WO2011059123A1 - Heparin compound bound to adhesive material, preparation method thereof, solid surface coating agent containing same as active ingredient, and coating method of solid surface using same - Google Patents

Heparin compound bound to adhesive material, preparation method thereof, solid surface coating agent containing same as active ingredient, and coating method of solid surface using same Download PDF

Info

Publication number
WO2011059123A1
WO2011059123A1 PCT/KR2009/006612 KR2009006612W WO2011059123A1 WO 2011059123 A1 WO2011059123 A1 WO 2011059123A1 KR 2009006612 W KR2009006612 W KR 2009006612W WO 2011059123 A1 WO2011059123 A1 WO 2011059123A1
Authority
WO
WIPO (PCT)
Prior art keywords
heparin
glucopyranosyl
deoxy
sulfamido
solid surface
Prior art date
Application number
PCT/KR2009/006612
Other languages
French (fr)
Korean (ko)
Inventor
이해신
강성민
유인성
변영로
Original Assignee
주식회사 메디프렉스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 메디프렉스 filed Critical 주식회사 메디프렉스
Priority to PCT/KR2009/006612 priority Critical patent/WO2011059123A1/en
Publication of WO2011059123A1 publication Critical patent/WO2011059123A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L33/00Antithrombogenic treatment of surgical articles, e.g. sutures, catheters, prostheses, or of articles for the manipulation or conditioning of blood; Materials for such treatment
    • A61L33/0005Use of materials characterised by their function or physical properties
    • A61L33/0011Anticoagulant, e.g. heparin, platelet aggregation inhibitor, fibrinolytic agent, other than enzymes, attached to the substrate
    • A61L33/0029Anticoagulant, e.g. heparin, platelet aggregation inhibitor, fibrinolytic agent, other than enzymes, attached to the substrate using an intermediate layer of polymer
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • C08B37/0063Glycosaminoglycans or mucopolysaccharides, e.g. keratan sulfate; Derivatives thereof, e.g. fucoidan
    • C08B37/0075Heparin; Heparan sulfate; Derivatives thereof, e.g. heparosan; Purification or extraction methods thereof
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D105/00Coating compositions based on polysaccharides or on their derivatives, not provided for in groups C09D101/00 or C09D103/00
    • C09D105/10Heparin; Derivatives thereof

Definitions

  • the present invention provides a heparin compound combined with an adhesive material, a method for preparing the same, a solid surface coating agent containing the same as an active ingredient, and a method for coating a solid surface using the same.
  • the inventors of the present invention have completed the present invention by studying a method for preparing a heparin compound combined with an adhesive material by an easy method, a solid surface coating agent containing the same as an active ingredient, and a method for coating a solid surface using the same.
  • An object of the present invention is to provide a heparin compound bonded to an adhesive material, a method for preparing the same, a solid surface coating agent containing the same as an active ingredient, and a method for coating a solid surface using the same.
  • the present invention is a heparin compound bonded to an adhesive material, a method for producing a heparin compound bonded to the adhesive material by reacting the adhesive material and heparin under weakly acidic conditions, containing it as an active ingredient It provides a solid surface coating agent, and a method for coating a solid surface under weak base conditions using the same.
  • heparin not only can heparin easily be attached to heparin, but also heparin can be fixed to various solid surfaces.
  • many existing blood compatible materials have coated anti-thrombotic substances on polymeric materials such as polyurethane.
  • the dopamine bound to heparin is well coated on the polyurethane surface, and thus the present invention can be usefully used for blood compatible material development.
  • Figure 1 (a) is a result of taking a solution obtained by dissolving the compound dopamine bonded to heparin in distilled water with a UV detector, (b) is a result of taking a solution in which only heparin dissolved in distilled water by a UV detector.
  • Figure 2 (a) is a result of dissolving only heparin in distilled water, poured on the surface of the gold and evaporated, followed by FT-IR, (b) is a surface of gold by dissolving a compound in which heparin is bonded to dopamine as an adhesive substance in distilled water After pour into and evaporated, the result was taken with FT-IR, and (c) is a result of coating with a dopamine-bonded compound on heparin on the surface of the gold wafer, washed with distilled water, and then taken with FT-IR.
  • Figure 3 (a) is a coating of a heparin compound in combination with a dopamine according to the present invention on gold (Au), silicon (Si), and titanium (Ti) wafer to measure the thickness of the coating, (b) is Adsorption of fibrinogen on the coated substrates was performed to measure the thickness, and (c) was measured by dropping blood on the coated substrates to coagulate, washing with water, and measuring the thickness.
  • Figure 5 (a) is a photograph of the platelet adhesion test on the bare polyurethane surface, (b) is a photograph of the same test on the surface of the polyurethane coated with the heparin compound according to the present invention. (The scale is 10 mm.)
  • FIG. 6 shows the thickness of the coated heparin compound remaining after 2 hours, 4 hours, and 6 hours after coating the heparin compound according to the present invention on an Au surface and immersing the surface in 50% ethanol solution.
  • Figure 7 is a narrow scan (Narrow scan) photographs with a photoelectron spectroscopy (XPS), (a) is a bare polyurethane surface, (b) is a polyurethane surface coated with a heparin compound according to the present invention (c) is a polyurethane surface dipped in 50% ethanol solution for two hours after coating the heparin compound according to the invention, (d) is a bare silicone rubber surface, and (e) is according to the invention A silicone rubber surface coated with a heparin compound, and (f) is a silicone rubber surface dipped in 50% ethanol solution for two hours after coating the heparin compound according to the present invention.
  • XPS photoelectron spectroscopy
  • the present invention provides a heparin compound represented by the following Chemical Formula 1 in combination with an adhesive material:
  • K is an integer from 1 to 10;
  • X is H or OH
  • M and N are each an integer from 1 to 50;
  • a and B are independently ⁇ -D-glucuronic acid (GlcA), ⁇ -L-iduronic acid (IdoA), 2-O-sulfo- ⁇ 2-O-sulfo- ⁇ -L-iduronic acid (IdoA (2S)), 2-deoxy-2-acetamino- ⁇ -D-glucopyranosyl (2-deoxy-2- acetamido- ⁇ -D-glucopyranosyl (GlcNAc)), 2-deoxy-2-sulfamido- ⁇ -D-glucopyranosyl (2-deoxy-2-sulfamido- ⁇ -D-glucopyranosyl (GlcNS)), and 2-deoxy-2-sulfamido- ⁇ -D-glucopyranosyl-6-O-sulfate (2-deoxy-2-sulfamido- ⁇ -D-glucopyranosyl-6-O-sulfate (GlcNS (6S)) ) Is
  • a and B represent hexagonal ring units constituting heparin
  • A represents an amide bond
  • B represents an amide bond
  • the range of heparin molecular weight used for the present invention has a value between the molecular weight of 3 kDa and 50 kDa.
  • heparin used in the present invention may include all kinds present in nature.
  • the heparin compound according to Chemical Formula 1 is a composite in which A and B are optionally arranged, and M / (M + N), which is a ratio of A and B, is preferably 0.02 or more.
  • the adhesive material bound to heparin according to the present invention includes dopamine (dopamine, 3-hydroxytyramine hydrochloride) as shown in the following formula (2), and the chemical structure of dopamine, whether or not one or a plurality of X OH in the formula (1) It is very similar to maintain the physical and chemical properties of dopamine.
  • Haeshin Lee et al. (2006, 2007) studied mussels that have adhesion in water and on water, as well as on organic and inorganic surfaces, and found that the basic unit of adhesion is dopamine.
  • the solid surface coated by the coating agent containing the heparin compound of Formula 1 as an active ingredient is, for example, polytetrafluoroethylene (PTFE), polycarbonate (polycarnonate), polyurethane (polyurethane), nitrocellulose (nitrocellulose), Polymeric materials including polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), polydimethylsiloxane (PDMS), and polyether ether ketone (PEEK), gold (Au), silver (Ag), platinum Precious metal materials including (Pt), palladium (Pd), and copper (Cu), metal materials including steel, nitinol alloy (NiTi), gallium arsenide (GaAs), and titanium (Ti), silicon oxide Metal oxide materials including (SiO 2 ), titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), and niobium oxide (Nb 2 O 5 ), and nonmetals including silicon, silicone rubber, and glass It may
  • the present invention also provides a method for preparing a heparin compound in combination with an adhesive material.
  • step 2 Reacting the -COOH group-activated heparin with the adhesive material to prepare a heparin compound in which the adhesive material is bound (step 2):
  • K is an integer from 1 to 10;
  • X is H or OH
  • M and N are each an integer from 2 to 50;
  • a and B are independently ⁇ -D-glucuronic acid (GlcA), ⁇ -L-iduronic acid (IdoA), 2-O-sulfo- ⁇ 2-O-sulfo- ⁇ -L-iduronic acid (IdoA (2S)), 2-deoxy-2-acetamino- ⁇ -D-glucopyranosyl (2-deoxy-2- acetamido- ⁇ -D-glucopyranosyl (GlcNAc)), 2-deoxy-2-sulfamido- ⁇ -D-glucopyranosyl (2-deoxy-2-sulfamido- ⁇ -D-glucopyranosyl (GlcNS)), and 2-deoxy-2-sulfamido- ⁇ -D-glucopyranosyl-6-O-sulfate (2-deoxy-2-sulfamido- ⁇ -D-glucopyranosyl-6-O-sulfate (GlcNS (6S)) ) Is
  • Step 1 is a step of reacting heparin with NHS in order to activate the -COOH group of heparin, through the reaction, for example, the -COOH group of heparin, such as the following formula (3) is activated as shown in formula (4).
  • Step 2 is a step of bonding the adhesive material to heparin -COOH group activated, the adhesive material is preferably dopamine.
  • the adhesive material is preferably dopamine.
  • step 2 a heparin compound in which a substance of Formula 4 is reacted with an adhesive substance of Formula 5 is prepared by reacting with an amine group of dopamine.
  • Step 1 and step 2 is preferably carried out under weakly acidic conditions. This is because weakly acidic conditions inhibit dopamine self-polymerization.
  • the method for preparing a heparin compound combined with an adhesive material according to the present invention may further include performing dialysis and lyophilization. In order to prevent the self-polymerization of dopamine during dialysis, it is desirable to maintain weakly acidic conditions.
  • the present invention provides a solid surface coating agent containing a heparin compound in which the adhesive material represented by Formula 1 is bound as an active ingredient.
  • the present invention provides a method for coating a solid surface using the coating agent.
  • Coating of the solid surface with the solid surface coating agent containing the heparin compound according to the present invention as an active ingredient is preferably carried out under weak base conditions of pH 7.5 ⁇ 0.5. This is because weak base conditions induce polydopamine polymerization between dopamines bound to heparin.
  • Solid surfaces on which the solid surface coatings according to the invention can be coated are, for example, polytetrafluoroethylene (PTFE), polycarbonate (polycarnonate), polyurethane, nitrocellulose, polystyrene (PS), Polymeric materials, including polyethylene (PE), polyethylene terephthalate (PET), polydimethylsiloxane (PDMS), and polyether ether ketone (PEEK), gold (Au), silver (Ag), platinum (Pt), palladium (Pd), and precious metal materials including copper (Cu), steel, nitinol alloys (NiTi), gallium arsenide (GaAs), and metal materials including titanium (Ti), silicon oxide (SiO 2 ), Metal oxide materials including titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), and niobium oxide (Nb 2 O 5 ), and nonmetallic materials including silicon, silicone rubber, and glass, It is not limited to this.
  • PTFE polytetra
  • heparin 400 mg of heparin, 230 mg of NHS, and 766 mg of EDC (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochlorid) as shown in Chemical Formula 3, 40 mg of MES (2-morpholinoethanesulfonic acid) buffer at pH 5.5 and 0.05 M Completely dissolved and reacted for 2 hours 30 minutes to activate the -COOH group of heparin:
  • Example 1 50 mg of the dopamine-coupled heparin compound prepared in Example 1 was dissolved in 5 ml of TRIS buffer at 10 mM and pH 8.5, and then coated with gold wafer pieces for 12 hours with stirring.
  • Figure 1 (b) is taken only by dissolving heparin in distilled water with an ultraviolet detector. It can be seen that no peak emerges at 280 nm, the absorbing wavelength of dopamine.
  • Figure 1 (a) is taken with an ultraviolet detector dissolved in a distilled water the dopamine-bound heparin compound prepared in Example 1 of the present invention. In Figure 1 (a) it can be seen that the peak at 280 nm, the absorption wavelength of dopamine is clearly seen. Since unreacted dopamine was removed through dialysis in Example 1, it can be seen that the peak at 280 nm is the peak of dopamine bound to heparin.
  • FIG. 2 (a) shows the result taken by FT-IR after evaporation of only heparin in distilled water, poured onto a gold wafer surface.
  • Figure 2 (b) is a result obtained by FT-IR after evaporation of the dopamine-bound heparin compound prepared in Example 1 of the present invention dissolved in distilled water and poured on the surface of the gold wafer.
  • Figure 2 (b) it can be confirmed that the -CONH- peak near 1560 cm -1 , through which the binding of heparin and dopamine was well established.
  • Figure 2 (c) is a result of taking a gold wafer coated with a dopamine-bound heparin compound according to Example 2 after sufficiently washed with distilled water and FT-IR. In Figure 2 (c) it can be seen the peak -CONH- near 1560 cm -1 . Through this, it can be seen that the dopamine-coupled heparin compound according to the present invention is well adhered to the gold wafer surface.
  • the coating thicknesses were measured for the coated gold wafers, titanium wafers, and silicon wafers prepared in Examples 2, 3, and 6. An ellipsometer was used for the coating thickness measurement. According to (a) of FIG. 3, gold wafers were coated with an average of 21.026 mmW, silicon wafers with an average of 11.7 mmW, and titanium wafers with an average of 19.758 mmW.
  • the dopamine-bound heparin compound according to the present invention in order to determine whether the heparin immobilized on the surface performs the solution solution in the solution solution, under the condition of water vapor saturation, uncoated gold, silicon, and After dropping blood on the surface of gold, titanium, and silicon coated with titanium and the dopamine-conjugated heparin compound according to Examples 2, 3, and 6 of the present invention, the mixture was left for 2 hours. Thereafter, the surfaces were sufficiently washed with distilled water, and then the thickness of the blood component adsorbed on the surface was measured using an ellipsometer, which is shown in FIG.
  • the contact angle was measured to confirm that the coating of the dopamine-bound heparin compound according to the present invention on the solid surface was well performed.
  • a drop of distilled water was added dropwise to the gold wafer, the titanium wafer, the polycarbonate, the polyurethane, and the silicone rubber and the coated solid surface prepared in Examples 2 to 6 according to the present invention, and then the contact angle was checked through a contact angle meter.
  • FIG. 4 is a photograph for confirming a contact angle in each case. According to FIG.
  • the 1 cm ⁇ 1 cm heparin coated polyurethane surface prepared by Example 4 of the present invention was immersed in PBS (pH 7.4) for 24 hours. This surface was then immersed in 5 ml of platelet concentrate and maintained at 37 ° C. for 2 hours. Washed with PBS to remove weakly attached platelets. Thereafter, the surface was immediately immersed in formaldehyde for 24 hours, platelets were fixed, and the remaining formaldehyde was removed with PBS. This surface was then immersed in 50, 60, 70, 80, 90% ethanol solution for 15 minutes in order to replace water with ethanol. Finally, the surface was analyzed by SEM, which is shown in FIG. 5.
  • Heparin compound-coated gold wafers, polyurethanes, and silicone rubbers prepared according to Examples 2, 4, and 6 according to the present invention were immersed in 50% ethanol solution.
  • the gold wafer coated with the heparin compound was immersed in the ethanol solution for 2 hours, 4 hours, and 6 hours under static conditions, respectively, and the thickness thereof was measured with an ellipsometer. Indicated.
  • the polyurethane and silicone rubber coated with heparin compound were immersed in a 50% ethanol solution in a static state for 2 hours and then taken out and analyzed by XPS. At this time, as a control, the bare polyurethane and bare silicone rubber were analyzed by XPS, and the results are shown in FIG. 7.
  • heparin-coated gold surface according to the present invention can be seen that the thickness does not change significantly after 2 hours, 4 hours, 6 hours in 50% ethanol solution. This shows that heparin coated on gold is stably coated on the surface.
  • the S2p peak comes out from the surface of heparin-coated polyurethane dipped in 50% ethanol for 2 hours.
  • the heparin compound according to the present invention was stably coated on the polyurethane surface.
  • the peak of N1s did not come out from the surface of the bare silicone rubber in FIG.
  • the heparin-coated silicone rubber surface showed a N1s peak.
  • the N1s peak also appeared on the surface of heparin-coated silicone rubber dipped in 50% ethanol for 2 hours in Figure 7 (f).
  • the heparin compound according to the present invention is stably coated on the silicone rubber surface.

