WO2011122502A1 - ノイズ抑制構造 - Google Patents

ノイズ抑制構造 Download PDF

Info

Publication number
WO2011122502A1
WO2011122502A1 PCT/JP2011/057479 JP2011057479W WO2011122502A1 WO 2011122502 A1 WO2011122502 A1 WO 2011122502A1 JP 2011057479 W JP2011057479 W JP 2011057479W WO 2011122502 A1 WO2011122502 A1 WO 2011122502A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductor
ground layer
main body
noise suppression
current control
Prior art date
Application number
PCT/JP2011/057479
Other languages
English (en)
French (fr)
Inventor
康一郎 中瀬
半杭 英二
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to US13/637,864 priority Critical patent/US9225049B2/en
Priority to JP2012508269A priority patent/JPWO2011122502A1/ja
Publication of WO2011122502A1 publication Critical patent/WO2011122502A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/58Structural electrical arrangements for semiconductor devices not otherwise provided for, e.g. in combination with batteries
    • H01L23/64Impedance arrangements
    • H01L23/66High-frequency adaptations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/20Frequency-selective devices, e.g. filters
    • H01P1/219Evanescent mode filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P3/00Waveguides; Transmission lines of the waveguide type
    • H01P3/02Waveguides; Transmission lines of the waveguide type with two longitudinal conductors
    • H01P3/06Coaxial lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/02Coupling devices of the waveguide type with invariable factor of coupling
    • H01P5/022Transitions between lines of the same kind and shape, but with different dimensions
    • H01P5/026Transitions between lines of the same kind and shape, but with different dimensions between coaxial lines
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0237High frequency adaptations
    • H05K1/025Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance
    • H05K1/0251Impedance arrangements, e.g. impedance matching, reduction of parasitic impedance related to vias or transitions between vias and transmission lines
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2223/00Details relating to semiconductor or other solid state devices covered by the group H01L23/00
    • H01L2223/58Structural electrical arrangements for semiconductor devices not otherwise provided for
    • H01L2223/64Impedance arrangements
    • H01L2223/66High-frequency adaptations
    • H01L2223/6605High-frequency electrical connections
    • H01L2223/6627Waveguides, e.g. microstrip line, strip line, coplanar line
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/151Die mounting substrate
    • H01L2924/1517Multilayer substrate
    • H01L2924/15192Resurf arrangement of the internal vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0213Electrical arrangements not otherwise provided for
    • H05K1/0216Reduction of cross-talk, noise or electromagnetic interference
    • H05K1/023Reduction of cross-talk, noise or electromagnetic interference using auxiliary mounted passive components or auxiliary substances
    • H05K1/0233Filters, inductors or a magnetic substance
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/16Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
    • H05K1/165Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed inductors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09263Meander
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/095Conductive through-holes or vias
    • H05K2201/09618Via fence, i.e. one-dimensional array of vias

