WO2011131176A1 - Superstrate solar cell with nanostructures - Google Patents

Superstrate solar cell with nanostructures Download PDF

Info

Publication number
WO2011131176A1
WO2011131176A1 PCT/DE2011/000452 DE2011000452W WO2011131176A1 WO 2011131176 A1 WO2011131176 A1 WO 2011131176A1 DE 2011000452 W DE2011000452 W DE 2011000452W WO 2011131176 A1 WO2011131176 A1 WO 2011131176A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanorods
solar cell
layer
zno
cell according
Prior art date
Application number
PCT/DE2011/000452
Other languages
German (de)
French (fr)
Inventor
Jie Chen
Martha Christina Lux-Steiner
Lorenz AÈ
Yang Tang
Original Assignee
Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh filed Critical Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh
Publication of WO2011131176A1 publication Critical patent/WO2011131176A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02363Special surface textures of the semiconductor body itself, e.g. textured active layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0236Special surface textures
    • H01L31/02366Special surface textures of the substrate or of a layer on the substrate, e.g. textured ITO/glass substrate or superstrate, textured polymer layer on glass substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/035281Shape of the body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03921Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03923Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIBIIICVI compound materials, e.g. CIS, CIGS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03925Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate including AIIBVI compound materials, e.g. CdTe, CdS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/541CuInSe2 material PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to a superstrate solar cell with nanostructures, at least comprising a glass substrate, on which a conductive transparent layer is arranged, on which there is the absorber layer, which is provided with a metal contact.
  • Applied Physics Letters 93, 053113 (208) reports on the investigation of ZnO nanorod device arrangements with a well-defined morphology as a substrate for solar cells with extremely thin absorber layer (eta solar cells).
  • the ZnO nanorods are covered with ln 2 S 3 as the absorber material, on which CuSCN is then located as a hole conductor.
  • nanostructures such as .alpha. are used to improve charge transport in the photoelectrode z. ZnO nanorods and filaments and TiO 2 nanotubes.
  • ZnO nanofilters serve as a direct pathway for fast electron transport and ZnO nanoparticles fill in the voids between the filaments, forming a larger surface area for sufficient dye adsorption.
  • nanoparticles Contains nanoparticles.
  • the nanoparticles can be shaped differently, for example spherically, as nanofilaments or rods, and made of different materials, such as. B. materials of groups ll-VI or III-V exist.
  • this object is achieved in a superstrate solar cell of the type mentioned above in that on the conductive transparent layer metal oxide nanorods with in the direction of metal contact itself
  • the metal oxide nanorods from ZnO or TiO 2 or MgO.
  • a further embodiment provides to form the conductive transparent layer from one of the following materials FTO or ITO or AZO.
  • the absorber layer is formed of Si or a chalcogenide semiconductor material (such as CdTe, CIGS) or an organic material.
  • the cross section of the nanorods which tapers in the direction of the metal contact, can change continuously or stepwise.
  • the nanorods have a length of a few hundred nm to a few pm, a diameter of several tens of nm to a few hundred nm and a distance of 50 to 2,000 nm.
  • the nanorods can be applied by known methods according to the prior art. Examples are the following
  • Fig. 1 an SE recording of a ZnO-Nanstäbchen arrangement on a ZnO-AI Oberfiamba in cross section;
  • Fig. 2 a schematic representation of the invention
  • WO 2009/103286 A2 produced, wherein the production of nanostructured ZnO with a high internal quantum efficiency (IQE) without additional annealing step takes place.
  • IQE internal quantum efficiency
  • an aqueous solution of a Zn-Saiz, such as HN0 3 or NH 4 N0 3, used, for example Zn (N0 3) 2, and a dopant is.
  • FIG. 1 An arrangement of ZnO nanorods in cross-section shown in FIG. 1 serves as the basis for the production of the superstrate solar cell arrangement according to the invention in cross section, as shown in FIG.
  • a conductive transparent layer 2 here ZnO: AI with a thickness of 800 nm, arranged.
  • this layer 2 On this layer 2
  • ZnO nanorods 3 with a length of 400 nm, which - as described above - were generated. These ZnO nanorods 3 have a cross-section that tapers in the direction of metal contact 5 (from 300 nm to 40 nm). The ZnO nanorods 3 are completely covered with an Si layer 4 having a thickness of 500 nm.
  • the reflection index of the textured Si absorber layer 4 changes in this superstrate arrangement of about 2 at the interface ZnO: Al layer 2 and Si absorber layer 4 to about 3.2 at the interface Si absorber layer 4 and metal contact. 5