Abstract

The present invention relates to a heparin compound bound to an adhesive material, a preparation method thereof, a solid surface coating agent containing the same as an active ingredient, and a coating method of a solid surface using the same. To this end, the present invention prepares a heparin compound bound to an adhesive material by activating a carboxyl group of heparin under a weak acidic condition and reacting the activated one with an adhesive material, and a coating agent containing the prepared compound as an active ingredient can be easily coated on a solid surface under a weak basic condition. According to the present invention, various kinds of solid surfaces can be coated with heparin by easily providing adhesion to heparin, and thus the heparin-coated solid surface can be very useful in the medical field, particularly in the field of blood compatible material development.

Description

접착성 물질과 결합된 헤파린 화합물, 이의 제조방법, 이를 유효성분으로 함유하는 고체 표면 코팅제, 및 이를 이용한 고체 표면의 코팅방법Heparin compound combined with an adhesive material, preparation method thereof, solid surface coating agent containing the same as an active ingredient, and solid surface coating method using the same
본 발명은 접착성 물질과 결합된 헤파린 화합물, 이의 제조방법, 이를 유효성분으로 함유하는 고체 표면 코팅제, 및 이를 이용한 고체 표면의 코팅방법을 제공한다.The present invention provides a heparin compound combined with an adhesive material, a method for preparing the same, a solid surface coating agent containing the same as an active ingredient, and a method for coating a solid surface using the same.
헤파린(heparin)은 황산기를 가진 산성 다당류의 일종으로 혈액응고 저지작용이 강한 물질로 고등동물의 간이나 폐 등 모세혈관이 많은 장기 및 혈액 속에 존재한다. 동물조직으로부터 알칼리를 추출하여 단백질을 제거하면 헤파린을 얻을 수 있다. 헤파린의 분자량은 체인 단위 수에 따라서 1,200에서 50,000 Da까지 이르며 평균 분자량은 대략 10,000 ~ 20,000이다. 헤파린은 혈장 응고 성분인 트롬빈(Thrombin)과 factor Xa의 응고화 작용을 억제한다. 또한 트롬빈이 혈소판의 작용을 활성화시키므로 헤파린의 존재로 혈소판의 활성화는 억제된다.Heparin is a type of acidic polysaccharide with sulfate groups, a substance that has a strong anticoagulant effect, and is present in organs and blood where there are many capillaries such as liver and lung of higher animals. Heparin can be obtained by extracting alkalis from animal tissues to remove proteins. The molecular weight of heparin ranges from 1,200 to 50,000 Da, depending on the number of chain units, with an average molecular weight of approximately 10,000 to 20,000. Heparin inhibits the coagulation action of thrombin and factor Xa. In addition, thrombin activates the action of platelets, the presence of heparin inhibits platelet activation.
의학, 생물학, 인공장기 등 많은 분야에서 상기 헤파린을 고체 표면에 고정함으로써 헤파린의 혈액 응고 저지 특성을 고체 표면에 도입하는 실험이 꾸준히 이루어지고 있다. Heyman et al.(1985)은 EDC(1-Ethyl-3-(3-dimethylaminopropyl)-carbodiimide)에 의해 활성화된 헤파린을 다이아미노알칸(diaminoalkane) 스페이서(spacer)를 통해서 폴리에테르우레탄 카테터(catheter)에 고정시켰다. 이와 같이 고정된 헤파린은 피 속의 트롬빈과 factor Xa와 결합하여 불활성화시킨다. Larm et al.(1983)은 헤파린을 알데이드 기를 가지는 작은 단위로 분해하고 이것을 폴리에틸렌이민(PEI)의 1차 아미노기와 반응시켜 플라스틱류와 유리, 강철의 표면에 고정시켰다. 또한 Park et al.(1988)은 폴리에틸렌옥사이드(PEO)를 스페이서로 사용하여 폴리우레탄에 헤파린을 코팅시켰다. 이외에도 헤파린을 고정시키는 많은 방법이 연구되었지만 이들 연구들의 한계점은 표면 고정 과정이 복잡하다는 점과 고정이 가능한 표면의 종류가 한정되어 있다는 점이다. 다시 말하면 헤파린을 표면에 고정시키려면 먼저 헤파린과 결합할 수 있는 특별한 스페이서가 필요하고 이 스페이서는 고정시키려는 표면에 결합할 수 있는 특정한 작용기를 필요로 한다. 따라서 스페이서는 헤파린과의 결합성과 표면과의 결합성 두 가지를 만족해야 하기에 고정 과정이 복잡한 문제점이 있다. 또한 동시에 해파린을 고정할 수 있는 표면 또한 제한되는 문제점이 있다.In many fields, such as medicine, biology, and artificial organs, experiments have been conducted to introduce heparin's anticoagulant properties to solid surfaces by immobilizing the heparin on a solid surface. Heyman et al. (1985) reported that heparin activated by EDC (1-Ethyl-3- (3-dimethylaminopropyl) -carbodiimide) was transferred to a polyetherurethane catheter through a diaminoalkane spacer. Fixed. The immobilized heparin binds to thrombin and factor Xa in the blood to inactivate it. Larm et al. (1983) decomposed heparin into small units containing aldeed groups and reacted with primary amino groups of polyethyleneimine (PEI) to fix them on the surfaces of plastics, glass and steel. Park et al. (1988) also coated heparin on polyurethane using polyethylene oxide (PEO) as a spacer. In addition, many methods of immobilizing heparin have been studied, but the limitations of these studies are that the surface fixing process is complicated and the types of surfaces that can be fixed are limited. In other words, in order to immobilize heparin on a surface, a special spacer that can bind to heparin first needs a specific functional group that can bind to the surface to be fixed. Therefore, the spacer has a problem in that the fixing process is complicated because it must satisfy both the binding with heparin and the bonding with the surface. In addition, there is a problem that the surface that can be fixed at the same time heparin is also limited.
이에 본 발명의 발명자들은 용이한 방법으로 접착성 물질과 결합된 헤파린 화합물을 제조하는 방법, 이를 유효성분으로 함유하는 고체 표면 코팅제, 및 이를 이용한 고체 표면의 코팅방법을 연구하여 본 발명을 완성하였다.Accordingly, the inventors of the present invention have completed the present invention by studying a method for preparing a heparin compound combined with an adhesive material by an easy method, a solid surface coating agent containing the same as an active ingredient, and a method for coating a solid surface using the same.
본 발명의 목적은 접착성 물질과 결합된 헤파린 화합물, 이의 제조방법, 이를 유효성분으로 함유하는 고체 표면 코팅제, 및 이를 이용한 고체 표면의 코팅방법을 제공하는데 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a heparin compound bonded to an adhesive material, a method for preparing the same, a solid surface coating agent containing the same as an active ingredient, and a method for coating a solid surface using the same.
상기 목적을 달성하기 위하여, 본 발명은 접착성 물질이 결합된 헤파린 화합물, 약산성 조건하에서 상기 접착성 물질과 헤파린을 반응시켜 접착성 물질과 결합된 헤파린 화합물을 생성하는 제조방법, 이를 유효성분으로 함유하는 고체 표면 코팅제, 및 이를 이용하여 약염기 조건 하에서 고체 표면을 코팅하는 방법을 제공한다.In order to achieve the above object, the present invention is a heparin compound bonded to an adhesive material, a method for producing a heparin compound bonded to the adhesive material by reacting the adhesive material and heparin under weakly acidic conditions, containing it as an active ingredient It provides a solid surface coating agent, and a method for coating a solid surface under weak base conditions using the same.
본 발명에 따르면, 용이하게 헤파린에 접착성을 부여할 수 있을 뿐만 아니라, 다양한 고체 표면에 헤파린을 고정하는 것이 가능하게 된다. 특히, 본 발명에 따르면 기존의 헤파린 표면 고정방법이 가지고 있는 고정 단계의 복잡함과 고정 가능한 표면 종류의 한계성을 극복할 수 있는 장점이 있다. 실제 의료용으로 사용되는 다크론 인공혈관, 또는 에티콘산의 바이오머와 같은 혈액 적합성 재료 개발과 관련하여, 기존의 많은 혈액 적합성 재료가 항혈전성 물질을 폴리우레탄과 같은 고분자 물질에 코팅시켰다는 점과 본 발명에서 헤파린에 결합되는 도파민이 폴리우레탄 표면에 잘 코팅된다는 점에서 본 발명은 혈액 적합성 재료 개발에 유용하게 사용될 수 있다.According to the present invention, not only can heparin easily be attached to heparin, but also heparin can be fixed to various solid surfaces. In particular, according to the present invention there is an advantage to overcome the complexity of the fixing step and the limitation of the surface type that the conventional heparin surface fixing method has. In connection with the development of blood compatible materials, such as dark-on artificial blood vessels or bioactive ethic acid biomers, which have been used for medical purposes, many existing blood compatible materials have coated anti-thrombotic substances on polymeric materials such as polyurethane. In the present invention, the dopamine bound to heparin is well coated on the polyurethane surface, and thus the present invention can be usefully used for blood compatible material development.
도 1의 (a)는 헤파린에 접착성 물질인 도파민을 결합시킨 화합물을 증류수에 녹인 용액을 UV detector로 찍은 결과이고, (b)는 헤파린만을 증류수에 녹인 용액을 UV detector로 찍은 결과이다.Figure 1 (a) is a result of taking a solution obtained by dissolving the compound dopamine bonded to heparin in distilled water with a UV detector, (b) is a result of taking a solution in which only heparin dissolved in distilled water by a UV detector.
