WO2011148706A1 - 液晶表示装置用基板および液晶表示装置 - Google Patents

液晶表示装置用基板および液晶表示装置 Download PDF

Info

Publication number
WO2011148706A1
WO2011148706A1 PCT/JP2011/057373 JP2011057373W WO2011148706A1 WO 2011148706 A1 WO2011148706 A1 WO 2011148706A1 JP 2011057373 W JP2011057373 W JP 2011057373W WO 2011148706 A1 WO2011148706 A1 WO 2011148706A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
crystal display
display device
substrate
electrode
Prior art date
Application number
PCT/JP2011/057373
Other languages
English (en)
French (fr)
Inventor
萩原 英聡
清水 美絵
福吉 健蔵
田口 貴雄
Original Assignee
凸版印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2010121909A external-priority patent/JP5099174B2/ja
Priority claimed from JP2010121910A external-priority patent/JP5158133B2/ja
Application filed by 凸版印刷株式会社 filed Critical 凸版印刷株式会社
Priority to CN201180026258.3A priority Critical patent/CN102918451B/zh
Priority to KR1020127030854A priority patent/KR101438989B1/ko
Priority to EP11786406.6A priority patent/EP2579090A4/en
Publication of WO2011148706A1 publication Critical patent/WO2011148706A1/ja
Priority to US13/686,159 priority patent/US9285644B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133707Structures for producing distorted electric fields, e.g. bumps, protrusions, recesses, slits in pixel electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/201Filters in the form of arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134381Hybrid switching mode, i.e. for applying an electric field with components parallel and orthogonal to the substrates