Definitions

  • the present invention relates to a noise suppression structure that suppresses unnecessary high-frequency current in a small electronic device, and in particular, reduces noise current flowing between a wireless circuit unit and a digital circuit unit mounted on a portable wireless terminal, thereby preventing electromagnetic interference.
  • the present invention relates to a noise suppression structure that suppresses noise.
  • FIG. 28 shows a simplified structure of a printed wiring board 100 of a portable wireless terminal on which a wireless circuit unit and a digital circuit unit are mounted.
  • the printed wiring board 100 includes a signal wiring / power supply layer 101, a ground layer G, and the like in order to realize the function of the portable wireless terminal.
  • a radio circuit unit 102 and a digital circuit unit 103 are mounted on the upper surface of the ground layer G.
  • the wireless circuit unit 102 and the digital circuit unit 103 share the ground layer G, and an unnecessary high-frequency current (noise current) is generated by the ground layer G due to a signal containing a lot of high-frequency components transmitted from the digital circuit unit 103. May be mixed into the wireless circuit unit 102.
  • An antenna and a power circuit (not shown) are mounted on the printed wiring board 100.
  • a balanced antenna such as a dipole antenna is used as disclosed in Patent Document 1.
  • the balanced antenna 110 is connected to the radio circuit unit 102 via a coaxial line 111, and the coaxial line 111 is composed of an outer conductor 111A and an inner conductor 111B.
  • a cylindrical sleeve 113 which is short-circuited with a donut-shaped shorting plate 112 is used for the outer conductor 111A of the coaxial line 111.
  • the start end of the sleeve 113 is an open end 113A.
  • the sleeve 113 functions as a balun that connects the balanced antenna 110 and the coaxial line 111 of the unbalanced line when the unnecessary high-frequency current i flowing through the outer conductor 111A of the coaxial line 111 is suppressed.
  • the length l of the sleeve 113 is a quarter of the wavelength ⁇ of the unnecessary high-frequency current, and the input impedance at the open end of the sleeve is theoretically infinite at the operating frequency of the balanced antenna 110, so that the unnecessary high-frequency current i is reduced. I try not to flow. With this structure, generation of electromagnetic noise due to mismatch of balanced / unbalanced conversion is suppressed.
  • Patent Documents 2 to 4 can be cited.
  • the antenna substrate on the surface opposite to the surface on which the speaker of the printed wiring board is mounted, the antenna element formed as an antenna pattern on the antenna substrate, and the antenna element are fed.
  • a coaxial cable is connected to an antenna / printed wiring board, and the coaxial cable is covered with a karooka.
  • This apelooka is configured by fitting a dielectric cylinder and a conductor cylinder into a dielectric outer cylinder, with the lower end of the dielectric outer cylinder and the conductor inner cylinder being a short-circuit surface and the upper end being an open end.
  • the lengths of the dielectric outer cylinder and the dielectric cylinder are shortened from “1 ⁇ 4 ⁇ ” to “1 / ⁇ r” by the relative dielectric constant ⁇ r.
  • the portable wireless terminal disclosed in Patent Document 4 includes a coaxial cable that feeds power to the first and second antenna elements provided on the antenna substrate, and the first and second resonances in the longitudinal direction of the coaxial cable.
  • a dielectric sleeve is configured in which conductors are arranged apart from each other, and further connected to a coaxial cable with the tip end open and the other end short-circuited. The length of the dielectric sleeve is shortened from “1 ⁇ 4 ⁇ ” to “1 / ⁇ r” due to the relative dielectric constant ⁇ r.
  • the unnecessary high-frequency current can be suppressed by a terminal short-circuited sleeve or apelooka having a length corresponding to a quarter wavelength of the unnecessary high-frequency current
  • the size is small for use in a portable wireless terminal that requires miniaturization. Too big.
  • the length of the sleeve corresponding to a quarter wavelength is about 93 mm.
  • Patent Documents 2 to 4 partially refer to a technique for shortening the length of the sleeve, but the length of the sleeve can be sufficiently shortened only by shortening the length based on the relative dielectric constant ⁇ r. I can't do it.
  • the wavelength ⁇ in the air is calculated by Equation 1 with a relative dielectric constant ⁇ r of “1”. ⁇ is the wavelength, C 0 is the speed of light in vacuum, f is the frequency, and ⁇ r is the relative dielectric constant.
  • the present invention has been made in view of the above circumstances, and is a noise suppression structure that shortens a transmission line (sleeve) that suppresses unnecessary high-frequency current in a short-circuited termination type, thereby enabling downsizing of the whole.
  • the purpose is to provide.
  • the present invention relates to a noise suppression structure that suppresses unnecessary high-frequency currents in a short-circuited transmission line (sleeve), and includes a conductor main body installed so as to surround the outer periphery of the transmission line, and an open end of the conductor main body And a current control unit that is connected to the transmission line on the opposite side of the conductor main body and that includes a conductor short-circuit portion having a larger inductance than the conductor main body portion.
  • the conductor main body provided at a distance from the ground layer in the thickness direction, and the conductor main body open.
  • a current control unit is provided which is connected to the ground layer on the side opposite to the end and is configured by a conductor short-circuit unit having a larger inductance than the conductor main body unit.
  • the desired input impedance is ensured by increasing the inductance by devising the shape of the terminal end of the sleeve corresponding to a quarter wavelength of the unnecessary high frequency current generated in the radio circuit section of the portable radio terminal and flowing through the ground layer.
  • the overall length was shortened and miniaturized.
  • the printed wiring board mounted on the portable wireless terminal can be reduced in size.
  • FIG. 6 is a perspective view showing a noise suppression structure according to Modification 1 of Embodiment 1.
  • FIG. It is a circuit diagram explaining the principle of shortening of the length of a noise suppression structure.
  • FIG. 5 is a development view of the printed wiring board shown in FIG. 4.
  • 10 is a development view illustrating a noise suppression structure according to Modification 1 of Embodiment 2.
  • FIG. It is an expanded view which shows the noise suppression structure which concerns on the modification 2 of Example 2.
  • FIG. 10 is a development view illustrating a noise suppression structure according to Modification 4 of Example 2.
  • FIG. 10 is a development view illustrating a noise suppression structure according to Modification 5 of Example 2.
  • FIG. 10 is a development view illustrating a noise suppression structure according to Modification 6 of Example 2.
  • FIG. 10 is a development view illustrating a noise suppression structure according to Modification 7 of Example 2.
  • A Development view of noise suppression structure according to embodiment 3 of the present invention,
  • FIG. 10 is a development view of a noise suppression structure according to Modification 2 of Example 4. It is an expanded view of the noise suppression structure which concerns on the modification 3 of Example 4, Comprising: The example which has arrange
  • FIG. 10 is a development view of a noise suppression structure according to Modification 4 of Example 4.
  • FIG. 10 is a development view of a noise suppression structure according to Modification 5 of Example 4.
  • FIG. 12 is a development view of a noise suppression structure according to Modification 6 of Example 4.
  • FIG. 10 is a development view of a noise suppression structure according to Modification 7 of Example 4.
  • a noise suppression structure according to Embodiment 1 of the present invention will be described with reference to FIGS.
  • symbol S indicates a current control unit for attenuating unnecessary high-frequency current (noise current).
  • the total length of the transmission line of the current control unit S is “l 1 + l 2 ”.
  • a transmission line shorter than a quarter wavelength is equivalent to an inductance.
  • a terminal short-circuiting quarter-wavelength (1 / ⁇ ) line having a characteristic resistance R 0 (real part of characteristic impedance) and a length l 1 + l 2 is assumed.
  • the input impedance Zin does not change even if the portion of the length l 2 whose terminal is short-circuited is replaced with the inductance L obtained by Equation 2.
  • L is an inductance
  • R 0 is a characteristic resistance
  • f is a frequency
  • is a wavelength
  • l 2 is a partial line length.
  • the input impedance of the sleeve shortened the length of the transmission line by changing the shape of the terminal part of the short-circuited quarter-wave sleeve to increase the inductance, and the length of the transmission line is reduced.
  • the input impedance is not shortened.
  • the length l 1 portion of the current control portion S is expressed as a conductor body portion
  • the length l 2 portion is expressed as a conductor short-circuit portion.
  • the sleeve 1 is used as the current control unit S of the portable wireless terminal.
  • This sleeve 1 corresponds to the conventional cylindrical sleeve 113 shown in FIG. 29, and shows a portion of the coaxial line 111 that connects the balanced antenna 110 and the radio circuit unit 102.
  • the sleeve 1 has a cylindrical conductor main body 2 that is disposed on the outer conductor 111A of the coaxial line 111 including the outer conductor 111A and the inner conductor 111B, and covers the outer conductor 111A.
  • a conductor short-circuit portion 3 that is short-circuited with the coaxial line 111 is connected.
  • the length of the conductor body 2 of the sleeve 1 is shorter than a quarter wavelength of the unnecessary high-frequency current flowing through the outer conductor 111A, and the conductor short-circuit portion 3 connected to the outer conductor 111A of the coaxial line 111.
  • the conductor short-circuit portion 3 is not a conventional donut-shaped conductor, but is composed of a plurality of linear conductors 4, thereby increasing the inductance.
  • the input impedance at the open end 2A of the sleeve 1 is theoretically calculated at the frequency of the unnecessary high-frequency current i flowing through the outer conductor 111A of the coaxial line 111. Can be infinitely large.
  • the propagation of the unnecessary high-frequency current i flowing from the A side through the outer conductor 111A of the coaxial line 111 is suppressed at the open end 2A of the conductor main body 2, and the unnecessary high-frequency current i reaching the downstream B side is reduced.
  • the unnecessary high-frequency current i propagating through the outer conductor 111A of the coaxial line 111 can be suppressed while the length of the entire sleeve 1 is shortened, and the portable radio terminal equipped with the sleeve 1 can be downsized. .
  • the conductor short-circuit portion 3 adjacent to the terminal end portion of the terminal short-circuit type sleeve 1 is constituted by the linear conductor 4 so as to increase the inductance.
  • the length of the sleeve 1 can be shortened, and the entire portable wireless terminal including the noise suppression structure of the first embodiment can be reduced in size.
  • the conductor short-circuit portion 3 that connects the cylindrical sleeve 1 and the outer conductor 111A of the coaxial line 111 is constituted by the linear conductor 4, but the linear conductor 4 is formed in a cylindrical shape as shown in FIG.
  • the conductor main body 2 may be extended in the length direction to increase the installation ratio of the linear conductors 4.
  • the inductance is further increased, and the noise suppressing structure for suppressing the unnecessary high-frequency current i propagating through the outer conductor 111A of the coaxial line 111 is achieved. Further downsizing has been realized.
  • the conductor short-circuit portion 3 that connects the cylindrical sleeve 1 and the outer conductor 111A of the coaxial line 111 is configured by the linear conductor 4, but is not limited thereto.
  • the inductance may be further increased by making the linear conductor 4 meander or spiral.
  • FIG. 4 is a perspective view of a printed wiring board of the portable wireless terminal
  • FIG. 5 is a developed view of the conductive layer. 4 and 5, only the minimum configuration of the second embodiment is shown by omitting components (such as a wireless circuit unit and a digital circuit unit) and an insulating layer mounted on the printed wiring board.
  • the current control units S ⁇ b> 1 and S ⁇ b> 2 include conductor main body units 10 and 14 having a length shorter than a quarter wavelength ( ⁇ / 4) of the unnecessary high-frequency current i flowing through the ground layer G.