도 2의 (a)는 헤파린만을 증류수에 용해시켜 금 표면에 붓고 증발시킨 후 FT-IR로 찍은 결과이고, (b)는 헤파린에 접착성 물질인 도파민을 결합시킨 화합물을 증류수에 용해시켜 금 표면에 붓고 증발시킨 후 FT-IR로 찍은 결과이며, (c)는 헤파린에 접착성 물질인 도파민을 결합시킨 화합물을 금 웨이퍼 표면에 코팅시키고, 증류수로 충분히 씻은 다음에 FT-IR로 찍은 결과이다.Figure 2 (a) is a result of dissolving only heparin in distilled water, poured on the surface of the gold and evaporated, followed by FT-IR, (b) is a surface of gold by dissolving a compound in which heparin is bonded to dopamine as an adhesive substance in distilled water After pour into and evaporated, the result was taken with FT-IR, and (c) is a result of coating with a dopamine-bonded compound on heparin on the surface of the gold wafer, washed with distilled water, and then taken with FT-IR.
도 3의 (a)는 본 발명에 따른 도파민이 결합된 헤파린 화합물을 금(Au), 실리콘(Si), 및 티타늄(Ti) 웨이퍼에 코팅시켜 코팅의 두께를 측정한 것이고, (b)는 상기 코팅된 기판들 상에 피브리노겐을 흡착시켜 두께를 측정한 것이며, (c)는 상기 코팅된 기판들 상에 피를 떨어뜨려 응고시키고, 물로 세척한 후 두께를 측정한 것이다.Figure 3 (a) is a coating of a heparin compound in combination with a dopamine according to the present invention on gold (Au), silicon (Si), and titanium (Ti) wafer to measure the thickness of the coating, (b) is Adsorption of fibrinogen on the coated substrates was performed to measure the thickness, and (c) was measured by dropping blood on the coated substrates to coagulate, washing with water, and measuring the thickness.
도 4는 본 발명에 따른 도파민이 결합된 헤파린 화합물을 금(Au), 티타늄(Ti), 폴리카보네이트(PC), 폴리우레탄(PU) 및 실리콘 고무(Silicon rubber)에 코팅시켜(a), 코팅시키지 않은 표면(b)과 접촉각 사진을 비교한 것이다.4 is a dopamine-bound heparin compound according to the present invention coated on gold (Au), titanium (Ti), polycarbonate (PC), polyurethane (PU) and silicone rubber (a), coating The contact angle photograph is compared with the surface (b) which is not made.
도 5의 (a)는 베어(bare) 폴리우레탄 표면에 대하여 혈소판 접착 테스트를 한 결과 사진이고, (b)는 본 발명에 따른 헤파린 화합물이 코팅된 폴리우레탄 표면에 대하여 동일한 테스트를 한 결과 사진이다(척도자는 10 mm이다.)Figure 5 (a) is a photograph of the platelet adhesion test on the bare polyurethane surface, (b) is a photograph of the same test on the surface of the polyurethane coated with the heparin compound according to the present invention. (The scale is 10 mm.)
도 6은 금(Au) 표면에 본 발명에 따른 헤파린 화합물을 코팅한 뒤 이 표면을 50%의 에탄올 용액 속에 담그기 전과 담그고 2시간, 4시간, 6시간 후 남아있는 코팅된 헤파린 화합물의 두께를 측정한 그래프이다. FIG. 6 shows the thickness of the coated heparin compound remaining after 2 hours, 4 hours, and 6 hours after coating the heparin compound according to the present invention on an Au surface and immersing the surface in 50% ethanol solution. One graph.
도 7은 광전자분광기(XPS)로 네로우 스캔(narrow scan)한 사진들로서, (a)는 베어(bare) 폴리우레탄 표면이고, (b)는 본 발명에 따른 헤파린 화합물을 코팅한 폴리우레탄 표면이고, (c)는 본 발명에 따른 헤파린 화합물 코팅한 후 50%의 에탄올 용액에 두 시간 동안 담근 폴리우레탄 표면이고, (d)는 베어(bare) 실리콘 고무 표면이고, (e)는 본 발명에 따른 헤파린 화합물을 코팅한 실리콘 고무 표면이며, (f)는 본 발명에 따른 헤파린 화합물 코팅한 후 50%의 에탄올 용액에 두 시간 동안 담근 실리콘고무 표면이다.Figure 7 is a narrow scan (Narrow scan) photographs with a photoelectron spectroscopy (XPS), (a) is a bare polyurethane surface, (b) is a polyurethane surface coated with a heparin compound according to the present invention (c) is a polyurethane surface dipped in 50% ethanol solution for two hours after coating the heparin compound according to the invention, (d) is a bare silicone rubber surface, and (e) is according to the invention A silicone rubber surface coated with a heparin compound, and (f) is a silicone rubber surface dipped in 50% ethanol solution for two hours after coating the heparin compound according to the present invention.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 접착성 물질과 결합된 하기 화학식 1과 같은 헤파린 화합물을 제공한다:The present invention provides a heparin compound represented by the following Chemical Formula 1 in combination with an adhesive material:
<화학식 1><Formula 1>
Figure PCTKR2009006612-appb-I000001
.
Figure PCTKR2009006612-appb-I000001
.
상기 식에서, Where
L은
Figure PCTKR2009006612-appb-I000002
이되, K는 1 내지 10의 정수이고;
L is
Figure PCTKR2009006612-appb-I000002
Wherein K is an integer from 1 to 10;
X는 H 또는 OH이고; X is H or OH;
M 및 N은 각각 1내지 50의 정수이고;M and N are each an integer from 1 to 50;
A 및 B는 독립적으로 β-D-글루쿠론산(β-D-glucuronic acid(GlcA)), α-L-이두론산(α-L-iduronic acid(IdoA)), 2-O-술포-α-L-이두론산(2-O-sulfo-α-L-iduronic acid(IdoA(2S))), 2-데옥시-2-아세트아미노-α-D-글루코피라노실(2-deoxy-2-acetamido-α-D-glucopyranosyl(GlcNAc)), 2- 데옥시-2-술파미도-α-D-글루코피라노실(2-deoxy-2-sulfamido-α-D-glucopyranosyl(GlcNS)), 및 2-데옥시-2-술파미도-α-D-글루코피라노실-6-O-술페이트(2-deoxy-2-sulfamido-α-D-glucopyranosyl-6-O-sulfate(GlcNS(6S))로 이루어지는 군으로부터 선택되는 어느 하나이다.A and B are independently β-D-glucuronic acid (GlcA), α-L-iduronic acid (IdoA), 2-O-sulfo-α 2-O-sulfo-α-L-iduronic acid (IdoA (2S)), 2-deoxy-2-acetamino-α-D-glucopyranosyl (2-deoxy-2- acetamido-α-D-glucopyranosyl (GlcNAc)), 2-deoxy-2-sulfamido-α-D-glucopyranosyl (2-deoxy-2-sulfamido-α-D-glucopyranosyl (GlcNS)), and 2-deoxy-2-sulfamido-α-D-glucopyranosyl-6-O-sulfate (2-deoxy-2-sulfamido-α-D-glucopyranosyl-6-O-sulfate (GlcNS (6S)) ) Is any one selected from the group consisting of.
상기 식에서 A 및 B는 헤파린을 구성하는 6각 링 단위들을 나타내며, A는 아미드 결합을 이룬 부분, B는 아미드 결합을 이루지 않은 부분을 나타낸다. 또한, 본 발명을 위하여 사용되는 헤파린 분자량의 범위는 분자량 3 kDa에서 50 kDa 사이의 값을 가진다. 이를 통하여, 본 발명에서 사용되는 헤파린은 자연계에 존재하는 모든 종류를 포함할 수 있다. 상기 화학식 1에 따른 헤파린 화합물은 A 및 B가 임의적으로 배열된 합성물이며, A 및 B의 비율인 M/(M+N)은 0.02 이상인 것이 바람직하다. 즉, 본 발명에 따른 접착성 물질과 결합된 헤파린 화합물은 헤파린이 본래 가지고 있는 -COOH 기의 수 중에 2 % 이상이 아미드 결합을 형성하는 것이 바람직하다. 아미드 결합이 2 % 미만으로 이루어질 경우, 본 발명에 따른 헤파린 화합물의 접착효율이 낮아지는 문제점이 있다. 본 발명에 따른 헤파린에 결합되는 접착성 물질은 하기 화학식 2와 같은 도파민(dopamine, 3-hydroxytyramine hydrochloride)을 포함하며, 상기 화학식 1에서 OH인 X가 1개이든 복수개이든 도파민의 화학적 구조와 같거나 매우 유사하여 도파민의 물리적 및 화학적 성질을 유지하게 된다.Wherein A and B represent hexagonal ring units constituting heparin, A represents an amide bond, and B represents an amide bond. In addition, the range of heparin molecular weight used for the present invention has a value between the molecular weight of 3 kDa and 50 kDa. Through this, heparin used in the present invention may include all kinds present in nature. The heparin compound according to Chemical Formula 1 is a composite in which A and B are optionally arranged, and M / (M + N), which is a ratio of A and B, is preferably 0.02 or more. That is, it is preferable that at least 2% of the heparin compounds bonded with the adhesive material according to the present invention form amide bonds in the number of -COOH groups inherent in heparin. If the amide bond is less than 2%, there is a problem that the adhesion efficiency of the heparin compound according to the present invention is lowered. The adhesive material bound to heparin according to the present invention includes dopamine (dopamine, 3-hydroxytyramine hydrochloride) as shown in the following formula (2), and the chemical structure of dopamine, whether or not one or a plurality of X OH in the formula (1) It is very similar to maintain the physical and chemical properties of dopamine.
<화학식 2><Formula 2>
Figure PCTKR2009006612-appb-I000003
Figure PCTKR2009006612-appb-I000003
Haeshin Lee et al.(2006, 2007)은 물 속에서와 물 밖에서 뿐만 아니라, 유기 표면에서와 무기표면에서 접착력을 가지는 홍합을 연구하면서, 접착성을 갖는 기본 단위가 도파민이라는 것을 확인하였고, 이 도파민을 폴리테트라플루오르에틸렌(PTFE)을 포함하는 다양한 표면에 코팅하는데 성공하였다. 본 발명에 따른 상기 화학식 1의 헤파린 화합물은 도파민의 물리적 및 화학적 성질을 가지기 때문에 다양한 표면에 코팅이 가능하다.Haeshin Lee et al. (2006, 2007) studied mussels that have adhesion in water and on water, as well as on organic and inorganic surfaces, and found that the basic unit of adhesion is dopamine. Has been successfully coated on various surfaces including polytetrafluoroethylene (PTFE). Since the heparin compound of Formula 1 according to the present invention has the physical and chemical properties of dopamine, it is possible to coat on various surfaces.
상기 화학식 1의 헤파린 화합물을 유효성분으로 함유하는 코팅제에 의하여 코팅되는 고체 표면은 예를 들어, 폴리테트라플루오르에틸렌 (PTFE), 폴리카보네이트(polycarnonate), 폴리우레탄(polyurethane), 니트로셀룰로스(nitrocellulose), 폴리스티렌(PS), 폴리에틸렌(PE), 폴리에틸렌 텔레프탈레이트(PET), 폴리디메틸실록산(PDMS), 및 폴리에테르 에테르 케톤(PEEK)를 포함하는 고분자계 물질, 금(Au), 은(Ag), 백금(Pt), 팔라듐(Pd), 및 구리(Cu)를 포함하는 귀금속류 물질, 강철(steel), 니티놀합금(NiTi), 갈륨비소(GaAs), 및 티타늄(Ti)를 포함하는 금속류 물질, 산화규소(SiO2), 산화티타늄(TiO2), 산화알루미늄(Al2O3), 및 산화니오븀(Nb2O5)을 포함하는 산화금속류 물질 , 및 실리콘, 실리콘 고무, 및 유리를 포함하는 비금속류의 물질일 수 있으나, 이에 한정되는 것은 아니다.The solid surface coated by the coating agent containing the heparin compound of Formula 1 as an active ingredient is, for example, polytetrafluoroethylene (PTFE), polycarbonate (polycarnonate), polyurethane (polyurethane), nitrocellulose (nitrocellulose), Polymeric materials including polystyrene (PS), polyethylene (PE), polyethylene terephthalate (PET), polydimethylsiloxane (PDMS), and polyether ether ketone (PEEK), gold (Au), silver (Ag), platinum Precious metal materials including (Pt), palladium (Pd), and copper (Cu), metal materials including steel, nitinol alloy (NiTi), gallium arsenide (GaAs), and titanium (Ti), silicon oxide Metal oxide materials including (SiO 2 ), titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), and niobium oxide (Nb 2 O 5 ), and nonmetals including silicon, silicone rubber, and glass It may be a material of, but is not limited thereto.