Definitions

  • the present invention relates to a substrate for a liquid crystal display device and a liquid crystal display device using the same.
  • the present invention relates to a color filter substrate for a vertical alignment liquid crystal display device and a vertical alignment liquid crystal display device using the same.
  • liquid crystal alignment methods such as VA (Vertically Alignment), HAN (Hybrid-aligned Nematic), TN (Twisted Nematic), OCB (Optically Compensated Bend), and CPA (Continuous Pinwheel Alignment) are available.
  • VA Very Alignment
  • HAN Hybrid-aligned Nematic
  • TN Transmission Nematic
  • OCB Optically Compensated Bend
  • CPA Continuous Pinwheel Alignment
  • liquid crystal display devices such as the VA system, which is easy to handle high-speed response with a wide viewing angle with liquid crystal aligned parallel to the substrate surface, such as glass, and the HAN system, which is effective for a wide viewing angle
  • the flatness thickness of the film thickness
  • Higher levels are required for electrical characteristics such as uniformity and reduction in unevenness of the color filter surface) and dielectric constant.
  • a technique for reducing the thickness of the liquid crystal cell has been a major issue in order to reduce coloring when viewed obliquely.
  • VA Multi-Domain Vertically Alignment
  • PVA Powered Vertically Alignment
  • VAECB Very Alignment Electrically Controlled Birefringence
  • VAHAN Very Alignment Hybrid-aligned Nematic
  • VATN Very Alignment ment
  • the MVA technology eliminates the problem of vertically aligned liquid crystal that is unstable when a liquid crystal drive voltage is applied (the liquid crystal that is initially perpendicular to the substrate surface is less likely to be tilted when the voltage is applied). This is a technique for ensuring a wide viewing angle by providing a plurality of portions, forming liquid crystal domains between these slits, and forming domains in a plurality of alignment directions.
  • Patent Document 1 discloses a technique for forming a liquid crystal domain using first and second alignment regulating structures (slits).
  • Patent Document 2 discloses a technique for forming four liquid crystal domains using photo-alignment. This patent document discloses that in order to ensure a wide viewing angle, a plurality of alignment treatments related to strict tilt angle control (89 degrees) in each domain and alignment axes different from each other by 90 ° are required. ing.
  • Patent Literature 3 A technique for controlling vertically aligned liquid crystal by an oblique electric field using a transparent conductive film (transparent electrode, display electrode or third electrode) on the color filter substrate side and first and second electrodes on the array substrate side is disclosed in Patent Literature 3 and Patent Document 4.
  • Patent Document 3 uses a liquid crystal having a negative dielectric anisotropy
  • Patent Document 4 describes a liquid crystal having a positive dielectric anisotropy.
  • Patent Document 4 does not describe a liquid crystal having negative dielectric anisotropy.
  • a basic configuration of a liquid crystal display device such as a VA method or a TN method includes a color filter substrate having a common electrode and a plurality of pixel electrodes (for example, TFT elements that are electrically connected to a comb tooth) that drive the liquid crystal.
  • the liquid crystal is sandwiched between the transparent electrode formed in a shape pattern and the array substrate.
  • the liquid crystal is driven by applying a driving voltage between the common electrode on the color filter and the pixel electrode formed on the array substrate side.
  • the transparent conductive film as a common electrode on the surface of the pixel electrode and the color filter is usually a conductive metal oxide thin film such as ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IGZO (Indium Garium Zinc Oxide). It is used.
  • ITO Indium Tin Oxide
  • IZO Indium Zinc Oxide
  • IGZO Indium Garium Zinc Oxide
  • Patent Document 5 discloses a technique for disclosing a color filter such as a blue pixel, a green pixel, a red pixel and a black matrix.
  • a technique in which a transparent conductive film is formed on a black matrix and a colored pixel and an overcoat is further laminated is disclosed in Patent Document 5.
  • Patent Document 6 A technique for forming the cross section of the black matrix in a trapezoidal shape is described in Patent Document 6.
  • Patent Document 3 for example, FIG. 7 and FIG. 9
  • Patent Document 7 discloses a technique for forming a color filter (color filter) on a conductive film that is transparent.
  • Japanese Patent No. 3957430 JP 2008-181139 A Japanese Patent No. 2859093 Japanese Patent No. 4364332 JP-A-10-39128 Japanese Patent No. 3228139 JP-A-5-26161
  • a liquid crystal domain is formed by an alignment regulating structure called a slit (MVA technology).
  • MVA technology alignment regulating structure
  • the liquid crystal has a negative dielectric anisotropy, specifically, the liquid crystal positioned between two resin slits formed on a color filter or the like is, for example, in plan view when a driving voltage is applied. Then, it falls in a direction perpendicular to the slit and tries to line up horizontally on the substrate surface.
  • the liquid crystal at the center between the two slits does not uniquely determine the direction of tilting despite voltage application, and may take spray orientation or bend orientation.
  • Patent Document 3 and Patent Document 4 the technique of using the first, second, and third electrodes and controlling the liquid crystal alignment with an oblique electric field is extremely effective. .
  • the direction in which the liquid crystal falls can be set by the oblique electric field.
  • the amount of tilting of the liquid crystal can be easily controlled by the oblique electric field, and a great effect is obtained in halftone display.
  • Disclination is a problem that an area where light transmittance differs due to unintentional alignment disorder or unalignment of a liquid crystal is generated in a pixel (a pixel is the minimum unit of liquid crystal display and is synonymous with a rectangular pixel described in the present invention). it is.
  • Patent Document 3 in order to fix the disclination at the center of the pixel, an alignment control window without a transparent conductive film is provided at the center of the pixel of the counter electrode (third electrode).
  • no measures for improving the disclination around the pixel are disclosed.
  • the disclination can be fixed at the center of the pixel, no measures for minimizing the disclination are shown.
  • Patent Document 2 shows that in order to secure a wide viewing angle, it is necessary to strictly control the tilt angle of the liquid crystal at 89 degrees and to perform alignment processing four times.
  • Patent Document 4 is preferable because the effect of the oblique electric field is increased by the amount of the dielectric layer laminated on the transparent conductive film (transparent electrode).
  • FIG. 7 of Patent Document 4 there is a problem that the vertically aligned liquid crystal remains in the center of the pixel and at the end of the pixel even after voltage application, leading to a decrease in transmittance or aperture ratio.
  • Patent Document 4 does not disclose a liquid crystal having a negative dielectric anisotropy in the description and examples thereof) Therefore, it is difficult to improve the transmittance. For this reason, it is a technique that is difficult to employ in a transflective liquid crystal display device.
  • the present invention has been made in view of the above circumstances, and is a substrate for a liquid crystal display device that reduces disclination, is bright and has good responsiveness, and is optimal for driving liquid crystal by an oblique electric field, and a liquid crystal display including the same
  • An object is to provide an apparatus.
  • the black matrix disperses the light-shielding pigment in the resin.
  • the resin layer is formed on a transparent substrate including the black matrix and a transparent conductive film, and forms a convex portion above the black matrix, the black layer A substrate for a liquid crystal display device is provided in which a recess is formed in a region passing through the center of the opening of the matrix.
  • a black matrix having a plurality of openings formed of a transparent substrate, a light shielding layer formed on the transparent substrate and having a light shielding pigment dispersed in a resin, and the black matrix.
  • a substrate for a liquid crystal display device comprising: a transparent conductive film formed on a transparent substrate; and a plurality of colored pixels formed in a pixel region divided by the plurality of openings on the transparent conductive film. It is.
  • the liquid crystal display device substrate according to the first or second aspect and the liquid crystal display device substrate disposed in opposition to the liquid crystal display device substrate are arranged in a matrix.
  • a liquid crystal display device comprising: an array substrate provided; and a liquid crystal housed between the liquid crystal display device substrate and the array substrate.
  • a color filter substrate having a black matrix having a plurality of rectangular openings, a transparent conductive film, a plurality of colored pixels, and a resin layer on a transparent substrate, and an element for driving a liquid crystal.
  • the resin layer is disposed directly or indirectly on a transparent conductive film, and the resin layer A convex portion projecting from the surface and a concave portion are formed in a region passing through the center of the rectangular opening of the black matrix, and the array substrate includes a comb-shaped first electrode made of a conductive metal oxide that is transparent in the visible region, and Comb-like second electrode is provided, the second electrode is disposed under the first electrode through an insulating layer, and the second electrode is arranged from the end of the first electrode in the direction in which the liquid crystal falls. protruding That the liquid crystal display device is provided.
  • a substrate for a liquid crystal display device that reduces disclination, is bright and has good responsiveness, and is optimal for driving a liquid crystal by an oblique electric field, and a liquid crystal display device including the same are provided.
  • FIG. 1 is a schematic cross-sectional view of a vertical alignment liquid crystal display device according to an embodiment of the present invention.
  • FIG. 2 is an enlarged cross-sectional view illustrating a 1 ⁇ 2 portion of a green pixel 14 of the vertical alignment liquid crystal display device illustrated in FIG. 1. It is a figure explaining the motion of the liquid crystal which started to fall immediately after application of the drive voltage of the vertical alignment liquid crystal display device shown in FIG. It is a figure which shows the orientation state of the liquid crystal molecule at the time of white display after the drive voltage application of the vertical alignment liquid crystal display device shown in FIG.
  • FIG. 2 is a view showing vertically aligned liquid crystal molecules in the vicinity of the first electrode when the first and second electrodes of the vertical alignment liquid crystal display device shown in FIG. 1 have a comb-like pattern.
  • FIG. 1 is a partial cross-sectional view illustrating a substrate according to Example 1.
  • FIG. 6 is a partial cross-sectional view showing a substrate according to Example 2.
  • FIG. 10 is a partial cross-sectional view showing a substrate according to Example 3.
  • FIG. 6 is a partial cross-sectional view showing a substrate according to Example 4.
  • FIG. 10 is a partial cross-sectional view illustrating a color filter substrate according to Embodiment 5.
  • FIG. 10 is a partial cross-sectional view illustrating a color filter substrate according to Example 6.
  • FIG. 10 is a cross-sectional view illustrating a liquid crystal display device according to Example 7.
  • FIG. 10 is a cross-sectional view illustrating a transflective liquid crystal display device according to an eighth embodiment.
  • 10 is a cross-sectional view illustrating a color filter substrate according to Example 9.
  • FIG. 10 is a cross-sectional view illustrating a color filter substrate according to Example 10.
  • FIG. 10 is a cross-sectional view illustrating a color filter substrate according to Example 11.
  • FIG. 14 is a cross-sectional view illustrating a color filter substrate according to Example 12.
  • FIG. 14 is a cross-sectional view illustrating a color filter substrate according to Example 13.
  • FIG. 16 is a cross-sectional view illustrating a liquid crystal display device according to Example 14;
  • FIG. 16 is a cross-sectional view illustrating a liquid crystal display device according to Example 15;
  • FIG. 16 is a cross-sectional view showing a liquid crystal display device according to Example 16;
  • FIG. 18 is a cross-sectional view showing a liquid crystal display device according to Example 17;
  • a first substrate having a resin layer formed on its surface and including or not including a color filter is opposed to a second substrate on which a liquid crystal driving element such as a TFT is formed. And a liquid crystal display device bonded with a liquid crystal layer sandwiched therebetween.
  • a transparent conductive film as a third electrode is disposed on the first substrate, and the first electrode as a pixel electrode and the first electrode have a potential of A technique of utilizing an oblique electric field generated in an electrode configuration including different second electrodes is used.
  • the inventors arrange a resin layer on the first substrate so as to cover the black matrix, It was found that a convex portion protruding from the surface of the resin layer above the black matrix and a concave portion in a region passing through the center of the opening portion of the black matrix can be used for controlling the alignment of the liquid crystal.
  • the present invention proposes a new technique to which a transparent conductive film) is added.
  • the convex portion is constituted by a superposed portion of a black matrix and a resin layer, and the liquid crystal alignment at the inclined portion in the convex portion is used for tilting of the liquid crystal when a driving voltage is applied.
  • the liquid crystal alignment at the shoulder portion (shoulder portion) of the resin layer is used for tilting the liquid crystal.
  • the operation of the liquid crystal will be described in detail in a later embodiment.
  • the height of the convex portion is preferably in the range of 0.5 ⁇ m to 2 ⁇ m. If the height is 0.4 ⁇ m or less, the effect is insufficient as a “trigger of liquid crystal collapse” at the time of voltage application, and if the height exceeds 2 ⁇ m, the flow of liquid crystal at the time of manufacturing a liquid crystal cell may be hindered. is there.
  • the inclined portion of the black matrix may be rounded, and the cross-sectional shape of the black matrix in the display region can be exemplified by a half moon shape, a trapezoid shape, a triangle shape, and the like.
  • the inclination angle of the black matrix from the substrate surface does not need to be specified in particular as long as the height of the convex portion described above exceeds 0.5 ⁇ m.
  • an inclination in the range of 30 ° to 80 ° is preferable.
  • the second embodiment of the present invention is directed to a liquid crystal whose initial alignment is vertical alignment, and a color filter substrate and an array substrate on which a liquid crystal driving element such as a TFT is formed are opposed to each other, and a liquid crystal layer for vertical alignment is interposed therebetween. It is assumed that the vertically aligned liquid crystal display device is bonded in a sandwiched manner.
  • a transparent conductive film that is a third electrode is disposed on the color filter substrate so as to cover the black matrix, and the first electrode that is a pixel electrode, The first electrode uses a technique that utilizes an oblique electric field generated in an electrode configuration including a second electrode having a different potential.
  • the present inventors have found that a convex part protruding from the surface of the colored pixel above the black matrix and a concave part in a region passing through the center of the colored pixel can be used for controlling the alignment of the liquid crystal. And a new technology in which the configuration of the third electrode (transparent conductive film) is added.
  • the convex part is composed of a superposed part of colored pixels of two different colors, and the liquid crystal alignment at the inclined part in the convex part is used for tilting of the liquid crystal when a driving voltage is applied.
  • the black matrix is a light-shielding pattern arranged around the picture element, which is the minimum unit of display, or on both sides of the picture element in order to increase the contrast of the liquid crystal display.
  • the light-shielding layer is a coating film in which a light-shielding pigment is dispersed in a transparent resin.
  • the light-shielding coating film is provided with photosensitivity and is obtained by patterning by a photolithography technique including exposure and development. it is.
  • the rectangular pixel refers to the opening of the black matrix and has the same meaning as the above picture element.
  • the colored layer is a coating film in which an organic pigment described later is dispersed in a transparent resin, and a pattern formed on a rectangular pixel by a photolithography technique is called a colored pixel.
  • the liquid crystal applicable to the first embodiment is a liquid crystal whose initial alignment (when no drive voltage is applied) is vertical alignment or parallel alignment, and the liquid crystal applicable to the second embodiment is initial alignment. (When no drive voltage is applied) is vertically aligned liquid crystal.
  • the dielectric anisotropy of the liquid crystal may be positive or negative.
  • the alignment film alignment process for setting the tilt angle can be omitted.
  • the alignment film used in the first and second embodiments may be only a heat treatment after coating formation, and rubbing alignment, optical alignment, and the like can be omitted.
  • the first and second embodiments can provide a color filter substrate suitable for, for example, a transflective liquid crystal display device in which brightness is more important than color purity because the transmittance at the center of a rectangular pixel can be increased. be able to.
  • the above-described conductive metal oxide thin film such as ITO can be used.
  • a metal thin film having higher conductivity than the metal oxide thin film can be employed.
  • a thin film of aluminum or aluminum alloy may be used for either the first electrode or the second electrode.
  • the relative dielectric constant of the colored layer is a relatively important characteristic, it is almost uniquely determined by the ratio of the organic pigment added as a colorant to the transparent resin. It is difficult to adjust the dielectric constant greatly.
  • the type and content of the organic pigment in the colored layer are set based on the color purity required for the liquid crystal display device, and thereby the relative dielectric constant of the colored layer is almost determined. It is possible to increase the relative dielectric constant to 4 or more by increasing the ratio of the organic pigment and making the colored layer thin.
  • the relative dielectric constant can be slightly increased.
  • the thickness of the coloring layer and the resin layer may be optimized in relation to the cell gap of the liquid crystal to be used (the thickness of the liquid crystal layer). In view of necessary electrical characteristics, for example, when the thickness of the colored layer and the resin layer is reduced, the thickness of the liquid crystal layer can be increased. When the former film thickness is thick, the thickness of the liquid crystal layer can be reduced correspondingly.
  • the first electrode and the second electrode are electrically insulated by an insulating layer in the thickness direction as will be described later.
  • the thickness of the colored layer, the resin layer, and the insulating layer can be adjusted by the thickness of the liquid crystal layer, the dielectric constant, the applied voltage, and the driving conditions.
  • the insulating layer is SiNx (silicon nitride)
  • the practical film thickness range of this insulating layer is 0.1 ⁇ m to 0.5 ⁇ m.
  • the positions of the first electrode and the second electrode in the film thickness direction may be reversed.
  • the oblique electric field can be used more effectively, the range of the electric lines of force when the driving voltage is applied extends in the film thickness direction including the liquid crystal layer and the transparent resin layer.
  • the transmittance can be increased.
  • FIG. 1 is a schematic cross-sectional view of a vertical alignment liquid crystal display device according to a first embodiment of the present invention.
  • This liquid crystal display device has a configuration in which a substrate 11 and an array substrate 21 are bonded together with a liquid crystal 17 interposed therebetween.
  • the substrate 11 is configured by sequentially forming the black matrix 2, the third electrode 3 that is a transparent conductive film, and the resin layer 18 on the transparent substrate 1a.
  • the second electrode 4 and the third electrode 5 are formed on the transparent substrate 1b.
  • a protective layer, an alignment film, a polarizing plate, a retardation plate, and the like are not shown.
  • FIG. 2 is a cross-sectional view showing an enlarged half portion of the rectangular opening in a plan view of FIG.
  • the polarizing plate was crossed Nicol, and a normally black liquid crystal display device was used.
  • a polarizing plate what has an absorption axis in the extending
  • FIG. 2 shows a vertical alignment in a state where no voltage is applied to the third electrode 3, which is a transparent conductive film provided on the substrate 11, and the first electrode 4 and the second electrode 5 provided on the array substrate 21. The alignment state of the liquid crystal molecules 17a, 17b, 17c, and 17d in the liquid crystal 17 is shown.
  • the liquid crystal at the center of the rectangular opening (1/2 pixel) is aligned perpendicular to the pixel surface, but the liquid crystal molecules 17a of the shoulder portion 18a of the concave portion 23 and the liquid crystal molecules 17b and 17c of the shoulder portion 18b of the convex portion 24 are arranged. Are oriented slightly diagonally.
  • the liquid crystal molecules 17a, 17b, and 17c are tilted in the direction of the arrow A.
  • the liquid crystal molecules 17a, 17b, and 17c are substantially tilted without performing an alignment process such as rubbing.
  • both a liquid crystal having a negative dielectric anisotropy and a liquid crystal having a positive dielectric anisotropy can be used.
  • a nematic liquid crystal having a birefringence of about 0.1 near room temperature can be used as the liquid crystal having a negative dielectric anisotropy.
  • liquid crystal having positive dielectric anisotropy has a wide selection range, various liquid crystal materials can be applied.
  • the thickness of the liquid crystal layer is not particularly limited, but ⁇ nd of the liquid crystal layer that can be effectively used in the present embodiment is in the range of approximately 300 nm to 500 nm.
  • a liquid crystal material having a fluorine atom in its molecular structure (hereinafter referred to as a fluorine-based liquid crystal) can be used as a vertically aligned liquid crystal material.
  • a liquid crystal drive voltage When a liquid crystal drive voltage is applied, a substantially strong electric field is generated at the protruding portion of the first electrode and the second electrode. Therefore, the dielectric constant is lower than the liquid crystal material used for conventional vertical alignment (small dielectric anisotropy).
  • the liquid crystal drive can be performed using the liquid crystal material.
  • a liquid crystal material having a small dielectric anisotropy has a low viscosity, and a high-speed response can be obtained when a similar electric field strength is applied.
  • the fluorine-based liquid crystal has a low dielectric constant, the incorporation of ionic impurities is small, performance deterioration such as a decrease in voltage holding ratio due to impurities is small, and display unevenness is unlikely to occur.
  • a polyimide organic polymer film can be heated and hardened.
  • one to three retardation plates may be used in a form to be bonded to the polarizing plate.
  • the operation of tilting the liquid crystal is an operation in which the liquid crystal having a negative initial dielectric anisotropy is tilted in the horizontal direction when a driving voltage is applied, or the dielectric constant is negative.
  • a liquid crystal having positive anisotropy it means an operation in which a liquid crystal whose initial alignment is horizontal rises in the vertical direction when a driving voltage is applied.
  • FIG. 3 is a diagram for explaining the movement of the liquid crystal that starts to collapse immediately after the drive voltage is applied. That is, as the voltage is applied, first, the liquid crystal molecules 17a, 17b, and 17c start to fall, and then the liquid crystal molecules around these liquid crystal molecules fall.
  • the concave portion 23 and the convex portion 24 have a thin transparent resin layer that is a dielectric or does not exist. Therefore, unlike the central portion of the pixel, the applied driving voltage easily propagates to the liquid crystal molecules, become. Although not shown in FIG. 3, the liquid crystal tilts in the opposite direction in the half pixel on the opposite side of the pixel.
  • optical compensation in halftone display can be performed only by the magnitude of the driving voltage, and a wide viewing angle can be secured without forming four multi-domains as in the MVA liquid crystal.
  • a halftone for example, each liquid crystal molecule is slanted
  • the 1 ⁇ 2 pixel opposite to the 1 ⁇ 2 pixel in FIG. 3 has a liquid crystal orientation having an inclined gradient in the opposite direction. perform a wide viewing angle.
  • FIG. 4 is a diagram showing the alignment state of the liquid crystal molecules during white display after the drive voltage is applied. As shown in FIG. 4, the liquid crystal molecules are aligned substantially parallel to the substrate surface.
  • FIG. 5 shows the alignment of the liquid crystal molecules 17a, 17b, 17c, and 17d of the horizontally aligned liquid crystal when no voltage is applied to the third electrode 3, the first electrode 4, and the second electrode 5, which are transparent conductive films. It shows the state.
  • the liquid crystal at the center of the pixel (1/2 pixel) is aligned perpendicular to the pixel surface, but the liquid crystal molecules at the shoulders 14b and 14a of the protrusion 24 and the recess 23 are slightly inclined.
  • a liquid crystal driving voltage is applied in this oblique alignment state, the liquid crystal molecules 17a, 17b, and 17c are tilted in the direction of the arrow as shown in FIG.
  • FIG. 6 is a schematic cross-sectional view for explaining the movement of the liquid crystal that starts to tilt immediately after application of the drive voltage.
  • the liquid crystal molecules 17a, 17b, and 17c start to stand in the vertical direction, and then liquid crystal molecules around the liquid crystal molecules stand.