  • the conductor main bodies 10 and 14 are arranged in a positional relationship that is symmetrical to each other with the ground layer G sandwiched between the upper and lower layers of the conductor constituting the ground layer G.
  • the current control unit S ⁇ b> 1 includes a rectangular conductor main body 10 arranged in parallel with the ground layer G, and a conductor short-circuit unit 11 extending from the conductor main body 10 to the ground layer G.
  • the A side is an open end 10A.
  • the conductor short-circuit portion 11 includes a plurality of conductor thin wires 12 connected to the end portion 10B opposite to the open end 10A of the conductor main body portion 10 and a plurality of vias 13 connecting the conductor thin wires 12 to the ground layer G. Yes.
  • the inductance is increased by interposing the plurality of thin conductor wires 12.
  • the current control unit S2 includes a rectangular conductor main body 14 disposed in parallel with the ground layer G, and a conductor short-circuit portion 15 extending from the conductor main body 14 to the ground layer G.
  • the A side of 14 is an open end 14A.
  • the conductor short-circuit portion 15 includes a plurality of conductor thin wires 16 connected to the end portion 14B opposite to the open end 14A of the conductor main body portion 14 and a plurality of vias 17 that connect the conductor thin wires 16 to the ground layer G. Yes.
  • the inductance is increased by interposing the plurality of thin conductor wires 16.
  • the conductor main body portions 10 and 14 of the current control portions S1 and S2 include vias 21 and 22 connected at both ends across the ground layer G via the via lands 20.
  • the ground layer G in FIGS. 4 and 5 corresponds to the outer conductor 111A of the coaxial line 111 in FIGS. 4 and FIG. 5 corresponds to the cylindrical sleeve 1 shown in FIG. 1 and FIG.
  • the thin conductor wires 12 and 16 and the vias 13 and 17 in FIGS. 4 and 5 correspond to the linear conductor 4 in the sleeve 1 in FIGS. 1 and 2.
  • the unnecessary high-frequency current i of the radio frequency that leaks out of the digital circuit unit and propagates through the ground layer G is reduced. Since the unnecessary high-frequency current i is prevented from being mixed into the wireless circuit unit, the wireless communication quality of the portable wireless terminal can be improved.
  • the short-circuited current control units S1 and S2 have the conductor short-circuit portions 11 and 15 disposed close to the termination portion as the linear thin wires 12 and 16, and inductance is provided.
  • the lengths of the current control units S1 and S2 can be shortened, and the entire portable wireless terminal can be downsized.
  • Example 2 (Modification 1) In Example 2, although the some linear thin wires 12 and 16 were provided as the conductor short circuit parts 11 and 15 of current control part S1 and S, it is not limited to this. For example, as illustrated in FIG. 6, one thin wire 12 and 16 and one via 13 and 17 may be provided in each of the conductor short-circuit portions 11 and 15 and connected to the ground layer G.
  • Modification 2 In the second embodiment, the open ends 10A and 14A are arranged on the A side of the current control units S1 and S2 to prevent noise from propagating from the one side circuit to the other side circuit. It is not a thing. Noise may be prevented from propagating from both circuits to the other side.
  • FIG. 7 is a development view of the noise suppression structure according to the modified example 2.
  • the pair of conductor main body portions 10 and 10 are arranged in the longitudinal direction so that the A side and the B side are open ends 10A, respectively. Are arranged at intervals.
  • a plurality of fine conductor wires 12 are arranged so as to be connected to the end portions 10B, respectively, and vias 13 connected to the ground layer G are provided at intermediate portions thereof.
  • a pair of conductor main body portions 14 and 14 are arranged at an interval in the length direction so that the A side and the B side are the open ends 10A in the current control unit S2.
  • the some conductor fine wire 16 is arrange
  • the rows of vias 13 and 17 are shared by the fine conductor wires 12 and 16 on the A side and the fine conductor wires 12 and 16 on the B side, and the current control units S1 and S2 are symmetrically arranged with the ground layer G interposed therebetween.
  • the noise suppression structure for the unnecessary high-frequency current i having the open ends 10A and 14A on both the A side and the B side is arranged back to back with the ground layer G interposed therebetween.
  • the unnecessary high-frequency current i propagates from the B side to the A side, since the input impedance of the open ends 10A and 14A located on the B side is high, propagation of the unnecessary high-frequency current i can be suppressed. That is, the unnecessary high-frequency current i propagating from both the A side and the B side can be suppressed.
  • the plurality of thin thin wires 11 and 16 are provided as the conductor short-circuit portions 11 and 15 of the current control portions S1 and S2.
  • the inductance may be further increased by using the meandering wires 23 and 24.
  • FIG. 8 shows planar meandering wires 23 and 24 that meander in the same plane as the conductor main body portions 10 and 14.
  • FIG. 9 shows vertical meandering wires 23 and 24 that meander in the thickness direction of the conductor main body portions 10 and 14.
  • the layers may be folded using a plurality of vias and wirings.
  • planar meandering wires 23 and 24 shown in FIG. 8 are arranged in the same plane as the conductor main body portions 10 and 14 of the current control portions S1 and S2, the present invention is not limited to this.
  • the meandering wires 23 and 24 are formed in a layer different from the conductor main body portions 10 and 14 of the current control portions S ⁇ b> 1 and S ⁇ b> 2, and the meandering wire 23 is disposed immediately above the conductor main body portion 10.
  • the meandering wiring 24 may be arranged directly below the conductor body 14.
  • the wiring is drawn to the upper layer by the via 25 ⁇ / b> B at the end 10 ⁇ / b> B opposite to the open end 10 ⁇ / b> A of the conductor main body 10, and the meandering located immediately above the conductor main body 10.
  • the wiring is returned to the same layer as the conductor body 10 by the via 25 ⁇ / b> A, and further connected to the ground layer G by the via 13.
  • the wiring is drawn to the upper layer by the via 26B at the end 14B opposite to the open end 14A of the conductor main body 14, and after passing through the meandering wiring 24 positioned immediately above the conductor main body 14.
  • the wiring is returned to the same layer as the conductor main body 14 by the via 26A, and further, the via 17 is connected to the ground layer G.
  • the conductor wiring portions 10 and 14 and the meandering wires 23 and 24 overlap in the thickness direction compared to the configuration of FIG. 8 in which the meandering wires 23 and 24 are in the same layer as the current control portions S1 and S2. Therefore, the printed wiring board can be further miniaturized in the length direction (that is, the AB direction).
  • the plurality of linear thin wires 12 and 16 are provided as the conductor short-circuit portions 11 and 15 of the current control portions S1 and S2.
  • the spiral wirings 30 and 31 may be arranged in the same layer as the conductor main body portions 10 and 14.
  • the winding start of the spiral wirings 30 and 31 is provided around the vias 13 and 17, a spiral shape is formed around the vias 13 and 17, and the conductor short-circuit portion 11 is connected to the vias 13 and 17. , 15 are realized in one layer each.
  • the spiral wires 30 and 31 are provided in the same layer as the conductor main body portions 10 and 14 in the conductor thin wires 12 and 16 of the conductor short-circuit portions 11 and 15, but this is not limited thereto. It is not something.
  • the spiral wirings 30 and 31 may be arranged on the surface layers 34 and 35 which are layers different from the conductor main body portions 10 and 14 via the vias 32A, 32B, 33A and 33B.
  • the magnetic bodies 36 and 37 are applied on the spiral wirings 30 and 31 provided on the surface layers 34 and 35 of the printed wiring board, thereby increasing the inductance.
  • the spiral wirings 30 and 31 themselves can be miniaturized.
  • the spiral wirings 30 and 31 may be replaced with meandering wirings or conductor thin wires.
  • the spiral wires 30 and 31 are provided in the same layer as the conductor main body portions 10 and 14 in the conductor thin wires 12 and 16 of the conductor short-circuit portions 11 and 15, but this is not limited thereto. It is not something.
  • the spiral wirings 30 and 31 may be formed in two layers, that is, spiral wirings 30A and 30B and spiral wirings 31A and 31B, and may be connected by vias 38A and 38B and vias 39A and 39B, respectively.
  • the via 38A, the spiral wiring 30A, the via 38B, the spiral wiring 30B, and the via 13 are connected in this order at the end of the thin wire 12 drawn from the end 10B of the conductor main body 10, and the via 13 Is connected to the ground layer G.
  • the via 39A, the spiral wiring 31A, the via 39B, the spiral wiring 31B, and the via 17 are connected in this order at the end of the thin wire 16 drawn from the end 14B of the conductor main body 14.
  • the via 17 is connected to the ground layer G.
  • the conductor main bodies 10 and 14 of the current control units S1 and S2 are connected to each other by the vias 21 and 22 in the noise suppression structure shown in FIG. 4, but the vias 21 and 22 are omitted as shown in FIG. May be. That is, as shown in FIG. 14, even with the noise suppression structure in which the vias 21 and 22 are omitted, it is possible to suppress the unnecessary high-frequency current i that propagates the ground layer G from the A side to the B side.
  • the noise suppression structure according to Embodiment 3 of the present invention is characterized in that it is disposed between the upper power supply layer 40 and the lower power supply layer 41.
  • the current control units S1 and S2 shown in FIG. 14 are arranged so that the ground layer G is sandwiched between the upper power supply layer 40 and the lower power supply layer 41.
  • the current control parts S1 and S2 are composed of rectangular conductor body parts 10 and 14 arranged in parallel with the ground layer G, and conductor short-circuit parts 11 and 15 extending from the conductor body parts 10 and 14 to the ground layer G.
  • the A side of the conductor main body portions 10 and 14 is the open ends 10A and 14A.
  • the conductor short-circuit portions 11 and 15 are composed of a plurality of thin conductor wires 12 and 16 and a plurality of vias 13 and 17.
  • the inductance is increased by interposing the plurality of fine conductor wires 12 and 16. Further, the vias 21 and 22 shown in FIG. 4 are omitted in the current control units S1 and S2.
  • the operation of the current control unit S1 including the ground layer G will be described with reference to FIG. Since the current control unit S2 operates in the same manner as the current control unit S1, only the current control unit S1 will be described.
  • an unnecessary high-frequency ground current C2 flows as a return current in a direction opposite to the power supply current C1.
  • the pair of unnecessary high frequency power source current C1 and ground current C2 flows from the A side to the B side (from the via 13 connected to the ground layer G, the conductor thin wire 12, and a quarter wavelength of the unnecessary high frequency current.
  • the current control unit S1 (comprising a short length of the conductor main body 10) increases the input impedance at the open end 10A, and the unnecessary high-frequency current is reduced by suppressing the unnecessary high-frequency ground current C2.
  • the relationship between the width a1 of the conductor main body portions 10 and 14 of the current control portions S1 and S2 and the width a2 of the ground layer G disposed opposite to the conductor main body portions 10 and 14 is “a1”.
  • the effect of reducing the unnecessary high-frequency current is greater when “ ⁇ a2”.
  • the reason for this is that when the above relationship is “a1 ⁇ a2”, as shown in FIG. 15C, a bypass of the unnecessary high-frequency current i is formed in the ground layer G, and propagation from the A side to the B side is unnecessary. This is because the effect of reducing the high-frequency current i is reduced.
  • the lower structure including the ground layer G As a result, in the printed wiring board of the portable wireless terminal in which the wireless circuit unit 102 is mounted on the B side and the digital circuit unit 103 is mounted on the A side, it leaks from the digital circuit unit 103 and propagates through the power supply layer 40 and the ground layer G. It is possible to reduce the unnecessary high-frequency current of the radio frequency, and the mixing of the unnecessary high-frequency current i into the radio circuit unit 102 located on the B side is suppressed, so that the radio communication quality of the portable radio terminal can be further improved. It becomes possible.