또한, 본 발명은 접착성 물질과 결합된 헤파린 화합물의 제조방법을 제공한다.The present invention also provides a method for preparing a heparin compound in combination with an adhesive material.
본 발명에 따른 헤파린 화합물의 제조방법은 약산성 완충용액 하에서, 하기 반응식 1에 나타나는 바와 같이 헤파린과 N-하이드록시숙신이미드(N-hydroxysuccinimide(NHS))를 반응시켜 헤파린의 -COOH기를 활성화시키는 단계(단계 1); 및In the method for preparing a heparin compound according to the present invention, a step of activating the -COOH group of heparin by reacting heparin with N-hydroxysuccinimide (NHS), as shown in Scheme 1 below, in a weakly acidic buffer solution. (Step 1); And
상기 -COOH기가 활성화된 헤파린과 접착성 물질을 반응시켜 접착성 물질이 결합된 헤파린 화합물을 제조하는 단계(단계 2)를 포함한다:Reacting the -COOH group-activated heparin with the adhesive material to prepare a heparin compound in which the adhesive material is bound (step 2):
<반응식 1><Scheme 1>
Figure PCTKR2009006612-appb-I000004
.
Figure PCTKR2009006612-appb-I000004
.
상기 반응식 1에서, In Scheme 1,
L은
Figure PCTKR2009006612-appb-I000005
이되, K는 1 내지 10의 정수이고;
L is
Figure PCTKR2009006612-appb-I000005
Wherein K is an integer from 1 to 10;
X는 H 또는 OH이고;X is H or OH;
M 및 N은 각각 2내지 50의 정수이고;M and N are each an integer from 2 to 50;
A 및 B는 독립적으로 β-D-글루쿠론산(β-D-glucuronic acid(GlcA)), α-L-이두론산(α-L-iduronic acid(IdoA)), 2-O-술포-α-L-이두론산(2-O-sulfo-α-L-iduronic acid(IdoA(2S))), 2-데옥시-2-아세트아미노-α-D-글루코피라노실(2-deoxy-2-acetamido-α-D-glucopyranosyl(GlcNAc)), 2- 데옥시-2-술파미도-α-D-글루코피라노실(2-deoxy-2-sulfamido-α-D-glucopyranosyl(GlcNS)), 및 2-데옥시-2-술파미도-α-D-글루코피라노실-6-O-술페이트(2-deoxy-2-sulfamido-α-D-glucopyranosyl-6-O-sulfate(GlcNS(6S))로 이루어지는 군으로부터 선택되는 어느 하나이다.A and B are independently β-D-glucuronic acid (GlcA), α-L-iduronic acid (IdoA), 2-O-sulfo-α 2-O-sulfo-α-L-iduronic acid (IdoA (2S)), 2-deoxy-2-acetamino-α-D-glucopyranosyl (2-deoxy-2- acetamido-α-D-glucopyranosyl (GlcNAc)), 2-deoxy-2-sulfamido-α-D-glucopyranosyl (2-deoxy-2-sulfamido-α-D-glucopyranosyl (GlcNS)), and 2-deoxy-2-sulfamido-α-D-glucopyranosyl-6-O-sulfate (2-deoxy-2-sulfamido-α-D-glucopyranosyl-6-O-sulfate (GlcNS (6S)) ) Is any one selected from the group consisting of.
상기 단계 1은 헤파린의 -COOH기를 활성화시키기 위하여, 헤파린을 NHS와 반응시키는 단계로, 상기 반응을 통하여, 예를 들어 하기 화학식 3과 같은 헤파린의 -COOH기가 하기 화학식 4와 같이 활성화된다. Step 1 is a step of reacting heparin with NHS in order to activate the -COOH group of heparin, through the reaction, for example, the -COOH group of heparin, such as the following formula (3) is activated as shown in formula (4).
<화학식 3><Formula 3>
Figure PCTKR2009006612-appb-I000006
Figure PCTKR2009006612-appb-I000006
<화학식 4><Formula 4>
Figure PCTKR2009006612-appb-I000007
Figure PCTKR2009006612-appb-I000007
상기 단계 2는 -COOH기가 활성화된 헤파린에 접착성 물질을 결합시키는 단계로, 접착성 물질은 도파민인 것이 바람직하다. 상기 단계 2를 통하여, 화학식 4의 물질이 도파민의 아민기와 반응하여 하기 화학식 5와 같은 접착성 물질과 결합된 헤파린 화합물이 제조된다. Step 2 is a step of bonding the adhesive material to heparin -COOH group activated, the adhesive material is preferably dopamine. Through step 2, a heparin compound in which a substance of Formula 4 is reacted with an adhesive substance of Formula 5 is prepared by reacting with an amine group of dopamine.
<화학식 5><Formula 5>
Figure PCTKR2009006612-appb-I000008
Figure PCTKR2009006612-appb-I000008
상기 단계 1 및 단계 2는 약산성 조건 하에서 반응이 수행되는 것이 바람직하다. 이는 약산성 조건이 도파민의 자체 중합반응을 억제하기 때문이다. Step 1 and step 2 is preferably carried out under weakly acidic conditions. This is because weakly acidic conditions inhibit dopamine self-polymerization.
본 발명에 따른 접착성 물질과 결합된 헤파린 화합물의 제조방법은 투석 및 동결건조를 수행하는 단계를 더 포함할 수 있다. 투석시 도파민의 자체 중합반응을 방지하기 위하여 약산성의 조건을 유지하는 것이 바람직하다.The method for preparing a heparin compound combined with an adhesive material according to the present invention may further include performing dialysis and lyophilization. In order to prevent the self-polymerization of dopamine during dialysis, it is desirable to maintain weakly acidic conditions.
나아가, 본 발명은 상기 화학식 1로 표시되는 접착성 물질이 결합된 헤파린 화합물을 유효성분으로 함유하는 고체 표면 코팅제를 제공한다.Furthermore, the present invention provides a solid surface coating agent containing a heparin compound in which the adhesive material represented by Formula 1 is bound as an active ingredient.
또한, 본 발명은 상기 코팅제를 이용한 고체 표면의 코팅방법을 제공한다.In addition, the present invention provides a method for coating a solid surface using the coating agent.
본 발명에 따른 헤파린 화합물을 유효성분으로 함유하는 고체 표면 코팅제에 의한 고체 표면의 코팅은 pH 7.5 ~ 0.5의 약염기 조건에서 수행되는 것이 바람직하다. 이는 약염기 조건이 헤파린에 결합되어 있는 도파민들 사이에서 폴리도파민 중합반응이 일어나도록 유도하기 때문이다. Coating of the solid surface with the solid surface coating agent containing the heparin compound according to the present invention as an active ingredient is preferably carried out under weak base conditions of pH 7.5 ~ 0.5. This is because weak base conditions induce polydopamine polymerization between dopamines bound to heparin.
본 발명에 따른 고체 표면 코팅제가 코팅될 수 있는 고체 표면은 예를 들어, 폴리테트라플루오르에틸렌 (PTFE), 폴리카보네이트(polycarnonate), 폴리우레탄(polyurethane), 니트로셀룰로스(nitrocellulose), 폴리스티렌(PS), 폴리에틸렌(PE), 폴리에틸렌 텔레프탈레이트(PET), 폴리디메틸실록산(PDMS), 및 폴리에테르 에테르 케톤(PEEK)를 포함하는 고분자계 물질, 금(Au), 은(Ag), 백금(Pt), 팔라듐(Pd), 및 구리(Cu)를 포함하는 귀금속류 물질, 강철(steel), 니티놀합금(NiTi), 갈륨비소(GaAs), 및 티타늄(Ti)를 포함하는 금속류 물질, 산화규소(SiO2), 산화티타늄(TiO2), 산화알루미늄(Al2O3), 및 산화니오븀(Nb2O5)을 포함하는 산화금속류 물질 , 및 실리콘, 실리콘 고무, 및 유리를 포함하는 비금속류의 물질일 수 있으나, 이에 한정되는 것은 아니다.Solid surfaces on which the solid surface coatings according to the invention can be coated are, for example, polytetrafluoroethylene (PTFE), polycarbonate (polycarnonate), polyurethane, nitrocellulose, polystyrene (PS), Polymeric materials, including polyethylene (PE), polyethylene terephthalate (PET), polydimethylsiloxane (PDMS), and polyether ether ketone (PEEK), gold (Au), silver (Ag), platinum (Pt), palladium (Pd), and precious metal materials including copper (Cu), steel, nitinol alloys (NiTi), gallium arsenide (GaAs), and metal materials including titanium (Ti), silicon oxide (SiO 2 ), Metal oxide materials including titanium oxide (TiO 2 ), aluminum oxide (Al 2 O 3 ), and niobium oxide (Nb 2 O 5 ), and nonmetallic materials including silicon, silicone rubber, and glass, It is not limited to this.
이하 본 발명을 실시예에 의하여 설명한다. 다만, 하기 실시예들은 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예들에 의하여 한정되는 것은 아니다.Hereinafter, the present invention will be described by way of examples. However, the following examples are merely to illustrate the invention, the present invention is not limited by the following examples.
<실시예 1><Example 1>
도파민이 결합된 고체 헤파린 화합물의 제조Preparation of Dopamine-bound Solid Heparin Compounds
하기 화학식 3과 같은 헤파린 400 mg과 NHS 230 mg, 및 EDC(1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochlorid) 766 mg을 pH 5.5, 0.05 M 조건의 MES(2-morpholinoethanesulfonic acid) 버퍼 40 mg에 완전히 녹이고, 2 시간 30분동안 반응시켜 헤파린의 -COOH기를 활성화시켰다:400 mg of heparin, 230 mg of NHS, and 766 mg of EDC (1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochlorid) as shown in Chemical Formula 3, 40 mg of MES (2-morpholinoethanesulfonic acid) buffer at pH 5.5 and 0.05 M Completely dissolved and reacted for 2 hours 30 minutes to activate the -COOH group of heparin:
<화학식 3><Formula 3>
Figure PCTKR2009006612-appb-I000009
.
Figure PCTKR2009006612-appb-I000009
.
상기 -COOH기가 활성화된 헤파린 용액에 도파민 120 mg을 넣어 8 시간동안 반응시켰다. 상기와 같이 총 10시간 30분동안 반응한 용액을 몰레쿨러포러스 멤브레인 튜브(molecularporous membrane tube, MWCO: 12-14000)에 주입하여 투석시켰다. 투석시에 1리터 당 1 ml의 5 M HCl을 주입하여 헤파린에 결합된 도파민의 자체 중합반응이 일어나지 않도록 하였다. 12 시간 동안 물을 수회 교환하면서 투석하고, 투석된 용액을 동결 건조하여 도파민이 결합된 하기 화학식 5와 같은 고체 헤파린 화합물을 얻었다:120 mg of dopamine was added to the -COOH group-activated heparin solution for 8 hours. The solution reacted for 10 hours and 30 minutes as described above was dialyzed by injection into a molecular porous membrane tube (MWCO: 12-14000). In dialysis, 1 ml of 5 M HCl was injected per liter to prevent the self-polymerization of dopamine bound to heparin. Dialysis with several exchanges of water for 12 hours, and the dialysis solution was lyophilized to give a solid heparin compound as shown in Formula 5 wherein dopamine was bound:
<화학식 5><Formula 5>
Figure PCTKR2009006612-appb-I000010
.
Figure PCTKR2009006612-appb-I000010
.
<실시예 2><Example 2>
금 웨이퍼에 도파민이 결합된 헤파린 화합물 코팅Dopamine-bound Heparin Compound Coatings on Gold Wafers
상기 실시예 1에서 제조된 도파민이 결합된 헤파린 화합물 50 mg을 10 mM 및 pH 8.5 조건의 TRIS 버퍼 5 ml에 넣어 녹인 후 금 웨이퍼 조각을 넣어 교반하며 12 시간동안 코팅하였다.50 mg of the dopamine-coupled heparin compound prepared in Example 1 was dissolved in 5 ml of TRIS buffer at 10 mM and pH 8.5, and then coated with gold wafer pieces for 12 hours with stirring.
<실시예 3><Example 3>
티타늄 웨이퍼에 도파민이 결합된 헤파린 화합물 코팅Dopamine-bound heparin compound coating on titanium wafers
코팅을 위하여 사용한 고체가 티타늄 웨이퍼인 것을 제외하고는 실시예 2와 동일한 방법으로 표면 코팅을 수행하였다.Surface coating was performed in the same manner as in Example 2 except that the solid used for coating was a titanium wafer.
<실시예 4><Example 4>
폴리우레탄에 도파민이 결합된 헤파린 화합물 코팅Dopamine-bound heparin compound coated on polyurethane
코팅을 위하여 사용한 고체가 폴리우레탄인 것을 제외하고는 실시예 2와 동일한 방법으로 표면 코팅을 수행하였다.Surface coating was carried out in the same manner as in Example 2, except that the solid used for coating was polyurethane.
<실시예 5>Example 5
폴리카보네이트에 도파민이 결합된 헤파린 화합물 코팅Dopamine-bound heparin compound coating on polycarbonate
코팅을 위하여 사용한 고체가 폴리카보네이트인 것을 제외하고는 실시예 2와 동일한 방법으로 표면 코팅을 수행하였다.Surface coating was performed in the same manner as in Example 2 except that the solid used for coating was polycarbonate.
<실시예 6><Example 6>
실리콘고무에 도파민이 결합된 헤파린 화합물 코팅Dopamine-bound heparin compound coating on silicone rubber
코팅을 위하여 사용한 고체가 실리콘고무인 것을 제외하고는 실시예 2와 동일한 방법으로 표면 코팅을 수행하였다.Surface coating was performed in the same manner as in Example 2 except that the solid used for coating was silicone rubber.
<실험예 1>Experimental Example 1
자외선검출기(UV detector)를 이용한 헤파린과 도파민의 결합 확인Confirmation of Heparin and Dopamine Binding by UV Detector
실시예 1에서 제조된 헤파린 화합물에 도파민이 결합되어 있는지 여부를 확인하기 위하여, 자외선검출기를 통하여 피크를 확인하였다. 도 1의 (b)는 헤파린만을 증류수에 녹여 자외선검출기로 찍은 것이다. 도파민의 흡광 파장인 280 nm에서 아무런 피크가 나오지 않은 것을 확인할 수 있다. 반면, 도 1의 (a)는 본 발명의 실시예 1에서 제조된 도파민이 결합된 헤파린 화합물을 증류수에 녹여 자외선검출기로 찍은 것이다. 도 1의 (a)에서는 도파민의 흡광 파장인 280 nm에서의 피크가 뚜렷하게 확인됨을 알 수 있다. 실시예 1에서 투석을 통하여 미반응 도파민을 제거했기 때문에 280 nm에서의 피크는 헤파린과 결합되어 있는 도파민의 피크임을 알 수 있다.In order to confirm whether dopamine is bound to the heparin compound prepared in Example 1, the peak was confirmed through an ultraviolet detector. Figure 1 (b) is taken only by dissolving heparin in distilled water with an ultraviolet detector. It can be seen that no peak emerges at 280 nm, the absorbing wavelength of dopamine. On the other hand, Figure 1 (a) is taken with an ultraviolet detector dissolved in a distilled water the dopamine-bound heparin compound prepared in Example 1 of the present invention. In Figure 1 (a) it can be seen that the peak at 280 nm, the absorption wavelength of dopamine is clearly seen. Since unreacted dopamine was removed through dialysis in Example 1, it can be seen that the peak at 280 nm is the peak of dopamine bound to heparin.
<실험예 2>Experimental Example 2
FT-IR을 이용한 헤파린과 도파민의 결합 확인Confirmation of Heparin and Dopamine Binding Using FT-IR
헤파린과 도파민이 결합되어 있다면 아미드 결합이 생성되기 때문에 -CONH- 아미드 결합을 FT-IR을 통하여 확인하였다. 도 2의 (a)는 헤파린만을 증류수에 녹여 금 웨이퍼 표면 위에 붓고 증발시킨 후 FT-IR로 찍은 결과이다. 도 2의 (a)에서는 아미드 결합의 주파수 범위인 1560 cm-1 근처에서 피크를 확인할 수 없음을 알 수 있다. 반면, 도 2의 (b)는 본 발명의 실시예 1에서 제조된 도파민이 결합된 헤파린 화합물을 증류수에 녹여 금 웨이퍼 표면 위에 붓고 증발시킨 후 FT-IR로 찍은 결과이다. 도 2의 (b)에서는 1560 cm-1 근처에서 -CONH- 피크를 확인할 수 있으므로, 이를 통하여 헤파린과 도파민의 결합이 잘 이루어졌음을 확인할 수 있다.If heparin and dopamine are combined, an amide bond is formed, so -CONH-amide bond was confirmed through FT-IR. FIG. 2 (a) shows the result taken by FT-IR after evaporation of only heparin in distilled water, poured onto a gold wafer surface. In Figure 2 (a) it can be seen that the peak can not be confirmed near the 1560 cm -1 frequency range of the amide bond. On the other hand, Figure 2 (b) is a result obtained by FT-IR after evaporation of the dopamine-bound heparin compound prepared in Example 1 of the present invention dissolved in distilled water and poured on the surface of the gold wafer. In Figure 2 (b) it can be confirmed that the -CONH- peak near 1560 cm -1 , through which the binding of heparin and dopamine was well established.
<실험예 3>Experimental Example 3
FT-IR을 이용한 표면 코팅의 확인Identification of surface coatings using FT-IR
본 발명에 따른 도파민이 결합된 헤파린 화합물이 금 웨이퍼 표면에 잘 코팅되었는지 여부를 확인하기 위하여, 실시예 2에 따른 도파민이 결합된 헤파린 화합물에 의하여 코팅된 금 웨이퍼에 대하여 FT-IR을 이용한 실험을 수행하였다. 도 2의 (c)는 실시예 2에 따른 도파민이 결합된 헤파린 화합물에 의하여 코팅된 금 웨이퍼를 증류수로 충분히 세척한 후 FT-IR로 찍은 결과이다. 도 2의 (c)에서 1560 cm-1 근처의 -CONH- 피크를 확인할 수 있다. 이를 통하여, 금 웨이퍼 표면에 본 발명에 따른 도파민이 결합된 헤파린 화합물이 잘 붙어있음을 알 수 있다.In order to confirm whether the dopamine-bound heparin compound according to the present invention is well coated on the surface of the gold wafer, an experiment using FT-IR was performed on the gold wafer coated by the dopamine-bound heparin compound according to Example 2. Was performed. Figure 2 (c) is a result of taking a gold wafer coated with a dopamine-bound heparin compound according to Example 2 after sufficiently washed with distilled water and FT-IR. In Figure 2 (c) it can be seen the peak -CONH- near 1560 cm -1 . Through this, it can be seen that the dopamine-coupled heparin compound according to the present invention is well adhered to the gold wafer surface.
<실험예 4>Experimental Example 4
코팅 두께의 측정Measurement of Coating Thickness
실시예 2, 실시예 3, 및 실시예 6에서 제조된 코팅된 금 웨이퍼, 티타늄 웨이퍼, 및 실리콘 웨이퍼에 대하여 코팅의 두께를 측정하였다. 코팅 두께 측정을 위하여 일립소미터(ellipsometer)를 사용하였다. 도 3의 (a)에 따르면, 금 웨이퍼의 경우 평균 21.026 Å으로 코팅되었고, 실리콘 웨이퍼의 경우 평균 11.7 Å으로 코팅되었고, 티타늄 웨이퍼의 경우 평균 19.758 Å으로 코팅되었음을 알 수 있다.The coating thicknesses were measured for the coated gold wafers, titanium wafers, and silicon wafers prepared in Examples 2, 3, and 6. An ellipsometer was used for the coating thickness measurement. According to (a) of FIG. 3, gold wafers were coated with an average of 21.026 mmW, silicon wafers with an average of 11.7 mmW, and titanium wafers with an average of 19.758 mmW.
<실험예 5>Experimental Example 5
단백질 흡착 실험을 통한 표면 헤파린의 논-파울링 효과(non-fouling effect) 확인Protein adsorption experiments confirm the non-fouling effect of surface heparin
본 발명의 실시예 2, 실시예 3, 및 실시예 6에서 제조된 1 cm × 1 cm 헤파린이 코팅된 금 웨이퍼, 티타늄 웨이퍼, 및 실리콘 웨이퍼를 준비하고 각 웨이퍼를 피브리노겐 농도 1 mg/ml의 인산완충식염수(PBS)안에 침지하였다. 37 ℃에서 2 시간 동안 정적 조건에서 담근 뒤 세척 후 일립소미터로 두께를 측정하였다. 대조군으로 베어(bare) 금 웨이퍼, 베어 실리콘 웨이퍼, 베어 티타늄 웨이퍼를 사용하였고, 그 결과를 도 3의 (b)에 나타내었다. 도 3의 (b)에 따르면, 헤파린이 코팅되지 않은 베어 표면에 흡착된 피브리노겐 양에 비해서 헤파린 코팅된 표면에 흡착된 피브리노겐 양이 현저하게 감소되었음을 알 수 있다. 헤파린은 안티-파울리(anti-fouling) 효과를 가지는 물질이기 때문에, 흡착된 피브리노겐 양의 감소를 통하여 헤파린이 표면에 잘 코팅이 되어있음을 간접적으로 알 수 있다.1 cm × 1 cm heparin-coated gold wafers, titanium wafers, and silicon wafers prepared in Examples 2, 3, and 6 of the present invention were prepared, and each wafer was phosphoric acid having a fibrinogen concentration of 1 mg / ml. Immerse in buffered saline (PBS). After soaking at 37 ° C. for 2 hours under static conditions, the thickness was measured using an ellipsometer after washing. Bare gold wafers, bare silicon wafers, bare titanium wafers were used as a control, and the results are shown in FIG. According to (b) of FIG. 3, it can be seen that the amount of fibrinogen adsorbed on the heparin-coated surface is significantly reduced compared to the amount of fibrinogen adsorbed on the bare surface of the heparin-coated bare surface. Since heparin is an anti-fouling material, it is indirectly known that heparin is well coated on the surface by reducing the amount of adsorbed fibrinogen.
<실험예 6>Experimental Example 6
피 응고 실험을 통한 표면 고정된 헤파린의 안티-파울링 효과(anti-fouling effect) 확인Coagulation experiments confirm the anti-fouling effect of surface-immobilized heparin
