WO2011120234A1 - Micro spectrometer capable of receiving zero order and first order spectral components - Google Patents

Micro spectrometer capable of receiving zero order and first order spectral components Download PDF

Info

Publication number
WO2011120234A1
WO2011120234A1 PCT/CN2010/071541 CN2010071541W WO2011120234A1 WO 2011120234 A1 WO2011120234 A1 WO 2011120234A1 CN 2010071541 W CN2010071541 W CN 2010071541W WO 2011120234 A1 WO2011120234 A1 WO 2011120234A1
Authority
WO
WIPO (PCT)
Prior art keywords
micro
sensing section
optical signal
spectral components
spectral component
Prior art date
Application number
PCT/CN2010/071541
Other languages
French (fr)
Chinese (zh)
Inventor
柯正浩
Original Assignee
晶兆科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 晶兆科技股份有限公司 filed Critical 晶兆科技股份有限公司
Priority to PCT/CN2010/071541 priority Critical patent/WO2011120234A1/en
Priority to CN201080065211.3A priority patent/CN102812340B/en
Publication of WO2011120234A1 publication Critical patent/WO2011120234A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0256Compact construction
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0262Constructional arrangements for removing stray light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/2803Investigating the spectrum using photoelectric array detector

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

A micro spectrometer (1) capable of receiving zero order spectral component (SO0) and first order spectral component (SO1) comprises an input part (10) for receiving optical signals, a micro diffraction grating (20) and a light sensor (30). The diffraction grating (20) has a focusing curved surface (23) and diffraction patterns (24) formed on the focusing curved surface (23), receives optical signals (SO) and separates the optical signals (SO) into a plurality of spectral components including the zero order spectral component (SO0) and the first order spectral component (SO1). The light sensor (30) has a first sensing portion (32) and a second sensing portion (34), and receives the spectral components separated and focused by the diffraction grating (20). The first sensing portion (32) receives the zero order spectral component (SO0), and the second sensing portion (34) receives the first order spectral component (SO1).

Description

能接收零阶光谱分量及一阶光谱分量的微型光谱仪 技术领域  Miniature spectrometer capable of receiving zero-order spectral components and first-order spectral components
本发明涉及一种光谱仪, 尤其涉及一种能接收零阶光谱分量及一阶光谱 分量的光谱仪。  The present invention relates to a spectrometer, and more particularly to a spectrometer capable of receiving a zero-order spectral component and a first-order spectral component.
背景技术 Background technique
辐射源的光度测定 (photometry)通常利用光谱仪 (spectrometer)来进行量 测, 光谱仪需要使用狭缝结构来控制一定量的光源进入其中, 再通过绕射光 栅配合准直器 (collimator与校正镜片 (correcting lens)的组合将输出的光谱分 量聚焦在一个图像平面。 图像平面上可以放置光感测器, 这样就可以获得各 个光谱分量。  The photometry of the radiation source is usually measured using a spectrometer. The spectrometer needs to use a slit structure to control a certain amount of light source into it, and then pass through the diffraction grating to match the collimator (collimator and correcting lens (correcting lens) The combination of the lens focuses the output spectral components on an image plane. A light sensor can be placed on the image plane so that individual spectral components can be obtained.
图 8显示一种传统的光谱仪 100的示意图。 如图 8所示, 传统的光谱仪 100包含一光源 110、 一输入部 120、 一准直面镜 130、 一平面光栅 140、 一 聚焦面镜 150及一直线状光感测器 160。 光源 110输出光信号 200通过输入 部 120, 然后被准直面镜 130处理后到达平面光栅 140。 平面光栅 140的绕 射图案 142的巨观轮廓为一平面, 这种平面光栅 140比较适合传统以钻石刀 刻划绕射图案的加工方式, 但也因此无法将光栅的轮廓做成具有聚焦作用的 曲面, 因此在平面光栅 140将光信号分离成数个光谱分量之后, 为了将这些 光谱分量聚焦于直线状光感测器 160上, 需要加入聚焦面镜 150才能达成。 因此, 整个光谱仪 100的光路很长, 且体积相对庞大许多。  Figure 8 shows a schematic of a conventional spectrometer 100. As shown in FIG. 8, the conventional spectrometer 100 includes a light source 110, an input portion 120, a collimating mirror 130, a planar grating 140, a focusing mirror 150, and a linear photo sensor 160. The light source 110 outputs an optical signal 200 through the input portion 120 and is then processed by the collimating mirror 130 to reach the planar grating 140. The macroscopic profile of the diffraction pattern 142 of the planar grating 140 is a plane, and the planar grating 140 is more suitable for the conventional processing method of scribing the diffraction pattern with a diamond knife, but it is therefore impossible to make the contour of the grating into a focusing effect. The curved surface, therefore, after the planar grating 140 separates the optical signal into several spectral components, in order to focus these spectral components on the linear photosensor 160, it is necessary to add the focusing mirror 150. Therefore, the optical path of the entire spectrometer 100 is long and relatively bulky.
因此, 传统的光谱仪是无法同时接收零阶光谱分量及一阶光谱分量 的, 因为很长的光路使得零阶光谱分量跟一阶光谱分量的聚焦位置会离开 很远, 而一般的光感测器的长度也是有限, 故无法达成此功能。 为了在一 个传统光谱仪中可以取得零阶光谱分量与一阶光谱分量的信号, 申请人认 为可以使用一可移动的反射镜 170及另一光感测器 180。 当需要量测零阶光 谱分量时, 反射镜 170被移动至光路上以将光线反射至光感测器 180。 但这 种方式既不方便且又会增加成本, 不符合经济效益。 此外, 如此取得的零 阶光谱分量与一阶光谱分量其实是分时取得, 并非同时, 所以当光源 110 的信号会随时间变化时, 以这种方法取得的零阶光谱分量的信号将会不可 靠。 因此, 传统的光谱仪通常仅针对一阶光谱分量来设计。 长久以来, 光 谱仪的零阶光谱分量是不会被撷取来使用的。 因此, 若要获得所有的绕射 光强度, 必须将一阶、 二阶、 三阶等光谱分量加总起来, 而因为零阶以外 的光谱分量是被依波长长度分开来的, 所以加总本身将需要耗费计算资 源, 且当光谱仪无法接收到二阶、 三阶以外的光谱分量时, 所造成的误差 会更大。 除了取得绕射光强度之外, 零阶光可能的各种应用 (如校正、 对位 等:), 在传统光谱仪中将难以实现。 Therefore, the traditional spectrometer cannot receive the zero-order spectral components and the first-order spectral components at the same time, because the long optical path makes the focal position of the zero-order spectral components and the first-order spectral components far away, and the general optical sensor The length is also limited, so this function cannot be achieved. In order to obtain a signal of a zero-order spectral component and a first-order spectral component in a conventional spectrometer, Applicants believe that a movable mirror 170 and another photosensor 180 can be used. When it is desired to measure the zero-order spectral components, the mirror 170 is moved to the optical path to reflect the light to the light sensor 180. But this This method is inconvenient and adds cost and does not meet economic benefits. In addition, the zero-order spectral component and the first-order spectral component thus obtained are actually obtained in a time-sharing manner, not at the same time. Therefore, when the signal of the light source 110 changes with time, the signal of the zero-order spectral component obtained by this method will not be reliable. Therefore, conventional spectrometers are usually designed only for first-order spectral components. For a long time, the zero-order spectral components of the spectrometer were not used for extraction. Therefore, in order to obtain all the diffracted light intensities, the first, second, third, and other spectral components must be added together, and since the spectral components other than the zeroth order are separated by the wavelength length, the summation itself will It takes a lot of computational resources, and when the spectrometer cannot receive spectral components other than the second and third orders, the resulting error will be greater. In addition to obtaining the intensity of the diffracted light, various applications of zero-order light (such as correction, alignment, etc.) will be difficult to achieve in conventional spectrometers.
发明内容 Summary of the invention
因此, 本发明的一个目的是提供一种能接收零阶光谱分量及一阶光谱分 量的微型光谱仪, 破除现有技术对于光谱仪的使用立场, 并获得绕射光的总 强度, 作为特殊测定计算、 校正与对位之用。  Accordingly, it is an object of the present invention to provide a miniature spectrometer capable of receiving a zero-order spectral component and a first-order spectral component, breaking the prior art position of the spectrometer, and obtaining the total intensity of the diffracted light, as a special measurement calculation and correction. Used with the alignment.