  • the transparent resin layer as a dielectric is thin or does not exist in the convex portion 24 and the concave portion 23, unlike the central portion of the pixel, the applied driving pressure easily propagates to the liquid crystal molecules, and the trigger for the operation of tilting the liquid crystal become.
  • the liquid crystal tilts in the opposite direction in the half pixel on the opposite side of the pixel.
  • FIG. 7 shows the alignment state of the liquid crystal molecules during white display after the drive voltage is applied, and the liquid crystal molecules are aligned substantially perpendicular to the substrate surface.
  • the liquid crystal molecules are also applied to the array substrate 21 side in the same direction as the substrate 11 side. Can be defeated.
  • a liquid crystal having negative dielectric anisotropy is used as a liquid crystal having negative dielectric anisotropy.
  • the first electrode is a comb-like electrode 4a, 4b, 4c, 4d
  • the second electrode is also a comb-like electrode 5a, 5b, 5c, 5d.
  • the liquid crystal molecules 27a, 27b, 27c and 27d in the vicinity of the first electrodes 4a, 4b, 4c and 4d are vertically aligned.
  • the second electrodes 5a, 5b, 5c, and 5d are arranged such that the end portions of the second electrodes 5a, 5b, 5c, and 5d extend from the pixels that are in the direction of tilting the liquid crystal 27a toward the black matrix 2. It arrange
  • the protruding amount 28 can be variously adjusted depending on dimensions such as a liquid crystal material to be used, a driving voltage, and a liquid crystal cell thickness. As the protruding amount 28, a small amount of 1 ⁇ m to 5 ⁇ m is sufficient.
  • the width of the overlapping portion of the first electrodes 4a, 4b, 4c, 4d and the second electrodes 5a, 5b, 5c, 5d is indicated by 29.
  • the alignment film is not shown.
  • the width of the overlapping portion can be adjusted as appropriate.
  • FIG. 9 shows the operation of the liquid crystal molecules 27a, 27b, 27c, and 27d immediately after the voltage for driving the liquid crystal is applied and the electric lines of force 30a, 30b, 30c, and 30d.
  • the liquid crystal molecules 27a, 27b, 27c, and 27d start to fall in the direction A of the electric lines of force by applying the voltage. Since the liquid crystal molecules are tilted in the same direction as the liquid crystal molecules 17a, 17b, and 17c shown in FIG. 3, the liquid crystal molecules of the illustrated pixel are instantaneously tilted in the same direction. Can be greatly improved.
  • the first electrode 4a, 4b, 4c, 4d has a first electrode 4a, 4b, 4c, 4d in order to facilitate the orientation of the liquid crystal molecules on the portion protruding from the end of the first electrode 4a, 4b, 4c, 4d.
  • a slight tilt is imparted to the liquid crystal molecules, and the liquid crystal molecules are easily tilted even at a low voltage.
  • FIG. 9 illustrates 1 ⁇ 2 pixel of the pixel, but the protruding direction of the second electrode in the remaining 1 ⁇ 2 pixel is point symmetric or line symmetric with respect to the 1 ⁇ 2 pixel in FIG. in it is desirable.
  • the comb-like electrode pattern may be V-shaped or slanted in plan view. Alternatively, a comb-like pattern in which the direction of 90 ° is changed in 1/4 pixel units may be used. These electrode patterns are preferably point-symmetric or line-symmetric when viewed from the pixel center.
  • the recess 23 is preferably provided in a straight line in a region passing through the center so that the rectangular pixel is divided into two.
  • the comb-like pattern shape of the first electrode and the second electrode thus, it can be formed in a shape extending in the shape of a cross or X from the center of the rectangular pixel.
  • the concave portion is formed in a cross shape or an X shape
  • it is desirable that the protruding portion of the second electrode is disposed in the four sides (black matrix) direction of the rectangular pixel with respect to the first electrode.
  • the comb patterns of the first electrode and the second electrode are desirably point symmetric or line symmetric from the center of the rectangular pixel.
  • a 2nd electrode and a 3rd electrode can be made into a common electric potential (common).
  • the overlapping portion 29 of the first electrode and the second electrode shown in FIG. 8 can be used as an auxiliary capacitor.
  • the substrate 11 is not provided with a color filter.
  • a color filter may be formed and used as a color filter substrate.
  • the color filter is formed between the transparent conductive film 3 and the resin layer 18.
  • the colored pixels constituting the color filter are not limited to the three colors of the red pixel, the green pixel, and the blue pixel, and a complementary color pixel such as a yellow pixel or a white pixel (transparent pixel) may be added thereto.
  • FIG. 10 is a schematic cross-sectional view of a vertical alignment liquid crystal display device according to the second embodiment of the present invention.
  • This liquid crystal display device has a configuration in which a color filter substrate (hereinafter simply referred to as a color filter substrate) 11 and an array substrate 21 are bonded together with a liquid crystal 17 interposed therebetween.
  • the color filter substrate 11 is configured by sequentially forming a black matrix 2, a third electrode 3 that is a transparent conductive film, a green pixel 14, a red pixel 15, and a blue pixel 16 on a transparent substrate 1a.
  • the second electrode 4 and the third electrode 5 are formed on the transparent substrate 1b.
  • a protective layer, an alignment film, a polarizing plate, a retardation plate, and the like are not shown.
  • FIG. 11 is an enlarged cross-sectional view showing a half portion of the green pixel 14 which is a rectangular pixel in the plan view of FIG.
  • the polarizing plate was crossed Nicol, and a normally black liquid crystal display device was used.
  • FIG. 11 shows a vertical state in which no voltage is applied to the third electrode 3, which is a transparent conductive film provided on the color filter substrate, and the first electrode 4 and the second electrode 5 provided on the array substrate 21.
  • the alignment states of the liquid crystal molecules 17a, 17b, 17c, and 17d in the aligned liquid crystal 17 are shown.
  • the liquid crystal at the center of the green pixel 14 (1/2 pixel) is aligned perpendicular to the green pixel surface, but the liquid crystal molecules 17a of the shoulder portion 14a of the recess 23 and the liquid crystal molecules 17b of the shoulder portion 14b of the projection 24 are provided. 17c is oriented slightly obliquely. When a liquid crystal driving voltage is applied in this oblique alignment state, the liquid crystal molecules 17a, 17b, and 17c are tilted in the direction of the arrow A. By forming the concave portion 23 and the convex portion 24, the liquid crystal molecules 17a, 17b, and 17c are substantially tilted without performing an alignment process such as rubbing.
  • FIGS. 12 and 13 The movement of the liquid crystal molecules due to the application of the drive voltage is shown in FIGS. 12 and 13, and the movement is the same as in FIGS.
  • FIGS. 14 and 15 the case where a liquid crystal having a negative dielectric anisotropy is used is shown in FIGS. 14 and 15.
  • the movement of the liquid crystal molecules in that case is the same as in FIGS.
  • the aperture ratio of the pixel can be improved.
  • an oxide semiconductor a composite oxide of indium, gallium, and zinc called IGZO can be given.
  • the photosensitive coloring composition used for forming the light shielding layer, the colored layer, and the resin layer further contains a polyfunctional monomer, a photosensitive resin or a non-photosensitive resin, a polymerization initiator, a solvent, and the like.
  • Highly transparent organic resins that can be used in this embodiment, such as a photosensitive resin and a non-photosensitive resin, are collectively referred to as a transparent resin.
  • the transparent resin includes a thermoplastic resin, a thermosetting resin, and a photosensitive resin.
  • the thermoplastic resin include butyral resin, styrene-maleic acid copolymer, chlorinated polyethylene, chlorinated polypropylene, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polyvinyl acetate, polyurethane resin, and polyester resin.
  • thermosetting resin examples include epoxy resins, benzoguanamine resins, rosin-modified maleic acid resins, rosin-modified fumaric acid resins, melamine resins, urea resins, and phenol resins.
  • thermosetting resin a resin obtained by reacting a melamine resin and a compound containing an isocyanate group may be used.
  • Alkali-soluble resin In forming the light shielding layer, the light scattering layer, the colored layer, the transparent resin layer, and the cell gap regulating layer used in this embodiment, it is preferable to use a photosensitive resin composition capable of forming a pattern by photolithography.
  • These transparent resins are desirably resins imparted with alkali solubility.
  • the alkali-soluble resin is not particularly limited as long as it is a resin containing a carboxyl group or a hydroxyl group. Examples include epoxy acrylate resins, novolac resins, polyvinyl phenol resins, acrylic resins, carboxyl group-containing epoxy resins, carboxyl group-containing urethane resins, and the like. Of these, epoxy acrylate resins, novolak resins, and acrylic resins are preferable, and epoxy acrylate resins and novolak resins are particularly preferable.
  • acrylic resin The following acrylic resin can be illustrated as a representative of transparent resin employable in this embodiment.
  • Acrylic resins include monomers such as (meth) acrylic acid; methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, t-butyl (meth) acrylate pencil Alkyl (meth) acrylates such as (meth) acrylate and lauryl (meth) acrylate; hydroxyl-containing (meth) acrylates such as hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate; ethoxyethyl (meth) acrylate and glycidyl (meta ) Ether group-containing (meth) acrylates such as acrylates; and alicyclic (meth) acrylates such as cyclohexyl (meth) acrylates, isobornyl (meth) acrylates, dicyclopentenyl (meth) acrylates, etc. And polymers.
  • the monomers listed above can be used alone or in combination of two or more. Further, it may be a copolymer with a compound such as styrene, cyclohexylmaleimide, and phenylmaleimide that can be copolymerized with these monomers.
  • a copolymer obtained by copolymerizing a carboxylic acid having an ethylenically unsaturated group such as (meth) acrylic acid, and a compound containing an epoxy group and an unsaturated double bond such as glycidyl methacrylate are obtained. Reacting or adding a carboxylic acid-containing compound such as (meth) acrylic acid to a polymer of an epoxy group-containing (meth) acrylate such as glycidyl methacrylate or a copolymer thereof with other (meth) acrylate Also, a resin having photosensitivity can be obtained.
  • a photosensitive resin can be obtained by reacting a polymer having a hydroxyl group of a monomer such as hydroxyethyl methacrylate with a compound having an isocyanate group such as methacryloyloxyethyl isocyanate and an ethylenically unsaturated group.
  • a photosensitive resin can be obtained by reacting a polymer having a hydroxyl group of a monomer such as hydroxyethyl methacrylate with a compound having an isocyanate group such as methacryloyloxyethyl isocyanate and an ethylenically unsaturated group.
  • acid anhydrides used in the above reaction include, for example, malonic acid anhydride, succinic acid anhydride, maleic acid anhydride, itaconic acid anhydride, phthalic acid anhydride, tetrahydrophthalic acid anhydride, hexahydrophthalic acid anhydride , Methyltetrahydrophthalic anhydride, trimellitic anhydride and the like.
  • the solid content acid value of the acrylic resin described above is preferably 20 to 180 mg KOH / g.
  • the acid value is smaller than 20 mg KOH / g, the development rate of the photosensitive resin composition is too slow, and the time required for development increases, and the productivity tends to be inferior.
  • the solid content acid value is larger than 180 mg KOH / g, the development speed is too high, and there is a tendency that pattern peeling or pattern deficiency occurs after development.
  • the double bond equivalent of the acrylic resin is preferably 100 or more, more preferably 100 to 2000, and most preferably 100 to 1000. If the double bond equivalent exceeds 2000, sufficient photocurability may not be obtained.
  • photopolymerizable monomer examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, cyclohexyl (meth) acrylate, polyethylene glycol di (meth) acrylate, pentaerythritol tri (meth) acrylate, trimethylol
  • acrylic and methacrylic acid esters such as propane tri (meth) acrylate, dipentaerythritol hexa (meth) acrylate, tricyclodecanyl (meth) acrylate, melamine (meth) acrylate, epoxy (meth) acrylate, (meth)
  • examples include acrylic acid, styrene, vinyl acetate, (meth) acrylamide, N-hydroxymethyl (meth) acrylamide, and acrylonitrile.
  • a polyfunctional urethane acrylate having a (meth) acryloyl group obtained by reacting a polyfunctional isocyanate with a (meth) acrylate having a hydroxyl group.
  • the combination of the (meth) acrylate having a hydroxyl group and the polyfunctional isocyanate is arbitrary and is not particularly limited.
  • one type of polyfunctional urethane acrylate may be used alone, or two or more types may be used in combination.
  • photopolymerization initiator examples include 4-phenoxydichloroacetophenone, 4-t-butyl-dichloroacetophenone, diethoxyacetophenone, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 1- Acetophenone compounds such as hydroxycyclohexyl phenyl ketone and 2-benzyl-2-dimethylamino-1- (4-morpholinophenyl) -butan-1-one; benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzyl Benzoin compounds such as dimethyl ketal; benzophenone, benzoylbenzoic acid, methyl benzoylbenzoate, 4-phenylbenzophenone, hydroxybenzophenone, acrylated benzophenone, 4-benzoyl-4 ' Benzophenone compounds such as methyldiphen
  • sensitizer It is preferable to use a photopolymerization initiator and a sensitizer in combination.
  • sensitizers ⁇ -acyloxy ester, acylphosphine oxide, methylphenylglyoxylate, benzyl-9,10-phenanthrenequinone, camphorquinone, ethylanthraquinone, 4,4′-diethylisophthalophenone, A compound such as 3,3 ′, 4,4′-tetra (t-butylperoxycarbonyl) benzophenone, 4,4′-diethylaminobenzophenone may be used in combination.
  • the sensitizer can be contained in an amount of 0.1 to 60 parts by mass with respect to 100 parts by mass of the photopolymerization initiator.
  • the photopolymerization initiator described above is preferably used together with an ethylenically unsaturated compound.
  • the ethylenically unsaturated compound means a compound having at least one ethylenically unsaturated bond in the molecule. Among them, it is a compound having two or more ethylenically unsaturated bonds in the molecule from the viewpoints of polymerizability, crosslinkability, and the accompanying difference in developer solubility between exposed and non-exposed areas. Is preferred.
  • a (meth) acrylate compound whose unsaturated bond is derived from a (meth) acryloyloxy group is particularly preferred.
  • Examples of the compound having one or more ethylenically unsaturated bonds in the molecule include unsaturated carboxylic acids such as (meth) acrylic acid, crotonic acid, isocrotonic acid, maleic acid, itaconic acid, citraconic acid, and alkyl esters thereof. (Meth) acrylonitrile; (meth) acrylamide; styrene and the like.
  • Typical examples of compounds having two or more ethylenically unsaturated bonds in the molecule include esters of unsaturated carboxylic acids and polyhydroxy compounds, (meth) acryloyloxy group-containing phosphates, hydroxy (meta ) Urethane (meth) acrylates of acrylate compounds and polyisocyanate compounds, and epoxy (meth) acrylates of (meth) acrylic acid or hydroxy (meth) acrylate compounds and polyepoxy compounds.
  • the above photopolymerizable initiator, sensitizer, and ethylenically unsaturated compound may be added to a composition containing a polymerizable liquid crystal compound used for forming a retardation layer described later.
  • the photosensitive coloring composition can contain a polyfunctional thiol that functions as a chain transfer agent.
  • the polyfunctional thiol may be a compound having two or more thiol groups. For example, hexanedithiol, decanedithiol, 1,4-butanediol bisthiopropionate, 1,4-butanediol bisthioglycolate, ethylene Glycol bisthioglycolate, ethylene glycol bisthiopropionate, trimethylolpropane tristhioglycolate, trimethylolpropane tristhiopropionate, trimethylolpropane tris (3-mercaptobutyrate), pentaerythritol tetrakisthioglycolate, Pentaerythritol tetrakisthiopropionate, tris (2-hydroxyethyl) isocyanurate, trimercaptopropionic acid, 1,4-d
  • polyfunctional thiols can be used alone or in combination.
  • the polyfunctional thiol can be used in the photosensitive coloring composition in an amount of preferably 0.2 to 150 parts by mass, more preferably 0.2 to 100 parts by mass with respect to 100 parts by mass of the pigment.
  • the photosensitive coloring composition can contain a storage stabilizer in order to stabilize the viscosity with time of the composition.
  • storage stabilizers include quaternary ammonium chlorides such as benzyltrimethyl chloride and diethylhydroxyamine, organic acids such as lactic acid and oxalic acid, and organic acids such as methyl ether, t-butylpyrocatechol, triethylphosphine and triphenylphosphine. Examples thereof include phosphine and phosphite.
  • the storage stabilizer can be contained in an amount of 0.1 to 10 parts by mass with respect to 100 parts by mass of the pigment in the photosensitive coloring composition.
  • the photosensitive coloring composition may contain an adhesion improving agent such as a silane coupling agent in order to improve the adhesion to the substrate.
  • silane coupling agents include vinyl silanes such as vinyltris ( ⁇ -methoxyethoxy) silane, vinylethoxysilane, vinyltrimethoxysilane, and (meth) acrylsilanes such as ⁇ -methacryloxypropyltrimethoxysilane; ⁇ - (3 , 4-epoxycyclohexyl) ethyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) methyltrimethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ethyltriethoxysilane, ⁇ - (3,4-epoxycyclohexyl) ) Epoxysilanes such as methyltriethoxysilane, ⁇ -glycidoxypropyltri
  • a solvent such as water or an organic solvent is blended in order to enable uniform coating on the substrate.
  • the solvent also has a function of uniformly dispersing the pigment.
  • the solvent examples include cyclohexanone, ethyl cellosolve acetate, butyl cellosolve acetate, 1-methoxy-2-propyl acetate, diethylene glycol dimethyl ether, ethylbenzene, ethylene glycol diethyl ether, xylene, ethyl cellosolve, methyl-n amyl ketone, propylene glycol monomethyl ether, toluene, Examples include methyl ethyl ketone, ethyl acetate, methanol, ethanol, isopropyl alcohol, butanol, isobutyl ketone, petroleum solvent, and the like. These can be used alone or in combination.
  • the solvent can be contained in the coloring composition at 800 to 4000 parts by mass, preferably 1000 to 2500 parts by mass with respect to 100 parts by mass of the pigment.
  • red pigments examples include C.I. I. Pigment Red 7, 9, 14, 41, 48: 1, 48: 2, 48: 3, 48: 4, 81: 1, 81: 2, 81: 3, 97, 122, 123, 146, 149, 168, 177, 178, 179, 180, 184, 185, 187, 192, 200, 202, 208, 210, 215, 216, 217, 220, 223, 224, 226, 227, 228, 240, 246, 254, 255, H.264, 272, 279, etc. can be used.
  • yellow pigments examples include C.I. I. Pigment Yellow 1, 2, 3, 4, 5, 6, 10, 12, 13, 14, 15, 16, 17, 18, 20, 24, 31, 32, 34, 35, 35: 1, 36, 36: 1, 37, 37: 1, 40, 42, 43, 53, 55, 60, 61, 62, 63, 65, 73, 74, 77, 81, 83, 86, 93, 94, 95, 97, 98, 100, 101, 104, 106, 108, 109, 110, 113, 114, 115, 116, 117, 118, 119, 120, 123, 125, 126, 127, 128, 129, 137, 138, 139, 144, 146, 147, 148, 150, 151, 152, 153, 154, 155, 156, 161, 162, 164, 166, 167, 168, 169, 170, 171, 172, 1 73, 174, 175, 176, 177, 179, 180, 181, 18
  • blue pigments examples include C.I. I. Pigment Blue 15, 15: 1, 15: 2, 15: 3, 15: 4, 15: 6, 16, 22, 60, 64, 80, etc. can be used. I. Pigment Blue 15: 6 is preferred.
  • a purple pigment for example, C.I. I. Pigment Violet 1, 19, 23, 27, 29, 30, 32, 37, 40, 42, 50, etc. can be used. I. Pigment Violet 23 is preferred.
  • green pigments examples include C.I. I. Pigment Green 1, 4, 4, 7, 8, 10, 13, 14, 15, 17, 18, 19, 26, 36, 45, 48, 50, 51, 54, 55, 58, etc. Among these, C.I. I. Pigment Green 58 is preferred.
  • PB PigmentmBlue
  • PV Pigment Violet
  • PR Pigment Red
  • PY Pigment Yellow
  • PG Pigment Green
  • the light-shielding color material contained in the light-shielding layer or the black matrix is a color material that exhibits a light-shielding function by having absorption in the visible light wavelength region.
  • examples of the light-shielding color material include organic pigments, inorganic pigments, dyes, and the like.
  • inorganic pigments include carbon black and titanium oxide.
  • examples of the dye include azo dyes, anthraquinone dyes, phthalocyanine dyes, quinoneimine dyes, quinoline dyes, nitro dyes, carbonyl dyes, and methine dyes.
  • the organic pigment the organic pigment described above can be adopted.
  • 1 type may be used for a light-shielding component and it may use 2 or more types together by arbitrary combinations and a ratio.
  • volume resistance value of such a light-shielding material is in the range of approximately 1 ⁇ 10 8 to 1 ⁇ 10 15 ⁇ ⁇ cm, it is not a level that affects the resistance value of the transparent conductive film.
  • the relative dielectric constant of the light shielding layer can be adjusted in the range of about 3 to 11 depending on the selection and content ratio of the color material.
  • a polymer dispersant is preferably used as the pigment dispersant because it is excellent in dispersion stability over time.
  • the polymer dispersant include a urethane dispersant, a polyethyleneimine dispersant, a polyoxyethylene alkyl ether dispersant, a polyoxyethylene glycol diester dispersant, a sorbitan aliphatic ester dispersant, and an aliphatic modified polyester. And the like, and the like.
  • a dispersant composed of a graft copolymer containing a nitrogen atom is particularly preferable from the viewpoint of developability for the light-shielding photosensitive resin composition used in this embodiment containing a large amount of pigment.
  • dispersants are trade names of EFKA (manufactured by EFKA Chemicals Beebuy (EFKA)), Disperbik (manufactured by BYK Chemie), Disparon (manufactured by Enomoto Kasei), SOLPERSE (manufactured by Lubrizol), KP (Manufactured by Shin-Etsu Chemical Co., Ltd.), polyflow (manufactured by Kyoeisha Chemical Co., Ltd.) and the like.
  • 1 type may be used for these dispersing agents, and 2 or more types can be used together by arbitrary combinations and a ratio.
  • a pigment derivative or the like can be used as the dispersion aid.
  • the dye derivative include azo, phthalocyanine, quinacridone, benzimidazolone, quinophthalone, isoindolinone, dioxazine, anthraquinone, indanthrene, perylene, perinone, diketopyrrolopyrrole.
  • oxinophthalone derivatives are preferred.
  • substituent of the dye derivative examples include a sulfonic acid group, a sulfonamide group and a quaternary salt thereof, a phthalimidomethyl group, a dialkylaminoalkyl group, a hydroxyl group, a carboxyl group, and an amide group directly on the pigment skeleton or an alkyl group and an aryl group. And those bonded via a heterocyclic group or the like. Of these, sulfonic acid groups are preferred. In addition, a plurality of these substituents may be substituted on one pigment skeleton.
  • the dye derivative include phthalocyanine sulfonic acid derivatives, quinophthalone sulfonic acid derivatives, anthraquinone sulfonic acid derivatives, quinacridone sulfonic acid derivatives, diketopyrrolopyrrole sulfonic acid derivatives, and dioxazine sulfonic acid derivatives. .
  • 1 type may be used for the above dispersion adjuvant and pigment
  • Examples 6 to 9 related to the color filter substrate three colors of the red pixel, the green pixel, and the blue pixel are used as the colored pixels.
  • White pixels may be added.
  • Example 1 The substrate shown in FIG. 16 was manufactured as follows.
  • Carbon pigment # 47 (manufactured by Mitsubishi Chemical) 20 parts by mass, polymer dispersant BYK-182 (manufactured by BYK Chemie) 8.3 parts by mass, copper phthalocyanine derivative (manufactured by Toyo Ink Co., Ltd.) 1.0 part by mass, and propylene A carbon black dispersion was prepared by stirring 71 parts by mass of glycol monomethyl ether acetate with a bead mill disperser.
  • the black matrix forming resist was manufactured using the following materials.
  • Carbon black dispersion Pigment # 47 (Mitsubishi Chemical Corporation)
  • Resin V259-ME (manufactured by Nippon Steel Chemical Co., Ltd.) (solid content 56.1% by mass)
  • Monomer DPHA (Nippon Kayaku Co., Ltd.)
  • Initiator OXE-02 (Ciba Specialty Chemicals)
  • OXE-01 Ciba Specialty Chemicals
  • Solvent Propylene glycol monomethyl ether acetate
  • Ethyl-3-ethoxypropionate Leveling agent: BYK-330 (Bic Chemie)
  • the above materials were mixed and stirred at the following composition ratio to obtain a black matrix forming resist (pigment concentration in solid content: about 20%).
  • an exposure photomask having an opening of 20.5 ⁇ m in pattern width (corresponding to the line width of the black matrix) is used as the black matrix, and an ultrahigh pressure mercury lamp lamp is used as the light source. 200 mJ / cm 2 was used.
  • the image line width of the black matrix 2 was about 20 ⁇ m, and was formed around the rectangular pixels (4 sides).
  • the inclination angle of the edge of the image line from the transparent substrate surface was about 45 degrees.
  • a transparent conductive film 3 (third electrode) made of ITO (indium tin metal oxide thin film) was formed to a thickness of 0.14 ⁇ m so as to cover the entire surface of the black matrix 2 described above. .
  • a resin layer 18 was formed by photolithography using an alkali-soluble acrylic photosensitive resin coating solution so as to cover the transparent conductive film 3 so that the film thickness after hardening was 1.8 ⁇ m.
  • a photomask used a rectangular pixel was provided with a slit of a halftone (semi-transmissive part with low transmittance) in the center part, and a linear concave part 13 was formed in plan view. The depth of the recess 13 was about 1 ⁇ m.
  • the height H 1 of the convex portion 24 made of the resin layer 18 formed on the black matrix 2 was about 1.1 ⁇ m.
  • the inclination of the convex portion 24 was about 45 degrees with respect to the transparent substrate surface.
  • the height H 1 of the convex portion 24 is a height from the surface of the flat portion of the resin layer 18 to the top of the convex portion 24.
  • the substrate according to this embodiment does not include a color filter, and the color filter is formed on the array substrate side, or a field sequential (a plurality of color LED light sources are used as a backlight, and a color filter is driven by time-division light source driving).
  • the present invention can be applied to a color liquid crystal display device of a technique for performing color display without a filter.
  • the acrylic photosensitive resin coating solution used for forming the resin layer 18 is a transparent resin coating obtained by synthesizing an acrylic resin as shown below, adding a monomer and a photoinitiator, and performing filtration of 0.5 ⁇ m. It is a liquid.
  • a mixture having the following composition was uniformly stirred and mixed, then dispersed with a sand mill for 2 hours using glass beads having a diameter of 1 mm, and filtered through a 0.5 ⁇ m filter to obtain a transparent resin coating solution.
  • Resin solution (1) 100 parts by mass Polyfunctional polymerizable monomer EO-modified bisphenol A methacrylate (BPE-500: manufactured by Shin-Nakamura Chemical Co., Ltd.) 20 parts by mass Photoinitiator (“Irgacure 907” manufactured by Ciba Specialty Chemicals) 16 parts by weight Cyclohexanone 190 parts by weight
