WO2011086644A1 - Biometric information measuring device and method for same - Google Patents

Biometric information measuring device and method for same Download PDF

Info

Publication number
WO2011086644A1
WO2011086644A1 PCT/JP2010/007368 JP2010007368W WO2011086644A1 WO 2011086644 A1 WO2011086644 A1 WO 2011086644A1 JP 2010007368 W JP2010007368 W JP 2010007368W WO 2011086644 A1 WO2011086644 A1 WO 2011086644A1
Authority
WO
WIPO (PCT)
Prior art keywords
predetermined
statistical parameter
biological information
calculation unit
model
Prior art date
Application number
PCT/JP2010/007368
Other languages
French (fr)
Japanese (ja)
Inventor
謙治 蛤
Original Assignee
コニカミノルタセンシング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタセンシング株式会社 filed Critical コニカミノルタセンシング株式会社
Publication of WO2011086644A1 publication Critical patent/WO2011086644A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2560/00Constructional details of operational features of apparatus; Accessories for medical measuring apparatus
    • A61B2560/02Operational features
    • A61B2560/0223Operational features of calibration, e.g. protocols for calibrating sensors

Definitions

  • the present invention relates to a biological information measuring apparatus that measures biological information related to a living body by measuring physiological phenomena of the living body, and in particular, even when noise occurs due to, for example, body movement of the living body, for example, blood oxygen saturation or pulse rate
  • the present invention relates to a biological information measuring device and a biological information measuring method capable of suitably measuring numbers and the like.
  • Oxygen is the most important substance for maintaining life activity, and the parameters relating to oxygen supply are important because biological tissue cells are seriously damaged when the supply of oxygen is cut off. For this reason, when oxygen supply can become unstable, for example, when treating patients with anesthesia, post-surgery, respiratory failure and circulatory failure, monitor whether or not oxygen is being supplied appropriately This is very important. Oxygen supply to the living tissue is performed by arterial blood. Therefore, in order to grasp whether or not oxygen supply to the living tissue is appropriately performed, living body information such as a pulse rate and blood oxygen saturation is monitored.
  • a biological information measuring device called a pulse oximeter has been known as a device for measuring biological information such as pulse rate and blood oxygen saturation.
  • This biological information measuring device uses a fluctuation component in the amount of transmitted or reflected light of living tissue caused by pulsation of arterial blood, and measures the attenuation of pulsation with two different wavelengths of light, and calculates the oxygen saturation from the ratio. It is a device to seek.
  • This biological information measuring device has a feature that it can be easily measured in a non-invasive manner, and is disclosed in Patent Document 1, for example.
  • the received light signal of the red light transmitted through the living tissue is filtered by a plurality of relatively narrow bandpass filters, and the received light of the infrared light transmitted through the living tissue.
  • the signal is also filtered by a plurality of band-pass filters having relatively narrow bands, and the ratio of the red light signal to the infrared light signal (red light signal / infrared light signal) from each of the filtered signals. ) And the blood oxygen saturation is obtained from the histogram of this ratio.
  • Patent Document 1 a relatively clear double peak in which noise is suppressed is obtained by filtering each of the received light signal of red light and the received light signal of infrared light with a plurality of bandpass filters.
  • the histogram which has is obtained (for example, refer to FIG. 22 of Patent Document 1).
  • it has a relatively clear double peak as in Patent Document 1 due to noise such as body movement of a living body.
  • a histogram cannot be obtained. For this reason, it is difficult to obtain biological information such as a pulse rate and blood oxygen saturation with relatively high accuracy.
  • the present invention is an invention made in view of the above-described circumstances, and its object is to provide a biological information measuring device capable of measuring biological information more accurately even when noise occurs due to, for example, body movement of the living body, and the like. It is to provide a biological information measurement method.
  • a histogram is obtained based on the measured measurement data relating to a predetermined physiological phenomenon of the living body, and predetermined statistical parameters in the obtained histogram are obtained.
  • the predetermined information is obtained by using a model prepared in advance representing the relationship between the predetermined information for obtaining the biological information of the biological body and the statistical parameter, and the obtained predetermined information is included in the obtained predetermined information. Based on this, the predetermined biological information is obtained.
  • the living body information measuring device and the living body information measuring method having such a configuration can measure living body information with higher accuracy even when noise occurs due to, for example, body movement of the living body.
  • FIG. 1 is a diagram illustrating a configuration of a biological information measurement apparatus according to the first embodiment.
  • the biological information measuring device SA in the first embodiment is a device that measures biological information related to a living body by measuring a physiological phenomenon of the living body that is a measurement target.
  • the biological information is, for example, a pulse rate and blood oxygen saturation.
  • Such biological information can be obtained by using a fluctuation component in the amount of transmitted or reflected light of biological tissue caused by pulsation of arterial blood, and the basic principle thereof is a well-known conventional means. -0264437 and the like.
  • the biological information measuring apparatus SA has a sensor unit 1 that measures a predetermined physiological phenomenon of a living body and outputs measurement data, and measurement data measured by the sensor unit 1. Based on, for example, a calculation control unit 3A that measures biological information such as a pulse rate and blood oxygen saturation, and a display unit 6 that displays the biological information measured by the calculation control unit 3A so as to be recognized from the outside.
  • a calculation control unit 3A that measures biological information such as a pulse rate and blood oxygen saturation
  • a display unit 6 that displays the biological information measured by the calculation control unit 3A so as to be recognized from the outside.
  • the sensor unit 1 is connected to the arithmetic control unit 3A, and in this embodiment, is a device that measures information related to blood in a living tissue as a physiological phenomenon of the living body. More specifically, the sensor unit 1 is a device that measures a fluctuation component in the amount of transmitted or reflected light of living tissue caused by arterial blood pulsation due to a heartbeat as a physiological phenomenon of the living body.
  • Examples of a method for measuring a physiological phenomenon of such a living body include a method using the light absorption characteristics of hemoglobin in a living tissue. Oxygen is transported to each cell of the living body by hemoglobin, but hemoglobin combines with oxygen in the lung to become oxygenated hemoglobin, and returns to hemoglobin (reduced hemoglobin) when oxygen is consumed in the cells of the living body. Blood oxygen saturation is defined as the percentage of oxyhemoglobin in the blood (in the blood).
  • each of these hemoglobin and oxyhemoglobin has a wavelength dependency, and hemoglobin absorbs more light than oxyhemoglobin for red light (red wavelength region light), for example, while infrared light (infrared light) Less light is absorbed than oxyhemoglobin.
  • red light red wavelength region light
  • infrared light infrared light
  • the living body information measuring apparatus SA of the present embodiment uses such a difference in light absorption characteristics of hemoglobin and oxidized hemoglobin with respect to red light and infrared light, for example, a living body such as a pulse rate and blood oxygen saturation. It seeks information.
  • the sensor unit 1 includes, for example, a first sensor unit 11 that measures the light absorption characteristics in the biological tissue with respect to red light, and a first sensor that measures the light absorption characteristics in the biological tissue with respect to infrared light. 2 sensor unit 12 and is connected to arithmetic control unit 3A.
  • the first sensor unit 11 includes, for example, an R light emitting element such as a light emitting diode that irradiates the biological tissue with red light having a wavelength ⁇ 1, and red light that is irradiated by the R light emitting element and transmitted or reflected by the biological tissue.
  • the second sensor unit 12 is configured to irradiate the living tissue with infrared light having a wavelength ⁇ 2 different from the wavelength ⁇ 1, for example, a light-emitting diode.
  • An IR light emitting element and an IR light receiving element such as a silicon photodiode that receives infrared light irradiated by the IR light emitting element and transmitted or reflected by the living tissue are configured.
  • the sensor unit 1 can use such a transmission type or reflection type sensor.
  • the sensor unit 1 is set in a predetermined biological tissue such as a finger, an earlobe, or the back of the hand, wrist, or foot of an infant, and measured by the first and second measuring units 11 and 12. Data is output to the arithmetic control unit 3A. More specifically, in the first sensor unit 11 having such a configuration, the R light emitting element emits red light to the living tissue, and the R light receiving element is applied to the living tissue by the R light emitting element. The red light R that is transmitted or reflected by the irradiated red light through the living tissue is received, and the received red light is photoelectrically converted, so that an electric signal corresponding to the amount of received light is used as the measurement data in the arithmetic control unit 3A. Output to.
  • a predetermined biological tissue such as a finger, an earlobe, or the back of the hand, wrist, or foot of an infant
  • Data is output to the arithmetic control unit 3A. More specifically, in the first sensor unit 11 having such a configuration
  • the IR light emitting element irradiates the biological tissue with infrared light
  • the IR light receiving element emits infrared light irradiated onto the biological tissue by the IR light emitting element.
  • an electrical signal corresponding to the amount of received light is output to the arithmetic control unit 3A as the measurement data.
  • the arithmetic control unit 3A is connected to the display unit 6 and obtains biological information based on measurement data measured by the sensor unit 1 and controls the entire biological information measuring device SA.
  • the arithmetic control unit 3A acquires time series data of measurement data from the sensor unit 1 by sampling the measurement data measured by the sensor unit 1 at a predetermined sampling period (for example, a frequency of 37.5 Hz, for example). is there. Further, for example, the arithmetic control unit 3A acquires measurement data from the sensor unit 1 as time-series data by driving the sensor unit 1 with a predetermined cycle, that is, by causing each operation of light emission and light reception to be performed.
  • the sensor unit 1 samples the measurement data as time-series data by sampling at a predetermined sampling period, and outputs the measurement data of the time-series data to the arithmetic control unit 3A.
  • This measurement data may be analog data, but in the present embodiment, it is digital data, and conversion from analog data to digital data (AD conversion) is performed by the sensor unit 1 or the arithmetic control unit 3A.
  • the sensor unit 1 or the calculation control unit 3A may further include an amplification unit that amplifies the measurement data before AD conversion.
  • the arithmetic control unit 3A obtains a histogram based on the measurement data measured by the sensor unit 1, obtains a predetermined statistical parameter in the obtained histogram, and obtains a predetermined living body related to the living body to be measured.
  • a predetermined information for obtaining information is an output variable and the predetermined statistical parameter is an input variable
  • a model representing a relationship between the output variable and the input variable is stored in advance, and the obtained
  • the predetermined information is obtained by using a statistical parameter in the model, and the predetermined biological information is obtained based on the obtained predetermined information.
  • a micro that includes a microprocessor, a memory, and its peripheral circuit Consists of a computer.
  • the memory includes various programs such as a biological information calculation program for obtaining biological information based on measurement data measured by the sensor unit 1, a control program for controlling the entire biological information measuring device SA, and a sensor unit.
  • EEPROM Electrically Erasable Programmable Read Only Memory
  • non-volatile storage that stores various data such as the measurement data measured in step 1 and data necessary for execution of the program
  • the device includes a ROM (Read Only Memory) that is an element and a RAM (Random Access Memory) that is a volatile storage element that serves as a so-called working memory of the microprocessor.
  • a first preprocessing unit 31 a second preprocessing unit 32, a first bandpass filter unit (first BPF unit) 33, and a second bandpass filter unit (second BPF unit) 34, , Histogram calculation unit 35, ratio calculation unit 36, cross-correlation calculation unit 37, first autocorrelation calculation unit 38, second autocorrelation calculation unit 39, statistical parameter calculation unit 40, pv calculation unit 41, , An SpO2 calculation unit 42, a pulse rate calculation unit 43, and a reliability calculation unit 44.
  • first preprocessing unit 31 a second preprocessing unit 32, a first bandpass filter unit (first BPF unit) 33, and a second bandpass filter unit (second BPF unit) 34, , Histogram calculation unit 35, ratio calculation unit 36, cross-correlation calculation unit 37, first autocorrelation calculation unit 38, second autocorrelation calculation unit 39, statistical parameter calculation unit 40, pv calculation unit 41, , An SpO2 calculation unit 42, a pulse rate calculation unit 43, and a reliability calculation unit
  • a known method is used for example, an output value (dark current value) Rdark output from the R light receiving element in a light-shielded state is subtracted from the measurement data related to the red light, and the infrared light is subtracted from the infrared light.
  • the output values Rdark and IRdark output from the light-receiving R light-receiving element and the IR light-receiving element are measured in advance.
  • the first and second BPF units 33 and 34 are filters that remove a predetermined noise component from the measurement data measured by the sensor unit 1, and are usually included as fluctuation components in the amount of transmitted or reflected light of living tissue caused by pulsation of arterial blood.
  • the frequency components other than the frequency components to be removed are removed.
  • the first BPF unit 33 is, for example, a filter having a predetermined frequency band including a frequency component that is normally included as a fluctuation component in the amount of transmitted or reflected light of biological tissue caused by pulsation of arterial blood with respect to red light.
  • the ratio R is filtered (filtered), and the first ratio R after the filter processing is notified to each of the ratio calculator 36, the cross-correlation calculator 37, the first autocorrelation calculator 38, and the pulse rate calculator 43.
  • the second BPF unit 34 is, for example, a filter having a predetermined frequency band including a frequency component normally included as a fluctuation component in the amount of transmitted or reflected light of living tissue caused by pulsation of arterial blood with respect to infrared light as a pass band. Filter the 2 ratio IR (filtering), and notify the second ratio IR after the filter process to each of the ratio calculator 36, the cross-correlation calculator 37, the second autocorrelation calculator 39, and the pulse rate calculator 43. To do. In the biological information measuring apparatus SA of the present embodiment, there is one band pass filter for the measurement data related to the light of one wavelength, and there is not a plurality as in the technique disclosed in Patent Document 1.
  • Patent Document 1 it is disclosed that, in a histogram relating to oxygen saturation, the maximum or minimum oxygen saturation at which a peak occurs or the frequency in the histogram is not zero is obtained.
  • a model such as a first order polynomial, a rational expression, and an irrational expression related to the statistical parameters is not used from a plurality of statistical parameters as in the present embodiment.
  • the histogram calculation unit 35 calculates a histogram (frequency distribution) of the third ratio P obtained from the measurement data measured by the sensor unit 1 within a predetermined time range, and uses the histogram of the third ratio as a statistical parameter calculation unit. 40 is notified.
  • the predetermined time range is a time range in which the number of pieces of measurement data for which the histogram is statistically significant can be acquired, and the number of pieces of measurement data is, for example, 300, 400, 500, or the like.
  • the histogram calculation unit 35 classifies a predetermined range assumed as a numerical range that can be taken by the third ratio P into a plurality of classes (classes) at predetermined intervals, and from the time of creating this histogram.
  • the frequency of the third ratio P in each class is obtained by allocating each of the plurality of third ratios P input from the ratio calculation unit 36 up to the predetermined time to one of these classes. Thereby, the histogram calculation unit 35 obtains a histogram of the third ratio P.
  • the statistical parameter calculation unit 40 calculates a predetermined statistical parameter for the histogram of the third ratio P calculated by the histogram calculation unit 35, and uses the calculated statistical parameter as the pv calculation unit 41, the SpO2 calculation unit 42, and the reliability. This is notified to each part of the calculation unit 44.
  • the predetermined statistical parameter may be, for example, an average value or a standard deviation in a histogram of the third ratio P, and may be an average value or a standard deviation in a moving average histogram of the third ratio P, for example. .
  • the cross-correlation calculating unit 37 calculates a cross-correlation CC between the first ratio R related to red light and the second ratio IR related to infrared light, and the calculated cross-correlation CC is used as the SpO2 calculating unit 42 and the reliability. This is notified to each part of the calculation unit 44.
  • the cross-correlation CC is expressed by the following equation A1.
  • CC ⁇ (R (t) ⁇ IR (t)) (A1)
  • the subscript i represents the i-th measurement data of M + 1 pieces of measurement data.
  • First correlation calculating unit 38 calculates the first autocorrelation SC R of the first ratio R according to the red light, each unit of the first autocorrelation SC R a SpO2 calculation section 42 and the reliability calculation unit 44 that the calculated To notify.
  • the first autocorrelation SC R is expressed by the following equation A2.
  • SC R ⁇ (R (t ) 2) ⁇ (A2)
  • the second correlation calculation unit 39 calculates a second autocorrelation SC IR of the second ratio IR related to infrared light, and uses the calculated second autocorrelation SC IR of the SpO2 calculation unit 42 and the reliability calculation unit 44. It notifies to each part.
  • the second autocorrelation SC IR is represented by the following equation A3.
  • SC IR ⁇ (IR (t) 2 ) (A3)
  • the pv calculation unit 41 calculates predetermined second information pv ⁇ for obtaining the noise component ratio pv based on the statistical parameter in the histogram of the third ratio P calculated by the statistical parameter calculation unit 40, and this The calculated second information pv ⁇ is notified to the SpO2 calculation unit 42 and the pulse rate calculation unit 43.
  • This second information pv ⁇ is the position of a dip in the third ratio P histogram.
  • a plurality of statistical parameters x1, x2, x3,..., Xl are used in the model.
  • the biological information measuring device SA of the present embodiment can use a model that is more appropriately approximated, and can measure biological information with higher accuracy.
  • the model includes each of a plurality of statistical parameters independently as the input variable, and at least two products of the plurality of statistical parameters and / or a ratio thereof are one or more. It may be included as an input variable.
  • the SpO2 calculation unit 42 is a statistical parameter in the histogram of the third ratio P calculated by the statistical parameter calculation unit 40, the second information pv ⁇ calculated by the pv calculation unit 41, and the cross correlation calculated by the cross correlation calculation unit 37.
  • CC based on the second autocorrelation SC IR calculated by the first autocorrelation SC R and the second autocorrelation calculating section 39 calculated by the first autocorrelation calculating unit 38 calculates the oxygen saturation, and the calculated The oxygen saturation is notified to the reliability calculation unit 44 and is output to the display unit 6.
  • an estimated value of the oxygen saturation of arterial blood determines the SpO 2. That is, the third ratio R / IR in the lookup table closest to the first information pa ⁇ in the lookup table representing the relationship between the third ratio R / IR when there is no noise and the oxygen saturation SO 2. And the oxygen saturation SO 2 corresponding to the third ratio R / IR is set as the estimated value SpO 2 of the oxygen saturation of arterial blood. Further, SpO2 calculation unit 42, by using a look-up table (calibration table) representing the relationship between the second information pv ⁇ and oxygen saturation to determine the estimated value SvO 2 oxygen saturation of venous blood.
  • the pulse rate calculator 43 calculates the pulse rate within a predetermined time (for example, based on the first ratio R related to red light, the second ratio IR related to infrared light, and pv ⁇ calculated by the pv calculator 41 (for example, 1 minute pulse rate) is calculated, and this pulse rate is output to the display unit 6.
  • the reliability calculation unit 44 is a statistical parameter in the histogram of the third ratio P calculated by the statistical parameter calculation unit 40, the oxygen saturation calculated by the SpO2 calculation unit 42, and the cross-correlation CC calculated by the cross-correlation calculation unit 37. , based on the second autocorrelation SC IR calculated by the first autocorrelation SC R and the second autocorrelation calculating section 39 calculated by the first autocorrelation calculating unit 38 calculates the predetermined level of reliability, and the calculated The reliability is output to the display unit 6.
  • the reliability is an index (degree) indicating how reliable the calculated value related to biological information is.
  • Such reliability can be obtained by any one of the following formulas B1 to B6, for example.
  • the reliability z obtained by such an equation the reliability of the blood oxygen saturation level decreases as the absolute value of the value z increases.
  • calculates the sum for i.
  • the display unit 6 is a device for displaying the operating state of the biological information measuring device SA, the biological information obtained by the arithmetic control unit 3A, and the like, for example, a liquid crystal display device (LCD), an organic EL display device, and the like.
  • the display unit 6 includes a pulse rate display unit 61 that displays the pulse rate calculated by the pulse rate calculation unit 43 and an SpO2 display unit that displays the oxygen saturation calculated by the SpO2 calculation unit 42. 62, and a reliability display unit 63 that displays the reliability calculated by the reliability calculation unit 44.
  • FIG. 2 is a flowchart showing the operation of the biological information measuring apparatus according to the first embodiment when obtaining the oxygen saturation.
  • FIG. 3 is a flowchart showing the operation of the biological information measuring apparatus according to the first embodiment when the pulse rate is obtained.
  • FIG. 4 is a diagram showing a histogram of the third ratio P in the first case.
  • FIG. 5 is a diagram showing a histogram of the third ratio P in the second case.
  • FIG. 6 is a diagram showing a histogram of the third ratio P in the third case.
  • the first case is a case where the living body is quiet and there is almost no noise
  • the second and third cases are cases where the noise is superimposed due to, for example, body movement of the living body.
  • FIG. 4 to FIG. 6 show an example of measurement results in each case. Note that the horizontal axis in FIGS. 4 to 6 is a class, and the vertical axis is frequency.
  • the biological information measuring apparatus SA for example, measurement of biological information on a biological object to be measured is started by turning on a power switch (not shown) or turning on a measurement start switch (not shown) after the power switch is turned on.
  • step S11 the first sensor unit 11 of the sensor unit 1 generates measurement data Rsignallanddark (including dark current) and its dark current Rdark related to red light. Measurement and conversion from an analog signal to a digital signal, and measurement data IRsignalland (including dark current) and its dark current IRdark relating to infrared light are measured by the second sensor unit 12 of the sensor unit 1 to obtain an analog signal. To digital signal.
  • step S12 the first preprocessing unit 31 of the arithmetic control unit 3A performs dark processing (Rsignalland-Rdark) on the measurement data Rsignallandmark related to the red light input from the sensor unit 1, and first processing is performed.
  • the ratio R is calculated, and the second preprocessing unit 32 of the arithmetic control unit 3A performs dark processing (Rsignalland-Rdark) on the measurement data IRsignallandmark related to the infrared light input from the sensor unit 1, A second ratio IR is calculated.
  • step S13 the first BPF unit 33 of the calculation control unit 3A filters the first ratio R notified from the first preprocessing unit 31, and the second BPF unit 34 of the calculation control unit 3A executes the first ratio R. 2
  • the second ratio IR notified from the preprocessing unit 32 is filtered.
  • each correlation value is calculated. That is, the cross-correlation calculating unit 37, the calculated cross-correlation CC between the first ratio R and the second ratio IR is, the first autocorrelation calculating unit 38, the autocorrelation SC R of the first ratio R is calculated, and The second autocorrelation calculating unit 39 calculates the autocorrelation SC IR of the second ratio IR.
  • step S15 the ratio calculation unit 36 of the calculation control unit 3A calculates the third ratio P of the first ratio R to the second ratio IR, and the histogram calculation unit 35 of the calculation control unit 3A calculates the predetermined time range.
  • a histogram of the third ratio P at is calculated.
  • the histogram shown in FIG. 4 is obtained.
  • histograms as shown in FIGS. 5 and 6 are obtained.
  • the biological information measuring apparatus SA of the present embodiment for example, with the profile histogram shown in FIG. 5 or FIG. Biological information such as degree can be measured.
  • a predetermined statistical parameter (x1,%) Such as an average value or standard deviation ⁇ in the histogram of the third ratio P obtained by the histogram calculation unit 35 by the statistical parameter calculation unit 40 of the arithmetic control unit 3A. x2, x3,..., xl) are obtained.
  • step S17 the standard deviation ⁇ in the histogram of the third ratio P, which is obtained as one of the statistical parameters in step S16 by the SpO2 calculation unit 42 of the arithmetic control unit 3A, is set to a predetermined threshold Th. It is judged whether it is larger. Since the standard deviation ⁇ is generally an index representing variation in data, it can be used as an index for determining the degree of noise superimposed on the measurement data.
  • Step S31 is executed, and when the standard deviation ⁇ is larger than the predetermined threshold Th (Yes), Step S31 is performed. S18 is executed.
  • step S31 when almost no noise is superimposed on the measurement data measured by the sensor unit 1 (for example, when the noise is 5% or less or 3% or less of the signal, the third ratio P).
  • 4 is the profile shown in FIG. 4
  • oxygen saturation is obtained by calculating the signal component ratio pa by ⁇ ⁇ (R (t) ⁇ IR (t) ⁇ / ⁇ ⁇ R (t) ⁇ 2.
  • the SpO2 calculating unit 42 calculates the blood oxygen saturation of the artery and the blood oxygen saturation of the vein by a known existing method such as obtaining the degree of blood, and the calculated blood oxygen saturation is displayed on the display unit. 6 is output to the SpO2 display unit 62, and then step S21 is executed.
  • the signal component ratio pa is a ratio between the signal component s corresponding to the change in absorbance in infrared light and the signal component corresponding to the change in absorbance in red light.
  • This signal component ratio pa is generally the oxygen saturation level in blood. It is known to correspond one-to-one.
  • the noise component ratio pv is a ratio between the noise component n superimposed on the signal component s for infrared light and the noise component superimposed on the signal component for red light.
  • step S18 since noise that cannot be ignored is superimposed on the measurement data measured by the sensor unit 1 (when the histogram of the third ratio P is the profile shown in FIGS. 5 and 6).
  • the SpO2 calculation unit 42 these pa ⁇ and pv blood arterial oxygen saturation from ⁇ SpO 2 and venous blood oxygen saturation SvO 2 blood is calculated, the blood the calculated
  • the intermediate oxygen saturation levels SpO 2 and SvO 2 are output to the SpO 2 display section 62 of the display section 6, and then step S 21 is executed.
  • step S21 a predetermined reliability is calculated by the reliability calculation unit 44 of the arithmetic control unit 3A, and the calculated reliability is output to the reliability display unit 63 of the display unit 6 to obtain the oxygen saturation level. Is completed, and then the pulse rate calculation process is executed.
  • step S41 R (t) ⁇ pv ⁇ ⁇ IR (t) is binarized by the pulse rate calculation unit 43 of the calculation control unit 3A.
  • step S42 the pulse rate calculation unit 43 obtains a period T (j) of the binarized R (t) ⁇ pv ⁇ ⁇ IR (t) within a predetermined time, and the period T An average value Tave of (j) is calculated.
  • step S43 the pulse rate calculation unit 43 calculates the pulse rate based on the average value Tave of 60 / cycle in order to obtain the pulse rate for one minute, and the calculated pulse rate is displayed on the display unit 6.
  • the data is output to the number display unit 61, and the process is terminated.
  • the pulse rate, the arterial and venous oxygen saturation levels and the reliability obtained by the arithmetic control unit 3 A are displayed in the pulse rate display unit 61, the SpO 2 display unit 62 and the reliability display unit 63. Displayed on each.
  • the biological information measuring apparatus SA of the first embodiment can measure biological information such as pulse rate and oxygen saturation more accurately even when noise occurs due to, for example, body movement of the living body. Can do.
  • FIG. 7 is a diagram illustrating a configuration of the biological information measurement device according to the second embodiment.
  • the biological information measuring device SA according to the first embodiment calculates the second information pv ⁇ from the statistical parameter in the histogram of the third ratio P and calculates the oxygen saturation, but the biological information measuring device SB according to the second embodiment. Is to obtain the first information pa ⁇ and the second information pv ⁇ from the statistical parameters in the histogram of the third ratio P, and calculate the oxygen saturation.
  • the biological information measuring device SB of the second embodiment is configured to include an arithmetic control unit 3B described later instead of the arithmetic control unit 3A in the biological information measuring device SA of the first embodiment.
  • the biological information measuring device SB of the second embodiment includes, for example, as shown in FIG. 7, a sensor unit 1 that measures a predetermined physiological phenomenon of the living body and a predetermined physiological state of the living body that is measured by the sensor unit 1.
  • a sensor unit 1 that measures a predetermined physiological phenomenon of the living body and a predetermined physiological state of the living body that is measured by the sensor unit 1.
  • an arithmetic control unit 3B that measures biological information such as a pulse rate and blood oxygen saturation
  • a display unit 6 that displays the biological information measured by the arithmetic control unit 3B so as to be recognized from the outside. Configured. Since the sensor unit 1 and the display unit 6 are the same as the sensor unit 1 and the display unit 6 in the biological information measuring apparatus SA of the first embodiment, description thereof is omitted.
  • this calculation control part 3B is connected to the display part 6 similarly to the calculation control part 3A of 1st Embodiment, While calculating
  • the device controls the entire device SA, and is configured by, for example, a microcomputer including a microprocessor, a memory, and its peripheral circuits.
  • the microprocessor is functionally executed by executing the program according to the second embodiment, for example, the first preprocessing unit 31, the second preprocessing unit 32, and the first bandpass filter unit (first 1BPF unit) 33, second bandpass filter unit (second BPF unit) 34, histogram calculation unit 35, ratio calculation unit 36, statistical parameter calculation unit 40, pa / pv calculation unit 51, and SpO2 / SvO2 A calculation unit 52, a pulse rate calculation unit 43, and a reliability calculation unit 53 are provided.
  • the first preprocessing unit 31, the second preprocessing unit 32, the first BPF unit 33, the second BPF unit 34, the histogram calculation unit 35, the ratio calculation unit 36, and the statistical parameter calculation unit 40 are the first implementation. Since it is the same as the first preprocessing unit 31, the second preprocessing unit 32, the first BPF unit 33, the second BPF unit 34, the histogram calculation unit 35, the ratio calculation unit 36, and the statistical parameter calculation unit 40 in the embodiment, the description thereof will be given. Omitted.
  • the pa ⁇ pv calculator 51 calculates predetermined first information pa ⁇ and noise component pv for obtaining the signal component ratio pa based on the statistical parameter in the histogram of the third ratio P calculated by the statistical parameter calculator 40.
  • the predetermined second information pv ⁇ for obtaining the above is calculated, and the calculated first and second information pa ⁇ and pv ⁇ are notified to the SpO2 / SvO2 calculation unit 52 and the pulse rate calculation unit 43.
  • this predetermined first information pa ⁇ for obtaining predetermined biological information about the measurement target biological body is used as an output variable, and the predetermined statistical parameter is set as an input variable x1, x2, x3,.
  • a model representing the relationship between the output variable pa ⁇ and the input variables x1, x2, x3, ..., xl; pa ⁇ g (x1, x2, x3, ..., xl) is, for example, a multiple regression analysis Etc., and is stored in the pa / pv calculation unit 51 in advance.
  • the predetermined second information pv ⁇ for obtaining predetermined biological information related to the measurement target biological body is used as an output variable, and the predetermined statistical parameters are input variables x1, x2, x3,.
  • Model representing the relationship between the output variable pv ⁇ and the input variables x1, x2, x3,..., Xl; pv ⁇ f (x1, x2, x3,.
  • pa ⁇ g (x1, x2, x3,..., xl)
  • pv ⁇ f (x1, x2, x3,..., xl)
  • the SpO2 / SvO2 calculation unit 52 is based on the statistical parameter in the histogram of the third ratio P calculated by the statistical parameter calculation unit 40, and the first and second information pa ⁇ and pv ⁇ calculated by the pa / pv calculation unit 51.
  • the oxygen saturation is calculated, and the calculated oxygen saturation is notified to the reliability calculation unit 53 and output to the display unit 6.
  • SpO2 ⁇ SvO2 calculator 52 by using a look-up table (calibration table) representing the relationship between the first information pa ⁇ and oxygen saturation, obtains the estimated value SpO 2 oxygen saturation of arterial blood, the 2 By using a look-up table (calibration table) representing the relationship between information pv ⁇ and oxygen saturation, an estimated value SvO 2 of oxygen saturation of venous blood is obtained.
  • the pulse rate calculation unit 43 calculates the pulse rate within a predetermined time based on the first ratio R related to red light, the second ratio IR related to infrared light, and pv ⁇ calculated by the pa ⁇ pv calculation unit 51. (For example, the pulse rate for 1 minute) is calculated, and this pulse rate is output to the display unit 6.
  • the reliability calculation unit 53 is a predetermined calculation set in advance based on the statistical parameter in the histogram of the third ratio P calculated by the statistical parameter calculation unit 40 and the oxygen saturation calculated by the SpO 2 / SvO 2 calculation unit 52.
  • a predetermined reliability is calculated using an equation, and the calculated reliability is output to the display unit 6.
  • FIG. 8 is a flowchart showing the operation of the biological information measuring apparatus according to the second embodiment when obtaining the oxygen saturation.
  • the biological information measuring device SB for example, measurement of biological information of a living body to be measured is started by turning on a power switch (not shown) or turning on a measurement start switch (not shown) after the power switch is turned on.
  • the operation for obtaining the pulse rate is the same as the above-described operation for obtaining the pulse rate in the biological information measuring device SA of the first embodiment, and thus the description thereof is omitted.
  • the operation for obtaining the oxygen saturation will be described.
  • the biological information measuring device SB of the second embodiment is the biological information measuring device SA of the first embodiment.
  • Steps S51 to S57 similar to Steps S11 to S17 described above with reference to FIG. 2 are executed. If the result of determination in step S57 is that the standard deviation ⁇ is equal to or less than the predetermined threshold Th (No), step S71 similar to step S31 in the biological information measuring device SA of the first embodiment is executed. After that, step S60 is executed, and when the standard deviation ⁇ is larger than the predetermined threshold Th (Yes), step S58 is executed.
  • step S58 since noise that cannot be ignored is superimposed on the measurement data measured by the sensor unit 1 (when the histogram of the third ratio P is the profile shown in FIGS. 5 and 6),
  • step S59 the blood oxygen saturation of the artery and the blood oxygen saturation of the vein are calculated from the pa ⁇ and pv ⁇ by the SpO2 / SvO2 calculating unit 52, and each of the calculated blood oxygen saturations is calculated.
  • the degree is output to the SpO2 display unit 62 of the display unit 6, and then step S60 is executed.
  • step S60 a predetermined reliability is calculated by the reliability calculation unit 53 of the arithmetic control unit 3B, and the calculated reliability is output to the reliability display unit 63 of the display unit 6 to obtain the oxygen saturation level. Is completed, and then the pulse rate calculation process is executed.
  • the measurement of the pulse rate is performed in the same manner as the biological information measuring apparatus SA of the first embodiment, whereby the pulse rate is calculated.
  • the calculated pulse rate is the pulse rate of the display unit 6.
  • the data is output to the display unit 61, and the process is terminated.
  • the pulse rate, arterial and venous oxygen saturation levels and reliability obtained by the calculation control unit 3 B are stored in the pulse rate display unit 61, the SpO 2 display unit 62, and the reliability display unit 63. Displayed on each.
  • the biological information measuring device SB of the second embodiment can measure biological information such as pulse rate and oxygen saturation more accurately even when noise occurs due to, for example, body movement of the living body. Can do.
  • the biological information measuring devices SA and SB in the first and second embodiments described above are connected to an external storage unit (not shown) or an external storage unit and exchange data with the external storage unit as necessary.
  • an interface unit such as RS-232C standard or USB standard may be further provided.
  • the external storage unit stores data with a storage medium such as a memory card, flexible disk, CD-R (Compact Disc Recordable), DVD-R (Digital Versatile Disc Recordable), and Blu-ray Disc (Blue-ray Disc), for example.
  • An apparatus that performs reading and / or writing, such as a memory card interface, a flexible disk drive, a CD-ROM drive, a CD-R drive, a DVD-R drive, and a Blu-ray disk drive.
  • the biological information measuring devices SA and SB having such a configuration, when the program or the like for performing the above-described processing is not stored in the arithmetic control units 3A and 3B, You may comprise so that it may be installed in arithmetic control part 3A, 3B via an external memory
  • the measurement data measured by the sensor unit 1 or the measurement data after being processed by the first and second preprocessing units 31 and 32 and the first and second BPF units 33 and 34 are transmitted to the outside via the interface unit.
  • the measurement data taken out and taken out to the outside may be subjected to arithmetic processing by a computer in which a program or the like for performing the above-described processing is installed, whereby predetermined biological information may be calculated.
  • the above model is a plurality of models corresponding to the values of statistical parameters
  • the pv calculation unit 41 and the pa / pv calculation unit 51 determines the second information pv ⁇ and the first information pa ⁇ from the statistical parameters obtained by the statistical parameter calculator 40 by using the plurality of models according to the values of the statistical parameters, and based on these, for example, oxygen Predetermined biological information such as saturation may be obtained.
  • oxygen Predetermined biological information such as saturation may be obtained.
  • the above model includes a first model and a second model for correcting a value obtained by the first model
  • the pv calculation unit 41 and the pa / pv calculation unit 51 use the statistical parameter obtained by the statistical parameter calculation unit 40 as the value obtained by using the statistical parameter obtained by the statistical parameter calculation unit 40 in the first model.
  • the second information pv ⁇ and the first information pa ⁇ may be obtained, and biological information such as oxygen saturation may be obtained based on the second information pv ⁇ . .
  • the biological information measuring devices SA and SB can obtain the correction value, so that the biological information can be measured with higher accuracy.
  • the model described above is the first model, the value obtained by the first model and the first model, and the predetermined statistical parameter as input variables.
  • the pv calculation unit 41 and the pa / pv calculation unit 51 include values obtained by using the statistical parameter obtained by the statistical parameter calculation unit 40 for the first model and the statistical parameter calculation unit 40.
  • the second information pv ⁇ and the first information pa ⁇ may be obtained, and based on these, biological information such as oxygen saturation may be obtained.
  • the biological information measuring devices SA and SB use the second model in which the value of the first model is also an input variable, so that the biological information can be measured with higher accuracy.
  • a biological information measuring apparatus includes a measurement unit that measures a predetermined physiological phenomenon in a living body to be measured and outputs measurement data, and a histogram calculation that obtains a histogram based on the measurement data measured by the measurement unit
  • a statistical parameter calculation unit for obtaining a predetermined statistical parameter in the histogram obtained by the histogram calculation unit, and predetermined information for obtaining predetermined biological information about the biological body to be measured as an output variable and the predetermined parameter
  • a model representing the relationship between the output variable and the input variable for example, a first-order polynomial, a rational expression, an irrational expression, etc.
  • the statistical parameter calculation unit By using the statistical parameters determined by Serial obtains predetermined information, and a biological information calculation unit for determining the predetermined biometric information based on the predetermined information obtained.
  • a measurement step of measuring a predetermined physiological phenomenon in a measurement target living body to obtain measurement data, and a histogram based on the measurement data obtained by the measurement step are performed.
  • a histogram calculation step to be obtained, a statistical parameter calculation step to obtain a predetermined statistical parameter in the histogram obtained by the histogram calculation step, and predetermined information for obtaining predetermined biological information about the living body to be measured are output variables.
  • a model for example, a linear polynomial, a rational expression, an irrational expression, etc. relating to the input variable
  • the statistical parameter obtained by the parameter calculation unit is used for the model. It obtains the predetermined information by Rukoto, and a biological information calculation step of calculating said predetermined biometric information based on the predetermined information obtained.
  • the living body information measuring apparatus and the living body information measuring method configured as described above, predetermined biological information in the living body is obtained based on statistical parameters in a histogram based on measurement data obtained from the living body to be measured. For this reason, the living body information measuring apparatus and the living body information measuring method having such a configuration can measure living body information with higher accuracy even when noise occurs due to, for example, body movement of the living body.
  • the biological information measuring device irradiates a biological tissue of a living body to be measured with a first light having a predetermined first wavelength, and receives the first light transmitted or reflected by the living tissue of the living body.
  • the first sensor unit for outputting the first measurement data, and the second biological light with a predetermined second wavelength different from the first wavelength is irradiated to the biological tissue of the living body, and transmitted or reflected through the living tissue of the living body.
  • a second sensor unit that receives the second light and outputs second measurement data; a first ratio of an AC component to a DC component in the first measurement data; and a DC component in the second measurement data
  • a histogram calculation unit for obtaining a histogram of a third ratio calculated based on the second ratio of the AC component, and a statistical parameter for obtaining a predetermined statistical parameter in the histogram obtained by the histogram calculation unit
  • Data calculation unit and when the predetermined information for obtaining the oxygen saturation of the living body to be measured is an output variable and the predetermined statistical parameter is an input variable, the output variable and the input variable
  • a model representing a relationship for example, a first order polynomial, a rational expression, an irrational expression, etc. relating to an input variable
  • the predetermined information is obtained by using the statistical parameter obtained by the statistical parameter calculation unit for the model.
  • a biological information calculation unit for determining the oxygen saturation based on the determined predetermined information.
  • a measurement step of measuring a predetermined physiological phenomenon in a measurement target living body to obtain measurement data, and a histogram based on the measurement data obtained by the measurement step are performed.
  • a model representing a relationship between the output variable and the input variable when the predetermined statistical parameter is an input variable (for example, a first order polynomial, a rational expression, an irrational expression, etc. regarding the input variable) is stored in advance, and the statistical parameter Using the statistical parameter obtained by the calculation unit for the model It obtains the predetermined information I, and a biological information calculation step of calculating the oxygen saturation based on the predetermined information obtained.
  • the living body information measuring apparatus and living body information measuring method having such a configuration can measure the oxygen saturation of a living body with higher accuracy even when noise occurs due to, for example, body movement of the living body. And according to this structure, what is called a pulse oximeter which can measure oxygen saturation is provided.
  • the statistical parameter is plural. In another aspect, in the above-described biological information measuring device, preferably, the statistical parameter is plural.
  • the model includes each of the plurality of statistical parameters independently as the input variable and at least two of the plurality of statistical parameters. And / or ratios as one or more of the input variables.
  • a plurality of statistical parameters are used not only as input variables of the model, but also their products and / or their ratios are used as input variables of the model, so that a more appropriately approximate model is provided.
  • the biological information can be measured with higher accuracy.
  • the model is a plurality of models according to a value of a statistical parameter
  • the biological information calculation unit is configured according to a value of the statistical parameter.
  • the predetermined information is obtained from the statistical parameter obtained by the statistical parameter calculation unit using the plurality of models, and the predetermined biological information is obtained based on the obtained predetermined information.
  • the model includes a first model and a second model for correcting a value obtained by the first model.
  • the information calculation unit uses a value obtained by using the statistical parameter obtained by the statistical parameter calculation unit for the first model, and uses the statistical parameter obtained by the statistical parameter calculation unit for the second model.
  • the predetermined information is obtained by correcting with the correction value obtained in this way, and the predetermined biological information is obtained based on the obtained predetermined information.
  • first and second models for example, linear polynomials relating to input variables, rational expressions, and irrational expressions are used.
  • the model is a second model using a first model, a value obtained by the first model, and the predetermined statistical parameter as input variables.
  • the biological information calculation unit includes the value obtained by using the statistical parameter obtained by the statistical parameter calculation unit for the first model and the statistical parameter obtained by the statistical parameter calculation unit.
  • the predetermined information is obtained by using the second model, and the predetermined biological information is obtained based on the obtained predetermined information.
  • a living body information measuring apparatus and a living body information measuring method for measuring living body information related to a living body by measuring a physiological phenomenon of the living body.