Abstract

In a superstrate solar cell with nanostructures, at least comprising a glass substrate (1), on which a conductive transparent layer (2) is arranged, on which the absorber layer (4) is situated, which is provided with a metal contact (5), according to the invention metal oxide nanorods (3) having a cross section that tapers in the direction of the metal contact (5) are arranged on the conductive transparent layer (2) and the absorber layer (4), like a matrix, covers the nanorods (5) completely in the height thereof. The absorber layer (4) is textured by the metal oxide nanorods (5), as a result of which a targeted change in the reflection index of the absorber layer (4) over the height thereof is achieved.

Description

Bezeichnung  description
Superstrat-Solarzelle mit Nanostrukturen Superstrate solar cell with nanostructures
Beschreibung description
Die Erfindung betrifft eine Superstrat-Solarzelle mit Nanostrukturen, mindestens aufweisend ein Giassubstrat, auf dem eine leitende transparente Schicht angeordnet ist, auf der sich die Absorberschicht befindet, die mit einem Metallkontakt versehen ist. The invention relates to a superstrate solar cell with nanostructures, at least comprising a glass substrate, on which a conductive transparent layer is arranged, on which there is the absorber layer, which is provided with a metal contact.
In Applied Physics Letters 93, 053113 (208) wird über die Untersuchung von ZnO-Nanostäbchen-Anordnungen mit einer gut definierten Morphologie als Substrat für Solarzellen mit extrem dünner Absorberschicht (eta-Solarzellen) berichtet. Dabei sind die ZnO-Nanostäbchen mit ln2S3 als Absorbermaterial bedeckt, auf dem sich dann CuSCN als Löcherleiter befindet. Applied Physics Letters 93, 053113 (208) reports on the investigation of ZnO nanorod device arrangements with a well-defined morphology as a substrate for solar cells with extremely thin absorber layer (eta solar cells). In this case, the ZnO nanorods are covered with ln 2 S 3 as the absorber material, on which CuSCN is then located as a hole conductor.
Eine verbesserte Lichteinkopplung in Silizium-Dünnschichtsolarzellen durch texturiertes ZnO wird in FVS Themen 2000, S. 97 ff. beschrieben. Durch die Texturierung wird der optische Lichtweg und die Absorption erhöht, was insbesondere bei einer Superstrat-Solarzelle neben der Transparenz und hohen Leitfähigkeit der TCO-Schicht notwendig ist. Die texturierte Oberfläche der mittels Sputterverfahren hergestellten ZnO-Schichten wird in einem nasschemischen Ätzschritt erzeugt. An improved light coupling in silicon thin-film solar cells by textured ZnO is described in FVS Themen 2000, p. 97 ff. The texturing increases the optical light path and the absorption, which is necessary in particular for a superstrate solar cell in addition to the transparency and high conductivity of the TCO layer. The textured surface of the sputtered ZnO layers is formed in a wet chemical etching step.
In den seit 1991 bekannten farbstoffsensitivierten Solarzellen, bei denen ein transparentes, leitfähiges Oxid, dessen Bandlücke zu groß ist, um sichtbares Licht zu absorbieren, durch einen im sichtbaren Wellenlängenbereich absorbierenden Farbstoff sensitiviert wird, werden zur Verbesserung des Ladungstransportes in der Photoelektrode Nanostrukturen verwendet, wie z. B. ZnO-Nanostäbchen und -Fäden sowie TiO2-Nanoröhrchen. In Appl. Phys. Lett. 96, 0731 15 (2010) wird eine hybride Photoanode beschrieben, bei der ZnO-Nanofaden als direkter Pfad für einen schnellen Elektronentransport dienen und ZnO-Nanoteilchen die Leerräume zwischen den Fäden ausfüllen, wodurch eine größere Oberfläche für eine ausreichende Farbstoff-Adsorption gebildet wird. In The 2nd Joint International Conference ön Sustainable Energy and Environment (SEE 2006)" 21 -23 November 2006, Bangkok, Thailand, B-024 (O) wird eine farbstoffsensitivierte Solarzelle basierend auf ZnO-Nanostäbchen-Arrays - ohne Nanopartikel - beschrieben. Dabei sind die ZnO-Nanostäbchen mit hexagonalem Querschnitt sehr dicht senkrecht auf ein fluordotiertes SnO2-Substrat aufgewachsen. Mit größer werdender Länge der ZnO-Nanostäbchen vergrößert sich die Oberfläche, mehr Farbstoff wird adsorbiert und der Wirkungsgrad der Solarzelle wird erhöht. Die in In dye-sensitized solar cells known since 1991 in which a transparent conductive oxide whose bandgap is too large to absorb visible light is sensitized by a dye absorbing in the visible wavelength range, nanostructures such as .alpha. Are used to improve charge transport in the photoelectrode z. ZnO nanorods and filaments and TiO 2 nanotubes. In Appl. Phys. Lett. 96, 0731 15 (2010) describes a hybrid photoanode in which ZnO nanofilters serve as a direct pathway for fast electron transport and ZnO nanoparticles fill in the voids between the filaments, forming a larger surface area for sufficient dye adsorption. 