  • BPE-500 Polyfunctional polymerizable monomer EO-modified bisphenol A methacrylate
  • Photoinitiator (“Irgacure 907” manufactured by Ciba Specialty Chemicals) 16 parts by weight
  • Cyclohexanone 190 parts by weight
  • Example 2 The substrate shown in FIG. 17 was manufactured as follows.
  • the black matrix forming photomask and the photoresist used are the same as those in the first embodiment.
  • the glass substrate 1a including the black matrix 2 is dried with an alkali-soluble type photosensitive photoresist acrylic resin to a thickness of 1.2 ⁇ m. It was applied. Only the central part of the photosensitive rectangular pixel was exposed using a photomask having an opening width of 10 ⁇ m, and further developed and hardened to form a transparent linear pattern 22 having an image line width of 12 ⁇ m.
  • the resin layer 18 is formed.
  • the resist used for the resin layer 18 and the formation method thereof are the same as those in the first embodiment.
  • a photomask for forming the resin layer 18 unlike the first embodiment, a photomask having a linear light-shielding pattern at the center of the rectangular pixel was used.
  • the manufactured substrate will be described with reference to FIG.
  • the film thickness of the resin layer 18 is 1.8 ⁇ m.
  • the height of the convex portion 24 of the resin layer 18 is 1 ⁇ m.
  • a linear pattern 22 made of a transparent resin (acrylic resin) is formed at the center of the rectangular pixel.
  • an opening width of a transparent conductive film of 7 ⁇ m and a depth of about 0.6 ⁇ m are formed.
  • a certain recess 33 is formed.
  • a linear pattern composed of a colored layer having a high pigment concentration eliminates the loss of linear light and enables display with high color purity.
  • Example 3 The substrate shown in FIG. 18 was manufactured as follows.
  • a photomask having an opening of 11 ⁇ m width at the center of the rectangular pixel was used instead of the black matrix forming photomask used in Example 1, in addition to the black matrix forming opening pattern. By reducing the opening width, the amount of exposure sharply decreases. Therefore, a linear light shielding pattern 32 having a low height can be formed in the center of the rectangular pixel.
  • the photomask for forming the resin layer 18 a photomask having a light shielding pattern with a width of 12 ⁇ m at the center of the rectangular pixel was used.
  • the resist and the manufacturing method used are the same as those in Example 1.
  • the manufactured substrate will be described with reference to FIG.
  • the film thickness of the resin layer 18 is 1.8 ⁇ m in all cases.
  • the height of the convex portion 24 of the resin layer 18 is 1.1 ⁇ m.
  • a light shielding pattern 32 of a light shielding layer (black forming resist) is formed at the center of the rectangular pixel, and a concave portion having an opening width of 7 ⁇ m transparent conductive film and a depth of about 0.6 ⁇ m is formed on the light shielding pattern 32. 43 is formed.
  • the black matrix and the light shielding pattern at the center of the rectangular pixel are formed using one photomask.
  • the black matrix and the light shielding pattern are divided into two photomasks, and two photolithography techniques are used. It may be formed.
  • Example 4 The substrate shown in FIG. 19 was manufactured as follows.
  • a transparent conductive film 3 having a thickness of 0.14 ⁇ m was formed on the glass substrate 1a, and a black matrix 2 having a thickness of 1.9 ⁇ m was formed on the transparent conductive film 3.
  • the same black matrix forming photoresist as in Example 1 was used.
  • a resin layer 18 was formed using an alkali-soluble acrylic photosensitive resin coating solution so as to cover the black matrix 2 and the rectangular opening so that the film thickness after hardening was 1 ⁇ m.
  • the height H 2 of the convex portion 24 made of the resin layer 18 formed on the black matrix 2 was about 1 ⁇ m.
  • the depth of the recess 53 was 1 ⁇ m, and the transparent conductive film 3 was exposed in the recess 53.
  • the substrate according to this embodiment does not include a color filter, and the color filter is formed on the array substrate side, or a field sequential (a plurality of color LED light sources are used as a backlight, and a color filter is driven by time-division light source driving).
  • the present invention can be applied to a color liquid crystal display device of a technique for performing color display without a filter.
  • the acrylic photosensitive resin coating solution used for forming the resin layer 18 was the same as that used in Example 1.
  • Example 5 The color filter substrate shown in FIG. 20 was manufactured as follows.
  • a transparent conductive film 3 having a thickness of 0.14 ⁇ m was formed on the glass substrate 1a, and a black matrix 2 having a thickness of 1.9 ⁇ m was formed on the transparent conductive film 3.
  • the same black matrix forming photoresist as in Example 1 was used.
  • colored pixels were formed so as to cover the black matrix 2 and the rectangular openings.
  • the color resist used for forming the colored pixels and the method for forming the colored pixels are described below.
  • Red pigments CIP Pigment Red 254 (“Ilgar For Red B-CF” manufactured by Ciba Specialty Chemicals), CIP Pigment Red 177 (“Chromophthal Red A2B” manufactured by Ciba Specialty Chemicals)
  • Green pigments CIPigment Green 58, CIPigment Yellow 150 (Bayer's “Funchon First Yellow Y-5688”)
  • Blue pigment CIPigment Blue 15 (“Rearanol Blue ES” manufactured by Toyo Ink)
  • CI Pigment Violet 23 BASF "Variogen Violet 5890"
  • Red pigment CIPigment Red 254 18 parts by mass
  • Red pigment CIPigment Red 177 2 parts by mass
  • Acrylic varnish solid content 20% by mass
  • Green pigment dispersion Green pigment: CIPigment Green 58 16 parts by mass Green pigment: CIPigment Yellow 150 8 parts by mass Acrylic varnish (solid content: 20% by mass): 102 parts by mass
  • Green pigment CIPigment Green 58 16 parts by mass
  • Green pigment CIPigment Yellow 150 8 parts by mass
  • Acrylic varnish solid content: 20% by mass
  • a green pigment dispersion was prepared using this.
  • Blue pigment CIPigment Blue 15 50 parts by mass Blue pigment: CIPigment Violet 23 2 parts by mass Dispersant ("Solsverse 20000" manufactured by Zeneca): 6 parts by mass Acrylic varnish (solid content 20% by mass): 200 parts by mass
  • Solsverse 20000 manufactured by Zeneca
  • Acrylic varnish solid content 20% by mass
  • TMP3A Trimethylolpropane triacrylate 14 parts by mass
  • Photoinitiator 4 parts by mass (“Irgacure 907” manufactured by Ciba Specialty Chemicals) Sensitizer (“EAB-F” manufactured by Hodogaya Chemical Co., Ltd.) 2 parts by mass Cyclohexanone 257 parts by mass
  • EAB-F manufactured by Hodogaya Chemical Co., Ltd.
  • a color resist for forming a red pixel was applied by spin coating on the glass substrate 1a on which the transparent conductive film 3 and the black matrix 2 were formed so that the finished film thickness was 1.8 ⁇ m. After drying at 90 ° C. for 5 minutes, light from a high-pressure mercury lamp is irradiated at a dose of 300 mJ / cm 2 through a photomask for forming colored pixels, developed with an alkali developer for 60 seconds, and then striped red coloration Pixel 15 was obtained. Then, it baked at 230 degreeC for 30 minutes. The BM part and the collar part were produced with an overlap of 14.0 ⁇ m.
  • a slit of a halftone (semi-transmissive part with low transmittance) was provided at the center of the rectangular pixel, and a linear concave part (not shown) was formed in plan view.
  • the depth of the recess was about 1 ⁇ m.
  • the green pixel forming resist was similarly applied by spin coating so that the finished film thickness was 1.8 ⁇ m.
  • green pixels 14 were formed by exposing and developing through a photomask so that a pattern was formed adjacent to the red pixels 15 described above.
  • a slit of a halftone is provided in the center of the rectangular pixel, and a linear concave part 63 is formed in plan view. The depth of the recess 63 was about 1 ⁇ m. Then, it hardened
  • the blue pixel forming resist with a finished film thickness of 1.8 ⁇ m was also obtained as a blue pixel 16 adjacent to the red and green pixels.
  • a color filter having red, green, and blue colored pixels on the substrate 1a was obtained.
  • the film was heat-treated at 230 ° C. for 30 minutes to obtain a color filter substrate.
  • a resin layer 68 made of a thermosetting acrylic resin was laminated on the colored pixels to a thickness of 0.2 ⁇ m.
  • the height of the convex portion 64 was about 1 ⁇ m, and the depth of the concave portion 63 was about 0.9 ⁇ m. Due to the resin layer 68, the height of the convex portion 64 and the depth of the concave portion 63 were slightly smaller.
  • Example 6 The color filter substrate shown in FIG. 21 was manufactured as follows.
  • the black matrix 2 was formed with a film thickness of 1.9 ⁇ m on the glass substrate 1a.
  • the same black matrix forming photoresist as that used in Example 6 was used.
  • red colored pixels 15, green colored pixels 14, and blue colored pixels 16 were formed with a film thickness of 1.8 ⁇ m.
  • the transparent conductive film 3 was formed to a thickness of 0.14 ⁇ m using a sputtering apparatus in the same manner as in Example 5. Furthermore, the resin layer 78 was formed using the alkali-soluble acrylic photosensitive resin so that the film thickness after hardening might be set to 1.5 micrometers. At this time, a recess 73 having a depth of 1.2 ⁇ m was formed in the center of the rectangular opening by a known photolithography technique. In order to form the pattern of the resin layer 78, a photomask having a slit pattern formed in a rectangular opening was used. In the present example, the height of the convex portion 74 was about 1.1 ⁇ m.
  • Example 7 A liquid crystal display device according to this example is shown in FIG.
  • the color filter substrate 81 used in this example is the color filter substrate of Example 7 shown in FIG.
  • the substrate on which the active elements were formed was the array substrate 21 having comb-like electrodes shown in FIGS.
  • the color filter substrate 71 and the array substrate 21 are bonded together, a liquid crystal 77 having negative dielectric anisotropy is sealed, and polarizing plates are further bonded to both surfaces to obtain the liquid crystal display device shown in FIG.
  • a vertical alignment film is applied and formed in advance on the surfaces of the color filter substrate 71 and the array substrate 21.
  • the vertical alignment film is not shown.
  • a strict alignment process for example, a multi-directional alignment process for forming a plurality of domains with a tilt angle of 89 ° and a plurality of domains necessary for a vertical alignment liquid crystal display device such as MVA or VATN is not performed. Oriented.
  • the manufactured liquid crystal display device will be described with reference to FIG.
  • the operation of the liquid crystal 77 will be described as a representative of the green pixel 14 in the center of FIG.
  • the liquid crystal molecules of the liquid crystal 77 whose initial alignment is the vertical alignment are the shoulder portion 84c of the convex portion 84 from the line that bisects the colored pixel 14 from the center of the rectangular pixel by the first electrode 4 and the second electrode 5 when the driving voltage is applied. It falls in the direction toward, that is, the direction shown by arrow B.
  • the second electrode 5 protrudes from the end of the first electrode 4 in the direction indicated by the arrow C.
  • the third electrode 3 and the second electrode 2 were set to a common potential.
  • the liquid crystal molecules fall down in a manner that bisects the region passing through the center of the rectangular pixel even on the color filter surface, and the comb-shaped first electrode 4 of the array substrate 21. In combination with the second electrode 5, bright display with reduced disclination is possible.
  • the recess 73 in the region passing through the center of the pixel is optimal for use in a liquid crystal display that places importance on brightness such as a transflective type or a reflective type in order to increase the light transmittance.
  • a transflective liquid crystal display device can be obtained by adding a reflective polarizing plate that transmits light from the backlight and reflects external light to the backlight system.
  • a reflective polarizing plate what is described as a reflective polarizer in the patent 4177398 can be used, for example.
  • Example 8 A liquid crystal display device according to this example is shown in FIG.
  • This liquid crystal display device is a transflective liquid crystal display device using a reflective polarizing plate.
  • the color filter substrate 71 used in this example is the color filter substrate of Example 7 shown in FIG.
  • the array substrate on which the active elements were formed was the array substrate 21 having comb-like electrodes shown in FIGS.
  • the color filter substrate 71 and the array substrate 21 are arranged so as to face each other and the liquid crystal 77 is interposed therebetween, which is the same as the structure shown in FIG.
  • an optical compensation layer 81a and a polarizing plate 82a are disposed on the side of the color filter substrate 71 opposite to the liquid crystal 77.
  • a polarizing plate 82 b, a light diffusion layer 83 a, a reflection polarizing plate 84, an optical compensation layer 81 b, a prism sheet 85, a light diffusion layer 83 b, a light guide plate 86, and a light reflection plate 87. are sequentially arranged.
  • a light source such as an LED light source 88 is attached to the light guide plate 86.
  • the LED light source 88 is preferably an RGB individual light emitting element, but may be a pseudo white LED. Further, instead of the LED, a conventionally used cold cathode ray tube or fluorescent lamp may be used. When RGB individual light emitting elements are used as the LED light source 88, the respective light emission intensities can be individually adjusted for each color, so that optimum color display can be performed. Also, it can be applied to stereoscopic image display.
  • color filter substrate it is also possible to use a substrate that does not include a color filter as in Example 4 and to perform color display by a field sequential method in which RGB individual light emitting LED light sources are synchronized with liquid crystal display. .
  • Example 9 The color filter substrate shown in FIG. 24 was manufactured as follows.
  • the black matrix 2 was formed with a film thickness of 1.9 ⁇ m on the glass substrate 1a.
  • the same black matrix forming photoresist as in Example 5 was used.
  • red colored pixels 15, green colored pixels 14, and blue colored pixels 16 were formed with a film thickness of 1.8 ⁇ m.
  • a photomask used for forming each colored pixel a photomask having a light shielding pattern along a center line that bisects a portion corresponding to a rectangular pixel was used. As a result, a linear recess having a width of 10 ⁇ m and a depth of 1.8 ⁇ m was formed in the center of the colored pixel.
  • the transparent conductive film 3 is formed to a thickness of 0.14 ⁇ m so as to cover the red colored pixels 15, the green colored pixels 14, and the blue colored pixels 16 using a sputtering apparatus in the same manner as in Example 5. did.
  • a resin layer 98 was formed using a thermosetting acrylic resin solution so that the film thickness after hardening was 0.8 ⁇ m.
  • a convex portion 94 formed by overlapping the black matrix 2, the colored pixels 14, 15, 16, the transparent conductive film 3, and the resin layer 98 was formed.
  • a linear recess 93 is formed at the center of the rectangular pixel.
  • the height H 3 of the convex portion 94 was about 1 ⁇ m, and the depth of the concave portion 93 was 0.7 ⁇ m.
  • the linear recess 93 at the center of the shape pixel can serve as an opening for improving the brightness of the pixel when used as a reflective display device.
  • TFT wiring for example, drain lead-out wiring and auxiliary capacitance wiring
  • TFT wiring is formed as a light-shielding film at a position overlapping a linear recess in plan view, thereby preventing light leakage from the backlight. Can be eliminated.
  • Example 10 A color filter substrate shown in FIG. 25 was manufactured in the same manner as in Example 5 except that the resin layer 68 made of thermosetting acrylic resin was not formed on the colored pixels 14, 15, and 16.
  • Example 11 The color filter substrate shown in FIG. 26 was manufactured as follows.
  • the black matrix forming photomask and the photoresist used are the same as those in the first embodiment.
  • the glass substrate 1a including the black matrix 2 is dried with an alkali-soluble type photosensitive photoresist acrylic resin to a thickness of 1.2 ⁇ m. It was applied. Only the central part of the photosensitive rectangular pixel was exposed using a photomask having an opening width of 10 ⁇ m, and further developed and hardened to form a transparent linear pattern 22 having an image line width of 12 ⁇ m.
  • the color resist used for the colored pixels and the forming method thereof are the same as those in Example 5. However, unlike the fifth embodiment, a photomask having a linear light-shielding pattern at the center of the rectangular pixel was used as the colored pixel forming photomask.
  • the manufactured color filter substrate will be described with reference to FIG.
  • the film thicknesses of the red pixel 15, the green pixel 14, and the blue pixel 16 are all 1.8 ⁇ m.
  • the height of the convex portion 24 that is the overlapping portion of the colored layer is 1 ⁇ m.
  • a linear pattern 22 made of a transparent resin (acrylic resin) is formed at the center of the rectangular pixel. On the linear pattern 22, an opening width of a transparent conductive film of 7 ⁇ m and a depth of about 0.6 ⁇ m are formed. A certain recess 33 is formed.
  • a linear pattern composed of a colored layer having a high pigment concentration eliminates the loss of linear light and enables display with high color purity.
  • Example 12 The color filter substrate shown in FIG. 27 was manufactured as follows.
  • a photomask having an opening of 11 ⁇ m width at the center of the rectangular pixel was used instead of the black matrix forming photomask used in Example 1, in addition to the black matrix forming opening pattern. By reducing the opening width, the amount of exposure sharply decreases. Therefore, a linear light shielding pattern 32 having a low height can be formed in the center of the rectangular pixel.
  • a photomask for forming colored pixels a photomask having a light shielding pattern with a width of 12 ⁇ m at the center of the rectangular pixel was used.
  • the used color resist and the manufacturing method are the same as those in the fifth and eleventh embodiments.
  • the manufactured color filter substrate will be described with reference to FIG.
  • the film thicknesses of the red pixel 15, the green pixel 14, and the blue pixel 16 are all 1.8 ⁇ m.
  • the height of the convex portion 24 that is the overlapping portion of the colored layer is 1.1 ⁇ m.
  • a light shielding pattern 32 of a light shielding layer (black forming resist) is formed at the center of the rectangular pixel, and a concave portion having an opening width of 7 ⁇ m transparent conductive film and a depth of about 0.6 ⁇ m is formed on the light shielding pattern 32. 43 is formed.
  • the black matrix and the light shielding pattern at the center of the rectangular pixel are formed using one photomask.
  • the black matrix and the light shielding pattern are divided into two photomasks, and two photolithography techniques are used. It may be formed.
  • Example 13 The color filter substrate shown in FIG. 28 was manufactured as follows.
  • the materials and manufacturing methods used for forming the black matrix and the colored pixels were the same as those in Example 5 and Example 10.
  • the photomask used for forming the colored pixel was a photomask having a rectangular pixel portion as an opening (the center portion of the rectangular pixel having no halftone or linear light-shielding pattern).
  • the manufactured color filter substrate will be described with reference to FIG.
  • the film thicknesses of the red pixel 15, the green pixel 14, and the blue pixel 16 are all 1.8 ⁇ m.
  • the height of the convex portion 24 that is the overlapping portion of the colored layer is 1 ⁇ m.
  • a protective layer 50 made of a thermosetting acrylic resin is laminated on the color filter with a film thickness of 0.3 ⁇ m.
  • Example 14 The color filter substrate according to Example 13 and the array substrate on which the TFT active elements are formed are bonded together, a liquid crystal with negative dielectric anisotropy is sealed, and a polarizing plate is pasted on both sides, and the liquid crystal shown in FIG. A display device was obtained. A vertical alignment film is applied and formed in advance on the surfaces of the color filter substrate and the array substrate.
  • the substrate on which the active elements were formed was the array substrate having the comb-like electrodes shown in FIGS.
  • a strict alignment process for example, a multi-directional alignment process for forming a plurality of domains with a tilt angle of 89 ° and a plurality of domains
  • a vertical alignment liquid crystal display device such as MVA or VATN
  • the manufactured liquid crystal display device will be described with reference to FIG.
  • the operation of the liquid crystal 67 will be described as a representative of the green pixel 14 in the center of FIG.
  • the liquid crystal molecules of the liquid crystal 67 whose initial alignment is vertical alignment are in a direction from the line that bisects the colored pixel 14 from the center of the rectangular pixel toward the shoulder portion 14c by the first electrode 4 and the second electrode 5 when a driving voltage is applied, That is, it falls in the direction shown by arrow B.
  • the second electrode 5 is displaced from the first electrode 4 in the direction indicated by the arrow C.
  • the third electrode 3 and the second electrode 2 were set to a common potential.
  • FIG. 30 shows a liquid crystal display device according to this example.
  • the color filter substrate 11 used in this example is obtained by laminating a protective layer 50 made of a thermosetting acrylic resin with a film thickness of 0.2 ⁇ m on a color filter substrate having the same configuration as in Example 10.
  • the array substrate 21 was an array substrate having the same configuration as in Example 14.
  • a color filter substrate 11 and an array substrate 21 on which a vertical alignment film has been formed are bonded together, a liquid crystal 67 having a negative dielectric anisotropy is sealed therebetween, and polarizing plates are further provided on both sides. Manufactured by sticking. Illustration of the alignment film for vertical alignment is omitted.
  • a strict alignment process for example, a multi-directional alignment process for forming a plurality of domains with a tilt angle of 89 ° and a plurality of domains necessary for a vertical alignment liquid crystal display device such as MVA or VATN is not performed. Oriented.
  • the manufactured liquid crystal display device will be described with reference to FIG.
  • the operation of the liquid crystal 67 will be described as a representative of the green pixel 14 in the center of FIG.
  • the liquid crystal molecules of the liquid crystal 67 whose initial alignment is vertical alignment are in a direction from the line that bisects the colored pixel 14 from the center of the rectangular pixel toward the shoulder portion 14c by the first electrode 4 and the second electrode 5 when a driving voltage is applied, That is, it falls in the direction shown by arrow B.
  • the second electrode 5 is displaced from the first electrode 4 in the direction indicated by the arrow C.
  • the third electrode 3 and the second electrode 2 were set to a common potential.
  • the concave portion 63 is provided at the center of the green pixel 14, the liquid crystal molecules are tilted in two on the color filter surface from the center of the rectangular pixel, and the comb-shaped first electrode 4 and second electrode In combination with the electrode 5, bright display with reduced disclination is possible.
  • the central recess 63 in this embodiment is most suitable for use in a liquid crystal display that places importance on brightness, such as a transflective type or a reflective type, in order to increase the light transmittance.
  • a reflective polarizing plate that transmits light from the backlight and reflects external light can be used as a transflective liquid crystal display device in addition to the backlight system.
  • a reflective polarizing plate what is described as a reflective polarizer in Japanese Patent No. 4177398 can be used, for example.
  • Example 16 A liquid crystal display device according to this example is shown in FIGS.
  • two TFTs (not shown) are arranged for each pixel as active elements.
  • FIG. 31 and 32 are cross-sectional views of a green pixel portion in which TFT1 and TFT2 are arranged for each pixel.
  • the first electrodes P1 and P3 are connected to TFT1, and the second electrodes P2 and P4 are connected to TFT2.
  • this green pixel is divided into a normal display area and a dynamic display area as shown in the figure. In the following description, driving of liquid crystal molecules in a half area of the pixel will be described. Further, the green pixel is formed with a thin film thickness at the center of the green pixel, as in the fifth embodiment shown in FIG.
  • FIG. 31 shows the alignment of liquid crystal molecules in a state where a driving signal is sent to the TFT 1 and a driving voltage is applied only to the first electrodes P1 and P3.
  • the liquid crystal molecules L1, L2, and L3 in the normal display region are sufficiently tilted and sufficient transmittance can be obtained.
  • the tilt of the liquid crystal molecules L4, L5, and L6 in the dynamic display region at the center of the pixel is insufficient, and the transmittance is low.
  • FIG. 32 shows the alignment of the liquid crystal molecules in a state where a driving signal is also sent to the TFT 2 and a driving voltage is applied to the first electrodes P2 and P4.
  • a driving signal is also sent to the TFT 2 and a driving voltage is applied to the first electrodes P2 and P4.
  • the liquid crystal molecules L1, L2, and L3 in the normal display area but also the liquid crystal molecules L4, L5, and L6 in the dynamic display area at the center of the pixel are sufficiently tilted, and the transmittance of the dynamic display area is increased.
  • the film thickness at the center of the pixel is thin, the transmitted light increases, and extremely bright display (dynamic display) is possible.
  • the alignment processing of the color filter substrate and the array substrate can be reduced, and the responsiveness of the liquid crystal can be improved.
  • the configuration in which the convex portion, the concave portion, the first electrode, and the second electrode are provided can reduce the disclination of the liquid crystal and improve the liquid crystal display.
  • a transparent conductive film can be laminated so as to cover the effective display pixels of the color filter, as a secondary effect, IPS (driving liquid crystal by a lateral electric field) or FFS (fringe of comb-tooth electrode)
  • IPS driving liquid crystal by a lateral electric field
  • FFS fin of comb-tooth electrode
  • the pixels of the liquid crystal display devices according to the above-described embodiments and examples are divided into 1/2 pixels line-symmetrically or 1/4 pixels point-symmetrically by the linear recesses, but the TFT is one pixel.
  • the TFT is one pixel.