Abstract

In the disclosed biometric information measuring device (SA) and method for the same, a histogram based on measurement data related to measured predetermined physiological phenomena of a living being is acquired by a histogram calculation unit (35); predetermined statistical parameters in the acquired histogram are acquired by a statistical parameter calculation unit (40); predetermined information for acquiring biometric information of the living body, such as a pv value, is acquired by a pv calculation unit (41) by using a model prepared beforehand representing a relationship between the predetermined information and the statistical parameters; and then, on the basis of the acquired predetermined information, which is the pv value in this example, the predetermined biometric information, which is the SpO2 value in this example, is obtained by an SpO2 calculation unit (42).

Description

生体情報測定装置および該方法Biological information measuring apparatus and method
 本発明は、生体の生理的現象を測定することによって生体に関する生体情報を測定する生体情報測定装置に関し、特に、例えば生体の体動等によってノイズが生じた場合でも例えば血中酸素飽和度や脈拍数等を好適に測定し得る生体情報測定装置および生体情報測定方法に関する。 The present invention relates to a biological information measuring apparatus that measures biological information related to a living body by measuring physiological phenomena of the living body, and in particular, even when noise occurs due to, for example, body movement of the living body, for example, blood oxygen saturation or pulse rate The present invention relates to a biological information measuring device and a biological information measuring method capable of suitably measuring numbers and the like.
 生体組織の酸素濃度を監視する意義は、周知の通り、臨床において極めて大きい。酸素は、生命活動維持のために最も重要な物質であり、酸素の供給が絶たれると生体組織細胞は、重大な傷害を受けることから、酸素供給に関するパラメータは、重要である。このため、酸素供給が不安定になり得る場合、例えば、麻酔中、術後、呼吸不全および循環不全等の患者を治療する場合には、特に酸素が適切に供給されているか否かをモニタすることが重要である。生体組織への酸素供給は、動脈血によって行われる。そのため、生体組織への酸素供給が適切に行われているか否かを把握するために、例えば脈拍数や血中酸素飽和度等の生体に関する生体情報がモニタされる。 As is well known, the significance of monitoring the oxygen concentration in living tissue is extremely great in clinical practice. Oxygen is the most important substance for maintaining life activity, and the parameters relating to oxygen supply are important because biological tissue cells are seriously damaged when the supply of oxygen is cut off. For this reason, when oxygen supply can become unstable, for example, when treating patients with anesthesia, post-surgery, respiratory failure and circulatory failure, monitor whether or not oxygen is being supplied appropriately This is very important. Oxygen supply to the living tissue is performed by arterial blood. Therefore, in order to grasp whether or not oxygen supply to the living tissue is appropriately performed, living body information such as a pulse rate and blood oxygen saturation is monitored.
 これら脈拍数や血中酸素飽和度等の生体情報を測定する装置として、従来、パルスオキシメータと称される生体情報測定装置が知られている。この生体情報測定装置は、動脈血の脈動により生ずる生体組織の透過または反射光量における変動成分を利用するもので、脈動分の減光度を異なる2波長の光で測定してその比から酸素飽和度を求める装置である。この生体情報測定装置は、非侵襲で簡便に測定ができるという特長があり、例えば、特許文献1に開示されている。 Conventionally, a biological information measuring device called a pulse oximeter has been known as a device for measuring biological information such as pulse rate and blood oxygen saturation. This biological information measuring device uses a fluctuation component in the amount of transmitted or reflected light of living tissue caused by pulsation of arterial blood, and measures the attenuation of pulsation with two different wavelengths of light, and calculates the oxygen saturation from the ratio. It is a device to seek. This biological information measuring device has a feature that it can be easily measured in a non-invasive manner, and is disclosed in Patent Document 1, for example.
 この特許文献1に開示の装置では、生体組織を透過した赤色光の受光信号は、比較的狭帯域の複数のバンドパスフィルタでフィルタリング処理されるとともに、前記生体組織を透過した赤外光の受光信号も比較的狭帯域の複数のバンドパスフィルタでフィルタリング処理され、これらフィルタリング処理された後の各信号から赤外光の信号に対する赤色光の信号の比(赤色光の信号/赤外光の信号)が求められ、この比のヒストグラムから血中酸素飽和度が求められている。 In the apparatus disclosed in Patent Document 1, the received light signal of the red light transmitted through the living tissue is filtered by a plurality of relatively narrow bandpass filters, and the received light of the infrared light transmitted through the living tissue. The signal is also filtered by a plurality of band-pass filters having relatively narrow bands, and the ratio of the red light signal to the infrared light signal (red light signal / infrared light signal) from each of the filtered signals. ) And the blood oxygen saturation is obtained from the histogram of this ratio.
 前記特許文献1では、上述のように、赤色光の受光信号および赤外光の受光信号のそれぞれを複数のバンドパスフィルタでフィルタリング処理することによって、ノイズの抑制された比較的明瞭なダブルピークを持つヒストグラムが得られている(例えば特許文献1のFIG.22参照)。しかしながら、赤色光の受光信号および赤外光の受光信号のそれぞれを1個のフィルタでフィルタリング処理する場合、例えば生体の体動等のノイズによって特許文献1のような比較的明瞭なダブルピークを持つヒストグラムが得られないことが多く、このため、例えば脈拍数や血中酸素飽和度等の生体情報を比較的精度よく求めることが難しい。 In Patent Document 1, as described above, a relatively clear double peak in which noise is suppressed is obtained by filtering each of the received light signal of red light and the received light signal of infrared light with a plurality of bandpass filters. The histogram which has is obtained (for example, refer to FIG. 22 of Patent Document 1). However, when each of the received light signal of red light and the received light signal of infrared light is filtered by a single filter, for example, it has a relatively clear double peak as in Patent Document 1 due to noise such as body movement of a living body. In many cases, a histogram cannot be obtained. For this reason, it is difficult to obtain biological information such as a pulse rate and blood oxygen saturation with relatively high accuracy.
米国特許第7509154号明細書US Pat. No. 7,509,154
 本発明は、上述の事情に鑑みて為された発明であり、その目的は、例えば生体の体動等によってノイズが生じた場合でもより精度よく生体情報を測定することができる生体情報測定装置および生体情報測定方法を提供することである。 The present invention is an invention made in view of the above-described circumstances, and its object is to provide a biological information measuring device capable of measuring biological information more accurately even when noise occurs due to, for example, body movement of the living body, and the like. It is to provide a biological information measurement method.
 本発明にかかる生体情報測定装置および生体情報測定方法では、測定された、生体の所定の生理的現象に関する測定データに基づいてヒストグラムが求められ、この求められたヒストグラムにおける所定の統計パラメータが求められ、前記生体の生体情報を求めるための所定の情報と前記統計パラメータとの関係を表す、予め用意されたモデルを用いることによって前記所定の情報が求められ、そして、この求めた前記所定の情報に基づいて前記所定の生体情報が求められる。このため、このような構成の生体情報測定装置および生体情報測定方法は、例えば生体の体動等によってノイズが生じた場合でもより精度よく生体情報を測定することができる。 In the biological information measuring device and the biological information measuring method according to the present invention, a histogram is obtained based on the measured measurement data relating to a predetermined physiological phenomenon of the living body, and predetermined statistical parameters in the obtained histogram are obtained. The predetermined information is obtained by using a model prepared in advance representing the relationship between the predetermined information for obtaining the biological information of the biological body and the statistical parameter, and the obtained predetermined information is included in the obtained predetermined information. Based on this, the predetermined biological information is obtained. For this reason, the living body information measuring device and the living body information measuring method having such a configuration can measure living body information with higher accuracy even when noise occurs due to, for example, body movement of the living body.
 上記並びにその他の本発明の目的、特徴及び利点は、以下の詳細な記載と添付図面から明らかになるであろう。 The above and other objects, features and advantages of the present invention will become apparent from the following detailed description and the accompanying drawings.
第1実施形態における生体情報測定装置の構成を示す図である。It is a figure which shows the structure of the biometric information measuring apparatus in 1st Embodiment. 酸素飽和度を求める場合における、第1実施形態の生体情報測定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the biometric information measuring apparatus of 1st Embodiment in the case of calculating | requiring oxygen saturation. 脈拍数を求める場合における、第1実施形態の生体情報測定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the biometric information measuring apparatus of 1st Embodiment in the case of calculating | requiring a pulse rate. 第1ケースにおける第3比Pのヒストグラムを示す図である。It is a figure which shows the histogram of 3rd ratio P in a 1st case. 第2ケースにおける第3比Pのヒストグラムを示す図である。It is a figure which shows the histogram of 3rd ratio P in a 2nd case. 第3ケースにおける第3比Pのヒストグラムを示す図である。It is a figure which shows the histogram of 3rd ratio P in a 3rd case. 第2実施形態における生体情報測定装置の構成を示す図である。It is a figure which shows the structure of the biometric information measuring apparatus in 2nd Embodiment. 酸素飽和度を求める場合における、第2実施形態の生体情報測定装置の動作を示すフローチャートである。It is a flowchart which shows operation | movement of the biometric information measuring apparatus of 2nd Embodiment in the case of calculating | requiring oxygen saturation.
 以下、本発明にかかる実施の一形態を図面に基づいて説明する。なお、各図において同一の符号を付した構成は、同一の構成であることを示し、適宜、その説明を省略する。 Hereinafter, an embodiment according to the present invention will be described with reference to the drawings. In addition, the structure which attached | subjected the same code | symbol in each figure shows that it is the same structure, The description is abbreviate | omitted suitably.
 (第1実施形態)
 図1は、第1実施形態における生体情報測定装置の構成を示す図である。第1実施形態における生体情報測定装置SAは、測定対象である生体の生理的現象を測定することによって生体に関する生体情報を測定する装置である。生体情報は、例えば、脈拍数や血中酸素飽和度等である。このような生体情報は、動脈血の脈動により生ずる生体組織の透過または反射光量における変動成分を利用することによって求めることができ、その基本原理は、公知の常套手段であって、例えば、特公昭53-026437号公報等に開示されている。
(First embodiment)
FIG. 1 is a diagram illustrating a configuration of a biological information measurement apparatus according to the first embodiment. The biological information measuring device SA in the first embodiment is a device that measures biological information related to a living body by measuring a physiological phenomenon of the living body that is a measurement target. The biological information is, for example, a pulse rate and blood oxygen saturation. Such biological information can be obtained by using a fluctuation component in the amount of transmitted or reflected light of biological tissue caused by pulsation of arterial blood, and the basic principle thereof is a well-known conventional means. -0264437 and the like.
 このような生体情報測定装置SAは、例えば、図1に示すように、生体の所定の生理的現象を測定して測定データを出力するセンサ部1と、センサ部1で測定された測定データに基づいて例えば脈拍数や血中酸素飽和度等の生体情報を測定する演算制御部3Aと、演算制御部3Aで測定した生体情報を外部から認識可能に表示する表示部6とを備えて構成される。 For example, as shown in FIG. 1, the biological information measuring apparatus SA has a sensor unit 1 that measures a predetermined physiological phenomenon of a living body and outputs measurement data, and measurement data measured by the sensor unit 1. Based on, for example, a calculation control unit 3A that measures biological information such as a pulse rate and blood oxygen saturation, and a display unit 6 that displays the biological information measured by the calculation control unit 3A so as to be recognized from the outside. The
 センサ部1は、演算制御部3Aに接続され、本実施形態では、生体の生理的現象として生体組織中の血液に関する情報を測定する装置である。より具体的には、センサ部1は、生体の生理的現象として、心拍による動脈血の脈動により生ずる生体組織の透過または反射光量における変動成分を測定する装置である。 The sensor unit 1 is connected to the arithmetic control unit 3A, and in this embodiment, is a device that measures information related to blood in a living tissue as a physiological phenomenon of the living body. More specifically, the sensor unit 1 is a device that measures a fluctuation component in the amount of transmitted or reflected light of living tissue caused by arterial blood pulsation due to a heartbeat as a physiological phenomenon of the living body.
 このような生体の生理的現象を測定する方法は、例えば、生体組織のヘモグロビンの吸光特性を利用する方法を挙げることができる。酸素は、ヘモグロビンによって生体の各細胞に運ばれるが、ヘモグロビンは、肺で酸素と結合して酸化ヘモグロビンとなり、生体の細胞で酸素が消費されるとヘモグロビン(還元ヘモグロビン)に戻る。血中酸素飽和度は、血中(血液中)の酸化ヘモグロビンの割合として定義される。これらヘモグロビンおよび酸化ヘモグロビンの各吸光度は、波長依存性を有しており、ヘモグロビンは、例えば赤色光(赤色波長領域の光)に対し酸化ヘモグロビンより光を多く吸収し、一方、赤外光(赤外線波長領域の光)に対して酸化ヘモグロビンより光の吸収が少ない。すなわち、ヘモグロビンは、酸化されて酸化ヘモグロビンになると赤色光の吸収が減少して赤外光の吸収が増加し、逆に還元されてヘモグロビンに戻ると赤色光の吸収が増加して赤外光の吸収が減少するという光学的特性を有している。本実施形態の生体情報測定装置SAは、このようなヘモグロビンと酸化ヘモグロビンとの赤色光と赤外光とに対する吸光特性の違いを利用することによって、例えば脈拍数や血中酸素飽和度等の生体情報を求めるものである。 Examples of a method for measuring a physiological phenomenon of such a living body include a method using the light absorption characteristics of hemoglobin in a living tissue. Oxygen is transported to each cell of the living body by hemoglobin, but hemoglobin combines with oxygen in the lung to become oxygenated hemoglobin, and returns to hemoglobin (reduced hemoglobin) when oxygen is consumed in the cells of the living body. Blood oxygen saturation is defined as the percentage of oxyhemoglobin in the blood (in the blood). The absorbance of each of these hemoglobin and oxyhemoglobin has a wavelength dependency, and hemoglobin absorbs more light than oxyhemoglobin for red light (red wavelength region light), for example, while infrared light (infrared light) Less light is absorbed than oxyhemoglobin. In other words, when hemoglobin is oxidized to oxygenated hemoglobin, the absorption of red light decreases and the absorption of infrared light increases. Conversely, when it is reduced to return to hemoglobin, the absorption of red light increases and the absorption of infrared light increases. It has an optical property that absorption is reduced. The living body information measuring apparatus SA of the present embodiment uses such a difference in light absorption characteristics of hemoglobin and oxidized hemoglobin with respect to red light and infrared light, for example, a living body such as a pulse rate and blood oxygen saturation. It seeks information.
 このような方法によるため、本実施形態のセンサ部1は、例えば、赤色光に対する生体組織における吸光特性を測定する第1センサ部11と、赤外光に対する前記生体組織における吸光特性を測定する第2センサ部12とを備えて構成され、演算制御部3Aに接続される。この第1センサ部11は、例えば、波長λ1の赤色光を前記生体組織に照射する例えば発光ダイオード等のR発光素子と、前記R発光素子で照射され前記生体組織を透過または反射した赤色光を受光する例えばシリコンホトダイオード等のR受光素子とを備えて構成され、この第2センサ部12は、例えば、前記波長λ1と異なる波長λ2の赤外色光を前記生体組織に照射する例えば発光ダイオード等のIR発光素子と、前記IR発光素子で照射され前記生体組織を透過または反射した赤外光を受光する例えばシリコンホトダイオード等のIR受光素子とを備えて構成される。センサ部1は、このような透過型または反射型のセンサを用いることができる。 Due to such a method, the sensor unit 1 according to the present embodiment includes, for example, a first sensor unit 11 that measures the light absorption characteristics in the biological tissue with respect to red light, and a first sensor that measures the light absorption characteristics in the biological tissue with respect to infrared light. 2 sensor unit 12 and is connected to arithmetic control unit 3A. The first sensor unit 11 includes, for example, an R light emitting element such as a light emitting diode that irradiates the biological tissue with red light having a wavelength λ1, and red light that is irradiated by the R light emitting element and transmitted or reflected by the biological tissue. For example, the second sensor unit 12 is configured to irradiate the living tissue with infrared light having a wavelength λ2 different from the wavelength λ1, for example, a light-emitting diode. An IR light emitting element and an IR light receiving element such as a silicon photodiode that receives infrared light irradiated by the IR light emitting element and transmitted or reflected by the living tissue are configured. The sensor unit 1 can use such a transmission type or reflection type sensor.
 センサ部1は、例えば、手指や耳朶等や、乳幼児の場合の手の甲、手首、足の甲等の、所定の生体組織にセットされ、第1および第2測定部11、12で測定された測定データを演算制御部3Aへ出力する。より具体的には、このような構成の第1センサ部11では、前記R発光素子は、前記生体組織に対し赤色光を照射し、前記R受光素子は、このR発光素子によって前記生体組織に照射された赤色光の前記生体組織を透過または反射した赤色光Rを受光し、この受光した赤色光を光電変換することによって、その受光量に応じた電気信号を前記測定データとして演算制御部3Aへ出力する。同様に、第2センサ部12では、前記IR発光素子は、前記生体組織に対し赤外光を照射し、前記IR受光素子は、このIR発光素子によって前記生体組織に照射された赤外光の前記生体組織を透過または反射した赤外光を受光し、この受光した赤外光を光電変換することによって、その受光量に応じた電気信号を前記測定データとして演算制御部3Aへ出力する。 The sensor unit 1 is set in a predetermined biological tissue such as a finger, an earlobe, or the back of the hand, wrist, or foot of an infant, and measured by the first and second measuring units 11 and 12. Data is output to the arithmetic control unit 3A. More specifically, in the first sensor unit 11 having such a configuration, the R light emitting element emits red light to the living tissue, and the R light receiving element is applied to the living tissue by the R light emitting element. The red light R that is transmitted or reflected by the irradiated red light through the living tissue is received, and the received red light is photoelectrically converted, so that an electric signal corresponding to the amount of received light is used as the measurement data in the arithmetic control unit 3A. Output to. Similarly, in the second sensor unit 12, the IR light emitting element irradiates the biological tissue with infrared light, and the IR light receiving element emits infrared light irradiated onto the biological tissue by the IR light emitting element. By receiving infrared light transmitted or reflected through the living tissue and photoelectrically converting the received infrared light, an electrical signal corresponding to the amount of received light is output to the arithmetic control unit 3A as the measurement data.
 演算制御部3Aは、表示部6に接続され、センサ部1で測定された測定データに基づいて生体情報を求めるとともに、生体情報測定装置SA全体の制御を司る装置である。演算制御部3Aは、例えば、センサ部1で測定された測定データを所定のサンプリング周期(例えば周波数37.5Hz等)でサンプリングすることによって測定データの時系列データをセンサ部1から取得するものである。また例えば、演算制御部3Aは、所定の周期でセンサ部1を駆動、すなわち、発光および受光の各動作を行わせることによって、時系列データとして測定データをセンサ部1から取得するものである。また例えば、センサ部1が所定のサンプリング周期でサンプリングすることによって前記生体組織から時系列データとして測定データを測定し、この時系列データの測定データを演算制御部3Aへ出力するものである。この測定データは、アナログデータであってもよいが、本実施形態では、ディジタルデータであり、アナログデータからディジタルデータへの変換(AD変換)は、センサ部1または演算制御部3Aで行われ、また、必要に応じて、前記AD変換前の測定データを増幅する増幅部をセンサ部1または演算制御部3Aにさらに備えてよい。 The arithmetic control unit 3A is connected to the display unit 6 and obtains biological information based on measurement data measured by the sensor unit 1 and controls the entire biological information measuring device SA. The arithmetic control unit 3A acquires time series data of measurement data from the sensor unit 1 by sampling the measurement data measured by the sensor unit 1 at a predetermined sampling period (for example, a frequency of 37.5 Hz, for example). is there. Further, for example, the arithmetic control unit 3A acquires measurement data from the sensor unit 1 as time-series data by driving the sensor unit 1 with a predetermined cycle, that is, by causing each operation of light emission and light reception to be performed. Further, for example, the sensor unit 1 samples the measurement data as time-series data by sampling at a predetermined sampling period, and outputs the measurement data of the time-series data to the arithmetic control unit 3A. This measurement data may be analog data, but in the present embodiment, it is digital data, and conversion from analog data to digital data (AD conversion) is performed by the sensor unit 1 or the arithmetic control unit 3A. Further, if necessary, the sensor unit 1 or the calculation control unit 3A may further include an amplification unit that amplifies the measurement data before AD conversion.