21-23 November 2006, Bangkok, Thailand, B-024 (O) describes a dye-sensitized solar cell based on ZnO nanorod arrays, without nanoparticles, in The 2nd Joint International Conference, Sustainable Energy and Environment (SEE 2006) For example, ZnO nanorods with hexagonal cross-sections are grown very close to a fluorine-doped SnO2 substrate, and as the length of the ZnO nanorods increases, the surface area increases, more dye is adsorbed, and the efficiency of the solar cell is increased
International Journal of Photoenergy, Volume 2010, Article ID 497095 beschriebene Anordnung weist keine TCO-Schicht auf, auf der die ZnO- Nanostäbchen aufgewachsen sind. Vielmehr sind diese nun direkt auf einem ZnO-Film abgeschieden. Damit sollen die Nachteile verringert werden, die durch die Bildung der Grenzflächen zwischen Nanostäbchen und TCO- Schicht entstehen. In Nano Lett., Vol. 8, No. 5, 2008, 1501 -1505 sind ZnO-Nanostrukturen als effiziente Antireflexionsschichten beschrieben. Die ZnO-Nanostrukturen sind nadeiförmig ausgebildet, d.h. sie weisen eine Spitze auf. Durch definierte Parameter beim Wachsen der Nanostäbchen wird ihre Länge und die Form ihrer Spitze beeinflusst, wodurch die Reflexion verringert werden soll. Die ZnO-Nanostäbchen sind beispielsweise auf Silizium aufgebracht, zwischen ihnen befindet sich Luft. International Journal of Photoenergy, Volume 2010, Article ID 497095 has no TCO layer on which the ZnO nanorods are grown. Rather, these are now deposited directly on a ZnO film. This is intended to reduce the disadvantages caused by the formation of interfaces between the nanorod and the TCO layer. In Nano Lett., Vol. 8, no. 5, 2008, 1501-1505, ZnO nanostructures are described as efficient antireflection layers. The ZnO nanostructures are needle-shaped, i. they have a tip. Defined parameters in the growth of the nanorods influence their length and the shape of their tip, which is intended to reduce reflection. The ZnO nanorods are applied, for example, on silicon, between them is air.
Bei der in WO 2009/1 16018 A2 beschriebenen photovoltaischen Zelle - sowohl in Substrat- als auch in Superstrat-Anordnung - weist eine erste transparente leitende Schicht aus dieser Schicht hervorstehende Strukturen aus dem Material der erstgenannten Schicht auf. Eine Si-Absorberschicht ist darauf strukturkonform abgeschieden. In US 2009/0242029 A1 ist ein photovoltaisches Bauelement in In the photovoltaic cell described in WO 2009/1 16018 A2-both in substrate and in superstrate arrangement-a first transparent conductive layer of this layer has protruding structures of the material of the first-mentioned layer. An Si absorber layer is deposited thereon in accordance with the structure. In US 2009/0242029 A1 is a photovoltaic device in
Substratanordnung beschrieben, bei dem die Absorberschicht aus Substrate arrangement described in which the absorber layer of
Halbleitermaterial der Gruppe ll-VI und/oder die Grenzflächenschicht zwischen Absorber- und Fensterschicht Nanopartikel oder gesinterte Semiconductor material of group II-VI and / or the interface layer between absorber and window layer nanoparticles or sintered
Nanopartikel enthält. Die Nanopartikel können verschieden geformt sein, beispielsweise kugelförmig, als Nanofäden oder -Stäbchen, und aus unterschiedlichen Materialien, wie z. B. Materialien der Gruppen ll-VI oder III- V, bestehen. Contains nanoparticles. The nanoparticles can be shaped differently, for example spherically, as nanofilaments or rods, and made of different materials, such as. B. materials of groups ll-VI or III-V exist.