为达上述目的, 本发明提供一种能接收零阶光谱分量及一阶光谱分量的 微型光谱仪, 其包含一输入部、 一微型绕射光栅及一光感测器。 输入部接收 一光学信号。 微型绕射光栅具有一聚焦曲面及形成于聚焦曲面上的一绕射图 案, 并接收光学信号并将光学信号分离成多个光谱分量, 所述光谱分量包含 零阶光谱分量及一阶光谱分量。 光感测器具有一第一感测区段及一第二感测 区段, 接收被微型绕射光栅分离并聚焦而来的所述光谱分量。 第一感测区段 接收零阶光谱分量, 而第二感测区段接收一阶光谱分量。  To achieve the above object, the present invention provides a miniature spectrometer capable of receiving a zero-order spectral component and a first-order spectral component, comprising an input portion, a micro-diffraction grating, and a photo sensor. The input receives an optical signal. The micro-diffraction grating has a focused curved surface and a diffraction pattern formed on the focused curved surface, and receives the optical signal and separates the optical signal into a plurality of spectral components, the spectral component comprising a zero-order spectral component and a first-order spectral component. The photo sensor has a first sensing section and a second sensing section that receive the spectral components separated and focused by the micro-diffraction grating. The first sensing section receives the zeroth order spectral component and the second sensing section receives the first order spectral component.
本发明亦提供一种微型光谱仪, 其包含一输入部、 一微型绕射光栅、 一 光感测器以及一波导装置。 输入部接收一光学信号。 微型绕射光栅接收光学 信号并将光学信号分离成多个光谱分量。 微型绕射光栅包含一第一晶片区段 及一第二晶片区段。 第一晶片区段具有一聚焦曲面及形成于聚焦曲面上的一 绕射图案, 聚焦曲面及绕射图案可以产生前述光谱分量并将前述光谱分量聚 焦于光感测器上, 藉此缩短光谱仪的光程。 第二晶片区段具有一反射面。 光 感测器接收所述光谱分量。 波导装置包含一第一波导片及一第二波导片, 两 者彼此面对以与输入部、 微型绕射光栅及光感测器共同定义出一光通道。 第 一波导片位于第一晶片区段的一上表面上。 第二波导片与第二晶片区段的反 射面局部接触, 以使光学信号的一第一部分到达绕射图案, 并使光学信号的 一第二部分到达反射面与第二波导片不相接触的局部。 The invention also provides a miniature spectrometer comprising an input portion, a micro-diffraction grating, a photo sensor and a waveguide device. The input unit receives an optical signal. The micro-diffraction grating receives the optical signal and separates the optical signal into a plurality of spectral components. The micro-diffraction grating comprises a first wafer segment and a second wafer segment. The first wafer segment has a focusing curved surface and a diffraction pattern formed on the focusing curved surface, and the focusing curved surface and the diffraction pattern can generate the aforementioned spectral components and gather the aforementioned spectral components Focus on the light sensor to shorten the optical path of the spectrometer. The second wafer section has a reflective surface. A light sensor receives the spectral component. The waveguide device includes a first waveguide piece and a second waveguide piece facing each other to define an optical channel together with the input portion, the micro diffraction grating and the photo sensor. The first waveguide sheet is located on an upper surface of the first wafer section. The second waveguide sheet is in partial contact with the reflective surface of the second wafer segment such that a first portion of the optical signal reaches the diffraction pattern and a second portion of the optical signal reaches the reflective surface in contact with the second waveguide sheet Partial.
藉此, 微型光谱仪可以撷取零阶光谱分量, 以供后续分析或处理使用。 附图说明  In this way, the miniature spectrometer can capture the zero-order spectral components for subsequent analysis or processing. DRAWINGS
图 1显示依据本发明较佳实施例的能接收零阶光谱分量及一阶光谱分量 的微型光谱仪的示意图;  1 shows a schematic diagram of a micro spectrometer capable of receiving a zero-order spectral component and a first-order spectral component in accordance with a preferred embodiment of the present invention;
图 2显示依据本发明较佳实施例的微型光谱仪的侧视图;  Figure 2 shows a side view of a miniature spectrometer in accordance with a preferred embodiment of the present invention;
图 3显示依据本发明较佳实施例的绕射光栅的工作示意图;  3 is a schematic view showing the operation of a diffraction grating according to a preferred embodiment of the present invention;
图 4显示依据本发明较佳实施例的微型光谱仪所量测出来的结果; 图 5显示罗兰圆 (Rowland circle)的示意图;  Figure 4 shows the results measured by a miniature spectrometer in accordance with a preferred embodiment of the present invention; Figure 5 shows a schematic view of a Rowland circle;
图 6显示依据本发明另一实施例的能接收零阶光谱分量及一阶光谱分量 的光谱仪的示意图;  6 shows a schematic diagram of a spectrometer capable of receiving a zero-order spectral component and a first-order spectral component in accordance with another embodiment of the present invention;
图 7显示依据本发明又另一实施例的能接收零阶光谱分量及一阶光谱分 量的光谱仪的示意图;  7 is a schematic diagram showing a spectrometer capable of receiving a zero-order spectral component and a first-order spectral component according to still another embodiment of the present invention;
图 8显示一种传统的光谱仪的示意图。  Figure 8 shows a schematic of a conventional spectrometer.
附图标号:  Reference number:
RC: 罗兰圆  RC: Roland Round
SO: 光学信号  SO: optical signal
S0A: 第一部分 (非杂散光成分)  S0A: Part 1 (non-stray light components)
SOB: 第二部分 (非杂散光成分)  SOB: Part 2 (non-stray light components)
S0C: 杂散光成分  S0C: stray light component
SO0、 S01、 S02: 光谱分量 1: 光谱仪 SO0, S01, S02: spectral components 1: Spectrometer
10: 输入部  10: Input section
20、 20': 微型绕射 22: 第一晶片区段 23: 聚焦曲面 24: 绕射图案 25: 上表面 20, 20': Micro diffraction 22: First wafer section 23: Focused surface 24: Diffraction pattern 25: Upper surface
26: 第二晶片区段 27: 反射面 26: second wafer section 27: reflective surface
27A: 第一部分 27B: 第二部分 30: 光感测器 32: 第一感测区段 34: 第二感测区段 36: 感光单元 40: 发光装置 50: 试样 27A: Part 1 27B: Part 2 30: Light Sensor 32: First Sensing Section 34: Second Sensing Section 36: Photosensitive Unit 40: Illuminating Device 50: Sample
60: 波导装置 62: 第一波导片 64: 第二波导片 80: 壳体 60: waveguide device 62: first waveguide piece 64: second waveguide piece 80: housing
92: 第一过滤区段 92T: 第一齿状结 94: 第二过滤区段 94T: 第二齿状结 96: 光通道 100: 光谱仪 92: First filter section 92T: first toothed knot 94: second filter section 94T: second toothed knot 96: optical channel 100: Spectrometer
110: 光源  110: light source
120: 输入部  120: Input section
130: 准直面镜  130: Collimating mirror
140: 平面光栅  140: Planar grating
142: 绕射图案  142: Diffraction pattern
150: 聚焦面镜  150: Focusing mirror
160: 直线状光感测器  160: Linear light sensor
170: 反射镜  170: Mirror
180: 光感测器  180: Light sensor
200: 光信号  200: optical signal