 より具体的には、この演算制御部3Aは、センサ部1によって測定された測定データに基づいてヒストグラムを求め、この求められたヒストグラムにおける所定の統計パラメータを求め、測定対象の生体に関する所定の生体情報を求めるための所定の情報を出力変数とすると共に前記所定の統計パラメータを入力変数とした場合における、前記出力変数と前記入力変数との関係を表すモデルを予め記憶し、前記求められた前記統計パラメータを前記モデルに用いることによって前記所定の情報を求め、この求めた前記所定の情報に基づいて前記所定の生体情報を求めるものであり、例えば、マイクロプロセッサ、メモリおよびその周辺回路を備えるマイクロコンピュータによって構成される。前記メモリは、センサ部1で測定された測定データに基づいて生体情報を求めるための生体情報演算プログラムや、生体情報測定装置SA全体を制御するための制御プログラム等の各種のプログラムや、センサ部1で測定された前記測定データや前記プログラムの実行に必要なデータ等の各種のデータを記憶する例えば書き換え可能な不揮発性の記憶素子であるEEPROM(Electrically Erasable Programmable Read Only Memory)や不揮発性の記憶素子であるROM(Read Only Memory)、および、前記マイクロプロセッサのいわゆるワーキングメモリとなる例えば揮発性の記憶素子であるRAM(Random Access Memory)等を備えて構成され、前記マイクロプロセッサは、いわゆるCPU(Central Processing Unit)等であり、前記プログラムを実行することにより、機能的に、例えば、第1前処理部31と、第2前処理部32と、第1バンドパスフィルタ部(第1BPF部)33と、第2バンドパスフィルタ部(第2BPF部)34と、ヒストグラム算出部35と、比算出部36と、相互相関算出部37と、第1自己相関算出部38と、第2自己相関算出部39と、統計パラメータ算出部40と、pv算出部41と、SpO2算出部42と、脈拍数算出部43と、信頼度算出部44とを備える。 More specifically, the arithmetic control unit 3A obtains a histogram based on the measurement data measured by the sensor unit 1, obtains a predetermined statistical parameter in the obtained histogram, and obtains a predetermined living body related to the living body to be measured. When a predetermined information for obtaining information is an output variable and the predetermined statistical parameter is an input variable, a model representing a relationship between the output variable and the input variable is stored in advance, and the obtained The predetermined information is obtained by using a statistical parameter in the model, and the predetermined biological information is obtained based on the obtained predetermined information. For example, a micro that includes a microprocessor, a memory, and its peripheral circuit Consists of a computer. The memory includes various programs such as a biological information calculation program for obtaining biological information based on measurement data measured by the sensor unit 1, a control program for controlling the entire biological information measuring device SA, and a sensor unit. For example, EEPROM (Electrically Erasable Programmable Read Only Memory) or non-volatile storage that stores various data such as the measurement data measured in step 1 and data necessary for execution of the program The device includes a ROM (Read Only Memory) that is an element and a RAM (Random Access Memory) that is a volatile storage element that serves as a so-called working memory of the microprocessor. Central Processing Unit) etc., by executing the program Functionally, for example, a first preprocessing unit 31, a second preprocessing unit 32, a first bandpass filter unit (first BPF unit) 33, and a second bandpass filter unit (second BPF unit) 34, , Histogram calculation unit 35, ratio calculation unit 36, cross-correlation calculation unit 37, first autocorrelation calculation unit 38, second autocorrelation calculation unit 39, statistical parameter calculation unit 40, pv calculation unit 41, , An SpO2 calculation unit 42, a pulse rate calculation unit 43, and a reliability calculation unit 44.
 第1および第2前処理部31、32は、センサ部1から入力された測定データに対し、所定の前処理を行うものである。より具体的には、第1前処理部31は、第1センサ部11から入力された赤色光に係わる測定データに対し、前記R受光素子での暗電流を補正するためのいわゆるダーク処理を行い、そして、直流成分RDCに対する交流成分RACの第1比(赤色光交直比)R(=RAC/RDC)を算出し、この第1比Rを第1BPF部33へ通知(出力)する。また、第2前処理部32は、第2センサ部12から入力された赤外光に係わる測定データに対し、前記IR受光素子での暗電流を補正するためのいわゆるダーク処理を行い、そして、直流成分IRDCに対する交流成分IRACの第2比(赤外光交直比)IR(=IRAC/IRDC)を算出し、この第2比IRを第1BPF部33へ通知(出力)する。前記ダーク処理は、公知の方法が用いられ、例えば、前記赤色光に係わる測定データから遮光状態のR受光素子から出力される出力値(暗電流値)Rdarkを減算するとともに、前記赤外光に係わる測定データから遮光状態のIR受光素子から出力される出力値(暗電流値)IRdarkを減算することによって行われる。これら遮光状態のR受光素子およびIR受光素子から出力される各出力値Rdark、IRdarkは、予め測定される。 The first and second preprocessing units 31 and 32 perform predetermined preprocessing on the measurement data input from the sensor unit 1. More specifically, the first preprocessing unit 31 performs so-called dark processing for correcting dark current in the R light receiving element on the measurement data related to red light input from the first sensor unit 11. Then, a first ratio (red light AC / DC ratio) R (= R AC / R DC ) of the AC component R AC to the DC component R DC is calculated, and the first BPF unit 33 is notified (output). To do. The second preprocessing unit 32 performs a so-called dark process for correcting dark current in the IR light receiving element on the measurement data related to the infrared light input from the second sensor unit 12, and A second ratio (infrared light AC / DC ratio) IR (= IR AC / IR DC ) of the AC component IR AC with respect to the DC component IR DC is calculated, and the second ratio IR is notified (output) to the first BPF unit 33. For the dark process, a known method is used. For example, an output value (dark current value) Rdark output from the R light receiving element in a light-shielded state is subtracted from the measurement data related to the red light, and the infrared light is subtracted from the infrared light. This is performed by subtracting the output value (dark current value) IRdark output from the IR light receiving element in the light shielding state from the measurement data concerned. The output values Rdark and IRdark output from the light-receiving R light-receiving element and the IR light-receiving element are measured in advance.
 第1および第2BPF部33、34は、センサ部1によって測定された測定データから所定のノイズ成分を除去するフィルタであり、動脈血の脈動により生ずる生体組織の透過または反射光量における変動成分として通常含まれる周波数成分以外の周波数成分を除去するものである。第1BPF部33は、例えば、赤色光に対する、動脈血の脈動により生ずる生体組織の透過または反射光量における変動成分として通常含まれる周波数成分を含む所定の周波数帯域を通過帯域とするフィルタであり、第1比Rをフィルタ処理(フィルタリング)し、このフィルタ処理した後の第1比Rを比算出部36、相互相関算出部37、第1自己相関算出部38および脈拍数算出部43の各部へ通知する。第2BPF部34は、例えば、赤外光に対する、動脈血の脈動により生ずる生体組織の透過または反射光量における変動成分として通常含まれる周波数成分を含む所定の周波数帯域を通過帯域とするフィルタであり、第2比IRをフィルタ処理(フィルタリング)し、このフィルタ処理した後の第2比IRを比算出部36、相互相関算出部37、第2自己相関算出部39および脈拍数算出部43の各部へ通知する。本実施形態の生体情報測定装置SAでは、バンドパスフィルタは、1個の波長の光にかかわる測定データに対し1個であり、前記特許文献1に開示の技術のように複数ではない。さらに、前記特許文献1では、酸素飽和度に関するヒストグラムにおいて、ピークを生じている酸素飽和度、またはヒストグラムにおける度数が0ではない値である最大または最小の酸素飽和度を求めることが開示されているだけで、本実施形態のように複数の統計パラメータから例えばそれら統計パラメータに関する1次多項式、有理式および無理式等のモデルを用いたものではない。 The first and second BPF units 33 and 34 are filters that remove a predetermined noise component from the measurement data measured by the sensor unit 1, and are usually included as fluctuation components in the amount of transmitted or reflected light of living tissue caused by pulsation of arterial blood. The frequency components other than the frequency components to be removed are removed. The first BPF unit 33 is, for example, a filter having a predetermined frequency band including a frequency component that is normally included as a fluctuation component in the amount of transmitted or reflected light of biological tissue caused by pulsation of arterial blood with respect to red light. The ratio R is filtered (filtered), and the first ratio R after the filter processing is notified to each of the ratio calculator 36, the cross-correlation calculator 37, the first autocorrelation calculator 38, and the pulse rate calculator 43. . The second BPF unit 34 is, for example, a filter having a predetermined frequency band including a frequency component normally included as a fluctuation component in the amount of transmitted or reflected light of living tissue caused by pulsation of arterial blood with respect to infrared light as a pass band. Filter the 2 ratio IR (filtering), and notify the second ratio IR after the filter process to each of the ratio calculator 36, the cross-correlation calculator 37, the second autocorrelation calculator 39, and the pulse rate calculator 43. To do. In the biological information measuring apparatus SA of the present embodiment, there is one band pass filter for the measurement data related to the light of one wavelength, and there is not a plurality as in the technique disclosed in Patent Document 1. Further, in Patent Document 1, it is disclosed that, in a histogram relating to oxygen saturation, the maximum or minimum oxygen saturation at which a peak occurs or the frequency in the histogram is not zero is obtained. However, a model such as a first order polynomial, a rational expression, and an irrational expression related to the statistical parameters is not used from a plurality of statistical parameters as in the present embodiment.
 比算出部36は、第2比IRに対する第1比Rの第3比(2波長変動比)P(=R/IR)を算出し、この第3比Pをヒストグラム算出部35へ通知するものである。 The ratio calculation unit 36 calculates a third ratio (two-wavelength variation ratio) P (= R / IR) of the first ratio R with respect to the second ratio IR, and notifies the histogram calculation unit 35 of the third ratio P. It is.
 ヒストグラム算出部35は、所定の時間範囲内においてセンサ部1によって測定された測定データから求められた第3比Pのヒストグラム(度数分布)を算出し、この第3比のヒストグラムを統計パラメータ算出部40へ通知するものである。前記所定の時間範囲は、ヒストグラムが統計的に有意となるような個数の測定データを取得することができる時間範囲であり、この測定データの個数は、例えば、300や400や500等である。ヒストグラム算出部35は、第3比Pが取り得る数値範囲として想定される所定の範囲を所定の間隔で複数の階級(クラス)に階級分け(クラス分け)を行い、このヒストグラムを作成する時点から前記所定の時間だけ前までに比算出部36から入力された複数の第3比Pのそれぞれをこれらいずれかの階級に振り分けることによって、各クラスにおける第3比Pの頻度を求める。これによってヒストグラム算出部35は、第3比Pのヒストグラムを求める。 The histogram calculation unit 35 calculates a histogram (frequency distribution) of the third ratio P obtained from the measurement data measured by the sensor unit 1 within a predetermined time range, and uses the histogram of the third ratio as a statistical parameter calculation unit. 40 is notified. The predetermined time range is a time range in which the number of pieces of measurement data for which the histogram is statistically significant can be acquired, and the number of pieces of measurement data is, for example, 300, 400, 500, or the like. The histogram calculation unit 35 classifies a predetermined range assumed as a numerical range that can be taken by the third ratio P into a plurality of classes (classes) at predetermined intervals, and from the time of creating this histogram. The frequency of the third ratio P in each class is obtained by allocating each of the plurality of third ratios P input from the ratio calculation unit 36 up to the predetermined time to one of these classes. Thereby, the histogram calculation unit 35 obtains a histogram of the third ratio P.
 統計パラメータ算出部40は、ヒストグラム算出部35で算出された第3比Pのヒストグラムに対し、所定の統計パラメータを算出し、この算出した統計パラメータをpv算出部41、SpO2算出部42および信頼度算出部44の各部へ通知するものである。前記所定の統計パラメータは、例えば、第3比Pのヒストグラムにおける平均値や標準偏差等であってよく、また例えば、第3比Pの移動平均のヒストグラムにおける平均値や標準偏差等であってよい。 The statistical parameter calculation unit 40 calculates a predetermined statistical parameter for the histogram of the third ratio P calculated by the histogram calculation unit 35, and uses the calculated statistical parameter as the pv calculation unit 41, the SpO2 calculation unit 42, and the reliability. This is notified to each part of the calculation unit 44. The predetermined statistical parameter may be, for example, an average value or a standard deviation in a histogram of the third ratio P, and may be an average value or a standard deviation in a moving average histogram of the third ratio P, for example. .
 相互相関算出部37は、赤色光に係わる前記第1比Rと赤外光に係わる前記第2比IRとの相互相関CCを算出し、この算出した相互相関CCをSpO2算出部42および信頼度算出部44の各部へ通知するものである。時刻tにおける第1比RをR(t)とし、時刻tにおける第2比IR(t)とすると、相互相関CCは、次の式A1によって表される。
CC=Σ(R(t)×IR(t))   ・・・(A1)
ただし、Σは、ヒストグラム算出時における最新の測定データから前記所定の時間だけ前の時刻における過去の測定データまでの各測定データR(ti)、IR(ti);i=0~-Mについて演算される。添え字iは、M+1個の測定データのうちのi番目の測定データであることを表している。
The cross-correlation calculating unit 37 calculates a cross-correlation CC between the first ratio R related to red light and the second ratio IR related to infrared light, and the calculated cross-correlation CC is used as the SpO2 calculating unit 42 and the reliability. This is notified to each part of the calculation unit 44. When the first ratio R at time t is R (t) and the second ratio IR (t) at time t, the cross-correlation CC is expressed by the following equation A1.
CC = Σ (R (t) × IR (t)) (A1)
However, Σ is calculated for each measurement data R (ti), IR (ti); i = 0 to −M from the latest measurement data at the time of histogram calculation to the past measurement data at the time before the predetermined time. Is done. The subscript i represents the i-th measurement data of M + 1 pieces of measurement data.
 第1相関算出部38は、赤色光に係わる前記第1比Rの第1自己相関SCを算出し、この算出した第1自己相関SCをSpO2算出部42および信頼度算出部44の各部へ通知するものである。第1自己相関SCは、次の式A2によって表される。
SC=Σ(R(t))   ・・・(A2)
ただし、Σは、ヒストグラム算出時における最新の測定データから前記所定の時間だけ前の時刻における過去の測定データまでの各測定データR(ti)、IR(ti);i=0~-Mについて演算される。
First correlation calculating unit 38 calculates the first autocorrelation SC R of the first ratio R according to the red light, each unit of the first autocorrelation SC R a SpO2 calculation section 42 and the reliability calculation unit 44 that the calculated To notify. The first autocorrelation SC R, is expressed by the following equation A2.
SC R = Σ (R (t ) 2) ··· (A2)
However, Σ is calculated for each measurement data R (ti), IR (ti); i = 0 to −M from the latest measurement data at the time of histogram calculation to the past measurement data at the time before the predetermined time. Is done.
 第2相関算出部39は、赤外光に係わる前記第2比IRの第2自己相関SCIRを算出し、この算出した第2自己相関SCIRをSpO2算出部42および信頼度算出部44の各部へ通知するものである。第2自己相関SCIRは、次の式A3によって表される。
SCIR=Σ(IR(t))   ・・・(A3)
ただし、Σは、ヒストグラム算出時における最新の測定データから前記所定の時間だけ前の時刻における過去の測定データまでの各測定データR(ti)、IR(ti);i=0~-Mについて演算される。
The second correlation calculation unit 39 calculates a second autocorrelation SC IR of the second ratio IR related to infrared light, and uses the calculated second autocorrelation SC IR of the SpO2 calculation unit 42 and the reliability calculation unit 44. It notifies to each part. The second autocorrelation SC IR is represented by the following equation A3.
SC IR = Σ (IR (t) 2 ) (A3)
However, Σ is calculated for each measurement data R (ti), IR (ti); i = 0 to −M from the latest measurement data at the time of histogram calculation to the past measurement data at the time before the predetermined time. Is done.
 pv算出部41は、統計パラメータ算出部40によって算出された、第3比Pのヒストグラムにおける統計パラメータに基づいて、ノイズ成分比pvを求めるための所定の第2情報pv^のを算出し、この算出した第2情報pv^をSpO2算出部42および脈拍数算出部43へ通知するものである。この第2情報pv^は、第3比Pのヒストグラムにおけるディップ(落ち込み)の位置である。測定対象の生体に関する所定の生体情報を求めるためのこの所定の第2情報pv^を出力変数とすると共に前記所定の統計パラメータを入力変数x1、x2、x3、・・・、xlとした場合における、前記出力変数pv^と前記入力変数x1、x2、x3、・・・、xlとの関係を表すモデル;pv^=f(x1、x2、x3、・・・、xl)が例えば重回帰分析等によって予め求められ、pv算出部41に記憶される。pv算出部41は、統計パラメータ算出部40によって求められた統計パラメータをこのモデル;pv^=f(x1、x2、x3、・・・、xl)に用いることによって前記所定の第2情報pv^を求める。このように前記モデルには、複数の統計パラメータx1、x2、x3、・・・、xlが用いられる。このため、本実施形態の生体情報測定装置SAは、より適切に近似したモデルを用いることができ、より精度よく生体情報を測定することができる。なお、このような観点から、前記モデルは、複数の統計パラメータのそれぞれを単独に前記入力変数として含むと共に前記複数の統計パラメータのうちの少なくとも2個の積および/またはその比を1または複数前記入力変数として含んでよい。 The pv calculation unit 41 calculates predetermined second information pv ^ for obtaining the noise component ratio pv based on the statistical parameter in the histogram of the third ratio P calculated by the statistical parameter calculation unit 40, and this The calculated second information pv ^ is notified to the SpO2 calculation unit 42 and the pulse rate calculation unit 43. This second information pv ^ is the position of a dip in the third ratio P histogram. When this predetermined second information pv ^ for obtaining predetermined biological information relating to the measurement target biological body is used as an output variable and the predetermined statistical parameter is set as an input variable x1, x2, x3,. , A model representing the relationship between the output variable pv ^ and the input variables x1, x2, x3, ..., xl; pv ^ = f (x1, x2, x3, ..., xl) is, for example, a multiple regression analysis Etc., and is stored in the pv calculation unit 41. The pv calculation unit 41 uses the statistical parameter obtained by the statistical parameter calculation unit 40 for this model; pv ^ = f (x1, x2, x3,..., xl), thereby obtaining the predetermined second information pv ^. Ask for. Thus, a plurality of statistical parameters x1, x2, x3,..., Xl are used in the model. For this reason, the biological information measuring device SA of the present embodiment can use a model that is more appropriately approximated, and can measure biological information with higher accuracy. From this point of view, the model includes each of a plurality of statistical parameters independently as the input variable, and at least two products of the plurality of statistical parameters and / or a ratio thereof are one or more. It may be included as an input variable.