본 발명에 따른 도파민이 결합된 헤파린 화합물의 표면 코팅을 통하여, 표면에 고정된 헤파린이 핼액 응고 저지작용을 수행하는지 여부를 확인하기 위하여, 수증기 포화 상태의 조건에서, 코팅되지 않은 금, 실리콘, 및 티타늄과 본 발명의 실시예 2, 실시예 3, 및 실시예 6에 따른 도파민이 결`합된 헤파린 화합물이 코팅된 금, 티타늄, 및 실리콘 표면에 혈액을 떨어뜨린 후, 2 시간동안 방치하였다. 그 후, 상기 표면들을 증류수로 충분히 세척한 후 일립소미터를 이용하여 표면에 흡착된 피 성분의 두께를 측정하여, 이를 도 3의 (c)에 나타내었다. 도 3의 (c)에 따르면 코팅되지 않은 베어 표면에 흡착된 피 성분량에 비해서 헤파린 코팅된 표면에 흡착된 피 성분량이 현저하게 감소하였음을 알 수 있다. 헤파린은 안티-파울링 효과를 가지는 물질이기 때문에, 흡착된 피 성분량의 감소를 통하여, 헤파린이 표면에 잘 코팅이 되어있음을 간접적으로 알 수 있다.Through the surface coating of the dopamine-bound heparin compound according to the present invention, in order to determine whether the heparin immobilized on the surface performs the solution solution in the solution solution, under the condition of water vapor saturation, uncoated gold, silicon, and After dropping blood on the surface of gold, titanium, and silicon coated with titanium and the dopamine-conjugated heparin compound according to Examples 2, 3, and 6 of the present invention, the mixture was left for 2 hours. Thereafter, the surfaces were sufficiently washed with distilled water, and then the thickness of the blood component adsorbed on the surface was measured using an ellipsometer, which is shown in FIG. According to (c) of Figure 3 it can be seen that the amount of components adsorbed on the heparin-coated surface is significantly reduced compared to the amount of components adsorbed on the uncoated bare surface. Since heparin is an anti-fouling material, it can be indirectly known that heparin is well coated on the surface by reducing the amount of adsorbed blood components.
<실험예 7>Experimental Example 7
접촉각의 측정Measurement of contact angle
고체 표면에 본 발명에 따른 도파민이 결합된 헤파린 화합물의 코팅이 잘 이루어졌는지 확인하기 위하여 접촉각을 측정하였다. 금 웨이퍼, 티타늄 웨이퍼, 폴리카보네이트, 폴리우레탄, 및 실리콘 고무와 본 발명에 따른 실시예 2 내지 6에서 제조된 코팅된 고체 표면에 각각 증류수 방울을 적가한 후 접촉각 측정기를 통하여 접촉각을 확인하여, 그 결과를 도 4에 나타내었다. 도 4는 상기 각각의 경우에 대한 접촉각을 확인하기 위한 사진이다. 도 4에 따르면, 금 웨이퍼, 티타늄 웨이퍼, 폴리카보네이트, 폴리우레탄, 및 실리콘고무 모두의 경우에 본 발명에 따른 도파민이 결합된 헤파린 화합물을 코팅하지 않은 경우와 이를 코팅한 경우의 접촉각이 현저하게 차이가 남을 알 수 있다. 이를 통하여, 본 발명에 따른 코팅이 잘 이루어졌음을 알 수 있다.The contact angle was measured to confirm that the coating of the dopamine-bound heparin compound according to the present invention on the solid surface was well performed. A drop of distilled water was added dropwise to the gold wafer, the titanium wafer, the polycarbonate, the polyurethane, and the silicone rubber and the coated solid surface prepared in Examples 2 to 6 according to the present invention, and then the contact angle was checked through a contact angle meter. The results are shown in FIG. 4 is a photograph for confirming a contact angle in each case. According to FIG. 4, in the case of gold wafer, titanium wafer, polycarbonate, polyurethane, and silicone rubber, the contact angles of the case where the dopamine-bound heparin compound according to the present invention is not coated and when coating the dopamine are significantly different You can see the others. Through this, it can be seen that the coating according to the present invention was well made.
<실험예 8>Experimental Example 8
혈소판 점착를 통한 표면 헤파린의 논-파울링 효과(non-fouling effect) 확인Identification of non-fouling effects of surface heparin through platelet adhesion
본 발명의 실시예 4에 의하여 제조된 1 cm × 1 cm의 헤파린이 코팅된 폴리우레탄 표면을 24 시간 동안 PBS(pH 7.4)에 침지하였다. 그 후, 이 표면을 혈소판농축액 5ml에 침지하고 2 시간 동안 37 ℃를 유지하였다. 약하게 붙어있는 혈소판을 제거하기 위하여 PBS로 세척하였다. 이 후, 표면을 바로 포름알데이드에 24 시간 동안 담그고 혈소판을 고정하고, PBS로 남아있는 포름알데이드를 제거하였다. 이 표면을 50, 60, 70, 80, 90 %의 에탄올 용액에 차례로 15분 동안 침지하여 물을 에탄올으로 치환시켰다. 마지막으로 SEM을 통해서 이 표면을 분석하고, 이를 도 5에 나타내었다. 본 발명에 따른 폴리우레탄 표면과 대조하기 위하여 처리되지 않은 폴리우레탄 표면에 대하여 상기와 동일한 분석을 실시하였다. 도 5에 따르면 헤파린이 코팅되지 않은 베어 폴리우레탄 표면에 점착된 혈소판 양에 비해서 헤파린 코팅된 폴리우레탄 표면에 점착된 혈소판 양이 현저하게 감소되었음을 알 수 있다. 이와 같은 결과를 통하여 폴리우레탄 표면에 본 발명에 따른 헤파린 화합물이 잘 코팅이 되어 헤파린의 안티-파울링 효과을 보여주고 있음을 알 수 있다.The 1 cm × 1 cm heparin coated polyurethane surface prepared by Example 4 of the present invention was immersed in PBS (pH 7.4) for 24 hours. This surface was then immersed in 5 ml of platelet concentrate and maintained at 37 ° C. for 2 hours. Washed with PBS to remove weakly attached platelets. Thereafter, the surface was immediately immersed in formaldehyde for 24 hours, platelets were fixed, and the remaining formaldehyde was removed with PBS. This surface was then immersed in 50, 60, 70, 80, 90% ethanol solution for 15 minutes in order to replace water with ethanol. Finally, the surface was analyzed by SEM, which is shown in FIG. 5. The same analysis was carried out on the untreated polyurethane surface in order to contrast with the polyurethane surface according to the invention. According to FIG. 5, it can be seen that the amount of platelets adhered to the surface of heparin-coated polyurethane is significantly reduced compared to the amount of platelets adhered to the surface of bare polyurethane without heparin-coated. Through these results, it can be seen that the heparin compound according to the present invention is well coated on the surface of polyurethane to show the anti-fouling effect of heparin.
<실험예 9>Experimental Example 9
본 발명에 따른 헤파린 화합물 코팅의 안정성 평가 실험(Stability Test)Stability Test of Heparin Compound Coatings According to the Present Invention
본 발명에 따른 실시예 2, 실시예 4, 및 실시예 6에 의하여 제조된 헤파린 화합물이 코팅된 금 웨이퍼, 폴리우레탄, 실리콘고무를 50 %의 에탄올 용액에 침지하였다. 이 중, 헤파린 화합물이 코팅된 금 웨이퍼는 정적 조건(static condition)에서 2시간, 4시간, 6시간 동안 상기 에탄올 용액에 침지한 후 각각 일립소미터로 두께를 측정하였고, 그 결과를 도 6에 나타내었다. 또한, 헤파린 화합물이 코팅된 폴리우레탄과 실리콘 고무는 정적상태의 50 %의 에탄올 용액에 2 시간동안 침지한 후 꺼내어 XPS로 성분 분석하였다. 이 때, 대조군으로 베어 폴리우레탄과 베어 실리콘고무를 XPS로 성분 분석하였고, 그 결과를 도 7에 나타내었다. 도 6에 따르면 본 발명에 따른 헤파린이 코팅된 금 표면은 50 %의 에탄올 용액 안에서 2 시간, 4 시간, 6 시간이 지나도 두께가 크게 변하지 않음을 알 수 있다. 이를 통하여 금에 코팅된 헤파린이 안정적으로 표면에 코팅되어 있음을 알 수 있다. 도 7의 (a)에서 베어 폴리우레탄 표면에서 S2p 피크가 나오지 않았다. 그러나 도 7의 (b)에서 본 발명에 따른 헤파린이 코팅된 폴리우레탄 표면의 경우 S2p 피크가 나옴을 확인할 수 있다. 또한, 도 7의 (c)에서 50 %의 에탄올에서 2 시간 동안 담근 헤파린이 코팅된 폴리우레탄 표면에서 S2p 피크가 나오는 것을 확인할 수 있다. 따라서 폴리우레탄 표면에서 본 발명에 따른 헤파린 화합물이 안정적으로 코팅이 되었음을 알 수 있다. 마찬가지로 도 7의 (d)에서 베어 실리콘고무 표면에서 N1s 피크가 나오지 않았다. 그러나 도 7의 (e)에서 본 발명에 따른 헤파린이 코팅된 실리콘고무 표면의 경우 N1s 피크가 나옴을 확인할 수 있었다. 또한, 도 7의 (f)에서 50 %의 에탄올에서 2시간 동안 담근 헤파린이 코팅된 실리콘고무 표면에서도 N1s 피크가 나오는 것을 확인하였다. 이를 통하여 실리콘고무 표면에서도 본 발명에 따른 헤파린 화합물이 안정적으로 코팅이 되었음을 알 수 있다.Heparin compound-coated gold wafers, polyurethanes, and silicone rubbers prepared according to Examples 2, 4, and 6 according to the present invention were immersed in 50% ethanol solution. Among them, the gold wafer coated with the heparin compound was immersed in the ethanol solution for 2 hours, 4 hours, and 6 hours under static conditions, respectively, and the thickness thereof was measured with an ellipsometer. Indicated. In addition, the polyurethane and silicone rubber coated with heparin compound were immersed in a 50% ethanol solution in a static state for 2 hours and then taken out and analyzed by XPS. At this time, as a control, the bare polyurethane and bare silicone rubber were analyzed by XPS, and the results are shown in FIG. 7. According to Figure 6 heparin-coated gold surface according to the present invention can be seen that the thickness does not change significantly after 2 hours, 4 hours, 6 hours in 50% ethanol solution. This shows that heparin coated on gold is stably coated on the surface. In (a) of FIG. 7, no S2p peak appeared on the bare polyurethane surface. However, in Figure 7 (b) it can be seen that the S2p peak in the case of the heparin-coated polyurethane surface according to the present invention. In addition, in Figure 7 (c) it can be seen that the S2p peak comes out from the surface of heparin-coated polyurethane dipped in 50% ethanol for 2 hours. Therefore, it can be seen that the heparin compound according to the present invention was stably coated on the polyurethane surface. Similarly, the peak of N1s did not come out from the surface of the bare silicone rubber in FIG. However, in the case of (e) of FIG. 7, the heparin-coated silicone rubber surface showed a N1s peak. In addition, it was confirmed that the N1s peak also appeared on the surface of heparin-coated silicone rubber dipped in 50% ethanol for 2 hours in Figure 7 (f). Through this, it can be seen that the heparin compound according to the present invention is stably coated on the silicone rubber surface.