Auch wenn die Eigenschaften von ZnO-Nanostäben in den letzten Jahren vielfach untersucht worden sind und photovoltaische Anordnungen mit ZnO- Nanostäben vorgeschlagen wurden, ist es Aufgabe der Erfindung, eine weitere Solarzelle in Superstratanordnung mit Nanostrukturen anzugeben, die einen im Vergleich zum Stand der Technik verbesserten bzw. mindestens vergleichbaren Wirkungsgrad aufweist, aber weniger aufwändig in der Herstellung ist. Although the properties of ZnO nanorods have been studied extensively in recent years and photovoltaic arrays with ZnO nanorods have been proposed, it is an object of the invention to provide a further solar cell in superstrate arrangement with nanostructures, which improved compared to the prior art or at least comparable efficiency, but is less expensive to manufacture.
Erfindungsgemäß wird diese Aufgabe in einer Superstrat-Solarzelle der eingangs genannten Art dadurch gelöst, dass auf der leitenden transparenten Schicht Metalloxid-Nanostäbe mit in Richtung Metallkontakt sich According to the invention, this object is achieved in a superstrate solar cell of the type mentioned above in that on the conductive transparent layer metal oxide nanorods with in the direction of metal contact itself
verjüngendem Querschnitt angeordnet sind und die Absorberschicht wie eine Matrix die Nanostäbe in ihrer Höhe vollständig bedeckt. Durch die Anordnung der Nanostäbe in der Absorberschicht wird diese texturiert, wodurch eine fein einstellbare Änderung des Reflexionsindex der Absorberschicht über ihre Dicke ermöglicht wird. Es entsteht eine so genannte Subwellenlängen-Struktur. Mit dieser Anordnung wird einerseits Absorbermaterial und andererseits die bisher übliche Pufferschicht zwischen der leitenden transparenten Schicht und der Absorberschicht eingespart, die in einer Superstrat-Anordnung die Reflexion zwischen der TCO-Schicht und der Absorberschicht verringern soll. In einer Ausführungsform ist vorgesehen, die Metalloxid-Nanostäbe aus ZnO oder Ti02 oder MgO auszubilden. Eine weitere Ausführungsform sieht vor, die leitende transparente Schicht aus einem der folgenden Materialien FTO oder ITO oder AZO zu bilden. are arranged in a tapered cross-section and the absorber layer as a matrix completely covers the nanorods in their height. The arrangement of the nanorods in the absorber layer, this is textured, whereby a finely adjustable change in the reflection index of the absorber layer is made possible over its thickness. The result is a so-called sub-wavelength structure. This arrangement saves on the one hand absorber material and on the other hand the hitherto customary buffer layer between the conductive transparent layer and the absorber layer, which in a superstrate arrangement should reduce the reflection between the TCO layer and the absorber layer. In one embodiment, it is envisaged to form the metal oxide nanorods from ZnO or TiO 2 or MgO. A further embodiment provides to form the conductive transparent layer from one of the following materials FTO or ITO or AZO.
In einer anderen Ausführungsform ist die Absorberschicht aus Si oder einem Chalkogenidhalbleitermateial (wie z. B. CdTe, CIGS) oder einem organischen Material gebildet. In another embodiment, the absorber layer is formed of Si or a chalcogenide semiconductor material (such as CdTe, CIGS) or an organic material.
Je nach Anwendung kann sich der in Richtung Metallkontakt verjüngende Querschnitt der Nanostäbe kontinuierlich oder stufenförmig verändern. Die Nanostäbe weisen eine Länge von einigen Hundert nm bis einige pm, einen Durchmesser von einigen Zehn nm bis einige Hundert nm und einen Abstand zueinander von 50 bis 2.000 nm auf. Depending on the application, the cross section of the nanorods, which tapers in the direction of the metal contact, can change continuously or stepwise. The nanorods have a length of a few hundred nm to a few pm, a diameter of several tens of nm to a few hundred nm and a distance of 50 to 2,000 nm.
Weiterhin ist bei der Anordnung von ZnO-Nanostäben vorgesehen, dass sich auf der leitenden transparenten Schicht eine zusätzliche ZnO-Keimschicht für das Aufbringen der ZnO -Nanostäbe befindet, durch die einerseits die Dichte der aufzubringenden ZnO-Nanostäbe und andererseits ihre senkrechte Ausrichtung während des Aufwachsens beeinflusst wird. Furthermore, it is provided in the arrangement of ZnO nanorods that on the conductive transparent layer is an additional ZnO seed layer for the application of the ZnO nanorods, on the one hand, the density of the applied ZnO nanorods and on the other hand, their vertical orientation during growth being affected.