 SpO2算出部42は、統計パラメータ算出部40によって算出された第3比Pのヒストグラムにおける統計パラメータ、pv算出部41によって算出された第2情報pv^、相互相関算出部37によって算出された相互相関CC、第1自己相関算出部38によって算出された第1自己相関SCおよび第2自己相関算出部39によって算出された第2自己相関SCIRに基づいて酸素飽和度を算出し、この算出した酸素飽和度を信頼度算出部44へ通知するとともに、表示部6へ出力するものである。より具体的には、SpO2算出部42は、pv算出部41によって算出された第2情報pv^、第1自己相関算出部38によって算出された第1自己相関SCおよび第2自己相関算出部39によって算出された第2自己相関SCIRから、pa^=(pv^×Σ{R(t)×IR(t)}-Σ{R(t)})/(pv^×Σ{IR(t)}-Σ{R(t)×IR(t)})によって、測定対象の生体に関する所定の生体情報を求めるための所定の第1情報pa^を求め、そして、例えば体動等のノイズが略無い場合おける予め求められた第3比P(=R/IR)と酸素飽和度との関係を表すルックアップテーブル(校正テーブル)を用いることにより、動脈血の酸素飽和度の推定値SpOを求める。すなわち、ノイズのない場合の第3比R/IRと酸素飽和度SOとの関係を表す前記ルックアップテーブルで、第1情報pa^に最も近い前記ルックアップテーブル中の第3比R/IRが探索され、その第3比R/IRに対応する酸素飽和度SOが動脈血の酸素飽和度の推定値SpOとされる。また、SpO2算出部42は、第2情報pv^と酸素飽和度との関係を表すルックアップテーブル(校正テーブル)を用いることにより、静脈血の酸素飽和度の推定値SvOを求める。 The SpO2 calculation unit 42 is a statistical parameter in the histogram of the third ratio P calculated by the statistical parameter calculation unit 40, the second information pv ^ calculated by the pv calculation unit 41, and the cross correlation calculated by the cross correlation calculation unit 37. CC, based on the second autocorrelation SC IR calculated by the first autocorrelation SC R and the second autocorrelation calculating section 39 calculated by the first autocorrelation calculating unit 38 calculates the oxygen saturation, and the calculated The oxygen saturation is notified to the reliability calculation unit 44 and is output to the display unit 6. More specifically, SpO2 calculation unit 42, the second information pv calculated by pv calculator 41 ^, first autocorrelation SC R and the second autocorrelation calculating section calculated by the first autocorrelation calculating unit 38 From the second autocorrelation SC IR calculated by 39, pa ^ = (pv ^ × Σ {R (t) × IR (t)} − Σ {R (t)} 2 ) / (pv ^ × Σ {IR (T)} 2 −Σ {R (t) × IR (t)}) is used to obtain predetermined first information pa ^ for obtaining predetermined biological information related to the living body to be measured. By using a look-up table (calibration table) representing the relationship between the third ratio P (= R / IR) determined in advance and the oxygen saturation when there is substantially no noise, an estimated value of the oxygen saturation of arterial blood determine the SpO 2. That is, the third ratio R / IR in the lookup table closest to the first information pa ^ in the lookup table representing the relationship between the third ratio R / IR when there is no noise and the oxygen saturation SO 2. And the oxygen saturation SO 2 corresponding to the third ratio R / IR is set as the estimated value SpO 2 of the oxygen saturation of arterial blood. Further, SpO2 calculation unit 42, by using a look-up table (calibration table) representing the relationship between the second information pv ^ and oxygen saturation to determine the estimated value SvO 2 oxygen saturation of venous blood.
 脈拍数算出部43は、赤色光に係わる前記第1比R、赤外光に係わる前記第2比IRおよびpv算出部41によって算出されたpv^に基づいて所定の時間内における脈拍数(例えば1分間の脈拍数)を算出し、この脈拍数を表示部6へ出力するものである。 The pulse rate calculator 43 calculates the pulse rate within a predetermined time (for example, based on the first ratio R related to red light, the second ratio IR related to infrared light, and pv ^ calculated by the pv calculator 41 (for example, 1 minute pulse rate) is calculated, and this pulse rate is output to the display unit 6.
 信頼度算出部44は、統計パラメータ算出部40によって算出された第3比Pのヒストグラムにおける統計パラメータ、SpO2算出部42によって算出された酸素飽和度、相互相関算出部37によって算出された相互相関CC、第1自己相関算出部38によって算出された第1自己相関SCおよび第2自己相関算出部39によって算出された第2自己相関SCIRに基づいて所定の信頼度を算出し、この算出した信頼度を表示部6へ出力するものである。 The reliability calculation unit 44 is a statistical parameter in the histogram of the third ratio P calculated by the statistical parameter calculation unit 40, the oxygen saturation calculated by the SpO2 calculation unit 42, and the cross-correlation CC calculated by the cross-correlation calculation unit 37. , based on the second autocorrelation SC IR calculated by the first autocorrelation SC R and the second autocorrelation calculating section 39 calculated by the first autocorrelation calculating unit 38 calculates the predetermined level of reliability, and the calculated The reliability is output to the display unit 6.
 信頼度は、生体情報に係わる算出値がどの程度信頼することができる値であるかを表す指標(度合い)である。このような信頼度は、例えば、次の式B1ないし式B6のいずれかによって求めることができる。このような式によって得られる信頼度zでは、その値zの絶対値が大きいほど血中酸素飽和度の信頼度が低くなる。なお、これら各式において、Σは、iについて和を求める。 The reliability is an index (degree) indicating how reliable the calculated value related to biological information is. Such reliability can be obtained by any one of the following formulas B1 to B6, for example. In the reliability z obtained by such an equation, the reliability of the blood oxygen saturation level decreases as the absolute value of the value z increases. In each of these equations, Σ calculates the sum for i.
z=(ΣR(ti)×IR(ti))/(Σ{IR(ti)})-(Σ{R(ti)})/(ΣR(ti)×IR(ti))   ・・・(B1)
z=(Σ{IR(ti)})/(ΣR(ti)×IR(ti))-[(Σ{R(ti)})/(Σ{IR(ti)})]   ・・・(B2)
z=(Σ{R(ti)})/(Σ{IR(ti)})-[(ΣR(ti)×IR(ti))/(Σ{IR(ti)})]   ・・・(B3)
z=[(1/N)×ΣR(ti)/IR(ti)]-(Σ{R(ti)})/(Σ{IR(ti)})   ・・・(B4)
z=(ΣR(ti)×IR(ti))/(Σ{IR(ti)})-(1/N)×ΣR(ti)/IR(ti)   ・・・(B5)
z=(Σ{R(ti)})/(ΣR(ti)×IR(ti))-(1/N)×ΣR(ti)/IR(ti)   ・・・(B6)
z = (ΣR (ti) × IR (ti)) / (Σ {IR (ti)} 2 ) − (Σ {R (ti)} 2 ) / (ΣR (ti) × IR (ti)) (B1)
z = (Σ {IR (ti)} 2 ) / (ΣR (ti) × IR (ti)) − [(Σ {R (ti)} 2 ) / (Σ {IR (ti)} 2 )] 2 · .. (B2)
z = (Σ {R (ti)} 2 ) / (Σ {IR (ti)} 2 ) − [(ΣR (ti) × IR (ti)) / (Σ {IR (ti)} 2 )] 2 · .. (B3)
z = [(1 / N) × ΣR (ti) / IR (ti)] 2 − (Σ {R (ti)} 2 ) / (Σ {IR (ti)} 2 ) (B4)
z = (ΣR (ti) × IR (ti)) / (Σ {IR (ti)} 2 ) − (1 / N) × ΣR (ti) / IR (ti) (B5)
z = (Σ {R (ti)} 2 ) / (ΣR (ti) × IR (ti)) − (1 / N) × ΣR (ti) / IR (ti) (B6)
 表示部6は、この生体情報測定装置SAの動作状態や演算制御部3Aによって求められた生体情報等を表示する装置であり、例えば、液晶表示装置(LCD)や有機EL表示装置等である。表示部6は、例えば、本実施形態では、脈拍数算出部43で算出された脈拍数を表示する脈拍数表示部61と、SpO2算出部42で算出された酸素飽和度を表示するSpO2表示部62と、信頼度算出部44で算出された信頼度を表示する信頼度表示部63とを備えている。 The display unit 6 is a device for displaying the operating state of the biological information measuring device SA, the biological information obtained by the arithmetic control unit 3A, and the like, for example, a liquid crystal display device (LCD), an organic EL display device, and the like. For example, in the present embodiment, the display unit 6 includes a pulse rate display unit 61 that displays the pulse rate calculated by the pulse rate calculation unit 43 and an SpO2 display unit that displays the oxygen saturation calculated by the SpO2 calculation unit 42. 62, and a reliability display unit 63 that displays the reliability calculated by the reliability calculation unit 44.
 次に、第1実施形態の生体情報測定装置SAの動作について説明する。図2は、酸素飽和度を求める場合における、第1実施形態の生体情報測定装置の動作を示すフローチャートである。図3は、脈拍数を求める場合における、第1実施形態の生体情報測定装置の動作を示すフローチャートである。図4は、第1ケースにおける第3比Pのヒストグラムを示す図である。図5は、第2ケースにおける第3比Pのヒストグラムを示す図である。図6は、第3ケースにおける第3比Pのヒストグラムを示す図である。第1ケースは、生体が安静にしており、ノイズがほとんどない場合であり、第2および第3ケースは、例えば生体の体動等によりノイズが重畳している場合である。図4ないし図6には、各ケースの測定結果の一例が示されている。なお、図4ないし図6の横軸は、階級(クラス)であり、その縦軸は、頻度(frequency)である。 Next, the operation of the biological information measuring device SA of the first embodiment will be described. FIG. 2 is a flowchart showing the operation of the biological information measuring apparatus according to the first embodiment when obtaining the oxygen saturation. FIG. 3 is a flowchart showing the operation of the biological information measuring apparatus according to the first embodiment when the pulse rate is obtained. FIG. 4 is a diagram showing a histogram of the third ratio P in the first case. FIG. 5 is a diagram showing a histogram of the third ratio P in the second case. FIG. 6 is a diagram showing a histogram of the third ratio P in the third case. The first case is a case where the living body is quiet and there is almost no noise, and the second and third cases are cases where the noise is superimposed due to, for example, body movement of the living body. FIG. 4 to FIG. 6 show an example of measurement results in each case. Note that the horizontal axis in FIGS. 4 to 6 is a class, and the vertical axis is frequency.
 生体情報測定装置SAでは、例えば、図略の電源スイッチの投入や電源スイッチの投入後に図略の測定開始スイッチの投入によって、測定対象である生体の生体情報の測定が開始される。 In the biological information measuring apparatus SA, for example, measurement of biological information on a biological object to be measured is started by turning on a power switch (not shown) or turning on a measurement start switch (not shown) after the power switch is turned on.
 酸素飽和度の測定では、図2に示すように、まず、ステップS11において、センサ部1の第1センサ部11によって、赤色光に係わる測定データRsignalanddark(暗電流を含む)およびその暗電流Rdarkが測定され、アナログ信号からディジタル信号へ変換されるとともに、センサ部1の第2センサ部12によって、赤外光に係わる測定データIRsignalanddark(暗電流を含む)およびその暗電流IRdarkが測定され、アナログ信号からディジタル信号へ変換される。 In the measurement of oxygen saturation, as shown in FIG. 2, first, in step S11, the first sensor unit 11 of the sensor unit 1 generates measurement data Rsignallanddark (including dark current) and its dark current Rdark related to red light. Measurement and conversion from an analog signal to a digital signal, and measurement data IRsignalland (including dark current) and its dark current IRdark relating to infrared light are measured by the second sensor unit 12 of the sensor unit 1 to obtain an analog signal. To digital signal.
 続いて、ステップS12では、演算制御部3Aの第1前処理部31によって、センサ部1から入力された赤色光に係わる測定データRsignalanddarkに対し、ダーク処理(Rsignalanddark-Rdark)が実行され、第1比Rが算出されるとともに、演算制御部3Aの第2前処理部32によって、センサ部1から入力された赤外光に係わる測定データIRsignalanddarkに対し、ダーク処理(Rsignalanddark-Rdark)が実行され、第2比IRが算出される。 Subsequently, in step S12, the first preprocessing unit 31 of the arithmetic control unit 3A performs dark processing (Rsignalland-Rdark) on the measurement data Rsignallandmark related to the red light input from the sensor unit 1, and first processing is performed. The ratio R is calculated, and the second preprocessing unit 32 of the arithmetic control unit 3A performs dark processing (Rsignalland-Rdark) on the measurement data IRsignallandmark related to the infrared light input from the sensor unit 1, A second ratio IR is calculated.
 続いて、ステップS13では、演算制御部3Aの第1BPF部33によって、第1前処理部31から通知された第1比Rがフィルタリングされるとともに、演算制御部3Aの第2BPF部34によって、第2前処理部32から通知された第2比IRがフィルタリングされる。 Subsequently, in step S13, the first BPF unit 33 of the calculation control unit 3A filters the first ratio R notified from the first preprocessing unit 31, and the second BPF unit 34 of the calculation control unit 3A executes the first ratio R. 2 The second ratio IR notified from the preprocessing unit 32 is filtered.
 続いて、ステップS14では、各相関値が演算される。すなわち、相互相関算出部37によって、第1比Rと第2比IRとの相互相関CCが算出され、第1自己相関算出部38によって、第1比Rの自己相関SCが算出され、そして、第2自己相関算出部39によって、第2比IRの自己相関SCIRが算出される。例えば、現在時刻tk+t0から過去の時刻tk+t-Mまでの時間範囲(tk+ti;i=0~-M)の測定データについて、各相関値が演算される。 Subsequently, in step S14, each correlation value is calculated. That is, the cross-correlation calculating unit 37, the calculated cross-correlation CC between the first ratio R and the second ratio IR is, the first autocorrelation calculating unit 38, the autocorrelation SC R of the first ratio R is calculated, and The second autocorrelation calculating unit 39 calculates the autocorrelation SC IR of the second ratio IR. For example, each correlation value is calculated for the measurement data in the time range (tk + ti; i = 0 to −M) from the current time tk + t0 to the past time tk + t−M.
 また、ステップS15では、演算制御部3Aの比算出部36によって、第2比IRに対する第1比Rの第3比Pが算出され、演算制御部3Aのヒストグラム算出部35によって、所定の時間範囲での第3比Pのヒストグラムが算出される。例えば、現在時刻tk+t0から過去の時刻tk+t-Nまでの時間範囲(tk+ti;i=0~-N)の測定データについて、第3比Pのヒストグラムが求められる。 In step S15, the ratio calculation unit 36 of the calculation control unit 3A calculates the third ratio P of the first ratio R to the second ratio IR, and the histogram calculation unit 35 of the calculation control unit 3A calculates the predetermined time range. A histogram of the third ratio P at is calculated. For example, the histogram of the third ratio P is obtained for the measurement data in the time range (tk + ti; i = 0 to −N) from the current time tk + t0 to the past time tk + t−N.
 このように求められたヒストグラムは、例えば、生体が安静等しており測定データにノイズがほとんど重畳していない場合には、例えば、図4に示すヒストグラムが求められ、また例えば、生体等の体動により測定データにノイズが重畳している場合には、例えば、図5や図6に示すようなヒストグラムが求められる。本実施形態の生体情報測定装置SAは、このような図5や図6に示すプロファイルのヒストグラムであっても、このヒストグラムの統計パラメータを用いる後述する処理によって、より精度よく例えば脈拍数や酸素飽和度等の生体情報を測定することができる。 For example, when the living body is resting and noise is hardly superimposed on the measurement data, for example, the histogram shown in FIG. 4 is obtained. When noise is superimposed on the measurement data due to movement, for example, histograms as shown in FIGS. 5 and 6 are obtained. The biological information measuring apparatus SA of the present embodiment, for example, with the profile histogram shown in FIG. 5 or FIG. Biological information such as degree can be measured.
 続いて、ステップS16では、演算制御部3Aの統計パラメータ算出部40によって、ヒストグラム算出部35によって求められた第3比Pのヒストグラムにおける例えば平均値や標準偏差σ等の所定の統計パラメータ(x1、x2、x3、・・・、xl)が求められる。 Subsequently, in step S16, a predetermined statistical parameter (x1,...) Such as an average value or standard deviation σ in the histogram of the third ratio P obtained by the histogram calculation unit 35 by the statistical parameter calculation unit 40 of the arithmetic control unit 3A. x2, x3,..., xl) are obtained.
 続いて、ステップS17では、演算制御部3AのSpO2算出部42によって、ステップS16で統計パラメータの1つとして求められた、第3比Pのヒストグラムにおける標準偏差σが予め設定された所定の閾値Thよりも大きいか否かが判断される。標準偏差σは、一般にデータのバラツキを表す指標であるから、測定データに重畳されているノイズの程度を判定する指標として用いることができる。 Subsequently, in step S17, the standard deviation σ in the histogram of the third ratio P, which is obtained as one of the statistical parameters in step S16 by the SpO2 calculation unit 42 of the arithmetic control unit 3A, is set to a predetermined threshold Th. It is judged whether it is larger. Since the standard deviation σ is generally an index representing variation in data, it can be used as an index for determining the degree of noise superimposed on the measurement data.
 この判断の結果、標準偏差σが前記所定の閾値Th以下である場合(No)には、ステップS31が実行され、標準偏差σが前記所定の閾値Thよりも大きい場合(Yes)には、ステップS18が実行される。 As a result of this determination, when the standard deviation σ is equal to or smaller than the predetermined threshold Th (No), Step S31 is executed, and when the standard deviation σ is larger than the predetermined threshold Th (Yes), Step S31 is performed. S18 is executed.
 ステップS31では、センサ部1によって測定された測定データにはほとんどノイズが重畳していない場合(例えば、ノイズが信号に対し5%以下である場合や3%以下である場合、その第3比Pのヒストグラムが図4に示すプロファイルの場合)であるから、例えばΣ{(R(t)×IR(t)}/Σ{R(t)}により信号成分比paを算出することによって酸素飽和度を求める等の公知の既存の方法によって、SpO2算出部42で、動脈の血中酸素飽和度や静脈の血中酸素飽和度が算出され、この算出された各血中酸素飽和度が表示部6のSpO2表示部62へ出力され、続いて、ステップS21が実行される。 In step S31, when almost no noise is superimposed on the measurement data measured by the sensor unit 1 (for example, when the noise is 5% or less or 3% or less of the signal, the third ratio P). 4 is the profile shown in FIG. 4), for example, oxygen saturation is obtained by calculating the signal component ratio pa by Σ {(R (t) × IR (t)} / Σ {R (t)} 2. The SpO2 calculating unit 42 calculates the blood oxygen saturation of the artery and the blood oxygen saturation of the vein by a known existing method such as obtaining the degree of blood, and the calculated blood oxygen saturation is displayed on the display unit. 6 is output to the SpO2 display unit 62, and then step S21 is executed.
 ここで、生体組織の吸光度を測定する場合、その吸光度の変化分の信号成分をsとし、この信号成分に重畳されるノイズ成分をnとする場合に、第1比Rおよび第2比IRは、次の式C1および式C2が成り立つ。
IR=s+n   ・・・(C1)
R=s×pa+n×pv   ・・・(C2)
Here, when measuring the absorbance of a living tissue, when the signal component corresponding to the change in absorbance is s and the noise component superimposed on this signal component is n, the first ratio R and the second ratio IR are The following expressions C1 and C2 hold.
IR = s + n (C1)
R = s × pa + n × pv (C2)
 この信号成分比paは、赤外光における吸光度の変化分の信号成分sと赤色光における吸光度の変化分の信号成分との比であり、この信号成分比paは、一般に、血中酸素飽和度と一対一で対応することが知られている。また、ノイズ成分比pvは、赤外光に対する信号成分sに重畳されるノイズ成分nと赤色光に対する信号成分に重畳されるノイズ成分との比である。 The signal component ratio pa is a ratio between the signal component s corresponding to the change in absorbance in infrared light and the signal component corresponding to the change in absorbance in red light. This signal component ratio pa is generally the oxygen saturation level in blood. It is known to correspond one-to-one. The noise component ratio pv is a ratio between the noise component n superimposed on the signal component s for infrared light and the noise component superimposed on the signal component for red light.
 一方、ステップS18では、センサ部1によって測定された測定データに無視できないほどのノイズが重畳している場合(その第3比Pのヒストグラムが図5や図6に示すプロファイルの場合)であるから、SpO2算出部42によって、pv^=f(x1、x2、x3、・・・、xl)からpv^が算出される。続いて、ステップS19では、SpO2算出部42によって、pa^=(pv^×Σ{R(t)×IR(t)}-Σ{R(t)})/(pv^×Σ{IR(t)}-Σ{R(t)×IR(t)})によりpa^を算出する。ただし、Σは、ヒストグラム算出時における最新の測定データから前記所定の時間だけ前の時刻における過去の測定データまでの各測定データについて演算される。すなわち、Σは、現在時刻tk+t0から過去の時刻tk+t-Mまでの時間範囲(tk+ti;i=0~-M)の測定データについて演算される。続いて、ステップS20では、SpO2算出部42によって、これらpa^およびpv^から動脈血の血中酸素飽和度SpOや静脈血の血中酸素飽和度SvOが算出され、この算出された各血中酸素飽和度SpO、SvOが表示部6のSpO2表示部62へ出力され、続いて、ステップS21が実行される。 On the other hand, in step S18, since noise that cannot be ignored is superimposed on the measurement data measured by the sensor unit 1 (when the histogram of the third ratio P is the profile shown in FIGS. 5 and 6). , SpO2 calculation unit 42 calculates pv ^ from pv ^ = f (x1, x2, x3,..., Xl). Subsequently, in step S19, the SpO2 calculation unit 42 causes pa ^ = (pv ^ × Σ {R (t) × IR (t)} − Σ {R (t)} 2 ) / (pv ^ × Σ {IR (T)} 2 −Σ {R (t) × IR (t)}). However, Σ is calculated for each measurement data from the latest measurement data at the time of calculating the histogram to the past measurement data at the time preceding the predetermined time. That is, Σ is calculated for measurement data in the time range (tk + ti; i = 0 to −M) from the current time tk + t0 to the past time tk + t−M. Then, in step S20, the SpO2 calculation unit 42, these pa ^ and pv blood arterial oxygen saturation from ^ SpO 2 and venous blood oxygen saturation SvO 2 blood is calculated, the blood the calculated The intermediate oxygen saturation levels SpO 2 and SvO 2 are output to the SpO 2 display section 62 of the display section 6, and then step S 21 is executed.
 続いて、ステップS21では、演算制御部3Aの信頼度算出部44によって、所定の信頼度が算出され、この算出された信頼度が表示部6の信頼度表示部63へ出力され、酸素飽和度の算出処理が終了され、続いて、脈拍数の算出処理が実行される。 Subsequently, in step S21, a predetermined reliability is calculated by the reliability calculation unit 44 of the arithmetic control unit 3A, and the calculated reliability is output to the reliability display unit 63 of the display unit 6 to obtain the oxygen saturation level. Is completed, and then the pulse rate calculation process is executed.
 一方、脈拍数の測定では、図3に示すように、まず、ステップS41において、演算制御部3Aの脈拍数算出部43によって、R(t)-pv^×IR(t)が2値化される。続いて、ステップS42では、脈拍数算出部43によって、この2値化されたR(t)-pv^×IR(t)の所定の時間内における周期T(j)が求められ、その周期T(j)の平均値Taveが算出される。続いて、ステップS43では、脈拍数算出部43によって、1分間の脈拍数を求めるべく、60/前記周期の平均値Taveによって脈拍数が算出され、この算出された脈拍数が表示部6の脈拍数表示部61へ出力され、処理が終了される。 On the other hand, in the measurement of the pulse rate, as shown in FIG. 3, first, in step S41, R (t) −pv ^ × IR (t) is binarized by the pulse rate calculation unit 43 of the calculation control unit 3A. The Subsequently, in step S42, the pulse rate calculation unit 43 obtains a period T (j) of the binarized R (t) −pv ^ × IR (t) within a predetermined time, and the period T An average value Tave of (j) is calculated. Subsequently, in step S43, the pulse rate calculation unit 43 calculates the pulse rate based on the average value Tave of 60 / cycle in order to obtain the pulse rate for one minute, and the calculated pulse rate is displayed on the display unit 6. The data is output to the number display unit 61, and the process is terminated.