  • the conductor short-circuit portion 11 connected to the rectangular conductor main body portion 10 arranged in parallel with the ground layer G is configured with a plurality of conductor thin wires 12 to increase the inductance.
  • the length of the conductor body 10 can be set to be shorter than a quarter wavelength ( ⁇ / 4) of the unnecessary high-frequency current i flowing in the ground layer G, thereby reducing the overall length of the current controller S1.
  • the conductor short-circuit parts 11 and 15 close to the terminal are connected to the wire thin lines 12 and 16 respectively.
  • the lengths of the current control units S1 and S2 are shortened by increasing the inductance, thereby enabling the portable radio terminal to be miniaturized.
  • the current control units S1 and S2 are arranged so that the ground layer G is sandwiched between the upper power supply layer 40 and the lower power supply layer 41.
  • the present invention is not limited to this.
  • the current control units S ⁇ b> 1 and S ⁇ b> 2 may be arranged so that the ground layer G is sandwiched between the upper signal line 42 and the lower signal line 43.
  • These signal lines 42 and 43 are for propagating signals in the direction AB, but, as in the third embodiment shown in FIGS. 15A and 15B, a quarter wavelength of the unnecessary high-frequency current.
  • the current control units S1 and S2 having the conductor body portions 10 and 14 having a shorter length increase the input impedance at the open ends 10A and 14A, thereby reducing unnecessary high-frequency current.
  • the current control units S1 and S2 are arranged so that the ground layer G is sandwiched between the upper power supply layer 40 and the lower power supply layer 41.
  • the present invention is not limited to this.
  • the current control unit S1 is disposed only between the upper power supply layer 40 and the ground layer G, and an unnecessary high frequency is applied to the radio circuit unit 102 located on the B side. You may make it suppress mixing of the electric current i.
  • the current control unit S2 may be disposed only between the lower power supply layer 41 and the ground layer G.
  • the current control units S1 and S2 are arranged so as to sandwich the ground layer G between the upper signal line 42 and the lower signal line 43.
  • the present invention is not limited to this. Absent.
  • the current control unit S1 is disposed only between the upper wiring layer 42 and the ground layer G, and an unnecessary high frequency is applied to the radio circuit unit 102 located on the B side. You may make it suppress mixing of the electric current i.
  • the current control unit S2 may be disposed only between the lower signal line 43 and the ground layer G.
  • the current control units S1 and S2 of the third embodiment may be modified as follows. That is, as shown in FIG. 6, the conductor short-circuit portions 11 and 15 may be connected to the ground layer G by one linear wiring 12 and 16 and one via 13 and 17. Further, as shown in FIG. 7, a pair of conductor main body portions 10 and 14 are arranged at intervals in the length direction in the current control portions S ⁇ b> 1 and S ⁇ b> 2, respectively.
  • the conductor thin wires 12 and 16 may be provided, and vias 13 and 17 connected to the ground layer G may be provided in the middle of the conductor main body portions 10 and 14.
  • FIG. 6 the conductor short-circuit portions 11 and 15 may be connected to the ground layer G by one linear wiring 12 and 16 and one via 13 and 17.
  • a pair of conductor main body portions 10 and 14 are arranged at intervals in the length direction in the current control portions S ⁇ b> 1 and S ⁇ b> 2, respectively.
  • the conductor thin wires 12 and 16 may be provided, and vias 13 and
  • the inductance may be further increased by using part or all of the thin conductor wires 12 and 16 as meandering wires 23 and 24.
  • the planar meandering wires 23 and 24 may be disposed in the same plane as the conductor main body portions 10 and 14 as shown in FIG. 8, or the vertical conductor wires 23 and 24 as shown in FIG. May be arranged in the thickness direction of the conductor main body portions 10 and 14.
  • wirings are separated by vias 25A and 25B at the end portions 10B and 14B opposite to the open ends 10A and 14A of the conductor main body portions 10 and 14, respectively.
  • the vias 25A and 26A return the wires to the same layer as the conductor main body portions 10 and 14, and further vias 13 and 17 Thus, connection to the ground layer G may be taken.
  • FIG. 10 shows that in the current control units S1 and S2, wirings are separated by vias 25A and 25B at the end portions 10B and 14B opposite to the open ends 10A and 14A of the conductor main body portions 10 and 14, respectively.
  • the vias 25A and 26A return the wires to the same layer as the conductor main body portions 10 and 14, and further vias 13 and 17
  • connection to the ground layer G may be taken.
  • the thin line wires 12 and 16 of the conductor short-circuit units 11 and 15 may be spiral wires 30 and 31.
  • the spiral wirings 30 and 31 may be provided on the surface layers 34 and 35 which are layers different from the conductor main body portions 10 and 14 through the vias 32A and 32B and the vias 33A and 33B.
  • the magnetic materials 36 and 37 may be applied on the spiral wirings 30 and 31 provided on the surface layers 34 and 35 of the printed wiring board, thereby increasing the inductance.
  • two layers of spiral wirings 30A, 30B and 31A, 31B may be provided and connected by vias 38A, 38B and 39A, 39B.
  • the current control units S1 and S2 are provided on the upper side / lower side across the ground layer G.
  • the fourth embodiment only the one side (for example, the upper side) of the ground layer G is provided.
  • a current control unit S1 is provided.
  • the length of the conductor body 10 is set to be shorter than the quarter wavelength ( ⁇ / 4) of the unnecessary high-frequency current i flowing in the ground layer G, and the current controller S1.
  • Is composed of a rectangular conductor main body portion 10 arranged in parallel with the ground layer G, and a conductor short-circuit portion 11 extending from the conductor main body portion 10 to the ground layer G. It is an open end 10A.
  • the conductor short-circuit portion 11 includes a plurality of conductor thin wires 12 connected to the end portion 10B opposite to the open end 10A of the conductor main body portion 10, and a plurality of vias 13 connecting these conductor thin wires 12 to the ground layer G.
  • the inductance is increased by interposing a plurality of thin conductor wires 12.
  • the unnecessary high-frequency current i of the radio frequency that leaks from the digital circuit unit and propagates through the ground layer G is reduced. It becomes possible to do. Since mixing of the unnecessary high-frequency current i into the wireless circuit unit is suppressed, the wireless communication quality of the portable wireless terminal can be further improved.
  • the length of the current control unit S1 is shortened by increasing the inductance by using the conductor short-circuit unit 11 close to the terminal as the thin wire 12. And the size of the entire portable wireless terminal can be reduced.
  • Example 1 In Example 4, although the some thin wire
  • the current control unit S1 of the fourth embodiment may be configured as shown in FIG. That is, in the current control unit S1, a pair of conductor main body portions 10 and 10 are arranged at intervals in the length direction, and a plurality of thin conductor wires 12 are provided between the conductor main body portions 10 and 10, and an intermediate portion thereof is arranged. A via 13 that connects the ground layer G to each other may be provided.
  • the noise suppressing structure has the open ends 10A and 10B on the A side and the B side
  • the unnecessary high-frequency current i propagates from the A side to the B side
  • the input impedance of the open end 10A located on the side Since the input impedance of the open end 10A located on the side is high, the propagation of the unnecessary high-frequency current i is suppressed.
  • the unnecessary high frequency current i propagates from the B side to the A side
  • since the input impedance of the open end 10A located on the B side is high, propagation of the unnecessary high frequency current i is suppressed. That is, the unnecessary high-frequency current i propagating from both the A side and the B side can be suppressed.
  • the current control unit S1 according to the fourth embodiment may be configured as shown in FIG. That is, the inductance may be further increased by using part or all of the plurality of thin wire lines 12 provided in the conductor short-circuit portion 11 of the current control unit S1 as the meander wiring 23.
  • the planar meander wiring 23 may be provided in the same plane as the conductor main body 10 as shown in FIG. 22, or the vertical meander in the thickness direction of the conductor main body 10 as shown in FIG. A wiring 23 may be provided.
  • the vertical serpentine wiring 23 is formed using a plurality of vias and wirings so as to be folded back between the layers.
  • the current control unit S1 of the fourth embodiment may be configured as shown in FIG. That is, the planar serpentine wiring 23 is not limited to the configuration shown in FIG. 22 arranged in the same plane as the conductor main body 10 of the current control unit S1. As shown in FIG. 24, the meandering wiring 23 may be installed on a layer different from the conductor main body 10 of the current control unit S ⁇ b> 1 and immediately above the conductor main body 10.
  • the wiring is drawn to another layer by the via 25A at the end 10B opposite to the open end 10A of the conductor main body 10, and the meandering wiring positioned immediately above the conductor main body 10 After passing through 23, the wiring is returned to the same layer as the conductor body 10 by the via 25 ⁇ / b> B, and the via 13 is connected to the ground layer G.
  • the configuration of FIG. 24 enables further miniaturization in the length direction (AB direction) of the printed wiring board. .
  • the current control unit S1 of the fourth embodiment may be configured as shown in FIG. That is, part or all of the thin conductor wires 12 of the current control unit S ⁇ b> 1 may be spiral wires 30, and the spiral wires 30 may be provided in the same layer as the conductor main body portion 10. At this time, the spiral wiring 30 of the conductor short-circuit portion 11 can be realized further by providing the winding start of the spiral wiring 30 around the via 13 and forming a spiral shape around the via 13.
  • the current control unit S1 of the fourth embodiment may be configured as shown in FIG.
  • the spiral wiring 30 of the current control unit S1 is provided in the same layer as the conductor body 10, but the present invention is not limited to this.
  • the spiral wiring 30 may be provided on the surface layer 34 which is a layer different from the conductor main body 10 via the vias 32 ⁇ / b> A and 32 ⁇ / b> B.
  • the magnetic body 36 is applied on the spiral wiring 30 provided on the surface layer 34 of the printed wiring board, thereby increasing the inductance.
  • the spiral wiring 30 itself can be downsized.
  • the spiral wiring 30 may be replaced with a meandering wiring or a conductor thin wire.
  • the current control unit S1 of the fourth embodiment may be configured as shown in FIG. That is, two layers of spiral wirings 30A and 30B may be provided on the conductor thin wire 12 of the conductor short-circuit portion 11 and connected by vias 38A and 38B.
  • vias 38A, spiral wirings 30A, vias 38B, spiral wirings 30B, and vias 13 are connected in this order at the end of the thin wire 12 drawn from the end 10B of the conductor body 10. 13 may be connected to the ground layer G.
  • the noise suppression structure according to the present invention has been described with reference to the above-described embodiments, the specific configuration of the noise suppression structure is not limited to each embodiment. Further, various wiring patterns have been shown as modifications of the above embodiment, but these wiring patterns may be combined as appropriate as long as the inductance of the conductor short-circuit portion can be increased. Thus, the present invention is capable of various design changes within the scope of the invention as defined in the appended claims. Specifically, the following configuration may be included. (1) A noise suppression structure in which a plurality of conductor thin wires and vias constituting the conductor short-circuit portion are provided. (2) A noise suppression structure in which spiral wiring is provided in a layer different from the conductor main body.
  • the present invention can be suitably applied to a portable wireless terminal that is required to be downsized, and suppresses electromagnetic interference by reducing unnecessary high-frequency current (noise current) flowing between the wireless circuit unit and the digital circuit unit. It is.