Die Nanostäbe können mit den dem Stand der Technik nach bekannten Verfahren aufgebracht werden. Beispielhaft seien hierfür folgende The nanorods can be applied by known methods according to the prior art. Examples are the following
Veröffentlichungen erwähnt: Appl. Phys. Lett. 92, 161906 (2008) und WO 2009/103286 A2 betreffend die elektrochemische Deposition sowie Chem. Mater. 2005, 17, 1001 -1006, wo weitere Möglichkeiten für das Aufwachsen von Nanostäben genannt sind.  Publications mentioned: Appl. Phys. Lett. 92, 161906 (2008) and WO 2009/103286 A2 concerning electrochemical deposition and Chem. Mater. 2005, 17, 1001 -1006, where further possibilities for the growth of nanorods are mentioned.
Die Erfindung soll in folgendem Ausführungsbeispiel anhand der Figuren näher beschrieben werden. Dabei zeigen The invention will be described in more detail in the following embodiment with reference to FIGS. Show
Fig. 1 : eine SE -Aufnahme einer ZnO-Nanstäbchen-Anordnung auf einer ZnO-AI-Oberfiäche im Querschnitt;  Fig. 1: an SE recording of a ZnO-Nanstäbchen arrangement on a ZnO-AI Oberfiäche in cross section;
Fig. 2: eine schematische Darstellung der erfindungsgemäßen  Fig. 2: a schematic representation of the invention
Anordnung ebenfalls im Querschnitt.  Arrangement also in cross section.
Die ZnO-Nanostäbchen in der in Fig. 1 gezeigten Aufnahme wurden mittels eines Elektrodepositionsverfahrens - wie bereits in der erwähnten The ZnO nanorods in the photograph shown in Fig. 1 were by means of an electrode position method - as already mentioned in the
WO 2009/103286 A2 beschrieben - erzeugt, wobei die Herstellung von nanostrukturiertem ZnO mit einer hohen inneren Quanteneffizienz (IQE) ohne zusätzlichen Temperschritt erfolgt. Bei diesem Elektrodepositionsverfahren wird eine wässrige Lösung aus einem Zn-Saiz, beispielsweise Zn(N03)2, und einem Dotiermittel, beispielsweise HN03 oder NH4N03, verwendet. WO 2009/103286 A2 - produced, wherein the production of nanostructured ZnO with a high internal quantum efficiency (IQE) without additional annealing step takes place. In this electro-deposition process, an aqueous solution of a Zn-Saiz, such as HN0 3 or NH 4 N0 3, used, for example Zn (N0 3) 2, and a dopant is.
Eine in Fig. 1 gezeigte Anordnung von ZnO-Nanostäben im Querschnitt dient als Basis für die Herstellung der erfindungsgemäßen Superstrat-Solarzellen- Anordnung im Querschnitt, wie sie in Fig. 2 gezeigt ist. Dabei ist auf einem Glassubstrat 1 eine leitende transparente Schicht 2, hier ZnO:AI mit einer Dicke von 800 nm, angeordnet. Auf dieser Schicht 2 An arrangement of ZnO nanorods in cross-section shown in FIG. 1 serves as the basis for the production of the superstrate solar cell arrangement according to the invention in cross section, as shown in FIG. In this case, on a glass substrate 1, a conductive transparent layer 2, here ZnO: AI with a thickness of 800 nm, arranged. On this layer 2
befinden sich ZnO-Nanostäbe 3 mit einer Länge von 400 nm, die - wie oben beschrieben - erzeugt wurden. Diese ZnO-Nanostäbe 3 weisen einen sich in Richtung Metallkontakt 5 verjüngenden (von 300 nm auf 40 nm) Querschnitt auf. Die ZnO-Nanostäbe 3 sind vollständig mit einer Si-Schicht 4 bedeckt, die eine Dicke von 500 nm aufweist. are ZnO nanorods 3 with a length of 400 nm, which - as described above - were generated. These ZnO nanorods 3 have a cross-section that tapers in the direction of metal contact 5 (from 300 nm to 40 nm). The ZnO nanorods 3 are completely covered with an Si layer 4 having a thickness of 500 nm.
Der Reflexionsindex der texturierten Si-Absorberschicht 4 ändert sich in dieser Superstrat-Anordnung von etwa 2 an der Grenzfläche ZnO:AI-Schicht 2 und Si-Absorberschicht 4 auf ca. 3,2 an der Grenzfläche Si-Absorberschicht 4 und Metallkontakt 5. The reflection index of the textured Si absorber layer 4 changes in this superstrate arrangement of about 2 at the interface ZnO: Al layer 2 and Si absorber layer 4 to about 3.2 at the interface Si absorber layer 4 and metal contact. 5