具体实施方式 detailed description
为让本发明的上述内容能更明显易懂, 下文特举一较佳实施例, 并配合 所附图式, 作详细说明如下。  In order to make the above description of the present invention more comprehensible, a preferred embodiment will be described below in detail with reference to the accompanying drawings.
图 1显示依据本发明较佳实施例的能接收零阶光谱分量及一阶光谱分量 的微型光谱仪 1的示意图。 如图 1所示, 本实施例的微型光谱仪 1包含一输 入部 10、 一微型绕射光栅 20以及一光感测器 30。  1 shows a schematic diagram of a miniature spectrometer 1 capable of receiving zero-order spectral components and first-order spectral components in accordance with a preferred embodiment of the present invention. As shown in FIG. 1, the micro spectrometer 1 of the present embodiment includes an input portion 10, a micro diffraction grating 20, and a photo sensor 30.
输入部 10包含譬如狭缝, 其接收一光学信号 SO, 如有需要亦可包含滤 波器, 来将不必要的成分过滤掉。  The input portion 10 includes, for example, a slit that receives an optical signal SO and, if necessary, a filter to filter out unnecessary components.
微型绕射光栅 20具有一聚焦曲面 23及形成于聚焦曲面 23上的一绕射 图案 24(详细结构显示于图 4中), 并接收光学信号 SO并将光学信号 SO分 离成多个光谱分量 SO0、 S01、 S02 等。 值得注意的是, 所述光谱分量 SO0、 S01、 S02包含零阶光谱分量 SO0、 一阶光谱分量 S01、 二阶光谱分 量 S02、 三阶光谱分量及四阶光谱分量等。 光感测器 30譬如是电荷耦合元 件 (CCD)式感测器或 CMOS式感测器, 并具有一第一感测区段 32及一第二 感测区段 34, 来接收被微型绕射光栅 20分离并聚焦而来的光谱分量 SO0、 S01、 S02等。 第一感测区段 32接收零阶光谱分量 SO0, 而第二感测区段 34接收一阶光谱分量 S01。 此外, 依实际设计所采用的感测器长度而定, 第二感测区段 34更可接收二阶光谱分量 S02、 三阶光谱分量、 四阶光谱分 于本实施例中, 第一感测区段 32及第二感测区段 34排成一直线。 光感 测器 30具有多个感光单元 36, 所述感光单元 36亦排列成一直线。 The micro-diffraction grating 20 has a focusing curved surface 23 and a diffraction pattern 24 formed on the focusing curved surface 23 (the detailed structure is shown in FIG. 4), and receives the optical signal SO and separates the optical signal SO into a plurality of spectral components SO0. , S01, S02, etc. It should be noted that the spectral components SO0, S01, and S02 include a zero-order spectral component SO0, a first-order spectral component S01, a second-order spectral component S02, a third-order spectral component, and a fourth-order spectral component. The photo sensor 30 is, for example, a charge coupled device (CCD) sensor or a CMOS sensor, and has a first sensing section 32 and a second sensing section 34 for receiving micro-diffraction. The spectral component SO0 that the grating 20 separates and focuses on, S01, S02, etc. The first sensing section 32 receives the zero-order spectral component SO0 and the second sensing section 34 receives the first-order spectral component S01. In addition, depending on the length of the sensor used in the actual design, the second sensing section 34 can further receive the second-order spectral component S02, the third-order spectral component, and the fourth-order spectral component. In this embodiment, the first sensing Section 32 and second sensing section 34 are aligned. The photo sensor 30 has a plurality of photosensitive cells 36, which are also arranged in a line.
此外, 微型光谱仪 1可以更包含一发光装置 40、 一波导装置 60及一壳 体 80。 输入部 10、 微型绕射光栅 20、 光感测器 30及波导装置 60安装于壳 体 80中。 发光装置 40发出一光源经过一试样 50(例如待测的化学物质)后产 生光学信号 SO。 如此一来, 微型光谱仪 1可以成为一个独立的测定装置, 使用者可以携带此微型光谱仪 1到任何地方进行检测, 达成行动化的目的。  Further, the micro spectrometer 1 may further include a light emitting device 40, a waveguide device 60, and a casing 80. The input portion 10, the micro-diffraction grating 20, the photo sensor 30, and the waveguide device 60 are mounted in the casing 80. The illumination device 40 emits a light source through a sample 50 (e.g., a chemical to be tested) to produce an optical signal SO. In this way, the miniature spectrometer 1 can be an independent measuring device, and the user can carry the micro spectrometer 1 to any place for detection and achieve the purpose of action.
图 2显示依据本发明较佳实施例的光谱仪的侧视图。 图 3显示依据本发 明较佳实施例的微型绕射光栅的工作示意图。 请参考图 1至图 3, 本发明提 出另一种组合的微型光谱仪 1, 其包含输入部 10、 微型绕射光栅 20、 光感 测器 30及波导装置 60。 输入部 10接收光学信号 SO。 微型绕射光栅 20接 收光学信号 SO并将光学信号 SO分离成多个光谱分量 SO0、 S01、 S02o 微型绕射光栅 20包含一第一晶片区段 22及一第二晶片区段 26。 第一晶片 区段 22具有一聚焦曲面 23及形成于聚焦曲面 23上的一绕射图案 24。 具有 聚焦曲面 23及绕射图案 24的微型绕射光栅 20可以将上述光学信号 SO分 离成所述光谱分量 SO0、 S01、 S02, 并将所述光谱分量聚焦于光感测器 30 上, 藉此缩短光谱仪的光程。 聚焦曲面 23 的功用是光谱聚焦, 而绕射图案 24的主要功用是光谱分离, 两者共同作用即可达到将光学信号 SO分离并聚 焦的功用。 第二晶片区段 26—般是微机电制造工艺刻制绕射图案 24时所用 的基底 (substrate)或其部分, 并具有一反射面 27。 光感测器 30接收所述光谱 分量 SO0、 S01、 S02 o 波导装置 60包含一第一波导片 62及一第二波导片 64, 两者都是平面式波导片, 彼此面对以与输入部 10、 微型绕射光栅 20及 光感测器 30共同定义出一光通道 96。 第一波导片 62位于第一晶片区段 22 的一上表面 25上。 第二波导片 64与第二晶片区段 26的反射面 27局部接 触, 以使光学信号 SO的一第一部分 S0A到达绕射图案 24, 并使光学信号 SO的一第二部分 SOB到达反射面 27与第二波导片 64不相接触的局部。 反 射面 27具有一第一部分 27A及一第二部分 27B。 第一部分 27A接收光学信 号 SO的第二部分 S0B。 第二部分 27B与第二波导片 64接触, 故会被第二 波导片 64挡住而没有接收光信号。 Figure 2 shows a side view of a spectrometer in accordance with a preferred embodiment of the present invention. Figure 3 is a schematic illustration of the operation of a micro-diffraction grating in accordance with a preferred embodiment of the present invention. Referring to FIGS. 1 through 3, the present invention proposes another combined miniature spectrometer 1 comprising an input portion 10, a micro-diffraction grating 20, a photo sensor 30, and a waveguide device 60. The input unit 10 receives the optical signal SO. The micro-diffraction grating 20 receives the optical signal SO and separates the optical signal SO into a plurality of spectral components SO0, S01, S02o. The micro-diffraction grating 20 comprises a first wafer section 22 and a second wafer section 26. The first wafer section 22 has a focusing curved surface 23 and a diffraction pattern 24 formed on the focusing curved surface 23. The micro-diffraction grating 20 having the focusing curved surface 23 and the diffraction pattern 24 can separate the optical signal SO into the spectral components SO0, S01, S02 and focus the spectral components on the photo sensor 30. Shorten the optical path of the spectrometer. The function of the focusing surface 23 is spectral focusing, and the main function of the diffraction pattern 24 is spectral separation, and the two functions together to achieve the function of separating and focusing the optical signal SO. The second wafer section 26 is generally a substrate or portion thereof used in the microelectromechanical fabrication process to scribe the diffraction pattern 24 and has a reflective surface 27. The light sensor 30 receives the spectral components SO0, S01, and S02. The waveguide device 60 includes a first waveguide sheet 62 and a second waveguide sheet 64, both of which are planar waveguide sheets facing each other to be input to the input portion. 10, micro-diffraction grating 20 and Light sensor 30 collectively defines an optical channel 96. The first waveguide sheet 62 is located on an upper surface 25 of the first wafer section 22. The second waveguide sheet 64 is in partial contact with the reflective surface 27 of the second wafer section 26 such that a first portion SOA of the optical signal SO reaches the diffraction pattern 24 and a second portion SOB of the optical signal SO reaches the reflective surface 27 A portion that is not in contact with the second waveguide sheet 64. The reflecting surface 27 has a first portion 27A and a second portion 27B. The first portion 27A receives the second portion S0B of the optical signal SO. The second portion 27B is in contact with the second waveguide piece 64, so that it is blocked by the second waveguide piece 64 without receiving an optical signal.
所谓的微型光谱仪, 其中的微型绕射光栅 20 是由微机电制造工艺 (MEMS)所制造出来。 微型绕射光栅 20的绕射图案 24的高度一般约有数十 微米至数百微米, 光通道 96 的高度一般也在数十微米到数百微米之间, 相 较于传统光谱仪内部光源是在一开放空间中抵达一平面光栅 140而被分光, 微型光谱仪的光通道 96高度可说是极为扁平。 于一例子中, 光通道 96的高 度为 150微米。 微型绕射光栅 20的总厚度 (H22+H26)为 625微米, 绕射图 案 24的高度为 80微米, 亦即, 图 3的 H22等于 80微米。 因此, 第二晶片 区段 26有 70微米的高度包含在光通道 96中。 使得光学信号 SO的第二部 分 SOB可以到达反射面 27而被反射。 依据此尺寸所量测出来的结果如图 4 所示。 于图 4中, 横轴为光感测器 30的像素号码, 纵轴为强度指标。  The so-called miniature spectrometer, in which the micro-diffraction grating 20 is manufactured by a microelectromechanical manufacturing process (MEMS). The height of the diffraction pattern 24 of the micro-diffraction grating 20 is generally about several tens of micrometers to several hundreds of micrometers, and the height of the optical channel 96 is generally between several tens of micrometers and hundreds of micrometers, compared to the internal light source of the conventional spectrometer. The optical path 96 of the micro spectrometer is extremely flat when it reaches a plane grating 140 in an open space and is split. In one example, the height of the light tunnel 96 is 150 microns. The total thickness (H22 + H26) of the micro-diffraction grating 20 is 625 μm, and the height of the diffraction pattern 24 is 80 μm, that is, H22 of Fig. 3 is equal to 80 μm. Therefore, the second wafer section 26 has a height of 70 μm included in the light tunnel 96. The second portion SOB of the optical signal SO can be reflected by the reflective surface 27. The results measured based on this size are shown in Figure 4. In Fig. 4, the horizontal axis is the pixel number of the photo sensor 30, and the vertical axis is the intensity index.
如图 4所示, 由于感测器表面会滤除大约 250纳米以下波长的光线, 图 中像素号码 700以上才出现一阶或一阶以上的光, 至于像素号码 1-700的像 素则感测到零阶光以及经由反射面 27的第一部分 27A直接反射过来的光。 区段 AA表示被反射面 27的第一部分 27A反射的光信号, 这是因为第一部 分 27A为一平整的反射面, 不具有聚焦效果, 所以光学信号 SOB会散开到 感测器的数百个像素的区段。 因为有第一部分 27A反射的光信号, 所以所 述区段因此使得整个光强度被提高了大约 5000个单位。 像素号码 150左右 的像素感测到的是被绕射图案 24反射的光强度以及被反射面 27反射的光强 度, 因此其加总的总强度大约是 66000单位。 值得注意的是, 利用本发明, 亦可以用来校正微型绕射光栅 20的定位 状况。 当微型绕射光栅 20被妥善安置时, 区段 BB的宽度是固定的, 区段 BB 的宽度是一个可以从光学理论推算出来的固定值, 其中, 区段 BB是从 区段 AA的结尾处到某一预先选定的特征频谱的波峰间的距离。 当微型绕射 光栅 20有歪斜时, 整个光路会有所改变, 因此区段 BB的宽度就会被改变。 As shown in FIG. 4, since the surface of the sensor filters out light of a wavelength of about 250 nm or less, the first-order or higher-order light appears above the pixel number 700 in the figure, and the pixel of the pixel number 1-700 is sensed. To zero order light and light reflected directly through the first portion 27A of the reflective surface 27. The section AA represents the optical signal reflected by the first portion 27A of the reflecting surface 27, because the first portion 27A is a flat reflecting surface and does not have a focusing effect, so the optical signal SOB spreads to hundreds of sensors. The segment of the pixel. Because of the optical signal reflected by the first portion 27A, the segment thus increases the overall light intensity by approximately 5000 units. The pixel around pixel number 150 senses the intensity of the light reflected by the diffractive pattern 24 and the intensity of the light reflected by the reflective surface 27, so that the total total intensity is about 66,000 units. It should be noted that the present invention can also be used to correct the positioning of the micro-diffractive grating 20. When the micro-diffraction grating 20 is properly placed, the width of the section BB is fixed, and the width of the section BB is a fixed value which can be derived from optical theory, wherein the section BB is from the end of the section AA. The distance between the peaks of a pre-selected characteristic spectrum. When the micro-diffraction grating 20 is skewed, the entire optical path changes, so the width of the section BB is changed.
图 5是以已知的罗兰圆 (Rowland circle)的理论来解说本发明的微型光谱 仪之所以可以聚焦于一直线的感测器的示意图。 如图 5所示, 依据罗兰圆 (Rowland circle)的理论, 入射光通过譬如是狭缝结构的输入部 10后, 被微 型绕射光栅 20'绕射并聚焦成像于罗兰圆 RC上。 因此, 一个与罗兰圆 RC有 交叉的光感测器 30可以接收至少两个光谱分量。 由于适用于罗兰圆的微型 绕射光栅 20'的绕射图案具有固定的节距 (Pkch), 所以仅能将光谱分量聚焦 成像于一直线的两点上。 改变节距可以改变罗兰圆的大小, 所以将绕射图案 设计成具有非固定的节距, 即可将至少三个光谱分量聚焦于一直线上, 也就 是达成图 1的效果。  Figure 5 is a schematic illustration of the theory of the Rowland circle of the known sensor of the present invention in which the microspectrometer can be focused on a straight line. As shown in Fig. 5, according to the theory of Rowland circle, the incident light passes through the input portion 10 such as the slit structure, is diffracted by the micro-diffraction grating 20' and is focused and imaged on the Roland circle RC. Therefore, a photo sensor 30 that intersects the Roland circle RC can receive at least two spectral components. Since the diffraction pattern of the micro-diffraction grating 20' suitable for the Roland circle has a fixed pitch (Pkch), only the spectral components can be focused and imaged at two points of the line. Changing the pitch changes the size of the Roland circle, so designing the diffraction pattern to have a non-fixed pitch allows the at least three spectral components to be focused on a straight line, which is the effect of Figure 1.
图 6显示依据本发明另一实施例的能接收零阶光谱分量及一阶光谱分量 的光谱仪的示意图。 如图 6所示, 本实施例的光谱仪 1类似于图 1, 不同之 处在于第一感测区段 32与第二感测区段 34是分开的, 且第一感测区段 32 与第二感测区段 34之间的夹角不等于 0度或 180度。 如此一来, 可以在零 阶光谱分量与一阶光谱分量的聚焦平面相差甚远时, 使用两个光感测器来进 行光谱分量的感测。  Figure 6 shows a schematic diagram of a spectrometer capable of receiving zero-order spectral components and first-order spectral components in accordance with another embodiment of the present invention. As shown in FIG. 6, the spectrometer 1 of the present embodiment is similar to FIG. 1, except that the first sensing section 32 and the second sensing section 34 are separated, and the first sensing section 32 and the first The angle between the two sensing sections 34 is not equal to 0 or 180 degrees. In this way, two photo sensors can be used to sense the spectral components when the zero-order spectral components are far from the focal plane of the first-order spectral components.
图 7显示依据本发明又另一实施例的能接收零阶光谱分量及一阶光谱分 量的光谱仪的示意图。 如图 7所示, 本实施例类似于第一实施例, 不同之处 在于光谱仪 1更包含一杂散光滤除构造 90, 其滤除光学信号 SO中的一杂散 光成分 SOC。 杂散光滤除构造 90包含一第一过滤区段 92及一第二过滤区段 94, 两者可以是独立的元件或是一体成型的元件。 第一过滤区段 92具有一 第一齿状结构 92T。 第二过滤区段 94具有一第二齿状结构 94Τ面对第一齿 状结构 92T。 第一齿状结构 92Τ与第二齿状结构 94Τ之间定义出一通道 96, 以供光学信号 SO中的非杂散光成分 S0A、 SOB通过。 于本实施例中, 第一 过滤区段 92及第二过滤区段 94为两个薄片结构, 且位于同一平面上。 7 shows a schematic diagram of a spectrometer capable of receiving zero-order spectral components and first-order spectral components in accordance with yet another embodiment of the present invention. As shown in FIG. 7, this embodiment is similar to the first embodiment except that the spectrometer 1 further includes a stray light filtering structure 90 that filters out a stray light component SOC in the optical signal SO. The stray light filtering structure 90 includes a first filter section 92 and a second filter section 94, which may be separate components or integrally formed components. The first filter section 92 has a first toothed structure 92T. The second filter section 94 has a second toothed structure 94 facing the first tooth Shaped structure 92T. A channel 96 is defined between the first tooth structure 92A and the second tooth structure 94A for the passage of the non-stray light components S0A, SOB in the optical signal SO. In this embodiment, the first filter section 92 and the second filter section 94 are two sheet structures and are located on the same plane.
值得注意的是, 杂散光成分 S0C除了包含噪声以外, 亦可以包含入射 角度不对时所要量测的光信号。 在没有装设杂散光滤除构造 90 的情况下, 这种入射角度不对的光信号在通过输入部 10以后, 就会被壳体 80或内部波 导经过几次反射后到达微型绕射光栅 20, 因此会干扰到绕射结果。 此外, 杂散光滤除构造 90亦可以装设于绕射光栅 20与光感测器 30之间。  It is worth noting that the stray light component S0C may contain, in addition to noise, an optical signal to be measured when the incident angle is incorrect. In the case where the stray light filtering structure 90 is not installed, such an optical signal having an incorrect incident angle passes through the input portion 10, and is reflected by the housing 80 or the internal waveguide several times to reach the micro-diffractive grating 20, Therefore, it will interfere with the diffraction result. In addition, the stray light filtering structure 90 can also be disposed between the diffraction grating 20 and the photo sensor 30.
通过本发明的光谱仪, 可以滤除不必要的杂散光成分, 避免其干扰到光 谱成分而影响光感测器的判读结果。 杂散光滤除构造的厚度可以是相当薄, 且其材质可以是金属、 塑胶或半导体材料等。 发明人根据图 1 的架构实施 时, 特别比较有装设杂散光滤除构造跟没有装设杂散光滤除构造的结果, 发 现有装设杂散光滤除构造的光谱仪可以获得较佳的判读结果。 因此, 本案的 光谱仪, 确有其效能的大幅增进, 且特别适合于微型光谱仪。  With the spectrometer of the present invention, unnecessary stray light components can be filtered out to avoid interference with the spectral components and affect the interpretation results of the photosensor. The thickness of the stray light filtering structure can be quite thin, and the material can be metal, plastic or semiconductor materials. When the inventor implemented the structure according to Fig. 1, the results of the stray light filtering structure and the stray light filtering structure were compared, and it was found that a spectrometer equipped with a stray light filtering structure can obtain better interpretation results. . Therefore, the spectrometer in this case does have a significant increase in its performance and is particularly suitable for miniature spectrometers.
藉此感测零阶光谱分量, 使用者在不需要将各阶光谱分量进行加总的情 况下, 可以迅速获得微型绕射光栅 20所输出的总光强度, 使用者可以利用 此数据来进行校正、 定位或其他后续处理, 譬如计算一阶光谱分量的比例、 二阶光谱分量的比例等。  By sensing the zero-order spectral component, the user can quickly obtain the total light intensity output by the micro-diffraction grating 20 without adding the spectral components of each order, and the user can use the data to perform correction. , positioning or other subsequent processing, such as calculating the ratio of the first-order spectral components, the proportion of the second-order spectral components, and so on.
在较佳实施例的详细说明中所提出的具体实施例仅方便说明本发明的技 术内容, 而非将本发明狭义地限制于上述实施例, 在不超出本发明的精神及 权利要求的情况, 所做的种种变化实施, 皆属于本发明的范围。  The specific embodiments set forth in the detailed description of the preferred embodiments of the present invention are not to be construed as being limited to the scope of the present invention. The various changes made are within the scope of the invention.