Abstract

 終端短絡型の伝送線路(スリーブ)において不要高周波電流を抑制するノイズ抑制構造において、伝送線路の外周を囲むように設置された導体本体部と、導体本体部の開放端の反対側にて伝送線路に接続され、かつ、導体本体部よりインダクタンスが大きい導体短絡部を具備する。携帯無線端末の無線回路部で発生してグランド層を流れる不要高周波電流の4分の1波長に相当するスリーブの終端部分の形状を工夫してインダクタンスを増加させることにより、所望の入力インピーダンスを担保しながら、全体の長さの短縮化及び小型化を図ることができる。

Description

ノイズ抑制構造
 本発明は、小型の電子機器において不要高周波電流を抑制するノイズ抑制構造に係り、特に携帯無線端末に実装された無線回路部とデジタル回路部との間で流れるノイズ電流を低減して電磁干渉を抑制するノイズ抑制構造に関する。
 本願は、2010年3月30日に日本国に出願された特願2010-78477号に基づき優先権を主張し、その内容をここに援用する。
 図28は、無線回路部やデジタル回路部が実装された携帯無線端末のプリント配線基板100を簡略化した構造を示す。
 このプリント配線基板100は、携帯無線端末の機能を実現するために信号配線/電源層101及びグランド層Gなどで構成されている。グランド層Gの上面には無線回路部102とデジタル回路部103が搭載されている。この無線回路部102とデジタル回路部103とでグランド層Gを共用しており、デジタル回路部103から伝送される高周波成分を多く含んだ信号により、不要な高周波電流(ノイズ電流)がグランド層Gを伝搬して無線回路部102に混入することがある。また、プリント配線基板100上にはアンテナや電源回路(不図示)が実装されている。
 携帯無線端末には、特許文献1に開示されるようにダイポールアンテナなどの平衡型アンテナが使用される。図29に示すノイズ抑制構造では、平衡型アンテナ110が無線回路部102と同軸線111で接続されており、同軸線111は外導体111Aと内導体111Bから構成される。この同軸線111の外導体111Aにドーナツ形の短絡板112で終端短絡した円筒形のスリーブ113が用いられる。このスリーブ113の始端部は、開放端113Aとされている。
 スリーブ113は、同軸線111の外導体111Aに流れる不要高周波電流iを抑制した場合、平衡型アンテナ110と不平衡線路の同軸線111とを接続するバランとして機能する。スリーブ113の長さlは、不要高周波電流の波長λの4分の1であり、平衡型アンテナ110の動作周波数でスリーブ開放端の入力インピーダンスが理論上無限大となることで不要高周波電流iが流れないようにしている。この構造により、平衡・不平衡変換の不整合による電磁ノイズの発生を抑えている。
 上述した不要高周波電流(ノイズ電流)の抑制技術として、特許文献2~特許文献4が挙げられる。
 特許文献2に開示された携帯無線端末では、プリント配線基板のスピーカを搭載した面と反対側の面にアンテナ基板と、アンテナ基板にアンテナ・パターンとして形成されたアンテナ素子と、アンテナ素子に給電するための同軸ケーブルと、同軸ケーブルの先端部に装着された誘電体スリーブとが装備されている。
 特許文献3に開示された携帯無線端末は、アンテナ・プリント配線基板に同軸ケーブルを接続し、同軸ケーブルにバズーカを被せている。このバズーカは、誘電体外円筒内に誘電体内円筒と導体内円筒とを嵌め合わせて構成されており、誘電体外円筒と導体内円筒の下端部を短絡面、上端部を開放端としている。ここで、誘電体外円筒と誘電体内円筒の長さは、比誘電率εrにより「1/4λ」から「1/√εr」に短縮されている。
 特許文献4に開示される携帯無線端末は、アンテナ基板に設けた第1及び第2のアンテナ素子に給電する同軸ケーブルを有しており、その同軸ケーブルの長手方向に第1及び第2の共振導体を離間して配置し、さらに、先端部を開放状態、他端部を短絡状態にして同軸ケーブルに接続した誘電体スリーブを構成している。この誘電体スリーブの長さは、比誘電率εrにより「1/4λ」から「1/√εr」に短縮されている。
日本国特許第3574420号公報 特開2002-151924号公報 特開2002-151949号公報 特開2003-8319号公報
 携帯電話システムにおいて、基地局が遠方にあるとユーザ端末のアンテナや無線回路部は非常に微小な信号を受信することとなる。そのため、デジタル回路部から漏れ出した無線周波数の不要高周波電流がグランド層を伝搬して無線回路部に混入すると、微小な無線信号にノイズが重畳して干渉を受け受信感度などの通信品質が低下する。
 不要高周波電流の4分の1波長に相当する長さの終端短絡型スリーブ又はバズーカにより不要高周波電流を抑制することが可能であるが、小型化が求められる携帯無線端末で使用するにはサイズが大きすぎる。例えば、800MHzの無線通信信号について、4分の1波長に相当するスリーブの長さは約93mmの大きさとなる。
 また、特許文献2~特許文献4ではスリーブの長さを短縮化する技術について部分的に言及されているが、比誘電率εrに基づく長さの短縮化だけでは十分にスリーブの長さを短縮することはできない。空気中での波長λは数式1により比誘電率εrを「1」として計算している。尚、λは波長、Cは真空中の光速、fは周波数、εrは比誘電率を示す。
Figure JPOXMLDOC01-appb-M000001
 本発明は、上述の事情に鑑みてなされたものであり、終端短絡型で不要高周波電流を抑制する伝送線路(スリーブ)の短縮化を図り、これによって全体の小型化を可能とするノイズ抑制構造を提供することを目的とする。
 本発明は、終端短絡型の伝送線路(スリーブ)において不要高周波電流を抑制するノイズ抑制構造に関するものであり、伝送線路の外周を囲むように設置された導体本体部と、導体本体部の開放端の反対側にて伝送線路に接続され、かつ、導体本体部よりインダクタンスが大きい導体短絡部より構成した電流制御部を具備する。
 また、プリント配線基板のグランド層に流れる不要高周波電流の抑制を行なう終端短絡型のノイズ抑制構造において、グランド層と厚さ方向に間隔をおいて設けられた導体本体部と、導体本体部の開放端の反対側にてグランド層に接続され、かつ、導体本体部よりインダクタンスが大きい導体短絡部より構成した電流制御部を具備する。
 携帯無線端末の無線回路部で発生してグランド層を流れる不要高周波電流の4分の1波長に相当するスリーブの終端部分の形状を工夫してインダクタンスを増加させることにより、所望の入力インピーダンスを担保しながら、全体の長さの短縮化及び小型化を図るようにした。このように、スリーブの長さを不要高周波電流の4分の1より短くすることができるので、携帯無線端末に搭載されるプリント配線基板を小型化することができる。
本発明の実施例1に係るノイズ抑制構造を示す斜視図である。 実施例1の変形例1に係るノイズ抑制構造を示す斜視図である。 ノイズ抑制構造の長さの短縮化の原理を説明する回路図である。 本発明の実施例2に係るノイズ抑制構造を適用したプリント配線基板の斜視図である。 図4に示すプリント配線基板の展開図である。 実施例2の変形例1に係るノイズ抑制構造を示す展開図である。 実施例2の変形例2に係るノイズ抑制構造を示す展開図である。 実施例2の変形例3に係るノイズ抑制構造を示す展開図であって、平面型の蛇行配線を配置した例を示す。 実施例2の変形例3に係るノイズ抑制構造を示す展開図であって、縦型の蛇行配線を配置した例を示す。 実施例2の変形例3に係るノイズ抑制構造を示す展開図であって、平面型の蛇行配線を導体本体部とは異なる層に形成した例を示す。 実施例2の変形例4に係るノイズ抑制構造を示す展開図である。 実施例2の変形例5に係るノイズ抑制構造を示す展開図である。 実施例2の変形例6に係るノイズ抑制構造を示す展開図である。 実施例2の変形例7に係るノイズ抑制構造を示す展開図である。 (a)本発明の実施例3に係るノイズ抑制構造の展開図、(b)電流制御部における不要高周波の電源電流とグランド電流との関係を示す説明図、(c)グランド層の幅を電流制御部の幅よりも大きくした場合に不要高周波電流が漏れ出す様子を示す斜視図である。 (a)実施例3の変形例1に係るノイズ抑制構造の展開図、(b)電流制御部における不要高周波の電源電流とグランド電流との関係を示す説明図である。 (a)実施例3の変形例2に係るノイズ抑制構造の展開図、(b)電流制御部における不要高周波の電源電流とグランド電流との関係を示す説明図である。 (a)実施例3の変形例3に係るノイズ抑制構造の展開図、(b)電流制御部における不要高周波の電源電流とグランド電流との関係を示す説明図である。 本発明の実施例4に係るノイズ抑制構造の展開図である。 実施例4の変形例1に係るノイズ抑制構造の展開図である。 実施例4の変形例2に係るノイズ抑制構造の展開図である。 実施例4の変形例3に係るノイズ抑制構造の展開図であって、平面型の蛇行配線を配置した例を示す。 実施例4の変形例3に係るノイズ抑制構造の展開図であって、縦型の蛇行配線を配置した例を示す。 実施例4の変形例4に係るノイズ抑制構造の展開図である。 実施例4の変形例5に係るノイズ抑制構造の展開図である。 実施例4の変形例6に係るノイズ抑制構造の展開図である。 実施例4の変形例7に係るノイズ抑制構造の展開図である。 無線回路部やデジタル回路部を実装した従来の携帯無線端末のプリント配線基板の概略構成を示す断面図である。 ドーナツ型の短絡板で終端されたスリーブを用いた従来のノイズ抑制構造を示す図である。
 本発明に係るノイズ抑制構造について実施例とともに添付図面を参照して説明する。各図面において、同一の構成要素には同一の符号を付し、その重複説明を省略する。
 本発明の実施例1に係るノイズ抑制構造について図1~図3を参照して説明する。
 先ず、図3を参照して本発明が適用される携帯無線端末の電流制御部について説明する。ここで、符号Sは不要高周波電流(ノイズ電流)を減衰させるための電流制御部を示す。電流制御部Sの伝送線路の全体の長さは「l+l」である。
 4分の1波長より短い伝送線路はインダクタンスと等価である。図3に示すように、特性抵抗R(特性インピーダンスの実数部)で長さl+lの終端短絡型4分の1波長(1/λ)線路を想定する。この電流制御部Sのうち、終端が短絡されている長さlの部分を数式2で求められるインダクタンスLで置き換えても入力インピーダンスZinは変わらない。尚、Lはインダクタンス、Rは特性抵抗、fは周波数、λは波長、lは部分線路長を示す。
Figure JPOXMLDOC01-appb-M000002
 上述のように、伝送線路の長さをl+lからlに短縮可能となる。この考えに基づくと、終端短絡型4分の1波長スリーブの終端部分の形状を工夫してインダクタンスを増加させることにより、伝送線路の長さを短縮したスリーブの入力インピーダンスは伝送線路の長さを短縮しない入力インピーダンスと同一となる。以下の説明において、電流制御部Sの長さlの部分を導体本体部、長さlの部分を導体短絡部と表現する。
 図1に示す実施例1のノイズ抑制構造では、携帯無線端末の電流制御部Sとしてスリーブ1を用いている。
 このスリーブ1は、図29に示す従来の円筒型のスリーブ113に相当するものであって、平衡型アンテナ110と無線回路部102とを接続する同軸線111の部分を抜き出して示している。このスリーブ1は、外導体111Aと内導体111Bからなる同軸線111の外導体111Aに配置され、かつ、外導体111Aを覆う筒状の導体本体部2を有し、その導体本体部2には同軸線111と短絡する導体短絡部3が接続されている。
 このスリーブ1の導体本体部2の長さは、外導体111Aを流れる不要高周波電流の4分の1波長より短くされており、かつ、同軸線111の外導体111Aと接続される導体短絡部3を複数の線状導体4により構成している。即ち、導体短絡部3は従来のドーナツ形の導体ではなく、複数の線状導体4で構成することにより、インダクタンスを大きくしている。これにより、導体本体部2の長さが4分の1波長より短くても、同軸線111の外導体111Aを流れる不要高周波電流iの周波数において、スリーブ1の開放端2Aでの入力インピーダンスを理論的に無限大とすることが可能となる。
 これにより、同軸線111の外導体111AをA側から流れる不要高周波電流iは、導体本体部2の開放端2Aにおいて伝搬が抑制され、下流のB側へ到達する不要高周波電流iは低減される。その結果、スリーブ1全体の長さを短縮しつつ、同軸線111の外導体111Aを伝搬する不要高周波電流iを抑制することができ、スリーブ1を搭載する携帯無線端末の小型化が実現される。
 以上説明したように、実施例1のノイズ抑制構造において、終端短絡型のスリーブ1の終端部に近接した導体短絡部3を線状導体4により構成してインダクタンスを増加させるようにした。これにより、スリーブ1の長さの短縮化を図り、実施例1のノイズ抑制構造を備えた携帯無線端末全体を小型化することが可能となる。
 (変形例1)
 実施例1では、円筒形のスリーブ1と同軸線111の外導体111Aとを接続する導体短絡部3を線状導体4で構成したが、図2に示すようにこの線状導体4を筒状の導体本体部2と長さ方向に延長して、線状導体4の設置割合を高めるようにしてもよい。即ち、円筒形のスリーブ1から分岐した複数本の線状導体4を延長することにより、インダクタンスをさらに大きくし、同軸線111の外導体111Aを伝搬する不要高周波電流iを抑制するノイズ抑制構造の更なる小型化を実現している。
 (変形例2)