Claims

Patentansprüche claims
1. Superstrat-Solarzelle mit Nanostrukturen, mindestens aufweisend ein Glassubstrat, auf dem eine leitende transparente Schicht angeordnet ist, auf der sich die Absorberschicht befindet, die mit einem Metallkontakt versehen ist, 1. Superstrate solar cell with nanostructures, comprising at least one glass substrate, on which a conductive transparent layer is arranged, on which there is the absorber layer, which is provided with a metal contact,
dadurch gekennzeichnet, dass characterized in that
auf der leitenden transparenten Schicht (2) Metalloxid-Nanostäbe (3) mit in Richtung Metallkontakt (5) sich verjüngendem Querschnitt angeordnet sind und on the conductive transparent layer (2) metal oxide nanorods (3) are arranged in the direction of metal contact (5) of tapered cross-section, and
die Absorberschicht (4) wie eine Matrix die Nanostäbe (5) vollständig in ihrer Höhe bedeckt. the absorber layer (4) like a matrix completely covers the nanorods (5) in their height.
2. Superstrat-Solarzelle nach Anspruch 1 , 2. Superstrate solar cell according to claim 1,
dadurch gekennzeichnet, dass characterized in that
die Metalloxid-Nanostäbe (3) aus ZnO oder TiO2 oder MgO gebildet sind. the metal oxide nanorods (3) are formed from ZnO or TiO 2 or MgO.
3. Superstrat-Solarzelle nach Anspruch 1 , 3. Superstrate solar cell according to claim 1,
dadurch gekennzeichnet, dass characterized in that
die leitende transparente Schicht (2) gebildet ist aus einem der folgenden Materialien FTO oder ITO oder AZO. the conductive transparent layer (2) is formed from one of the following materials FTO or ITO or AZO.
4. Superstrat-Solarzelle nach Anspruch 1 , 4. Superstrate solar cell according to claim 1,
dadurch gekennzeichnet, dass characterized in that
die Absorberschicht (4) gebildet ist aus Si oder einem the absorber layer (4) is formed of Si or a
Chalkogenidhalbleitermateial oder einem organischen Material. Chalcogenide semiconductor material or an organic material.
5. Superstrat-Solarzelle nach Anspruch 1 , 5. Superstrate solar cell according to claim 1,
dadurch gekennzeichnet, dass characterized in that
der sich in Richtung Metallkontakt (5) verjüngende Querschnitt der Nanostäbe (3) kontinuierlich verändert. the cross section of the nanorods (3), which tapers in the direction of the metal contact (5), changes continuously.
6. Superstrat-Solarzelle nach Anspruch 1 , 6. Superstrate solar cell according to claim 1,
dadurch gekennzeichnet, dass characterized in that
der sich in Richtung Metallkontakt (5) verjüngende Querschnitt der Nanostäbe (3) stufenförmig verändert. the cross section of the nanorods (3), which tapers in the direction of the metal contact (5), changes in steps.
7. Superstrat-Solarzelle nach Anspruch 1 , 7. Superstrate solar cell according to claim 1,
dadurch gekennzeichnet, dass characterized in that
die Nanostäbe (3) eine Länge von einigen Hundert nm bis einige pm, einen Durchmesser von einigen Zehn nm bis einige Hundert nm und einen Abstand zueinander von 50 bis 2.000 nm aufweisen. the nanorods (3) have a length of a few hundred nm to a few pm, a diameter of several tens of nm to a few hundred nm and a distance from one another of 50 to 2,000 nm.
8. Superstrat-Solarzelle nach Anspruch 1 und 2, 8. superstrate solar cell according to claim 1 and 2,
dadurch gekennzeichnet, dass characterized in that
sich auf der leitenden transparenten Schicht (2) eine Keimschicht für das Aufbringen der ZnO-Nanostäbe (3) befindet. on the conductive transparent layer (2) is a seed layer for the application of the ZnO nanorods (3).
PCT/DE2011/000452 2010-04-23 2011-04-20 Superstrate solar cell with nanostructures WO2011131176A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010017962A DE102010017962A1 (en) 2010-04-23 2010-04-23 Superstrate solar cell with nanostructures
DE102010017962.0 2010-04-23