Abstract

 透明基板上に、ブラックマトリクス、透明導電膜、及び樹脂層を形成してなる液晶表示装置用電極基板において、前記ブラックマトリクスは、遮光性顔料を樹脂に分散した遮光層からなり、かつ複数の開口部を有し、前記樹脂層は、前記ブラックマトリクス及び透明導電膜を備える透明基板上に形成され、前記ブラックマトリクスの上方において凸部を形成し、前記ブラックマトリクスの開口部中心を通る領域に凹部を形成することを特徴とする液晶表示装置用基板。

Description

液晶表示装置用基板および液晶表示装置
 本発明は、液晶表示装置用基板及びこれを用いた液晶表示装置に関する。特に、本発明は、垂直配向液晶表示装置用カラーフィルタ基板及びこれを用いた垂直配向液晶表示装置に関する。
 近年、液晶ディスプレイなどの薄型表示装置のさらなる高画質化、低価格化および省電力化が求められている。液晶表示装置向けカラーフィルタにおいては、十分な色純度や高いコントラスト、平坦性など、より高画質表示に合わせた要求がでてきている。
 高画質液晶ディスプレイにおいて、VA(Vertically Alignment)、HAN(Hybrid-aligned Nematic)、TN(Twisted Nematic)、OCB(Optically Compensated Bend)、CPA(Continuous Pinwheel Alignment)などの液晶の配向方式あるいは液晶駆動方式が提案され、それにより、広視野角・高速応答のディスプレイが実用化されている。
 液晶をガラスなど基板面に並行に配向させた広視野角で高速応答に対応しやすいVA方式、また広視野角に有効なHAN方式などの液晶表示装置では、カラーフィルタに対する平坦性(膜厚の均一性やカラーフィルタ表面の凹凸の低減)と誘電率など電気的特性について、さらに高いレベルが要求されている。このような高画質液晶ディスプレイでは、斜め方向視認での着色の低減のため、液晶セル厚(液晶層の厚み)を薄くする技術が主要な課題となっている。VA方式では、MVA(Multi-Domain Vertically Alignment)、PVA(Patterned Vertically Alignment)、VAECB(Vertically Alignment Electrically Controlled Birefringence)、VAHAN(Vertical Alignment Hybrid-aligned Nematic)、VATN(Vertically Alignment Twisted Nematic)種々の改良モードの開発が進んでいる。また、VA方式などの液晶の厚み方向に駆動電圧を印加する縦電界方式の液晶表示装置では、より高速の液晶応答、広い視野角技術、より高い透過率が主要な課題となっている。MVA技術は、液晶駆動の電圧印加時に不安定な垂直配向液晶(基板表面に対し初期垂直である液晶の、電圧印加時に倒れる方向が定まりにくいこと)の問題を解消するために、スリット状の凸部を複数設け、これらのスリット間に液晶ドメインを形成するとともに複数の配向方向のドメインを形成することにより、広い視野角を確保する技術である。特許文献1に、第1及び第2の配向規制構造体(スリット)を用いて液晶ドメインを形成する技術が開示されている。
 特許文献2には、光配向を用いて4つの液晶ドメインを形成する技術が開示されている。この特許文献は、広い視野角を確保するためにそれぞれドメインでの厳密なチルト角(89度)制御に係わる複数回の配向処理と、かつ、それぞれ90°異なる配向軸が必要なことが開示されている。
 カラーフィルタ基板側の透明導電膜(透明電極、表示電極あるいは第3電極)と、アレイ基板側の第1及び第2の電極を用い、斜め電界により垂直配向の液晶を制御する技術は、特許文献3および特許文献4に開示されている。特許文献3では負の誘電率異方性の液晶を用いており、特許文献4では、正の誘電率異方性の液晶が記載されている。なお、特許文献4には、負の誘電率異方性の液晶の記載は見られない。
 通常、VA方式やTN方式などの液晶表示装置の基本的構成は、共通電極を備えたカラーフィルタ基板と、液晶を駆動する複数の画素電極(例えば、TFT素子と電気的に接続され、櫛歯状パターン状に形成された透明電極)とアレイ基板とで、液晶を挟持する構成である。この構成では、カラーフィルタ上の共通電極とアレイ基板側に形成された画素電極との間に駆動電圧を印加して液晶を駆動する。画素電極やのカラーフィルタ表面の共通電極としての透明導電膜は、通常、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IGZO(Indium Garium Zinc Oxide)などの導電性の金属酸化物の薄膜を用いる。
 青色画素・緑色画素・赤色画素及びブラックマトリクスなどカラーフィルタを開示する技術として、例えば、ブラックマトリクスと着色画素上に透明導電膜を形成し、さらにオーバーコートを積層する技術が特許文献5に開示されている。また、ブラックマトリクスの断面を台形状に形成する技術は、特許文献6に記載されている。また、複数のストライプ電極と正の誘電率異方性を用いる技術ではあるが、透明電極(透明導電膜)上にカラーフィルタを形成する技術が、上述した特許文献3(例えば、図7、図9)に記載されている。加えて、透明で導電膜上に色フィルタ(カラーフィルタ)を形成する技術は、特許文献7に開示されている。
特許第3957430号公報 特開2008-181139号公報 特許第2859093号公報 特許第4364332号公報 特開平10-39128号公報 特許第3228139号公報 特開平5-26161号公報
 上述したように、垂直配向の液晶表示装置では、広い視野角を確保するため、スリットと呼ばれる配向規制構造体により液晶のドメインを形成する(MVA技術)。液晶が負の誘電率異方性を有する場合、具体的には、カラーフィルタなどの上に形成した2つの樹脂製のスリット間に位置する液晶は、駆動電圧の印加時に、例えば、平面視で、このスリットに垂直な方向に倒れ、基板面に水平に並ぼうとする。しかし、2つのスリット間の中央の液晶は、電圧印加にも関わらず倒れる方向が一義的に定まらず、スプレー配向やベンド配向をとることがある。このような液晶の配向乱れは、液晶表示でのざらつきや表示ムラにつながっていた。また、MVA方式の場合、上記問題も含め、液晶の倒れる量を駆動電圧で細かく制御することが難しく、中間調表示に難点があった。特に、駆動電圧と表示(応答時間)とのリニアリティが低く、低い駆動電圧での中間調表示に難点があった。
 このような問題を解決するため、特許文献3や特許文献4に示されるように、第1と第2と第3の電極を用い、斜め電界にて液晶配向を制御する手法は極めて有効である。斜め電界により、液晶の倒れる方向を設定することができる。また、斜め電界により液晶の倒れる量を制御しやすくなり、中間調表示に大きな効果が出てくる。
 しかし、これらの技術でも、液晶のディスクリネーション対策が不十分である。ディスクリネーションとは、意図しない液晶の配向乱れや未配向により光の透過率の異なる領域が画素(画素は、液晶表示の最小単位で、本発明で表記の矩形画素と同義)内に生じる問題である。
 特許文献3では、画素中央のディスクリネーション固定化のため、対向電極(第3の電極)の画素中央に透明導電膜のない配向制御窓を設けている。しかし、画素周辺のディスクリネーションの改善策は開示されていない。また、画素中央のディスクリネーション固定化はできるものの、ディスクリネーションの最小化への方策も示されていない。さらに、液晶の応答性の改善技術についても記載されていない。
 特許文献2には、広い視野角確保のために89度の厳密な液晶のチルト角の制御と4回の配向処理が必要であることが示されている。
 特許文献4では、透明導電膜(透明電極)上に誘電体層を積層した分、斜め電界の効果が増長され、好ましい。しかし、特許文献4の図7に示されるように電圧印加後も画素中央および画素端部には垂直配向の液晶が残り、透過率あるいは開口率の低下につながる問題がある。また、正の誘電率異方性の液晶を用いる場合(特許文献4は、負の誘電率異方性の液晶はその記載・実施例において開示していない)、画素中央部のディスクリネーションのため、透過率を向上させにくい。このため、半透過型液晶表示装置では採用しにくい技術となっている。
 本発明は、以上のような事情に鑑みてなされ、ディスクリネーションを軽減し、明るく応答性の良好な、斜め電界による液晶の駆動に最適な液晶表示装置用基板、及びこれを具備する液晶表示装置を提供することを目的とする。
 本発明の第1の態様によると、透明基板上に、ブラックマトリクス、透明導電膜、及び樹脂層を形成してなる液晶表示装置用電極基板において、前記ブラックマトリクスは、遮光性顔料を樹脂に分散した遮光層からなり、かつ複数の開口部を有し、前記樹脂層は、前記ブラックマトリクス及び透明導電膜を備える透明基板上に形成され、前記ブラックマトリクスの上方において凸部を形成し、前記ブラックマトリクスの開口部中心を通る領域に凹部を形成する、液晶表示装置用基板が提供される。
 本発明の第2の態様によると、透明基板と、この透明基板上に形成され、遮光性顔料を樹脂に分散した遮光層からなる、複数の開口部を有するブラックマトリクスと、前記ブラックマトリクスを備える透明基板上に形成された透明導電膜と、前記透明導電膜上の、前記複数の開口部により区分された画素領域に形成された複数色の着色画素とを具備する液晶表示装置用基板が提供される。
 本発明の第3の態様によると、上記第1又は第2の態様に係る液晶表示装置用基板と、この液晶表示装置用基板に対向して配置され、液晶を駆動する素子をマトリクス状に配設したアレイ基板と、前記液晶表示装置用基板及びアレイ基板との間に収容された液晶とを具備する液晶表示装置が提供される。
 本発明の第4の態様によると、透明基板上に、複数の矩形開口部を有するブラックマトリクス、透明導電膜、複数の着色画素、及び樹脂層を有するカラーフィルタ基板と、液晶を駆動する素子をマトリクス状に配設したアレイ基板とを対向させ、液晶を介して貼り合わせてなる液晶表示装置において、前記樹脂層が、透明導電膜上に直接あるいは間接的に配設されるとともに、該樹脂層表面から突出する凸部及び前記ブラックマトリクスの矩形開口部中心を通る領域に凹部が形成され、前記アレイ基板が、それぞれ可視域で透明な導電性金属酸化物からなる櫛歯状の第1電極及び櫛歯状の第2電極を具備し、前記第2電極が絶縁層を介して前記第1電極の下に配設され、前記第2電極が液晶の倒れる方向に前記第1電極の端部からはみ出ている液晶表示装置が提供される。
 本発明によると、ディスクリネーションを軽減し、明るく応答性の良好な、斜め電界による液晶の駆動に最適な液晶表示装置用基板、及びこれを具備する液晶表示装置が提供される。
本発明の一実施形態に係る垂直配向液晶表示装置の模式断面図である。 図1に示す垂直配向液晶表示装置の緑色画素14の1/2部分を拡大して示す断面図である。 図1に示す垂直配向液晶表示装置の駆動電圧の印加直後の倒れ始めた液晶の動きを説明する図である。 図1に示す垂直配向液晶表示装置の駆動電圧印加後の、白表示時の液晶分子の配向状態を示す図である。 第3電極、第1電極及び第2電極に電圧が印加されていない状態における、水平配向の液晶の液晶分子の配向状態を示す図である。 駆動電圧の印加直後、倒れ始めた液晶の動きを説明する模式断面図である。 駆動電圧印加後、白表示時の液晶分子の、ほぼ基板面に垂直に配向している配向状態を示す図である。 図1に示す垂直配向液晶表示装置の第1及び第2電極を櫛歯状パターンとした場合の、第1電極の近傍の垂直に配向した液晶分子を示す図である。 図5に示す垂直配向液晶表示装置の液晶を駆動する電圧を印加した直後の液晶分子の動作と電気力線を示す図である。 本発明の第2の実施形態に係る垂直配向液晶表示装置の模式断面図である。 図10の平面視で矩形画素である緑色画素14の1/2部分を拡大して示す断面図である。 図10に示す液晶表示装置の駆動電圧の印加直後の倒れ始めた液晶の動きを説明する図である。 図10に示す液晶表示装置の駆動電圧印加後の、白表示時の液晶分子の配向状態を示す図である。 図10に示す液晶表示装置のアレイ基板側における駆動電圧の印加による液晶分子の動きを示す図である。 図10に示す液晶表示装置のアレイ基板側における駆動電圧の印加による液晶分子の動きを示す図である。 実施例1に係る基板を示す部分断面図である。 実施例2に係る基板を示す部分断面図である。 実施例3に係る基板を示す部分断面図である。 実施例4に係る基板を示す部分断面図である。 実施例5に係るカラーフィルタ基板を示す部分断面図である。 実施例6に係るカラーフィルタ基板を示す部分断面図である。 実施例7に係る液晶表示装置を示す断面図である。 実施例8に係る半透過型液晶表示装置を示す断面図である。 実施例9に係るカラーフィルタ基板を示す断面図である。 実施例10に係るカラーフィルタ基板を示す断面図である。 実施例11に係るカラーフィルタ基板を示す断面図である。 実施例12に係るカラーフィルタ基板を示す断面図である。 実施例13に係るカラーフィルタ基板を示す断面図である。 実施例14に係る液晶表示装置を示す断面図である。 実施例15に係る液晶表示装置を示す断面図である。 実施例16に係る液晶表示装置を示す断面図である。 実施例17に係る液晶表示装置を示す断面図である。
 以下、本発明の実施形態について説明する。
 本発明の第1の実施形態は、表面に樹脂層が形成された、カラーフィルタを含むか又は含まない第1の基板と、TFTなどの液晶駆動素子が形成された第2の基板とを対向させ、間に液晶層を挟持する形で貼り合わせた液晶表示装置を前提とする。また、本発明の第1の実施形態は、加えて、第3電極である透明導電膜を第1の基板に配設し、画素電極である第1電極と、この第1電極とは電位の異なる第2電極とからなる電極構成において生じる斜め電界を活用する技術を用いるものである。
 更に、本発明者らは、第1の基板上にブラックマトリクスを覆うように樹脂層を配設し、
ブラックマトリクスの上方に樹脂層の面より突出した凸部と、ブラックマトリクスの開口部の中心を通る領域に凹部を設け、これらを液晶の配向制御に利用できることを見いだし、この知見と第3電極(透明導電膜)の構成を加えた、新規な技術を提案するものである。凸部は、ブラックマトリクスと樹脂層の重畳部により構成され、この凸部における傾斜部での液晶配向を、駆動電圧印加時の液晶の倒れに利用するものである。
 凹部も同様に、樹脂層のショルダー部(肩の部分)での液晶配向を液晶の倒れに利用する。液晶の動作については後の実施例で詳述する。凸部の高さは、0.5μmから2μmが好ましい範囲である。0.4μm以下の高さでは、電圧印加時の「液晶の倒れのトリガー」として効果が不十分であり、その高さが2μmを超えると液晶セル製造時の液晶の流れに支障が生じることがある。
 ブラックマトリクスの傾斜部は、丸みを帯びた形状でも良く、表示領域でのブラックマトリクスの断面形状は、半月状、台形、三角形などが例示できる。ブラックマトリクスの基板面からの傾斜角度は、上述した凸部の高さが0.5μmを超えれば特に規定しなくても良い。開口率(矩形画素としての透過率)を別にすれば、2°とか3°などの低い傾斜角度でも良く、逆テーパ(上辺の大きい逆向きの台形状)でなければ良い。しかしながら、開口率の制限のため、実効的には30°から80°の範囲の傾斜が好ましい。
 本発明の第2の実施形態は、初期配向が垂直配向の液晶を対象とし、カラーフィルタ基板とTFTなどの液晶駆動素子が形成されたアレイ基板とを対向させ、間に垂直配向用の液晶層を挟持する形で貼り合わせた垂直配向液晶表示装置を前提とする。また、本発明の第2の実施形態では、加えて、第3電極である透明導電膜を、カラーフィルタ基板上にブラックマトリクスを覆うように配設し、画素電極である第1電極と、この第1電極とは電位の異なる第2電極とからなる電極構成において生じる斜め電界を活用する技術を用いるものである。
 更に、本発明者らは、ブラックマトリクスの上方に着色画素の面より突出した凸部と、着色画素の中央を通る領域に凹部を設け、これらを液晶の配向制御に利用できることを見いだし、この知見と第3電極(透明導電膜)の構成を加えた、新規な技術を提案するものである。凸部は、異なる2色の着色画素の重畳部により構成され、この凸部における傾斜部での液晶配向を、駆動電圧印加時の液晶の倒れに利用するものである。
 ここで、本明細書における技術用語について、簡単に説明する。
 ブラックマトリクスとは、液晶表示のコントラストをアップさせるため、表示の最小単位である絵素の周囲、あるいは絵素の両辺に配設される遮光性のパターンである。遮光層は透明樹脂に遮光性の顔料を分散させた塗膜であり、一般に感光性を付与され、露光・現像を含むフォトリソグラフィの手法によりパターン形成を行うことにより得られた遮光性の塗膜である。
 矩形画素は、ブラックマトリクスの開口部を指し、上記絵素と同義である。着色層は、後述する有機顔料を透明樹脂に分散させた塗膜であり、これをフォトリソグラフィの手法で矩形画素上にパターン形成したものを着色画素と呼ぶ。
 また、第1の実施形態に適用可能な液晶は、初期配向(駆動電圧の無印加の時)が垂直配向又は平行配向の液晶であり、第2の実施形態に適用可能な液晶は、初期配向(駆動電圧の無印加の時)が垂直配向の液晶である。液晶の誘電率異方性は、正であっても負であっても良い。なお、負の誘電率異方性の液晶を本実施形態に適用した場合、チルト角設定のための配向膜の配向処理を省略することができる。換言すれば、第1及び第2の実施形態で用いる配向膜は、塗布形成後の熱処理だけで良く、ラビング配向や光配向などを省略することができる。第1及び第2の実施形態は、矩形画素の中央の透過率を上げることができるため、色純度より明るさを重視する、たとえば、半透過型液晶表示装置に好適なカラーフィルタ基板を提供することができる。
 第1及び第2の実施形態に係る液晶表示装置のアレイ基板側の第1電極、第2電極の材料は、上述したITOなどの導電性の金属酸化物薄膜を用いることができる。あるいは、金属酸化物薄膜より導電性の高い金属薄膜を採用することができる。さらに、反射型や半透過型の液晶表示装置の場合には、第1電極、第2電極のいずれかにアルミニウム、アルミニウム合金の薄膜を用いても良い。
 第1及び第2の実施形態において、着色層の比誘電率は、比較的重要な特性であるものの、着色剤として添加する有機顔料の透明樹脂に対する比率によってほぼ一義的に決定されるため、比誘電率を大きく調整することは困難である。換言すれば、着色層中の有機顔料の種類や含有量は、液晶表示装置として必要な色純度から設定され、それによって、着色層の比誘電率もほぼ決まることになる。なお、有機顔料の比率を高くして着色層を薄膜化することで、比誘電率を4以上とすることが可能である。また、透明樹脂として高屈折率材料を用いることで、若干の比誘電率をアップすることができる。 
 着色層及び樹脂層の厚みは、用いる液晶のセルギャップ(液晶層の厚み)との関係で最適化すればよい。必要な電気特性の観点で、たとえば、着色層及び樹脂層の厚みが薄くなる場合に、液晶層の厚みを厚くすることができる。前者の膜厚が厚い場合、これに対応して液晶層の厚みを薄くすることができる。
 第1電極と第2電極は、後述するように厚み方向に絶縁層により電気的に絶縁される。着色層、樹脂層、及び絶縁層の厚みは、液晶層の厚み、誘電率、印加電圧、駆動条件によって調整することができる。絶縁層をSiNx(窒化ケイ素)とする場合、この絶縁層の実用的な膜厚の範囲は、0.1μmから0.5μmである。第1電極と第2電極の膜厚方向の位置は、逆の位置でも良い。また、本実施形態に係る液晶表示装置では、斜め電界をより有効に活用することができるため、駆動電圧印加時の電気力線のおよぶ範囲を、液晶層や透明樹脂層を含む膜厚方向に拡げたことにより、透過率をアップすることができる。
 本実施形態に係る液晶表示装置用基板上にブラックマトリクスを覆うように透明導電膜を積層した構成における作用、また、ブラックマトリクス上の樹脂層又は着色層の重畳部、あるいは、画素部の中央部を通る領域の凹部の作用について、以下に説明する。
 図1は、本発明の第1の実施形態に係る垂直配向液晶表示装置の模式断面図である。この液晶表示装置は、基板11とアレイ基板21とを液晶17を挟持する形で貼り合わせた構成を有する。基板11は、透明基板1a上に、ブラックマトリクス2、透明導電膜である第3電極3、及び樹脂層18を順次形成することにより構成される。アレイ基板21では、透明基板1b上に第2電極4及び第3電極5が形成されている。保護層や配向膜、また、偏光板、位相差板などは図示を省略されている。
 図2は、図1の平面視で矩形開口部の1/2部分を拡大して示す断面図である。なお、偏光板は、クロスニコルとし、ノーマリブラックの液晶表示装置とした。偏光板としては、たとえば、ヨウ素を含有するポリビニルアルコール系有機高分子を延伸することにより得た延伸方向に吸収軸を有するものを使用することができる。図2は、基板11に設けられた透明導電膜である第3電極3、及びアレイ基板21に設けられた第1電極4、第2電極5に電圧が印加されていない状態での、垂直配向の液晶17における液晶分子17a、17b、17c、17dの配向状態を示している。
 矩形開口部(1/2画素)の中央部の液晶は画素面に垂直に配向されているが、凹部23のショルダー部分18aの液晶分子17a、凸部24のショルダー部分18bの液晶分子17b,17cは、やや斜めに配向している。この斜めの配向の状態で液晶駆動の電圧が印加されると、液晶分子17a、17b、17cは、矢印Aの方向に倒れることになる。凹部23及び凸部24の形成によって、ラビングなどの配向処理を実施しなくとも液晶分子17a、17b、17cは、実質的にチルトを付与されていることになる。
 本実施形態では、誘電率異方性が負である液晶と正である液晶の両者を用いることができる。たとえば、誘電率異方性が負の液晶として、室温付近で複屈折率が0.1程度であるネマチック液晶を用いることができる。誘電率異方性が正の液晶は、選択範囲が広いため、種々の液晶材料を適用することができる。液晶層の厚みは特に限定する必要はないが、本実施形態で実効的に用いることの可能な液晶層のΔndは、おおよそ300nmから500nmの範囲である。
 以下に詳述する本発明の実施例では、垂直配向の液晶材料として分子構造内にフッ素原子を有する液晶材料(以下、フッ素系液晶と記述)を用いることができる。液晶駆動の電圧印加時に、第1電極と第2電極のはみ出し部に実質的に強電界が発生することから、従来の垂直配向に用いる液晶材料より低誘電率(誘電率異方性の小さな)の液晶材料を使用して液晶駆動ができる。一般に誘電率異方性の小さな液晶材料はその粘度が低く、同程度の電界強度を印加した場合、高速応答が得られる。また、フッ素系液晶では、誘電率が低いことから、イオン性不純物の取り込みも少なく、不純物による電圧保持率低下などの性能の劣化も小さく表示ムラを生じにくい。図示を省略した配向膜としては、たとえば、ポリイミド系有機高分子膜を加熱硬膜化して用いることができる。また、偏光板に貼り合わせる形で、1から3枚の位相差板を用いても良い。
 なお、本実施形態において、液晶の倒れる動作は、誘電率異方性が負の液晶の場合、初期配向が垂直である液晶が駆動電圧印加時に水平方向に倒れていく動作であり、あるいは誘電率異方性が正の液晶の場合、初期配向が水平である液晶が駆動電圧印加時に垂直方向に立ち上がっていく動作を意味する。
 図3は、駆動電圧の印加直後の倒れ始めた液晶の動きを説明する図である。即ち、電圧印加にともない、まず、液晶分子17a、17b、17cが倒れ始め、続いてこれら液晶分子周辺の液晶分子が倒れていく。凹部23及び凸部24は、誘電体である透明樹脂層が薄いか、あるいは存在しないので、画素中央部分と異なり、印加される駆動電圧が液晶分子に伝搬しやすく、液晶の倒れる動作のトリガーとなる。なお、図3には図示されていないが、画素の反対側の1/2画素では、液晶の倒れる方向が逆向きとなる。このことは、中間調表示での光学的補償を駆動電圧の大きさだけで実施することができ、MVA液晶のように4つのマルチドメインを形成しなくとも広い視野角を確保できることになる。中間調(例えば、液晶分子それぞれが斜めの状態)では、図3の1/2画素と反対側の1/2画素が反対向きの傾斜勾配をもつ液晶配向となり、これら相対する1/2画素で視野角拡大を行う。
 図4は、駆動電圧印加後の、白表示時の液晶分子の配向状態を示す図である。図4に示すように、液晶分子はほぼ基板面に平行に配向している。
 次に、誘電率異方性が正の液晶を用いた液晶表示装置における液晶分子の動作について説明する。
 図5は、透明導電膜である第3電極3、第1電極4、及び第2電極5に電圧が印加されていない状態における、水平配向の液晶の液晶分子17a、17b、17c、17dの配向状態を示している。画素(1/2画素)の中央部の液晶は画素面に垂直に配向しているが、凸部24及び凹部23のそれぞれショルダー14b,14a部分の液晶分子はやや斜めに配向している。この斜めの配向の状態で、液晶駆動の電圧が印加されると、液晶分子17a、17b、17cは、図6に示すように、矢印の方向に倒れることになる。
 図6は、駆動電圧の印加直後、倒れ始めた液晶の動きを説明する模式断面図である。電圧印加にともない、まず、液晶分子17a、17b、17cが縦方向に立ち始め、続いてこれら液晶分子周辺の液晶分子が立っていく。凸部24及び凹部23は、誘電体である透明樹脂層が薄いか、あるいは存在しないので、画素中央部分と異なり、印加される駆動圧が液晶分子に伝搬しやすく、液晶の倒れる動作のトリガーとなる。なお、図6には図示されていないが、画素の反対側の1/2画素では、液晶の倒れる方向が逆向きとなる。
 図7は、駆動電圧印加後、白表示時の液晶分子の配向状態であり、液晶分子は、ほぼ基板面に垂直に配向している。
 以上は、基板11側に近い液晶分子の挙動について説明したが、本発明の他の実施形態に係る液晶表示装置では、アレイ基板21側にも、上記基板11側と同様の方向に液晶分子を倒すことが出来る。以下、そのような例について、誘電率異方性が負である液晶を用いた場合を説明する。
 図8に示す液晶表示装置では、第1電極が櫛歯状電極4a,4b,4c,4dとされ、また同様に第2電極も櫛歯状電極5a,5b,5c,5dとされている。第1電極4a,4b,4c,4dの近傍における液晶分子27a,27b,27c,27dは、垂直に配向している。
 図8に示す液晶表示装置において、第2電極5a,5b,5c,5dは、その端部が、液晶27aを倒す方向である画素からブラックマトリクス2へ向かう方向に、第1電極4a,4b,4c,4dの端部からはみ出るように配置されている。はみ出た量28は、用いる液晶材料や駆動電圧、液晶セル厚みなどのディメンションで種々調整することができる。はみ出た量28は、1μmから5μmの小さい量でも十分である。第1電極4a,4b,4c,4dと第2電極5a,5b,5c,5dの重なり部分の幅は、29で示されている。なお、配向膜は図示を省略した。重なり部分の幅は、適宜調整できる。
 図9に、液晶を駆動する電圧を印加した直後の液晶分子27a,27b,27c,27dの動作と、電気力線30a,30b,30c,30dをあわせて示した。電圧印加により電気力線の方向Aに液晶分子27a,27b,27c,27dが倒れ始める。この液晶分子の倒れる方向は、図3に示した液晶分子17a,17b,17cが倒れる方向と同一方向なので、図示した画素の液晶分子は、同じ方向に瞬時に倒れることになり、液晶の応答性を大きく向上させることができる。
 なお、第2電極5a,5b,5c,5dの第1電極4a,4b,4c,4dの端部からはみ出た部分の上の液晶分子の倒れの方向付けをしやすくするため、第1電極の端部にテーパを付与すること、第1電極の層厚を厚くすること、第1電極の下の絶縁層の一部をエッチングして第2電極の上の絶縁層の厚さを薄くすること等を行うことができる。これにより液晶分子には若干のチルトが付与され、低電圧でも倒れやすくなる。
 図9は、画素の1/2画素を図示しているが、残る1/2画素における第2電極のはみ出す方向は、図9の1/2画素に対し点対称又は線対称で、逆の方向であるのが望ましい。櫛歯状電極のパターンは、平面視でV字状や斜めに傾斜した形でも良い。あるいは、1/4画素単位で90°向きを変えた櫛歯状パターンでも良い。これら電極パターンは、画素中心から見て点対称もしくは線対称であることが望ましい。
 凹部23の平面視形状は、縦長の矩形画素の場合に、矩形画素を2分する形で中心を通る領域に直線状に設けることが好ましいが、第1電極や第2電極の櫛歯パターン形状によって、矩形画素の中心から十字状あるいはX字状に延びる形に形成することもできる。十字状あるいはX字状に凹部を形成した場合、第2電極のはみ出し部は、第1電極に対して矩形画素の4辺(ブラックマトリクス)方向に配設することが望ましい。第1電極や第2電極の櫛歯パターンは、矩形画素中心から点対称あるいは線対称であることが望ましい。画素を分割して液晶を駆動することにより、光学補償を完全に行うことができ、視野角が広く、どの角度から見ても色変化のない垂直配向液晶表示装置を得ることができる。