Claims (10)

  1. 접착성 물질과 결합된 하기 화학식 1로 표시되는 헤파린 화합물:Heparin compound represented by the following Chemical Formula 1 combined with an adhesive substance:
    <화학식 1><Formula 1>
    Figure PCTKR2009006612-appb-I000011
    Figure PCTKR2009006612-appb-I000011
    (상기 식에서,  (Wherein
    L은
    Figure PCTKR2009006612-appb-I000012
    이되, K는 1 내지 10의 정수이고;
    L is
    Figure PCTKR2009006612-appb-I000012
    Wherein K is an integer from 1 to 10;
    X는 H 또는 OH이고;X is H or OH;
    M 및 N은 각각 2내지 50의 정수이고;M and N are each an integer from 2 to 50;
    A 및 B는 독립적으로 β-D-글루쿠론산(β-D-glucuronic acid(GlcA)), α-L-이두론산(α-L-iduronic acid(IdoA)), 2-O-술포-α-L-이두론산(2-O-sulfo-α-L-iduronic acid(IdoA(2S))), 2-데옥시-2-아세트아미노-α-D-글루코피라노실(2-deoxy-2-acetamido-α-D-glucopyranosyl(GlcNAc)), 2- 데옥시-2-술파미도-α-D-글루코피라노실(2-deoxy-2-sulfamido-α-D-glucopyranosyl(GlcNS)), 및 2-데옥시-2-술파미도-α-D-글루코피라노실-6-O-술페이트(2-deoxy-2-sulfamido-α-D-glucopyranosyl-6-O-sulfate(GlcNS(6S))로 이루어지는 군으로부터 선택되는 어느 하나이다.).A and B are independently β-D-glucuronic acid (GlcA), α-L-iduronic acid (IdoA), 2-O-sulfo-α 2-O-sulfo-α-L-iduronic acid (IdoA (2S)), 2-deoxy-2-acetamino-α-D-glucopyranosyl (2-deoxy-2- acetamido-α-D-glucopyranosyl (GlcNAc)), 2-deoxy-2-sulfamido-α-D-glucopyranosyl (2-deoxy-2-sulfamido-α-D-glucopyranosyl (GlcNS)), and 2-deoxy-2-sulfamido-α-D-glucopyranosyl-6-O-sulfate (2-deoxy-2-sulfamido-α-D-glucopyranosyl-6-O-sulfate (GlcNS (6S)) It is any one selected from the group consisting of).
  2. 제 1항에 있어서, 상기 화학식 1에 따른 헤파린 화합물은 접착성 물질과 접합된 A와 접합되지 않은 B가 임의적으로 배열된 물질이되, A와 B의 비율인 M/(M+N)이 0.02 이상인 것을 특징으로 하는 접착성 물질과 결합된 헤파린 화합물.The heparin compound according to claim 1, wherein the heparin compound according to Chemical Formula 1 is a material in which A and B not bonded are arbitrarily arranged, and M / (M + N), which is a ratio of A and B, is 0.02. Heparin compound combined with an adhesive substance, characterized in that above.
  3. 제 1항에 있어서, 상기 화학식 1의 헤파린은 분자량이 3 kDa 내지 50 kDa의 범위인 것을 특징으로 하는 접착성 물질과 결합된 헤파린 화합물.The heparin compound of claim 1, wherein the heparin of Chemical Formula 1 has a molecular weight in the range of 3 kDa to 50 kDa.
  4. 약산성 완충용액 하에서, 하기 반응식 1과 같이 헤파린과 N-하이드록시숙신이미드(N-hydroxysuccinimide(NHS))를 반응시켜 헤파린의 -COOH기를 활성화시키는 단계(단계 1); 및In the weakly acidic buffer solution, reacting heparin with N-hydroxysuccinimide (NHS) as in Scheme 1 to activate the -COOH group of heparin (step 1); And
    상기 -COOH기가 활성화된 헤파린과 접착성 물질을 반응시켜 접착성 물질이 결합된 헤파린 화합물을 제조하는 단계(단계 2)Preparing a heparin compound in which an adhesive material is bonded by reacting the -COOH group-activated heparin with an adhesive material (step 2)
    를 포함하는 것을 특징으로 하는 접착성 물질과 결합된 헤파린 화합물의 제조방법:Method for producing a heparin compound combined with an adhesive material comprising a:
    <반응식 1><Scheme 1>
    Figure PCTKR2009006612-appb-I000013
    Figure PCTKR2009006612-appb-I000013
    (상기 반응식 1에서,  (In Scheme 1,
    L은
    Figure PCTKR2009006612-appb-I000014
    이되, K는 1 내지 10의 정수이고;
    L is
    Figure PCTKR2009006612-appb-I000014
    Wherein K is an integer from 1 to 10;
    X는 H 또는 OH이고; X is H or OH;
    M 및 N은 각각 2내지 50의 정수이고;M and N are each an integer from 2 to 50;
    A 및 B는 접착성 물질과 접합된 A와 접합되지 않은 B가 임의적으로 배열된 물질이고, A와 B의 비율인 M/(M+N)이 0.02 이상이되, 독립적으로 β-D-글루쿠론산(β-D-glucuronic acid(GlcA)), α-L-이두론산(α-L-iduronic acid(IdoA)), 2-O-술포-α-L-이두론산(2-O-sulfo-α-L-iduronic acid(IdoA(2S))), 2-데옥시-2-아세트아미노-α-D-글루코피라노실(2-deoxy-2-acetamido-α-D-glucopyranosyl(GlcNAc)), 2- 데옥시-2-술파미도-α-D-글루코피라노실(2-deoxy-2-sulfamido-α-D-glucopyranosyl(GlcNS)), 및 2-데옥시-2-술파미도-α-D-글루코피라노실-6-O-술페이트(2-deoxy-2-sulfamido-α-D-glucopyranosyl-6-O-sulfate(GlcNS(6S))로 이루어지는 군으로부터 선택되는 어느 하나이다.). A and B are materials in which an adhesive and an unbonded B are arbitrarily arranged, and M / (M + N), which is a ratio of A and B, is not less than 0.02, independently β-D-glucu Β-D-glucuronic acid (GlcA), α-L-iduronic acid (IdoA), 2-O-sulfo-α-L-iduronic acid (2-O-sulfo- α-L-iduronic acid (IdoA (2S))), 2-deoxy-2-acetamino-α-D-glucopyranosyl (2-deoxy-2-acetamido-α-D-glucopyranosyl (GlcNAc)), 2-deoxy-2-sulfamido-α-D-glucopyranosyl (GlcNS), and 2-deoxy-2-sulfamido-α -D-glucopyranosyl-6-O-sulfate (2-deoxy-2-sulfamido-α-D-glucopyranosyl-6-O-sulfate (GlcNS (6S))).
  5. 제 4항에 있어서, 상기 제조방법은 상기 단계 2의 생성물질에 대하여 투석 및 동결건조를 수행하는 단계를 더 포함하는 것을 특징으로 하는 접착성 물질과 결합된 헤파린 화합물의 제조방법.The method of claim 4, wherein the method further comprises dialysis and lyophilization of the product of step 2.
  6. 제 4항에 있어서, 상기 단계 2의 접착성 물질은 하기 화학식 2로 표시되는 도파민(dopamine, 3-Hydroxytyramine hydrochloride)인 것을 특징으로 하는 접착성 물질과 결합된 헤파린 화합물의 제조방법:The method of claim 4, wherein the adhesive material of step 2 is dopamine represented by Formula 2 below (dopamine, 3-Hydroxytyramine hydrochloride).
    <화학식 2><Formula 2>
    Figure PCTKR2009006612-appb-I000015
    .
    Figure PCTKR2009006612-appb-I000015
    .
  7. 하기 화학식 1로 표시되는 접착성 물질이 결합된 헤파린 화합물을 유효성분으로 함유하는 고체 표면 코팅제:Solid surface coating agent containing a heparin compound bonded to the adhesive material represented by the formula (1) as an active ingredient:
    <화학식 1><Formula 1>
    Figure PCTKR2009006612-appb-I000016
    Figure PCTKR2009006612-appb-I000016
    (상기 식에서,  (Wherein
    L은
    Figure PCTKR2009006612-appb-I000017
    이되, K는 1 내지 10의 정수이고;
    L is
    Figure PCTKR2009006612-appb-I000017
    Wherein K is an integer from 1 to 10;
    X는 H 또는 OH이고;X is H or OH;
    M 및 N은 각각 2내지 50의 정수이고;M and N are each an integer from 2 to 50;
    A 및 B는 접착성 물질과 접합된 A와 접합되지 않은 B가 임의적으로 배열된 물질이고, A와 B의 비율인 M/(M+N)이 0.02 이상이되, 독립적으로 β-D-글루쿠론산(β-D-glucuronic acid(GlcA)), α-L-이두론산(α-L-iduronic acid(IdoA)), 2-O-술포-α-L-이두론산(2-O-sulfo-α-L-iduronic acid(IdoA(2S))), 2-데옥시-2-아세트아미노-α-D-글루코피라노실(2-deoxy-2-acetamido-α-D-glucopyranosyl(GlcNAc)), 2- 데옥시-2-술파미도-α-D-글루코피라노실(2-deoxy-2-sulfamido-α-D-glucopyranosyl(GlcNS)), 및 2-데옥시-2-술파미도-α-D-글루코피라노실-6-O-술페이트(2-deoxy-2-sulfamido-α-D-glucopyranosyl-6-O-sulfate(GlcNS(6S))로 이루어지는 군으로부터 선택되는 어느 하나이다.). A and B are materials in which an adhesive and an unbonded B are arbitrarily arranged, and M / (M + N), which is a ratio of A and B, is not less than 0.02, independently β-D-glucu Β-D-glucuronic acid (GlcA), α-L-iduronic acid (IdoA), 2-O-sulfo-α-L-iduronic acid (2-O-sulfo- α-L-iduronic acid (IdoA (2S))), 2-deoxy-2-acetamino-α-D-glucopyranosyl (2-deoxy-2-acetamido-α-D-glucopyranosyl (GlcNAc)), 2-deoxy-2-sulfamido-α-D-glucopyranosyl (GlcNS), and 2-deoxy-2-sulfamido-α -D-glucopyranosyl-6-O-sulfate (2-deoxy-2-sulfamido-α-D-glucopyranosyl-6-O-sulfate (GlcNS (6S))).
  8. 제 7항에 있어서, 코팅되는 상기 고체는 폴리테트라플루오르에틸렌 (polytetrafluoroethylene), 폴리카보네이트(polycarbonate), 폴리우레탄(polyurethane), 니트로셀룰로스(nitrocellulose), 폴리스티렌(polystyrene), 폴리에틸렌(polyethylene), 폴리에틸렌 텔레프탈레이트(PET), 폴리디메틸실록산(PDMS), 및 폴리에테르 에테르 케톤(PEEK)를 포함하는 고분자계 물질, 금(Au), 은(Ag), 백금(Pt), 팔라듐(Pd), 및 구리(Cu)를 포함하는 귀금속류 물질, 강철(steel), 니티놀합금(NiTi), 갈륨비소(GaAs), 및 티타늄(Ti)를 포함하는 금속류 물질, 산화규소(SiO2), 산화티타늄(TiO2), 산화알루미늄(Al2O3), 및 산화니오븀(Nb2O5)을 포함하는 산화금속 류 물질, 및 실리콘, 실리콘 고무, 및 유리를 포함하는 비금속류의 물질로 이루어지는 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 고체 표면 코팅제.The method of claim 7, wherein the solid to be coated is polytetrafluoroethylene, polycarbonate, polyurethane, nitrocellulose, polystyrene, polyethylene, polyethylene terephthalate Polymeric materials including (PET), polydimethylsiloxane (PDMS), and polyether ether ketone (PEEK), gold (Au), silver (Ag), platinum (Pt), palladium (Pd), and copper (Cu) Noble metal materials, including steel, steel, Nitinol alloy (NiTi), gallium arsenide (GaAs), and metal materials including titanium (Ti), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), oxidation Any one selected from the group consisting of metal oxide materials including aluminum (Al 2 O 3 ), and niobium oxide (Nb 2 O 5 ), and nonmetal materials including silicon, silicon rubber, and glass. Solid surface coating agent.
  9. pH 7.5 ~ 9.5의 약염기 조건하에서, 하기 화학식 1의 화합물에 의한 고체 표면의 코팅방법:A method of coating a solid surface with a compound of Formula 1 under weakly basic conditions of pH 7.5 to 9.5:
    <화학식 1><Formula 1>
    Figure PCTKR2009006612-appb-I000018
    Figure PCTKR2009006612-appb-I000018
    (상기 식에서,  (Wherein
    L은
    Figure PCTKR2009006612-appb-I000019
    이되 K는 1 내지 10의 정수이고;
    L is
    Figure PCTKR2009006612-appb-I000019
    Wherein K is an integer from 1 to 10;
    X는 H 또는 OH이고;X is H or OH;
    M 및 N은 각각 2내지 50의 정수이고;M and N are each an integer from 2 to 50;
    A 및 B는 접착성 물질과 접합된 A와 접합되지 않은 B가 임의적으로 배열된 물질이고, A와 B의 비율인 M/(M+N)이 0.02 이상이되, 독립적으로 β-D-글루쿠론산(β-D-glucuronic acid(GlcA)), α-L-이두론산(α-L-iduronic acid(IdoA)), 2-O-술포-α-L-이두론산(2-O-sulfo-α-L-iduronic acid(IdoA(2S))), 2-데옥시-2-아세트아미노-α-D-글루코피라노실(2-deoxy-2-acetamido-α-D-glucopyranosyl(GlcNAc)), 2- 데옥시-2-술파미도-α-D-글루코피라노실(2-deoxy-2-sulfamido-α-D-glucopyranosyl(GlcNS)), 및 2-데옥시-2-술파미도-α-D-글루코피라노실-6-O-술페이트(2-deoxy-2-sulfamido-α-D-glucopyranosyl-6-O-sulfate(GlcNS(6S))로 이루어지는 군으로부터 선택되는 어느 하나이다.).A and B are materials in which an adhesive and an unbonded B are arbitrarily arranged, and M / (M + N), which is a ratio of A and B, is not less than 0.02, independently β-D-glucu Β-D-glucuronic acid (GlcA), α-L-iduronic acid (IdoA), 2-O-sulfo-α-L-iduronic acid (2-O-sulfo- α-L-iduronic acid (IdoA (2S))), 2-deoxy-2-acetamino-α-D-glucopyranosyl (2-deoxy-2-acetamido-α-D-glucopyranosyl (GlcNAc)), 2-deoxy-2-sulfamido-α-D-glucopyranosyl (GlcNS), and 2-deoxy-2-sulfamido-α -D-glucopyranosyl-6-O-sulfate (2-deoxy-2-sulfamido-α-D-glucopyranosyl-6-O-sulfate (GlcNS (6S))).
  10. 제 9항에 있어서, 코팅되는 상기 고체는 폴리테트라플루오르에틸렌 (polytetrafluoroethylene), 폴리카보네이트(polycarbonate), 폴리우레탄(polyurethane), 니트로셀룰로스(nitrocellulose), 폴리스티렌(polystyrene), 폴리에틸렌(polyethylene), 폴리에틸렌 텔레프탈레이트(PET), 폴리디메틸실록산(PDMS), 및 폴리에테르 에테르 케톤(PEEK)를 포함하는 고분자계 물질, 금(Au), 은(Ag), 백금(Pt), 팔라듐(Pd), 및 구리(Cu)를 포함하는 귀금속류 물질, 강철(steel), 니티놀합금(NiTi), 갈륨비소(GaAs), 및 티타늄(Ti)를 포함하는 금속류 물질, 산화규소(SiO2), 산화티타늄(TiO2), 산화알루미늄(Al2O3), 및 산화니오븀(Nb2O5)을 포함하는 산화금속 류 물질, 및 실리콘, 실리콘 고무, 및 유리를 포함하는 비금속류의 물질로 이루어지는 군으로부터 선택되는 어느 하나인 것을 특징으로 하는 고체 표면의 코팅방법.The method of claim 9, wherein the solid to be coated is polytetrafluoroethylene, polycarbonate, polyurethane, nitrocellulose, polystyrene, polyethylene, polyethylene terephthalate Polymeric materials including (PET), polydimethylsiloxane (PDMS), and polyether ether ketone (PEEK), gold (Au), silver (Ag), platinum (Pt), palladium (Pd), and copper (Cu) Noble metal materials, including steel, steel, nitinol alloy (NiTi), gallium arsenide (GaAs), and metal materials including titanium (Ti), silicon oxide (SiO 2 ), titanium oxide (TiO 2 ), oxidation Any one selected from the group consisting of metal oxide materials including aluminum (Al 2 O 3 ), and niobium oxide (Nb 2 O 5 ), and nonmetal materials including silicon, silicon rubber, and glass. Coating room of solid surface characterized by method.
PCT/KR2009/006612 2009-11-11 2009-11-11 Heparin compound bound to adhesive material, preparation method thereof, solid surface coating agent containing same as active ingredient, and coating method of solid surface using same WO2011059123A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/006612 WO2011059123A1 (en) 2009-11-11 2009-11-11 Heparin compound bound to adhesive material, preparation method thereof, solid surface coating agent containing same as active ingredient, and coating method of solid surface using same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2009/006612 WO2011059123A1 (en) 2009-11-11 2009-11-11 Heparin compound bound to adhesive material, preparation method thereof, solid surface coating agent containing same as active ingredient, and coating method of solid surface using same