 表示部6では、このように演算制御部3Aによって求められた脈拍数、動脈および静脈の各血中酸素飽和度ならびに信頼度が脈拍数表示部61、SpO2表示部62ならびに信頼度表示部63のそれぞれに表示される。 In the display unit 6, the pulse rate, the arterial and venous oxygen saturation levels and the reliability obtained by the arithmetic control unit 3 A are displayed in the pulse rate display unit 61, the SpO 2 display unit 62 and the reliability display unit 63. Displayed on each.
 このように動作するので、第1実施形態の生体情報測定装置SAは、例えば生体の体動等によってノイズが生じた場合でもより精度よく例えば脈拍数や酸素飽和度等の生体情報を測定することができる。 Since it operates in this way, the biological information measuring apparatus SA of the first embodiment can measure biological information such as pulse rate and oxygen saturation more accurately even when noise occurs due to, for example, body movement of the living body. Can do.
 次に、別の実施形態について説明する。 Next, another embodiment will be described.
 (第2実施形態)
 図7は、第2実施形態における生体情報測定装置の構成を示す図である。第1実施形態にかかる生体情報測定装置SAは、第3比Pのヒストグラムにおける統計パラメータから第2情報pv^を求め、酸素飽和度を算出したが、第2実施形態にかかる生体情報測定装置SBは、第3比Pのヒストグラムにおける統計パラメータから第1情報pa^および第2情報pv^を求め、酸素飽和度を算出するものである。このため、第2実施形態の生体情報測定装置SBは、第1実施形態の生体情報測定装置SAにおける演算制御部3Aに代え、後述の演算制御部3Bを備えて構成される。すなわち、第2実施形態の生体情報測定装置SBは、例えば、図7に示すように、生体の所定の生理的現象を測定するセンサ部1と、センサ部1で測定された生体の所定の生理的現象に基づいて例えば脈拍数や血中酸素飽和度等の生体情報を測定する演算制御部3Bと、演算制御部3Bで測定した生体情報を外部から認識可能に表示する表示部6とを備えて構成される。これらセンサ部1および表示部6は、第1実施形態の生体情報測定装置SAにおけるセンサ部1および表示部6と同様であるから、その説明を省略する。
(Second Embodiment)
FIG. 7 is a diagram illustrating a configuration of the biological information measurement device according to the second embodiment. The biological information measuring device SA according to the first embodiment calculates the second information pv ^ from the statistical parameter in the histogram of the third ratio P and calculates the oxygen saturation, but the biological information measuring device SB according to the second embodiment. Is to obtain the first information pa ^ and the second information pv ^ from the statistical parameters in the histogram of the third ratio P, and calculate the oxygen saturation. For this reason, the biological information measuring device SB of the second embodiment is configured to include an arithmetic control unit 3B described later instead of the arithmetic control unit 3A in the biological information measuring device SA of the first embodiment. That is, the biological information measuring device SB of the second embodiment includes, for example, as shown in FIG. 7, a sensor unit 1 that measures a predetermined physiological phenomenon of the living body and a predetermined physiological state of the living body that is measured by the sensor unit 1. For example, an arithmetic control unit 3B that measures biological information such as a pulse rate and blood oxygen saturation, and a display unit 6 that displays the biological information measured by the arithmetic control unit 3B so as to be recognized from the outside. Configured. Since the sensor unit 1 and the display unit 6 are the same as the sensor unit 1 and the display unit 6 in the biological information measuring apparatus SA of the first embodiment, description thereof is omitted.
 そして、この演算制御部3Bは、第1実施形態の演算制御部3Aと同様に、表示部6に接続され、センサ部1で測定された測定データに基づいて生体情報を求めるとともに、生体情報測定装置SA全体の制御を司る装置であり、例えば、マイクロプロセッサ、メモリおよびその周辺回路を備えるマイクロコンピュータによって構成される。そして、前記マイクロプロセッサは、第2実施形態にかかるプログラムを実行することにより、機能的に、例えば、第1前処理部31と、第2前処理部32と、第1バンドパスフィルタ部(第1BPF部)33と、第2バンドパスフィルタ部(第2BPF部)34と、ヒストグラム算出部35と、比算出部36と、統計パラメータ算出部40と、pa・pv算出部51と、SpO2・SvO2算出部52と、脈拍数算出部43と、信頼度算出部53とを備えている。 And this calculation control part 3B is connected to the display part 6 similarly to the calculation control part 3A of 1st Embodiment, While calculating | requiring biometric information based on the measurement data measured by the sensor part 1, biometric information measurement The device controls the entire device SA, and is configured by, for example, a microcomputer including a microprocessor, a memory, and its peripheral circuits. The microprocessor is functionally executed by executing the program according to the second embodiment, for example, the first preprocessing unit 31, the second preprocessing unit 32, and the first bandpass filter unit (first 1BPF unit) 33, second bandpass filter unit (second BPF unit) 34, histogram calculation unit 35, ratio calculation unit 36, statistical parameter calculation unit 40, pa / pv calculation unit 51, and SpO2 / SvO2 A calculation unit 52, a pulse rate calculation unit 43, and a reliability calculation unit 53 are provided.
 この第2実施形態における第1前処理部31、第2前処理部32、第1BPF部33、第2BPF部34、ヒストグラム算出部35、比算出部36および統計パラメータ算出部40は、第1実施形態における第1前処理部31、第2前処理部32、第1BPF部33、第2BPF部34、ヒストグラム算出部35、比算出部36および統計パラメータ算出部40と同様であるので、その説明を省略する。 In the second embodiment, the first preprocessing unit 31, the second preprocessing unit 32, the first BPF unit 33, the second BPF unit 34, the histogram calculation unit 35, the ratio calculation unit 36, and the statistical parameter calculation unit 40 are the first implementation. Since it is the same as the first preprocessing unit 31, the second preprocessing unit 32, the first BPF unit 33, the second BPF unit 34, the histogram calculation unit 35, the ratio calculation unit 36, and the statistical parameter calculation unit 40 in the embodiment, the description thereof will be given. Omitted.
 pa・pv算出部51は、統計パラメータ算出部40によって算出された、第3比Pのヒストグラムにおける統計パラメータに基づいて、信号成分比paを求めるための所定の第1情報pa^およびノイズ成分pvを求めるための所定の第2情報pv^をそれぞれ算出し、これら算出した第1および第2情報pa^、pv^をSpO2・SvO2算出部52および脈拍数算出部43へ通知するものである。測定対象の生体に関する所定の生体情報を求めるためのこの所定の第1情報pa^を出力変数とすると共に前記所定の統計パラメータを入力変数x1、x2、x3、・・・、xlとした場合における、前記出力変数pa^と前記入力変数x1、x2、x3、・・・、xlとの関係を表すモデル;pa^=g(x1、x2、x3、・・・、xl)が例えば重回帰分析等によって予め求められ、pa・pv算出部51に記憶される。そして、測定対象の生体に関する所定の生体情報を求めるためのこの所定の第2情報pv^を出力変数とすると共に前記所定の統計パラメータを入力変数x1、x2、x3、・・・、xlとした場合における、前記出力変数pv^と前記入力変数x1、x2、x3、・・・、xlとの関係を表すモデル;pv^=f(x1、x2、x3、・・・、xl)が例えば重回帰分析等によって予め求められ、pa・pv算出部51に記憶される。pa・pv算出部51は、統計パラメータ算出部40によって求められた統計パラメータをこのモデル;pa^=g(x1、x2、x3、・・・、xl)に用いることによって前記所定の第1情報pa^を求め、統計パラメータ算出部40によって求められた統計パラメータをこのモデル;pv^=f(x1、x2、x3、・・・、xl)に用いることによって前記所定の第2情報pv^を求める。 The pa · pv calculator 51 calculates predetermined first information pa ^ and noise component pv for obtaining the signal component ratio pa based on the statistical parameter in the histogram of the third ratio P calculated by the statistical parameter calculator 40. The predetermined second information pv ^ for obtaining the above is calculated, and the calculated first and second information pa ^ and pv ^ are notified to the SpO2 / SvO2 calculation unit 52 and the pulse rate calculation unit 43. When this predetermined first information pa ^ for obtaining predetermined biological information about the measurement target biological body is used as an output variable, and the predetermined statistical parameter is set as an input variable x1, x2, x3,. , A model representing the relationship between the output variable pa ^ and the input variables x1, x2, x3, ..., xl; pa ^ = g (x1, x2, x3, ..., xl) is, for example, a multiple regression analysis Etc., and is stored in the pa / pv calculation unit 51 in advance. The predetermined second information pv ^ for obtaining predetermined biological information related to the measurement target biological body is used as an output variable, and the predetermined statistical parameters are input variables x1, x2, x3,. Model representing the relationship between the output variable pv ^ and the input variables x1, x2, x3,..., Xl; pv ^ = f (x1, x2, x3,. It is obtained in advance by regression analysis or the like and stored in the pa / pv calculation unit 51. The pa · pv calculation unit 51 uses the statistical parameter obtained by the statistical parameter calculation unit 40 for this model; pa ^ = g (x1, x2, x3,..., xl), thereby obtaining the predetermined first information. By calculating pa ^ and using the statistical parameter obtained by the statistical parameter calculator 40 in this model; pv ^ = f (x1, x2, x3,..., xl), the predetermined second information pv ^ is obtained. Ask.
 SpO2・SvO2算出部52は、統計パラメータ算出部40によって算出された第3比Pのヒストグラムにおける統計パラメータ、pa・pv算出部51によって算出された第1および第2情報pa^、pv^に基づいて酸素飽和度を算出し、この算出した酸素飽和度を信頼度算出部53へ通知するとともに、表示部6へ出力するものである。また、SpO2・SvO2算出部52は、第1情報pa^と酸素飽和度との関係を表すルックアップテーブル(校正テーブル)を用いることにより、動脈血の酸素飽和度の推定値SpOを求め、第2情報pv^と酸素飽和度との関係を表すルックアップテーブル(校正テーブル)を用いることにより、静脈血の酸素飽和度の推定値SvOを求める。 The SpO2 / SvO2 calculation unit 52 is based on the statistical parameter in the histogram of the third ratio P calculated by the statistical parameter calculation unit 40, and the first and second information pa ^ and pv ^ calculated by the pa / pv calculation unit 51. The oxygen saturation is calculated, and the calculated oxygen saturation is notified to the reliability calculation unit 53 and output to the display unit 6. Further, SpO2 · SvO2 calculator 52, by using a look-up table (calibration table) representing the relationship between the first information pa ^ and oxygen saturation, obtains the estimated value SpO 2 oxygen saturation of arterial blood, the 2 By using a look-up table (calibration table) representing the relationship between information pv ^ and oxygen saturation, an estimated value SvO 2 of oxygen saturation of venous blood is obtained.
 脈拍数算出部43は、赤色光に係わる前記第1比R、赤外光に係わる前記第2比IRおよびpa・pv算出部51によって算出されたpv^に基づいて所定の時間内における脈拍数(例えば1分間の脈拍数)を算出し、この脈拍数を表示部6へ出力するものである。 The pulse rate calculation unit 43 calculates the pulse rate within a predetermined time based on the first ratio R related to red light, the second ratio IR related to infrared light, and pv ^ calculated by the pa · pv calculation unit 51. (For example, the pulse rate for 1 minute) is calculated, and this pulse rate is output to the display unit 6.
 信頼度算出部53は、統計パラメータ算出部40によって算出された第3比Pのヒストグラムにおける統計パラメータ、SpO2・SvO2算出部52によって算出された酸素飽和度に基づいて、予め設定された所定の算出式を用いて所定の信頼度を算出し、この算出した信頼度を表示部6へ出力するものである。 The reliability calculation unit 53 is a predetermined calculation set in advance based on the statistical parameter in the histogram of the third ratio P calculated by the statistical parameter calculation unit 40 and the oxygen saturation calculated by the SpO 2 / SvO 2 calculation unit 52. A predetermined reliability is calculated using an equation, and the calculated reliability is output to the display unit 6.
 次に、第2実施形態の生体情報測定装置SBの動作について説明する。図8は、酸素飽和度を求める場合における、第2実施形態の生体情報測定装置の動作を示すフローチャートである。 Next, the operation of the biological information measuring device SB of the second embodiment will be described. FIG. 8 is a flowchart showing the operation of the biological information measuring apparatus according to the second embodiment when obtaining the oxygen saturation.
 生体情報測定装置SBでは、例えば、図略の電源スイッチの投入や電源スイッチの投入後に図略の測定開始スイッチの投入によって、測定対象である生体の生体情報の測定が開始される。 In the biological information measuring device SB, for example, measurement of biological information of a living body to be measured is started by turning on a power switch (not shown) or turning on a measurement start switch (not shown) after the power switch is turned on.
 第2実施形態の生体情報測定装置SBでは、脈拍数を求める場合の動作は、第1実施形態の生体情報測定装置SAにおける上述した脈拍数を求める動作と同様であるので、その説明を省略し、ここでは、酸素飽和度を求める場合の動作について説明する。 In the biological information measuring device SB of the second embodiment, the operation for obtaining the pulse rate is the same as the above-described operation for obtaining the pulse rate in the biological information measuring device SA of the first embodiment, and thus the description thereof is omitted. Here, the operation for obtaining the oxygen saturation will be described.
 すなわち、この第2実施形態の生体情報測定装置SBにおける酸素飽和度の測定では、図8に示すように、第2実施形態の生体情報測定装置SBは、第1実施形態の生体情報測定装置SAにおける図2を用いて説明した上述のステップS11ないしステップS17のそれぞれと同様のステップS51ないしステップS57を実行する。そして、このステップS57における判断の結果、標準偏差σが前記所定の閾値Th以下である場合(No)には、第1実施形態の生体情報測定装置SAにおけるステップS31と同様のステップS71が実行された後にステップS60が実行され、標準偏差σが前記所定の閾値Thよりも大きい場合(Yes)には、ステップS58が実行される。 That is, in the measurement of oxygen saturation in the biological information measuring device SB of the second embodiment, as shown in FIG. 8, the biological information measuring device SB of the second embodiment is the biological information measuring device SA of the first embodiment. Steps S51 to S57 similar to Steps S11 to S17 described above with reference to FIG. 2 are executed. If the result of determination in step S57 is that the standard deviation σ is equal to or less than the predetermined threshold Th (No), step S71 similar to step S31 in the biological information measuring device SA of the first embodiment is executed. After that, step S60 is executed, and when the standard deviation σ is larger than the predetermined threshold Th (Yes), step S58 is executed.
 このステップS58では、センサ部1によって測定された測定データに無視できないほどのノイズが重畳している場合(その第3比Pのヒストグラムが図5や図6に示すプロファイルの場合)であるから、SpO2・SvO2算出部52によって、pv^=f(x1、x2、x3、・・・、xl)からpv^が算出され、pa^=g(x1、x2、x3、・・・、xl)からpa^が算出される。続いて、ステップS59では、SpO2・SvO2算出部52によって、これらpa^およびpv^から動脈の血中酸素飽和度や静脈の血中酸素飽和度が算出され、この算出された各血中酸素飽和度が表示部6のSpO2表示部62へ出力され、続いて、ステップS60が実行される。 In this step S58, since noise that cannot be ignored is superimposed on the measurement data measured by the sensor unit 1 (when the histogram of the third ratio P is the profile shown in FIGS. 5 and 6), The SpO2 / SvO2 calculation unit 52 calculates pv ^ from pv ^ = f (x1, x2, x3,..., Xl), and pa ^ = g (x1, x2, x3,..., Xl). pa ^ is calculated. Subsequently, in step S59, the blood oxygen saturation of the artery and the blood oxygen saturation of the vein are calculated from the pa ^ and pv ^ by the SpO2 / SvO2 calculating unit 52, and each of the calculated blood oxygen saturations is calculated. The degree is output to the SpO2 display unit 62 of the display unit 6, and then step S60 is executed.
 続いて、ステップS60では、演算制御部3Bの信頼度算出部53によって、所定の信頼度が算出され、この算出された信頼度が表示部6の信頼度表示部63へ出力され、酸素飽和度の算出処理が終了され、続いて、脈拍数の算出処理が実行される。 Subsequently, in step S60, a predetermined reliability is calculated by the reliability calculation unit 53 of the arithmetic control unit 3B, and the calculated reliability is output to the reliability display unit 63 of the display unit 6 to obtain the oxygen saturation level. Is completed, and then the pulse rate calculation process is executed.
 この脈拍数の測定は、上述したように、第1実施形態の生体情報測定装置SAと同様に実行されることで、脈拍数が算出され、この算出された脈拍数が表示部6の脈拍数表示部61へ出力され、処理が終了される。 As described above, the measurement of the pulse rate is performed in the same manner as the biological information measuring apparatus SA of the first embodiment, whereby the pulse rate is calculated. The calculated pulse rate is the pulse rate of the display unit 6. The data is output to the display unit 61, and the process is terminated.
 表示部6では、このように演算制御部3Bによって求められた脈拍数、動脈および静脈の各血中酸素飽和度ならびに信頼度が脈拍数表示部61、SpO2表示部62ならびに信頼度表示部63のそれぞれに表示される。 In the display unit 6, the pulse rate, arterial and venous oxygen saturation levels and reliability obtained by the calculation control unit 3 B are stored in the pulse rate display unit 61, the SpO 2 display unit 62, and the reliability display unit 63. Displayed on each.
 このように動作するので、第2実施形態の生体情報測定装置SBは、例えば生体の体動等によってノイズが生じた場合でもより精度よく例えば脈拍数や酸素飽和度等の生体情報を測定することができる。 Since it operates in this way, the biological information measuring device SB of the second embodiment can measure biological information such as pulse rate and oxygen saturation more accurately even when noise occurs due to, for example, body movement of the living body. Can do.
 なお、上述の第1および第2実施形態における生体情報測定装置SA、SBは、必要に応じて、図略の外部記憶部あるいは外部記憶部に接続され該外部記憶部との間でデータを交換することができる例えばRS-232C規格やUSB規格等のインタフェース部をさらに備えてもよい。外部記憶部は、例えば、メモリカード、フレキシブルディスク、CD-R(Compact Disc Recordable)、DVD-R(Digital Versatile Disc Recordable)およびブルーレイディスク(Blue-ray Disc)等の記憶媒体との間でデータを読み込みおよび/または書き込みを行う装置であり、例えば、メモリカードインタフェース、フレキシブルディスクドライブ、CD-ROMドライブ、CD-Rドライブ、DVD-Rドライブおよびブルーレイディスクドライブ等である。 The biological information measuring devices SA and SB in the first and second embodiments described above are connected to an external storage unit (not shown) or an external storage unit and exchange data with the external storage unit as necessary. For example, an interface unit such as RS-232C standard or USB standard may be further provided. The external storage unit stores data with a storage medium such as a memory card, flexible disk, CD-R (Compact Disc Recordable), DVD-R (Digital Versatile Disc Recordable), and Blu-ray Disc (Blue-ray Disc), for example. An apparatus that performs reading and / or writing, such as a memory card interface, a flexible disk drive, a CD-ROM drive, a CD-R drive, a DVD-R drive, and a Blu-ray disk drive.
 このような構成の生体情報測定装置SA、SBは、演算制御部3A、3Bに上述の処理を行うためのプログラム等が格納されていない場合には、このプログラム等を記録した記録媒体から、前記外部記憶部を介して演算制御部3A、3Bにインストールされるように構成されてもよい。あるいは、センサ部1によって測定された測定データあるいは第1および第2前処理部31、32ならびに第1および第2BPF部33、34によって処理された後の測定データが前記インタフェース部を介して外部に取り出され、この外部に取り出された測定データが、上述の処理を行うためのプログラム等をインストールしたコンピュータによって演算処理され、これによって、所定の生体情報が算出されてもよい。 In the biological information measuring devices SA and SB having such a configuration, when the program or the like for performing the above-described processing is not stored in the arithmetic control units 3A and 3B, You may comprise so that it may be installed in arithmetic control part 3A, 3B via an external memory | storage part. Alternatively, the measurement data measured by the sensor unit 1 or the measurement data after being processed by the first and second preprocessing units 31 and 32 and the first and second BPF units 33 and 34 are transmitted to the outside via the interface unit. The measurement data taken out and taken out to the outside may be subjected to arithmetic processing by a computer in which a program or the like for performing the above-described processing is installed, whereby predetermined biological information may be calculated.
 また、上述の第1および第2実施形態における生体情報測定装置SA、SBにおいて、上述のモデルは、統計パラメータの値に応じた複数のモデルであり、前記pv算出部41やpa・pv算出部51は、統計パラメータの値に応じて前記複数のモデルを使い分けて、統計パラメータ算出部40によって求められた統計パラメータから第2情報pv^や第1情報pa^を求め、これらに基づいて例えば酸素飽和度等の所定の生体情報を求めてもよい。このように構成することによって、生体情報測定装置SA、SBは、統計パラメータの値に応じて複数のモデルが使い分けられて用いられるので、より適切に近似したモデルが提供され、より精度よく生体情報が測定され得る。 Further, in the biological information measuring devices SA and SB in the first and second embodiments described above, the above model is a plurality of models corresponding to the values of statistical parameters, and the pv calculation unit 41 and the pa / pv calculation unit 51 determines the second information pv ^ and the first information pa ^ from the statistical parameters obtained by the statistical parameter calculator 40 by using the plurality of models according to the values of the statistical parameters, and based on these, for example, oxygen Predetermined biological information such as saturation may be obtained. By configuring in this way, the biological information measuring devices SA and SB are used by properly using a plurality of models according to the value of the statistical parameter, so that a model that is more appropriately approximated is provided and the biological information is more accurately obtained. Can be measured.