 実施例1では、円筒形のスリーブ1と同軸線111の外導体111Aとを接続する導体短絡部3を線状導体4により構成したが、これに限定されるものではない。例えば、線状導体4を蛇行形状又はスパイラル形状にしてインダクタンスをさらに大きくしてもよい。
 本発明の実施例2に係るノイズ抑制構造について図4及び図5を参照して説明する。
 実施例2は、電流制御部S(S1、S2)を携帯無線端末のプリント配線基板内のグランド層Gへ適用したものである。図4は携帯無線端末のプリント配線基板の斜視図であり、図5はその導体層を展開した展開図である。図4及び図5では、プリント配線基板に実装されている部品(無線回路部やデジタル回路部など)や絶縁層などを省略して実施例2の最小構成だけを示している。
 図4及び図5に示すように、電流制御部S1、S2はグランド層Gを流れる不要高周波電流iの4分の1波長(λ/4)よりも短い長さの導体本体部10、14を有している。この導体本体部10、14はグランド層Gを構成する導体の上下層にグランド層Gを挟んで互いに対称となる位置関係に配置されている。
 電流制御部S1は、グランド層Gと平行に配置された長方形状の導体本体部10と、導体本体部10からグランド層Gに至る導体短絡部11とより構成されており、導体本体部10のA側が開放端10Aとなっている。導体短絡部11は、導体本体部10の開放端10Aと反対側の端部10Bに接続される複数の導体細線12と、導体細線12をグランド層Gに接続する複数のビア13から構成されている。このように、複数の導体細線12を介在することで、インダクタンスを増大している。
 同様に、電流制御部S2はグランド層Gと平行に配置された長方形状の導体本体部14と、導体本体部14からグランド層Gに至る導体短絡部15とより構成されており、導体本体部14のA側が開放端14Aとなっている。導体短絡部15は、導体本体部14の開放端14Aと反対側の端部14Bに接続される複数の導体細線16と、導体細線16をグランド層Gに接続する複数のビア17から構成されている。このように、複数の導体細線16を介在することで、インダクタンスを増大している。
 また、電流制御部S1、S2の導体本体部10、14はビアランド20を介してグランド層Gを跨ぐ両端において接続されたビア21、22を含んでいる。
 実施例2を実施例1と比較すると、図4及び図5のグランド層Gは図1及び図2の同軸線111の外導体111Aに相当する。また、図4及び図5の電流制御部S1、S2は図1及び図2の円筒形状のスリーブ1に相当している。さらに、図4及び図5の導体細線12、16及びビア13、17は図1及び図2のスリーブ1内の線状導体4に相当する。
 図4及び図5において、抑制したい無線周波数の不要高周波電流iがグランド層GのA側からB側に伝搬している場合には、電流制御部S1、S2の開放端10A、14AをA側に配置し、グランド層Gに接続する導体短絡部11、15をB側に配置する。そうすることで、A側から流入する不要高周波電流iはグランド層Gの上流を流れている場合には、電流制御部S1の開放端10Aにおいて伝搬が抑制され、グランド層Gの下流を流れている場合には電流制御部S2の開放端14Aにおいて伝搬が抑制され、B側に到達する不要高周波電流iが低減されることとなる。その結果、無線回路部やデジタル回路部を実装した携帯無線端末のプリント配線基板のグランド層Gにおいて、デジタル回路部を漏れ出してグランド層Gを伝搬する無線周波数の不要高周波電流iを低減することができ、無線回路部への不要高周波電流iの混入が抑制されるため、携帯無線端末の無線通信品質を改善することができる。
 以上説明したように、実施例2に係るノイズ抑制構造では、終端短絡型の電流制御部S1、S2において終端部に近接配置された導体短絡部11、15を線状細線12、16としてインダクタンスを増加させることにより、電流制御部S1、S2の長さの短縮化を図り、携帯無線端末全体の小型化が実現される。
 (変形例1)
 実施例2では、電流制御部S1、Sの導体短絡部11、15として複数の線状細線12、16を設けたが、これに限定されるものではない。例えば、図6に示すように、導体短絡部11、15において各1本の線状細線12、16と各1個のビア13、17を設けてグランド層Gに接続してもよい。
 (変形例2)
 実施例2では、電流制御部S1、S2のA側に開放端10A、14Aを配置して、一方側の回路から他方側の回路にノイズが伝搬するのを防止したが、これに限定されるものではない。双方の回路からそれぞれ他方側にノイズが伝搬するのを防止してもよい。
 図7は、変形例2に係るノイズ抑制構造の展開図であり、電流制御部S1においてA側、B側をそれぞれ開放端10Aとするように一対の導体本体部10、10が互いに長さ方向の間隔を隔てて配置されている。これらの導体本体部10、10の間に、それぞれ端部10Bに接続されるように複数の導体細線12を配置するとともに、その中間部にグランド層Gに連結するビア13が設けられている。同様に、電流制御部S2においてA側、B側をそれぞれ開放端10Aとするように一対の導体本体部14、14が互いに長さ方向の間隔を隔てて配置されている。これらの導体本体部14、14の間に、それぞれ端部14Bに接続されるように複数の導体細線16を配置するとともに、その中間部にグランド層Gに連結するビア17が設けられている。
 図7において、A側の導体細線12、16とB側の導体細線12、16とでビア13、17の列を共有し、かつ、グランド層Gを挟んで電流制御部S1、S2を対称配置する。即ち、A側とB側の両方に開放端10A、14Aを有する不要高周波電流iのノイズ抑制構造をグランド層Gを挟んで背中合わせに配置する。これにより、不要高周波電流iがA側からB側へ伝搬した場合、A側に位置する開放端10A、14Aの入力インピーダンスが高いため不要高周波電流iの伝搬を抑制することができる。また、不要高周波電流iがB側からA側に伝搬した場合には、B側に位置する開放端10A、14Aの入力インピーダンスが高いため不要高周波電流iの伝搬を抑制することができる。即ち、A側とB側の双方から伝搬する不要高周波電流iの抑制が可能となる。
 (変形例3)
 実施例2では、電流制御部S1、S2の導体短絡部11、15として複数の線状細線11、16を設けたが、図8及び図9に示すように部分的や全体的に蛇行形状とした蛇行配線23、24を用いてインダクタンスをさらに増大するようにしてもよい。
 図8は、導体本体部10、14と同一平面内で蛇行する平面型の蛇行配線23、24を示している。図9は、導体本体部10、14の厚さ方向に蛇行する縦型の蛇行配線23、24を示している。縦型の蛇行配線23、24の場合、複数のビアと配線を用いて層間を折り返した形状としてもよい。
 図8に示した平面型の蛇行配線23、24は、電流制御部S1、S2の導体本体部10、14と同一平面内に配置されているが、これに限定されるものではない。例えば、図10に示すように、蛇行配線23、24を電流制御部S1、S2の導体本体部10、14とは別の層に形成し、蛇行配線23は導体本体部10の直上に配置し、一方、蛇行配線24は導体本体部14の直下に配置するようにしてもよい。
 図10に示すように、電流制御部S1においては、導体本体部10の開放端10Aと反対側の端部10Bにてビア25Bにより配線を上層に引き出し、導体本体部10の直上に位置する蛇行配線23を経た後、ビア25Aにより導体本体部10と同一層に配線を戻し、さらに、ビア13によりグランド層Gとの接続をとる。また、電流制御部S2においては、導体本体部14の開放端14Aと反対側の端部14Bにてビア26Bにより配線を上層に引き出し、導体本体部14の直上に位置する蛇行配線24を経た後、ビア26Aにより導体本体部14と同一層に配線を戻し、さらに、ビア17によりグランド層Gとの接続をとる。図10の構成では、蛇行配線23、24を電流制御部S1、S2と同一層にした図8の構成に比べて、導体配線部10、14と蛇行配線23、24を厚さ方向に重複して配置することができるので、プリント配線基板の長さ方向(即ち、A-B方向)のさらなる小型化が可能となる。
 (変形例4)
 実施例2では、電流制御部S1、S2の導体短絡部11、15として複数の線状細線12、16を設けたが、図11に示すように一部又は全部をスパイラル形状としたスパイラル配線30、31を用い、そのスパイラル配線30、31を導体本体部10、14と同一層に配置してもよい。ここで、スパイラル配線30、31の巻き始めをビア13、17の周辺に設け、ビア13、17を中心とするようにスパイラル形状を形成し、ビア13、17に接続することで導体短絡部11、15を構成するスパイラル配線30、31をそれぞれ一層で実現する。
 (変形例5)
 図11に示す実施例2の変形例4では、導体短絡部11、15の導体細線12、16においてスパイラル配線30、31を導体本体部10、14と同一層に設けたが、これに限定されるものではない。図12に示すように、スパイラル配線30、31をビア32A、32B、33A、33Bを介して導体本体部10、14とは別の層となる表面層34、35に配置してもよい。このとき、プリント配線基板の表面層34、35に設けられたスパイラル配線30、31上に磁性体36、37を塗布し、これによりインダクタンスを増大させる。その結果、スパイラル配線30、31自体の小型化が可能となる。尚、スパイラル配線30、31を蛇行配線や導体細線に置き換えてもよい。
 (変形例6)
 図11に示す実施例2の変形例4では、導体短絡部11、15の導体細線12、16においてスパイラル配線30、31を導体本体部10、14と同一層に設けたが、これに限定されるものではない。図13に示すように、スパイラル配線30、31をそれぞれ二層、即ち、スパイラル配線30A、30Bとスパイラル配線31A、31Bとし、それぞれビア38A、38Bとビア39A、39Bで接続してもよい。
 電流制御部S1において、導体本体部10の端部10Bから引き出された線状細線12の末端部において、ビア38A、スパイラル配線30A、ビア38B、スパイラル配線30B、ビア13の順に接続され、ビア13はグランド層Gに接続する。同様に、電流制御部S2において、導体本体部14の端部14Bから引き出された線状細線16の末端部において、ビア39A、スパイラル配線31A、ビア39B、スパイラル配線31B、ビア17の順に接続され、ビア17はグランド層Gに接続する。
 (変形例7)
 実施例2では、図4に示すノイズ抑制構造においてビア21、22により電流制御部S1、S2の導体本体部10、14を互いに連結したが、図14に示すようにビア21、22を省略してもよい。
 即ち、図14に示すように、ビア21、22を省略したノイズ抑制構造でもグランド層GをA側からB側へ伝搬する不要高周波電流iの抑制が可能である。
 次に、本発明の実施例3に係るノイズ抑制構造について図15(a)~(c)を参照して説明する。実施例3に係るノイズ抑制構造は、上層の電源層40と下層の電源層41との間に配置されていることを特徴とするものである。ここでは、上層の電源層40と下層の電源層41との間でグランド層Gを挟むように図14に示した電流制御部S1、S2を配置している。
 この電流制御部S1、S2はグランド層Gと平行に配置された長方形状の導体本体部10、14と、導体本体部10、14からグランド層Gに至る導体短絡部11、15とから構成されるものであり、導体本体部10、14のA側が開放端10A、14Aとなっている。導体短絡部11、15は複数の導体細線12、16と、複数のビア13、17とから構成されている。複数の導体細線12、16を介在することで、インダクタンスを増大している。また、電流制御部S1、S2において図4に示されるビア21、22は省略されている。
 図15(b)を参照してグランド層Gを含めた電流制御部S1の動作を説明する。尚、電流制御部S2は電流制御部S1と動作が同じなので、電流制御部S1についてのみ説明する。
 電源層40に不要な高周波電源電流C1が流れると、それに対応して帰路電流として不要な高周波グランド電流C2が電源電流C1とは逆向きに流れる。この不要高周波の電源電流C1とグランド電流C2のペアがA側からB側に向かって流れるとき、(グランド層Gに接続されたビア13、導体細線12、不要高周波電流の4分の1波長より短い長さの導体本体部10より構成される)電流制御部S1により、開放端10Aにおいて入力インピーダンスが大きくなり、不要高周波のグランド電流C2を抑制することにより不要高周波電流が低減される。
 図15(a)において、電流制御部S1、S2の導体本体部10、14の幅a1と、導体本体部10、14に対向配置されているグランド層Gの幅a2との関係が、「a1≧a2」である方が不要高周波電流の低減効果が大きい。その理由は、上記の関係を「a1<a2」とした場合、図15(c)に示すようにグランド層Gに不要高周波電流iの迂回路が形成され、A側からB側へ伝搬する不要高周波電流iの低減効果が小さくなるためである。
 グランド層Gを含めた下側の構成についても同様である。これにより、B側に無線回路部102、A側にデジタル回路部103が実装されている携帯無線端末のプリント配線基板において、デジタル回路部103から漏れ出して電源層40及びグランド層Gを伝搬する無線周波数の不要高周波電流を低減することが可能となり、B側に位置する無線回路部102への不要高周波電流iの混入が抑制されるため、携帯無線端末の無線通信品質をさらに向上させることが可能となる。