Publications (1)

Publication Number Publication Date
WO2011131176A1 true WO2011131176A1 (en) 2011-10-27

Family

ID=44510614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2011/000452 WO2011131176A1 (en) 2010-04-23 2011-04-20 Superstrate solar cell with nanostructures

Country Status (2)

Country Link
DE (1) DE102010017962A1 (en)
WO (1) WO2011131176A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1087446A2 (en) * 1999-09-22 2001-03-28 Canon Kabushiki Kaisha Photoelectric conversion device and its production method
US20050045874A1 (en) * 2003-09-02 2005-03-03 Steven Xiao Organic semiconductor devices and methods of fabrication
US20050121068A1 (en) * 2002-06-22 2005-06-09 Nanosolar, Inc. Photovoltaic devices fabricated by growth from porous template
US20080149171A1 (en) * 2006-12-21 2008-06-26 Rutgers, The State University Of New Jersey Zinc Oxide Photoelectrodes and Methods of Fabrication
WO2009103286A2 (en) 2008-02-21 2009-08-27 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Electrodeposition method for the production of nanostructured zno
WO2009116018A2 (en) 2008-03-21 2009-09-24 Oerlikon Trading Ag, Trübbach Photovoltaic cell and methods for producing a photovoltaic cell
US20090242029A1 (en) 2008-03-26 2009-10-01 Solexant Corp. Junctions in substrate solar cells

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009126115A1 (en) * 2008-04-09 2009-10-15 Agency For Science, Technology And Research Multilayer film for encapsulating oxygen and/or moisture sensitive electronic devices

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1087446A2 (en) * 1999-09-22 2001-03-28 Canon Kabushiki Kaisha Photoelectric conversion device and its production method
US20050121068A1 (en) * 2002-06-22 2005-06-09 Nanosolar, Inc. Photovoltaic devices fabricated by growth from porous template
US20050045874A1 (en) * 2003-09-02 2005-03-03 Steven Xiao Organic semiconductor devices and methods of fabrication
US20080149171A1 (en) * 2006-12-21 2008-06-26 Rutgers, The State University Of New Jersey Zinc Oxide Photoelectrodes and Methods of Fabrication
WO2009103286A2 (en) 2008-02-21 2009-08-27 Helmholtz-Zentrum Berlin Für Materialien Und Energie Gmbh Electrodeposition method for the production of nanostructured zno
WO2009116018A2 (en) 2008-03-21 2009-09-24 Oerlikon Trading Ag, Trübbach Photovoltaic cell and methods for producing a photovoltaic cell
US20090242029A1 (en) 2008-03-26 2009-10-01 Solexant Corp. Junctions in substrate solar cells