 なお、第1電極には液晶を駆動する電圧を印加するが、第2電極、第3電極は共通の電位(コモン)とすることができる。図8に示した第1電極と第2電極の重なり部分29は、補助容量として利用することができる。
 以上、図1~図9に示す実施形態では、基板11にはカラーフィルタは設けられていないが、カラーフィルタを形成し、カラーフィルタ基板としてもよい。この場合、カラーフィルタは、透明導電膜3と樹脂層18の間に形成される。なお、カラーフィルタを構成する着色画素は、赤色画素、緑色画素、青色画素の3色に限らず、これに、黄色画素などの補色の画素や、白色画素(透明画素)を加えてもよい。
 図10は、本発明の第2の実施形態に係る垂直配向液晶表示装置の模式断面図である。この液晶表示装置は、カラーフィルタ基板(以下、カラーフィルタ基板と略称する)11とアレイ基板21とを液晶17を挟持する形で貼り合わせた構成を有する。カラーフィルタ基板11は、透明基板1a上に、ブラックマトリクス2、透明導電膜である第3電極3、緑色画素14、赤色画素15、及び青色画素16を順次形成することにより構成される。アレイ基板21では、透明基板1b上に第2電極4及び第3電極5が形成されている。保護層や配向膜、また、偏光板、位相差板などは図示を省略されている。
 図11は、図10の平面視で矩形画素である緑色画素14の1/2部分を拡大して示す断面図である。なお、偏光板は、クロスニコルとし、ノーマリブラックの液晶表示装置とした。図11は、カラーフィルタ基板に設けられた透明導電膜である第3電極3、及びアレイ基板21に設けられた第1電極4、第2電極5に電圧が印加されていない状態での、垂直配向の液晶17における液晶分子17a、17b、17c、17dの配向状態を示している。
 緑色画素14(1/2画素)の中央部の液晶は緑色画素面に垂直に配向されているが、凹部23のショルダー部14aの液晶分子17a、凸部24のショルダー部分14bの液晶分子17b,17cは、やや斜めに配向している。この斜めの配向の状態で液晶駆動の電圧が印加されると、液晶分子17a,17b,17cは、矢印Aの方向に倒れることになる。凹部23及び凸部24の形成によって、ラビングなどの配向処理を実施しなくとも液晶分子17a,17b,17cは、実質的にチルトを付与されていることになる。
 なお、駆動電圧の印加による液晶分子の動きについて、図12及び図13に示すが、その動きは、図3及び図4と同様である。
 また、以上は、基板11側に近い液晶分子の挙動について説明したが、アレイ基板21側にも、上記基板11側と同様の方向に液晶分子を倒すことが出来る。そのような例について、誘電率異方性が負である液晶を用いた場合を、図14及び図15に示すが、その場合の液晶分子の動きは、図8及び図9と同様である。
 また、アクティブ素子であるTFTを、例えば酸化物半導体により形成することにより、画素の開口率を向上させることができる。酸化物半導体の代表例として、IGZOと呼ばれるインジウム、ガリウム、及び亜鉛の複合酸化物を挙げることができる。
 以下に、本実施形態に係る液晶表示装置用基板に用いることが可能な透明樹脂及び有機顔料等について例示する。
 (透明樹脂)
 遮光層、着色層、樹脂層の形成に用いる感光性着色組成物は、顔料分散体に加え、さらに、多官能モノマー、感光性樹脂ないし非感光性樹脂、重合開始剤、溶剤等を含有する。感光性樹脂及び非感光性樹脂など、本実施形態に用いることの可能な透明性の高い有機樹脂を総称して透明樹脂と呼ぶ。
 透明樹脂には、熱可塑性樹脂、熱硬化性樹脂、および感光性樹脂が含まれる。熱可塑性樹脂としては、例えば、 ブチラール樹脂、スチレンーマレイン酸共重合体、塩素化ポリエチレン、塩素化ポリプロピレン、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリ酢酸ビニル、ポリウレタン系樹脂、ポリエステル樹脂、アクリル系樹脂、アルキッド樹脂、ポリスチレン樹脂、ポリアミド樹脂、ゴム系樹脂、環化ゴム系樹脂、セルロース類、ポリブタジエン、ポリエチレン、ポリプロピレン、ポリイミド樹脂等が挙げられる。また、熱硬化性樹脂としては、例えば、エポキシ樹脂、ベンゾグアナミン樹脂、ロジン変性マレイン酸樹脂、ロジン変性フマル酸樹脂、メラミン樹脂、尿素樹脂、フェノール樹脂等が挙げられる。熱硬化性樹脂は、メラミン樹脂とイソシアネート基を含有する化合物とを反応させてなるものを用いてもよい。
 (アルカリ可溶性樹脂)
 本実施形態に用いる遮光層、光散乱層、着色層、透明樹脂層、セルギャップ規制層の形成には、フォトリソグラフィによるパターン形成可能な感光性樹脂組成物を用いることが好ましい。これらの透明樹脂は、アルカリ可溶性を付与された樹脂であることが望ましい。アルカリ可溶性樹脂としては、カルボキシル基又は水酸基を含む樹脂であれば特に限定はない。例えば、エポキシアクリレート系樹脂、ノボラック系樹脂、ポリビニルフェノール系樹脂、アクリル系樹脂、カルボキシル基含有エポキシ樹脂、カルボキシル基含有ウレタン樹脂等が挙げられる。中でもエポキシアクリレート系樹脂、ノボラック系樹脂、アクリル系樹脂が好ましく、特に、エポキシアクリレート系樹脂やノボラック系樹脂が好ましい。
 (アクリル樹脂)
 本実施形態に採用可能な透明樹脂の代表として、以下のアクリル系樹脂が例示できる。
 アクリル系樹脂は、単量体として、例えば(メタ)アクリル酸;メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、t-ブチル(メタ)アクリレートペンジル(メタ)アクリレート、ラウリル(メタ)アクリレート等のアルキル(メタ)アクリレート;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等の水酸基含有(メタ)アクリレート;エトキシエチル(メタ)アクリレート、グリシジル(メタ)アクリレート等のエーテル基含有(メタ)アクリレート;及びシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート等の脂環式(メタ)アクリレート等を用いて得た重合体が挙げられる。
 なお、以上挙げた単量体は、単独で、または、2種以上を併用して使用することができる。さらに、これら単量体と共重合可能なスチレン、シクロヘキシルマレイミド、及びフェニルマレイミド等の化合物との共重合体でもよい。
 また、例えば(メタ)アクリル酸等のエチレン性不飽和基を有するカルボン酸を共重合し、得られた共重合体と、グリシジルメタクリレート等のエポキシ基及び不飽和二重結合を含有する化合物とを反応させることや、グリシジルメタクリレート等のエポキシ基含有(メタ)アクリレートの重合体、又はそれとその他の(メタ)アクリレートとの共重合体に、(メタ)アクリル酸等のカルボン酸含有化合物を付加させることによっても、感光性を有する樹脂を得ることができる。
 さらに、例えばヒドロキシエチルメタアクリレート等のモノマーの、水酸基を有する重合体に、メタクリロイルオキシエチルイソシアネート等のイソシアネート基及びエチレン性不飽和基を有する化合物とを反応させることによっても、感光性を有する樹脂を得ることができる。
 また、上述したように、複数の水酸基を有するヒドロキシエチルメタクリレート等の共重合体と多塩基酸無水物を反応させて、共重合体にカルボキシル基を導入し、カルボキシル基を有する樹脂を得ることが出来る。カルボキシル基を有する樹脂の製造方法は、この方法のみに限るものではない。
 上記の反応に用いる酸無水物の例として、例えばマロン酸無水物、コハク酸無水物、マレイン酸無水物、イタコン酸無水物、フタル酸無水物、テトラヒドロフタル酸無水物、ヘキサヒドロフタル酸無水物、メチルテトラヒドロフタル酸無水物、及びトリメリト酸無水物等が挙げられる。
 上述したアクリル系樹脂の固形分酸価は、20~180mgKOH/gであることが好ましい。酸価が20mgKOH/gより小さい場合には、感光性樹脂組成物の現像速度が遅すぎて現像に要する時間が多くなり、生産性に劣る傾向となる。また、固形分酸価が180mgKOH/gより大きい場合には、逆に現像速度が速すぎて、現像後でのパターンハガレやパターン欠けの不具合が生じる傾向となる。
 さらに、上記アクリル系樹脂が感光性を有する場合、このアクリル樹脂の二重結合当量は100以上であることが好ましく、より好ましくは100~2000であり、最も好ましくは100~1000である。二重結合当量が2000を越える場合には十分な光硬化性が得られない場合がある。
 (光重合性モノマー)
 光重合性モノマーの例として、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、メラミン(メタ)アクリレート、エポキシ(メタ)アクリレート等の各種アクリル酸エステルおよびメタクリル酸エステル、(メタ)アクリル酸、スチレン、酢酸ビニル、(メタ)アクリルアミド、N-ヒドロキシメチル(メタ)アクリルアミド、アクリロニトリル等が挙げられる。
 また、水酸基を有する(メタ)アクリレートに多官能イソシアネートを反応させて得られる(メタ)アクリロイル基を有する多官能ウレタンアクリレートを用いることが好ましい。なお、水酸基を有する(メタ)アクリレートと多官能イソシアネートとの組み合わせは任意であり、特に限定されるものではない。また、1種の多官能ウレタンアクリレートを単独で用いても良いし、2種以上を組み合わせて用いることもできる。
 (光重合開始剤)
 光重合開始剤としては、4-フェノキシジクロロアセトフェノン、4-t-ブチル-ジクロロアセトフェノン、ジエトキシアセトフェノン、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタン-1-オン等のアセトフェノン系化合物;ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンジルジメチルケタール等のベンゾイン系化合物;ベンゾフェノン、ベンゾイル安息香酸、ベンゾイル安息香酸メチル、4-フェニルベンゾフェノン、ヒドロキシベンゾフェノン、アクリル化ベンゾフェノン、4-ベンゾイル-4’-メチルジフェニルサルファイド等のベンゾフェノン系化合物;チオキサンソン、2-クロルチオキサンソン、2-メチルチオキサンソン、イソプロピルチオキサンソン、2,4-ジイソプロピルチオキサンソン等のチオキサンソン系化合物;2,4,6-トリクロロ-s-トリアジン、2-フェニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-メトキシフェニル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(p-トリル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-ピペニル-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-ビス(トリクロロメチル)-6-スチリルs-トリアジン、2-(ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2-(4-メトキシ-ナフト-1-イル)-4,6-ビス(トリクロロメチル)-s-トリアジン、2,4-トリクロロメチル-(ピペロニル)-6-トリアジン、2,4-トリクロロメチル(4’-メトキシスチリル)-6-トリアジン等のトリアジン系化合物;1,2-オクタンジオン,1-〔4-(フェニルチオ)-,2-(O-ベンゾイルオキシム)〕、O-(アセチル)-N-(1-フェニル-2-オキソ-2-(4’-メトキシ-ナフチル)エチリデン)ヒドロキシルアミン等のオキシムエステル系化合物;ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイド等のホスフィン系化合物;9,10-フェナンスレンキノン、
カンファーキノン、エチルアントラキノン等のキノン系化合物;ボレート系化合物;カルバゾール系化合物;イミダゾール系化合物;チタノセン系化合物等が挙げられる。感度向上には、オキシム誘導体類(オキシム系化合物)が有効である。これらは1種を単独であるいは2種以上を組み合わせて用いることができる。
 (増感剤)
 光重合開始剤と増感剤とを併用することが好ましい。増感剤として、α-アシロキシエステル、アシルフォスフィンオキサイド、メチルフェニルグリオキシレート、ベンジル-9,10-フェナンスレンキノン、カンファーキノン、エチルアンスラキノン、4,4’-ジエチルイソフタロフェノン、3,3’,4,4’-テトラ(t-ブチルパーオキシカルボニル)ベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン等の化合物を併用することもできる。
 増感剤は、光重合開始剤100質量部に対して、0.1質量部から60質量部の量を含有させることができる。
 (エチレン性不飽和化合物)
 上述した光重合開始剤は、エチレン性不飽和化合物と共に用いることが好ましい。エチレン性不飽和化合物としては、エチレン性不飽和結合を分子内に1個以上有する化合物を意味する。中でも、重合性、架橋性、及びそれに伴う露光部と非露光部との現像液溶解性の差異を拡大できる等の点から、エチレン性不飽和結合を分子内に2個以上有する化合物であることが好ましい。また、その不飽和結合が(メタ)アクリロイルオキシ基に由来する(メタ)アクリレート化合物が特に好ましい。
 エチレン性不飽和結合を分子内に1個以上有する化合物としては、例えば、(メタ)アクリル酸、クロトン酸、イソクロトン酸、マレイン酸、イタコン酸、シトラコン酸等の不飽和カルボン酸、及びそのアルキルエステル;(メタ)アクリロニトリル;(メタ)アクリルアミド;スチレン等が挙げられる。エチレン性不飽和結合を分子内に2個以上有する化合物としては、代表的には、例えば、不飽和カルボン酸とポリヒドロキシ化合物とのエステル類、(メタ)アクリロイルオキシ基含有ホスフェート類、ヒドロキシ(メタ)アクリレート化合物とポリイソシアネート化合物とのウレタン(メタ)アクリレート類、及び(メタ)アクリル酸又はヒドロキシ(メタ)アクリレート化合物とポリエポキシ化合物とのエポキシ(メタ)アクリレート類等が挙げられる。
 上記光重合性開始剤、増感剤、及びエチレン性不飽和化合物は、後述する位相差層の形成に用いられる重合性液晶化合物を含む組成物に加えても良い。
 (多官能チオール)
 感光性着色組成物には、連鎖移動剤としての働きをする多官能チオールを含有させることができる。多官能チオールは、チオール基を2個以上有する化合物であればよく、例えば、ヘキサンジチオール、デカンジチオール、1,4-ブタンジオールビスチオプロピオネート、1,4-ブタンジオールビスチオグリコレート、エチレングリコールビスチオグリコレート、エチレングリコールビスチオプロピオネート、トリメチロールプロパントリスチオグリコレート、トリメチロールプロパントリスチオプロピオネート、トリメチロールプロパントリス(3-メルカプトブチレート)、ペンタエリスリトールテトラキスチオグリコレート、ペンタエリスリトールテトラキスチオプロピオネート、トリメルカプトプロピオン酸トリス(2-ヒドロキシエチル)イソシアヌレート、1,4-ジメチルメルカプトベンゼン、2、4、6-トリメルカプト-s-トリアジン、2-(N,N-ジブチルアミノ)-4,6-ジメルカプト-s-トリアジン等が挙げられる。
 これらの多官能チオールは、1種または2種以上混合して用いることができる。多官能チオールは、感光性着色組成物中に、顔料100質量部に対して、好ましくは0.2~150質量部、より好ましくは0.2~100質量部の量で用いることができる。
 (貯蔵安定剤)
 感光性着色組成物には、組成物の経時粘度を安定化させるために貯蔵安定剤を含有させることができる。貯蔵安定剤としては、例えばベンジルトリメチルクロライド、ジエチルヒドロキシアミンなどの4級アンモニウムクロライド、乳酸、シュウ酸などの有機酸およびそのメチルエーテル、t-ブチルピロカテコール、トリエチルホスフィン、トリフェニルフォスフィンなどの有機ホスフィン、亜リン酸塩等が挙げられる。貯蔵安定剤は、感光性着色組成物中の顔料100質量部に対して、0.1質量部から10質量部の量で含有させることができる。
 (密着向上剤)
 感光性着色組成物には、基板との密着性を高めるためにシランカップリング剤等の密着向上剤を含有させることもできる。シランカップリング剤としては、ビニルトリス(β-メトキシエトキシ)シラン、ビニルエトキシシラン、ビニルトリメトキシシラン等のビニルシラン類、γ-メタクリロキシプロピルトリメトキシシラン等の(メタ)アクリルシラン類;β-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)メチルトリメトキシシラン、β-(3,4-エポキシシクロヘキシル)エチルトリエトキシシラン、β-(3,4-エポキシシクロヘキシル)メチルトリエトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリエトキシシラン等のエポキシシラン類;N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、N-β(アミノエチル)γ-アミノプロピルメチルジエトキシシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリメトキシシラン、N-フェニル-γ-アミノプロピルトリエトキシシラン等のアミノシラン類;γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトプロピルトリエトキシシラン等のチオシラン類等が挙げられる。シランカップリング剤は、感光性着色組成物中に、顔料100質量部に対して、0.01質量部から100質量部で含有させることができる。
 (溶剤)
 感光性着色組成物には、基板上への均一な塗布を可能とするために、水や有機溶剤等の溶剤が配合される。また、本実施形態に用いる組成物がカラーフィルタの着色層である場合、溶剤は、顔料を均一に分散させる機能も有する。溶剤としては、例えばシクロヘキサノン、エチルセロソルブアセテート、ブチルセロソルブアセテート、1-メトキシ-2-プロピルアセテート、ジエチレングリコールジメチルエーテル、エチルベンゼン、エチレングリコールジエチルエーテル、キシレン、エチルセロソルブ、メチル-nアミルケトン、プロピレングリコールモノメチルエーテル、トルエン、メチルエチルケトン、酢酸エチル、メタノール、エタノール、イソプロピルアルコール、ブタノール、イソブチルケトン、石油系溶剤等が挙げられ、これらを単独でもしくは混合して用いることができる。溶剤は、着色組成物中に、顔料100質量部に対して、800質量部から4000質量部、好ましくは1000質量部から2500質量部で含有させることができる。
 (有機顔料)
 赤色顔料としては、例えば、C.I.Pigment Red 7、9、14、41、48:1、48:2、48:3、48:4、81:1、81:2、81:3、97、122、123、146、149、168、177、178、179、180、184、185、187、192、200、202、208、210、215、216、217、220、223、224、226、227、228、240、246、254、255、264、272、279等を用いることができる。
 黄色顔料としては、例えば、C.I.Pigment Yellow 1、2、3、4、5、6、10、12、13、14、15、16、17、18、20、24、31、32、34、35、35:1、36、36:1、37、37:1、40、42、43、53、55、60、61、62、63、65、73、74、77、81、83、86、93、94、95、97、98、100、101、104、106、108、109、110、113、114、115、116、117、118、119、120、123、125、126、127、128、129、137、138、139、144、146、147、148、150、151、152、153、154、155、156、161、162、164、166、167、168、169、170、171、172、173、174、175、176、177、179、180、181、182、185、187、188、193、194、199、213、214等が挙げられる。
 青色顔料としては、例えばC.I. Pigment Blue 15、15:1、15:2、15:3、15:4、15:6、16、22、60、64、80等を用いることができ、これらの中では、C.I. Pigment Blue 15:6が好ましい。
 紫色顔料として、例えば、C.I. Pigment Violet 1、19、23、27、29、30、32、37、40、42、50等を用いることができ、これらの中では、C.I. Pigment Violet 23が好ましい。
 緑色顔料としては、例えば、C.I. Pigment Green 1、2、4、7、8、10、13、14、15、17、18、19、26、36、45、48、50、51、54、55、58等を用いることができ、これらの中では、C.I. Pigment Green 58が好ましい。
 以下、C.I. Pigmentの顔料種の記載において、単にPB(Pigment Blue)、PV(Pigment Violet)、PR(Pigment Red)、PY(Pigment Yellow)、PG(Pigment Green)などと省略して記載することがある。
 (遮光層の色材)
 遮光層あるいはブラックマトリクス含まれる遮光性の色材は、可視光波長領域に吸収を有することにより遮光機能を示す色材である。本実施形態において遮光性の色材には、例えば、有機顔料、無機顔料、染料等が挙げられる。無機顔料としては、例えば、カーボンブラック、酸化チタン等が挙げられる。染料としては、例えば、アゾ系染料、アントラキノン系染料、フタロシアニン系染料、キノンイミン系染料、キノリン系染料、ニトロ系染料、カルボニル系染料、メチン系染料等が挙げられる。有機顔料については、前記した有機顔料が採用できる。なお、遮光性成分は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。また、これら色材の表面による樹脂被覆による高体積抵抗化、逆に、樹脂の母材に対して色材の含有比率を上げて若干の導電性を付与することによる低体積抵抗化を行っても良い。しかし、こうした遮光性材料の体積抵抗値は、およそ1×10~1×1015Ω・cmの範囲であるので、透明導電膜の抵抗値に影響するレベルではない。同様に、遮光層の比誘電率も色材の選択や含有比率でおよそ3~11の範囲で調整できる。
 (分散剤・分散助剤)
 顔料分散剤として高分子分散剤を用いると、経時の分散安定性に優れるので好ましい。高分子分散剤としては、例えば、ウレタン系分散剤、ポリエチレンイミン系分散剤、ポリオキシエチレンアルキルエーテル系分散剤、ポリオキシエチレングリコールジエステル系分散剤、ソルビタン脂肪族エステル系分散剤、脂肪族変性ポリエステル系分散剤等を挙げることができる。中でも、特に窒素原子を含有するグラフト共重合体からなる分散剤が、顔料を多く含む本実施形態に用いる遮光性感光性樹脂組成物に対しては、現像性の点で好ましい。
 これら分散剤の具体例としては、商品名で、EFKA(エフカーケミカルズビーブイ(EFKA)社製)、Disperbik(ビックケミー社製)、ディスパロン(楠本化成社製)、SOLSPERSE(ルーブリゾール社製)、KP(信越化学工業社製)、ポリフロー(共栄社化学社製)等を挙げることができる。これらの分散剤は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用することができる。
 分散助剤としては、例えば色素誘導体等を用いることができる。色素誘導体としては、例えば、アゾ系、フタロシアニン系、キナクリドン系、ベンズイミダゾロン系、キノフタロン系、イソインドリノン系、ジオキサジン系、アントラキノン系、インダンスレン系、ペリレン系、ペリノン系、ジケトピロロピロール系、ジオキサジン系等の誘導体が挙げられるが、中でもキノフタロン系が好ましい。
 色素誘導体の置換基としては、例えばスルホン酸基、スルホンアミド基及びその4級塩、フタルイミドメチル基、ジアルキルアミノアルキル基、水酸基、カルボキシル基、アミド基等が顔料骨格に直接又はアルキル基、アリール基、複素環基等を介して結合したものが挙げられる。これらの中では、スルホン酸基が好ましい。また、これら置換基は、一つの顔料骨格に複数置換していてもよい。
 色素誘導体の具体例としては、フタロシアニンのスルホン酸誘導体、キノフタロンのスルホン酸誘導体、アントラキノンのスルホン酸誘導体、キナクリドンのスルホン酸誘導体、ジケトピロロピロールのスルホン酸誘導体、ジオキサジンのスルホン酸誘導体等が挙げられる。
 以上の分散助剤及び色素誘導体は、1種を用いてもよく、2種以上を任意の組み合わせ及び比率で併用しても良い。
 以下、本発明の種々の実施例について説明する。
 以下の実施例のうち、カラーフィルタ基板に係る実施例6~9では、着色画素を、赤色画素、緑色画素、青色画素の3色を用いたが、これに、黄色画素などの補色の画素や、白色画素を加えてもよい。
 実施例1
 図16に示す基板を、以下のようにして製造した。
 (ブラックマトリクス形成用分散液)
 カーボン顔料#47(三菱化学社製)20質量部、高分子分散剤BYK-182(ビックケミー社製)8.3質量部、銅フタロシアニン誘導体(東洋インキ製造社製)1.0質量部、及びプロピレングリコールモノメチルエーテルアセテート71質量部を、ビーズミル分散機にて、攪拌してカーボンブラック分散液を作製した。
 (ブラックマトリクス形成用フォトレジスト)
 ブラックマトリクス形成用レジストは、以下の材料を使用して作製した。
  カーボンブラック分散液:顔料#47(三菱化学社製)
  樹脂:V259-ME(新日鐵化学社製)(固形分56.1質量%)
  モノマー:DPHA(日本化薬社製)
  開始剤:OXE-02(チバ・スペシャルティ・ケミカルズ社製)
      OXE-01(チバ・スペシャルティ・ケミカルズ社製)
  溶剤:プロピレングリコールモノメチルエーテルアセテート
     エチル-3-エトキシプロピオネート
  レベリング剤:BYK-330(ビックケミー社製)
 以上の材料を、以下の組成比で混合攪拌し、ブラックマトリクス形成用レジストとした(固形分中の顔料濃度:約20%)。
  カーボンブラック分散液                3.0質量部
  樹脂                         1.4質量部
  モノマー                       0.3質量部
  開始剤 OXE-01                  0.67質量部
  開始剤 OXE-02                  0.17質量部
  プロピレングリコールモノメチルエーテルアセテート  14質量部
  エチル-3-エトキシプロピオネート           5.0質量部
  レベリング剤                      1.5質量部
 (ブラックマトリクス形成条件)
 図16に示すように、上記フォトレジストをガラスからなる透明基板1aにスピンコートし、乾燥させ、膜厚1.9μmの塗膜を作製した。かかる塗膜を100℃で3分間、乾燥した後、ブラックマトリクスとしてパターン幅(ブラックマトリクスの画線幅に相当)20.5μm開口のある露光用のフォトマスクを用い、光源として超高圧水銀灯ランプを用いて200mJ/cm照射した。
 次に、2.5%炭酸ナトリウム水溶液で60秒間現像し、現像後よく水洗し、さらに乾燥した後、230℃で60分加熱処理してパターンを定着させ、透明基板1a上にブラックマトリクス2を形成した。ブラックマトリクス2の画線幅は、約20μmであり、矩形画素の周囲(4辺)に形成した。透明基板面からの画線端部の傾斜角度は約45度とした。
 (透明導電膜の成膜)
 スパッタリング装置を用いて、前記したブラックマトリクス2の全面を覆うように、ITO(インジウム・スズの金属酸化物薄膜)からなる透明導電膜3(第3電極)を0.14μmの膜厚で形成した。
 (樹脂層の形成)
 透明導電膜3を覆うように、アルカリ可溶性のアクリル感光性樹脂塗布液を用いて、硬膜後の膜厚が1.8μmになるように、フォトリソグラフィーにより樹脂層18を形成した。用いたフォトマスクとしては、矩形画素の中央部にはハーフトーン(透過率の低い半透過部)のスリットを設けたものを用い、平面視で線状の凹部13を形成した。凹部13の深さは、約1μmとした。
 ブラックマトリクス2上に形成された樹脂層18からなる凸部24の高さHは約1.1μmとなった。凸部24の傾斜は、透明基板面からの角度で約45度であった。なお、凸部24の高さHは、樹脂層18の平坦部の表面から凸部24のトップまでの高さとした。
 なお、本実施例に係る基板はカラーフィルタを含まず、カラーフィルタはアレイ基板側に形成するか、あるいは、フィールドシーケンシャル(複数色のLED光源をバックライトに用い、時分割の光源駆動により、カラーフィルタなしでカラー表示を行う手法)のカラー液晶表示装置に適用することができる。