Claims

权利要求书 Claim
1.一种能接收零阶光谱分量及一阶光谱分量的微型光谱仪, 其特征在于 所述的微型光谱仪包括:  A micro spectrometer capable of receiving a zero-order spectral component and a first-order spectral component, characterized in that said micro spectrometer comprises:
一输入部, 接收一光学信号;  An input unit receiving an optical signal;
一微型绕射光栅, 具有一聚焦曲面及形成于所述聚焦曲面上的一绕射图 案, 并接收所述光学信号并将所述光学信号分离成多个光谱分量, 所述的多 个光谱分量至少包含零阶光谱分量及一阶光谱分量; 以及  a micro-diffraction grating having a focused curved surface and a diffraction pattern formed on the focused curved surface, and receiving the optical signal and separating the optical signal into a plurality of spectral components, the plurality of spectral components Having at least a zero-order spectral component and a first-order spectral component;
一光感测器, 其具有一第一感测区段及一第二感测区段, 接收被所述微 型绕射光栅分离并聚焦而来的所述的多个光谱分量, 其中, 所述第一感测区 段接收所述零阶光谱分量, 所述第二感测区段接收所述一阶光谱分量。  a photo sensor having a first sensing section and a second sensing section, receiving the plurality of spectral components separated and focused by the micro-diffractive grating, wherein The first sensing section receives the zero-order spectral component, and the second sensing section receives the first-order spectral component.
2.如权利要求 1所述的微型光谱仪, 其特征在于, 所述第一感测区段及 所述第二感测区段排成一直线, 所述光感测器具有多个感光单元, 所述的多 个感光单元排列成一直线, 且所述的多个光谱分量的数目大于或等于 2。  2 . The micro spectrometer according to claim 1 , wherein the first sensing section and the second sensing section are arranged in a line, and the photo sensor has a plurality of photosensitive units. The plurality of photosensitive cells are arranged in a line, and the number of the plurality of spectral components is greater than or equal to two.
3.如权利要求 1 所述的微型光谱仪, 其特征在于, 所述的微型光谱仪 还包含一发光装置, 所述的发光装置发出一光源经过一试样后产生所述光 学信号。  The micro spectrometer according to claim 1, wherein the micro spectrometer further comprises a light emitting device, wherein the light emitting device generates a light signal after passing through a sample.
4. 如权利要求 1所述的微型光谱仪, 其特征在于, 所述的微型光谱仪 还包含:  4. The micro spectrometer according to claim 1, wherein the micro spectrometer further comprises:
一壳体, 所述输入部、 所述微型绕射光栅及所述光感测器安装于所述壳 体中。  A housing, the input portion, the micro-diffraction grating, and the photo sensor are mounted in the housing.
5. 如权利要求 1所述的微型光谱仪, 其特征在于, 所述的多个光谱分 量更包含二阶光谱分量, 且所述光感测器的所述第二感测区段更接收所述二 阶光谱分量。  5. The micro spectrometer of claim 1, wherein the plurality of spectral components further comprise second order spectral components, and wherein the second sensing segment of the photosensor further receives the Second-order spectral component.
6. 如权利要求 1所述的微型光谱仪, 其特征在于, 所述第一感测区段 与所述第二感测区段之间的夹角不等于 0度或 180度。  6. The microspectrometer according to claim 1, wherein an angle between the first sensing section and the second sensing section is not equal to 0 or 180 degrees.
7.—种微型光谱仪, 其特征在于, 所述的微型光谱仪包括: 一输入部, 接收一光学信号; 7. A miniature spectrometer, characterized in that said micro spectrometer comprises: An input unit receiving an optical signal;
一微型绕射光栅, 接收所述光学信号并将所述光学信号分离成多个光谱 分量, 所述微型绕射光栅包含一第一晶片区段及一第二晶片区段, 所述第一 晶片区段具有一聚焦曲面及形成于所述聚焦曲面上的一绕射图案, 所述第二 晶片区段具有一反射面;  a micro-diffraction grating that receives the optical signal and separates the optical signal into a plurality of spectral components, the micro-diffraction grating comprising a first wafer segment and a second wafer segment, the first wafer The segment has a focusing surface and a diffraction pattern formed on the focusing curved surface, and the second wafer segment has a reflecting surface;
一光感测器, 其接收被所述微型绕射光栅分离并聚焦而来的所述的多个 光谱分量; 以及  a photosensor that receives the plurality of spectral components separated and focused by the micro-diffractive grating;
一波导装置, 其包含一第一波导片及一第二波导片, 两者彼此面对以与 所述输入部、 所述微型绕射光栅及所述光感测器共同定义出一光通道, 所述 第一波导片位于所述第一晶片区段的一上表面上, 所述第二波导片与所述第 二晶片区段的所述反射面局部接触, 以使所述光学信号的一第一部分到达所 述绕射图案, 并使所述光学信号的一第二部分到达所述反射面与所述第二波 导片不相接触的局部。  a waveguide device comprising a first waveguide sheet and a second waveguide sheet facing each other to define an optical channel together with the input portion, the micro diffraction grating and the photo sensor, The first waveguide sheet is located on an upper surface of the first wafer segment, and the second waveguide sheet is in partial contact with the reflective surface of the second wafer segment to enable one of the optical signals The first portion reaches the diffraction pattern and causes a second portion of the optical signal to reach a portion where the reflective surface is not in contact with the second waveguide sheet.
8.如权利要求 7所述的微型光谱仪, 其特征在于:  8. The miniature spectrometer of claim 7 wherein:
所述的多个光谱分量包含零阶光谱分量及一阶光谱分量; 且  The plurality of spectral components comprise a zero-order spectral component and a first-order spectral component;
所述光感测器具有一第一感测区段及一第二感测区段, 所述第一感测区 段接收所述零阶光谱分量, 所述第二感测区段接收所述一阶光谱分量, 且所 述第一感测区段及所述第二感测区段同时接收从所述反射面反射来的所述光 学信号的所述第二部分。  The photo sensor has a first sensing section and a second sensing section, the first sensing section receives the zero-order spectral component, and the second sensing section receives the first a spectral component of the order, and the first sensing section and the second sensing section simultaneously receive the second portion of the optical signal reflected from the reflective surface.
9.如权利要求 8所述的微型光谱仪, 其特征在于, 所述第一感测区段及 所述第二感测区段排成一直线, 所述光感测器具有多个感光单元, 所述的多 个感光单元排列成一直线, 且所述的多个光谱分量的数目大于或等于 2。  The micro spectrometer according to claim 8, wherein the first sensing section and the second sensing section are arranged in a line, and the photo sensor has a plurality of photosensitive cells. The plurality of photosensitive cells are arranged in a line, and the number of the plurality of spectral components is greater than or equal to two.
10.如权利要求 8所述的微型光谱仪, 其特征在于, 所述的微型光谱仪 还包含一发光装置, 其发出一光源经过一试样后产生所述光学信号。  10. The micro spectrometer of claim 8, wherein the micro spectrometer further comprises a light emitting device that emits the optical signal after passing a light source through a sample.
11. 如权利要求 8所述的微型光谱仪, 其特征在于, 所述的微型光谱仪 还包含: 一壳体, 其中所述输入部、 所述微型绕射光栅、 所述光感测器及所述波 导装置安装于所述壳体中。 11. The micro spectrometer according to claim 8, wherein the micro spectrometer further comprises: A housing, wherein the input portion, the micro-diffraction grating, the photo sensor, and the waveguide device are mounted in the housing.
12. 如权利要求 8所述的微型光谱仪, 其特征在于, 所述的多个光谱分 量还包含二阶光谱分量, 且所述光感测器的所述第二感测区段还接收所述二 阶光谱分量。  12. The microspectrometer of claim 8, wherein the plurality of spectral components further comprise a second order spectral component, and wherein the second sensing segment of the photosensor further receives the Second-order spectral component.
13. 如权利要求 8所述的微型光谱仪, 其特征在于, 所述第一感测区段 与所述第二感测区段之间的夹角不等于 0度或 180度。  13. The microspectrometer according to claim 8, wherein an angle between the first sensing section and the second sensing section is not equal to 0 or 180 degrees.
14.如权利要求 7所述的微型光谱仪, 其特征在于, 所述的微型光谱仪 还包含一杂散光滤除构造, 其滤除所述光学信号中的一杂散光成分, 所述杂 散光滤除构造包含:  The micro spectrometer according to claim 7, wherein the micro spectrometer further comprises a stray light filtering structure, which filters out a stray light component in the optical signal, and the stray light filtering The construct contains:
一第一过滤区段, 具有一第一齿状结构; 及  a first filter section having a first tooth structure;
一第二过滤区段, 具有一第二齿状结构面对所述第一齿状结构, 所述第 一齿状结构与所述第二齿状结构之间定义出一光通道, 以供所述光学信号中 的非杂散光成分通过。  a second filter section having a second toothed structure facing the first tooth structure, and an optical path defined between the first tooth structure and the second tooth structure The non-stray light component in the optical signal passes.
15. 如权利要求 14所述的微型光谱仪, 其特征在于, 所述第一过滤区 段及所述第二过滤区段位于同一平面上。  15. The microspectrometer of claim 14, wherein the first filter zone and the second filter zone are on the same plane.
PCT/CN2010/071541 2010-04-02 2010-04-02 Micro spectrometer capable of receiving zero order and first order spectral components WO2011120234A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2010/071541 WO2011120234A1 (en) 2010-04-02 2010-04-02 Micro spectrometer capable of receiving zero order and first order spectral components
CN201080065211.3A CN102812340B (en) 2010-04-02 2010-04-02 Micro spectrometer capable of receiving zero order and first order spectral components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2010/071541 WO2011120234A1 (en) 2010-04-02 2010-04-02 Micro spectrometer capable of receiving zero order and first order spectral components

Publications (1)

Publication Number Publication Date
WO2011120234A1 true WO2011120234A1 (en) 2011-10-06

Family

ID=44711317

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/071541 WO2011120234A1 (en) 2010-04-02 2010-04-02 Micro spectrometer capable of receiving zero order and first order spectral components

Country Status (2)

Country Link
CN (1) CN102812340B (en)
WO (1) WO2011120234A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130293961A1 (en) * 2010-05-07 2013-11-07 Cheng-Hao KO Optical System and Reflection Type Diffraction Grating Thereof
US20140139833A1 (en) * 2012-11-16 2014-05-22 Oto Photonics Inc. Spectrometer, Assembling Method Thereof, And Assembling System
US20160138973A1 (en) * 2013-01-22 2016-05-19 Oto Photonics Inc. Assembling method of spectrometer and assembling system
US10145739B2 (en) 2014-04-03 2018-12-04 Oto Photonics Inc. Waveguide sheet, fabrication method thereof and spectrometer using the same
CN110044482A (en) * 2019-05-24 2019-07-23 苏州大学 A kind of spectral measurement device and test method based on reflective random diffraction plate

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI715599B (en) 2016-07-12 2021-01-11 台灣超微光學股份有限公司 Spectrometer and manufacturing method thereof
DE102017206066A1 (en) * 2017-04-10 2018-10-11 Anvajo GmbH spectrometer
CZ2018346A3 (en) * 2018-07-11 2019-10-16 Univerzita Palackého v Olomouci Imaging spectrograph using the zero spectral order of the diffraction grating

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5020910A (en) * 1990-03-05 1991-06-04 Motorola, Inc. Monolithic diffraction spectrometer
CN1388362A (en) * 2002-05-13 2003-01-01 重庆大学 Integrated miniature spectrometer
US20070019194A1 (en) * 2005-07-21 2007-01-25 Liangyao Chen Full spectral range spectrometer
CN101263372A (en) * 2005-05-17 2008-09-10 霍尼韦尔国际公司 Optical micro-spectrometer
CN101295050A (en) * 2007-04-27 2008-10-29 柯正浩 Optical system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5020910A (en) * 1990-03-05 1991-06-04 Motorola, Inc. Monolithic diffraction spectrometer
CN1388362A (en) * 2002-05-13 2003-01-01 重庆大学 Integrated miniature spectrometer
CN101263372A (en) * 2005-05-17 2008-09-10 霍尼韦尔国际公司 Optical micro-spectrometer
US20070019194A1 (en) * 2005-07-21 2007-01-25 Liangyao Chen Full spectral range spectrometer
CN101295050A (en) * 2007-04-27 2008-10-29 柯正浩 Optical system

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130293961A1 (en) * 2010-05-07 2013-11-07 Cheng-Hao KO Optical System and Reflection Type Diffraction Grating Thereof
US9372290B2 (en) * 2010-05-07 2016-06-21 Yung-Chuan Wu Spectrum analyzer and reflection type diffraction grating thereof
US20140139833A1 (en) * 2012-11-16 2014-05-22 Oto Photonics Inc. Spectrometer, Assembling Method Thereof, And Assembling System
CN103822708A (en) * 2012-11-16 2014-05-28 台湾超微光学股份有限公司 Spectrometer, assembling method and assembling system thereof
US9273997B2 (en) 2012-11-16 2016-03-01 Oto Photonics, Inc. Spectrometer, assembling method thereof, and assembling system
US20160138973A1 (en) * 2013-01-22 2016-05-19 Oto Photonics Inc. Assembling method of spectrometer and assembling system
US9891103B2 (en) * 2013-01-22 2018-02-13 Oto Photonics Inc. Assembling method of spectrometer and assembling system
US10145739B2 (en) 2014-04-03 2018-12-04 Oto Photonics Inc. Waveguide sheet, fabrication method thereof and spectrometer using the same
CN110044482A (en) * 2019-05-24 2019-07-23 苏州大学 A kind of spectral measurement device and test method based on reflective random diffraction plate

Also Published As

Publication number Publication date
CN102812340B (en) 2014-12-10
CN102812340A (en) 2012-12-05

Similar Documents

Publication Publication Date Title
WO2011120234A1 (en) Micro spectrometer capable of receiving zero order and first order spectral components
JP4409860B2 (en) Spectrometer using photodetector
CN102269833B (en) The manufacture method of spectral device, detecting device and spectral device
CN100507477C (en) Micro-spectrograph based on micro-electronic mechanical system technique
US11092486B2 (en) Compact folded metasurface spectrometer
JP2018151390A (en) Optical filter and spectrometer
WO2011134156A1 (en) Optomechanical module of micro-spectrometer with conical slit and slit structure thereof
US10739198B2 (en) System for analyzing electromagnetic radiation, and device for producing same
US20110299083A1 (en) Sample analyzing apparatus
TWI468653B (en) Micro spectrometer capable of receiving zeroth-order and first-order spectrum components
JP5674050B2 (en) Optical displacement meter
US10732040B2 (en) Monolithically configured spectroscopic instrument
US10393585B2 (en) Spectral detector and spectral detecting method using the same
JP5538194B2 (en) Optical apparatus and electronic apparatus
JP4743917B2 (en) Optical unit
TWI437215B (en) Micro spectrometer with stray light filtering structure
WO2011130899A1 (en) Micro spectrometer with stray light filtering structure
JP5315817B2 (en) Diffraction grating and spectrometer
JP7147143B2 (en) Spectrometer and analyzer
JP5900248B2 (en) Spectrophotometer
JP7191311B2 (en) A spectrometer using a spectroscopic element with a light-collecting function
KR20070055130A (en) Optical system for measuring temperature of air molecular by splitting rotational raman-scattered signals
JP2022111364A (en) Spectroscope and analyzer
WO2002012950A1 (en) Method of analyzing spectrum using multi-slit member and multi-channel spectrograph using the same
CN111684243A (en) Spectrometer, method for producing a spectrometer and method for operating a spectrometer

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080065211.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848695

Country of ref document: EP

Kind code of ref document: A1