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
APPL. PHYS. LETT., vol. 92, 2008, pages 161906
APPLIED PHYSICS LETTERS, vol. 93, no. 208, pages 053113
CHEM. MATER., vol. 17, 2005, pages 1001 - 1006
FVS THEMEN, 2000, pages 97 FF
INTERNATIONAL JOURNALOT PHOTOENERGY, vol. 2010
MEILI WANG ET AL: "A plasma sputtering decoration route to producing thickness-tunable ZnO/ TiO2 core/shell nanorod arrays; A plasma sputtering decoration route to producing thickness-tunable ZnO/TiO2 core/shell nanorod arrays", NANOTECHNOLOGY, IOP, BRISTOL, GB, vol. 20, no. 28, 15 July 2009 (2009-07-15), pages 285311, XP020160696, ISSN: 0957-4484 *
NANO LETT., vol. 8, no. 5, 2008, pages 1501 - 1505
THE 2ND JOINT INTERNATIONAL CONFERENCE ON SUSTAINABLE ENERGY AND ENVIRONMENT (SEE 2006, 21 November 2006 (2006-11-21)

Also Published As

Publication number Publication date
DE102010017962A1 (en) 2011-10-27

Similar Documents

Publication Publication Date Title
DE102006046312B4 (en) Solar cells with stable, transparent and conductive layer system
DE112006000394T5 (en) Chalcopyrite solar cell and process for its preparation
DE102012107588A1 (en) Process for the production of solar cells
DE102013225863A1 (en) Method of making nanocone texture on glass and transparent conductors
DE212020000612U1 (en) Flexible solar cell
DE112010005449T5 (en) A substrate for a photoelectric conversion device and a method of manufacturing the substrate, a thin film photoelectric conversion device, and a method of manufacturing the thin film photoelectric conversion device, and a solar cell module
DE102016202607A1 (en) Method for producing a layer with perovskite material and device with such a layer
DE102012112922B4 (en) Thin-film photovoltaic cell and process for its production
DE102012203830A1 (en) Method and apparatus using a strained azo layer and interfacial Fermi-level pinning in double-sided thin film PV cells
DE102010034901B4 (en) Solar thermal arrangement
WO2012028137A2 (en) Double-sided solar cell
WO2018039690A1 (en) Optoelectronic infrared sensor
DE102014223485A1 (en) Layer structure for a thin-film solar cell and manufacturing method
WO2011131176A1 (en) Superstrate solar cell with nanostructures
US20150325712A1 (en) Nanostructured Thin-Film Solar Cell
DE202010018127U1 (en) Superstrate solar cell with nanostructures
DE102009021252B4 (en) Vacuum collector tube and method of making such a vacuum collector tube
DE102012105457B3 (en) Layer system for manufacturing transparent electrode used in e.g. solar cell, has conductive oxide layer including surface structures with average height, which is larger is than average height of structures of base layer around factor
DE202010017656U1 (en) Two-sided solar cell
WO2015131881A2 (en) Back-contact si thin-film solar cell
EP2777077B1 (en) Method for coating a substrate
DE102010009558A1 (en) Method for manufacturing textured transparent conductive oxide layer utilized for manufacturing e.g. solar cell, involves forming transparent conductive oxide sacrificial layer on transparent conductive oxide layer before etching process
WO2013113638A1 (en) Photovoltaic solar cell and method for producing a photovoltaic solar cell
DE202011110597U1 (en) Substrate for an optoelectronic device
DE102016107877B4 (en) Translucent support for a semiconductive thin-film structure and method of making and using the translucent support

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11738942

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 11738942

Country of ref document: EP

Kind code of ref document: A1