation and biocompatibility of porous nano-hydroxyapatite/polyurethane composite scaffold for bone tissue engineering
Turco et al. Alginate/hydroxyapatite biocomposite for bone ingrowth: a trabecular structure with high and isotropic connectivity
Misra et al. Polyhydroxyalkanoate (PHA)/inorganic phase composites for tissue engineering applications
Cui et al. The nanocomposite scaffold of poly (lactide-co-glycolide) and hydroxyapatite surface-grafted with L-lactic acid oligomer for bone repair
Mi et al. Morphology, mechanical properties, and mineralization of rigid thermoplastic polyurethane/hydroxyapatite scaffolds for bone tissue applications: effects of fabrication approaches and hydroxyapatite size
Gyawali et al. Citrate-based biodegradable injectable hydrogel composites for orthopedic applications
Hu et al. Biodegradable poly (lactic acid-co-trimethylene carbonate)/chitosan microsphere scaffold with shape-memory effect for bone tissue engineering
Hixon et al. A comparison of cryogel scaffolds to identify an appropriate structure for promoting bone regeneration
Scott et al. Advances in bionanomaterials for bone tissue engineering
Alves Cardoso et al. Gelation and biocompatibility of injectable Alginate–Calcium phosphate gels for bone regeneration
Jančář et al. Mechanical response of porous scaffolds for cartilage engineering
Sa et al. Beneficial effects of biomimetic nano-sized hydroxyapatite/antibiotic gentamicin enriched chitosan–glycerophosphate hydrogel on the performance of injectable polymethylmethacrylate
Meskinfam Polymer scaffolds for bone regeneration
Ganguly et al. Electrospun and 3D printed polymeric materials for one-stage critical-size long bone defect regeneration inspired by the Masquelet technique: Recent Advances
Rad et al. Osteogenic differentiation of adipose-derived mesenchymal stem cells using 3D-Printed PDLLA/β-TCP nanocomposite scaffolds
Kalambettu et al. Fabrication and in vitro evaluation of Sulphonated Polyether Ether Ketone/nano Hydroxyapatite composites as bone graft materials
Wang et al. Biomimetic scaffolds with programmable pore structures for minimum invasive bone repair
WO2011161292A1 (en) Polymer and magnesium particle material for biomedical applications
KR101815367B1 (en) Acrylic bone cement composite comprising calcium phosphate microsphere uniformly spreaded therein and a preparation method thereof
Zadeh et al. A comprehensive in vitro study of the carbon nanotube enhanced chitosan scaffolds for cancellous bone regeneration
Al-Namnam et al. An injectable poly (caprolactone trifumarate-gelatin microparticles)(PCLTF-GMPs) scaffold for irregular bone defects: Physical and mechanical characteristics

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11797653

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11797653

Country of ref document: EP

Kind code of ref document: A1