 樹脂層18の形成に用いるアクリル感光性樹脂塗布液は、下記に示すようにアクリル樹脂を合成し、さらにモノマー、光開始剤を加え、0.5μmのフィルトレーションを行って得た透明樹脂塗布液である。
 (アクリル樹脂の合成)
 反応容器にシクロヘキサノン800質量部を入れ、窒素ガスを注入しながら加熱し、下記モノマーおよび熱重合開始剤の混合物を滴下して、重合反応を行った。
  スチレン           55質量部
  メタクリル酸        65質量部
  メチルメタクリレート 65質量部
  ベンジルメタクリレート    60質量部
  熱重合開始剤        15質量部
  連鎖移動剤          3質量部
 滴下後、十分に加熱した後、熱重合開始剤2.0質量部をシクロヘキサノン50質量部で溶解して得た溶液を添加し、さらに反応を続けて、アクリル樹脂の溶液を得た。この樹脂溶液に固形分が30質量%になるようにシクロヘキサノンを添加してアクリル樹脂溶液を調製し、樹脂溶液(1)とした。アクリル樹脂の重量平均分子量は、約20,000であった。
 さらに、下記組成の混合物を均一に攪拌混合した後、直径1mmのガラスビーズを用いて、サンドミルで2時間分散し、0.5μmのフィルタで濾過して、透明樹脂塗布液を得た。
  樹脂溶液(1)            100質量部
  多官能重合性モノマー
   EO変性ビスフェノールAメタクリレート(BPE-500:新中村化学社製)
                      20質量部
  光開始剤
  (チバスペシャリティーケミカルズ社製「イルガキュアー907」)
                      16重量部
  シクロヘキサノン           190重量部 
 実施例2
 図17に示す基板を、以下のようにして製造した。
 本実施例では、用いたブラックマトリクス形成用フォトマスク及びフォトレジストは、実施例1と同じである。
 ガラス基板1a上にブラックマトリクス2を形成した後、このブラックマトリクス2を含むガラス基板1a上にアルカリ可溶型、感光性フォトレジストのアクリル樹脂を乾燥後膜厚が1.2μmとなるような厚さに塗布した。感光性矩形画素中央部のみに10μmの開口幅のあるフォトマスクを用いて露光し、さらに現像及び硬膜処理して、12μm画線幅の透明線状パターン22を形成した。
 次いで、実施例1と同様にして透明導電膜3を積層した。
 その後、樹脂層18を形成するが、それに使用したレジスト及びその形成方法は、実施例1と同じである。ただし、樹脂層18形成のためのフォトマスクとしては、実施例1と異なり、矩形画素中央部に線状遮光パターンのあるフォトマスクを用いた。
 図17を参照して、製造した基板について説明する。樹脂層18の膜厚は1.8μmである。樹脂層18の凸部24の高さは、1μmである。矩形画素の中央部には、透明樹脂(アクリル樹脂)からなる線状パターン22が形成され、この線状パターン22上には、7μmの透明導電膜の開口幅と約0.6μmの深さのある凹部33が形成されている。
 なお、本実施例で用いたアクリル樹脂に代えて、高い濃度の有機顔料を含む着色層により線状パターンを形成しても良い。顔料濃度の高い着色層からなる線状パターンにより、線状の光の抜けをなくし、色純度の高い表示が可能となる。
 実施例3
 図18に示す基板を、以下のようにして製造した。
 本実施例では、実施例1で用いたブラックマトリクス形成用フォトマスクに代えて、ブラックマトリクス形成用開口パターンに加え、矩形画素中央部にさらに11μm幅の開口のあるフォトマスクを用いた。開口幅を狭くすることで露光量が急減するため、矩形画素中央に、高さの低い線状の遮光パターン32を形成することができる。
 その後、実施例1と同様にして透明導電膜3を積層した。
 また、樹脂層18形成用フォトマスクとして、矩形画素中央部にさらに12μm幅の遮光パターンのあるフォトマスクを用いた。ほか、使用したレジスト、製造方法は実施例1と同じである。
 図18を用いて、製造した基板について説明する。樹脂層18の膜厚は、いずれも1.8μmである。樹脂層18の凸部24の高さは、1.1μmである。矩形画素の中央部には、遮光層(ブラック形成レジスト)による遮光パターン32が形成され、この遮光パターン32上には、7μmの透明導電膜の開口幅と約0.6μmの深さのある凹部43が形成されている。
 本実施例では、ブラックマトリクスと矩形画素中央の遮光パターンを1つのフォトマスクを用いて形成したが、ブラックマトリクスと遮光パターンと分けて2つのフォトマスクを用い、かつ2回のフォトリソグラフィの手法で形成しても良い。
 実施例4
 図19に示す基板を、以下のようにして製造した。
 ガラス基板1a上に、0.14μm膜厚の透明導電膜3を形成し、この透明導電膜3上に、ブラックマトリクス2を1.9μmの膜厚で形成した。ブラックマトリクス形成用フォトレジストは、実施例1と同様のものを用いた。
 次に、ブラックマトリクス2及び矩形開口部を覆うように、アルカリ可溶性のアクリル感光性樹脂塗布液を用いて、硬膜後の膜厚が1μmになるように樹脂層18を形成した。ブラックマトリクス2上に形成された樹脂層18からなる凸部24の高さHは、約1μmとした。凹部53の深さは1μmであり、凹部53には透明導電膜3を露出させた。
 なお、本実施例に係る基板はカラーフィルタを含まず、カラーフィルタはアレイ基板側に形成するか、あるいは、フィールドシーケンシャル(複数色のLED光源をバックライトに用い、時分割の光源駆動により、カラーフィルタなしでカラー表示を行う手法)のカラー液晶表示装置に適用することができる。
 樹脂層18の形成に用いるアクリル感光性樹脂塗布液は、実施例1で用いたものと同様のものとした。
 実施例5
 図20に示すカラーフィルタ基板を、以下のようにして製造した。
 ガラス基板1a上に、0.14μm膜厚の透明導電膜3を形成し、この透明導電膜3上に、ブラックマトリクス2を1.9μmの膜厚で形成した。ブラックマトリクス形成用フォトレジストは、実施例1と同様のものを用いた。
 次に、ブラックマトリクス2及び矩形開口部を覆うように、着色画素を形成した。着色画素の形成に用いたカラーレジスト及び着色画素の形成方法について、以下に示す。
 (着色画素の形成)
  《着色層形成用分散液》
 着色層に分散する有機顔料として、以下のものを使用した。
 赤色用顔料:C.I.Pigment Red 254(チバ・スペシャルティ・ケミカルズ社製「イルガーフォーレッド B-CF」)、C.I.Pigment Red 177(チバ・スペシャルティ・ケミカルズ社製「クロモフタールレッドA2B」)
 緑色用顔料:C.I.Pigment Green 58、C.I.Pigment Yellow 150(バイエル社製「ファンチョンファーストイエロー Y-5688」)
 青色用顔料:C.I.Pigment Blue 15(東洋インキ製造製「リアノールブルーES」)
       C.I.Pigment Violet 23(BASF社製「バリオゲンバイオレット 5890」)
 以上の顔料を用いて、赤色、緑色、及び青色の各色分散液を作製した。
 <赤色顔料分散液>
 赤色顔料:C.I.Pigment Red 254      18質量部
 赤色顔料:C.I.Pigment Red 177       2質量部
  アクリルワニス(固形分20質量%)  108質量部
 上記の組成の混合物を均一に攪拌した後、ガラスビーズを用いて、サンドミルで5時間分散し、5μmフィルタで濾過して赤色顔料分散液を作製した。
 <緑色顔料分散液>
  緑色顔料:C.I.Pigment Green 58      16質量部
  緑色顔料:C.I.Pigment Yellow 150      8質量部
  アクリルワニス(固形分20質量%): 102質量部
 上記の組成の混合物に対して、赤色顔料分散液と同様の作製方法を用いて、緑色顔料分散液を作製した。
 <青色顔料分散液>
  青色顔料:C.I.Pigment Blue 15     50質量部
  青色顔料:C.I.Pigment Violet 23     2質量部
  分散剤(ゼネカ社製「ソルスバース20000」):6質量部
  アクリルワニス(固形分20質量%): 200質量部
 上記の組成の混合物に対して、赤色顔料分散液と同様の作製方法を用いて、青色顔料分散液を作製した。
  《着色画素形成カラーレジスト》
 <赤色画素形成カラーレジスト>
  赤色分散液                150質量部
  トリメチロールプロパントリアクリレート   13質量部
  (大阪有機化学工業社製「TMP3A」)
  光開始剤                   4質量部
  (チバ・スペシャルティ・ケミカルズ社製「Irgacure907」)
  増感剤(保土ヶ谷化学社製「EAB-F」)   2質量部
  溶剤:シクロヘキサノン          257質量部
 上記組成の混合物を均一になるように攪拌混合した後、5μmのフィルタで濾過して赤色画素形成カラーレジストを得た。
 <緑色画素形成カラーレジスト>
  緑色分散液                126質量部
  トリメチロールプロパントリアクリレート   14質量部
  (大阪有機化学工業社製「TMP3A」)
  光開始剤                   4質量部
  (チバ・スペシャルティ・ケミカルズ社製「Irgacure907」)
  増感剤(保土ヶ谷化学社製「EAB-F」)   2質量部
  シクロヘキサノン             257質量部
 上記組成の混合物を均一になるように攪拌混合した後、5μmのフィルタで濾過して、緑色画素形成カラーレジストを得た。
 <青色画素形成カラーレジスト>
 組成がそれぞれ下記組成となるように,赤色画素形成カラーレジストと同様の方法で作製した。
  青色分散液                258質量部
  トリメチロールプロパントリアクリレート   19質量部
  (大阪有機化学工業社製「TMP3A」)
  光開始剤                   4質量部
  (チバ・スペシャルティ・ケミカルズ社製「Irgacure907」)
  増感剤(保土ヶ谷化学社製「EAB-F」)   2質量部
  シクロヘキサノン             214質量部
  《着色画素形成》
 上記の如き方法によって得られた着色画素形成カラーレジストを用いて着色層を形成した。
 着色層の形成は、まず透明導電膜3及びブラックマトリクス2が形成されたガラス基板1a上に、赤色画素形成用カラーレジストをスピンコートにより仕上り膜厚が1.8μmとなるように塗布した。90℃で5分間乾燥した後、着色画素形成用のフォトマスクを通して高圧水銀灯の光を300mJ/cmの照射量で照射し、アルカリ現像液にて60秒間現像して、ストライプ形状の赤色の着色画素15を得た。その後、230℃で30分焼成した。BM部とカラー部の重なりを14.0μmとして作製した。なお、矩形画素の中央部にはハーフトーン(透過率の低い半透過部)のスリットを設け、平面視で線状の凹部(図示せず)を形成した。凹部の深さは、約1μmとした。
 次に、緑色画素形成用レジストも同様にスピンコートにより仕上り膜厚が1.8μmとなるように塗布した。90℃、5分間乾燥した後、前述の赤色画素15と隣接した位置にパターンが形成されるようにフォトマスクを通して露光し現像することで、緑色画素14を形成した。同様に、矩形画素の中央部にはハーフトーン(透過率の低い半透過部)のスリットを設け、平面視で線状の凹部63を形成した。凹部63の深さは、約1μmとした。その後、230℃で30分間熱処理して硬膜した。
 さらに、赤色、緑色と全く同様にして、青色画素形成用レジストについても仕上り膜厚が1.8μmで赤色画素、緑色画素と隣接した青色画素16を得た。これで、基板1a上に赤、緑、青3色の着色画素を持つカラーフィルタが得られた。その後、230℃で30分間熱処理して硬膜し、カラーフィルタ基板を得た。
 その後、着色画素上に熱硬化型のアクリル樹脂からなる樹脂層68を0.2μmの膜厚で積層した。凸部64の高さは約1μm、凹部63深さは約0.9μmとなった。樹脂層68により、凸部64の高さ及び凹部63の深さがやや小さめの値となった。
 実施例6
 図21に示すカラーフィルタ基板を、以下のようにして製造した。
 ガラス基板1a上に、ブラックマトリクス2を1.9μmの膜厚で形成した。ブラックマトリクス形成用フォトレジストは、実施例6と同様のものを用いた。次に、実施例6で用いたカラーレジストを用い、赤色着色画素15、緑色着色画素14、青色着色画素16を膜厚1.8μmにて形成した。
 その後、実施例5と同様の方法で、スパッタリング装置を用いて透明導電膜3を0.14μmの膜厚で形成した。さらに、アルカリ可溶性のアクリル感光性樹脂を用いて、硬膜後の膜厚が1.5μmになるように樹脂層78を形成した。このとき、公知のフォトリソグラフィの手法で矩形開口部の中央に深さ1.2μmの凹部73を形成した。樹脂層78のパターン形成のために、矩形開口部にスリット状パターンの形成あるフォトマスクを用いた。本実施例における凸部74の高さは、約1.1μmであった。
 実施例7
 本実施例に係る液晶表示装置を図22に示す。本実施例に用いたカラーフィルタ基板81は、図21に示す実施例7のカラーフィルタ基板である。アクティブ素子の形成された基板は、図8及び図9で示した櫛歯状電極を有するアレイ基板21とした。
 このカラーフィルタ基板71とアレイ基板21を貼り合わせ、負の誘電率異方性の液晶77を封入し、さらに両面に偏光板を貼付して、図16に示す液晶表示装置とした。カラーフィルタ基板71及びアレイ基板21の表面には、あらかじめ垂直配向膜を塗布、形成してある。垂直配向膜は、図示を省略した。MVAやVATNなどの垂直配向の液晶表示装置に必要な厳密な配向処理(例えば、チルト角89°とし、複数ドメインを形成するための複数方向の配向処理)は実施せず、ほぼ90°の垂直配向とした。
 図22を参照して、製造した液晶表示装置について説明する。液晶77の動作は、図16の中央の緑色画素14で代表して説明する。
 初期配向が垂直配向である液晶77の液晶分子は、駆動電圧印加時に、第1電極4及び第2電極5により、着色画素14を矩形画素中央から2分する線から凸部84のショルダー部84cに向かう方向、即ち、矢印Bに示す方向に倒れる。なお、第2電極5は、矢印Cに示す方向に、第1電極4の端部からはみ出ている。第3電極3と第2電極2は、コモン電位とした。
 本実施例では、緑色画素14の中央に凹部73があるため、カラーフィルタ面でも矩形画素中心を通る領域から2分する形で液晶分子が倒れ、アレイ基板21の櫛歯状の第1電極4、第2電極5と相まって、ディスクリネーションを抑えた明るい表示が可能となる。
 本実施例における画素の中心を通る領域の凹部73は、光の透過率を上げるため、半透過型や反射型などの明るさを重視する液晶ディスプレイの用途に最適となる。たとえば、バックライトからの光を透過するとともに外光反射の可能な反射偏光板をバックライトシステムに加えて、半透過型液晶表示装置とすることができる。なお、反射偏光板としては、例えば、特許第4177398号公報に反射偏光子として記載されているようなものを用いることが出来る。
 実施例8
 本実施例に係る液晶表示装置を図23に示す。この液晶表示装置は、反射偏光板を用いた半透過型液晶表示装置である。本実施例に用いたカラーフィルタ基板71は、図21に示す実施例7のカラーフィルタ基板である。アクティブ素子の形成されたアレイ基板は、図8及び図9で示した櫛歯状電極を有するアレイ基板21とした。
 カラーフィルタ基板71及びアレイ基板21を対向して配置し、間に液晶77を介在させた構造を有することは、図22に示す構造と同様である。カラーフィルタ基板71の液晶77と反対側には、光学補償層81a及び偏光板82aが配置されている。また、アレイ基板21の液晶77と反対側には、偏光板82b、光拡散層83a、反射偏光板84、光学補償層81b、プリズムシート85、光拡散層83b、導光板86、光反射板87が順次配設されている。導光板86には、光源、例えばLED光源88が取付けられている。
 LED光源88としては、RGB個別発光素子であることが望ましいが、擬似白色LEDであってもよい。また、LEDの代わりに、従来汎用されている冷陰極線管や蛍光灯を用いてもよい。LED光源88としてRGB個別発光素子を用いた場合には、それぞれの発光強度を色ごとに個別に調整することができるので、最適な色表示を行うことが可能である。また、立体画像表示に適用することもできる。
 なお、カラーフィルタ基板に代えて、実施例4におけるようなカラーフィルタを含まない基板を用い、RGB個別発光のLED光源を液晶表示と同期させる、フィールドシーケンシャル手法によるカラー表示とすることも可能である。
 実施例9
 図24に示すカラーフィルタ基板を、以下のようにして製造した。
 ガラス基板1a上に、ブラックマトリクス2を1.9μmの膜厚で形成した。ブラックマトリクス形成用フォトレジストは、実施例5と同様のものを用いた。次に、実施例6で用いたカラーレジストを用い、赤色着色画素15、緑色着色画素14、青色着色画素16を膜厚1.8μmにて形成した。なお、各着色画素の形成に用いたフォトマスクとしては、矩形画素に対応する部分を2分する中心線に沿って遮光パターンを有するものを用いた。これによって、着色画素の中央に、10μm幅、深さ1.8μmの線状凹部を形成した。
 その後、実施例5と同様の方法で、スパッタリング装置を用いて、赤色着色画素15、緑色着色画素14、及び青色着色画素16を覆うように、透明導電膜3を0.14μmの膜厚で形成した。
 次いで、熱硬化タイプのアクリル樹脂溶液を用いて、硬膜後の膜厚が0.8μmになるように樹脂層98を形成した。その結果、ブラックマトリクス2、着色画素14,15,16、透明導電膜3、及び樹脂層98の重畳からなる凸部94が形成された。また、矩形画素の中央部に線状の凹部93が形成された。凸部94の高さHは約1μmであり、凹部93の深さは0.7μmであった。
 本実施例に係るカラーフィルタ基板において、形画素中央部の線状の凹部93は、反射型表示装置として用いる場合には、画素の明るさを向上させる開口部の役割を果たすことが出来る。バックライトを用いた透過表示では、TFT配線(例えば、ドレイン引き出し配線や補助容量配線)を、平面視で直線状の凹部と重なる位置に遮光膜として形成することで、バックライトからの光漏れをなくすことが出来る。
 実施例10
 着色画素14、15、16上に熱硬化型のアクリル樹脂からなる樹脂層68を形成しないことを除いて、実施例5と同様にして、図25に示すカラーフィルタ基板を製造した。
 実施例11
 図26に示すカラーフィルタ基板を、以下のようにして製造した。
 本実施例では、用いたブラックマトリクス形成用フォトマスク及びフォトレジストは、実施例1と同じである。
 ガラス基板1a上にブラックマトリクス2を形成した後、このブラックマトリクス2を含むガラス基板1a上にアルカリ可溶型、感光性フォトレジストのアクリル樹脂を乾燥後膜厚が1.2μmとなるような厚さに塗布した。感光性矩形画素中央部のみに10μmの開口幅のあるフォトマスクを用いて露光し、さらに現像及び硬膜処理して、12μm画線幅の透明線状パターン22を形成した。
 次いで、実施例1と同様にして透明導電膜3を積層した。
 その後、着色画素を形成するが、それに使用したカラーレジスト及びその形成方法は、実施例5と同じである。ただし、着色画素形成用フォトマスクとしては、実施例5と異なり、矩形画素中央部に線状遮光パターンのあるフォトマスクを用いた。
 図26を参照して、製造したカラーフィルタ基板について説明する。赤色画素15、緑色画素14、青色画素16の膜厚は、いずれも1.8μmである。着色層の重畳部である凸部24の高さは、1μmである。矩形画素の中央部には、透明樹脂(アクリル樹脂)からなる線状パターン22が形成され、この線状パターン22上には、7μmの透明導電膜の開口幅と約0.6μmの深さのある凹部33が形成されている。
 なお、本実施例で用いたアクリル樹脂に代えて、着色画素より高い濃度の有機顔料を含む着色層により線状パターンを形成しても良い。顔料濃度の高い着色層からなる線状パターンにより、線状の光の抜けをなくし、色純度の高い表示が可能となる。
 実施例12
 図27に示すカラーフィルタ基板を、以下のようにして製造した。
 本実施例では、実施例1で用いたブラックマトリクス形成用フォトマスクに代えて、ブラックマトリクス形成用開口パターンに加え、矩形画素中央部にさらに11μm幅の開口のあるフォトマスクを用いた。開口幅を狭くすることで露光量が急減するため、矩形画素中央に、高さの低い線状の遮光パターン32を形成することができる。
 その後、実施例1と同様にして透明導電膜3を積層した。
 また、着色画素形成用フォトマスクとして、矩形画素中央部にさらに12μm幅の遮光パターンのあるフォトマスクを用いた。ほか、使用したカラーレジスト、製造方法は実施例5及び実施例11と同じである。
 図27を用いて、製造したカラーフィルタ基板を説明する。赤色画素15、緑色画素14、青色画素16の膜厚は、いずれも1.8μmである。着色層の重畳部である凸部24の高さは、1.1μmである。矩形画素の中央部には、遮光層(ブラック形成レジスト)による遮光パターン32が形成され、この遮光パターン32上には、7μmの透明導電膜の開口幅と約0.6μmの深さのある凹部43が形成されている。
 本実施例では、ブラックマトリクスと矩形画素中央の遮光パターンを1つのフォトマスクを用いて形成したが、ブラックマトリクスと遮光パターンと分けて2つのフォトマスクを用い、かつ2回のフォトリソグラフィの手法で形成しても良い。
 実施例13
 図28に示すカラーフィルタ基板を、以下のようにして製造した。
 本実施例は、ブラックマトリクス及び着色画素形成に用いる材料、製造方法は実施例5及び実施例10と同じとした。ただし、着色画素形成に用いるフォトマスクは、矩形画素部分が開口部となったフォトマスク(矩形画素の中央部にハーフトーンや線状の遮光パターンのないもの)を使用した。
 図28を参照して、製造したカラーフィルタ基板を説明する。赤色画素15、緑色画素14、青色画素16の膜厚は、いずれも1.8μmである。着色層の重畳部である凸部24の高さは1μmである。本実施例では、カラーフィルタ上に熱硬化型のアクリル樹脂による保護層50を0.3μmの膜厚で積層した構成とした。
 実施例14
 実施例13に係るカラーフィルタ基板とTFTのアクティブ素子を形成したアレイ基板を貼り合わせ、負の誘電率異方性の液晶を封入し、さらに両面に偏光板を貼付して、図29に示す液晶表示装置とした。カラーフィルタ基板及びアレイ基板の表面には、あらかじめ垂直配向膜を塗布、形成してある。なお、アクティブ素子の形成された基板は、図14及び図15で示した櫛歯状電極を有するアレイ基板とした。
 垂直配向用の配向膜は、図示を省略した。MVAやVATNなどの垂直配向の液晶表示装置に必要な厳密な配向処理(例えば、チルト角89°とし、複数ドメインを形成するための複数方向の配向処理)は実施せず、ほぼ90°の垂直配向とした。
 図29を参照して、製造した液晶表示装置について説明する。液晶67の動作は、図29の中央の緑色画素14で代表して説明する。
 初期配向が垂直配向である液晶67の液晶分子は、駆動電圧印加時に、第1電極4及び第2電極5により、着色画素14を矩形画素中央から2分する線からショルダー部14cに向かう方向、即ち、矢印Bに示す方向に倒れる。なお、第2電極5は、矢印Cに示す方向に、第1電極4からずれている。第3電極3と第2電極2は、コモン電位とした。
 実施例15
 本実施例に係る液晶表示装置を図30に示す。本実施例に用いたカラーフィルタ基板11は、実施例10と同様の構成のカラーフィルタ基板上に、熱硬化型のアクリル樹脂からなる保護層50を0.2μmの膜厚で積層したものである。アレイ基板21は、実施例14と同じ構成のアレイ基板とした。
 図30に示す液晶表示装置は、あらかじめ垂直配向膜を形成したカラーフィルタ基板11及びアレイ基板21を貼り合わせ、その間に負の誘電率異方性の液晶67を封入し、さらに両面に偏光板を貼付することにより製造される。垂直配向用の配向膜は、図示を省略した。MVAやVATNなどの垂直配向の液晶表示装置に必要な厳密な配向処理(例えば、チルト角89°とし、複数ドメインを形成するための複数方向の配向処理)は実施せず、ほぼ90°の垂直配向とした。
 図30を参照して、製造した液晶表示装置について説明する。液晶67の動作は、図30の中央の緑色画素14で代表して説明する。
 初期配向が垂直配向である液晶67の液晶分子は、駆動電圧印加時に、第1電極4及び第2電極5により、着色画素14を矩形画素中央から2分する線からショルダー部14cに向かう方向、即ち、矢印Bに示す方向に倒れる。なお、第2電極5は、矢印Cに示す方向に、第1電極4からずれている。第3電極3と第2電極2は、コモン電位とした。
 本実施例では、緑色画素14の中央に凹部63があるため、カラーフィルタ面でも矩形画素中央から2分する形で液晶分子が倒れ、アレイ基板21の櫛歯状の第1電極4、第2電極5と相まって、ディスクリネーションを抑えた明るい表示が可能となる。本実施例における中央の凹部63は、光の透過率を上げるため、半透過型や反射型などの明るさを重視する液晶ディスプレイの用途に最適となる。たとえば、バックライトからの光を透過するとともに外光反射の可能な反射偏光板を、バックライトシステムに加えて半透過型液晶表示装置とすることができる。なお、反射偏光板としては、例えば、日本特許第4177398号公報に反射偏光子として記載されているようなものを用いることが出来る。
 実施例16
 本実施例に係る液晶表示装置を図31及び図32に示す。本実施例に係る液晶表示装置では、アクティブ素子として、画素ごとに2個のTFT(図示せず)が配置されている。
 図31及び図32は、画素ごとにTFT1及びTFT2を配置した緑色画素部分の断面図である。第1電極P1,P3はTFT1に、第2電極P2,P4はTFT2に、それぞれ接続されている。なお、この緑色画素は、説明の都合上、図示するように、通常表示領域とダイナミック表示領域に区分されており、以下の説明では、画素の半分の領域における液晶分子の駆動について説明する。また、緑色画素は、図20に示す実施例5と同様に、緑色画素の中央の部分の膜厚が薄く形成されている。
 図31は、TFT1に駆動信号を送り、第1電極P1,P3にのみ駆動電圧が印加された状態の液晶分子の配向を示す。この場合、通常表示領域の液晶分子L1、L2、L3は十分に倒れ、十分な透過率を得ることができる。しかし、画素中央のダイナミック表示領域の液晶分子L4、L5、L6の倒れは不十分であり、透過率は低い状態となる。
 図32は、TFT2にも駆動信号を送り、第1電極P2,P4に駆動電圧が印加された状態の液晶分子の配向を示す。この場合、通常表示領域の液晶分子L1、L2、L3だけでなく、画素中央のダイナミック表示領域の液晶分子L4、L5、L6も十分に倒れ、ダイナミック表示領域の透過率が高くなる。この場合、画素中央の部分の膜厚が薄く形成されているため、透過光が増加し、極めて明るい表示(ダイナミック表示)が可能となる。
 以上説明した実施形態及び実施例に係る液晶表示装置によると、カラーフィルタ基板やアレイ基板の配向処理を軽減することができ、かつ、液晶の応答性を改善することができる。また、凸部や凹部、第1電極や第2電極を設ける構成により、液晶のディスクリネーションを軽減し、液晶表示を向上させることができる。
 また、カラーフィルタの有効表示画素を覆うように透明導電膜を積層した構成とすることができるため、副次的効果として、IPS(横電界で液晶を駆動する)やFFS(櫛歯電極のフリンジに生じる電界で液晶を駆動する)方式と異なり、外部電場の影響を受けにくい液晶表示装置を提供することができる。
 なお、以上の実施形態及び実施例に係る液晶表示装置の画素は、線状凹部にて線対称に1/2画素、あるいは点対称に1/4画素に区分されるが、TFTを一画素に2個ないし4個形成し さらにそれぞれ異なる電圧を印加する駆動方式をとることにより、視野角調整や立体画像表示が可能となる。
 1a,1b・・・透明基板
 2・・・ブラックマトリクス
 3・・・透明電極(第3電極)
 4・・・第1電極
 5・・・第2電極
 11,71・・・カラーフィルタ基板
 14・・・緑色画素
 14a,14b,14c,84c・・・ショルダー部
 15・・・赤色画素
 16・・・青色画素
 17,27,67,77・・・液晶
 17a,17b,17c,17d・・・液晶分子
 18,68,78,98・・・樹脂層
 21・・・アレイ電極
 23,33,43,53,63,83,93・・・凹部
 24,64,74,84,94・・・凸部
 81a,81b・・・光学補償層
 82a,b・・・偏光板
 83a,83b・・・光拡散層
 84・・・反射偏光板
 85・・・プリズムシート
 86・・・導光板
 87・・・光反射板
 88・・・LED光源