Publications (1)

Publication Number Publication Date
WO2011059123A1 true WO2011059123A1 (en) 2011-05-19

Family

ID=43991772

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006612 WO2011059123A1 (en) 2009-11-11 2009-11-11 Heparin compound bound to adhesive material, preparation method thereof, solid surface coating agent containing same as active ingredient, and coating method of solid surface using same

Country Status (1)

Country Link
WO (1) WO2011059123A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103157144A (en) * 2011-12-15 2013-06-19 贵州金玖生物技术有限公司 Preparation method of anticoagulant coating on vascular stent
CN103736156A (en) * 2013-10-10 2014-04-23 西北大学 Method for constructing functionalized surface and interface by polydopamine coating layer
CN109873159A (en) * 2017-12-01 2019-06-11 现代自动车株式会社 Lithium secondary battery and adhesive for anode for lithium secondary battery
CN110323415A (en) * 2018-03-29 2019-10-11 现代自动车株式会社 The manufacturing method of lithium secondary battery and the lithium secondary battery
CN111500217A (en) * 2020-04-06 2020-08-07 恩平市盈嘉丰胶粘制品有限公司 Preparation method of multifunctional nano material modified pressure-sensitive adhesive
CN113209383A (en) * 2021-05-17 2021-08-06 吉林大学 BMP-2 gene sustained-release coating loaded PEEK composite biological implantation material and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837313A (en) * 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US20040111144A1 (en) * 2002-12-06 2004-06-10 Lawin Laurie R. Barriers for polymeric coatings
KR20090013696A (en) * 2007-08-01 2009-02-05 신풍제약주식회사 Method for preparing crosslinkable hyaluronic acid derivative and crosslinked product of the hyaluronic acid derivative

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5837313A (en) * 1995-04-19 1998-11-17 Schneider (Usa) Inc Drug release stent coating process
US20040111144A1 (en) * 2002-12-06 2004-06-10 Lawin Laurie R. Barriers for polymeric coatings
KR20090013696A (en) * 2007-08-01 2009-02-05 신풍제약주식회사 Method for preparing crosslinkable hyaluronic acid derivative and crosslinked product of the hyaluronic acid derivative

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BIOMACROMOLECULES, vol. 10, no. 6, April 2009 (2009-04-01), pages 1532 - 1539 *
RESUSCITATION, vol. 69, no. 2, 2006, pages 311 - 318 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103157144A (en) * 2011-12-15 2013-06-19 贵州金玖生物技术有限公司 Preparation method of anticoagulant coating on vascular stent
CN103736156A (en) * 2013-10-10 2014-04-23 西北大学 Method for constructing functionalized surface and interface by polydopamine coating layer
CN109873159A (en) * 2017-12-01 2019-06-11 现代自动车株式会社 Lithium secondary battery and adhesive for anode for lithium secondary battery
CN109873159B (en) * 2017-12-01 2023-03-07 现代自动车株式会社 Lithium secondary battery and binder for anode of lithium secondary battery
CN110323415A (en) * 2018-03-29 2019-10-11 现代自动车株式会社 The manufacturing method of lithium secondary battery and the lithium secondary battery
CN110323415B (en) * 2018-03-29 2023-03-10 现代自动车株式会社 Lithium secondary battery and method for manufacturing the same
CN111500217A (en) * 2020-04-06 2020-08-07 恩平市盈嘉丰胶粘制品有限公司 Preparation method of multifunctional nano material modified pressure-sensitive adhesive
CN113209383A (en) * 2021-05-17 2021-08-06 吉林大学 BMP-2 gene sustained-release coating loaded PEEK composite biological implantation material and preparation method thereof
CN113209383B (en) * 2021-05-17 2022-01-11 吉林大学 BMP-2 gene sustained-release coating loaded PEEK composite biological implantation material and preparation method thereof

Similar Documents

Publication Publication Date Title
WO2011059123A1 (en) Heparin compound bound to adhesive material, preparation method thereof, solid surface coating agent containing same as active ingredient, and coating method of solid surface using same
Xing et al. Quantitative fabrication, performance optimization and comparison of PEG and zwitterionic polymer antifouling coatings
AU2010295601B2 (en) Novel heparin entities and methods of use
US8048437B2 (en) Medical device with surface coating comprising bioactive compound
CA1209413A (en) Articles exhibiting a biocompatible surface layer and process articles with such a surface layer
EP0682536B1 (en) Solid substrate with hydrophilic reactive groups on the surface
US20080138611A1 (en) Method For Modifying Surface Of Substrate, Substrate Having Modified Surface, And Method For Producing Same
US20080255305A1 (en) Biological Molecule-Reactive Hydrophilic Silicone Surface
CN111484568B (en) Chitosan-antibacterial polypeptide graft polymer and preparation method and application thereof
CN113209394A (en) Anticoagulation antibacterial coating and preparation method and application thereof
Sabbatini et al. XPS and SIMS surface chemical analysis of some important classes of polymeric biomaterials
Zhang et al. Hemocompatible polyethylene glycol films on silicon
EP0309473B1 (en) An article adapted for contact with blood, a process for the preparation thereof as well as uses thereof
JP2017507675A (en) Cross-linked PEG polymer coating for improving biocompatibility of medical devices
Lv et al. A one-step tannic acid coating to improve cell adhesion and proliferation on polydimethylsiloxane
Thalla et al. A versatile star PEG grafting method for the generation of nonfouling and nonthrombogenic surfaces
Wang et al. ALD mediated heparin grafting on nitinol for self-expanded carotid stents
Liu et al. A novel cationic waterborne polyurethane coating modified by chitosan biguanide hydrochloride with application potential in medical catheters
CN114748708A (en) Coating material and preparation method and application thereof
US20200330649A1 (en) Fluorosilinated liquid-infused surfaces with embedded biomolecules, methods of making and uses thereof
Heo et al. Bioinspired adhesive coating on PET film for antifouling surface modification
Gabriel et al. Cell adhesive and antifouling polyvinyl chloride surfaces via wet chemical modification
CN102038955B (en) Method for preparing anticoagulant polysulfones material by fourier reaction grafting
Yoshikawa et al. Concentrated polymer brush-modified silica particle coating confers biofouling-resistance on modified materials
CN114306758A (en) Long-acting anticoagulant coating, preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09851300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC

122 Ep: pct application non-entry in european phase

Ref document number: 09851300

Country of ref document: EP

Kind code of ref document: A1