 上述した電流制御部S1では、グランド層Gと平行に配置された長方形状の導体本体部10に接続される導体短絡部11を、複数の導体細線12で構成してインダクタンスを増大することにより、導体本体部10の長さをグランド層Gに流れる不要高周波電流iの4分の1波長(λ/4)よりも短く設定することができ、これにより電流制御部S1の全体の長さを短縮化することができる。
 以上説明したように、実施例3に係るノイズ抑制構造を適用した携帯無線端末では、終端短絡型の電流制御部S1、S2において、終端に近い導体短絡部11、15を線状細線12、16としてインダクタンスを増加させることにより、電流制御部S1、S2の長さの短縮化を図り、これによって携帯無線端末の小型化を可能とする。
 (変形例1)
 実施例3では、上層の電源層40と下層の電源層41との間でグランド層Gを挟むように電流制御部S1、S2を配置したが、これに限定されるものではない。図16(a)、(b)に示すように上側の信号線42と下側の信号線43との間でグランド層Gを挟むように電流制御部S1、S2を配置してもよい。これらの信号線42、43はA-B方向に信号を伝搬するものであるが、図15(a)、(b)で示した実施例3と同様に、不要高周波電流の4分の1波長より短い長さの導体本体部10、14を有する電流制御部S1、S2により開放端10A、14Aにおいて入力インピーダンスが大きくなり、不要高周波電流が低減される。グランド層Gを含めた下側の構成についても同様である。これにより、B側に位置する無線回路部102への不要高周波電流iの混入が抑制されるため、携帯無線端末の無線通信品質をさらに向上することができる。
 (変形例2)
 実施例3では、上層の電源層40と下層の電源層41との間でグランド層Gを挟むように電流制御部S1、S2を配置したが、これに限定されるものではない。図17(a)、(b)に示すように、上層の電源層40とグランド層Gとの間にのみ電流制御部S1を配置して、B側に位置する無線回路部102への不要高周波電流iの混入を抑制するようにしてもよい。これとは逆に、下層の電源層41とグランド層Gとの間にのみ電流制御部S2を配置してもよい。
 図17(a)において、電流制御部S1の導体本体部10の幅a1と、導体本体部10に対向配置されるグランド層Gの幅a2との関係が「a1≧a2」である方が不要高周波電流の抑制効果は大きい。その理由は、上記の関係を「a1<a2」とした場合、グランド層Gにノイズ電流iの迂回路が形成され、A側からB側に伝搬するノイズ電流iの低減効果が小さくなるからである。
 (変形例3)
 実施例3の変形例1では、上側の信号線42と下側の信号線43との間でグランド層Gを挟むように電流制御部S1、S2を配置したが、これに限定されるものではない。図18(a)、(b)に示すように、上側の配線層42とグランド層Gとの間にのみ電流制御部S1を配置して、B側に位置する無線回路部102への不要高周波電流iの混入を抑制するようにしてもよい。これとは逆に、下側の信号線43とグランド層Gとの間にのみ電流制御部S2を配置するようにしてもよい。
 また、実施例3の電流制御部S1、S2は以下のように変形してもよい。即ち、図6で示すように、導体短絡部11、15において一本の線状配線12、16と、1個のビア13、17でグランド層Gに接続してもよい。また、図7に示すように、電流制御部S1、S2においてそれぞれ一対の導体本体部10、14を長さ方向に間隔を隔てて配置し、これらの導体本体部10、14の間に複数の導体細線12、16を設けるとともに、その導体本体部10、14の中間部にグランド層Gに連結するビア13、17を設けるようにしてもよい。また、図8に示すように、導体細線12、16の一部又は全部を蛇行配線23、24としてインダクタンスをさらに増大するようにしてもよい。このとき、図8に示すように平面型の蛇行配線23、24を導体本体部10、14と同一平面内に配置してもよいし、図9に示すように縦型の導体配線23、24を導体本体部10、14の厚さ方向に配置してもよい。
 また、図10に示すように、電流制御部S1、S2において、導体本体部10、14の開放端10A、14Aと反対側の端部10B、14Bにてビア25A、25Bにより配線を別の層に引き出し、導体本体部10、14の直上/直下に位置する蛇行配線23、24を経た後、ビア25A、26Aにより導体本体部10、14と同一層に配線を戻し、さらに、ビア13、17によりグランド層Gとの接続をとるようにしてもよい。また、図11に示すように、電流制御部S1、S2において、導体短絡部11、15の線状細線12、16の一部又は全部をスパイラル配線30、31としてもよい。また、図12に示すように、スパイラル配線30、31をビア32A、32B及びビア33A、33Bを介して導体本体部10、14とは別の層となる表面層34、35に設けてもよい。このとき、プリント配線基板の表面層34、35に設けたスパイラル配線30、31上に磁性体36、37を塗布し、これによりインダクタンスを増加させるようにしてもよい。また、図13に示すように、二層のスパイラル配線30A、30B及び31A、31Bを設けて、ビア38A、38B及び39A、39Bで接続してもよい。
 次に、本発明の実施例4に係るノイズ抑制構造について図19~図27を参照して説明する。
 図4~図14に示す実施例2ではグランド層Gを挟んで上側/下側に電流制御部S1、S2を設けたが、実施例4ではグランド層Gの一方側(例えば、上側)にのみ電流制御部S1を設けたことを特徴とする。
 図19に示すように、導体本体部10の長さはグランド層Gに流れる不要高周波電流iの4分の1波長(λ/4)よりも長さが短く設定されており、電流制御部S1はグランド層Gと平行配置された長方形状の導体本体部10と、その導体本体部10からグランド層Gに至る導体短絡部11とから構成されるものであって、導体本体部10のA側が開放端10Aとなっている。導体短絡部11は、導体本体部10の開放端10Aと反対側の端部10Bに接続されている複数の導体細線12と、これらの導体細線12をグランド層Gに接続する複数のビア13とから構成され、複数の導体細線12を介在することで、インダクタンスを増大している。
 図19において、抑制したい無線周波数の不要高周波電流(ノイズ電流)iがグランド層GのA側からB側に伝搬している場合には、電流制御部S1の開放端10AをA側、グランド層Gに接続する導体短絡部11をB側に向けて設置する。そうすることで、グランド層GをA側から流れる不要高周波電流iは電流制御部S1の開放端10Aにおいて伝搬が抑制され、B側に到達する不要高周波電流iが低減される。その結果、無線回路部やデジタル回路部が実装されている携帯無線端末のプリント配線基板のグランド層Gにおいて、デジタル回路部から漏れ出てグランド層Gを伝搬する無線周波数の不要高周波電流iを低減することが可能となる。無線回路部への不要高周波電流iの混入が抑制されるため、携帯無線端末の無線通信品質をさらに向上させることができる。
 実施例4に係るノイズ抑制構造では、終端短絡型の電流制御部S1において、終端に近接した導体短絡部11を線状細線12としてインダクタンスを増加させることにより、電流制御部S1の長さの短縮化を図ることができ、携帯無線端末全体の小型化を可能とする。
 (変形例1)
 実施例4では、電流制御部S1の導体短絡部11として複数の線状細線12を設けたが、これに限定されるものではない。図20に示すように、導体短絡部11において1本の線状細線12、1個のビア13としてグランド層Gに接続してもよい。
 (変形例2)
 実施例4の電流制御部S1を図21に示す構成としてもよい。即ち、電流制御部S1において一対の導体本体部10、10を長さ方向に間隔をおいて配置し、これら導体本体部10、10の間に複数の導体細線12を設けるとともに、その中間部とグランド層Gとを互いに連結するビア13を設けるようにしてもよい。このビア13の列を共通とし、かつ、A側とB側に開放端10A、10Bを有するノイズ抑制構造とすることにより、不要高周波電流iがA側からB側に伝搬した場合には、A側に位置する開放端10Aの入力インピーダンスが高いため、不要高周波電流iの伝搬が抑制される。一方、B側からA側へ不要高周波電流iが伝搬した場合、B側に位置する開放端10Aの入力インピーダンスが高いため、不要高周波電流iの伝搬が抑制される。即ち、A側及びB側の双方から伝搬する不要高周波電流iの抑制が可能となる。
 (変形例3)
 実施例4の電流制御部S1を図22に示す構成としてもよい。即ち、電流制御部S1の導体短絡部11に設けた複数の線状細線12の一部又は全部を蛇行配線23として、インダクタンスをさらに増大してもよい。
 このとき、図22に示すように平面型の蛇行配線23は導体本体部10と同一平面内に設けてもよいし、図23に示すように導体本体部10の厚さ方向に縦型の蛇行配線23を設けてもよい。縦型の蛇行配線23は、複数のビアと配線を用いて層間を折り返すように形成する。
 (変形例4)
 実施例4の電流制御部S1を図24に示す構成としてもよい。即ち、平面型の蛇行配線23は電流制御部S1の導体本体部10と同一平面内に配置する図22に示す構成に限定されるものではない。図24に示すように、電流制御部S1の導体本体部10とは別の層で、かつ、導体本体部10の直上に蛇行配線23を設置してもよい。
 具体的には、電流制御部S1において、導体本体部10の開放端10Aと反対側の端部10Bにてビア25Aにより配線を別の層に引き出し、導体本体部10の直上に位置する蛇行配線23を経由した後、ビア25Bにより導体本体部10と同じ層に配線を戻し、さらに、ビア13によりグランド層Gとの接続をとる。蛇行配線23を電流制御部S1の導体本体部10と同一層にした図22の構成に比べて、図24構成ではプリント配線基板の長さ方向(A-B方向)にさらに小型が可能となる。
 (変形例5)
 実施例4の電流制御部S1を図25に示す構成としてもよい。即ち、電流制御部S1の導体細線12の一部又は全部をスパイラル配線30とし、このスパイラル配線30を導体本体部10と同一層に設けてもよい。このとき、スパイラル配線30の巻き始めをビア13の周辺に設けてビア13を中心としてスパイラル形状とすることにより、導体短絡部11のスパイラル配線30を一層で実現することができる。
 (変形例6)
 実施例4の電流制御部S1を図26に示す構成としてもよい。図25では、電流制御部S1のスパイラル配線30を導体本体部10と同一層に設けたが、これに限定されるものではない。図26に示すように、スパイラル配線30をビア32A、32Bを介して導体本体部10とは別の層となる表面層34に設けてもよい。このとき、プリント配線基板の表面層34に設けたスパイラル配線30上に磁性体36を塗布し、これによりインダクタンスを増加する。その結果、スパイラル配線30自体の小型化が可能となる。尚、スパイラル配線30を蛇行配線や導体細線に置き換えてもよい。
 (変形例7)
 実施例4の電流制御部S1を図27に示す構成としてもよい。即ち、導体短絡部11の導体細線12に二層のスパイラル配線30A、30Bを設けて、ビア38A、38Bで接続してもよい。この電流制御部S1において、導体本体部10の端部10Bから引き出された線状細線12の末端部で、ビア38A、スパイラル配線30A、ビア38B、スパイラル配線30B、ビア13の順に接続され、ビア13はグランド層Gに接続されるようにしてもよい。
 本発明に係るノイズ抑制構造について上記の実施例を参照して説明したが、ノイズ抑制構造の具体的な構成は各実施例に限定されるものではない。また、上記の実施例の変形例として種々の配線パターンを示したが、この配線パターンは導体短絡部のインダクタンスを増大できるのであれば、適宜、組み合わせるようにしてもよい。
 このように、本発明は添付した請求の範囲に定義される発明の範囲内で種々の設計変更を実施することが可能である。具体的には、以下の構成を包含するようにしてもよい。
(1)導体短絡部を構成する導体細線及びビアを複数組設けたノイズ抑制構造。
(2)スパイラル配線を導体本体部とは異なる層に設けたノイズ抑制構造。
(3)スパイラル配線をプリント配線基板の表面層に設け、かつ、その上に磁性体を塗布したノイズ抑制構造。
(4)導体細線に蛇行配線を含めるようにしたノイズ抑制構造。
(5)蛇行配線を導体本体部とは異なる層に設けたノイズ抑制構造。
(6)電源層がグランド層と対向配置され、電流制御部をグランド層と電源層との間に配置したノイズ抑制構造。
(7)信号線をグランド層と対向配置し、電流制御部をグランド層と信号線との間に配置したノイズ抑制構造。
 本発明は、小型化の求められる携帯無線端末に好適に適用できるものであり、無線回路部とデジタル回路部との間で流れる不要高周波電流(ノイズ電流)を低減して電磁干渉を抑制するものである。
 1  スリーブ
 2  導体本体部
 3  導体短絡部
 4  線状導体
 10 導体本体部
 11 導体短絡部
 12 導体細線
 13 ビア
 14 導体本体部
 15 導体短絡部
 16 導体細線
 17 ビア
 21、22 ビア
 23、24 蛇行配線
 25A、25B ビア
 26A、26B ビア
 30、31 スパイラル配線
 32A、32B ビア
 33A、33B ビア
 34、35 表面層
 36、37 磁性体
 38A、38B ビア
 39A、39B ビア
 40、41 電源層
 42、43 信号線
 100 プリント配線基板
 101 信号配線/電源層
 102 無線回路部
 103 デジタル回路部
 110 平衡型アンテナ
 111 同軸線
 111A 外導体
 111B 内導体
 112 短絡板
 113 円筒型スリーブ
 G  グランド層
 S、S1、S2 電流制御部
 

Claims (10)

  1.  伝送線路に流れる不要高周波電流の抑制を行なう終端短絡型のノイズ抑制構造であって、
     前記伝送線路の外周を囲むように設置された導体本体部と、
     前記導体本体部の開放端の反対側にて前記伝送線路に接続され、かつ、前記導体本体部よりインダクタンスが大きい導体短絡部を具備するノイズ抑制構造。
  2.  前記導体本体部がスリーブ状に形成された請求項1記載のノイズ抑制構造。
  3.  前記導体本体部の一部を複数の線状導体により形成した請求項1記載のノイズ抑制構造。
  4.  プリント配線基板のグランド層に流れる不要高周波電流の抑制を行なう終端短絡型のノイズ抑制構造であって、
     前記グランド層と厚さ方向に間隔をおいて設けられた導体本体部と、
     前記導体本体部の開放端の反対側にて前記グランド層に接続され、かつ、前記導体本体部よりインダクタンスが大きい導体短絡部を具備するノイズ抑制構造。
  5.  前記導体本体部と前記導体短絡部より構成される電流制御部は前記グランド層の厚さ方向の一方側に配置されるようにした請求項4記載のノイズ抑制構造。
  6.  プリント配線基板のグランド層に流れる不要高周波電流の抑制を行なう終端短絡型のノイズ抑制構造であって、
     前記グランド層の厚さ方向の一方側に設けられる第1の電流制御部と、
     前記グランド層の厚さ方向の他方側に設けられる第2の電流制御部を具備し、
     前記第1の電流制御部と前記第2の電流制御部とは前記グランド層を挟んで対称位置となるよう配置され、
     前記第1の電流制御部と前記第2の電流制御部は同一の構成を有し、
     前記グランド層と厚さ方向に間隔をおいて設けられた導体本体部と、
     前記導体本体部の開放端の反対側にて前記グランド層に接続され、かつ、前記導体本体部よりインダクタンスが大きい導体短絡部を具備するようにしたノイズ抑制構造。
  7.  前記第1の電流制御部の導体本体部と前記第2の電流制御部の導体本体部とはビアにより互いに接続するようにした請求項6記載のノイズ抑制構造。
  8.  前記導体短絡部は、前記導体本体部に一端側が接続される複数の導体細線と、その導体細線の他端側と前記グランド層とを接続する複数のビアより構成するようにした請求項4記載のノイズ抑制構造。
  9.  前記導体細線は、蛇行配線又はスパイラル配線を含むようにした請求項8記載のノイズ抑制構造。
  10.  前記導体本体部は長さ方向に間隔をおいて対をなして設けられ、前記導体短絡部はその導体本体部に接続される複数の導体細線、その導体細線の中間部と前記グランド層とを互いに接続する複数のビアにより構成するようにした請求項4記載のノイズ抑制構造。
     
PCT/JP2011/057479 2010-03-30 2011-03-25 ノイズ抑制構造 WO2011122502A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/637,864 US9225049B2 (en) 2010-03-30 2011-03-25 Noise suppression structure
JP2012508269A JPWO2011122502A1 (ja) 2010-03-30 2011-03-25 ノイズ抑制構造

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010078477 2010-03-30
JP2010-078477 2010-03-30

Publications (1)

Publication Number Publication Date
WO2011122502A1 true WO2011122502A1 (ja) 2011-10-06

Family

ID=44712208

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/057479 WO2011122502A1 (ja) 2010-03-30 2011-03-25 ノイズ抑制構造

Country Status (3)

Country Link
US (1) US9225049B2 (ja)
JP (1) JPWO2011122502A1 (ja)
WO (1) WO2011122502A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160796A (ja) * 2013-01-24 2014-09-04 Kyocera Corp 配線基板および電子装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2011114944A1 (ja) * 2010-03-15 2013-06-27 日本電気株式会社 ノイズ抑制構造
JP6249648B2 (ja) * 2013-06-28 2017-12-20 キヤノン株式会社 プリント回路板及び電子機器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202519A (ja) * 1993-12-28 1995-08-04 Nec Corp マイクロ波回路
WO2002019461A1 (fr) * 2000-08-30 2002-03-07 Mitsubishi Denki Kabushiki Kaisha Ligne haute frequence et circuit haute frequence
JP2003224408A (ja) * 2002-01-30 2003-08-08 Kyocera Corp 高周波用配線基板
JP2003243911A (ja) * 2002-02-15 2003-08-29 Matsushita Electric Ind Co Ltd 高周波回路および高周波回路装置
JP2003347692A (ja) * 2002-05-23 2003-12-05 Nec Corp プリント配線板、及び該プリント配線板で用いられる電磁波シールド方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323745B1 (en) * 1999-09-09 2001-11-27 Qualcomm Inc. Planar bandpass filter
JP2002151949A (ja) 2000-11-13 2002-05-24 Samsung Yokohama Research Institute Co Ltd 携帯端末機
JP3566202B2 (ja) 2000-11-13 2004-09-15 株式会社サムスン横浜研究所 携帯端末機
JP3531621B2 (ja) * 2001-04-12 2004-05-31 日本電気株式会社 携帯型無線利用機器
JP3574420B2 (ja) 2001-06-05 2004-10-06 三星電子株式会社 携帯端末機
JP3664666B2 (ja) 2001-06-05 2005-06-29 三星電子株式会社 携帯端末機
ATE469361T1 (de) * 2001-09-14 2010-06-15 Koninkl Philips Electronics Nv Vorrichtung zur unterdrückung elektromagnetischer kopplungsphänomene

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07202519A (ja) * 1993-12-28 1995-08-04 Nec Corp マイクロ波回路
WO2002019461A1 (fr) * 2000-08-30 2002-03-07 Mitsubishi Denki Kabushiki Kaisha Ligne haute frequence et circuit haute frequence
JP2003224408A (ja) * 2002-01-30 2003-08-08 Kyocera Corp 高周波用配線基板
JP2003243911A (ja) * 2002-02-15 2003-08-29 Matsushita Electric Ind Co Ltd 高周波回路および高周波回路装置
JP2003347692A (ja) * 2002-05-23 2003-12-05 Nec Corp プリント配線板、及び該プリント配線板で用いられる電磁波シールド方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014160796A (ja) * 2013-01-24 2014-09-04 Kyocera Corp 配線基板および電子装置

Also Published As

Publication number Publication date
US9225049B2 (en) 2015-12-29
JPWO2011122502A1 (ja) 2013-07-08
US20130015926A1 (en) 2013-01-17

Similar Documents

Publication Publication Date Title
US9000864B2 (en) Directional coupler
JP4868128B2 (ja) アンテナ装置及びそれを用いた無線通信機器
JP5354403B2 (ja) アンテナ装置及び無線通信機
CN101971646B (zh) 用于耳机的天线和具有一体化天线的耳机
JP3479086B2 (ja) 高度に分離された多周波数帯域アンテナ
JP2005252366A (ja) 逆fアンテナ
TW200805781A (en) An antenna system
JP6010213B2 (ja) アンテナ装置およびその設計方法
JP2016134809A (ja) 構造体及び電子回路
US8669914B2 (en) Dual-band antenna and related wireless communication apparatus
WO2011122502A1 (ja) ノイズ抑制構造
JP2007005951A (ja) 伝送回路、アンテナ共用器、高周波スイッチ回路
JP5361674B2 (ja) 複合アンテナ
JP2011120050A (ja) 無線通信端末
KR20090061585A (ko) 안테나 장치
JP2005260382A (ja) ダイポールアンテナ
JP2004096314A (ja) 誘電体アンテナ及びそれを内蔵する移動体通信機
JP5598761B2 (ja) アンテナ及びそれを備えた無線装置
WO2011115094A1 (ja) ノイズ抑制構造
JP3838971B2 (ja) 無線装置
JP4033852B2 (ja) コモンモードフィルタ
JP2012227352A (ja) 高周波トランス、高周波部品および通信端末装置
JP5493822B2 (ja) 信号伝送ケーブル、及び信号伝送ケーブルのグランド接続方法
JP2007081848A (ja) 平行2線式アンテナ
WO2022190876A1 (ja) アンテナ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11762733

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13637864

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012508269

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11762733

Country of ref document: EP

Kind code of ref document: A1