Claims (24)

  1.  透明基板と、この透明基板上に形成された、ブラックマトリクス、透明導電膜、及び樹脂層を具備する液晶表示装置用電極基板において、前記ブラックマトリクスは、遮光性顔料を樹脂に分散した遮光層からなり、かつ複数の開口部を有し、前記樹脂層は、前記ブラックマトリクス及び透明導電膜を備える透明基板上に形成され、前記ブラックマトリクスの上方において凸部を有し、前記ブラックマトリクスの開口部中心を通る領域に凹部を有することを特徴とする液晶表示装置用基板。
  2.  前記凹部が、平面視で線状又は十字状であることを特徴とする請求項1に記載の液晶表示装置用基板。
  3.  前記透明導電膜が前記ブラックマトリクス及び前記開口部を覆うように形成され、かつ、前記透明導電膜上に樹脂層が形成されていることを特徴とする請求項1に記載の液晶表示装置用基板。
  4.  前記透明基板上に前記透明導電膜が配設され、前記透明導電膜上に前記ブラックマトリクスが形成され、さらに、前記透明導電膜及び前記ブラックマトリクス上に樹脂層が形成されていることを特徴とする請求項1に記載の液晶表示装置用基板。
  5.  前記透明基板と前記透明導電膜との間であって、前記ブラックマトリクスの開口部の中央に、透明樹脂からなる線状の凸部パターンが形成されていることを特徴とする請求項1~4のいずれかに記載の液晶表示装置用基板。
  6.  前記透明基板と前記透明導電膜との間であって、前記ブラックマトリクスの開口部の中央に、前記ブラックマトリクスと同一材料からなる線状の凸部遮光パターンが形成されていることを特徴とする請求項1に記載の液晶表示装置用基板。
  7.  前記ブラックマトリクスの開口部に、少なくとも赤色画素、緑色画素、及び青色画素を含む着色画素が形成され、この着色画素上に前記透明導電膜が形成されていることを特徴とする請求項1に記載の液晶表示装置用基板。
  8.  前記ブラックマトリクスの開口部に、少なくとも赤色画素、緑色画素、及び青色画素を含む着色画素が、前記透明導電膜を介して形成されていることを特徴とする請求項1に記載の液晶表示装置用基板。
  9.  透明基板と、この透明基板上に形成され、遮光性顔料を樹脂に分散した遮光層からなる、複数の開口部を有するブラックマトリクスと、前記ブラックマトリクスを備える透明基板上に形成された透明導電膜と、前記透明導電膜上の、前記複数の開口部により区分された画素領域に形成された複数色の着色画素とを具備することを特徴とする液晶表示装置用基板。
  10.  前記ブラックマトリクスが、傾斜した側面を有することを特徴とする請求項9に記載の液晶表示装置用基板。
  11.  前記複数色の着色画素のそれぞれの隣接する端部が、前記透明導電膜上の前記ブラックマトリクスに対応する部分上に重畳部を形成し、この重畳部とブラックマトリクスの膜厚の合計が前記着色画素の膜厚より厚く、前記重畳部が前記着色画素の表面から突出する凸部を形成していることを特徴とする請求項9に記載の液晶表示装置用基板。
  12.  前記着色画素が、中央部に線状の凹部を有することを特徴とする請求項9に記載の液晶表示装置用基板。
  13.  請求項1~12のいずれかに記載の液晶表示装置用基板と、この液晶表示装置用基板に対向して配置され、液晶を駆動する素子をマトリクス状に配設したアレイ基板と、前記液晶表示装置用基板及びアレイ基板との間に収容された液晶とを具備することを特徴とする液晶表示装置。
  14.  前記アレイ基板が、それぞれ矩形画素を駆動するために異なる電位が印加される第1電極及び第2電極を具備することを特徴とする請求項13に記載の液晶表示装置。
  15.  前記液晶の分子は、前記第1電極及び第2電極に液晶を駆動する電圧を印加したときに、平面視で、前記樹脂層の凹部から、該凹部に平行でかつ近接するブラックマトリクスへ向かう方向に倒れるように動作することを特徴とする請求項14に記載の液晶表示装置。
  16.  前記第1電極と、前記第2および前記透明導電膜である第3電極との間に駆動電圧を印加したときに、前記液晶表示装置の画素領域における液晶分子は、前記画素領域を2分する直線における線対称である逆方向に倒れるように動作することを特徴とする請求項15に記載の液晶表示装置。
  17.  前記アレイ基板の、前記ブラックマトリクスのパターン幅の中心に対応する位置には、前記第1電極及び/又は第2電極が配置されていないことを特徴とする請求項14に記載の液晶表示装置。
  18.  平面視で、前記ブラックマトリクスの画線幅の中心に対応する位置以外の位置に、第1電極を形成したことを特徴とする請求項14に記載の液晶表示装置。
  19.  前記アレイ基板の第1電極が、液晶を駆動するアクティブ素子と接続された櫛歯状パターンを有する電極であり、かつ、前記第1電極と同様の櫛歯状パターンを有する第2電極が、絶縁層を介して第1電極の下に形成されるともに、液晶の倒れる方向に前記第1電極の端部からはみ出ていることを特徴とする請求項14に記載の液晶表示装置。
  20.  前記第1電極及び前記第2電極が、可視域で透明な導電性金属酸化物からなることを特徴とする請求項14に記載の液晶表示装置。
  21.  前記液晶が、負の誘電率異方性を有することを特徴とする請求項13に記載の液晶表示装置。
  22.  透明基板上に、複数の矩形開口部を有するブラックマトリクス、透明導電膜、複数の着色画素、及び樹脂層を有するカラーフィルタ基板と、液晶を駆動する素子をマトリクス状に配設したアレイ基板とを対向させ、液晶を介して貼り合わせてなる液晶表示装置において、
     前記樹脂層が、透明導電膜上に直接あるいは間接的に配設されるとともに、該樹脂層表面から突出する凸部及び前記ブラックマトリクスの矩形開口部中心を通る領域に凹部が形成され、前記アレイ基板が、それぞれ可視域で透明な導電性金属酸化物からなる櫛歯状の第1電極及び櫛歯状の第2電極を具備し、前記第2電極が絶縁層を介して前記第1電極の下に配設され、前記第2電極が液晶の倒れる方向に前記第1電極の端部からはみ出ていることを特徴とする液晶表示装置。
  23.  前記凹部が、平面視で線状又は十字状であることを特徴とする請求項22に記載の液晶表示装置。
  24.  液晶を駆動する素子が、一つの画素ごとに2~4個配置されており、それぞれが異なる電極に接続されていることを特徴とする請求項22に記載の液晶表示装置。
PCT/JP2011/057373 2010-05-27 2011-03-25 液晶表示装置用基板および液晶表示装置 WO2011148706A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201180026258.3A CN102918451B (zh) 2010-05-27 2011-03-25 液晶显示装置
KR1020127030854A KR101438989B1 (ko) 2010-05-27 2011-03-25 액정 표시 장치용 기판 및 액정 표시 장치
EP11786406.6A EP2579090A4 (en) 2010-05-27 2011-03-25 SUBSTRATE FOR A LIQUID CRYSTAL DISPLAY DEVICE AND LIQUID CRYSTAL DISPLAY DEVICE
US13/686,159 US9285644B2 (en) 2010-05-27 2012-11-27 Substrate for liquid crystal display device, and liquid crystal display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2010121909A JP5099174B2 (ja) 2010-05-27 2010-05-27 垂直配向液晶表示装置用カラーフィルタ基板および垂直配向液晶表示装置
JP2010-121910 2010-05-27
JP2010121910A JP5158133B2 (ja) 2010-05-27 2010-05-27 垂直配向液晶表示装置用基板および垂直配向液晶表示装置
JP2010-121909 2010-05-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US13/686,159 Continuation US9285644B2 (en) 2010-05-27 2012-11-27 Substrate for liquid crystal display device, and liquid crystal display device

Publications (1)

Publication Number Publication Date
WO2011148706A1 true WO2011148706A1 (ja) 2011-12-01

Family

ID=45003699

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057373 WO2011148706A1 (ja) 2010-05-27 2011-03-25 液晶表示装置用基板および液晶表示装置

Country Status (6)

Country Link
US (1) US9285644B2 (ja)
EP (1) EP2579090A4 (ja)
KR (1) KR101438989B1 (ja)
CN (1) CN102918451B (ja)
TW (1) TWI497164B (ja)
WO (1) WO2011148706A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157341A1 (ja) * 2012-04-18 2013-10-24 凸版印刷株式会社 液晶表示装置
WO2014103777A1 (ja) * 2012-12-27 2014-07-03 凸版印刷株式会社 液晶表示装置、液晶表示装置用基板、及び液晶表示装置用基板の製造方法
US9472157B2 (en) 2012-04-18 2016-10-18 Toppan Printing Co., Ltd. Liquid crystal display device

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5472373B2 (ja) * 2012-05-17 2014-04-16 凸版印刷株式会社 液晶表示装置
CN102981343B (zh) * 2012-11-21 2015-01-07 京东方科技集团股份有限公司 转换透镜及其制备方法、二维-三维显示基板及显示装置
JP5459420B1 (ja) * 2013-01-31 2014-04-02 凸版印刷株式会社 液晶表示装置及びカラーフィルタ基板
CN103148453A (zh) * 2013-03-12 2013-06-12 京东方科技集团股份有限公司 导光板、光学膜片、背光模组、阵列基板及液晶模组
CN103268042B (zh) * 2013-05-20 2015-11-25 昆山龙腾光电有限公司 液晶显示装置
KR101883541B1 (ko) * 2013-06-17 2018-07-30 도판 인사츠 가부시키가이샤 표시 장치용 기판 및 이것을 사용한 표시 장치
KR20160007983A (ko) 2014-07-10 2016-01-21 삼성디스플레이 주식회사 액정 표시 장치 및 그 제조 방법
KR102142844B1 (ko) * 2014-09-05 2020-08-10 도판 인사츠 가부시키가이샤 액정 표시 장치 및 표시 장치용 기판
CN204314581U (zh) * 2015-01-08 2015-05-06 京东方科技集团股份有限公司 一种阵列基板、显示面板和显示装置
KR20160124522A (ko) * 2015-04-20 2016-10-28 삼성전자주식회사 디스플레이 장치
CN104865738A (zh) * 2015-06-16 2015-08-26 深圳市华星光电技术有限公司 具有黑色矩阵的玻璃基板及其制备方法、液晶面板
TWI551921B (zh) 2015-12-17 2016-10-01 友達光電股份有限公司 顯示面板
CN107238984B (zh) 2017-08-04 2021-01-26 京东方科技集团股份有限公司 显示装置、液晶显示面板及其驱动方法
KR102091478B1 (ko) * 2018-09-20 2020-03-20 전북대학교 산학협력단 블랙매트릭스가 없는 초고화질 액정표시장치
JP6760427B2 (ja) * 2019-03-19 2020-09-23 凸版印刷株式会社 調光シート、調光装置、および、調光シートの管理方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456921A (ja) * 1990-06-26 1992-02-24 Fujitsu Ltd カラー液晶表示パネル
JPH04177398A (ja) 1990-11-13 1992-06-24 Yasunaga Ueno 楽器台
JPH0526161A (ja) 1991-07-18 1993-02-02 Daikin Ind Ltd クライオポンプ
JPH09189899A (ja) * 1996-01-09 1997-07-22 Canon Inc ブラックマトリクス基板、カラーフィルターおよび液晶パネルならびにそれらの製造方法
JPH1039128A (ja) 1996-07-19 1998-02-13 Toppan Printing Co Ltd カラーフィルタ
JPH10253952A (ja) * 1997-03-11 1998-09-25 Hitachi Ltd 液晶表示素子
JPH10268292A (ja) * 1997-01-21 1998-10-09 Sharp Corp カラーフィルタ基板およびカラー液晶表示素子
JP2859093B2 (ja) 1993-06-28 1999-02-17 三洋電機株式会社 液晶表示装置
JP3228139B2 (ja) 1995-08-11 2001-11-12 東レ株式会社 液晶表示素子用カラーフィルタ及びその製造方法
JP3957430B2 (ja) 1998-09-18 2007-08-15 シャープ株式会社 液晶表示装置
JP2008181139A (ja) 1997-02-27 2008-08-07 Sharp Corp 液晶表示装置
JP4364332B2 (ja) 1998-06-23 2009-11-18 シャープ株式会社 液晶表示装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW347477B (en) * 1994-09-30 1998-12-11 Sanyo Electric Co Liquid crystal display with storage capacitors for holding electric charges
JP3193267B2 (ja) 1994-10-14 2001-07-30 シャープ株式会社 液晶素子およびその製造方法
JPH09304757A (ja) 1996-03-11 1997-11-28 Sharp Corp 液晶表示素子及びその製造方法
JP3308154B2 (ja) 1996-03-13 2002-07-29 松下電器産業株式会社 液晶パネルとその駆動方法
JP3649818B2 (ja) * 1996-09-19 2005-05-18 富士通ディスプレイテクノロジーズ株式会社 液晶表示装置
KR100504531B1 (ko) * 1999-12-15 2005-08-03 엘지.필립스 엘시디 주식회사 횡전계방식 액정표시장치
KR100612994B1 (ko) * 2000-05-12 2006-08-14 삼성전자주식회사 액정 표시 장치 및 그에 사용되는 기판
JP2002014353A (ja) 2000-06-30 2002-01-18 Sony Corp 液晶表示装置及びその製造方法
US6885416B2 (en) * 2003-07-07 2005-04-26 Au Optronics Corp. Flat panel display with a non-matrix light shielding structure
JP2005031563A (ja) * 2003-07-11 2005-02-03 Toppan Printing Co Ltd 液晶表示装置用カラーフィルタ及びその製造方法
JP2005141036A (ja) * 2003-11-07 2005-06-02 Hitachi Displays Ltd 液晶表示装置
KR100978950B1 (ko) * 2003-12-01 2010-08-31 엘지디스플레이 주식회사 액정표시장치
KR100698059B1 (ko) * 2003-12-27 2007-03-23 엘지.필립스 엘시디 주식회사 액정표시장치 및 이의 제조방법
TW200530724A (en) * 2004-03-05 2005-09-16 Innolux Display Corp Multi-domain vertical alignment type liquid crystal display device
JP4230425B2 (ja) * 2004-07-26 2009-02-25 シャープ株式会社 カラーフィルタ基板、および表示装置
KR101251994B1 (ko) * 2005-07-01 2013-04-08 삼성디스플레이 주식회사 액정 표시 장치
US7656487B2 (en) * 2005-07-01 2010-02-02 Samsung Electronics Co., Ltd. Liquid crystal display
JP4813842B2 (ja) 2005-07-29 2011-11-09 株式会社 日立ディスプレイズ 液晶表示装置
KR100818258B1 (ko) * 2006-10-10 2008-03-31 삼성에스디아이 주식회사 전계방출소자용 애노드패널 및 이를 구비한 전계방출소자
US7940359B2 (en) * 2007-04-25 2011-05-10 Au Optronics Corporation Liquid crystal display comprising a dielectric layer having a first opening surrounding a patterned structure and exposing a portion of a first pixel electrode and a second pixel electrode formed on the dielectric layer
JP4568312B2 (ja) * 2007-08-30 2010-10-27 株式会社 日立ディスプレイズ 液晶表示装置
TWI396001B (zh) * 2008-10-06 2013-05-11 Au Optronics Corp 液晶顯示面板

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0456921A (ja) * 1990-06-26 1992-02-24 Fujitsu Ltd カラー液晶表示パネル
JPH04177398A (ja) 1990-11-13 1992-06-24 Yasunaga Ueno 楽器台
JPH0526161A (ja) 1991-07-18 1993-02-02 Daikin Ind Ltd クライオポンプ
JP2859093B2 (ja) 1993-06-28 1999-02-17 三洋電機株式会社 液晶表示装置
JP3228139B2 (ja) 1995-08-11 2001-11-12 東レ株式会社 液晶表示素子用カラーフィルタ及びその製造方法
JPH09189899A (ja) * 1996-01-09 1997-07-22 Canon Inc ブラックマトリクス基板、カラーフィルターおよび液晶パネルならびにそれらの製造方法
JPH1039128A (ja) 1996-07-19 1998-02-13 Toppan Printing Co Ltd カラーフィルタ
JPH10268292A (ja) * 1997-01-21 1998-10-09 Sharp Corp カラーフィルタ基板およびカラー液晶表示素子
JP2008181139A (ja) 1997-02-27 2008-08-07 Sharp Corp 液晶表示装置
JPH10253952A (ja) * 1997-03-11 1998-09-25 Hitachi Ltd 液晶表示素子
JP4364332B2 (ja) 1998-06-23 2009-11-18 シャープ株式会社 液晶表示装置
JP3957430B2 (ja) 1998-09-18 2007-08-15 シャープ株式会社 液晶表示装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2579090A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157341A1 (ja) * 2012-04-18 2013-10-24 凸版印刷株式会社 液晶表示装置
CN104246587A (zh) * 2012-04-18 2014-12-24 凸版印刷株式会社 液晶显示装置
JPWO2013157341A1 (ja) * 2012-04-18 2015-12-21 凸版印刷株式会社 液晶表示装置
US9472157B2 (en) 2012-04-18 2016-10-18 Toppan Printing Co., Ltd. Liquid crystal display device
US9508293B2 (en) 2012-04-18 2016-11-29 Toppan Printing Co., Ltd. Liquid crystal display device
WO2014103777A1 (ja) * 2012-12-27 2014-07-03 凸版印刷株式会社 液晶表示装置、液晶表示装置用基板、及び液晶表示装置用基板の製造方法
JP5804196B2 (ja) * 2012-12-27 2015-11-04 凸版印刷株式会社 液晶表示装置、及び液晶表示装置用基板
JPWO2014103777A1 (ja) * 2012-12-27 2017-01-12 凸版印刷株式会社 液晶表示装置、及び液晶表示装置用基板
US9971185B2 (en) 2012-12-27 2018-05-15 Toppan Printing Co., Ltd. Liquid crystal display device, substrate for liquid crystal display device and manufacturing method of substrate for liquid crystal display device

Also Published As

Publication number Publication date
EP2579090A1 (en) 2013-04-10
TW201207494A (en) 2012-02-16
TWI497164B (zh) 2015-08-21
US20130083264A1 (en) 2013-04-04
EP2579090A4 (en) 2016-01-20
CN102918451A (zh) 2013-02-06
US9285644B2 (en) 2016-03-15
KR101438989B1 (ko) 2014-09-05
KR20130004402A (ko) 2013-01-09
CN102918451B (zh) 2016-01-20

Similar Documents

Publication Publication Date Title
WO2011148706A1 (ja) 液晶表示装置用基板および液晶表示装置
JP5083467B2 (ja) 液晶表示装置用カラーフィルタ基板および液晶表示装置
JP5907064B2 (ja) カラーフィルタ基板および液晶表示装置
JP5659768B2 (ja) 斜め電界液晶表示装置
JP5408262B2 (ja) 液晶表示装置
JP5056908B2 (ja) 半透過型液晶表示装置用基板および液晶表示装置
WO2011093337A1 (ja) 半透過型液晶表示装置用カラーフィルタ基板、その製造方法、及び半透過型液晶表示装置
JP5099174B2 (ja) 垂直配向液晶表示装置用カラーフィルタ基板および垂直配向液晶表示装置
JP5560865B2 (ja) 半透過型液晶表示装置用カラーフィルタ基板、その製造方法、及び半透過型液晶表示装置
JP5158133B2 (ja) 垂直配向液晶表示装置用基板および垂直配向液晶表示装置
JP2012037666A (ja) 半透過型液晶表示装置用基板および半透過型液晶表示装置
JP2011141486A (ja) 半透過型液晶表示装置用カラーフィルタ基板及び半透過型液晶表示装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180026258.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11786406

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 10165/DELNP/2012

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 20127030854

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2011786406

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011786406

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE