WO2011109063A1 - Paper towel dispensing system - Google Patents

Paper towel dispensing system Download PDF

Info

Publication number
WO2011109063A1
WO2011109063A1 PCT/US2011/000291 US2011000291W WO2011109063A1 WO 2011109063 A1 WO2011109063 A1 WO 2011109063A1 US 2011000291 W US2011000291 W US 2011000291W WO 2011109063 A1 WO2011109063 A1 WO 2011109063A1
Authority
WO
WIPO (PCT)
Prior art keywords
toweling
support roller
rotatable
paper
target
Prior art date
Application number
PCT/US2011/000291
Other languages
French (fr)
Inventor
Richard Lalau
Damir Wallener
Lockland Corley
Andrew Jackman
Alex Trampolski
Matthew Friesen
Original Assignee
Dispensing Dynamics International
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dispensing Dynamics International filed Critical Dispensing Dynamics International
Publication of WO2011109063A1 publication Critical patent/WO2011109063A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K10/00Body-drying implements; Toilet paper; Holders therefor
    • A47K10/24Towel dispensers, e.g. for piled-up or folded textile towels; Toilet-paper dispensers; Dispensers for piled-up or folded textile towels provided or not with devices for taking-up soiled towels as far as not mechanically driven
    • A47K10/32Dispensers for paper towels or toilet-paper
    • A47K10/34Dispensers for paper towels or toilet-paper dispensing from a web, e.g. with mechanical dispensing means
    • A47K10/36Dispensers for paper towels or toilet-paper dispensing from a web, e.g. with mechanical dispensing means with mechanical dispensing, roll switching or cutting devices
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K10/00Body-drying implements; Toilet paper; Holders therefor
    • A47K10/24Towel dispensers, e.g. for piled-up or folded textile towels; Toilet-paper dispensers; Dispensers for piled-up or folded textile towels provided or not with devices for taking-up soiled towels as far as not mechanically driven
    • A47K10/32Dispensers for paper towels or toilet-paper
    • A47K10/34Dispensers for paper towels or toilet-paper dispensing from a web, e.g. with mechanical dispensing means
    • A47K10/36Dispensers for paper towels or toilet-paper dispensing from a web, e.g. with mechanical dispensing means with mechanical dispensing, roll switching or cutting devices
    • A47K10/3606The cutting devices being motor driven
    • A47K10/3612The cutting devices being motor driven with drive and pinch rollers
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K10/00Body-drying implements; Toilet paper; Holders therefor
    • A47K10/24Towel dispensers, e.g. for piled-up or folded textile towels; Toilet-paper dispensers; Dispensers for piled-up or folded textile towels provided or not with devices for taking-up soiled towels as far as not mechanically driven
    • A47K10/32Dispensers for paper towels or toilet-paper
    • A47K10/34Dispensers for paper towels or toilet-paper dispensing from a web, e.g. with mechanical dispensing means
    • A47K10/36Dispensers for paper towels or toilet-paper dispensing from a web, e.g. with mechanical dispensing means with mechanical dispensing, roll switching or cutting devices
    • A47K10/3606The cutting devices being motor driven
    • A47K10/3625The cutting devices being motor driven with electronic control means
    • AHUMAN NECESSITIES
    • A47FURNITURE; DOMESTIC ARTICLES OR APPLIANCES; COFFEE MILLS; SPICE MILLS; SUCTION CLEANERS IN GENERAL
    • A47KSANITARY EQUIPMENT NOT OTHERWISE PROVIDED FOR; TOILET ACCESSORIES
    • A47K10/00Body-drying implements; Toilet paper; Holders therefor
    • A47K10/24Towel dispensers, e.g. for piled-up or folded textile towels; Toilet-paper dispensers; Dispensers for piled-up or folded textile towels provided or not with devices for taking-up soiled towels as far as not mechanically driven
    • A47K10/32Dispensers for paper towels or toilet-paper
    • A47K10/34Dispensers for paper towels or toilet-paper dispensing from a web, e.g. with mechanical dispensing means
    • A47K10/36Dispensers for paper towels or toilet-paper dispensing from a web, e.g. with mechanical dispensing means with mechanical dispensing, roll switching or cutting devices
    • A47K2010/3668Detection of the presence of a user

Definitions

  • This application includes a computer program listing Appendix in the form of a compact disc (two identical copies) .
  • the files of the compact disc are specified in an Attachment located at the end of the specification and before the claims hereof.
  • This invention relates to a paper towel dispensing system, and more particularly to an apparatus and method wherein capacitive sensing technology senses positioning of a toweling support roller and rotation of the toweling support roller is controlled based on capacitance sensing.
  • the paper toweling is comprised of individual paper towel segments separated by perforated tear lines, and in others the toweling has no perforated tear lines formed therein, severing or cutting individual sheets from the toweling accomplished by some suitable severing structure incorporated in the dispenser.
  • An electromechanical feed mechanism is disposed in the housing to dispense measured sheets of the towel material.
  • the feed mechanism operates in a first mechanical operational mode wherein the towel sheets are dispensed by a user grasping and pulling on a tail of the towel material extending from the housing and a second electrical operational mode wherein a measured length of a next sheet is automatically fed from the housing to define the tail for the next user.
  • the dispenser of U.S. Patent No. 6,820,785 includes a sensor for detecting a parameter that is changed by an initial pull exerted on a tail of a web of material extending from the opening of the dispenser.
  • the sensor also generates a signal sent from the sensor to a control circuit or circuitry causing the motor employed in the apparatus to drive the feed mechanism until a measured length of web material that includes the tail of web material has been fed from the dispenser in the form of a measured sheet for subsequent removal by the user.
  • the system of the present invention utilizes the unique approach of employing targets on a paper toweling support roller sensed by capacitance sensor structure during rotation of the roller, the capacitance sensor structure sensing capacitance changes caused by the rotating targets .
  • Use of the approach of this invention allows control of paper length, prevents of motor jams and turns the motor control on and off based on capacitance sensing.
  • the present invention encompasses a paper towel dispenser apparatus for dispensing paper toweling from a roll of paper toweling.
  • the apparatus includes a housing and a roll support within the housing for supporting a roll of paper toweling.
  • a rotatable toweling support roller is located within the housing for receiving paper toweling from the roll of paper toweling and transporting the paper toweling.
  • An electric motor is operatively associated with the toweling support roller for rotating the toweling support roller.
  • At least one target is operatively associated with the rotatable toweling support roller and movable responsive to rotation of the rotatable toweling support roller by the electric motor.
  • Capacitance sensor structure is operatively associated with the electric motor.
  • a controller is employed for receiving signals from the capacitance sensor structure for controlling rotation of the rotatable toweling support roller by the electric motor responsive to capacitance changes caused by movement of the at least one target sensed by the capacitance sensor structure.
  • the invention also encompasses a method of dispensing paper toweling from a roll of paper toweling from dispenser apparatus including a housing, a roll support within the housing, a rotatable toweling support roller within the housing and an electric motor for rotating the toweling support roller.
  • the method includes the step of operatively connecting at least one target to the rotatable toweling support roller. While toweling from the roll is located on the rotatable toweling support roller, the electric motor is employed to rotate the toweling support roller and the at least one target to transport the paper toweling.
  • Sensor structure is employed in operative association with the electric motor to sense capacitance changes caused by movement of the at least one target.
  • Signals from the sensor structure representative of the capacitance changes sensed by the sensor structure and representative of target movement are directed to a controller .
  • the controller is employed to control rotational movement of the rotatable toweling support roller responsive to the signals received by the controller from the sensor structure .
  • Fig. 1 is a frontal, perspective view illustrating the outside of a paper towel dispenser constructed in accordance with the teachings of the present invention
  • Fig. 2 is a cross-sectional view illustrating the interior of the dispenser with toweling from a roll of paper toweling positioned on a rotatable toweling support roller;
  • Fig. 3 is an exploded, diagrammatic view illustrating targets located on the roller and selected structural elements relating to the sensing of capacitance changes caused by the rotating roller and control structure for controlling operation of an electric motor utilized to rotate the roller;
  • Fig. 4 is a diagrammatic view of the roller, targets and processor printed circuit board with sensor pad;
  • Fig. 5 illustrates a traditional prior art approach of dealing with capacitance sensed signals by smoothing or averaging them
  • Figs. 6 and 7 are capacitance/time diagrams illustrating approaches relating to the utilization of a delta detection method to sense capacitance changes
  • Figs. 8 and 9 respectively disclose schematics of a power supply printed circuit board and a proximity sensor printed circuit board utilized in the dispenser apparatus of this invention
  • Fig. 10 (10A and 10B) is a schematic diagram relating to a processor printed circuit board incorporating a capacitance change sensor
  • Fig. 11 is a capacitance/time diagram illustrating the principles of operation of a conventional prior art detection approach
  • Fig. 12 is a view similar to Fig. 1, illustrating the principles of operation of a second prior art detection method
  • Figs 13 and 14 are diagrammatic illustrations relating to the method of the present invention.
  • Fig. 15 is a representation of an exemplary- pattern searched by the algorithm of the method.
  • Fig. 16 illustrates the pattern of Fig. 5 in a linear representation
  • Fig. 17 is a diagrammatic illustration showing the principles of operation of a multi -sample delta method in accordance with the teachings of the present invention.
  • Fig. 18 is a block diagram showing sequential steps carried out when practicing the method of this invention.
  • Fig. 19 is a capacitance/time diagram illustrating an approach relating to the utilization of a delta detection method to sense capacitance changes.
  • paper toweling dispenser apparatus constructed in accordance with the teachings of the present invention is illustrated.
  • the apparatus is for dispensing paper toweling from a roll of paper toweling.
  • the dispenser includes a housing 10 defining an interior.
  • a roll support 12 of any suitable construction is located within the housing.
  • Fig. 2 shows a roll of paper toweling 14 supported by the roll support.
  • the roll support may be of any suitable type employed in paper towel dispensers .
  • a rotatable toweling support roller 16 which is positioned below roll of paper toweling 14 and receives and supports unwound toweling, as shown.
  • Dispensed toweling exits opening 18 formed in the front of the housing or cabinet.
  • Any suitable means may be utilized to sever individual sheets from the toweling during dispensing, for example a cutter blade located at or near the opening 18 or elsewhere in the path of the dispensed toweling. In the interest of simplicity and due to the fact that such expedients are well known, a cutter blade has not been illustrated.
  • An electric motor 20 having a motor shaft is positioned in the housing, the motor shaft having a gear 22 which meshes with a set of gears 24 to drive a gear 26 affixed to roller 16 for rotation therewith.
  • a pinch roll 28 maintains the tail end of the toweling in firm engagement with the surface of the roller 16.
  • the toweling support roller 16 has a pair of targets operatively associated therewith and movable responsive to rotation of the rotatable toweling support roller by the electric motor. More particularly, in the arrangement illustrated, roller 16 has a pair of strips 30 extending along the complete (or partial) length thereof and in diametric opposition to one another.
  • the strips are formed of any suitable metallic material and may be solid metal or adhesive foil for example, the material preferably being strongly dielectric. Any suitable sensor material may be utilized without departing from the spirit or scope of this invention as long as it allows capacitance sensing during rotation of the roller.
  • the strips 30 may suitably be covered, as shown in Fig. 3, by a material such as over molded rubber. Such material not only provides a good slip free surface for supporting toweling, but also serves the purpose of maintaining the sensor targets in place.
  • Fig. 4 illustrates the strips being uncovered, which also may be suitable .
  • a processor printed circuit board 32 which includes a capacitance sensor 34 of any suitable type. It will be appreciated that the processor can be located virtually anywhere, potentially even including outside the housing. Also, the processor and sensor do not have to be incorporated on the same printed circuit board. In addition, the sensor itself does not have to be on a printed circuit board either. It can, in principle, be fashioned exclusively from wire or e.g. flex cable, which is another potential advantage.
  • Fig. 10 illustrates schematics of a processor board that may be utilized to control roller rotation. Portions of the processor schematics are shown in Figs. 10A and 10B.
  • the sensor may suitably be statically located at the paper guide just below the rotating paper toweling support roller within range of sensing the capacitance changes as the drum rotates .
  • the general principle is that the micro controller has an algorithmic means of deciding when to treat the one sensor as a proximity detector and when to treat it as a drum roller controller, and applies different delta math in each case.
  • software allows one to count the on/off patterns of the rotating drum, producing the logical control for the processor to know where the drum was and how far it had rotated.
  • the processor By controlling the amount of rotation, one can calculate paper lengths with a predetermined formula embedded into the firmware.
  • One can also detect the performance of the motor and disconnect power if the PCB does not see the drum within specified time frames during rotation .
  • a proximity sensor printed circuit board 40 is located at the front of housing 10 and connected via a flat flexible cable 42 to processor printed circuit board 32, the circuitry of which is shown in Fig. 9.
  • This arrangement includes a proximity sensor that senses the presence of a hand or other object near the housing.
  • a single sensor board may be utilized for both proximity detection and roller control.
  • a closed door sensor is also incorporated in the circuitry of Fig. 9 to allow actuation only if the cabinet or housing door is closed.
  • a flat flexible cable 44 connects processor printed circuit board 32 to power supply printed circuit board 46.
  • Fig. 8 illustrates the schematic of PCB 46.
  • the circuitry includes a towel length selector that enables different alternative sheet lengths to be dispensed by the apparatus. As noted above, by controlling the amount of rotation of the paper toweling support roller, one can calculate and provide different paper towel lengths employing a predetermined formula embedded into the firmware of the apparatus.
  • capacitance sensing for tracking a rotating or otherwise periodically moving object poses challenges.
  • the traditional approach to dealing with capacitance sensed signals is to smooth out or average them as shown in the capacitance/time graph or diagram of Fig. 5.
  • the solid line is the base line with the noise superimposed depicted by a dash line.
  • the dot-line is the smooth average.
  • the signal generated should generally be expressed as sine wave or other essentially periodic waveform of relatively stable frequency.
  • the signal generated should generally be expressed as sine wave or other essentially periodic waveform of relatively stable frequency.
  • Each box depicted by dash lines in Fig. 11 represents a counting window, during which peaks from the sensor are counted and used as a proxy for the sensor' s oscillation frequency.
  • the length of the window is determined by the microcontroller's running frequency and a programmable internal timer.
  • the capacitance sensor forms what is essentially an antenna, and the oscillations from the sensor will not produce a single, stable frequency, but rather a noisy series of readings.
  • One method for reducing the effect of the noise is to smooth out the signal (e.g. low-pass filter or average) . This may be done with RC-type circuits in the analog domain or through signal processing in the digital domain. The smoothed out signal is depicted in Fig. 11 in a capacitance/time graph.
  • Fig. 12 Multiple averages or different time- lengths may also be used. This is typically done by looking at times when an average of shorter time length crosses over or under an average of longer time length. This is shown in Fig. 12. These methods have drawbacks for detecting short - duration events such as a hand wave.
  • the Fig. 12 approach requires storage of two additional streams of numbers (one for each average) . It is difficult to determine the "best" time lengths for averaging, as this changes with ambient noise levels. Undesirable latency between when an event happens and when it is detected can be introduced.
  • the delta method is presented in block diagram form in Fig. 18 and is practiced utilizing coded software. Two CD copies of such software are attached as an Appendix.
  • the starting point for processing data is the counting window.
  • Fig. 13 shows relatively short counting windows applied to a single processing stream.
  • the sequence of readings is stored, usually in memory attached to a microcontroller or other programmable device. No averages need be computed, although the method will also work with both averaged and filtered readings. For example, well known techniques such as pre -filtering signals to eliminate 60Hz noise are compatible with the proposed method.
  • the method looks at the difference between readings taken at different points in time. These points in time may in fact be consecutive readings, or they may be separated by a set or arbitrary length of time, as depicted in Fig. 14.
  • the processing then proceeds as follows.
  • the difference or the delta between counting windows is calculated and this is stored in an array of delta values .
  • the length of the array is a function of the type of event detected, and the noise signal .
  • this array of delta values could be considered a proxy for the second derivative of the raw frequency curve.
  • a detection event now becomes a specific pattern in this second derivative .
  • the pattern has a relatively flat "low” level, a sharp or “fast” rise from that "low” level, a short period of relative flatness at a "high” or elevated level, and a sharp drop from the elevated region. While this example illustrates a possible sequence of operations for a hand detection, many other types of events can be detected by changing the specific pattern being searched for.
  • this pattern match will look similar to that shown in Fig. 16 wherein an "X" denotes a "don't care” value, and the other entries specify a range of acceptable values for that location in the array of delta values.
  • a detection event then becomes a ratio of matching vs. non-matching values across the array of deltas values .
  • the comparison values may be stored as an explicit sequence of values, or stored implicitly as a part of the mathematical function that performs event detection.
  • one delta calculation may be insufficient to establish a detection event.
  • the delta method can be extended to use multiple samples, across arbitrary lengths of time, as illustrated in Fig. 17.
  • Fig. 17 exemplifies an implementation where the delta method has a look-back time of four samples and requires a specific relationship between two sets of delta calculations .
  • the reading at time (Y+l) is compared to the reading at time (X+l)
  • the reading at time (X) is compared to the reading at time (Y) .
  • the two comparisons may look for the same threshold, or they may be independent tests .
  • the comparison between X and Y may look for a small change and a large change between (X+l) or (Y+l) .
  • a small change in a noisy environment may look for a moderate, identical change in both comparisons.
  • Multiple windows can also be used when storage space is limited, as more windows allow storage of smaller amounts of data.
  • a capacitance sensor 34 is mounted near the roller and metallic targets 30 are attached to the roller in a way that the sensor can read the target material and, as the target passes by the sensor, a detection event is recorded.
  • the sensor may for example be a copper pad within printed circuit board 32.
  • the delta method for this particular application is the general delta method described above.
  • the look-back distance between samples is a function of the sampling rate and the rotational speed of the roller.
  • the counting window is small, to allow for multiple counts across the general maximum and minimum parts of the expected curve. See Fig. 6.
  • the first variation uses multiple simultaneous deltas. This can be achieved in several ways, the simplest being to perform multiple comparisons at each point in time. With multiple comparisons, a detection event can be treated as a more complex "voting" scheme - e.g., two out of three delta compares meet a threshold.
  • the second variation is to detect both maximum and minimum values in the signal generated by the rotating object. This is shown in Fig. 7.
  • This embodiment of the delta method alternates between searching for peaks and valleys.
  • the operations can be considered inverse to each other: a peak may look for values above a high threshold; a valley may look for values below a low or negative threshold.
  • the delta method allows an approach for dealing with these variations in rotational speed. As shown in Fig. 19, the look-back distance for the delta calculation can be variable .
  • this look-back method distance is a function of the particular embodiment; for example, the look-back distance can be a function of the measured voltage at the battery terminals . Or the mechanical changes over time can be characterized, and the look-back distance can be calculated using an algorithm that understands the "aging" of the frictional resistance of the mechanical system.
  • EIGHT IDENTICAL COMPACT DISCS HAVE BEEN SUPPLIED FOR PATENT APPLICATION AND CONTAIN THE IDENTICAL FILES AND INFORMATION, CREATED AT THE SAME TIME, USING THE SAME COMPUTER WITHOUT ANY DATA VARIATION.
  • THE INCLUDED INFORMATION IS IN REGARDS TO PATENT APPLICATION XXXXXX FILED WITH MR. TOM LAMFE OF XXXXX. THE REQUIRED CD'S HAVE BEEN FORWARDED TO HIM FOR THE

Abstract

Paper towel dispenser apparatus and method wherein one or more targets are connected to a rotatable toweling support roller. A sensor senses capacitance changes caused by the rotating roller and the one or more targets and sends signals to a controller to control rotation of the roller.

Description

Attorney Docket: DISPENSING DYNAMICS #53
PAPER TOWEL DISPENSING SYSTEM
This application includes a computer program listing Appendix in the form of a compact disc (two identical copies) . The files of the compact disc are specified in an Attachment located at the end of the specification and before the claims hereof.
TECHNICAL FIELD
This invention relates to a paper towel dispensing system, and more particularly to an apparatus and method wherein capacitive sensing technology senses positioning of a toweling support roller and rotation of the toweling support roller is controlled based on capacitance sensing.
BACKGROUND OF THE INVENTION
Many dispenser systems are known in the prior art for dispensing paper toweling from rolls thereof. In some cases, the paper toweling is comprised of individual paper towel segments separated by perforated tear lines, and in others the toweling has no perforated tear lines formed therein, severing or cutting individual sheets from the toweling accomplished by some suitable severing structure incorporated in the dispenser.
Many paper towel dispensing cabinets employ motor driven toweling support rollers or drums to transport toweling during the dispensing operation. Rotation of the rollers is accomplished in a variety of ways, including mechanical switching associated with the roller or by employing electronic methods to control motor "on" time and control roller rotation. Such arrangements include both dispensers which are manually actuated, as by means of a push button, and those employing a sensor, such as a sensor sensing proximity of a user's hand, to initiate operation. U.S. Patent No. 6,820,785, issued November 23, 2004, discloses an electro-mechanical roll towel dispenser including a housing with a roll carrier disposed therein to rotatably support a roll of towel material. An electromechanical feed mechanism is disposed in the housing to dispense measured sheets of the towel material. The feed mechanism operates in a first mechanical operational mode wherein the towel sheets are dispensed by a user grasping and pulling on a tail of the towel material extending from the housing and a second electrical operational mode wherein a measured length of a next sheet is automatically fed from the housing to define the tail for the next user.
The dispenser of U.S. Patent No. 6,820,785 includes a sensor for detecting a parameter that is changed by an initial pull exerted on a tail of a web of material extending from the opening of the dispenser. The sensor also generates a signal sent from the sensor to a control circuit or circuitry causing the motor employed in the apparatus to drive the feed mechanism until a measured length of web material that includes the tail of web material has been fed from the dispenser in the form of a measured sheet for subsequent removal by the user.
Similar devices are disclosed in U.S. Patent No. 3,730,409 and Patent Publication Document WO 00/63100. The devices of these latter two documents have sensors for detecting movement of a tail end of web material such that the feed mechanism is activated in response to detecting the movement .
It is known to use magnets and a sensor (Hall effect sensors or reed switches) to control rotation of a roller or drum to control the amount of dispensed toweling. By placing a magnet in a specific location on the roller, and a magnet sensor nearby, it is possible to count the revolutions of the roller. The drawbacks of this method include relatively high manufacturing expense, since magnets and sensors are expensive. Also, multiple magnets are required when one revolution of the roller does not provide sufficient control of the dispensed material.
Another traditional method is to use timers to control the length of time the motor driving the roller is energized. The primary drawback of this approach is that it requires significant and ongoing calibration due to variability of power source to the motor and variability in the mechanical structure ("friction" is variable).
The following documents are also believed to be representative of the current state of the prior art in this field: U.S. Patent No. 3,715,085, issued February 6, 1973, U.S. Patent No. 3,730,409, issued May 1, 1973, U.S. Patent No. 3,737,087, issued June 5, 1973, U.S. Patent No. 3,949,918, issued April 13, 1976, U.S. Patent No. 3,998,308, issued December 21, 1976, U.S. Patent No. 4,666,099, issued May 19, 1987, U.S. Patent No. 4,676,131, issued June 30, 1987, U.S. Patent No. 4,721,265, issued January 26, 1988, U.S. Patent No. 4,738,176, issued April 19, 1988, U.S. Patent No. 4,790,490, issued December 13,
1988, U.S. Patent No. 4,796,825, issued January, 1989, U.S. Patent No. 4,960,248, issued October 2, 1990, U.S. Patent No. 5,131,302, issued July 21, 1992, U.S. Patent No. 5,452,832, issued September 26, 1995, U.S. Patent No. 5,772,291, issued June 30, 1998, U.S. Patent No. 6,079,305, issued June 27, 2000, U.S. Patent No. 6,105,898, issued August 22, 2000, U.S. Patent No. 6,412,655, issued July 2, 2002, U.S. Patent No. 6,412,679, issued July 2, 2002, Patent Document No. WO 9959457, dated November, 1999, Patent Document No. WO 0063100, dated October, 2000, U.S. Patent No. 7,398,944, issued July 15, 2008, U.S. Patent No. 6,892,620, issued May 17, 2005, U.S. Patent No. 7,044,421, issued May 16, 2006, U.S. Patent No. 4,573,750, issued March 4, 1986, U.S. Patent No. 4,826,262, issued May 2,
1989, U.S. Patent No. 6,446,901, issued September 10, 2002, U.S. Patent No. 4,270,818, issued June 2, 1981, U.S. Patent No. 6,112,631, issued September 5, 2000, U.S. Patent No. 5,375,920, issued December 27, 1994, U.S. Patent No. 7,354,015, issued April 8, 2008, U.S. Patent No. 4,738,176, issued April 19, 1988, U.S. Patent No. 790,490, issued December 13, 1988, U.S. Patent No. 6,079,305, issued June 27, 2000, U.S. Patent No. 6,419,136, issued July 16, 2002, U.S. Patent No. 6,412,679, issued July 2, 2002, U.S. Patent No. 5,441,189, issued August 15, 1995, U.S. Patent No. 5,878,381, issued March 2, 1999, U.S. Patent No. 5,691,919, issued November 25, 1997, U.S. Patent No. 5,452,832, issued September 26, 1995, U.S. Patent No. 5,340,045, issued August 23, 1994, U.S. Patent No. 5,335,811, issued August 9, 1994, U.S. Patent No. 5,244,263, issued September 14, 1993, U.S. Patent No. 4,848,854, issued July 18 , 1989, U.S.
Patent No. 4,738,176, issued April 19, 1988, U.S. Patent
No. 4,270, 818, issued June 2, 1981, U .S. Patent No.
4, 170, 390, issued October 9, 1979, U. S . Patent No.
5, 657, 945, issued August 19, 1997, U. S. Patent No.
4 , 122 , 738 , issued October 31, 1978, U. .S. Patent No.
6, 012, 664, issued January 11, 2000, U. .S. Patent No.
5, 816, 514 , issued October 6, 1998, U. S . Patent No.
5,417,783, issued May 23, 1995, U.S. Patent No. 4,717,043, issued January 5, 1988, U.S. Patent No. 5,630,526, issued May 20, 1997, U.S. Patent No. 6,363,824, issued April 2, 2002, U.S. Patent No. 6,293,486, issued September 25, 2001, U.S. Patent No. 6,695,246, issued February 24, 2004, U.S. Patent No. 6,854,684, issued February 15, 2005, U.S. Patent No. 6,988,689, issued January 24, 2006, U.S. Patent No.
7.325.767, issued February 5, 2008, U.S. Patent No.
7.325.768, issued February 5, 2008, U.S. Patent No. 7,168,602, issued January 30, 2007, U.S. Patent No. 6,592,067, issued July 15, 2003, U.S. Patent No. 7,341,170, issued March 11, 2008, U.S. Patent No. 7,182,288, issued February 27, 2007, U.S. Patent No. 7,296,765, issued November 20, 2007, U.S. Patent No. 6,977,588 issued December 20, 2005 and U.S. Patent No. 6,820,785, issued November 23, 2004.
As will be seen below, the system of the present invention utilizes the unique approach of employing targets on a paper toweling support roller sensed by capacitance sensor structure during rotation of the roller, the capacitance sensor structure sensing capacitance changes caused by the rotating targets . Use of the approach of this invention allows control of paper length, prevents of motor jams and turns the motor control on and off based on capacitance sensing.
A search of the prior art relating to employment of capacitance sensing techniques, including in systems utilizing rotating drums located the following patent documents: U.S. Patent No. 6,036,137, issued March 14, 2000, U.S. Patent No. 5,692,313, issued December 2, 1997, U.S. Patent Application Pub. No. US 2007/0099189, pub. May 3, 2007, U.S. Patent Application Pub. No. US 2007/0079526, pub. April 12, 2007, Foreign Patent documents: JP 2003- 187410, KR 10-2005-021832, DE 101 31 019, EP 096 178, U.S. Patent No. 6,047,894, issued April 11, 2000, U.S. Patent No. 4,448,196, issued May 15, 1984, U.S. Patent No. 7,256,957, issued August 14, 2007, U.S. Patent No. 6,439,068, issued August 27, 2002, U.S. Patent Pub. No. US 2008/0309380, pub. December 18, 2008, U.S. Patent No. 6,119,523, issued September 19, 2000, U.S. Patent No. 5,351,685, issued October 4, 1994, U.S. Patent No. 7,301,350, issued November 27, 2007.
The systems disclosed in the located prior art do not remotely relate to paper towel dispensers. There is no teaching or suggestion of the unique combinations of structural components or method steps disclosed and claimed herein.
DISCLOSURE OF INVENTION
The present invention encompasses a paper towel dispenser apparatus for dispensing paper toweling from a roll of paper toweling.
The apparatus includes a housing and a roll support within the housing for supporting a roll of paper toweling.
A rotatable toweling support roller is located within the housing for receiving paper toweling from the roll of paper toweling and transporting the paper toweling.
An electric motor is operatively associated with the toweling support roller for rotating the toweling support roller. At least one target is operatively associated with the rotatable toweling support roller and movable responsive to rotation of the rotatable toweling support roller by the electric motor.
Capacitance sensor structure is operatively associated with the electric motor. A controller is employed for receiving signals from the capacitance sensor structure for controlling rotation of the rotatable toweling support roller by the electric motor responsive to capacitance changes caused by movement of the at least one target sensed by the capacitance sensor structure.
The invention also encompasses a method of dispensing paper toweling from a roll of paper toweling from dispenser apparatus including a housing, a roll support within the housing, a rotatable toweling support roller within the housing and an electric motor for rotating the toweling support roller.
The method includes the step of operatively connecting at least one target to the rotatable toweling support roller. While toweling from the roll is located on the rotatable toweling support roller, the electric motor is employed to rotate the toweling support roller and the at least one target to transport the paper toweling.
Sensor structure is employed in operative association with the electric motor to sense capacitance changes caused by movement of the at least one target.
Signals from the sensor structure representative of the capacitance changes sensed by the sensor structure and representative of target movement are directed to a controller .
The controller is employed to control rotational movement of the rotatable toweling support roller responsive to the signals received by the controller from the sensor structure . Other features, advantages and objects of the present invention will become apparent with reference to the following description and accompanying drawings.
BRIEF DESCRIPTION OF DRAWINGS
Fig. 1 is a frontal, perspective view illustrating the outside of a paper towel dispenser constructed in accordance with the teachings of the present invention;
Fig. 2 is a cross-sectional view illustrating the interior of the dispenser with toweling from a roll of paper toweling positioned on a rotatable toweling support roller;
Fig. 3 is an exploded, diagrammatic view illustrating targets located on the roller and selected structural elements relating to the sensing of capacitance changes caused by the rotating roller and control structure for controlling operation of an electric motor utilized to rotate the roller;
Fig. 4 is a diagrammatic view of the roller, targets and processor printed circuit board with sensor pad;
Fig. 5 illustrates a traditional prior art approach of dealing with capacitance sensed signals by smoothing or averaging them;
Figs. 6 and 7 are capacitance/time diagrams illustrating approaches relating to the utilization of a delta detection method to sense capacitance changes;
Figs. 8 and 9 respectively disclose schematics of a power supply printed circuit board and a proximity sensor printed circuit board utilized in the dispenser apparatus of this invention;
Fig. 10 (10A and 10B) is a schematic diagram relating to a processor printed circuit board incorporating a capacitance change sensor;
Fig. 11 is a capacitance/time diagram illustrating the principles of operation of a conventional prior art detection approach; Fig. 12 is a view similar to Fig. 1, illustrating the principles of operation of a second prior art detection method;
Figs 13 and 14 are diagrammatic illustrations relating to the method of the present invention;
Fig. 15 is a representation of an exemplary- pattern searched by the algorithm of the method;
Fig. 16 illustrates the pattern of Fig. 5 in a linear representation;
Fig. 17 is a diagrammatic illustration showing the principles of operation of a multi -sample delta method in accordance with the teachings of the present invention;
Fig. 18 is a block diagram showing sequential steps carried out when practicing the method of this invention; and
Fig. 19 is a capacitance/time diagram illustrating an approach relating to the utilization of a delta detection method to sense capacitance changes.
MODES FOR CARRYING OUT THE INVENTION
Referring now to the drawings, paper toweling dispenser apparatus constructed in accordance with the teachings of the present invention is illustrated. The apparatus is for dispensing paper toweling from a roll of paper toweling.
The dispenser includes a housing 10 defining an interior. A roll support 12 of any suitable construction is located within the housing. Fig. 2 shows a roll of paper toweling 14 supported by the roll support. The roll support may be of any suitable type employed in paper towel dispensers .
Rotatably mounted within the housing 10 is a rotatable toweling support roller 16 which is positioned below roll of paper toweling 14 and receives and supports unwound toweling, as shown. Dispensed toweling exits opening 18 formed in the front of the housing or cabinet. Any suitable means may be utilized to sever individual sheets from the toweling during dispensing, for example a cutter blade located at or near the opening 18 or elsewhere in the path of the dispensed toweling. In the interest of simplicity and due to the fact that such expedients are well known, a cutter blade has not been illustrated.
An electric motor 20 having a motor shaft is positioned in the housing, the motor shaft having a gear 22 which meshes with a set of gears 24 to drive a gear 26 affixed to roller 16 for rotation therewith. A pinch roll 28 maintains the tail end of the toweling in firm engagement with the surface of the roller 16.
The toweling support roller 16 has a pair of targets operatively associated therewith and movable responsive to rotation of the rotatable toweling support roller by the electric motor. More particularly, in the arrangement illustrated, roller 16 has a pair of strips 30 extending along the complete (or partial) length thereof and in diametric opposition to one another. The strips are formed of any suitable metallic material and may be solid metal or adhesive foil for example, the material preferably being strongly dielectric. Any suitable sensor material may be utilized without departing from the spirit or scope of this invention as long as it allows capacitance sensing during rotation of the roller.
The strips 30 may suitably be covered, as shown in Fig. 3, by a material such as over molded rubber. Such material not only provides a good slip free surface for supporting toweling, but also serves the purpose of maintaining the sensor targets in place. Fig. 4 illustrates the strips being uncovered, which also may be suitable .
Located within housing 10 and positioned closely adjacent to the peripheral surface of roller 16 is a processor printed circuit board 32 which includes a capacitance sensor 34 of any suitable type. It will be appreciated that the processor can be located virtually anywhere, potentially even including outside the housing. Also, the processor and sensor do not have to be incorporated on the same printed circuit board. In addition, the sensor itself does not have to be on a printed circuit board either. It can, in principle, be fashioned exclusively from wire or e.g. flex cable, which is another potential advantage.
Fig. 10 illustrates schematics of a processor board that may be utilized to control roller rotation. Portions of the processor schematics are shown in Figs. 10A and 10B.
The arrangement disclosed allows complete software control. There are no mechanical switches or other components that can wear or fail . Two CD copies of such software is attached to this application as an Appendix .
By inserting metal sensor targets into the drum assembly of the dispenser, one is able to "see" the sensor targets and the spaces between them as a rotational count, providing a window of four counts (two targets and two spaces) . The sensor may suitably be statically located at the paper guide just below the rotating paper toweling support roller within range of sensing the capacitance changes as the drum rotates .
It is possible to use one sensor board for both proximity detection and drum roller control. There can be real cost savings with such an approach. The general principle is that the micro controller has an algorithmic means of deciding when to treat the one sensor as a proximity detector and when to treat it as a drum roller controller, and applies different delta math in each case.
As will be described in greater detail below, software allows one to count the on/off patterns of the rotating drum, producing the logical control for the processor to know where the drum was and how far it had rotated. By controlling the amount of rotation, one can calculate paper lengths with a predetermined formula embedded into the firmware. One can also detect the performance of the motor and disconnect power if the PCB does not see the drum within specified time frames during rotation .
In the illustrated embodiment, a proximity sensor printed circuit board 40 is located at the front of housing 10 and connected via a flat flexible cable 42 to processor printed circuit board 32, the circuitry of which is shown in Fig. 9. This arrangement includes a proximity sensor that senses the presence of a hand or other object near the housing. As noted above, a single sensor board may be utilized for both proximity detection and roller control. A closed door sensor is also incorporated in the circuitry of Fig. 9 to allow actuation only if the cabinet or housing door is closed.
A flat flexible cable 44 connects processor printed circuit board 32 to power supply printed circuit board 46. Fig. 8 illustrates the schematic of PCB 46. The circuitry includes a towel length selector that enables different alternative sheet lengths to be dispensed by the apparatus. As noted above, by controlling the amount of rotation of the paper toweling support roller, one can calculate and provide different paper towel lengths employing a predetermined formula embedded into the firmware of the apparatus.
Using capacitance sensing for tracking a rotating or otherwise periodically moving object poses challenges. The traditional approach to dealing with capacitance sensed signals is to smooth out or average them as shown in the capacitance/time graph or diagram of Fig. 5. The solid line is the base line with the noise superimposed depicted by a dash line. The dot-line is the smooth average.
For a rotating device of circular shape, the signal generated should generally be expressed as sine wave or other essentially periodic waveform of relatively stable frequency. To detect a specific point on the rotating cylinder (roller) passing near the sensor, then it is only necessary to search for a peak value . However, with noise it is possible that the peak value with negative noise won't meet the value necessary to trigger a detection event. Or, a value with positive noise far from a peak event may be sufficient to trigger a false detection.
For this reason, the preferred approach for capacitance sensing of the targets and spaces therebetween on rotatable paper toweling support roller 16 is the capacitance sensing method disclosed in co-pending U.S. Patent Application 12/660 , 790 , filed March 4, 2010. This approach, sometimes referred to herein as the "delta method" or "delta detection method", now will be described.
With reference to Fig. 11, in order to better understand how the delta method differs from conventional detection methods, a brief explanation of a traditional approach that is commonly practiced for both analog and digital detection follows.
Each box depicted by dash lines in Fig. 11 represents a counting window, during which peaks from the sensor are counted and used as a proxy for the sensor' s oscillation frequency. The length of the window is determined by the microcontroller's running frequency and a programmable internal timer.
The capacitance sensor forms what is essentially an antenna, and the oscillations from the sensor will not produce a single, stable frequency, but rather a noisy series of readings. One method for reducing the effect of the noise is to smooth out the signal (e.g. low-pass filter or average) . This may be done with RC-type circuits in the analog domain or through signal processing in the digital domain. The smoothed out signal is depicted in Fig. 11 in a capacitance/time graph.
Multiple averages or different time- lengths may also be used. This is typically done by looking at times when an average of shorter time length crosses over or under an average of longer time length. This is shown in Fig. 12. These methods have drawbacks for detecting short - duration events such as a hand wave. The Fig. 12 approach requires storage of two additional streams of numbers (one for each average) . It is difficult to determine the "best" time lengths for averaging, as this changes with ambient noise levels. Undesirable latency between when an event happens and when it is detected can be introduced.
The delta method is presented in block diagram form in Fig. 18 and is practiced utilizing coded software. Two CD copies of such software are attached as an Appendix.
Utilizing the delta detection method, the starting point for processing data is the counting window. Fig. 13 shows relatively short counting windows applied to a single processing stream.
The sequence of readings is stored, usually in memory attached to a microcontroller or other programmable device. No averages need be computed, although the method will also work with both averaged and filtered readings. For example, well known techniques such as pre -filtering signals to eliminate 60Hz noise are compatible with the proposed method. The method looks at the difference between readings taken at different points in time. These points in time may in fact be consecutive readings, or they may be separated by a set or arbitrary length of time, as depicted in Fig. 14.
Using this collected raw data, the processing then proceeds as follows. The difference or the delta between counting windows is calculated and this is stored in an array of delta values . The length of the array is a function of the type of event detected, and the noise signal .
If the raw frequency were to be plotted, this array of delta values could be considered a proxy for the second derivative of the raw frequency curve. A detection event now becomes a specific pattern in this second derivative . One example of what the algorithm will search for, while maintaining an array of delta values of suitable length, or an array of readings upon which delta computations are performed at each time interval, is a pattern similar to a square wave pulse, such as depicted in Fig. 15. The pattern has a relatively flat "low" level, a sharp or "fast" rise from that "low" level, a short period of relative flatness at a "high" or elevated level, and a sharp drop from the elevated region. While this example illustrates a possible sequence of operations for a hand detection, many other types of events can be detected by changing the specific pattern being searched for.
In a linear representation, this pattern match will look similar to that shown in Fig. 16 wherein an "X" denotes a "don't care" value, and the other entries specify a range of acceptable values for that location in the array of delta values. A detection event then becomes a ratio of matching vs. non-matching values across the array of deltas values .
The comparison values may be stored as an explicit sequence of values, or stored implicitly as a part of the mathematical function that performs event detection.
In some applications, one delta calculation may be insufficient to establish a detection event. The delta method can be extended to use multiple samples, across arbitrary lengths of time, as illustrated in Fig. 17.
Fig. 17 exemplifies an implementation where the delta method has a look-back time of four samples and requires a specific relationship between two sets of delta calculations .
In this case, the reading at time (Y+l) is compared to the reading at time (X+l) , and the reading at time (X) is compared to the reading at time (Y) . The two comparisons may look for the same threshold, or they may be independent tests .
For example, for a very sharp change in the signal, the comparison between X and Y may look for a small change and a large change between (X+l) or (Y+l) . Alternatively, a small change in a noisy environment may look for a moderate, identical change in both comparisons.
Multiple windows can also be used when storage space is limited, as more windows allow storage of smaller amounts of data.
The delta method technology can be effectively used to track roller 16 movement. A capacitance sensor 34 is mounted near the roller and metallic targets 30 are attached to the roller in a way that the sensor can read the target material and, as the target passes by the sensor, a detection event is recorded. The sensor may for example be a copper pad within printed circuit board 32.
The delta method for this particular application is the general delta method described above. The look-back distance between samples is a function of the sampling rate and the rotational speed of the roller. The counting window is small, to allow for multiple counts across the general maximum and minimum parts of the expected curve. See Fig. 6.
For random noise, this significantly increases the probability of detecting a peak while reducing the chance of a false positive. This is because a threshold value closer to the theoretical maximum distance between peaks and minimums can be used.
Two further variations or embodiments are proposed to deal with particularly challenging sensing environments as shown in Fig. 7.
The first variation uses multiple simultaneous deltas. This can be achieved in several ways, the simplest being to perform multiple comparisons at each point in time. With multiple comparisons, a detection event can be treated as a more complex "voting" scheme - e.g., two out of three delta compares meet a threshold.
The second variation is to detect both maximum and minimum values in the signal generated by the rotating object. This is shown in Fig. 7. This embodiment of the delta method alternates between searching for peaks and valleys. The operations can be considered inverse to each other: a peak may look for values above a high threshold; a valley may look for values below a low or negative threshold.
This is advantageous as it doubles the resolution at which the roller can be controlled, which allows for finer control of the quantity being dispensed by the roller or drum. The cost implications are obvious.
There may be implementations wherein the rotating roller spun by an electric motor, cannot maintain a constant rotational speed or cadence.
An example of how this can occur is in the case of a battery-powered motor, the batteries having been significantly depleted, cause a slowing rotation of the roller. In the case of a paper dispenser where the paper is stored on a large roll, the rotational speed may be different between a full roll (heavy) and a nearly depleted roll (light) . A further example is the possible effect of friction of the mechanical structure changing as the dispenser is used over time.
The delta method allows an approach for dealing with these variations in rotational speed. As shown in Fig. 19, the look-back distance for the delta calculation can be variable .
The variation of this look-back method distance is a function of the particular embodiment; for example, the look-back distance can be a function of the measured voltage at the battery terminals . Or the mechanical changes over time can be characterized, and the look-back distance can be calculated using an algorithm that understands the "aging" of the frictional resistance of the mechanical system. ATTACHMENT
I. INVENTION DETAILS
• INVENTION: PAPER TOWEL DISPENSING SYSTEM
• INVENTO S; RICHARD LALAU, DAMIR WALLENER, MATHEW FRIESEN, LOCKLAND DDRUEY, Alex Trampolski
• CD's CREATED; FEBRUARY 12, 2D I D
II. MACHINE FORMAT
• IBM - PC
III. O/S COMPATIBILITY;
• MS - WINDOWS
IV. LISTED FILES ON COMPACT DISC
A. FILE C SOURCE CODE LISTINGS
• DEFINES. H 1 6KB H FILE
• INTERRUPT. c 1 6KB C FILE
• PIC 1 6F72X.H 23KB H FILE
• PIG_CONFIG.C 4KB C FILE
• STATEMACHINE.C 49KB C FILE
• SWITCHSTATE.C 9KB C FILE
B. MACHINE LANGUAGE LISTIN GS
• GP_PAPERTOWEL_D3_ □ 5. LST 659 KB LST FILE
• INTERRUPT, LST 93 KB LST FILE
• PIC_CONGIFB.LST 1-6 KB LST FILE
• STATEMACHINE.LST 1 27 KB LST FILE
• SWITCH STATE, LST 31 KB LST FILE
C. OBJECT CODE
• GP_PAPERTaWEL_D3_D5.DBJ SB KB OBJ FILE
• INTERRUPT. OBJ 26 KB OBJ FILE
• PIC_CONBIFG.OB<J 1 KB OBJ FILE
• STATEMADHINE.OBJ 32 KB OBJ FILE
• SWITCHSTATE.OBJ 6 KB OBJ FILE ATTACHMENT
V. STATEMENT THAT SUPPLIED COMPACT DISC'S ARE IDENTICAL
EIGHT IDENTICAL COMPACT DISCS HAVE BEEN SUPPLIED FOR PATENT APPLICATION AND CONTAIN THE IDENTICAL FILES AND INFORMATION, CREATED AT THE SAME TIME, USING THE SAME COMPUTER WITHOUT ANY DATA VARIATION.
VI. FORWARDING OF INFORMATION
THE INCLUDED INFORMATION IS IN REGARDS TO PATENT APPLICATION XXXXXX FILED WITH MR. TOM LAMFE OF XXXXXX. THE REQUIRED CD'S HAVE BEEN FORWARDED TO HIM FOR THE
CONTINUATION OF THE PATENT PROCESS.
Vll. INFORMATION SUPPLY AND CONTACT DETAILS
THE ABOVE INFORMATION IS CONSIDERED ACCURATE AS OF THE WRITING IF THIS TRANSMITTAL LETTER. IF THERE IS ANY
ADDITIONAL INFORMATION THAT IS REQUIRED PLEASE CONTACT ME
DIRECT.

Claims

The Invention Claimed Is:
1. Paper towel dispenser apparatus for dispensing paper toweling from a roll of paper toweling, said apparatus comprising, in combination:
a housing;
a roll support within said housing for supporting a roll of paper toweling;
a rotatable toweling support roller within said housing for receiving paper toweling from the roll of paper toweling and transporting said paper toweling;
an electric motor operatively associated with said toweling support roller for rotating said toweling support roller;
at least one target operatively associated with said rotatable toweling support roller and movable responsive to rotation of said rotatable toweling support roller by said electric motor;
capacitance sensor structure operatively associated with said electric motor; and
a controller for receiving signals from said capacitance sensor structure for controlling rotation of said rotatable toweling support roller by said electric motor responsive to capacitance changes caused by movement of said at least one target sensed by said capacitance sensor structure.
2. The paper towel dispenser apparatus according to Claim 1 wherein said at least one target is attached to the rotatable toweling support roller and rotatable therewith.
3. The paper towel dispenser apparatus according to Claim 2 wherein said capacitance sensor structure is located adjacent to the periphery of said toweling support roller and wherein said at least one target is positioned on said rotatable toweling support roller for sensing by said capacitance sensing structure.
4. The paper towel dispenser apparatus according to Claim 2 wherein said at least one target is formed of metallic material.
5. The paper towel dispenser apparatus according to Claim 4 wherein said at least one target is a strip of metallic material extending at least partially along the length of said rotatable toweling support roller.
6. The paper towel dispenser apparatus according to Claim 3 wherein a plurality of targets are located on the rotatable support roller, said targets being spaced from one another.
7. The paper towel dispenser apparatus according to Claim 2 wherein said at least one target is formed of substantially dielectric material.
8. The paper towel dispenser according to Claim 3 wherein said capacitance sensor structure includes a sensor pad located closely adjacent to the periphery of said rotatable toweling support roller.
9. The paper towel dispenser apparatus according to Claim 2 wherein said rotatable toweling support roller includes an outer layer of toweling engagement material, said at least one target being substantially covered by said outer layer of toweling engagement material.
10. The paper towel dispenser apparatus according to Claim 1 wherein said controller includes a programmed computer processor for receiving signals from said capacitance sensor structure relating to the rotational positioning of said rotatable toweling support roller by said electric motor.
11. The paper towel dispenser apparatus according to Claim 10 wherein a plurality of targets are positioned on said rotatable toweling support roller at spaced locations thereon, said signals from said capacitance sensor structure comprising on/off patterns produced by said targets and the spaces therebetween during rotation of said rotatable toweling support roller.
12. The paper towel support apparatus according to Claim 11 wherein the signals from said capacitance sensor structure can generally be expressed as sine waves or other essentially periodic waveforms, said programmed computer processor being programmed to utilize a capacitance change delta detection technique to track rotational positioning of said rotatable toweling support roller.
13. The paper toweling dispenser apparatus according to Claim 10 wherein said programmed computer processor is programmed to obtain alternative dispensing of different pre-determined lengths of toweling by said toweling dispenser apparatus, said paper toweling dispenser apparatus additionally comprising a switch operatively associated with said controller enabling a user to alternatively select from said pre-determined lengths of paper .
14. A method of dispensing paper toweling from a roll of paper toweling from dispenser apparatus including a housing, a roll support within said housing, a rotatable toweling support roller within said housing and an electric motor for rotating said toweling support roller, said method comprising the steps of :
operatively connecting at least one target to said rotatable toweling support roller;
while toweling from said roll is located on said rotatable toweling support roller, employing said electric motor to rotate said toweling support roller and said at least one target to transport said paper toweling;
employing sensor structure operatively associated with said electric motor to sense capacitance changes caused by movement of said at least one target;
directing signals from said sensor structure representative of the capacitance changes sensed by said sensor structure and representative of target movement to a controller; and
employing said controller to control rotational movement of said rotatable toweling support roller responsive to the signals received by said controller from said sensor structure.
15. The method according to Claim 14 wherein said at least one target is attached to the rotatable toweling support roller and rotated therewith.
16. The method according to Claim 15 wherein said capacitance sensor structure is located adjacent to the periphery of said rotatable toweling support roller and wherein said at least one target is positioned on said rotatable toweling support roller for sensing by said capacitance sensing structure.
17. The method according to Claim 15 wherein said at least one target is formed of metallic material.
18. The method according to Claim 17 wherein said at least one target is a strip of metallic material extending at least partially along the length of said rotatable toweling support roller.
19. The method according to Claim 16 wherein a plurality of targets are located on the rotatable toweling support roller, said targets being spaced from one another.
20. The method according to Claim 15 wherein said at least one target is formed of substantially dielectric material .
21. The method according to Claim 16 wherein said capacitance sensor structure includes a sensor pad, said sensor pad being located closely adjacent to the periphery of said rotatable toweling support roller.
22. The method according to Claim 15 wherein said rotatable toweling support roller includes an outer layer of toweling engagement material, said at least one target being substantially covered by said outer layer of toweling engagement material .
23. The method according to Claim 14 wherein said controller includes a programmed computer processor, the method including the step of employing said capacitance sensor structure to direct signals to said programmed computer processor relating to the rotational positioning of said rotatable toweling support roller by said electric motor .
24. The method according to Claim 23 wherein a plurality of targets are positioned on said rotatable toweling support roller at spaced locations thereon, said signals from said capacitance sensor structure comprising on/off patterns produced by said targets and the spaces therebetween during rotation of said rotatable toweling support roller.
25. The method according to Claim 24 wherein the signals from said capacitance sensor structure approximate sine waves, said programmed computer processor being programmed to utilize a capacitance change delta detection technique to track rotational positioning of said rotatable toweling support roller.
26. The method according to Claim 24 wherein said programmed computer processor is programmed to allow alternative dispensing of different pre-determined lengths of toweling by said toweling dispenser apparatus, said paper toweling dispenser apparatus additionally comprising a switch operatively associated with said controller enabling a user to alternatively select from said different pre-determined lengths of toweling.
PCT/US2011/000291 2010-03-04 2011-02-17 Paper towel dispensing system WO2011109063A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/660,765 2010-03-04
US12/660,765 US8511599B2 (en) 2010-03-04 2010-03-04 Paper towel dispensing systems

Publications (1)

Publication Number Publication Date
WO2011109063A1 true WO2011109063A1 (en) 2011-09-09

Family

ID=44530468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2011/000291 WO2011109063A1 (en) 2010-03-04 2011-02-17 Paper towel dispensing system

Country Status (2)

Country Link
US (1) US8511599B2 (en)
WO (1) WO2011109063A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867509B2 (en) 2011-10-14 2018-01-16 San Jamar, Inc. Dispenser with capacitive-based proximity sensor

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8763946B1 (en) * 2010-03-09 2014-07-01 Dispensing Dynamics International Sheet material dispenser apparatus
WO2012174630A1 (en) * 2011-06-21 2012-12-27 Dispensing Dynamics International Ltd. Electronic roll towel dispenser
CA2935995C (en) * 2014-01-13 2021-10-19 Georgia-Pacific Consumer Products Lp Sheet product dispensers and related methods for automatically loading a roll of sheet product in a dispenser
US10342395B2 (en) 2015-08-28 2019-07-09 Gpcp Ip Holdings Llc Sheet product dispenser with product level gauge system
US11412900B2 (en) 2016-04-11 2022-08-16 Gpcp Ip Holdings Llc Sheet product dispenser with motor operation sensing
US11395566B2 (en) 2016-04-11 2022-07-26 Gpcp Ip Holdings Llc Sheet product dispenser
DE112016006589T5 (en) 2016-04-29 2018-12-13 Kimberly-Clark Worldwide, Inc. SUPPLY SYSTEM
WO2018127301A1 (en) * 2017-01-09 2018-07-12 Sca Hygiene Products Ab Dispenser for sheet products and operating method
US10506901B2 (en) 2017-06-23 2019-12-17 Gpcp Ip Holdings Llc Sheet product dispenser with product level indicator calibration
US11181413B2 (en) 2017-08-29 2021-11-23 Gpcp Ip Holdings Llc Product level detection apparatuses and systems for fluid dispensers
US10660485B2 (en) 2017-10-09 2020-05-26 Gpcp Ip Holdings Llc Dual roll product dispenser with rotating refill carriage
US10850938B2 (en) 2017-10-09 2020-12-01 Gpcp Ip Holdings Llc Mechanical sheet product dispenser
USD915211S1 (en) 2019-08-06 2021-04-06 Kimberly-Clark Worldwide, Inc. Cleaning product dispenser
CN115087775A (en) * 2019-10-25 2022-09-20 因沃泰克有限公司 Laundry conveying apparatus and method for conveying laundry
TWI824318B (en) * 2021-10-14 2023-12-01 欣興電子股份有限公司 Circuit board connection structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4848854A (en) * 1987-04-22 1989-07-18 David Kennedy (Engineers) Holdings Limited Continuous towel cabinets
US20040173440A1 (en) * 2001-06-05 2004-09-09 Harald Mauch Measurement and detection roller
US7398944B2 (en) * 2004-12-01 2008-07-15 Kimberly-Clark Worldwide, Inc. Hands-free electronic towel dispenser

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US466099A (en) * 1891-12-29 Folding square
US790490A (en) * 1904-07-02 1905-05-23 Henry Ernst Automatic ventilating window-lock.
US3730409A (en) 1970-03-28 1973-05-01 Steiner Co Lausanne Sa Dispensing apparatus
US3715085A (en) 1970-04-09 1973-02-06 Iwatsu Electric Co Ltd Device for supplying continuous sheet of paper from a rolled package used in a copying apparatus
US3737087A (en) 1972-05-24 1973-06-05 Mirra Cote Co Inc Dispensing apparatus for rolled materials
US3949918A (en) 1974-08-05 1976-04-13 Borden, Inc. Machine for dispensing uniform lengths of thick plastic film
US3998308A (en) 1975-10-06 1976-12-21 Lawrence Peska Associates, Inc. Coin-operated towel dispenser
FR2332215A1 (en) 1975-11-19 1977-06-17 Granger Maurice EQUIPMENT FOR SIMULTANEOUS CUTTING AND DISTRIBUTION OF BANDS OF WOUNDED MATERIALS
US4170390A (en) 1978-03-09 1979-10-09 Mccabe Stanley G Paper towel dispenser
US4270818A (en) 1979-04-02 1981-06-02 Mccabe Stanley G Power winding paper towel dispenser
US4571699A (en) 1982-06-03 1986-02-18 International Business Machines Corporation Optical mark recognition for controlling input devices, hosts, and output devices
US4448196A (en) 1982-06-30 1984-05-15 Telectronics Pty. Ltd. Delta modulator for measuring voltage levels in a heart pacer
GB8300477D0 (en) 1983-01-08 1983-02-09 Glynwed Screws & Fastenings Lt Dispensing apparatus
AU580299B2 (en) 1984-06-21 1989-01-12 Coca-Cola Company, The Vendor coupon dispenser
IT1184385B (en) 1985-04-05 1987-10-28 Steiner Co Int Sa Dispensing appts. for paper towels of set length
US4738176A (en) 1985-04-04 1988-04-19 Cassia Antonio M Electric paper cabinet
US4666099A (en) 1985-11-15 1987-05-19 Scott Paper Company Apparatus for dispensing sheet material
US4721265A (en) 1986-06-09 1988-01-26 Hawkins F Jr Electronic toilet tissue dispenser
US4796825A (en) 1986-06-09 1989-01-10 Hawkins F Jr Electronic paper towel dispenser
US4790490A (en) 1988-02-29 1988-12-13 Shyamal Chakravorty Self-locking, driver mechanism regulated tissue dispensing system with hands-free operation option
US4826262A (en) 1988-03-04 1989-05-02 Steiner Company, Inc. Electronic towel dispenser
JPH0659268B2 (en) 1989-02-23 1994-08-10 幸信 渡辺 Toilet paper automatic feeder
US4960248A (en) 1989-03-16 1990-10-02 Bauer Industries, Inc. Apparatus and method for dispensing toweling
GB2242673B (en) 1990-04-03 1993-12-08 David Kennedy Continuous towel cabinets
CH681350A5 (en) 1990-05-15 1993-03-15 Cws Ag
FR2671711B1 (en) 1991-01-18 1993-03-26 Elis Gie HAND TOWEL DISPENSING APPARATUS.
IE80725B1 (en) 1991-02-26 1998-12-30 Georgia Pacific Corp Method and apparatus for dispensing flexible sheet material
US5351685A (en) 1991-08-05 1994-10-04 Nellcor Incorporated Condensed oximeter system with noise reduction software
GB9222968D0 (en) 1992-11-03 1992-12-16 Wyant And Company Limited Perforated paper towel dispenser
US5417783A (en) 1992-11-30 1995-05-23 Moore Business Forms, Inc. Linerless label dispenser
US5452832A (en) 1993-04-06 1995-09-26 Qts S.R.L. Automatic dispenser for paper towels severable from a continuous roll
US6047894A (en) 1993-05-07 2000-04-11 Spectra-Physics Scanning Systems, Inc. Signal conditioning for variable focus optical reader
CA2184630C (en) 1994-03-04 2004-11-09 Nathan D. Bloch Rolled web dispenser and cutting apparatus
US5691919A (en) 1995-02-28 1997-11-25 Kimberly-Clark Worldwide, Inc. System and method for collecting data on tissue consumption
JP3030228B2 (en) 1995-04-14 2000-04-10 三洋電機株式会社 Centrifugal dehydrator
US5630526A (en) 1995-10-31 1997-05-20 James River Corporation Of Virginia Sheet material dispensing system
US5657945A (en) 1996-02-05 1997-08-19 Union Underwear Company, Inc. Powerized unroller
US6695246B1 (en) 1996-02-16 2004-02-24 Bay West Paper Corporation Microprocessor controlled hands-free paper towel dispenser
US5772291A (en) 1996-02-16 1998-06-30 Mosinee Paper Corporation Hands-free paper towel dispensers
DE19635348C1 (en) 1996-08-31 1998-03-05 Herbert Windolph Method and device for determining the volume of liquid drops
FI101018B (en) 1996-12-13 1998-03-31 Balzers And Leybold Instrument Method and apparatus for electronically compensating for resonance error in a capacitive pressure sensor
US5816514A (en) 1997-01-15 1998-10-06 Reliance Electrice Industrial Company Wire supply assembly
US6112631A (en) 1997-05-07 2000-09-05 Vanalstine; Terrance L. Mechanism for paper dispenser
FR2771620B1 (en) 1997-12-01 1999-12-31 Maurice Granger WIPING PAPER DISPENSING APPARATUS
US6293486B1 (en) 1998-02-16 2001-09-25 Mosinee Paper Corporation Hands-free paper towel dispensers
DE19820978A1 (en) 1998-05-12 1999-11-18 Blatz Wilhelm Dispenser for paper hand towels
US6412679B2 (en) 1998-05-20 2002-07-02 Georgia-Pacific Corporation Paper towel dispenser
US6036137A (en) 1998-12-17 2000-03-14 Valmet-Karlstad Ab Apparatus and method for winding paper
DE60028043T2 (en) 1999-04-20 2006-12-21 The Colman Group, Inc., Elkhorn ELECTRONICALLY CONTROLLED DISPENSER FOR ROLLED TOWELS
US7044421B1 (en) 1999-04-20 2006-05-16 The Colman Group, Inc. Electronically controlled roll towel dispenser with data communication system
US6446901B1 (en) 2000-10-10 2002-09-10 Alwin Manufacturing Co., Inc. Dispenser apparatus with positive stop mechanism
US6826985B2 (en) 2000-12-15 2004-12-07 Georgia-Pacific Corporation Method of dispensing sheet material
US6592067B2 (en) 2001-02-09 2003-07-15 Georgia-Pacific Corporation Minimizing paper waste carousel-style dispenser apparatus, sensor, method and system with proximity sensor
US7017856B2 (en) 2001-02-09 2006-03-28 Georgia-Pacific Corporation Static build-up control in dispensing system
US6766977B2 (en) * 2001-02-27 2004-07-27 Georgia-Pacific Corporation Sheet material dispenser with perforation sensor and method
DE10131019A1 (en) 2001-06-05 2002-12-19 Siemens Ag Measuring and detection roller for roller conveyor assembly has sensor system with inductive, capacitive, optical, vibration or piezo sensor integrated within roller body
JP2003187410A (en) 2001-12-18 2003-07-04 Matsushita Electric Ind Co Ltd Positioning device for rotating drum
US6892620B2 (en) 2001-12-19 2005-05-17 Kimberly-Clark Worldwide, Inc. Electro-mechanical roll product dispenser
US6820785B2 (en) 2001-12-20 2004-11-23 Kimberly-Clark Worldwide, Inc. Electrical roll product dispenser
US7341170B2 (en) * 2002-03-07 2008-03-11 Georgia-Pacific Consumer Operations Llc Apparatus and methods usable in connection with dispensing flexible sheet material from a roll
US6977588B2 (en) 2002-06-03 2005-12-20 Alwin Manufacturing Co. Automatic dispenser apparatus
CA2430150A1 (en) * 2003-06-03 2004-12-03 Cascades Groupe Tissu Inc. Roll paper dispenser with roll recognition system
ES2220227B1 (en) 2003-05-30 2006-02-16 INSTITUTO NACIONAL DE TECNICA AEROESPACIAL &quot;ESTEBAN TERRADAS&quot; METHOD AND APPARATUS FOR THE DETECTION OF SUBSTANCES OR ANALYTICS FROM THE ANALYSIS OF ONE OR SEVERAL SAMPLES.
KR101074971B1 (en) 2003-08-26 2011-10-18 엘지전자 주식회사 Apparatus for safety of drum washing machine and controlling of the same
US6988689B2 (en) 2003-10-10 2006-01-24 Bay West Paper Corporation Hands-free towel dispenser with EMF controller
US7726599B2 (en) * 2003-12-31 2010-06-01 Kimberly-Clark Worldwide, Inc. Apparatus and method for dispensing sheet material
US7296765B2 (en) 2004-11-29 2007-11-20 Alwin Manufacturing Co., Inc. Automatic dispensers
US7301350B2 (en) 2005-06-03 2007-11-27 Synaptics Incorporated Methods and systems for detecting a capacitance using sigma-delta measurement techniques
DE102005048890A1 (en) 2005-10-12 2007-04-19 BSH Bosch und Siemens Hausgeräte GmbH Household laundry drier and method for detecting a rotary motion of a drum
US7256957B1 (en) 2006-01-04 2007-08-14 Marvell International Ltd. Circuits, systems, and methods for capacitive fly height measurement
US7518416B2 (en) 2007-06-14 2009-04-14 System General Corp. Method and apparatus for detecting switching current of magnetic device operated in continuous current mode

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4848854A (en) * 1987-04-22 1989-07-18 David Kennedy (Engineers) Holdings Limited Continuous towel cabinets
US20040173440A1 (en) * 2001-06-05 2004-09-09 Harald Mauch Measurement and detection roller
US7398944B2 (en) * 2004-12-01 2008-07-15 Kimberly-Clark Worldwide, Inc. Hands-free electronic towel dispenser

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9867509B2 (en) 2011-10-14 2018-01-16 San Jamar, Inc. Dispenser with capacitive-based proximity sensor
GB2509455B (en) * 2011-10-14 2018-02-28 San Jamar Inc Dispenser with capacitive-based proximity sensor

Also Published As

Publication number Publication date
US20110215188A1 (en) 2011-09-08
US8511599B2 (en) 2013-08-20

Similar Documents

Publication Publication Date Title
US8511599B2 (en) Paper towel dispensing systems
US9770143B2 (en) Electronic roll towel dispenser
US7887005B2 (en) Easy-load household automatic paper towel dispenser
US6820785B2 (en) Electrical roll product dispenser
CA2995490C (en) Sheet product dispenser with product level gauge system
US8616489B2 (en) Sheet product dispenser
EP2391487B1 (en) Paper roll dispenser with sensor attached to manual actuator
RU2008137280A (en) ELECTRONIC DISTRIBUTION DEVICE FOR THE ISSUE OF SHEET PRODUCTS
US11617478B2 (en) Systems and methods for product level tracking of sheet product rolls
WO2007068270A1 (en) Quantity sensing device in an automated dispenser, a dispenser containing same, a method of determining quantity and a supply roll for use in said dispenser and method
US10874268B2 (en) Systems, methods and apparatus for dispensing sheets of material
WO2011109064A1 (en) Delta detection method for detecting capacitance changes
CN107684389B (en) Paper discharging machine device capable of sending out accurate potential signal and control method thereof
CA2477599A1 (en) Apparatus and method to dispense flexible material
WO2011059423A1 (en) Dispenser with low-material sensing system
JP6126333B2 (en) Roll paper towel dispenser
CN113226777A (en) Auxiliary print media reception
AU2020426029A1 (en) Paper product dispenser with improved dispensing
GB2309084A (en) Electronic cord/tape measure
KR19990034494U (en) Auto Guide Extension Unit
SE522636C2 (en) Dispenser for roll of paper, includes mechanism for rotating unwound web relative to roll

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11751003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11751003

Country of ref document: EP

Kind code of ref document: A1