 また、上述の第1および第2実施形態における生体情報測定装置SA、SBにおいて、上述のモデルは、第1モデルと前記第1モデルによって得られる値を補正するための第2モデルとから成り、前記pv算出部41やpa・pv算出部51は、統計パラメータ算出部40によって求められた統計パラメータを前記第1モデルに用いることで得られる値を、統計パラメータ算出部40によって求められた統計パラメータを前記第2モデルに用いることで得られる補正値で補正することによって、第2情報pv^や第1情報pa^を求め、これらに基づいて例えば酸素飽和度等の生体情報を求めてもよい。このように構成することによって、生体情報測定装置SA、SBは、補正値が求められるので、より精度よく生体情報が測定され得る。 Further, in the biological information measuring devices SA and SB in the first and second embodiments described above, the above model includes a first model and a second model for correcting a value obtained by the first model, The pv calculation unit 41 and the pa / pv calculation unit 51 use the statistical parameter obtained by the statistical parameter calculation unit 40 as the value obtained by using the statistical parameter obtained by the statistical parameter calculation unit 40 in the first model. Is corrected with a correction value obtained by using the second model, the second information pv ^ and the first information pa ^ may be obtained, and biological information such as oxygen saturation may be obtained based on the second information pv ^. . By configuring in this way, the biological information measuring devices SA and SB can obtain the correction value, so that the biological information can be measured with higher accuracy.
 また、上述の第1および第2実施形態における生体情報測定装置SA、SBにおいて、上述のモデルは、第1モデルと前記第1モデルによって得られる値および前記所定の統計パラメータを入力変数とした第2モデルとから成り、前記pv算出部41やpa・pv算出部51は、統計パラメータ算出部40によって求められた統計パラメータを前記第1モデルに用いることで得られる値および統計パラメータ算出部40によって求められた統計パラメータを前記第2モデルに用いることによって、第2情報pv^や第1情報pa^を求め、これらに基づいて例えば酸素飽和度等の生体情報を求めてもよい。このように構成することによって、生体情報測定装置SA、SBは、第1モデルの値も入力変数とした第2モデルが用いられるので、より精度よく生体情報が測定され得る。 Further, in the biological information measuring devices SA and SB in the first and second embodiments described above, the model described above is the first model, the value obtained by the first model and the first model, and the predetermined statistical parameter as input variables. The pv calculation unit 41 and the pa / pv calculation unit 51 include values obtained by using the statistical parameter obtained by the statistical parameter calculation unit 40 for the first model and the statistical parameter calculation unit 40. By using the obtained statistical parameter in the second model, the second information pv ^ and the first information pa ^ may be obtained, and based on these, biological information such as oxygen saturation may be obtained. By configuring in this way, the biological information measuring devices SA and SB use the second model in which the value of the first model is also an input variable, so that the biological information can be measured with higher accuracy.
 本明細書は、上記のように様々な態様の技術を開示しているが、そのうち主な技術を以下に纏める。 This specification discloses various modes of technology as described above, and the main technologies are summarized below.
 一態様にかかる生体情報測定装置は、測定対象の生体における所定の生理的現象を測定して測定データを出力する測定部と、前記測定部によって測定された測定データに基づいてヒストグラムを求めるヒストグラム算出部と、前記ヒストグラム算出部によって求められたヒストグラムにおける所定の統計パラメータを求める統計パラメータ算出部と、前記測定対象の生体に関する所定の生体情報を求めるための所定の情報を出力変数とすると共に前記所定の統計パラメータを入力変数とした場合における、前記出力変数と前記入力変数との関係を表すモデル(例えば入力変数に関する1次多項式、有理式および無理式等)を予め記憶し、前記統計パラメータ算出部によって求められた前記統計パラメータを前記モデルに用いることによって前記所定の情報を求め、この求めた前記所定の情報に基づいて前記所定の生体情報を求める生体情報算出部とを備える。 A biological information measuring apparatus according to an aspect includes a measurement unit that measures a predetermined physiological phenomenon in a living body to be measured and outputs measurement data, and a histogram calculation that obtains a histogram based on the measurement data measured by the measurement unit A statistical parameter calculation unit for obtaining a predetermined statistical parameter in the histogram obtained by the histogram calculation unit, and predetermined information for obtaining predetermined biological information about the biological body to be measured as an output variable and the predetermined parameter A model representing the relationship between the output variable and the input variable (for example, a first-order polynomial, a rational expression, an irrational expression, etc. relating to the input variable) when the statistical parameter of is used as an input variable, and the statistical parameter calculation unit By using the statistical parameters determined by Serial obtains predetermined information, and a biological information calculation unit for determining the predetermined biometric information based on the predetermined information obtained.
 そして、他の一態様にかかる生体情報測定方法は、測定対象の生体における所定の生理的現象を測定して測定データを得る測定工程と、前記測定工程によって得られた測定データに基づいてヒストグラムを求めるヒストグラム算出工程と、前記ヒストグラム算出工程によって求められたヒストグラムにおける所定の統計パラメータを求める統計パラメータ算出工程と、前記測定対象の生体に関する所定の生体情報を求めるための所定の情報を出力変数とすると共に前記所定の統計パラメータを入力変数とした場合における、前記出力変数と前記入力変数との関係を表すモデル(例えば入力変数に関する1次多項式、有理式および無理式等)を予め記憶し、前記統計パラメータ算出部によって求められた前記統計パラメータを前記モデルに用いることによって前記所定の情報を求め、この求めた前記所定の情報に基づいて前記所定の生体情報を求める生体情報算出工程とを備える。 According to another aspect of the biological information measurement method, a measurement step of measuring a predetermined physiological phenomenon in a measurement target living body to obtain measurement data, and a histogram based on the measurement data obtained by the measurement step are performed. A histogram calculation step to be obtained, a statistical parameter calculation step to obtain a predetermined statistical parameter in the histogram obtained by the histogram calculation step, and predetermined information for obtaining predetermined biological information about the living body to be measured are output variables. In addition, a model (for example, a linear polynomial, a rational expression, an irrational expression, etc. relating to the input variable) representing the relationship between the output variable and the input variable when the predetermined statistical parameter is an input variable is stored in advance. The statistical parameter obtained by the parameter calculation unit is used for the model. It obtains the predetermined information by Rukoto, and a biological information calculation step of calculating said predetermined biometric information based on the predetermined information obtained.
 このような構成の生体情報測定装置および生体情報測定方法では、測定対象の生体から得られた測定データに基づくヒストグラムにおける統計パラメータに基づいて前記生体における所定の生体情報が求められる。このため、このような構成の生体情報測定装置および生体情報測定方法は、例えば生体の体動等によってノイズが生じた場合でもより精度よく生体情報を測定することができる。 In the biological information measuring apparatus and the biological information measuring method configured as described above, predetermined biological information in the living body is obtained based on statistical parameters in a histogram based on measurement data obtained from the living body to be measured. For this reason, the living body information measuring apparatus and the living body information measuring method having such a configuration can measure living body information with higher accuracy even when noise occurs due to, for example, body movement of the living body.
 また、他の一態様にかかる生体情報測定装置は、所定の第1波長の第1光を測定対象の生体の生体組織に照射し、前記生体の生体組織を透過または反射した第1光を受光して第1測定データを出力する第1センサ部と、前記第1波長と異なる所定の第2波長の第2光を前記生体の生体組織に照射し、前記生体の生体組織を透過または反射した第2光を受光して第2測定データを出力する第2センサ部とを備える測定部と、前記第1測定データにおける直流成分に対する交流成分の第1比と前記第2測定データにおける直流成分に対する交流成分の第2比とに基づいて算出される第3比のヒストグラムを求めるヒストグラム算出部と、前記ヒストグラム算出部によって求められたヒストグラムにおける所定の統計パラメータを求める統計パラメータ算出部と、前記測定対象の生体の酸素飽和度を求めるための所定の情報を出力変数とすると共に前記所定の統計パラメータを入力変数とした場合における、前記出力変数と前記入力変数との関係を表すモデル(例えば入力変数に関する1次多項式、有理式および無理式等)を予め記憶し、前記統計パラメータ算出部によって求められた前記統計パラメータを前記モデルに用いることによって前記所定の情報を求め、この求めた前記所定の情報に基づいて前記酸素飽和度を求める生体情報算出部とを備える。 Moreover, the biological information measuring device according to another aspect irradiates a biological tissue of a living body to be measured with a first light having a predetermined first wavelength, and receives the first light transmitted or reflected by the living tissue of the living body. The first sensor unit for outputting the first measurement data, and the second biological light with a predetermined second wavelength different from the first wavelength is irradiated to the biological tissue of the living body, and transmitted or reflected through the living tissue of the living body. A second sensor unit that receives the second light and outputs second measurement data; a first ratio of an AC component to a DC component in the first measurement data; and a DC component in the second measurement data A histogram calculation unit for obtaining a histogram of a third ratio calculated based on the second ratio of the AC component, and a statistical parameter for obtaining a predetermined statistical parameter in the histogram obtained by the histogram calculation unit Data calculation unit, and when the predetermined information for obtaining the oxygen saturation of the living body to be measured is an output variable and the predetermined statistical parameter is an input variable, the output variable and the input variable A model representing a relationship (for example, a first order polynomial, a rational expression, an irrational expression, etc. relating to an input variable) is stored in advance, and the predetermined information is obtained by using the statistical parameter obtained by the statistical parameter calculation unit for the model. And a biological information calculation unit for determining the oxygen saturation based on the determined predetermined information.
 そして、他の一態様にかかる生体情報測定方法は、測定対象の生体における所定の生理的現象を測定して測定データを得る測定工程と、前記測定工程によって得られた測定データに基づいてヒストグラムを求めるヒストグラム算出工程と、前記ヒストグラム算出工程によって求められたヒストグラムにおける所定の統計パラメータを求める統計パラメータ算出工程と、前記測定対象の生体の酸素飽和度を求めるための所定の情報を出力変数とすると共に前記所定の統計パラメータを入力変数とした場合における、前記出力変数と前記入力変数との関係を表すモデル(例えば入力変数に関する1次多項式、有理式および無理式等)を予め記憶し、前記統計パラメータ算出部によって求められた前記統計パラメータを前記モデルに用いることによって前記所定の情報を求め、この求めた前記所定の情報に基づいて前記酸素飽和度を求める生体情報算出工程とを備える。 According to another aspect of the biological information measurement method, a measurement step of measuring a predetermined physiological phenomenon in a measurement target living body to obtain measurement data, and a histogram based on the measurement data obtained by the measurement step are performed. A histogram calculation step to be obtained, a statistical parameter calculation step to obtain a predetermined statistical parameter in the histogram obtained by the histogram calculation step, and predetermined information for obtaining the oxygen saturation of the living body to be measured as output variables A model representing a relationship between the output variable and the input variable when the predetermined statistical parameter is an input variable (for example, a first order polynomial, a rational expression, an irrational expression, etc. regarding the input variable) is stored in advance, and the statistical parameter Using the statistical parameter obtained by the calculation unit for the model It obtains the predetermined information I, and a biological information calculation step of calculating the oxygen saturation based on the predetermined information obtained.
 このような構成の生体情報測定装置および生体情報測定方法は、例えば生体の体動等によってノイズが生じた場合でもより精度よく生体の酸素飽和度を測定することができる。そして、この構成によれば、酸素飽和度を測定することができる、いわゆるパルスオキシメータが提供される。 The living body information measuring apparatus and living body information measuring method having such a configuration can measure the oxygen saturation of a living body with higher accuracy even when noise occurs due to, for example, body movement of the living body. And according to this structure, what is called a pulse oximeter which can measure oxygen saturation is provided.
 また、他の一態様では、これら上述の生体情報測定装置において、好ましくは、前記統計パラメータは、複数である。そして、他の一態様では、これら上述の生体情報測定方法において、好ましくは、前記統計パラメータは、複数である。 In another aspect, in the above-described biological information measuring device, preferably, the statistical parameter is plural. In another aspect, in the above-described biological information measurement method, preferably, the statistical parameter is plural.
 この構成によれば、統計パラメータが複数用いられるので、より適切に近似したモデルが提供され、より精度よく生体情報が測定され得る。 According to this configuration, since a plurality of statistical parameters are used, a more appropriately approximate model is provided, and biological information can be measured with higher accuracy.
 また、他の一態様では、上述の生体情報測定装置において、好ましくは、前記モデルは、前記複数の統計パラメータのそれぞれを単独に前記入力変数として含むと共に前記複数の統計パラメータのうちの少なくとも2個の積および/または比を1または複数前記入力変数として含む。 In another aspect, in the above-described biological information measurement device, preferably, the model includes each of the plurality of statistical parameters independently as the input variable and at least two of the plurality of statistical parameters. And / or ratios as one or more of the input variables.
 この構成によれば、複数の統計パラメータがモデルの入力変数として単独で用いられるだけでなくその積および/またはその比も前記モデルの入力変数として用いられるので、より適切に近似したモデルが提供され、より精度よく生体情報が測定され得る。 According to this configuration, a plurality of statistical parameters are used not only as input variables of the model, but also their products and / or their ratios are used as input variables of the model, so that a more appropriately approximate model is provided. The biological information can be measured with higher accuracy.
 また、他の一態様では、これら上述の生体情報測定装置において、好ましくは、前記モデルは、統計パラメータの値に応じた複数のモデルであり、前記生体情報算出部は、統計パラメータの値に応じて前記複数のモデルを使い分けて、前記統計パラメータ算出部によって求められた前記統計パラメータから前記所定の情報を求め、この求めた前記所定の情報に基づいて前記所定の生体情報を求める。 In another aspect, in the above-described biological information measurement device, preferably, the model is a plurality of models according to a value of a statistical parameter, and the biological information calculation unit is configured according to a value of the statistical parameter. The predetermined information is obtained from the statistical parameter obtained by the statistical parameter calculation unit using the plurality of models, and the predetermined biological information is obtained based on the obtained predetermined information.
 この構成によれば、統計パラメータの値に応じて複数のモデルが使い分けられて用いられるので、より適切に近似したモデルが提供され、より精度よく生体情報が測定され得る。 According to this configuration, since a plurality of models are selectively used according to the value of the statistical parameter, a more appropriately approximate model is provided, and biological information can be measured with higher accuracy.
 また、他の一態様では、これら上述の生体情報測定装置において、好ましくは、前記モデルは、第1モデルと前記第1モデルによって得られる値を補正するための第2モデルとから成り、前記生体情報算出部は、前記統計パラメータ算出部によって求められた前記統計パラメータを前記第1モデルに用いることで得られる値を、前記統計パラメータ算出部によって求められた前記統計パラメータを前記第2モデルに用いることで得られる補正値で補正することによって前記所定の情報を求め、この求めた前記所定の情報に基づいて前記所定の生体情報を求めることを特徴とする。ここで、第1、第2のモデルは、例えば、入力変数に関する1次多項式、有理式および無理式等が用いられる。 In another aspect, in the above-described biological information measuring device, preferably, the model includes a first model and a second model for correcting a value obtained by the first model. The information calculation unit uses a value obtained by using the statistical parameter obtained by the statistical parameter calculation unit for the first model, and uses the statistical parameter obtained by the statistical parameter calculation unit for the second model. The predetermined information is obtained by correcting with the correction value obtained in this way, and the predetermined biological information is obtained based on the obtained predetermined information. Here, for the first and second models, for example, linear polynomials relating to input variables, rational expressions, and irrational expressions are used.
 この構成によれば、補正値が求められるので、より精度よく生体情報が測定され得る。 According to this configuration, since a correction value is obtained, biological information can be measured with higher accuracy.
 また、他の一態様では、これら上述の生体情報測定装置において、好ましくは、前記モデルは、第1モデルと前記第1モデルによって得られる値および前記所定の統計パラメータを入力変数とした第2モデルとから成り、前記生体情報算出部は、前記統計パラメータ算出部によって求められた前記統計パラメータを前記第1モデルに用いることで得られる値および前記統計パラメータ算出部によって求められた前記統計パラメータを前記第2モデルに用いることによって前記所定の情報を求め、この求めた前記所定の情報に基づいて前記所定の生体情報を求める。 In another aspect, in the above-described biological information measuring device, preferably, the model is a second model using a first model, a value obtained by the first model, and the predetermined statistical parameter as input variables. The biological information calculation unit includes the value obtained by using the statistical parameter obtained by the statistical parameter calculation unit for the first model and the statistical parameter obtained by the statistical parameter calculation unit. The predetermined information is obtained by using the second model, and the predetermined biological information is obtained based on the obtained predetermined information.
 この構成によれば、第1モデルの値も入力変数とした第2モデルが用いられるので、より精度よく生体情報が測定され得る。 According to this configuration, since the second model using the value of the first model as an input variable is used, biological information can be measured with higher accuracy.
 この出願は、2010年1月18日に出願された日本国特許出願特願2010-008012を基礎とするものであり、その内容は、本願に含まれるものである。 This application is based on Japanese Patent Application No. 2010-008012 filed on January 18, 2010, the contents of which are included in the present application.
 本発明を表現するために、上述において図面を参照しながら実施形態を通して本発明を適切且つ十分に説明したが、当業者であれば上述の実施形態を変更および/または改良することは容易に為し得ることであると認識すべきである。したがって、当業者が実施する変更形態または改良形態が、請求の範囲に記載された請求項の権利範囲を離脱するレベルのものでない限り、当該変更形態または当該改良形態は、当該請求項の権利範囲に包括されると解釈される。 In order to express the present invention, the present invention has been properly and fully described through the embodiments with reference to the drawings. However, those skilled in the art can easily change and / or improve the above-described embodiments. It should be recognized that this is possible. Therefore, unless the modifications or improvements implemented by those skilled in the art are at a level that departs from the scope of the claims recited in the claims, the modifications or improvements are not covered by the claims. To be construed as inclusive.
 本発明によれば、生体の生理的現象を測定することによって生体に関する生体情報を測定する生体情報測定装置および生体情報測定方法を提供することができる。 According to the present invention, it is possible to provide a living body information measuring apparatus and a living body information measuring method for measuring living body information related to a living body by measuring a physiological phenomenon of the living body.

Claims (9)

  1.  測定対象の生体における所定の生理的現象を測定して測定データを出力する測定部と、
     前記測定部によって測定された測定データに基づいてヒストグラムを求めるヒストグラム算出部と、
     前記ヒストグラム算出部によって求められたヒストグラムにおける所定の統計パラメータを求める統計パラメータ算出部と、
     前記測定対象の生体に関する所定の生体情報を求めるための所定の情報を出力変数とすると共に前記所定の統計パラメータを入力変数とした場合における、前記出力変数と前記入力変数との関係を表すモデルを予め記憶し、前記統計パラメータ算出部によって求められた前記統計パラメータを前記モデルに用いることによって前記所定の情報を求め、この求めた前記所定の情報に基づいて前記所定の生体情報を求める生体情報算出部とを備えること
     を特徴とする生体情報測定装置。
    A measurement unit that measures a predetermined physiological phenomenon in the living body to be measured and outputs measurement data; and
    A histogram calculation unit for obtaining a histogram based on the measurement data measured by the measurement unit;
    A statistical parameter calculator for obtaining a predetermined statistical parameter in the histogram obtained by the histogram calculator;
    A model representing a relationship between the output variable and the input variable when the predetermined information for obtaining the predetermined biological information related to the measurement target biological body is an output variable and the predetermined statistical parameter is an input variable. Biological information calculation that obtains the predetermined information by using the statistical parameter stored in advance and obtained by the statistical parameter calculation unit in the model, and obtains the predetermined biological information based on the obtained predetermined information A biological information measuring device.
  2.  所定の第1波長の第1光を測定対象の生体の生体組織に照射し、前記生体の生体組織を透過または反射した第1光を受光して第1測定データを出力する第1センサ部と、前記第1波長と異なる所定の第2波長の第2光を前記生体の生体組織に照射し、前記生体の生体組織を透過または反射した第2光を受光して第2測定データを出力する第2センサ部とを備える測定部と、
     前記第1測定データにおける直流成分に対する交流成分の第1比と前記第2測定データにおける直流成分に対する交流成分の第2比とに基づいて算出される第3比のヒストグラムを求めるヒストグラム算出部と、
     前記ヒストグラム算出部によって求められたヒストグラムにおける所定の統計パラメータを求める統計パラメータ算出部と、
     前記測定対象の生体の酸素飽和度を求めるための所定の情報を出力変数とすると共に前記所定の統計パラメータを入力変数とした場合における、前記出力変数と前記入力変数との関係を表すモデルを予め記憶し、前記統計パラメータ算出部によって求められた前記統計パラメータを前記モデルに用いることによって前記所定の情報を求め、この求めた前記所定の情報に基づいて前記酸素飽和度を求める生体情報算出部とを備えること
     を特徴とする生体情報測定装置。
    A first sensor unit that irradiates a living tissue of a living body to be measured with a first light having a predetermined first wavelength, receives the first light transmitted or reflected by the living tissue of the living body, and outputs first measurement data; Irradiating the living tissue of the living body with second light having a predetermined second wavelength different from the first wavelength, receiving the second light transmitted or reflected through the living tissue of the living body, and outputting second measurement data A measurement unit comprising a second sensor unit;
    A histogram calculation unit for obtaining a histogram of a third ratio calculated based on a first ratio of the AC component to the DC component in the first measurement data and a second ratio of the AC component to the DC component in the second measurement data;
    A statistical parameter calculator for obtaining a predetermined statistical parameter in the histogram obtained by the histogram calculator;
    A model representing a relationship between the output variable and the input variable in a case where the predetermined information for obtaining the oxygen saturation of the living body to be measured is an output variable and the predetermined statistical parameter is an input variable. A biological information calculation unit for storing and obtaining the predetermined information by using the statistical parameter obtained by the statistical parameter calculation unit in the model, and obtaining the oxygen saturation based on the obtained predetermined information; A biological information measuring device comprising:
  3.  前記統計パラメータは、複数であること
     を特徴とする請求項1に記載の生体情報測定装置。
    The biological information measuring apparatus according to claim 1, wherein the statistical parameter is plural.
  4.  前記モデルは、前記複数の統計パラメータのそれぞれを単独に前記入力変数として含むと共に前記複数の統計パラメータのうちの少なくとも2個の積および/または比を1または複数前記入力変数として含むこと
     を特徴とする請求項3に記載の生体情報測定装置。
    The model includes each of the plurality of statistical parameters independently as the input variable, and includes at least two products and / or ratios of the plurality of statistical parameters as one or more of the input variables. The biological information measuring device according to claim 3.
  5.  前記モデルは、統計パラメータの値に応じた複数のモデルであり、
     前記生体情報算出部は、統計パラメータの値に応じて前記複数のモデルを使い分けて、前記統計パラメータ算出部によって求められた前記統計パラメータから前記所定の情報を求め、この求めた前記所定の情報に基づいて前記所定の生体情報を求めること
     を特徴とする請求項1に記載の生体情報測定装置。
    The model is a plurality of models according to the value of a statistical parameter,
    The biological information calculation unit determines the predetermined information from the statistical parameter obtained by the statistical parameter calculation unit by properly using the plurality of models according to the value of the statistical parameter, and adds the obtained predetermined information to the obtained predetermined information. The biological information measuring device according to claim 1, wherein the predetermined biological information is obtained based on the biological information.
  6.  前記モデルは、第1モデルと前記第1モデルによって得られる値を補正するための第2モデルとから成り、
     前記生体情報算出部は、前記統計パラメータ算出部によって求められた前記統計パラメータを前記第1モデルに用いることで得られる値を、前記統計パラメータ算出部によって求められた前記統計パラメータを前記第2モデルに用いることで得られる補正値で補正することによって前記所定の情報を求め、この求めた前記所定の情報に基づいて前記所定の生体情報を求めること
     を特徴とする請求項1に記載の生体情報測定装置。
    The model comprises a first model and a second model for correcting a value obtained by the first model,
    The biological information calculation unit is configured to use a value obtained by using the statistical parameter obtained by the statistical parameter calculation unit for the first model, and the statistical parameter obtained by the statistical parameter calculation unit to the second model. The biological information according to claim 1, wherein the predetermined information is obtained by correcting with a correction value obtained by using the information, and the predetermined biological information is obtained based on the obtained predetermined information. measuring device.
  7.  前記モデルは、第1モデルと前記第1モデルによって得られる値および前記所定の統計パラメータを入力変数とした第2モデルとから成り、
     前記生体情報算出部は、前記統計パラメータ算出部によって求められた前記統計パラメータを前記第1モデルに用いることで得られる値および前記統計パラメータ算出部によって求められた前記統計パラメータを前記第2モデルに用いることによって前記所定の情報を求め、この求めた前記所定の情報に基づいて前記所定の生体情報を求めること
     を特徴とする請求項1に記載の生体情報測定装置。
    The model consists of a first model and a second model with values obtained by the first model and the predetermined statistical parameters as input variables,
    The biological information calculation unit uses the statistical parameter obtained by the statistical parameter calculation unit for the first model and the statistical parameter obtained by the statistical parameter calculation unit in the second model. The biological information measuring device according to claim 1, wherein the predetermined information is obtained by use, and the predetermined biological information is obtained based on the obtained predetermined information.
  8.  測定対象の生体における所定の生理的現象を測定して測定データを得る測定工程と、
     前記測定工程によって得られた測定データに基づいてヒストグラムを求めるヒストグラム算出工程と、
     前記ヒストグラム算出工程によって求められたヒストグラムにおける所定の統計パラメータを求める統計パラメータ算出工程と、
     前記測定対象の生体に関する所定の生体情報を求めるための所定の情報を出力変数とすると共に前記所定の統計パラメータを入力変数とした場合における、前記出力変数と前記入力変数との関係を表すモデルを予め記憶し、前記統計パラメータ算出部によって求められた前記統計パラメータを前記モデルに用いることによって前記所定の情報を求め、この求めた前記所定の情報に基づいて前記所定の生体情報を求める生体情報算出工程とを備えること
     を特徴とする生体情報測定方法。
    A measurement process for obtaining measurement data by measuring a predetermined physiological phenomenon in a living body to be measured;
    A histogram calculation step for obtaining a histogram based on the measurement data obtained by the measurement step;
    A statistical parameter calculating step for obtaining a predetermined statistical parameter in the histogram obtained by the histogram calculating step;
    A model representing a relationship between the output variable and the input variable when the predetermined information for obtaining the predetermined biological information related to the measurement target biological body is an output variable and the predetermined statistical parameter is an input variable. Biological information calculation that obtains the predetermined information by using the statistical parameter stored in advance and obtained by the statistical parameter calculation unit for the model, and obtains the predetermined biological information based on the obtained predetermined information A biological information measuring method comprising the steps of:
  9.  前記統計パラメータは、複数であること
     を特徴とする請求項8に記載の生体情報測定方法。
    The biological information measuring method according to claim 8, wherein the statistical parameter is plural.
PCT/JP2010/007368 2010-01-18 2010-12-20 Biometric information measuring device and method for same WO2011086644A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-008012 2010-01-18
JP2010008012 2010-01-18

Publications (1)

Publication Number Publication Date
WO2011086644A1 true WO2011086644A1 (en) 2011-07-21

Family

ID=44303950

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/007368 WO2011086644A1 (en) 2010-01-18 2010-12-20 Biometric information measuring device and method for same

Country Status (1)

Country Link
WO (1) WO2011086644A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038484A (en) * 2014-09-19 2015-02-26 オムロン株式会社 Sensing data generation method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7509154B2 (en) * 1991-03-07 2009-03-24 Masimo Corporation Signal processing apparatus
JP2010000160A (en) * 2008-06-19 2010-01-07 Nippon Koden Corp Pulse oximetry and pulse oximeter

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7509154B2 (en) * 1991-03-07 2009-03-24 Masimo Corporation Signal processing apparatus
JP2010000160A (en) * 2008-06-19 2010-01-07 Nippon Koden Corp Pulse oximetry and pulse oximeter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015038484A (en) * 2014-09-19 2015-02-26 オムロン株式会社 Sensing data generation method

Similar Documents

Publication Publication Date Title
US20220218213A1 (en) Patient monitor for determining microcirculation state
US9380969B2 (en) Systems and methods for varying a sampling rate of a signal
US8649838B2 (en) Wavelength switching for pulse oximetry
US9560994B2 (en) Pulse oximeter with adaptive power conservation
JP6020551B2 (en) Biological information processing apparatus and signal processing method
US20120165629A1 (en) Systems and methods of monitoring a patient through frequency-domain photo migration spectroscopy
US20090287070A1 (en) Estimation Of A Physiological Parameter Using A Neural Network
JP2004202190A (en) Biological information measuring device
US20130137946A1 (en) Medical device with conditional power consumption
US9357937B2 (en) System and method for determining stroke volume of an individual
JP2008188216A (en) Biological information measurement apparatus
US8870783B2 (en) Pulse rate determination using Gaussian kernel smoothing of multiple inter-fiducial pulse periods
JP5531715B2 (en) Biological information measuring apparatus and method
US20140066782A1 (en) System and method for determining a resting heart rate of an individual
US10765375B2 (en) Physiological monitoring methods and systems utilizing filter scaling
JP5353790B2 (en) Biological information measuring apparatus and method
US20140244205A1 (en) Systems and methods for generating an artificial photoplethysmograph signal
WO2011086644A1 (en) Biometric information measuring device and method for same
US9888871B2 (en) Methods and systems for determining a venous signal using a physiological monitor
WO2009124077A1 (en) Detection of site oximetry degradation
US20140275877A1 (en) Systems and methods for determining respiration information based on principal component analysis
JP5527277B2 (en) Signal processing apparatus, signal processing method, and biological information measuring apparatus
US8571621B2 (en) Minimax filtering for pulse oximetry
US20140275879A1 (en) Systems and methods for determining respiration information based on independent component analysis
CN116940280A (en) Alternative energy modes for measuring blood and tissue oxygenation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10843003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10843003

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP