WO2011010597A1 - 窒化珪素製絶縁シートおよびそれを用いた半導体モジュール構造体 - Google Patents

窒化珪素製絶縁シートおよびそれを用いた半導体モジュール構造体 Download PDF

Info

Publication number
WO2011010597A1
WO2011010597A1 PCT/JP2010/061976 JP2010061976W WO2011010597A1 WO 2011010597 A1 WO2011010597 A1 WO 2011010597A1 JP 2010061976 W JP2010061976 W JP 2010061976W WO 2011010597 A1 WO2011010597 A1 WO 2011010597A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon nitride
insulating sheet
surface layer
semiconductor module
pressing member
Prior art date
Application number
PCT/JP2010/061976
Other languages
English (en)
French (fr)
Inventor
隆之 那波
Original Assignee
株式会社東芝
東芝マテリアル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社東芝, 東芝マテリアル株式会社 filed Critical 株式会社東芝
Priority to JP2011523619A priority Critical patent/JP5675610B2/ja
Priority to US13/386,735 priority patent/US8916961B2/en
Publication of WO2011010597A1 publication Critical patent/WO2011010597A1/ja
Priority to US14/534,808 priority patent/US20150061107A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/15Ceramic or glass substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/515Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
    • C04B35/58Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
    • C04B35/584Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/009After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/48Macromolecular compounds
    • C04B41/4853Epoxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/46Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with organic materials
    • C04B41/49Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes
    • C04B41/4905Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon
    • C04B41/495Compounds having one or more carbon-to-metal or carbon-to-silicon linkages ; Organo-clay compounds; Organo-silicates, i.e. ortho- or polysilicic acid esters ; Organo-phosphorus compounds; Organo-inorganic complexes containing silicon applied to the substrate as oligomers or polymers
    • C04B41/4961Polyorganosiloxanes, i.e. polymers with a Si-O-Si-O-chain; "silicones"
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5116Ag or Au
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/5127Cu, e.g. Cu-CuO eutectic
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5155Aluminium
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/45Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
    • C04B41/50Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements with inorganic materials
    • C04B41/51Metallising, e.g. infiltration of sintered ceramic preforms with molten metal
    • C04B41/515Other specific metals
    • C04B41/5161Tin
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/82Coating or impregnation with organic materials
    • C04B41/83Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B41/00After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
    • C04B41/80After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
    • C04B41/81Coating or impregnation
    • C04B41/85Coating or impregnation with inorganic materials
    • C04B41/88Metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/13Mountings, e.g. non-detachable insulating substrates characterised by the shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/40Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs
    • H01L23/4006Mountings or securing means for detachable cooling or heating arrangements ; fixed by friction, plugs or springs with bolts or screws
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00844Uses not provided for elsewhere in C04B2111/00 for electronic applications
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/767Hexagonal symmetry, e.g. beta-Si3N4, beta-Sialon, alpha-SiC or hexa-ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/788Aspect ratio of the grains
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/95Products characterised by their size, e.g. microceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/963Surface properties, e.g. surface roughness
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12472Microscopic interfacial wave or roughness
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24355Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24802Discontinuous or differential coating, impregnation or bond [e.g., artwork, printing, retouched photograph, etc.]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/24Structurally defined web or sheet [e.g., overall dimension, etc.]
    • Y10T428/24942Structurally defined web or sheet [e.g., overall dimension, etc.] including components having same physical characteristic in differing degree
    • Y10T428/2495Thickness [relative or absolute]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/25Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
    • Y10T428/259Silicic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/263Coating layer not in excess of 5 mils thick or equivalent
    • Y10T428/264Up to 3 mils
    • Y10T428/2651 mil or less
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/266Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension of base or substrate

Definitions

  • Embodiments of the present invention relate to a silicon nitride insulating sheet and a semiconductor module structure using the same.
  • ceramic metal circuit boards having an insulating and electrode function have been used.
  • the ceramic metal circuit board is used as a substrate of a semiconductor module having an insulating / electrode function in a semiconductor module structure including a semiconductor module and a heat radiating member such as a heat radiating fin, for example.
  • a heat radiating member such as a heat radiating fin
  • high heat dissipation has been required for semiconductor module structures with the recent increase in power of semiconductor modules.
  • a substrate mainly composed of alumina (Al 2 O 3 ) or aluminum nitride (AlN) has been used as a ceramic substrate.
  • the alumina substrate has a low thermal conductivity of about 18 W / m ⁇ K, the heat dissipation is insufficient.
  • the AlN substrate has a high thermal conductivity of about 200 W / m ⁇ K, but has a low strength, its heat cycle characteristics are insufficient.
  • the heat cycle characteristics means that a metal circuit is formed on the surface of the ceramic substrate to produce a sample of the ceramic metal circuit substrate, and when a predetermined heat cycle test is performed on this sample, Of these, it means the difficulty of generating cracks along the peripheral shape of the metal circuit.
  • Patent Document 1 Japanese Unexamined Patent Application Publication No. 2009-120383 describes a metal circuit board made of silicon nitride with high thermal conductivity in which leakage current is reduced by controlling the pore diameter in the grain boundary phase.
  • the silicon nitride metal circuit board described in Patent Document 1 is manufactured by bonding a copper circuit board to a high thermal conductivity silicon nitride board via an Ag—Cu—Ti based active metal brazing material.
  • a high thermal conductivity silicon nitride substrate has silicon nitride as a main component, and therefore has a high three-point bending strength of 200 MPa or more.
  • a silicon nitride metal circuit board produced by joining a high thermal conductivity silicon nitride board and a metal circuit board such as a copper plate has good heat cycle characteristics.
  • Patent Document 2 discloses that the obtained high thermal conductivity silicon nitride metal circuit board can withstand a 3000 cycle heat resistance cycle test (TCT test).
  • the high thermal conductivity silicon nitride substrate is not bonded to the metal circuit board, that is, a high thermal conductivity silicon nitride metal circuit substrate is manufactured. It is being considered to use this method.
  • Patent Document 3 proposes to use a high thermal conductivity silicon nitride substrate as a spacer for a semiconductor module structure having a pressure contact structure. It has been confirmed that the high thermal conductivity silicon nitride substrate of Patent Document 3 is sufficiently durable as a spacer for pressure contact structure such as screwing because of its high strength and fracture toughness.
  • a silicon nitride sintered body having a ⁇ -silicon nitride (Si 3 N 4 ) crystal as a main phase is generally used.
  • a ⁇ -silicon nitride (Si 3 N 4 ) crystal is generally used as the high thermal conductivity silicon nitride substrate.
  • this ⁇ -Si 3 N 4 crystal vertically long crystal grains having an aspect ratio of 2 or more are usually used.
  • the aspect ratio is a value obtained by dividing the length of the crystal grains in the major axis direction by the length of the crystal grains in the minor axis direction.
  • the high thermal conductivity silicon nitride substrate having ⁇ -Si 3 N 4 as a main phase has a microscopic structure, for example, a direction in which vertically long ⁇ -Si 3 N 4 particles having an average particle diameter of about 2 to 10 ⁇ m are random.
  • the structure is intricately intertwined while facing.
  • the high thermal conductivity silicon nitride substrate having ⁇ -Si 3 N 4 as a main phase has such a structure, and thus has high strength and fracture toughness.
  • a highly thermally conductive silicon nitride substrate having microscopic irregularities on the surface is a silicon nitride substrate starting from the convex portions when it is used for a long time by applying pressure stress to the microscopic irregularities, particularly the convex portions. There is a problem that cracks are likely to occur.
  • a highly thermally conductive silicon nitride substrate with microscopic irregularities on the surface has a high heat resistance when a module structure such as a semiconductor module structure having a pressure contact structure is formed by bringing the surface into contact with another member such as a pressing member.
  • a microscopic gap is generated between the surface of the conductive silicon nitride substrate and the other member. Since the pressing member is generally made of a hard material such as a metal, the microscopic shape can be obtained by deforming the surface shape on the pressing member side according to the unevenness of the surface of the high thermal conductivity silicon nitride substrate. It is difficult to fill the gap.
  • the high thermal conductivity silicon nitride substrate As a method for avoiding the occurrence of cracks, it is conceivable to increase the thickness of the high thermal conductivity silicon nitride substrate.
  • the high thermal conductivity silicon nitride substrate is made thick, the high thermal conductivity silicon nitride substrate becomes a thermal resistor, and there is a problem that heat dissipation as a module structure is deteriorated.
  • the present invention relates to an insulating sheet made of silicon nitride in which a surface layer of a specific material is formed on the surface of a sheet-like highly thermally conductive silicon nitride substrate having ⁇ -silicon nitride crystal particles as a main phase.
  • an insulating sheet made of silicon nitride is for solving the above-described problem.
  • a sheet-like silicon nitride substrate having ⁇ -silicon nitride crystal particles as a main phase, and the silicon nitride substrate From a metal or resin formed on the surface and containing at least one element selected from In, Sn, Al, Ag, Au, Cu, Ni, Pb, Pd, Sr, Ce, Fe, Nb, Ta, V and Ti And a surface layer.
  • a semiconductor module structure according to an embodiment of the present invention is for solving the above-described problems, and is characterized by using the silicon nitride insulating sheet.
  • the front view of the insulating sheet made from silicon nitride shown in FIG. The front view which shows the silicon nitride insulating sheet as 2nd Embodiment of this invention.
  • FIG. 9 is a plan view showing an insulating sheet made of silicon nitride according to Examples 1 to 9. The front view of the insulating sheet made from silicon nitride shown in FIG.
  • FIG. 1 is a plan view showing an insulating sheet made of silicon nitride as a first embodiment of the present invention.
  • FIG. 2 is a front view of the silicon nitride insulating sheet shown in FIG.
  • the silicon nitride insulating sheet 1 shown as the first embodiment includes a sheet-like silicon nitride substrate 2 and a surface layer 3 formed on one surface of the silicon nitride substrate 2. Is provided.
  • Surface layer 3 is formed on a part of one surface 21 of silicon nitride substrate 2 such that surface 23 in the vicinity of peripheral end 22 of silicon nitride substrate 2 is exposed among one surface 21 of silicon nitride substrate 2. Is done.
  • the silicon nitride substrate 2 is a sheet-like silicon nitride substrate whose main phase is ⁇ -silicon nitride crystal particles.
  • the main phase means a phase having the largest molar ratio in the silicon nitride substrate 2.
  • the silicon nitride substrate is composed of silicon nitride (Si 3 N 4 ) crystal grains that occupy most of the molar ratio and the silicon nitride crystal grains that occupy the rest of the molar ratio and exist at the grain boundary between the silicon nitride crystal grains. And a grain boundary phase filling the grain boundaries.
  • silicon nitride crystal particles include ⁇ -silicon nitride crystal particles and ⁇ -silicon nitride crystal particles.
  • the abundance ratio of ⁇ -silicon nitride crystal particles is larger than the abundance ratio of ⁇ -silicon nitride crystal particles in terms of the molar ratio of silicon nitride crystal particles.
  • the silicon nitride crystal particles have a molar ratio larger than that of the grain boundary phase, and among the silicon nitride crystal particles, ⁇ -silicon nitride crystal particles have a higher molar ratio than ⁇ -silicon nitride crystal particles. The ratio is large. For this reason, the silicon nitride substrate used in the present embodiment has ⁇ -silicon nitride crystal particles as the main phase.
  • the silicon nitride substrate of this embodiment is not particularly required to contain ⁇ -silicon nitride crystal particles. Therefore, all of the silicon nitride crystal particles constituting the silicon nitride substrate may be ⁇ -silicon nitride crystal particles.
  • the grain boundary phase is made of an oxide containing a rare earth element.
  • an oxide containing rare earth elements for example, when yttrium is used, Y 2 O 3 .5Al 2 O 3 (YAG), Y 2 O 3 .Al 2 O 3 (YAL) , 2Y 2 O 3 .Al 2 Examples include O 3 (YAM) and Y 2 O 3 .
  • the average particle diameter of silicon nitride crystal particles is usually 2 to 10 ⁇ m.
  • the silicon nitride substrate has good characteristics such as leakage current, thermal conductivity, three-point bending strength, and fracture toughness.
  • the average particle size of silicon nitride crystal particles means the average particle size of all types of silicon nitride crystal particles contained in the silicon nitride substrate. Specifically, when the silicon nitride substrate contains only ⁇ -silicon nitride crystal particles as silicon nitride crystal particles, it means the average particle size of ⁇ -silicon nitride crystal particles, and the silicon nitride substrate has ⁇ - When silicon nitride crystal particles and ⁇ -silicon nitride crystal particles are included, it means an average particle diameter calculated by summing ⁇ -silicon nitride crystal particles and ⁇ -silicon nitride crystal particles.
  • the average particle diameter of the silicon nitride crystal particles means, for example, the average particle diameter of the silicon nitride crystal particles observed on the fracture surface of the silicon nitride substrate. Specifically, the average particle diameter is obtained by calculating the individual particle diameters by the formula of (major axis diameter + minor axis diameter) / 2, and then setting the average value of the particle diameters of 200 particles as the average particle diameter. It is. For measurement of the major axis diameter and minor axis diameter, it is preferable to use an enlarged photograph of the fracture surface. In addition, when the fracture surface contrast is poor due to the unevenness of the cross section, it is preferable to polish the fracture surface and measure the major axis diameter and minor axis diameter using an enlarged photograph of the polished fracture surface.
  • the average particle diameter of the silicon nitride crystal particles is obtained by taking an enlarged photograph of the fractured surface of the silicon nitride substrate with an SEM (scanning electron microscope), and presenting the silicon nitride crystal particles within a predetermined measurement range on the fractured surface. It is calculated
  • the aspect ratio of ⁇ -silicon nitride crystal grains is usually 2 or more.
  • the aspect ratio is 2 or more, characteristics such as leakage current, thermal conductivity, three-point bending strength, and fracture toughness of the silicon nitride substrate are improved.
  • the upper limit of the aspect ratio of ⁇ -silicon nitride crystal particles is not particularly limited, but is usually 10 or less, preferably 5 or less.
  • the aspect ratio is the major axis / minor axis ratio of ⁇ -silicon nitride crystal particles.
  • the aspect ratio can be calculated, for example, by performing image processing on an image of particles observed on an arbitrary cross section of the silicon nitride substrate.
  • the silicon nitride substrate has a thickness of usually 0.8 mm or less, preferably 0.6 mm or less.
  • the silicon nitride substrate exceeds 0.8 mm, the silicon nitride substrate itself may become a thermal resistor, and the semiconductor module is increased in size and the space-saving property is likely to be reduced.
  • the silicon nitride substrate has a thickness of usually 0.2 mm or more, preferably 0.3 mm or more. If the silicon nitride substrate is less than 0.2 mm, the strength of the silicon nitride substrate may be reduced.
  • the silicon nitride substrate has a surface roughness Ra of usually 0.2 to 1.5 ⁇ m, preferably 0.2 to 1.0 ⁇ m. If the surface roughness Ra is in the range of 0.2 to 1.5 ⁇ m, a gap is formed between the silicon nitride substrate and the pressing member due to the unevenness of the surface of the silicon nitride substrate, or cracks are generated in the silicon nitride substrate. Can be prevented from occurring.
  • the sintered surface of the silicon nitride substrate is used as it is, or honing is performed on the sintered surface of the silicon nitride substrate. Or shot blasting.
  • a silicon nitride substrate with a Ra of 0.2 to 1.5 ⁇ m can be obtained by using the as-sintered surface as it is, or by performing a honing process or a shot blasting process, so that polishing such as mirror polishing is not performed. Can be produced.
  • the surface of the silicon nitride substrate is mirror-polished to a surface roughness Ra of 0.05 ⁇ m or less using a diamond grindstone, for example. May be.
  • the silicon nitride substrate used in the present embodiment is a hard material and requires a lot of work for polishing, the mirror polishing process increases the manufacturing cost of the silicon nitride substrate.
  • the silicon nitride substrate used in this embodiment has a microscopic structure in which acicular ⁇ -Si 3 N 4 crystal particles, which are main phases, are entangled, it is microscopic even if mirror polishing is performed. It is difficult to completely eliminate such irregularities, and the effect of mirror polishing is not sufficient.
  • the silicon nitride substrate 2 used in the present embodiment is used alone without providing the surface layer 3 for applications where a strong pressing force is applied, such as a component part of a pressure-contact structure, even if a mirror polishing process is performed. Even if applied, the silicon nitride substrate 2 may be cracked.
  • the flexible surface layer 3 is provided on the surface of the silicon nitride substrate 2 as shown in FIG. 1, the surface roughness remains relatively high without performing mirror polishing. Even when the silicon nitride substrate 2, for example, the silicon nitride insulating sheet 1 provided with the silicon nitride substrate 2 with Ra of 0.2 to 1.5 ⁇ m is used, the silicon nitride substrate 2 is less likely to crack. That is, since the silicon nitride insulating sheet 1 of the present embodiment is provided with the flexible surface layer 3 on the surface of the silicon nitride substrate 2, the silicon nitride insulating sheet 1 is applied with a strong pressing force. Even when it is used, the surface layer 3 is deformed and follows the uneven shape on the surface of the silicon nitride substrate 2, so that the silicon nitride substrate 2 of the silicon nitride insulating sheet 1 is less likely to crack.
  • the silicon nitride substrate used in the present embodiment has high insulating properties and high thermal conductivity, strength, and toughness.
  • the characteristics of the silicon nitride substrate are not particularly limited, but the silicon nitride substrate preferably has the following characteristics. That is, the silicon nitride substrate preferably has a leakage current of 1000 nA or less, a thermal conductivity of 50 W / m ⁇ K or more, and a three-point bending when an AC voltage of 25 ° C., 70% humidity and 1.5 KV-100 Hz is applied.
  • the strength is 200 MPa or more
  • the fracture toughness is 6 MPa ⁇ m 1/2 or more.
  • the silicon nitride substrate has the following characteristics. That is, the silicon nitride substrate more preferably has a leakage current of 200 nA or less, a thermal conductivity of 80 W / m ⁇ K or more, a three-point bending strength of 600 MPa or more, and a fracture toughness of 6.5 MPa ⁇ m 1/2 or more.
  • the silicon nitride substrate can be obtained, for example, by mixing silicon nitride powder and a sintering aid and sintering. Specifically, the silicon nitride substrate is obtained by a manufacturing method described in Patent Document 1 (Japanese Patent Laid-Open No. 2009-120383).
  • silicon nitride powder for example, a powder composed of a large amount of ⁇ -Si 3 N 4 crystal particles and a small amount of ⁇ -Si 3 N 4 crystal particles is used.
  • the sintering aid for example, a rare earth oxide such as Y 2 O 3 is used.
  • ⁇ -Si 3 N 4 crystal grains in the silicon nitride powder as a raw material as substantially all is converted into ⁇ -Si 3 N 4 crystal ⁇ -Si 3 N 4 crystal grains during sintering Grain grows.
  • the silicon nitride substrate obtained after sintering has a structure in which only ⁇ -Si 3 N 4 crystal particles are substantially intertwined.
  • the surface layer 3 is formed on one surface of the silicon nitride substrate 2.
  • the surface layer 3 is formed on one surface of the surface of the silicon nitride substrate 2.
  • the surface layer 3 does not need to be formed only on one side of the surface of the silicon nitride substrate 2, and may be formed on both the front and back surfaces of the surface of the silicon nitride substrate 2.
  • a silicon nitride insulating sheet in which the surface layer 3 is formed on both the front and back surfaces of the silicon nitride substrate 2 will be described later as a third embodiment.
  • the surface layer 3 is a layer made of a flexible material and covering the surface of the silicon nitride substrate 2. Since the surface layer 3 is made of a flexible material, the surface layer 3 can enclose microscopic irregularities on the surface of the silicon nitride substrate 2. For this reason, when the insulating sheet 1 made of silicon nitride is pressed against another member such as a pressing member via the surface layer 3, the microscopic irregularities on the surface of the silicon nitride substrate 2 are enveloped by the surface layer 3, Close contact between the silicon insulating sheet 1 and other members is possible.
  • the silicon nitride insulating sheet 1 on which the surface layer 3 is formed for example, when the silicon nitride insulating sheet 1 is used as a component of a semiconductor module structure having a press-contact structure, the silicon nitride insulating sheet 1 press-contacts the semiconductor module via a pressing member.
  • the silicon nitride insulating sheet 1 and the pressing member can be brought into close contact with each other.
  • the surface layer is made of metal or resin. If necessary, the resin may contain additives such as metal powder and ceramic powder.
  • the metal used for the surface layer is In (indium), Sn (tin), Al (aluminum), Ag (silver), Au (gold), Cu (copper), Ni (nickel), Pb (lead), Pd ( Palladium), Sr (strontium), Ce (cerium), Fe (iron), Nb (niobium), Ta (tantalum), V (vanadium) and a metal containing at least one element selected from Ti (titanium), Specifically, they are simple metals of these elements or alloys containing these elements as main components.
  • the main component means a component having the largest molar ratio among the metals used for the surface layer.
  • the metal used for the surface layer is preferably a metal that contains at least one element selected from Ti, Zr, Hf, Ta, V, and Nb. Specifically, the elemental metal of these elements or these elements are included. It is an alloy with the main component.
  • the metal used for the surface layer is the above metal, characteristics such as leakage current, thermal conductivity, three-point bending strength, and fracture toughness of the silicon nitride substrate are improved.
  • the metal used for the surface layer is more preferably a metal containing at least one element selected from Ti, Zr, and Hf. Specifically, a single metal of these elements or an alloy containing these elements as a main component It is.
  • Ti, Zr, or Hf reacts with nitrogen atoms on the surface of the silicon nitride substrate to form an active metal nitride, and firmly bonds the silicon nitride substrate and the surface layer. For this reason, when the metal used for the surface layer is the above metal, the bonding strength between the silicon nitride substrate and the surface layer is increased.
  • a silicon nitride insulating sheet in which the metal used for the surface layer is a metal containing at least one element selected from Ti, Zr, and Hf has a high bonding strength, so that the pressure welding used for applications under vibration environment such as in-vehicle applications. Even when used as a component of a semiconductor module structure having a structure, sufficient durability and heat dissipation can be exhibited.
  • the resin used for the surface layer examples include a silicone resin and an epoxy resin. These resins are preferably applied to the surface of the silicon nitride substrate because they easily enter microscopic irregularities on the surface of the silicon nitride substrate.
  • a silicone resin is preferable because a cured product obtained by curing the silicone resin has high elasticity. Comparing the surface layer made of metal and the surface layer made of resin, the surface layer made of metal is preferable from the viewpoint of heat dissipation, and the surface layer made of resin is preferable from the viewpoint of insulation.
  • the resin used for the surface layer is higher in insulation than metal, but has lower thermal conductivity. For this reason, when using resin for the surface layer, it is preferable to improve the thermal conductivity of the surface layer by adding a substance having high thermal conductivity such as metal powder or ceramic powder to the resin.
  • a substance having high thermal conductivity such as metal powder or ceramic powder
  • the metal powder added to the resin of the surface layer include Cu powder and Al powder.
  • Examples of the ceramic powder added to the resin of the surface layer include AlN (aluminum nitride) powder and Si 3 N 4 powder.
  • AlN powder is preferable because of its good insulation and thermal conductivity.
  • the average particle diameter of the metal powder or ceramic powder added to the resin of the surface layer is usually 1/2 or less, preferably 1/5 or less, more preferably 1/12 to 1/1 / the thickness of the surface layer. 5.
  • the average particle diameter of the metal powder or ceramic powder is a value measured by the Coulter counter method, it means the median D 50 of the cumulative volume distribution.
  • the silicon nitride insulating sheet When the average particle size of the metal powder or ceramic powder exceeds 1/2 of the thickness of the surface layer, the silicon nitride insulating sheet is used as a component part of a semiconductor module structure having a pressure contact structure and is pressed.
  • metal powder or ceramic powder may be released from the surface layer or exposed to the surface of the surface layer, which may hinder improvement in adhesion by the surface layer.
  • the content of metal powder or ceramic powder in the resin of the surface layer is preferably 20 to 60% by volume.
  • the improvement in thermal conductivity due to the addition of metal powder or ceramic powder may be small.
  • the insulating sheet made of silicon nitride is used as a component part of the semiconductor module structure having a pressure contact structure, and when pressed, metal powder or ceramic powder is released from the surface layer. There is a possibility that the surface layer may be exposed to the surface layer and hinder the improvement of adhesion by the surface layer.
  • the surface layer has a Vickers hardness Hv of usually 200 or less, preferably 100 or less, more preferably 50 or less.
  • the Vickers hardness Hv is a value measured according to JIS-Z-2244 (Vickers hardness test-test method).
  • the surface layer has a Vickers hardness Hv of usually 10 or more, preferably 20 or more, and more preferably 30 or more.
  • the Vickers hardness Hv is 10 or more and 200 or less, the elasticity of the surface layer becomes appropriate, and close contact between the surface layer and another member such as a pressing member becomes possible.
  • the Vickers hardness Hv exceeds 200, since the surface layer is too hard, the effect of close contact between the surface layer and another member such as a pressing member tends to be insufficient.
  • the surface layer has a thickness of usually 100 ⁇ m or less, preferably 20 to 80 ⁇ m, more preferably 20 to 50 ⁇ m. When the thickness of the surface layer is 100 ⁇ m or less, the elasticity of the surface layer becomes appropriate, and close contact between the surface layer and another member such as a pressing member becomes possible.
  • the surface layer thickness is less than 20 ⁇ m, the surface layer cannot fully enclose the surface irregularities of the silicon nitride substrate when the surface of the silicon nitride substrate has large microscopic irregularities. There is a possibility of appearing remarkably on the surface of the layer. For example, when the average particle diameter of the silicon nitride crystal grains of the silicon nitride substrate is as large as 10 ⁇ m or more, the irregularities on the surface of the silicon nitride substrate may exceed 20 ⁇ m. In this case, the irregular shape is conspicuous on the surface of the surface layer. May appear.
  • the average particle diameter of the silicon nitride crystal particles of the silicon nitride substrate is as small as 5 ⁇ m or less, the microscopic irregularities on the surface of the silicon nitride substrate rarely exceed 20 ⁇ m. For this reason, the thickness of the surface layer is sufficient within the range of 20 to 50 ⁇ m.
  • the surface layer has moderate flexibility. For this reason, when the insulating sheet made of silicon nitride provided with the surface layer is used as a component of the semiconductor module structure having a pressure contact structure, the compressed surface layer may spread slightly in the lateral direction.
  • the compressed surface layer spreads in the lateral direction and protrudes from the peripheral edge of the silicon nitride substrate, causing unnecessary conduction on the surface layer. There is a risk of poor insulation of the silicon nitride substrate.
  • the compressed surface layer 3 spreads in the lateral direction and the surface layer 3 may protrude from the peripheral end 22 of the silicon nitride substrate 2 and cause insulation failure of the silicon nitride substrate 2.
  • the surface layer 3 has a silicon nitride substrate that is not compressed and is not loaded in order to prevent the peripheral end portion 32 of the compressed surface layer 3 from protruding from the peripheral end portion 22 of the silicon nitride substrate 2. It is provided to be smaller than 2. Specifically, as shown in FIG. 1, the peripheral end portion 32 of the surface layer 3 and the peripheral end portion 22 of the silicon nitride substrate 2 are provided so as to be separated from each other by a predetermined distance W.
  • the distance W is usually 0.1 mm or more, preferably 1 mm or more, more preferably 1.5 mm or more.
  • the upper limit of the distance W is not particularly limited. However, if the area ratio of the surface layer 3 to the silicon nitride substrate 2 becomes too small, the effect of the surface layer 3 that envelops microscopic irregularities on the surface of the silicon nitride substrate 2 decreases. For this reason, the surface layer 3 preferably has a surface area ratio of the surface layer 3 to the surface area of the surface 21 of the silicon nitride substrate 2 of 80% or more.
  • a method for manufacturing a silicon nitride insulating sheet will be described.
  • a silicon nitride substrate is prepared.
  • the silicon nitride substrate can be obtained by a known sintering method such as a manufacturing method described in Patent Documents 1 to 3, for example. Specifically, it is obtained by sintering a silicon nitride powder comprising a large amount of ⁇ -Si 3 N 4 crystal particles and a small amount of ⁇ -Si 3 N 4 crystal particles together with a sintering aid.
  • the silicon nitride crystal particles have ⁇ -silicon nitride crystal particles as the main phase, and the average particle diameter, thickness, and surface roughness Ra of the silicon nitride crystal particles are within the predetermined range.
  • the silicon nitride substrate is preferably cleaned by honing or shot blasting. Note that when honing or shot blasting is performed, the surface of the silicon nitride substrate does not have a surface roughness Ra of 0.05 ⁇ m or less unlike the case of mirror finishing, and the surface roughness Ra is generally 0.2 to It is in the range of 1.5 ⁇ m. Note that the surface of the silicon nitride substrate may be mirror-finished using a diamond grindstone, if necessary.
  • a surface layer is provided on the surface of the silicon nitride substrate.
  • a layer made of a metal containing at least one element selected from In, Sn, Al, Ag, Au, Cu, Ni, Pb, Pd, Sr, Ce, Fe, Nb, Ta, V and Ti is provided as a surface layer.
  • a method in which a metal paste is applied to the surface of a silicon nitride substrate by screen printing and heat treatment, or a thin film forming method such as sputtering or thermal spraying is used.
  • the metal of the surface layer is composed of a single metal
  • a thin film forming method such as sputtering or thermal spraying because the surface layer can be easily formed.
  • thermal spraying method use of a thermal spraying method is more preferable because a metal film having a thickness of 20 ⁇ m or more can be easily formed.
  • the surface layer is made of an alloy
  • a method of applying a resin paste to the surface of the silicon nitride substrate and drying, or a method of laminating a resin film on the surface of the silicon nitride substrate and thermocompression bonding is used.
  • resin has lower thermal conductivity than metal. Therefore, in order to increase the thermal conductivity of the surface layer made of resin, a resin paste obtained by adding metal powder or ceramic powder having high thermal conductivity to the resin may be used as the resin paste to be applied.
  • the surface layer 3 of the silicon nitride substrate 2 is formed.
  • a method of forming a resist coating film on a portion where the surface layer 3 is not formed is used.
  • FIG. 1 After a resist coating film is formed on the surface 23 of the surface 21 of the silicon nitride substrate 2 where the surface layer 3 is not formed, the portion of the surface 21 of the silicon nitride substrate 2 other than the resist coating film.
  • a method is used in which the surface layer 3 is formed on the resist film and the resist coating film is removed by etching with a NaOH solution or the like.
  • the silicon nitride insulating sheet 1 shown as the first embodiment since the surface layer 3 having a predetermined flexibility is provided on the surface of the silicon nitride substrate 2, the silicon nitride insulating sheet 1 and the silicon nitride insulating material are provided. When other members such as a pressing member arranged on the surface layer 3 side of the sheet 1 are pressed against each other, the silicon nitride insulating sheet 1 and other members can be brought into close contact with each other through the surface layer 3. .
  • the silicon nitride insulating sheet 1 shown as the first embodiment the silicon nitride insulating sheet 1 and another member such as a pressing member are in close contact with each other, so that the silicon nitride insulating sheet 1 and the pressing member are in contact with each other.
  • the heat conduction between the other members and the like increases.
  • the insulating sheet 1 made of silicon nitride, the semiconductor module structure of the first press-contact structure in which the insulating sheet 1 made of silicon nitride, the pressing member, and the semiconductor module are laminated in this order or the pressing member and the silicon nitride
  • the insulating sheet 1 and the semiconductor module are used as components of the semiconductor module structure having the second pressure-contact structure in which the semiconductor modules are laminated in this order, the heat dissipation characteristics as the semiconductor module structure are improved.
  • the microscopic projections on the surface of the silicon nitride substrate 2 are encased in the surface layer 3, so that the microscopic view of the surface of the silicon nitride substrate 2 is obtained. It is possible to suppress the occurrence of cracks in the silicon nitride substrate 2 due to a typical convex portion.
  • the insulating sheet 1 made of silicon nitride, the semiconductor module structure of the first press-contact structure in which the insulating sheet 1 made of silicon nitride, the pressing member, and the semiconductor module are laminated in this order or the pressing member and the silicon nitride
  • the insulating sheet 1 and the semiconductor module are used as components of the semiconductor module structure having the second press-contact structure in which the insulating modules 1 are laminated in this order, the occurrence of cracks in the silicon nitride substrate 2 can be suppressed.
  • the surface layer 3 is directly formed on the surface of the silicon nitride substrate 2.
  • the silicon nitride insulating sheet of the present invention may further include a reaction layer between the silicon nitride substrate 2 and the surface layer 3.
  • a silicon nitride insulating sheet in which a reaction layer is further provided between the silicon nitride substrate 2 and the surface layer 3 is shown in FIG. 3 as a second embodiment.
  • FIG. 3 is a front view showing an insulating sheet made of silicon nitride as the second embodiment of the present invention.
  • the silicon nitride insulating sheet 1A shown as the second embodiment includes a sheet-like silicon nitride substrate 2, a reaction layer 4 formed on one surface of the silicon nitride substrate 2, and this A surface layer 3 formed on the surface of the reaction layer 4.
  • the plan view of the silicon nitride insulating sheet 1A shown as the second embodiment in FIG. 3 is the same as the silicon nitride insulating sheet 1 shown as the first embodiment in FIG. 1 is shown in FIG.
  • the silicon nitride insulating sheet 1A shown as the second embodiment in FIG. 3 is compared with the silicon nitride insulating sheet 1 shown as the first embodiment in FIGS. Are different in that a reaction layer 4 is further provided, and the other points are the same. For this reason, the same reference numerals are used for the same configuration between the silicon nitride insulating sheet 1A shown as the second embodiment in FIG. 3 and the silicon nitride insulating sheet 1 shown as the first embodiment in FIGS. The description of the configuration and operation is omitted or simplified.
  • reaction layer 4 is formed on one side of the surface of the silicon nitride substrate 2 as shown in FIG.
  • the reaction layer 4 is formed on one side of the surface of the silicon nitride substrate 2.
  • the reaction layer 4 need not be formed only on one side of the surface of the silicon nitride substrate 2 and may be formed on both the front and back surfaces of the surface of the silicon nitride substrate 2.
  • the reaction layer 4 is a layer made of active metal nitride formed by a reaction between nitrogen atoms of the silicon nitride substrate 2 and Ti, Zr, or Hf of the surface layer 3.
  • the reaction layer 4 is generated only when the surface layer 3 is formed on the surface of the silicon nitride substrate 2, and only the reaction layer 4 is not formed alone on the surface of the silicon nitride substrate 2.
  • the active metal nitride constituting the reaction layer 4 is a brazing material. For this reason, the reaction layer 4 bonds the silicon nitride substrate 2 and the surface layer 3 firmly.
  • As the active metal nitride constituting the reaction layer 4 for example, a nitride containing at least one element selected from Ti, Zr, and Hf is used.
  • reaction layer 4 and the silicon nitride substrate 2 or the surface layer 3 are adjacent and similar in composition, the distinction of each layer becomes a problem.
  • the reaction layer 4 is a layer having an active metal nitride as a main phase
  • the silicon nitride substrate 2 and the surface layer 3 are layers that do not have an active metal nitride as a main phase. it can.
  • the silicon nitride insulating sheet 1A shown as the second embodiment the same effects as the silicon nitride insulating sheet 1 shown as the first embodiment can be obtained. Further, according to the silicon nitride insulating sheet 1A shown as the second embodiment, the reaction layer 4 firmly bonds the silicon nitride substrate 2 and the surface layer 3, so that the silicon nitride insulation shown as the first embodiment is used. Compared with the sheet 1, the bonding strength between the silicon nitride substrate 2 and the surface layer 3 is further improved.
  • the semiconductor module structure of the first press-contact structure in which the silicon nitride insulating sheet 1A, the pressing member, and the semiconductor module are laminated used as a component of a second pressure contact structure semiconductor module structure in which a body, a pressing member, a silicon nitride insulating sheet 1A, and a semiconductor module are laminated, and the pressure contact structure semiconductor module structure is used for in-vehicle applications, etc. Even when used for applications in a vibration environment, sufficient durability and heat dissipation can be exhibited.
  • FIG. 4 is a front view showing an insulating sheet made of silicon nitride as the third embodiment of the present invention.
  • the silicon nitride insulating sheet 1 ⁇ / b> B shown as the third embodiment includes a sheet-like silicon nitride substrate 2 and surface layers 3 and 3 formed on both front and back surfaces of the silicon nitride substrate 2.
  • the plan view of the silicon nitride insulating sheet 1B shown in FIG. 4 as the third embodiment is the same as the silicon nitride insulating sheet 1 shown in FIG. 1 as the first embodiment. 1 is shown in FIG.
  • the silicon nitride insulating sheet 1B shown as the third embodiment in FIG. 4 is on both the front and back surfaces of the silicon nitride substrate 2 as compared with the silicon nitride insulating sheet 1 shown as the first embodiment in FIGS. The difference is that the surface layers 3 and 3 are provided, and the other points are the same. Therefore, the same reference numerals are used for the same components between the silicon nitride insulating sheet 1B shown as the third embodiment in FIG. 4 and the silicon nitride insulating sheet 1 shown as the first embodiment in FIGS. 1 and 2. The description of the configuration and operation is omitted or simplified.
  • the silicon nitride insulating sheet 1B shown as the third embodiment the same effects as the silicon nitride insulating sheet 1 shown as the first embodiment can be obtained.
  • the surface layer 3 is formed on both the front and back surfaces of the silicon nitride substrate 2, so that it is shown as the first embodiment, and the surface layer 3 is a silicon nitride substrate. Compared with the silicon nitride insulating sheet 1 formed on only one side of the silicon nitride substrate 2, close contact with other members via the surface layer 3 is possible on the front and back both sides of the silicon nitride substrate 2.
  • heat conduction between the silicon nitride insulating sheet 1B and other members such as a pressing member is high on both the front and back surfaces of the silicon nitride substrate 2.
  • the insulating sheet 1B made of silicon nitride is used as a component of the semiconductor module structure of the second press-contact structure in which the pressing member, the insulating sheet 1B made of silicon nitride, and the semiconductor module are laminated in this order. Furthermore, compared with the case where the silicon nitride insulating sheet 1 shown as the first embodiment is used, the heat dissipation characteristics as the semiconductor module structure are further improved.
  • the silicon nitride insulating sheet 1B shown as the third embodiment since the microscopic convex portions of the surface of the silicon nitride substrate 2 are encapsulated by the surface layer 3 on both the front and back surfaces of the silicon nitride substrate 2, Generation of cracks in the silicon nitride substrate 2 due to microscopic convex portions on the surface of the silicon nitride substrate 2 can be suppressed.
  • the insulating sheet 1B made of silicon nitride is used as a component of the semiconductor module structure of the second press-contact structure in which the pressing member, the insulating sheet 1B made of silicon nitride, and the semiconductor module are laminated in this order.
  • the occurrence of cracks in the silicon nitride substrate 2 can be further suppressed as compared with the case where the silicon nitride insulating sheet 1 shown as the first embodiment is used.
  • FIG. 5 is a front view showing an insulating sheet made of silicon nitride as a fourth embodiment of the present invention.
  • the silicon nitride insulating sheet 1 ⁇ / b> C shown as the fourth embodiment includes a sheet-like silicon nitride substrate 2, reaction layers 4, 4 formed on both front and back surfaces of the silicon nitride substrate 2, Surface layers 3 and 3 formed on the surfaces of the reaction layers 4 and 4 are provided.
  • the plan view of the silicon nitride insulating sheet 1C shown as the fourth embodiment in FIG. 5 is the same as the silicon nitride insulating sheet 1 shown as the first embodiment in FIG. 1 is shown in FIG.
  • the silicon nitride insulating sheet 1C shown as the fourth embodiment in FIG. 5 is different from the silicon nitride insulating sheet 1A shown as the second embodiment in FIG. 4 and the surface layer 3, and the other points are the same. For this reason, the same reference numerals are given to the same components between the silicon nitride insulating sheet 1C shown as the fourth embodiment in FIG. 5 and the silicon nitride insulating sheet 1A shown as the second embodiment in FIG. The description of the configuration and operation is omitted or simplified.
  • the reaction layer 4 and the surface layer 3 are formed on both the front and back surfaces of the silicon nitride substrate 2, so that the reaction layer 4 is shown as the second embodiment.
  • the silicon nitride insulating sheet 1A in which the surface layer 3 is formed only on one side of the silicon nitride substrate 2 the close contact between the front and back surfaces of the silicon nitride substrate 2 via the surface layer 3 is achieved. It becomes possible.
  • heat conduction between the silicon nitride insulating sheet 1C and other members such as a pressing member is high on both the front and back surfaces of the silicon nitride substrate 2.
  • the insulating sheet 1C made of silicon nitride is used as a component of the semiconductor module structure of the second press-contact structure in which the pressing member, the insulating sheet 1C made of silicon nitride, and the semiconductor module are laminated in this order.
  • the heat dissipation characteristics as a semiconductor module structure compared to the case where the silicon nitride insulating sheet 1A in which the reaction layer 4 and the surface layer 3 are formed only on one surface of the silicon nitride substrate 2 are used. Will be improved.
  • the silicon nitride insulating sheet 1C shown as the fourth embodiment since the microscopic convex portions of the surface of the silicon nitride substrate 2 are encased in the surface layer 3 on both the front and back surfaces of the silicon nitride substrate 2, Generation of cracks in the silicon nitride substrate 2 due to microscopic convex portions on the surface of the silicon nitride substrate 2 can be suppressed.
  • the insulating sheet 1C made of silicon nitride is used as a component of the semiconductor module structure of the second press-contact structure in which the pressing member, the insulating sheet 1C made of silicon nitride, and the semiconductor module are laminated in this order.
  • the generation of cracks in the silicon nitride substrate 2 is caused as compared with the case where the insulating layer 1A made of silicon nitride in which the reaction layer 4 and the surface layer 3 are formed only on one side of the silicon nitride substrate 2 is used. It can be suppressed more.
  • FIG. 6 is a front view showing an insulating sheet made of silicon nitride as a fifth embodiment of the present invention.
  • the silicon nitride insulating sheet 1 ⁇ / b> D shown as the fifth embodiment includes a sheet-like silicon nitride substrate 2 provided with two insertion holes 12 penetrating the front and back, and the silicon nitride substrate 2. And a surface layer 3 formed on one surface.
  • the silicon nitride insulating sheet 1D shown as the fifth embodiment in FIG. 6 is inserted in place of the silicon nitride substrate 2 as compared with the silicon nitride insulating sheet 1 shown as the first embodiment in FIGS.
  • the difference is that a silicon nitride substrate 2D further provided with holes 12 and 12 is used, and the other points are the same.
  • the same reference numerals are used for the same components between the silicon nitride insulating sheet 1D shown as the fifth embodiment in FIG. 6 and the silicon nitride insulating sheet 1 shown as the first embodiment in FIGS.
  • the description of the configuration and operation is omitted or simplified.
  • the silicon nitride substrate 2D is provided with two insertion holes 12 penetrating the silicon nitride substrate 2D on the front and back sides, one on each short side, on the short side facing the rectangular silicon nitride substrate 2D. is there.
  • the insertion hole 12 only needs to be able to insert or screw a fastening member such as a screw (not shown), and the shape and size are not particularly limited. Further, the position and number of the insertion holes 12 provided in the silicon nitride substrate 2D are not particularly limited.
  • the silicon nitride substrate 2D is the same as the silicon nitride substrate 2 constituting the silicon nitride insulating sheet 1 shown as the first embodiment in FIG. 1 and FIG. 2 except for the insertion hole 12, the other related to the silicon nitride substrate 2D The description of is omitted.
  • the silicon nitride insulating sheet 1D shown as the fifth embodiment the same effects as the silicon nitride insulating sheet 1 shown as the first embodiment can be obtained. Further, the silicon nitride insulating sheet 1D shown as the fifth embodiment is provided with an insertion hole 12 in the silicon nitride substrate 2D. For this reason, other members such as a pressing member are disposed between the silicon nitride insulating sheet 1D, for example, between the heat dissipating member disposed opposite to the silicon nitride insulating sheet 1D and provided with a hole that can be combined.
  • a semiconductor module is arranged, and a tightening member such as a screw inserted or screwed into the insertion hole 12 of the insulating sheet 1D made of silicon nitride is tightened in the hole of the heat dissipation member, thereby showing the first embodiment.
  • a tightening member such as a screw inserted or screwed into the insertion hole 12 of the insulating sheet 1D made of silicon nitride is tightened in the hole of the heat dissipation member, thereby showing the first embodiment.
  • the insulating sheet 1 made of silicon nitride and another member such as a pressing member are more strongly and surely pressed.
  • the silicon nitride insulating sheet 1D shown as the fifth embodiment compared to the silicon nitride insulating sheet 1 shown as the first embodiment, the surface layer of the silicon nitride insulating sheet 1D and other members. A stronger and more reliable contact through 3 is possible.
  • the silicon nitride insulating sheet 1D shown as the fifth embodiment the silicon nitride insulating sheet 1D and other members such as a pressing member can be brought into close and strong contact with each other. Compared to the case where the silicon nitride insulating sheet 1 shown as the embodiment is used, it is possible to further increase the heat conduction between the silicon nitride insulating sheet 1D and another member such as a pressing member.
  • silicon nitride insulating sheets shown in the first to fifth embodiments a sheet-like silicon nitride substrate having ⁇ -silicon nitride crystal particles as the main phase was used as the silicon nitride substrate.
  • the silicon nitride insulating sheet of the present invention uses a sheet-like silicon nitride substrate instead of the silicon nitride substrate having ⁇ -silicon nitride crystal particles as the main phase, and the silicon nitride substrate has a Vickers hardness of 200 or less.
  • the structure of the insulating sheet made from silicon nitride provided with these surface layers can also be taken. According to this silicon nitride insulating sheet, the degree of freedom of composition of the silicon nitride substrate is increased.
  • the insulating sheet made of silicon nitride of the present invention has a plate-like pressing member disposed on the surface layer side of the insulating sheet and a semiconductor module disposed on the back side of the pressing member. It is preferable that the pressing member is pressed against the semiconductor module while being in close contact with the member.
  • the semiconductor module structure of the present invention uses the silicon nitride insulating sheet of the present invention.
  • the semiconductor module structure of the present invention includes a silicon nitride insulating sheet and a plate-like pressing member disposed facing the surface layer of the silicon nitride insulating sheet, and the silicon nitride insulating sheet And the pressing member are pressed against each other through the surface layer of the silicon nitride insulating sheet.
  • Embodiments of the semiconductor module structure are shown below.
  • FIG. 7 is a front view showing a semiconductor module structure as a sixth embodiment of the present invention.
  • the semiconductor module structure 20 shown as the sixth embodiment has a silicon nitride insulating sheet 1D provided with insertion holes 12 and 12, and a surface layer 3 of the silicon nitride insulating sheet 1D.
  • the plate-shaped pressing member 8 disposed in this manner, the semiconductor module 7 disposed on the surface of the pressing member 8 opposite to the silicon nitride insulating sheet 1, and the pressing member 8 among the surfaces of the semiconductor module 7.
  • a heat radiating member 11 that dissipates heat generated in the semiconductor module 7 and a fastening member 14 that tightens between the insulating sheet 1D made of silicon nitride and the heat radiating member 11.
  • a plate-shaped insulating spacer 9 is interposed between one surface of the semiconductor module 7 and the pressing member 8.
  • a plate-like insulating spacer 10 is interposed between the other surface of the semiconductor module 7 and the heat radiating member 11.
  • the semiconductor module 7 is sandwiched between an insulating spacer 9 and an insulating spacer 10. Further, the insulating spacer 9, the semiconductor module 7, and the insulating spacer 10 are sandwiched between the pressing member 8 disposed facing the insulating spacer 9 and the heat radiation member 11 disposed facing the insulating spacer 10. Is done.
  • the silicon nitride insulating sheet 1 ⁇ / b> D and the heat dissipation member 11 are fastened using a fastening member 14.
  • the insulating member 1 ⁇ / b> D made of silicon nitride and the heat radiating member 11 are tightened using the fastening member 14, whereby the pressing member 8 disposed between the insulating sheet 1 ⁇ / b> D made of silicon nitride and the heat radiating member 11.
  • the insulating spacer 9, the semiconductor module 7, and the insulating spacer 10 are pressed against each other.
  • the silicon nitride insulating sheet 1D is the same as the silicon nitride insulating sheet shown as the fifth embodiment in FIG.
  • the silicon nitride substrate 2D of the insulating sheet 1D made of silicon nitride is provided with insertion holes 12 and 12 through which the fastening member 14 can be inserted.
  • the pressing member 8 is a plate-like member that contacts the surface layer 3 of the insulating sheet 1D made of silicon nitride.
  • a metal plate such as a copper plate is used.
  • the pressing member 8 is interposed between the insulating sheet 1D made of silicon nitride and another member such as the insulating spacer 9. The pressing member 8 is pressed into contact with the semiconductor module 7 via the insulating spacer 9 when the insulating sheet 1D made of silicon nitride and the heat radiating member 11 are tightened using the tightening member 14.
  • the semiconductor module 7 is a single semiconductor element or an aggregate including semiconductor elements.
  • Insulating spacers 9 and 10 are arranged in the vertical direction of the semiconductor module 7.
  • a plate-like insulator such as a ceramic substrate is used.
  • the silicon nitride insulating sheet 1 ⁇ / b> D and the heat radiating member 11 are tightened using the tightening member 14, whereby the semiconductor module 7 disposed between the silicon nitride insulating sheet 1 ⁇ / b> D and the heat radiating member 11. Is sandwiched and pressed between the insulating spacer 9 and the insulating spacer 10.
  • the heat radiating member 11 is a member that radiates heat generated in the semiconductor module 7.
  • a hole 16 is provided above the heat dissipating member 11 in the drawing so that the tip of a screw 14 as a fastening member can be fitted together.
  • a heat radiating fin is used as the heat radiating member 11, for example.
  • the fastening member 14 fastens the silicon nitride insulating sheet 1 ⁇ / b> D and the heat radiating member 11.
  • a screw is used as the fastening member 14.
  • the body of the screw 14 as a fastening member is inserted into the insertion hole 12 of the insulating sheet 1 ⁇ / b> D made of silicon nitride, and the tip of the screw 14 is combined with the hole 16 of the heat dissipation member 11.
  • the insulating sheet 1D made of silicon nitride and the heat dissipating member 11 are tightened.
  • a washer 15 is interposed between the head of the screw 14 and the silicon nitride insulating sheet 1D.
  • the pressing member 8 the insulating spacer 9, the semiconductor module 7, and the insulating spacer 10 disposed between the insulating sheet 1D made of silicon nitride and the heat radiating member 11 are pressed. .
  • the insulating member 1 ⁇ / b> D made of silicon nitride and the heat radiating member 11 are tightened using the fastening member 14, whereby the pressing member 8 disposed between the insulating sheet 1 ⁇ / b> D made of silicon nitride and the heat radiating member 11.
  • the insulating spacer 9, the semiconductor module 7, and the insulating spacer 10 are pressed against each other.
  • the surface layer 3 of the insulating sheet 1D made of silicon nitride and the surface of the pressing member 8 are strongly pressed against each other.
  • the flexible surface layer 3 of the silicon nitride insulating sheet 1D encloses microscopic irregularities of ⁇ -Si 3 N 4 crystal particles present on the surface of the silicon nitride substrate 2D of the silicon nitride insulating sheet 1D. Therefore, the close contact between the insulating sheet 1D made of silicon nitride and the pressing member 8 through the surface layer 3 becomes possible.
  • the silicon nitride insulating sheet 1D, the pressing member 8, the insulating spacer 9, and the semiconductor module 7 are insulated by tightening the silicon nitride insulating sheet 1D and the heat dissipation member 11. Since the conductive spacer 10 and the heat dissipation member 11 are in pressure contact, the silicon nitride insulating sheet 1 ⁇ / b> D and the pressing member 8 are in close contact with each other via the surface layer 3.
  • the silicon nitride insulating sheet 1D and the silicon nitride insulating sheet 1D while maintaining high insulation by the silicon nitride substrate 2D having ⁇ -silicon nitride crystal particles as the main phase,
  • the heat conduction among the pressing member 8, the insulating spacer 9, the semiconductor module 7, the insulating spacer 10, and the heat radiating member 11 is increased, and the heat dissipation characteristics are improved.
  • the microscopic projections on the surface of the silicon nitride substrate 2D are encased in the surface layer 3, the microscopic surface of the silicon nitride substrate 2D It is possible to suppress the occurrence of cracks in the silicon nitride substrate 2D due to the convex portions.
  • the silicon nitride insulating sheet 1D in which the surface layer 3 is provided only on one surface of the silicon nitride substrate 2D is used as the silicon nitride insulating sheet.
  • a semiconductor module structure was shown.
  • the semiconductor module structure of the present invention may be a semiconductor module structure using a silicon nitride insulating sheet provided with surface layers 3 and 3 on both front and back surfaces of a silicon nitride substrate as a silicon nitride insulating sheet. .
  • a silicon nitride insulating sheet provided with surface layers on both front and back surfaces, a plate-like pressing member disposed facing the surface layer on one surface of the silicon nitride insulating sheet, and silicon nitride
  • a semiconductor module disposed to face the surface layer on the other surface of the insulating sheet, and the silicon nitride insulating sheet and the pressing member are pressed against each other via the surface layer on one surface of the silicon nitride insulating sheet
  • a semiconductor module structure in which the silicon nitride insulating sheet and the semiconductor module are press-contacted via the surface layer on the other surface of the silicon nitride insulating sheet can be obtained.
  • An embodiment of a semiconductor module structure using a silicon nitride insulating sheet in which surface layers are provided on both front and back surfaces of a silicon nitride substrate will be described below as a seventh embodiment.
  • FIG. 8 is a front view showing a semiconductor module structure as a seventh embodiment of the present invention.
  • the semiconductor module structure 30 shown as the seventh embodiment includes one of a silicon nitride insulating sheet 1B provided with surface layers 3 and 3 on both front and back surfaces and a silicon nitride insulating sheet 1B.
  • a plate-shaped insulating spacer 9 is interposed between one surface of the semiconductor module 7 and the pressing member 8A.
  • a plate-like insulating spacer 10 is interposed between the other surface of the semiconductor module 7 and the heat radiating member 11.
  • the semiconductor module 7 is sandwiched between an insulating spacer 9 and an insulating spacer 10.
  • the insulating spacer 9, the semiconductor module 7, and the insulating spacer 10 include a silicon nitride insulating sheet 1 ⁇ / b> B disposed facing the insulating spacer 9 and a heat dissipation member 11 disposed facing the insulating spacer 10. It is pinched by.
  • the pressing member 8 ⁇ / b> A and the heat radiating member 11 are fastened using the fastening member 14.
  • the pressing member 8 ⁇ / b> A and the heat radiating member 11 are tightened using the tightening member 14, thereby insulating the silicon nitride insulating sheet 1 ⁇ / b> B disposed between the pressing member 8 ⁇ / b> A and the heat radiating member 11.
  • the spacer 9, the semiconductor module 7, and the insulating spacer 10 are pressed against each other.
  • the semiconductor module structure 30 shown as the seventh embodiment in FIG. 8 has insertion holes 12 instead of the silicon nitride insulating sheet 1D, as compared with the semiconductor module structure 20 shown as the sixth embodiment in FIG.
  • the difference is that the provided pressing member 8A is used, and the insulating sheet 1B made of silicon nitride provided with the surface layer 3 on both the front and back sides is used instead of the pressing member 8, and the other points are the same.
  • ⁇ Presser member> 8 A of pressing members are plate-shaped members which contact one surface layer 3 among the surface layers 3 and 3 provided in the front and back both surfaces of the insulating sheet 1B made of silicon nitride.
  • a metal plate such as a copper plate is used in the same manner as the pressing member 8.
  • the holding member 8A is provided with insertion holes 13 and 13 through which the fastening member 14 can be inserted.
  • the insertion hole 13 is not particularly limited as long as the fastening member 14 such as a screw can be inserted or screwed in, and the shape and size thereof are not particularly limited. Further, the insertion hole 13 is not particularly limited with respect to the position and number of the pressing member 8A.
  • the pressing member 8A presses other members such as the insulating spacer 9 through the insulating sheet 1B made of silicon nitride when the pressing member 8A and the heat radiating member 11 are tightened using the tightening member 14.
  • the silicon nitride insulating sheet 1B is the same as the silicon nitride insulating sheet shown as the third embodiment in FIG.
  • Surface layers 3 and 3 are provided on both the front and back surfaces of the silicon nitride substrate 2 of the silicon nitride insulating sheet 1B.
  • the silicon nitride insulating sheet 1 ⁇ / b> B is interposed between the pressing member 8 ⁇ / b> A and another member such as the insulating spacer 9.
  • the insulating sheet 1B made of silicon nitride is brought into pressure contact with the semiconductor module 7 via the insulating spacer 9 when the pressing member 8A and the heat radiating member 11 are tightened using the tightening member 14.
  • the fastening member 14 fastens the pressing member 8 ⁇ / b> A and the heat radiating member 11.
  • a screw is used as the fastening member 14.
  • the body portion of the screw 14 as a fastening member is inserted into the washer 15 and the insertion hole 13 of the pressing member 8 ⁇ / b> A, and the tip portion of the screw 14 is aligned with the hole portion 16 of the heat dissipation member 11.
  • the insulating sheet 1B made of silicon nitride and the heat radiating member 11 are fastened.
  • a washer 15 is interposed between the head of the screw 14 and the pressing member 8A.
  • the silicon nitride insulating sheet 1 ⁇ / b> B, the insulating spacer 9, the semiconductor module 7, and the insulating spacer 10 disposed between the pressing member 8 ⁇ / b> A and the heat radiating member 11 are pressed against each other.
  • the pressing member 8 ⁇ / b> A and the heat radiating member 11 are tightened using the tightening member 14, thereby insulating the silicon nitride insulating sheet 1 ⁇ / b> B disposed between the pressing member 8 ⁇ / b> A and the heat radiating member 11.
  • the spacer 9, the semiconductor module 7, and the insulating spacer 10 are pressed against each other.
  • the flexible surface layer 3 of the silicon nitride insulating sheet 1B envelops microscopic irregularities of ⁇ -Si 3 N 4 crystal particles present on the surface of the silicon nitride substrate 2 of the silicon nitride insulating sheet 1B. Therefore, the close contact between the silicon nitride insulating sheet 1B and the pressing member 8A via the surface layer 3 and the close contact via the surface layer 3 between the silicon nitride insulating sheet 1B and the insulating spacer 9 are possible.
  • the pressing member 8A, the silicon nitride insulating sheet 1B, the insulating spacer 9, the semiconductor module 7, and the insulating spacer 10 are tightened by the pressing member 8A and the heat dissipation member 11. And the heat radiating member 11 are pressed against each other, so that one surface of the silicon nitride insulating sheet 1B and the pressing member 8A are in close contact with each other via the surface layer 3, and the other surface of the silicon nitride insulating sheet 1B The insulating spacer 9 is in close contact with the surface layer 3.
  • the silicon nitride substrate 2 of the silicon nitride insulating sheet 1B and the pressing member 8A are brought into close contact with the insulating sheet 1B made of silicon nitride and the pressing member 8A, and between the insulating sheet 1B made of silicon nitride and the insulating spacer 9. And between the silicon nitride insulating sheet 1 ⁇ / b> B and the insulating spacer 9, a minute gap that becomes a thermal resistor is not formed.
  • the holding member 8A and the silicon nitride made of silicon nitride are maintained while maintaining high insulation by the silicon nitride substrate 2 whose main phase is ⁇ -silicon nitride crystal particles.
  • the heat conduction between the insulating sheet 1B, the insulating spacer 9, the semiconductor module 7, the insulating spacer 10, and the heat radiating member 11 is increased, and the heat dissipation characteristics are improved.
  • FIG. 7 shows the sixth embodiment.
  • the semiconductor module structure 20 it is possible to suppress the occurrence of cracks in the silicon nitride substrate 2 due to microscopic projections on the surface of the silicon nitride substrate 2.
  • a member capable of press-contacting the silicon nitride insulating sheet and the pressing member may be used as a fastening member other than the screw.
  • a fastening member a heat dissipation member 11 and a silicon nitride insulating sheet, or a clamp that sandwiches the heat dissipation member 11 and the pressing member can be used.
  • a clamp it is not necessary to provide an insertion hole in a silicon nitride insulating sheet or a pressing member.
  • the insulating sheet made of silicon nitride of the present invention can be used as appropriate by appropriately selecting a fastening member or selecting a pressure contact structure.
  • the semiconductor module structure 20 shown as the sixth embodiment in FIG. 7 and the semiconductor module structure 30 shown as the seventh embodiment in FIG. 8 instead of the silicon nitride insulating sheet 1D or 1B, the first The insulating sheet made of silicon nitride shown in the embodiments to the fifth embodiment can be used.
  • a member capable of radiating heat generated from the semiconductor module may be used as the heat radiating member other than the heat radiating fins.
  • a heat radiating sheet or the like can be used as the heat radiating member.
  • the semiconductor module structure 20 shown as the sixth embodiment in FIG. 7 and the semiconductor module structure 30 shown as the seventh embodiment in FIG. 8 are examples of the semiconductor module structure of the present invention.
  • the semiconductor module structure of the present invention includes all of the structures in which a semiconductor module is used and the insulating sheet made of silicon nitride provided with a surface layer can be pressed against the pressing member.
  • Example 1 Thermal conductivity 90W / m ⁇ K, 3-point bending strength 720MPa, fracture toughness 6.6MPa ⁇ m 1/2 , leakage current (temperature 25 ° C, humidity 70%, 1.5KV-100Hz AC voltage applied)
  • a rectangular silicon nitride substrate of 100 nA, 50 mm long ⁇ 30 mm wide ⁇ 0.32 mm thick was prepared.
  • the substrate, Si 3 together with N 4 all crystal grains are beta-Si 3 N 4 crystal grains, which the beta-Si 3 N 4 crystal grains and the main phase, beta-Si 3 N 4 crystal grains
  • the aspect ratio was 2 to 10, and the average particle diameter of ⁇ -Si 3 N 4 crystal grains was 3.5 ⁇ m.
  • the silicon nitride substrate was subjected to honing processing to make the surface roughness Ra of the substrate surface 0.9 ⁇ m. This silicon nitride substrate was used in Examples 1 to 9 and Comparative Example 1.
  • the surface layer 3 prepared under the conditions of Examples 1 to 9 shown in Table 1 was provided on both the front and back surfaces of the silicon nitride substrate 2E.
  • the surface layer 3 was provided so that the shape, thickness, distance W, and the like were the same on both the front and back surfaces.
  • two screw holes 12 each having a diameter of 0.7 mm penetrating the silicon nitride substrate 2E in the front and back directions are provided in the vicinity of the two short sides of the silicon nitride substrate 2E.
  • an insulating sheet 1E made of silicon nitride was produced (Examples 1 to 9).
  • a silicon nitride insulating sheet made of the silicon nitride substrate 2E provided with the screw holes 12 without providing the surface layer 3 was prepared as Comparative Example 1.
  • Semiconductor module structures 30E were produced using the silicon nitride insulating sheets of Examples 1 to 9 (Examples 1 to 9).
  • the semiconductor module structure 30E is obtained by using a silicon nitride insulating sheet 1E in place of the silicon nitride insulating sheet 1B in the semiconductor module structure 30 shown in FIG.
  • a semiconductor module structure 30E is shown in FIG.
  • the screwing torque between the copper plate 8A as the pressing member and the radiating fin 11 as the radiating member is set to 25 kN.
  • Example 1 the semiconductor module structure like Example 1 except having used the silicon nitride insulating sheet of the comparative example 1 (comparative example 1).
  • the semiconductor module structures of Examples 1 to 9 and Comparative Example 1 were confirmed for heat dissipation and durability.
  • the thermal resistance value of each sample was measured, and then the thermal resistance value of each sample was shown as a relative ratio when the thermal resistance value of Comparative Example 1 without a surface layer was set to 100. If it is less than 100, it indicates that the thermal resistance is small.
  • the durability was measured as follows. First, the semiconductor module structure was fixed to a vibration testing machine, and a vibration operation for reciprocating 500 times in one minute in a 50 cm section in the pressure contact direction of the semiconductor module structure, that is, the axial direction of the screw 14, was continuously added for 100 hours. Next, the surface of the silicon nitride substrate 2E of the silicon nitride insulating sheet 1E after the vibration operation is observed, and cracks are generated along the peripheral edge 32 of the surface layer 3 in the surface of the silicon nitride substrate 2E. It was confirmed visually. The results are shown in Table 2.
  • Examples 10 to 14 Comparative Examples 2 to 6
  • silicon nitride insulating sheets were produced in the same manner as in Example 1 except that shot blasting was performed (Examples 10 to 14).
  • Examples in which shot blasting was performed were Examples 11, 13, and 14.
  • honing was performed in the same manner as in Example 1.
  • semiconductor module structures were produced using the silicon nitride insulating sheets of Examples 10 to 14 (Examples 10 to 14).
  • the semiconductor module structures of Examples 10 to 14 have the same configuration as the semiconductor module structure 30E of Examples 1 to 9 shown in FIG.
  • Example 10 silicon nitride insulating sheets having no surface layer were produced, and these were designated as Comparative Examples 2 to 6.
  • semiconductor module structures were produced using the silicon nitride insulating sheets of Comparative Examples 2 to 6 (Comparative Examples 2 to 6).
  • heat dissipation and durability were confirmed in the same manner as in Example 1.
  • Example 10 and Comparative Example 2 Example 11 and Comparative Example 3, Example 12 and Comparative Example 4, Example 13 and Comparative Example 5
  • Example 14 and Comparative Example 6 the thermal resistance value of each Example when the thermal resistance value of each Comparative Example is 100 is shown as a relative ratio.
  • Table 4 The results are shown in Table 4.
  • Examples 15 to 18 A silicon nitride insulating sheet as shown in FIG. 9 and FIG. 10 except that a surface layer was prepared using a silicone resin paste made of a silicone resin containing AlN powder shown in Table 5. E was made (Examples 15 and 16). The surface layer is obtained by applying a silicone resin paste containing AlN powder to the surface of the silicon nitride substrate 2E of Example 1 and drying it.
  • an insulating sheet E made of silicon nitride as shown in FIGS. 9 and 10 was produced in the same manner as in Example 9 except that the surface layer was produced using the epoxy resin containing Al powder shown in Table 5. (Examples 17 and 18).
  • the surface layer is obtained by applying an epoxy resin paste containing Al powder to the surface of the silicon nitride substrate 2E of Example 1 and drying it.
  • a semiconductor module structure 30E shown in FIG. 8 was produced using the silicon nitride insulating sheets E of Examples 15 to 18 (Examples 15 to 18).
  • the heat dissipation and durability were confirmed in the same manner as in Example 1. The results are shown in Table 5.
  • the silicon nitride insulating sheet having a surface layer obtained by containing metal powder or ceramic powder in the resin is improved in heat dissipation. Moreover, it turns out that durability is not reduced by making the size of the powder to contain into 1/2 or less of the thickness of a resin layer, and also 1/5 or less.

Abstract

 β-窒化珪素結晶粒子を主相とするシート状の窒化珪素基板と、この窒化珪素基板の表面の片面または表裏両面に形成され、In、Sn、Al、Ag、Au、Cu、Ni、Pb、Pd、Sr、Ce、Fe、Nb、Ta、VおよびTiより選ばれる元素を少なくとも1種含む金属、または樹脂からなる表面層と、を備える窒化珪素製絶縁シート。この窒化珪素製絶縁シートを用いた半導体モジュール構造体。

Description

窒化珪素製絶縁シートおよびそれを用いた半導体モジュール構造体
 本発明の実施形態は、窒化珪素製絶縁シートおよびそれを用いた半導体モジュール構造体に関する。
 従来、パワーエレクトロニクスの実装分野では、絶縁・電極機能をもたせたセラミックス金属回路基板が用いられている。セラミックス金属回路基板は、たとえば、半導体モジュールと放熱フィン等の放熱部材とを含む半導体モジュール構造体において、絶縁・電極機能を有する半導体モジュールの基板として用いられる。また、半導体モジュール構造体には、近年の半導体モジュールのハイパワー化に伴って高い放熱性が要求されるようになってきている。
 このような絶縁・電極分野では、従来、セラミックス基板としてアルミナ(Al)や窒化アルミニウム(AlN)を主成分とする基板が用いられてきた。
 しかし、アルミナ基板は熱伝導率が18W/m・K程度と低いため放熱性が不十分である。また、AlN基板は、熱伝導率は200W/m・K程度と高いものの強度が低いことから耐熱サイクル特性は不十分である。
 ここで、耐熱サイクル特性とは、セラミックス基板の表面に金属回路を形成してセラミックス金属回路基板のサンプルを作製し、このサンプルに所定のヒートサイクル試験を行った場合において、サンプルのセラミックス基板部分のうち金属回路の周縁形状に沿って生じるクラックの発生し難さを意味する。
 このように従来のアルミナ基板やAlN基板は熱伝導率と強度の両方の特性を満足することが困難である。このため、熱伝導率と強度の両方の特性を満足するセラミックス材料として、高熱伝導性窒化珪素基板が開発されてきている。
 例えば、特開2009-120483号公報(特許文献1)には、粒界相中の気孔径を制御することによりリーク電流を低減した高熱伝導性窒化珪素製金属回路基板が記載されている。
 特許文献1に記載された窒化珪素製金属回路基板は、高熱伝導性窒化珪素基板にAg-Cu-Ti系の活性金属ろう材を介して銅回路板を接合して作製されたものである。一般的に、高熱伝導性窒化珪素基板は、窒化珪素を主成分としていることから、3点曲げ強度が200MPa以上と高強度である。このため、高熱伝導性窒化珪素基板と銅板等の金属回路板とを接合して作製した窒化珪素製金属回路基板は、耐熱サイクル特性が良好である。
 また、特開2003-192462号公報(特許文献2)には、得られた高熱伝導性窒化珪素製金属回路基板が3000サイクルの耐熱サイクル試験(TCT試験)に耐えられることが開示されている。
 しかし、特許文献1や2のような高熱伝導性窒化珪素製金属回路基板を製造するには、製造コストが多くかかる高熱伝導性窒化珪素基板と金属回路板との接合工程が必要である。このため、高熱伝導性窒化珪素製金属回路基板は製造コストが高い。
 そこで、製造コストを低減しつつ半導体モジュール構造体の絶縁性を確保することを目的として、高熱伝導性窒化珪素基板を、金属回路板と接合しない、すなわち高熱伝導性窒化珪素製金属回路基板を作製しない方法で用いることが検討されている。
 たとえば、特開2003-197836号公報(特許文献3)には、高熱伝導性窒化珪素基板を、圧接構造の半導体モジュール構造体用スペーサとして用いることが提案されている。特許文献3の高熱伝導性窒化珪素基板は、強度や破壊靭性が高いことからねじ止め等の圧接構造用スペーサとして十分耐えられることが確認されている。
 なお、高熱伝導性窒化珪素基板としては、一般的に、β-窒化珪素(Si)結晶を主相とする窒化珪素焼結体が用いられる。また、このβ-Si結晶としては、通常、アスペクト比が2以上である縦長形状の結晶粒子が用いられる。ここで、アスペクト比とは、結晶粒子の長軸方向の長さを結晶粒子の短軸方向の長さで除した値である。
 β-Siを主相とする高熱伝導性窒化珪素基板は、微視的な構造が、たとえば、平均粒径2~10μm程度の縦長形状のβ-Si粒子がランダムな方向を向いたまま複雑に絡み合った構造になっている。β-Siを主相とする高熱伝導性窒化珪素基板は、このような構造を有することにより、強度や破壊靭性が高くなっている。
 β-Siを主相とする高熱伝導性窒化珪素基板の表面を微視的に観察すると、窒化珪素基板表面に凹凸が存在する。この凹凸は、複雑に絡み合った多数のβ-Si粒子の先端の一部が基板の表面から突出すること等により生じたものである。
 なお、この凹凸は、表面粗さRaに0.05μm以下の鏡面研磨を施しても解消することは難しい。また、鏡面研磨は高熱伝導性窒化珪素基板の製造コストアップの要因にもなるため好ましくない。
 このように表面に微視的な凹凸がある高熱伝導性窒化珪素基板は、微視的な凹凸、特に凸部に圧接応力をかけて長時間使用する場合に、凸部を起点として窒化珪素基板にクラックが発生しやすいという問題がある。
 また、表面に微視的な凹凸がある高熱伝導性窒化珪素基板は、表面を押さえ部材等の他部材と接触させて圧接構造の半導体モジュール構造体等のモジュール構造体を形成した場合に、高熱伝導性窒化珪素基板の表面と他部材との間に微視的な隙間が生じる。なお、押さえ部材は一般的に金属等の硬い材質で構成されているため、押さえ部材側の表面形状を高熱伝導性窒化珪素基板の表面の凹凸に合わせて変形させることによって、上記微視的な隙間を埋めることは困難である。このため、上記圧接構造のモジュール構造体において、高熱伝導性窒化珪素基板の表面と押さえ部材との間に隙間が形成されると、その隙間が熱伝導の阻害要因となり、モジュール構造体としての放熱特性が低下する。
特開2009-120483号公報 特開2003-192462号公報 特開2003-197836号公報
 従来のβ-Siを主相とする高熱伝導性窒化珪素基板を用いて圧接構造のモジュール構造体を形成すると、高熱伝導性窒化珪素基板表面の微視的な凹凸により、高熱伝導性窒化珪素基板と押さえ部材等の他部材との間に隙間が生じて、モジュール構造体としての放熱性が悪くなるという問題があった。
 また、従来のβ-Siを主相とする高熱伝導性窒化珪素基板を用いて圧接構造のモジュール構造体を形成すると、高熱伝導性窒化珪素基板表面の微視的な凸部により、モジュール構造体を作製するための圧接時に窒化珪素基板にクラックが発生しやすいという問題があった。
 なお、クラックの発生を回避するための方法としては、高熱伝導性窒化珪素基板の厚さを厚くすることも考えられる。しかし、高熱伝導性窒化珪素基板を厚くすると、高熱伝導性窒化珪素基板が熱抵抗体になり、モジュール構造体としての放熱性が悪くなるという問題がある。
 本発明は、β-窒化珪素結晶粒子を主相とするシート状の高熱伝導性窒化珪素基板の表面に特定材質の表面層を形成した窒化珪素製絶縁シートによれば、高熱伝導性窒化珪素基板をスペーサ等として用い押さえ部材と接触させて圧接構造のモジュール構造体を形成したときに、高熱伝導性窒化珪素基板と押さえ部材との間に隙間が生じにくいとともに、高熱伝導性窒化珪素基板にクラックが発生にくいことを見出してなされたものである。
 すなわち、本発明の実施形態の窒化珪素製絶縁シートは、上記問題を解決するためのものであり、β-窒化珪素結晶粒子を主相とするシート状の窒化珪素基板と、この窒化珪素基板の表面に形成され、In、Sn、Al、Ag、Au、Cu、Ni、Pb、Pd、Sr、Ce、Fe、Nb、Ta、VおよびTiより選ばれる元素を少なくとも1種含む金属、または樹脂からなる表面層と、を備えることを特徴とする。
 また、本発明の実施形態の半導体モジュール構造体は、上記問題を解決するためのものであり、前記窒化珪素製絶縁シートを用いたことを特徴とする。
本発明の第1実施形態としての窒化珪素製絶縁シートを示す平面図。 図1に示す窒化珪素製絶縁シートの正面図。 本発明の第2実施形態としての窒化珪素製絶縁シートを示す正面図。 本発明の第3実施形態としての窒化珪素製絶縁シートを示す正面図。 本発明の第4実施形態としての窒化珪素製絶縁シートを示す正面図。 本発明の第5実施形態としての窒化珪素製絶縁シートを示す平面図。 本発明の第6実施形態としての半導体モジュール構造体を示す図。 本発明の第7実施形態としての半導体モジュール構造体を示す図。 実施例1~9に係る窒化珪素製絶縁シートを示す平面図。 図9に示す窒化珪素製絶縁シートの正面図。
[窒化珪素製絶縁シート]
(第1の実施形態)
 図1は、本発明の第1実施形態としての窒化珪素製絶縁シートを示す平面図である。図2は、図1に示す窒化珪素製絶縁シートの正面図である。
 図1および2に示すように、第1実施形態として示した窒化珪素製絶縁シート1は、シート状の窒化珪素基板2と、この窒化珪素基板2の片方の表面に形成される表面層3とを備える。
 表面層3は、窒化珪素基板2の片方の表面21のうち、窒化珪素基板2の周辺端部22の近傍の表面23が露出するように窒化珪素基板2の片方の表面21の一部に形成される。
<窒化珪素基板>
 窒化珪素基板2は、β-窒化珪素結晶粒子を主相とするシート状の窒化珪素基板である。
 ここで、主相とは窒化珪素基板2中でモル比率が最も大きい相を意味する。
 窒化珪素基板は、モル比率で大部分を占める窒化珪素(Si)結晶粒子と、モル比率で残部を占め、窒化珪素結晶粒子間の粒界に存在して隣接する窒化珪素結晶粒子同士を固着するとともに粒界を埋める粒界相とからなる。
 なお、一般的に、窒化珪素結晶粒子には、α-窒化珪素結晶粒子とβ-窒化珪素結晶粒子とがある。本実施形態の窒化珪素基板では、窒化珪素結晶粒子におけるモル比率の存在割合で、β-窒化珪素結晶粒子の存在割合がα-窒化珪素結晶粒子の存在割合よりも多くなっている。
 本実施形態の窒化珪素基板では、窒化珪素結晶粒子のほうが粒界相よりもモル比率が大きく、また窒化珪素結晶粒子の中ではβ-窒化珪素結晶粒子のほうがα-窒化珪素結晶粒子よりもモル比率が大きい。このため、本実施形態で用いられる窒化珪素基板は、β-窒化珪素結晶粒子が主相になっている。
 なお、本実施形態の窒化珪素基板には、α-窒化珪素結晶粒子が含まれている必要性は特にない。このため、窒化珪素基板を構成する窒化珪素結晶粒子の全部がβ-窒化珪素結晶粒子になっていてもよい。
 粒界相は、希土類元素を含む酸化物からなる。希土類元素を含む酸化物としては、たとえば、イットリウムを用いた場合、Y・5Al(YAG),Y・Al(YAL)2Y・Al(YAM)、Y等が挙げられる。
 窒化珪素基板は、窒化珪素結晶粒子の平均粒径が通常2~10μmである。平均粒径が2~10μmであると、窒化珪素基板のリーク電流、熱伝導率、3点曲げ強度、および破壊靭性等の特性が良好になる。
 なお、窒化珪素結晶粒子の平均粒径とは、窒化珪素基板に含まれる全ての種類の窒化珪素結晶粒子の平均粒径を意味する。具体的には、窒化珪素基板が窒化珪素結晶粒子としてβ-窒化珪素結晶粒子のみを含むときはβ-窒化珪素結晶粒子の平均粒径を意味し、窒化珪素基板が窒化珪素結晶粒子としてα-窒化珪素結晶粒子とβ-窒化珪素結晶粒子とを含むときはα-窒化珪素結晶粒子とβ-窒化珪素結晶粒子とを合計して算出した平均粒径を意味する。
 窒化珪素結晶粒子の平均粒径は、たとえば、窒化珪素基板の破断面で観察される窒化珪素結晶粒子の平均粒径を意味する。具体的には、平均粒径は、個々の粒径を(長軸径+短軸径)÷2の式で求めた後、200個の粒子の粒径の平均値を平均粒径としたものである。長軸径および短軸径の測定には破断面の拡大写真を用いることが好ましい。また、断面凹凸により破断面のコントラストが悪い場合は、破断面を研磨し、この研磨した破断面の拡大写真を用いて長軸径および短軸径の測定することが好ましい。
 窒化珪素結晶粒子の平均粒径は、具体的には、窒化珪素基板の破断面をSEM(走査型電子顕微鏡)で拡大写真を撮り、破断面における所定の測定範囲内に存在する窒化珪素結晶粒子の大きさを測定する等により求められる。
 窒化珪素基板は、β-窒化珪素結晶粒子のアスペクト比が通常2以上である。アスペクト比が2以上であると、窒化珪素基板のリーク電流、熱伝導率、3点曲げ強度、および破壊靭性等の特性が良好になる。
 また、β-窒化珪素結晶粒子のアスペクト比の上限は特に限定されないが、通常10以下、好ましくは5以下である。
 ここで、アスペクト比とは、β-窒化珪素結晶粒子の長径/短径比である。アスペクト比は、たとえば、窒化珪素基板の任意の断面で観察される粒子の画像を画像処理することにより算出することができる。
 窒化珪素基板は、厚さが、通常0.8mm以下、好ましくは0.6mm以下である。窒化珪素基板が0.8mmを超えると、窒化珪素基板自体が熱抵抗体となるおそれがあるとともに、半導体モジュールが大型化して省スペース性が低下しやすい。
 窒化珪素基板は、厚さが、通常0.2mm以上、好ましくは0.3mm以上である。窒化珪素基板が0.2mm未満であると、窒化珪素基板の強度が低くなるおそれがある。
 窒化珪素基板は、表面粗さRaが、通常0.2~1.5μm、好ましくは0.2~1.0μmである。表面粗さRaが0.2~1.5μmの範囲内にあると、窒化珪素基板の表面の凹凸のために、窒化珪素基板と押さえ部材との間に隙間が生じたり、窒化珪素基板にクラックが発生したりすることを抑制することができる。
 窒化珪素基板の表面粗さRaを0.2~1.5μmにする方法としては、たとえば、窒化珪素基板の焼結上がり面をそのまま用いたり、窒化珪素基板の焼結上がり面に対してホーニング加工やショットブラスト加工をしたりする方法が挙げられる。このように、Ra0.2~1.5μmの窒化珪素基板は、焼結上がり面そのまま用いたり、ホーニング加工やショットブラスト加工をしたりすることにより得られるため、鏡面研磨加工等の研磨を行わずに作製することが可能である。
 なお、窒化珪素基板は、窒化珪素基板表面の微視的な凹凸の影響を緩和するために、たとえば、ダイヤモンド砥石を用いて窒化珪素基板表面に表面粗さRa0.05μm以下の鏡面研磨加工をしてもよい。
 しかし、本実施形態で用いられる窒化珪素基板は硬い材料であり、研磨に労力がかかるため、鏡面研磨加工を行うと窒化珪素基板の製造コストが高くなる。また、本実施形態で用いられる窒化珪素基板は、主相である針状のβ-Si結晶粒子が絡み合った微視的構造を有するため、鏡面研磨加工を施したとしても微視的な凹凸を完全になくすことは難しく、鏡面研磨加工の効果は十分でない。
 このため、本実施形態で用いられる窒化珪素基板2が、圧接構造のモジュールの構成部品のように強い押圧力がかかる用途に表面層3を設けず単独で用いられる場合は、たとえ鏡面研磨加工を施したとしても窒化珪素基板2にクラックが発生するおそれがある。
 これに対し本実施形態では図1に示すように窒化珪素基板2の表面に柔軟性のある表面層3が設けられているため、鏡面研磨加工を行わずに表面粗度が比較的高いままの窒化珪素基板2、たとえばRaが0.2~1.5μmの窒化珪素基板2を備えた窒化珪素製絶縁シート1を用いた場合でも、窒化珪素基板2にクラックが発生するおそれが小さい。すなわち、本実施形態の窒化珪素製絶縁シート1は窒化珪素基板2の表面に柔軟性のある表面層3が設けられたものであるため、窒化珪素製絶縁シート1を強い押圧力がかかる用途で使用する場合でも、表面層3が変形して窒化珪素基板2の表面の凹凸形状に追従することから、窒化珪素製絶縁シート1の窒化珪素基板2にクラックが発生するおそれが小さい。
 本実施形態で用いられる窒化珪素基板は、絶縁性が高く、熱伝導率、強度および靭性の高いものとなる。窒化珪素基板の特性は特に限定されないが、窒化珪素基板は次のような特性を有することが好ましい。すなわち、窒化珪素基板は、好ましくは、温度25℃、湿度70%、1.5KV-100Hzの交流電圧を印加したときのリーク電流が1000nA以下、熱伝導率50W/m・K以上、3点曲げ強度200MPa以上、および破壊靭性6MPa・m1/2以上である。
 また、窒化珪素基板は次のような特性を有することがさらに好ましい。すなわち、窒化珪素基板は、さらに好ましくは、リーク電流200nA以下、熱伝導率80W/m・K以上、3点曲げ強度600MPa以上、および破壊靭性6.5MPa・m1/2以上である。
 窒化珪素基板は、たとえば、窒化珪素粉末と焼結助剤とを混合して焼結することにより得られる。具体的には、窒化珪素基板は、特許文献1(特開2009-120483号公報)記載の製造方法等により得られる。
 窒化珪素粉末としては、たとえば、多量のα-Si結晶粒子と微量のβ-Si結晶粒子とからなる粉末が用いられる。焼結助剤としては、たとえばY等の希土類酸化物が用いられる。
 なお、原料である窒化珪素粉末中のα-Si結晶粒子は、焼結の際に実質的に全てがβ-Si結晶に変換されてβ-Si結晶粒子として粒成長する。このため、焼結後に得られる窒化珪素基板は、実質的にβ-Si結晶粒子のみが複雑に絡み合った構造になる。
<表面層>
 表面層3は、図1に示すように、窒化珪素基板2の表面の片面に形成される。なお、図1に第1の実施形態として示した窒化珪素製絶縁シート1では表面層3は窒化珪素基板2の表面の片面に形成される。しかし、本発明の窒化珪素製絶縁シートにおいて表面層3は窒化珪素基板2の表面の片面のみに形成される必要はなく、窒化珪素基板2の表面の表裏両面に形成されていてもよい。窒化珪素基板2の表面の表裏両面に表面層3が形成された窒化珪素製絶縁シートについては第3の実施形態として後述する。
 表面層3は、柔軟性を有する材質からなるとともに窒化珪素基板2の表面を被覆する層である。表面層3は、柔軟性を有する材質からなるため、窒化珪素基板2の表面の微視的な凹凸を包み込むことができるようになっている。このため、窒化珪素製絶縁シート1を、表面層3を介して押さえ部材等の他の部材に押圧すると、窒化珪素基板2の表面の微視的な凹凸が表面層3で包み込まれて、窒化珪素製絶縁シート1と他の部材との密着接触が可能になる。
 表面層3が形成された窒化珪素製絶縁シート1によれば、たとえば、圧接構造の半導体モジュール構造体の構成部品として用いられる場合において窒化珪素製絶縁シート1が押さえ部材を介して半導体モジュールを圧接したときに、窒化珪素製絶縁シート1と押さえ部材との密着接触が可能になる。
 表面層は、金属または樹脂からなる。なお、必要により、樹脂には、金属粉末やセラミックス粉末等の添加物が含まれていてもよい。
 表面層に用いられる金属は、In(インジウム)、Sn(スズ)、Al(アルミニウム)、Ag(銀)、Au(金)、Cu(銅)、Ni(ニッケル)、Pb(鉛)、Pd(パラジウム)、Sr(ストロンチウム)、Ce(セリウム)、Fe(鉄)、Nb(ニオブ)、Ta(タンタル)、V(バナジウム)およびTi(チタン)より選ばれる元素を少なくとも1種含む金属であり、具体的には、これらの元素の金属単体またはこれらの元素を主成分とする合金である。ここで、主成分とは、表面層に用いられる金属中でモル比率が最も大きい成分を意味する。
 表面層に用いられる金属が、上記金属であると、窒化珪素基板のリーク電流、熱伝導率、3点曲げ強度、および破壊靭性等の特性が良好になる。
 表面層に用いられる金属は、好ましくはTi、Zr、Hf、Ta、VおよびNbより選ばれる元素を少なくとも1種含む金属であり、具体的には、これらの元素の金属単体またはこれらの元素を主成分とする合金である。
 表面層に用いられる金属が、上記金属であると、窒化珪素基板のリーク電流、熱伝導率、3点曲げ強度、および破壊靭性等の特性がより良好になる。
 表面層に用いられる金属は、さらに好ましくはTi、ZrおよびHfより選ばれる元素を少なくとも1種含む金属であり、具体的には、これらの元素の金属単体またはこれらの元素を主成分とする合金である。
 Ti、ZrまたはHfは、窒化珪素基板表面の窒素原子と反応して活性金属窒化物を形成し、窒化珪素基板と表面層とを強固に接合する。このため、表面層に用いられる金属が上記金属であると、窒化珪素基板と表面層との接合強度が高くなる。
 表面層に用いられる金属がTi、ZrおよびHfより選ばれる元素を少なくとも1種含む金属である窒化珪素製絶縁シートは、接合強度が高いため、車載用途等の振動環境下の用途に用いられる圧接構造の半導体モジュール構造体の構成部品として用いられる場合でも、十分な耐久性および放熱性を発揮することができる。
 表面層に用いられる樹脂としては、たとえば、シリコーン樹脂やエポキシ樹脂が挙げられる。これらの樹脂は、窒化珪素基板の表面に塗布すると、窒化珪素基板の表面の微視的な凹凸に入り込みやすいため好ましい。特にシリコーン樹脂は、シリコーン樹脂が硬化して得られる硬化物の弾力性が高いため好ましい。
 金属からなる表面層と樹脂からなる表面層とを比較すると、金属からなる表面層は放熱性の観点で好ましく、樹脂からなる表面層は絶縁性の観点で好ましい。
 表面層に用いられる樹脂は、金属に比べて、絶縁性は高いものの熱伝導率が低い。このため、表面層に樹脂を用いる場合は、樹脂に金属粉末やセラミックス粉末等の熱伝導率が高い物質を添加することにより、表面層の熱伝導率を向上させることが好ましい。
 表面層の樹脂に添加される金属粉末としては、たとえば、Cu粉末、Al粉末等が挙げられる。
 また、表面層の樹脂に添加されるセラミックス粉末としては、たとえば、AlN(窒化アルミニウム)粉末、Si粉末等が挙げられる。特に、AlN粉末は絶縁性と熱伝導性が良好であるため好ましい。
 表面層の樹脂に添加される金属粉末またはセラミックス粉末の平均粒径は、表面層の厚さに対して、通常1/2以下、好ましくは1/5以下、さらに好ましくは1/12~1/5である。ここで、金属粉末またはセラミックス粉末の平均粒径は、コールターカウンター法による測定値であり、体積累積分布の中央値D50を意味する。
 金属粉末またはセラミックス粉末の平均粒径が、表面層の厚さに対して1/2を超えると、窒化珪素製絶縁シートが圧接構造の半導体モジュール構造体の構成部品として用いられ、圧接された場合に、表面層から金属粉末またはセラミックス粉末が放出されたり表面層の表面に露出したりして、表面層による密着性の向上を阻害するおそれがある。
 表面層の樹脂中の金属粉末またはセラミックス粉末の含有率は、好ましくは20~60体積%である。
 含有率が20体積%未満であると、金属粉末またはセラミックス粉末の添加による熱伝導率の向上が小さいおそれがある。また、含有率が60体積%を超えると、窒化珪素製絶縁シートが圧接構造の半導体モジュール構造体の構成部品として用いられ、圧接された場合に、表面層から金属粉末またはセラミックス粉末が放出されたり表面層の表面に露出したりして、表面層による密着性の向上を阻害するおそれがある。
 表面層は、ビッカース硬度Hvが、通常200以下、好ましくは100以下、さらに好ましくは50以下である。ここで、ビッカース硬度Hvは、JIS-Z-2244(ビッカース硬さ試験-試験方法)に準じて測定した値である。
 また、表面層は、ビッカース硬度Hvが、通常10以上、好ましくは20以上、さらに好ましくは30以上である。
 ビッカース硬度Hvが10以上200以下であると、表面層の弾力性が適度になり、表面層と押さえ部材等の他の部材との密着接触が可能になる。
 なお、ビッカース硬度Hvが200を超えると、表面層が硬すぎるために、表面層と押さえ部材等の他の部材との密着接触の効果が不十分になりやすい。
 また、ビッカース硬度Hvが10未満であると、表面層が柔らかすぎるために、表面層と押さえ部材等の他の部材とを圧接したときに、表面層の形状を保持することが困難になる。このため、表面層と押さえ部材等の他の部材との密着接触の効果が不十分になりやすい。
 表面層は、厚さが、通常100μm以下、好ましくは20~80μm、さらに好ましくは20~50μmである。
 表面層の厚さが、100μm以下であると、表面層の弾力性が適度になり、表面層と押さえ部材等の他の部材との密着接触が可能になる。
 なお、表面層の厚さが100μmを超えても密着接触は可能である。しかし、厚さが100μmを超えても密着接触の効果は厚さが100μmの場合に比べて向上しないため、経済的でない。
 また、表面層の厚さが20μm未満であると、窒化珪素基板の表面の微視的な凹凸が大きいときに、表面層が窒化珪素基板の表面の凹凸を包み込みきれないために凹凸形状が表面層の表面に顕著に現れるおそれがある。たとえば、窒化珪素基板の窒化珪素結晶粒子の平均粒径が10μm以上と大きい場合は、窒化珪素基板の表面の凹凸が20μmを超えることがあり、この場合に凹凸形状が表面層の表面に顕著に現れるおそれがある。
 なお、窒化珪素基板の窒化珪素結晶粒子の平均粒径が5μm以下と小さい場合は、窒化珪素基板の表面の微視的な凹凸が20μmを超えることは少ない。このため、表面層の厚さは20~50μmの範囲内で十分である。
 上記のように表面層は適度な柔軟性を有するものである。このため、表面層を備えた窒化珪素製絶縁シートが圧接構造の半導体モジュール構造体の構成部品として用いられる場合、圧縮された表面層が横方向に若干広がることがある。
 このとき、表面層が窒化珪素基板の表面の全面に設けられていると、圧縮された表面層が横方向に広がって窒化珪素基板の周辺端部からはみ出し、表面層が不要な導通を生じて窒化珪素基板の絶縁不良の原因となるおそれがある。
 たとえば、図1に示す窒化珪素製絶縁シート1において、表面層3が窒化珪素基板2の表面21の全面に設けられている場合には、圧縮された表面層3が横方向に広がって表面層3の周辺端部32が窒化珪素基板2の周辺端部22からはみ出し、窒化珪素基板2の絶縁不良の原因となるおそれがある。
 このため、表面層3は、圧縮された表面層3の周辺端部32が窒化珪素基板2の周辺端部22からはみ出さないようにするために、圧縮されていない無負荷時において窒化珪素基板2よりも小さくなるように設けられる。
 具体的には、図1に示すように、表面層3の周辺端部32と窒化珪素基板2の周辺端部22とが、所定の距離Wだけ離間するように設けられる。
 距離Wは、通常0.1mm以上、好ましくは1mm以上、さらに好ましくは1.5mm以上である。
 なお、距離Wの上限は特に限定されない。しかし、窒化珪素基板2に対する表面層3の面積比率が小さくなりすぎると、窒化珪素基板2の表面の微視的な凹凸を包み込むという表面層3の効果が低下する。
 このため、表面層3は、窒化珪素基板2の表面21の表面積に対する表面層3の表面の面積比率が80%以上であることが好ましい。
<窒化珪素製絶縁シートの製造方法>
 次に、窒化珪素製絶縁シートの製造方法について説明する。
 窒化珪素製絶縁シートの製造方法では、はじめに窒化珪素基板を準備する。
 窒化珪素基板は、たとえば、特許文献1~3に記載の製造方法等の公知の焼結方法により得られる。具体的には、多量のα-Si結晶粒子と微量のβ-Si結晶粒子とからなる窒化珪素粉末を、焼結助剤と共に焼結することにより得られる。
 ここで、得られる窒化珪素基板は、窒化珪素結晶粒子がβ-窒化珪素結晶粒子を主相とし、窒化珪素結晶粒子の平均粒径、厚さ、および表面粗さRaが上記所定の範囲内になるように調製しておく。
 窒化珪素基板は、ホーニング加工やショットブラスト加工により基板表面を清浄にしておくことが好ましい。なお、ホーニング加工やショットブラスト加工を行った場合、窒化珪素基板の表面は鏡面加工された場合のように表面粗さRa0.05μm以下になることはなく、おおむね表面粗さRaは0.2~1.5μmの範囲内になる。
 なお、窒化珪素基板の表面は、必要に応じ、ダイヤモンド砥石を使った鏡面加工を施してよい。
 次に、窒化珪素基板の表面に表面層を設ける。
 表面層としてIn、Sn、Al、Ag、Au、Cu、Ni、Pb、Pd、Sr、Ce、Fe、Nb、Ta、VおよびTiより選ばれる元素を少なくとも1種含む金属からなる層を設けるときは、たとえば、スクリーン印刷により窒化珪素基板の表面に金属ペーストを塗布して熱処理する方法や、スパッタ、溶射等の薄膜形成方法が用いられる。
 ここで、表面層の金属が金属単体からなる場合には、スパッタリングや溶射等の薄膜形成方法を用いると、表面層の形成が容易であるため好ましい。これらの薄膜形成方法のうち溶射法を用いると、厚さ20μm以上の金属膜を形成しやすいため、さらに好ましい。
 また、表面層の金属が合金からなる場合には、2種以上の金属粉末を混合したペーストをスクリーン印刷で塗布して熱処理して接合する方法を用いると、表面層の形成が容易であるため好ましい。
 表面層として樹脂からなる層を設けるときは、たとえば、窒化珪素基板の表面に樹脂ペーストを塗布して乾燥させる方法や、窒化珪素基板の表面に樹脂フィルムを積層して熱圧着させる方法が用いられる。
 なお、樹脂は金属に比べて熱伝導率が低い。そこで、樹脂からなる表面層の熱伝導率を高くするために、塗布する樹脂ペーストとして、樹脂に金属粉末や熱伝導率の高いセラミックス粉末を添加した樹脂ペーストを用いてもよい。
 表面層3を、表面層3の周辺端部32と窒化珪素基板2の周辺端部22とが所定の距離Wだけ離間するように形成する方法としては、たとえば、窒化珪素基板2の表面21のうち表面層3を形成しない部分に、レジスト塗膜を形成する方法が用いられる。
 具体的には、図1において、窒化珪素基板2の表面21のうち表面層3を形成しない表面23にレジスト塗膜を形成した後、窒化珪素基板2の表面21のうちレジスト塗膜以外の部分に表面層3を形成し、さらにレジスト塗膜をNaOH溶液等によりエッチング除去する方法等が用いられる。
<第1の実施形態の効果>
 第1実施形態として示した窒化珪素製絶縁シート1によれば、窒化珪素基板2の表面に所定の柔軟性を有する表面層3が設けられるため、窒化珪素製絶縁シート1と、窒化珪素製絶縁シート1の表面層3側に配置された押さえ部材等の他の部材とが圧接された場合に、窒化珪素製絶縁シート1と他の部材との表面層3を介した密着接触が可能になる。
 また、第1実施形態として示した窒化珪素製絶縁シート1によれば、窒化珪素製絶縁シート1と押さえ部材等の他の部材とが密着接触されるため、窒化珪素製絶縁シート1と押さえ部材等の他の部材との間の熱伝導が高くなる。
 このため、たとえば、窒化珪素製絶縁シート1が、窒化珪素製絶縁シート1と押さえ部材と半導体モジュールとがこの順番で積層された第1の圧接構造の半導体モジュール構造体や、押さえ部材と窒化珪素製絶縁シート1と半導体モジュールとがこの順番で積層された第2の圧接構造の半導体モジュール構造体の構成部品として用いられる場合に、半導体モジュール構造体としての放熱特性が向上する。
 さらに、第1実施形態として示した窒化珪素製絶縁シート1によれば、窒化珪素基板2の表面の微視的な凸部が表面層3で包み込まれるため、窒化珪素基板2の表面の微視的な凸部に起因する窒化珪素基板2のクラック発生を抑制することができる。
 このため、たとえば、窒化珪素製絶縁シート1が、窒化珪素製絶縁シート1と押さえ部材と半導体モジュールとがこの順番で積層された第1の圧接構造の半導体モジュール構造体や、押さえ部材と窒化珪素製絶縁シート1と半導体モジュールとがこの順番で積層された第2の圧接構造の半導体モジュール構造体の構成部品として用いられる場合に、窒化珪素基板2のクラック発生を抑制することができる。
 第1実施形態として示した窒化珪素製絶縁シート1では窒化珪素基板2の表面に表面層3が直接形成されている。しかし、本発明の窒化珪素製絶縁シートは、窒化珪素基板2と表面層3との間にさらに反応層が備えられていてもよい。
 窒化珪素基板2と表面層3との間にさらに反応層が備えられた窒化珪素製絶縁シートを図3に第2実施形態として示す。
(第2の実施形態)
 図3は、本発明の第2実施形態としての窒化珪素製絶縁シートを示す正面図である。
 図3に示すように、第2実施形態として示した窒化珪素製絶縁シート1Aは、シート状の窒化珪素基板2と、この窒化珪素基板2の片方の表面に形成される反応層4と、この反応層4の表面に形成される表面層3とを備える。
 なお、図3に第2実施形態として示した窒化珪素製絶縁シート1Aの平面図は、図1に第1実施形態として示した窒化珪素製絶縁シート1と同じであるため、窒化珪素製絶縁シート1と同様に図1に示す。
 図3に第2実施形態として示した窒化珪素製絶縁シート1Aは、図1および図2に第1実施形態として示した窒化珪素製絶縁シート1に比較して、窒化珪素基板2と表面層3との間にさらに反応層4を備える点で異なり、他の点は同じである。このため、図3に第2実施形態として示した窒化珪素製絶縁シート1Aと、図1および図2に第1実施形態として示した窒化珪素製絶縁シート1との間で同じ構成には同じ符号を付し、構成および作用の説明を省略または簡略化する。
<反応層>
 反応層4は、図3に示すように、窒化珪素基板2の表面の片面に形成される。なお、図3に第2の実施形態として示した窒化珪素製絶縁シート1Aでは反応層4は窒化珪素基板2の表面の片面に形成される。しかし、本発明の窒化珪素製絶縁シートにおいて反応層4は窒化珪素基板2の表面の片面のみに形成される必要はなく、窒化珪素基板2の表面の表裏両面に形成されていてもよい。窒化珪素基板2の表面の表裏両面に反応層4が形成された窒化珪素製絶縁シートについては第4の実施形態として後述する。
 反応層4は、窒化珪素基板2の窒素原子と、表面層3のTi、ZrまたはHfとが反応することにより形成される活性金属窒化物からなる層である。
 このため、反応層4は窒化珪素基板2の表面に表面層3が形成されることによりはじめて生じるものであり、反応層4のみが単独で窒化珪素基板2の表面に形成されることはない。
 反応層4を構成する活性金属窒化物はろう材である。このため、反応層4は、窒化珪素基板2と表面層3とを強固に接合する。
 反応層4を構成する活性金属窒化物としては、たとえば、Ti、ZrおよびHfより選ばれる元素を少なくとも1種含む窒化物が用いられる。
 反応層4と、窒化珪素基板2または表面層3とは、隣接しかつ組成が類似する層であるため各層の区別が問題になる。しかし、反応層4は活性金属窒化物を主相とする層であり、窒化珪素基板2および表面層3は活性金属窒化物を主相としない層である点で、層の区別をすることができる。
<第2の実施形態の効果>
 第2実施形態として示した窒化珪素製絶縁シート1Aによれば、第1実施形態として示した窒化珪素製絶縁シート1と同様の効果を奏する。
 また、第2実施形態として示した窒化珪素製絶縁シート1Aによれば、反応層4が窒化珪素基板2と表面層3とを強固に接合するため、第1実施形態として示した窒化珪素製絶縁シート1に比べて、窒化珪素基板2と表面層3との接合強度がより向上する。
 第2実施形態として示した窒化珪素製絶縁シート1Aは、このように接合強度が高いため、窒化珪素製絶縁シート1Aと押さえ部材と半導体モジュールとが積層された第1の圧接構造の半導体モジュール構造体や押さえ部材と窒化珪素製絶縁シート1Aと半導体モジュールとが積層された第2の圧接構造の半導体モジュール構造体の構成部品として用いられ、かつ、圧接構造の半導体モジュール構造体が車載用途等の振動環境下の用途に用いられる場合でも、十分な耐久性および放熱性を発揮することができる。
(第3の実施形態)
 図4は、本発明の第3実施形態としての窒化珪素製絶縁シートを示す正面図である。
 図4に示すように、第3実施形態として示した窒化珪素製絶縁シート1Bは、シート状の窒化珪素基板2と、この窒化珪素基板2の表裏両面に形成される表面層3、3とを備える。
 なお、図4に第3実施形態として示した窒化珪素製絶縁シート1Bの平面図は、図1に第1実施形態として示した窒化珪素製絶縁シート1と同じであるため、窒化珪素製絶縁シート1と同様に図1に示す。
 図4に第3実施形態として示した窒化珪素製絶縁シート1Bは、図1および図2に第1実施形態として示した窒化珪素製絶縁シート1に比較して、窒化珪素基板2の表裏両面に表面層3、3を備える点で異なり、他の点は同じである。このため、図4に第3実施形態として示した窒化珪素製絶縁シート1Bと、図1および図2に第1実施形態として示した窒化珪素製絶縁シート1との間で同じ構成には同じ符号を付し、構成および作用の説明を省略または簡略化する。
<第3の実施形態の効果>
 第3実施形態として示した窒化珪素製絶縁シート1Bによれば、第1実施形態として示した窒化珪素製絶縁シート1と同様の効果を奏する。
 また、第3実施形態として示した窒化珪素製絶縁シート1Bによれば、表面層3が窒化珪素基板2の表裏両面に形成されるため、第1実施形態として示し、表面層3が窒化珪素基板2の片面のみに形成された窒化珪素製絶縁シート1に比べて、窒化珪素基板2の表裏両面側において、他の部材との表面層3を介した密着接触が可能になる。
 さらに、第3実施形態として示した窒化珪素製絶縁シート1Bによれば、窒化珪素基板2の表裏両面において、窒化珪素製絶縁シート1Bと押さえ部材等の他の部材との間の熱伝導が高くなる。
 このため、たとえば、窒化珪素製絶縁シート1Bが、押さえ部材と窒化珪素製絶縁シート1Bと半導体モジュールとがこの順番で積層された第2の圧接構造の半導体モジュール構造体の構成部品として用いられる場合に、第1実施形態として示した窒化珪素製絶縁シート1を用いた場合に比べて、半導体モジュール構造体としての放熱特性がより向上する。
 さらに、第3実施形態として示した窒化珪素製絶縁シート1Bによれば、窒化珪素基板2の表裏両面において、窒化珪素基板2の表面の微視的な凸部が表面層3で包み込まれるため、窒化珪素基板2の表面の微視的な凸部に起因する窒化珪素基板2のクラック発生を抑制することができる。
 このため、たとえば、窒化珪素製絶縁シート1Bが、押さえ部材と窒化珪素製絶縁シート1Bと半導体モジュールとがこの順番で積層された第2の圧接構造の半導体モジュール構造体の構成部品として用いられる場合に、第1実施形態として示した窒化珪素製絶縁シート1を用いた場合に比べて、窒化珪素基板2のクラック発生をより抑制することができる。
(第4の実施形態)
 図5は、本発明の第4実施形態としての窒化珪素製絶縁シートを示す正面図である。
 図5に示すように、第4実施形態として示した窒化珪素製絶縁シート1Cは、シート状の窒化珪素基板2と、この窒化珪素基板2の表裏両面に形成される反応層4、4と、この反応層4、4の表面に形成される表面層3、3とを備える。
 なお、図5に第4実施形態として示した窒化珪素製絶縁シート1Cの平面図は、図1に第1実施形態として示した窒化珪素製絶縁シート1と同じであるため、窒化珪素製絶縁シート1と同様に図1に示す。
 図5に第4実施形態として示した窒化珪素製絶縁シート1Cは、図3に第2実施形態として示した窒化珪素製絶縁シート1Aに比較して、窒化珪素基板2の表裏両面にそれぞれ反応層4と表面層3とを備える点で異なり、他の点は同じである。このため、図5に第4実施形態として示した窒化珪素製絶縁シート1Cと、図3に第2実施形態として示した窒化珪素製絶縁シート1Aとの間で同じ構成には同じ符号を付し、構成および作用の説明を省略または簡略化する。
<第4の実施形態の効果>
 第4実施形態として示した窒化珪素製絶縁シート1Cによれば、第1実施形態として示した窒化珪素製絶縁シート1および第2実施形態として示した窒化珪素製絶縁シート1Aと同様の効果を奏する。
 また、第4実施形態として示した窒化珪素製絶縁シート1Cによれば、反応層4および表面層3が窒化珪素基板2の表裏両面に形成されるため、第2実施形態として示し、反応層4および表面層3が窒化珪素基板2の片面のみに形成された窒化珪素製絶縁シート1Aに比べて、窒化珪素基板2の表裏両面側において、他の部材との表面層3を介した密着接触が可能になる。
 さらに、第4実施形態として示した窒化珪素製絶縁シート1Cによれば、窒化珪素基板2の表裏両面において、窒化珪素製絶縁シート1Cと押さえ部材等の他の部材との間の熱伝導が高くなる。
 このため、たとえば、窒化珪素製絶縁シート1Cが、押さえ部材と窒化珪素製絶縁シート1Cと半導体モジュールとがこの順番で積層された第2の圧接構造の半導体モジュール構造体の構成部品として用いられる場合に、第2実施形態として示し、反応層4および表面層3が窒化珪素基板2の片面のみに形成された窒化珪素製絶縁シート1Aを用いた場合に比べて、半導体モジュール構造体としての放熱特性がより向上する。
 さらに、第4実施形態として示した窒化珪素製絶縁シート1Cによれば、窒化珪素基板2の表裏両面において、窒化珪素基板2の表面の微視的な凸部が表面層3で包み込まれるため、窒化珪素基板2の表面の微視的な凸部に起因する窒化珪素基板2のクラック発生を抑制することができる。
 このため、たとえば、窒化珪素製絶縁シート1Cが、押さえ部材と窒化珪素製絶縁シート1Cと半導体モジュールとがこの順番で積層された第2の圧接構造の半導体モジュール構造体の構成部品として用いられる場合に、第2実施形態として示し、反応層4および表面層3が窒化珪素基板2の片面のみに形成された窒化珪素製絶縁シート1Aを用いた場合に比べて、窒化珪素基板2のクラック発生をより抑制することができる。
(第5の実施形態)
 図6は、本発明の第5実施形態としての窒化珪素製絶縁シートを示す正面図である。
 図6に示すように、第5実施形態として示した窒化珪素製絶縁シート1Dは、表裏に貫通する挿通孔12が2箇所設けられたシート状の窒化珪素基板2と、この窒化珪素基板2の片方の表面に形成される表面層3とを備える。
 図6に第5実施形態として示した窒化珪素製絶縁シート1Dは、図1および図2に第1実施形態として示した窒化珪素製絶縁シート1に比較して、窒化珪素基板2に代えて挿通孔12、12をさらに備える窒化珪素基板2Dを用いた点で異なり、他の点は同じである。このため、図6に第5実施形態として示した窒化珪素製絶縁シート1Dと、図1および図2に第1実施形態として示した窒化珪素製絶縁シート1との間で同じ構成には同じ符号を付し、構成および作用の説明を省略または簡略化する。
<窒化珪素基板>
 窒化珪素基板2Dは、矩形の窒化珪素基板2Dの対向する短辺側に、窒化珪素基板2Dを表裏に貫通する挿通孔12が各短辺側に1箇所ずつ、合計2箇所設けられたものである。
 挿通孔12は、図示しないねじ等の締め付け部材を挿通または螺合可能であればよく、形状や大きさは特に限定されない。
 また、挿通孔12は、窒化珪素基板2Dに設けられる位置や数についても特に限定されない。
 窒化珪素基板2Dは、挿通孔12以外は、図1および図2に第1実施形態として示した窒化珪素製絶縁シート1を構成する窒化珪素基板2と同じであるため、窒化珪素基板2Dに関するその他の説明を省略する。
<第5の実施形態の効果>
 第5実施形態として示した窒化珪素製絶縁シート1Dによれば、第1実施形態として示した窒化珪素製絶縁シート1と同様の効果を奏する。
 また、第5実施形態として示した窒化珪素製絶縁シート1Dには、窒化珪素基板2Dに挿通孔12が設けられている。このため、窒化珪素製絶縁シート1Dに対向して配置され、羅合可能な穴部が設けられたたとえば放熱部材と、窒化珪素製絶縁シート1Dとの間に、押さえ部材等の他の部材や半導体モジュールを配置し、窒化珪素製絶縁シート1Dの挿通孔12に挿通または螺合したねじ等の締め付け部材を、放熱部材の穴部に締め付けることにより、第1実施形態として示し、挿通孔12が設けられていない窒化珪素製絶縁シート1を用いた場合に比べて、窒化珪素製絶縁シート1Dと押さえ部材等の他の部材とがより強く確実に圧接される。
 したがって、第5実施形態として示した窒化珪素製絶縁シート1Dによれば、第1実施形態として示した窒化珪素製絶縁シート1に比べて、窒化珪素製絶縁シート1Dと他の部材との表面層3を介したより強く確実な密着接触が可能になる。
 また、第5実施形態として示した窒化珪素製絶縁シート1Dによれば、窒化珪素製絶縁シート1Dと押さえ部材等の他の部材とを強く確実に密着接触させることが可能であるため、第1実施形態として示した窒化珪素製絶縁シート1を用いた場合に比べて、窒化珪素製絶縁シート1Dと押さえ部材等の他の部材との間の熱伝導をより高くすることが可能である。
 このため、たとえば、窒化珪素製絶縁シート1Dが、窒化珪素製絶縁シート1Dと押さえ部材と半導体モジュールとがこの順番で積層された第1の圧接構造の半導体モジュール構造体の構成部品や、押さえ部材と窒化珪素製絶縁シート1Dと半導体モジュールとがこの順番で積層された第2の圧接構造の半導体モジュール構造体の構成部品として用いられる場合に、第1実施形態として示した窒化珪素製絶縁シート1を用いた場合に比べて、半導体モジュール構造体としての放熱特性がより向上する。
 なお、上記第1実施形態~第5実施形態に示した窒化珪素製絶縁シートでは、窒化珪素基板として、β-窒化珪素結晶粒子を主相とするシート状の窒化珪素基板を用いた。
 しかし、本発明の窒化珪素製絶縁シートは、β-窒化珪素結晶粒子を主相とする窒化珪素基板に代えて、シート状の窒化珪素基板を用い、この窒化珪素基板と、ビッカース硬度が200以下の表面層とを備える窒化珪素製絶縁シートの構成をとることもできる。
 この窒化珪素製絶縁シートによれば、窒化珪素基板の組成の自由度が高くなる。
 また、本発明の窒化珪素製絶縁シートは、絶縁シートの表面層側に板状の押さえ部材が配置されるとともにこの押さえ部材の背面側に半導体モジュールが配置され、絶縁シートの表面層は、押さえ部材に密着接触しつつ押圧してこの押さえ部材を半導体モジュールに圧接するためのものであることが好ましい。
[半導体モジュール構造体]
 本発明の半導体モジュール構造体は、本発明の窒化珪素製絶縁シートを用いたものである。
 具体的には、本発明の半導体モジュール構造体は、窒化珪素製絶縁シートと、窒化珪素製絶縁シートの表面層に面して配置された板状の押さえ部材とを備え、窒化珪素製絶縁シートと押さえ部材とが窒化珪素製絶縁シートの表面層を介して圧接された構造になっている。
 半導体モジュール構造体の実施形態を以下に示す。
(第6の実施形態)
 図7は、本発明の第6実施形態としての半導体モジュール構造体を示す正面図である。
 図7に示すように、第6実施形態として示した半導体モジュール構造体20は、挿通孔12、12が設けられた窒化珪素製絶縁シート1Dと、窒化珪素製絶縁シート1Dの表面層3に面して配置された板状の押さえ部材8と、押さえ部材8の表面のうち窒化珪素製絶縁シート1と反対の表面側に配置された半導体モジュール7と、半導体モジュール7の表面のうち押さえ部材8と反対の表面側に配置され半導体モジュール7で発生した熱を放熱する放熱部材11と、窒化珪素製絶縁シート1Dと放熱部材11との間を締め付ける締め付け部材14とを備える。
 半導体モジュール7の一方の表面と押さえ部材8との間には、板状の絶縁性スペーサ9が介装される。また、半導体モジュール7の他方の表面と放熱部材11との間には、板状の絶縁性スペーサ10が介装される。
 半導体モジュール7は絶縁性スペーサ9と絶縁性スペーサ10とで挟持される。また、絶縁性スペーサ9と半導体モジュール7と絶縁性スペーサ10とは、絶縁性スペーサ9に面して配置された押さえ部材8と絶縁性スペーサ10に面して配置された放熱部材11とで挟持される。
 窒化珪素製絶縁シート1Dと放熱部材11とは、締め付け部材14を用いて締め付けられる。
 半導体モジュール構造体20では、締め付け部材14を用いて窒化珪素製絶縁シート1Dと放熱部材11とが締め付けられることにより、窒化珪素製絶縁シート1Dと放熱部材11との間に配置された押さえ部材8と絶縁性スペーサ9と半導体モジュール7と絶縁性スペーサ10とが圧接される。
<窒化珪素製絶縁シート>
 窒化珪素製絶縁シート1Dは、図6に第5実施形態として示した窒化珪素製絶縁シートと同じものである。窒化珪素製絶縁シート1Dの窒化珪素基板2Dには、締め付け部材14を挿通可能な挿通孔12、12が設けられている。
<押さえ部材>
 押さえ部材8は、窒化珪素製絶縁シート1Dの表面層3と接触する板状の部材である。押さえ部材8としては、たとえば銅板等の金属板が用いられる。
 押さえ部材8は、窒化珪素製絶縁シート1Dと絶縁性スペーサ9等の他の部材との間に介装される。押さえ部材8は、締め付け部材14を用いて窒化珪素製絶縁シート1Dと放熱部材11とが締め付けられることにより、絶縁性スペーサ9を介して半導体モジュール7と圧接される。
<半導体モジュール>
 半導体モジュール7は、半導体素子単体または半導体素子を含む集合体である。
 半導体モジュール7の上下方向には、絶縁性スペーサ9と10とが配置される。絶縁性スペーサ9、10としては、たとえば、セラミックス基板等の板状の絶縁物が用いられる。
 半導体モジュール構造体20では、締め付け部材14を用いて窒化珪素製絶縁シート1Dと放熱部材11とが締め付けられることにより、窒化珪素製絶縁シート1Dと放熱部材11との間に配置された半導体モジュール7が、絶縁性スペーサ9と絶縁性スペーサ10とで挟まれかつ圧接される。
<放熱部材>
 放熱部材11は、半導体モジュール7で発生した熱を放熱する部材である。
 放熱部材11の図中上方には、締め付け部材としてのねじ14の先端部が羅合可能な孔部16が設けられている。
 放熱部材11としては、たとえば、放熱フィンが用いられる。
<締め付け部材>
 締め付け部材14は、窒化珪素製絶縁シート1Dと放熱部材11とを締め付けるものである。締め付け部材14としては、たとえば、ねじが用いられる。
 半導体モジュール構造体20では、締め付け部材としてのねじ14の胴部が窒化珪素製絶縁シート1Dの挿通孔12に挿通されるとともに、ねじ14の先端部が放熱部材11の孔部16に羅合されることにより、窒化珪素製絶縁シート1Dと放熱部材11とが締め付けられる。また、ねじ14の頭部と窒化珪素製絶縁シート1Dとの間には、ワッシャ15が介装される。
 これにより、半導体モジュール構造体20では、窒化珪素製絶縁シート1Dと放熱部材11との間に配置された、押さえ部材8と絶縁性スペーサ9と半導体モジュール7と絶縁性スペーサ10とが圧接される。
<第6の実施形態の作用>
 半導体モジュール構造体20では、締め付け部材14を用いて窒化珪素製絶縁シート1Dと放熱部材11とが締め付けられることにより、窒化珪素製絶縁シート1Dと放熱部材11との間に配置された押さえ部材8と絶縁性スペーサ9と半導体モジュール7と絶縁性スペーサ10とが圧接される。
 このとき、窒化珪素製絶縁シート1Dの表面層3と押さえ部材8の表面との間が強く圧接される。しかし、窒化珪素製絶縁シート1Dの柔軟性を有する表面層3が、窒化珪素製絶縁シート1Dの窒化珪素基板2Dの表面に存在するβ-Si結晶粒子の微視的な凹凸を包み込むため、窒化珪素製絶縁シート1Dと押さえ部材8との表面層3を介した密着接触が可能になる。
<第6の実施形態の効果>
 第6実施形態として示した半導体モジュール構造体20では、窒化珪素製絶縁シート1Dと放熱部材11との締め付けにより、窒化珪素製絶縁シート1Dと押さえ部材8と絶縁性スペーサ9と半導体モジュール7と絶縁性スペーサ10と放熱部材11とが圧接されるため、窒化珪素製絶縁シート1Dと押さえ部材8とが表面層3を介して密着接触される。
 そして、窒化珪素製絶縁シート1Dと押さえ部材8との密着接触により、窒化珪素製絶縁シート1Dの窒化珪素基板2Dと押さえ部材8との間に、熱抵抗体となる微小な隙間が形成されることがない。
 このため、第6実施形態として示した半導体モジュール構造体20によれば、β-窒化珪素結晶粒子を主相とする窒化珪素基板2Dによる高い絶縁性を保持しつつ、窒化珪素製絶縁シート1Dと押さえ部材8と絶縁性スペーサ9と半導体モジュール7と絶縁性スペーサ10と放熱部材11との間の熱伝導が高くなり、放熱特性が向上する。
 また、第6実施形態として示した半導体モジュール構造体20によれば、窒化珪素基板2Dの表面の微視的な凸部が表面層3で包み込まれるため、窒化珪素基板2Dの表面の微視的な凸部に起因する窒化珪素基板2Dのクラック発生を抑制することができる。
 上記のように図7に第6実施形態として示した半導体モジュール構造体20では、窒化珪素製絶縁シートとして窒化珪素基板2Dの片面のみに表面層3が設けられた窒化珪素製絶縁シート1Dを用いた半導体モジュール構造体を示した。
 しかし、本発明の半導体モジュール構造体は、窒化珪素製絶縁シートとして窒化珪素基板の表裏両面に表面層3、3が設けられた窒化珪素製絶縁シートを用いた半導体モジュール構造体とすることもできる。
 具体的には、表裏両面に表面層が設けられた窒化珪素製絶縁シートと、窒化珪素製絶縁シートの一方の面の表面層に面して配置された板状の押さえ部材と、窒化珪素製絶縁シートの他方の面の表面層に面して配置された半導体モジュールとを備え、窒化珪素製絶縁シートと押さえ部材とが窒化珪素製絶縁シートの一方の表面の表面層を介して圧接されるとともに、窒化珪素製絶縁シートと半導体モジュールとが窒化珪素製絶縁シートの他方の表面の表面層を介して圧接された半導体モジュール構造体とすることができる。
 窒化珪素基板の表裏両面に表面層が設けられた窒化珪素製絶縁シートを用いた半導体モジュール構造体の実施形態を第7の実施形態として以下に示す。
(第7の実施形態)
 図8は、本発明の第7実施形態としての半導体モジュール構造体を示す正面図である。
 図8に示すように、第7実施形態として示した半導体モジュール構造体30は、表裏両面に表面層3、3が設けられた窒化珪素製絶縁シート1Bと、窒化珪素製絶縁シート1Bの一方の表面の表面層3に面して配置された板状の押さえ部材8Aと、窒化珪素製絶縁シート1Bの他方の表面の表面層3に面して配置された半導体モジュール7と、半導体モジュール7の表面のうち窒化珪素製絶縁シート1Bと反対の表面側に配置され、半導体モジュール7で発生した熱を放熱する放熱部材11と、押さえ部材8Aと放熱部材11との間を締め付ける締め付け部材14とを備える。
 半導体モジュール7の一方の表面と押さえ部材8Aとの間には、板状の絶縁性スペーサ9が介装される。また、半導体モジュール7の他方の表面と放熱部材11との間には、板状の絶縁性スペーサ10が介装される。
 半導体モジュール7は絶縁性スペーサ9と絶縁性スペーサ10とで挟持される。また、絶縁性スペーサ9と半導体モジュール7と絶縁性スペーサ10とは、絶縁性スペーサ9に面して配置された窒化珪素製絶縁シート1Bと絶縁性スペーサ10に面して配置された放熱部材11とで挟持される。
 押さえ部材8Aと放熱部材11とは、締め付け部材14を用いて締め付けられる。
 半導体モジュール構造体30では、締め付け部材14を用いて押さえ部材8Aと放熱部材11とが締め付けられることにより、押さえ部材8Aと放熱部材11との間に配置された窒化珪素製絶縁シート1Bと絶縁性スペーサ9と半導体モジュール7と絶縁性スペーサ10とが圧接される。
 図8に第7実施形態として示した半導体モジュール構造体30は、図7に第6実施形態として示した半導体モジュール構造体20に比較して、窒化珪素製絶縁シート1Dに代えて挿通孔12が設けられた押さえ部材8Aを用いるとともに、押さえ部材8に代えて表裏両面に表面層3が設けられた窒化珪素製絶縁シート1Bを用いる点で異なり、他の点は同じである。
 このため、図8に第7実施形態として示した半導体モジュール構造体30と、図7に第6実施形態として示した半導体モジュール構造体20との間で同じ構成には同じ符号を付し、構成および作用の説明を省略または簡略化する。
<押さえ部材>
 押さえ部材8Aは、窒化珪素製絶縁シート1Bの表裏両面に設けられた表面層3、3のうち、一方の表面層3と接触する板状の部材である。押さえ部材8Aとしては、押さえ部材8と同様に、たとえば銅板等の金属板が用いられる。
 押さえ部材8Aには、締め付け部材14を挿通可能な挿通孔13、13が設けられている。
 挿通孔13は、ねじ等の締め付け部材14を挿通または螺合可能であればよく、形状や大きさは特に限定されない。
 また、挿通孔13は、押さえ部材8Aに設けられる位置や数についても特に限定されない。
 押さえ部材8Aは、締め付け部材14を用いて押さえ部材8Aと放熱部材11とが締め付けられることにより、窒化珪素製絶縁シート1Bを介して絶縁性スペーサ9等の他の部材を押圧する。
<窒化珪素製絶縁シート>
 窒化珪素製絶縁シート1Bは、図4に第3実施形態として示した窒化珪素製絶縁シートと同じものである。窒化珪素製絶縁シート1Bの窒化珪素基板2の表裏両面には、表面層3、3が設けられている。
 窒化珪素製絶縁シート1Bは、押さえ部材8Aと絶縁性スペーサ9等の他の部材との間に介装される。
 窒化珪素製絶縁シート1Bは、締め付け部材14を用いて押さえ部材8Aと放熱部材11とが締め付けられることにより、絶縁性スペーサ9を介して半導体モジュール7と圧接される。
<締め付け部材>
 締め付け部材14は、押さえ部材8Aと放熱部材11とを締め付けるものである。締め付け部材14としては、たとえば、ねじが用いられる。
 半導体モジュール構造体30では、締め付け部材としてのねじ14の胴部がワッシャ15と押さえ部材8Aの挿通孔13とに挿通されるとともに、ねじ14の先端部が放熱部材11の孔部16に羅合されることにより、窒化珪素製絶縁シート1Bと放熱部材11とが締め付けられる。また、ねじ14の頭部と押さえ部材8Aとの間には、ワッシャ15が介装される。
 これにより、半導体モジュール構造体30では、押さえ部材8Aと放熱部材11との間に配置された、窒化珪素製絶縁シート1Bと絶縁性スペーサ9と半導体モジュール7と絶縁性スペーサ10とが圧接される。
<第7の実施形態の作用>
 半導体モジュール構造体30では、締め付け部材14を用いて押さえ部材8Aと放熱部材11とが締め付けられることにより、押さえ部材8Aと放熱部材11との間に配置された窒化珪素製絶縁シート1Bと絶縁性スペーサ9と半導体モジュール7と絶縁性スペーサ10とが圧接される。
 このとき、窒化珪素製絶縁シート1Bの一方の表面の表面層3と押さえ部材8Aの表面との間、および窒化珪素製絶縁シート1Bの他方の表面の表面層3と絶縁性スペーサ9の表面との間が強く圧接される。
 しかし、窒化珪素製絶縁シート1Bの柔軟性を有する表面層3が、窒化珪素製絶縁シート1Bの窒化珪素基板2の表面に存在するβ-Si結晶粒子の微視的な凹凸を包み込むため、窒化珪素製絶縁シート1Bと押さえ部材8Aとの表面層3を介した密着接触、および窒化珪素製絶縁シート1Bと絶縁性スペーサ9との表面層3を介した密着接触が可能になる。
<第7の実施形態の効果>
 第7実施形態として示した半導体モジュール構造体30では、押さえ部材8Aと放熱部材11との締め付けにより、押さえ部材8Aと窒化珪素製絶縁シート1Bと絶縁性スペーサ9と半導体モジュール7と絶縁性スペーサ10と放熱部材11とが圧接されるため、窒化珪素製絶縁シート1Bの一方の表面と押さえ部材8Aとが表面層3を介して密着接触されるとともに、窒化珪素製絶縁シート1Bの他方の表面と絶縁性スペーサ9とが表面層3を介して密着接触される。
 そして、窒化珪素製絶縁シート1Bと押さえ部材8Aとの密着接触、および窒化珪素製絶縁シート1Bと絶縁性スペーサ9との密着接触により、窒化珪素製絶縁シート1Bの窒化珪素基板2と押さえ部材8Aとの間、および窒化珪素製絶縁シート1Bと絶縁性スペーサ9との間に、熱抵抗体となる微小な隙間が形成されることがない。
 このため、第7実施形態として示した半導体モジュール構造体30によれば、β-窒化珪素結晶粒子を主相とする窒化珪素基板2による高い絶縁性を保持しつつ、押さえ部材8Aと窒化珪素製絶縁シート1Bと絶縁性スペーサ9と半導体モジュール7と絶縁性スペーサ10と放熱部材11との間の熱伝導が高くなり、放熱特性が向上する。
 また、第7実施形態として示した半導体モジュール構造体30によれば、窒化珪素基板2の表面の微視的な凸部が表面層3で包み込まれるため、図7に第6実施形態として示した半導体モジュール構造体20と同様に、窒化珪素基板2の表面の微視的な凸部に起因する窒化珪素基板2のクラック発生を抑制することができる。
 なお、図7に第6実施形態として示した半導体モジュール構造体20および図8に第7実施形態として示した半導体モジュール構造体30では、締め付け部材14としてねじを用いる例を示した。
 しかし、本発明の半導体モジュール構造体では、ねじ以外の締め付け部材として、窒化珪素製絶縁シートと押さえ部材とを圧接可能な部材を用いてもよい。たとえば、締め付け部材として、放熱部材11と窒化珪素製絶縁シートとを、または放熱部材11と押さえ部材とを挟持するクランプ等を用いることができる。このように締め付け部材としてクランプを用いる場合は、窒化珪素製絶縁シートや押さえ部材に挿通孔を設ける必要がなくなる。
 また、図8に第7実施形態として示した半導体モジュール構造体30のように、押さえ部材8Aと放熱部材11とが締め付けられて圧接構造を形成する構造体の場合は、窒化珪素製絶縁シートに挿通孔を設ける必要がない。
 このため、本発明の半導体モジュール構造体では、締め付け部材を適宜選択したり、圧接構造を選択したりすることにより、本発明の窒化珪素製絶縁シートを適宜用いることができる。
 たとえば、図7に第6実施形態として示した半導体モジュール構造体20および図8に第7実施形態として示した半導体モジュール構造体30において、窒化珪素製絶縁シート1Dまたは1Bに代えて、上記第1実施形態~第5実施形態に示した窒化珪素製絶縁シートを用いることができる。
 また、図7に第6実施形態として示した半導体モジュール構造体20および図8に第7実施形態として示した半導体モジュール構造体30では、放熱部材11として放熱フィンを用いる例を示した。
 しかし、本発明の半導体モジュール構造体では、放熱フィン以外の放熱部材として、半導体モジュールから発生する熱を放熱可能な部材を用いてもよい。たとえば、放熱部材として、放熱シート等を用いることができる。このように放熱部材として放熱シートを用いる場合は、締め付け部材としてたとえばクランプを用いることにより、放熱シートと窒化珪素製絶縁シートとを、または放熱シートと押さえ部材とを挟持して、圧接構造の半導体モジュール構造体を形成することができ、窒化珪素製絶縁シートや押さえ部材に挿通孔を設ける必要がなくなる。
 また、図7に第6実施形態として示した半導体モジュール構造体20および図8に第7実施形態として示した半導体モジュール構造体30は、本発明の半導体モジュール構造体の一例である。本発明の半導体モジュール構造体は、半導体モジュールを用いると共に表面層が設けられた窒化珪素製絶縁シートと押さえ部材とが圧接可能な構造体の全てを含むものである。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 以下に実施例を示すが、本発明はこれらに限定されて解釈されるものではない。
(実施例1~9、比較例1)
 熱伝導率90W/m・K、3点曲げ強度720MPa、破壊靭性6.6MPa・m1/2、リーク電流(温度25℃、湿度70%で、1.5KV-100Hzの交流電圧を印加したときのリーク電流)100nA、縦50mm×横30mm×厚さ0.32mmの矩形板状の窒化珪素基板を用意した。この基板は、Si結晶粒子の全てがβ-Si結晶粒子であるとともに、β-Si結晶粒子を主相とするものであり、β-Si結晶粒子のアスペクト比は2~10、β-Si結晶粒子の平均粒径は3.5μmであった。また、窒化珪素基板は、基板表面をホーニング加工することにより、基板表面の表面粗さRaを0.9μmにした。この窒化珪素基板は、実施例1~9、比較例1に用いた。
 次に、図9および図10に示すように、窒化珪素基板2Eの表裏両面に、表1に示す実施例1~9の各条件で作成した表面層3を設けた。なお、表面層3は、窒化珪素基板2Eの端部22から表面層3の端部32までの距離Wが、短辺側距離W=1mm、長辺側距離W=2mmとなるように形成した。表面層3は、形状、厚さ、距離W等が表裏両面で同じになるように設けた。
 さらに、図9および図10に示すように、窒化珪素基板2Eの2つの短辺の近傍に窒化珪素基板2Eを表裏方向に貫通する直径0.7mmのねじ止め孔12を1個ずつ計2個設けることにより、窒化珪素製絶縁シート1Eを作製した(実施例1~9)。
 また、表面層3を設けず、ねじ止め孔12を設けた窒化珪素基板2Eからなる窒化珪素製絶縁シートを作製し、比較例1とした。
Figure JPOXMLDOC01-appb-T000001
 実施例1~9の窒化珪素製絶縁シートをそれぞれ用いて半導体モジュール構造体30Eを作製した(実施例1~9)。半導体モジュール構造体30Eは、図8に示す半導体モジュール構造体30において窒化珪素製絶縁シート1Bに代えて窒化珪素製絶縁シート1Eを用いたものである。半導体モジュール構造体30Eを半導体モジュール構造体30と同様に図8に示す。
 半導体モジュール構造体30Eでは、押さえ部材としての銅板8Aと放熱部材としての放熱フィン11との間のねじ止めトルクを25kNとした。
 また、実施例1の窒化珪素製絶縁シート1Eに代えて比較例1の窒化珪素製絶縁シートを用いた以外は実施例1と同様にして半導体モジュール構造体を作製した(比較例1)。
 実施例1~9および比較例1の半導体モジュール構造体について放熱性と耐久性を確認した。
 放熱性は、はじめに各サンプルについて熱抵抗値を測定し、次に各サンプルの熱抵抗値を、表面層を設けない比較例1の熱抵抗値を100としたときの相対比で示した。100より小さいと熱抵抗が小さいことを示す。
 また、耐久性は、以下のようにして測定した。はじめに、半導体モジュール構造体を振動試験機に固定し、半導体モジュール構造体の圧接方向、すなわちねじ14の軸方向における50cmの区間を1分間で500回往復させる振動操作を100時間連続で付加した。次に、振動操作終了後の窒化珪素製絶縁シート1Eの窒化珪素基板2Eの表面を観察し、窒化珪素基板2Eの表面のうち、表面層3の周辺端部32に沿ってクラックが発生しているか否かを目視で確認した。
 その結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2から分かる通り、本実施例に係る窒化珪素製絶縁シートを用いた半導体モジュール構造体は優れた放熱性および耐久性を示すことが分かった。
 また、表面層3に活性金属であるTiを添加した窒化珪素製絶縁シート(実施例1、2および7)では、窒化珪素基板2Eと表面層3との間に、Tiと窒化珪素基板との反応物であるTiNからなる反応層がさらに形成されていることが分かった。
(実施例10~14、比較例2~6)
 窒化珪素基板のサイズおよび表面粗さならびに表面層の材料等を表3のように変えると共に、W=W=1mmとし、ねじ止め孔12を設けず、一部の実施例ではホーニング加工に代えてショットブラスト加工を行った以外は実施例1と同様にして窒化珪素製絶縁シートを作製した(実施例10~14)。ここで、ショットブラスト加工を行った実施例は実施例11、13および14であり、実施例10および12では実施例1と同様にホーニング加工を行った。
 実施例10~14の窒化珪素製絶縁シートは、ねじ止め孔12を設けず、W=W=1mmとした以外は、図9および図10に示した実施例1~9の窒化珪素製絶縁シート1Eと構成が同じであるため、図示を省略する。
 また、実施例1と同様にして、実施例10~14の窒化珪素製絶縁シートをそれぞれ用いて半導体モジュール構造体を作製した(実施例10~14)。
 実施例10~14の半導体モジュール構造体は、図8に示した実施例1~9の半導体モジュール構造体30Eと構成が同じであるため、図示を省略する。
 さらに、実施例10~14のそれぞれにおいて表面層を設けない窒化珪素製絶縁シートを作製し、これらを比較例2~6とした。また、実施例1と同様にして、比較例2~6の窒化珪素製絶縁シートを用いて半導体モジュール構造体を作製した(比較例2~6)。
 実施例10~14および比較例2~6の半導体モジュール構造体について、実施例1と同様にして放熱性と耐久性を確認した。
 放熱性は、はじめに各サンプルについて熱抵抗値を測定した。次に表面層の有無以外の条件が同様の対応する実施例と比較例(実施例10と比較例2、実施例11と比較例3、実施例12と比較例4、実施例13と比較例5、実施例14と比較例6)について、各比較例の熱抵抗値を100としたときの各実施例の熱抵抗値を相対比で示した。
 その結果を表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表4から分かる通り、本実施例に係る窒化珪素製絶縁シートを用いた半導体モジュール構造体は優れた特性を示すことが分かった。
 また、表面層に活性金属であるTiを添加した窒化珪素製絶縁シート(実施例10および12)では、窒化珪素基板と表面層との間に、Tiと窒化珪素基板との反応物であるTiNからなる反応層がさらに形成されていることが分かった。
(実施例15~18)
 表5に示すAlN粉末を含有させたシリコーン樹脂からなるシリコーン樹脂ペーストを用い、表面層を作製した以外は、実施例8と同様にして、図9および図10に示すような窒化珪素製絶縁シートEを作製した(実施例15および16)。表面層は、AlN粉末を含有させたシリコーン樹脂ペーストを、実施例1の窒化珪素基板2Eの表面に塗布し、乾燥させたものである。
 また、表5に示すAl粉末を含有させたエポキシ樹脂を用い、表面層を作製した以外は、実施例9と同様にして、図9および図10に示すような窒化珪素製絶縁シートEを作製した(実施例17および18)。表面層は、Al粉末を含有させたエポキシ樹脂ペーストを、実施例1の窒化珪素基板2Eの表面に塗布し、乾燥させたものである。
 実施例15~18の窒化珪素製絶縁シートEをそれぞれ用いて図8に示す半導体モジュール構造体30Eを作製した(実施例15~18)。
 実施例15~18の半導体モジュール構造体について、実施例1と同様にして放熱性と耐久性を確認した。
 その結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5から分かる通り、樹脂中に金属粉末またはセラミックス粉末を含有させて得られた表面層を有する窒化珪素製絶縁シートは、放熱性が向上することが分かる。また、含有させる粉末のサイズを樹脂層の厚さの1/2以下、さらには1/5以下にすることにより耐久性を低下させることがないことが分かる。
1、1A、1B、1C、1D、1E 窒化珪素製絶縁シート
2、2D、2E 窒化珪素基板
21 窒化珪素基板の表面
22 窒化珪素基板の周辺端部
23 窒化珪素基板の表面露出部
3 表面層
32 表面層の周辺端部
4 反応層
7 半導体素子(半導体モジュール)
8、8A 押さえ部材
9、10 絶縁性スペーサ
11 放熱フィン
12 窒化珪素製絶縁シートの挿通孔
13 押さえ部材の挿通孔
14 ねじ(締め付け部材)
15 ワッシャ
16 孔部
20、30、30E 半導体モジュール構造体

Claims (14)

  1. β-窒化珪素結晶粒子を主相とするシート状の窒化珪素基板と、
     この窒化珪素基板の表面の片面または表裏両面に形成され、In、Sn、Al、Ag、Au、Cu、Ni、Pb、Pd、Sr、Ce、Fe、Nb、Ta、VおよびTiより選ばれる元素を少なくとも1種含む金属、または樹脂からなる表面層と、
     を備えることを特徴とする窒化珪素製絶縁シート。
  2. 前記表面層のビッカース硬度が200以下であることを特徴とする請求項1に記載の窒化珪素製絶縁シート。
  3. 前記表面層の厚さが100μm以下であることを特徴とする請求項1または請求項2に記載の窒化珪素製絶縁シート。
  4. 前記窒化珪素基板の表面粗さRaが0.2~1.5μmであることを特徴とする請求項1ないし請求項3のいずれか1項に記載の窒化珪素製絶縁シート。
  5. 前記表面層は、前記窒化珪素基板の表面のうち周辺端部の近傍の表面が露出するように前記窒化珪素基板の表面上の一部に形成されるとともに、前記表面層の周辺端部が窒化珪素基板の周辺端部から1mm以上離間するように形成されたことを特徴とする請求項1ないし請求項4のいずれか1項に記載の窒化珪素製絶縁シート。
  6. 前記窒化珪素基板と前記表面層との間に、Ti、ZrおよびHfより選ばれる元素を少なくとも1種含む反応層をさらに備えることを特徴とする請求項1ないし請求項5のいずれか1項に記載の窒化珪素製絶縁シート。
  7. 前記絶縁シートの表面層側に板状の押さえ部材が配置されるとともにこの押さえ部材の背面側に半導体モジュールが配置され、
     前記絶縁シートの表面層は、前記押さえ部材に密着接触しつつ押圧してこの押さえ部材を前記半導体モジュールに圧接するためのものであることを特徴とする請求項1ないし請求項6のいずれか1項に記載の窒化珪素製絶縁シート。
  8. 前記窒化珪素基板は厚さ0.8mm以下であることを特徴とする請求項1ないし請求項7のいずれか1項に記載の窒化珪素製絶縁シート。
  9. シート状の窒化珪素基板と、
     この窒化珪素基板の表面に形成され、ビッカース硬度が200以下の表面層と、
     を備えることを特徴とする窒化珪素製絶縁シート。
  10. 請求項1ないし請求項9のいずれか1項に記載の窒化珪素製絶縁シートを用いたことを特徴とする半導体モジュール構造体。
  11. 前記窒化珪素製絶縁シートと、
     この絶縁シートの表面層に面して配置された板状の押さえ部材と、
     を備え、
     前記絶縁シートと押さえ部材とが前記絶縁シートの表面層を介して圧接されたことを特徴とする請求項10に記載の半導体モジュール構造体。
  12. 前記窒化珪素製絶縁シートと、
     この絶縁シートの表面層に面して配置された板状の押さえ部材と、
     この押さえ部材の表面のうち前記絶縁シートと反対の表面側に配置された半導体モジュールと、
     この半導体モジュールの表面のうち前記押さえ部材と反対の表面側に配置され、前記半導体モジュールで発生した熱を放熱する放熱部材と、
     前記絶縁シートと放熱部材との間を締め付ける締め付け部材とを備え、
     前記絶縁シートと放熱部材とが前記締め付け部材を用いて締め付けられることにより、前記絶縁シートと放熱部材との間に配置された前記押さえ部材と半導体モジュールとが圧接されたことを特徴とする請求項10に記載の半導体モジュール構造体。
  13. 表裏両面に前記表面層が設けられた前記窒化珪素製絶縁シートと、
     この絶縁シートの一方の面の表面層に面して配置された板状の押さえ部材と、
     前記絶縁シートの他方の面の表面層に面して配置された半導体モジュールと、
     を備え、
     前記絶縁シートと押さえ部材とが前記絶縁シートの一方の表面の表面層を介して圧接されるとともに、前記絶縁シートと半導体モジュールとが前記絶縁シートの他方の表面の表面層を介して圧接されたことを特徴とする請求項10に記載の半導体モジュール構造体。
  14. 表裏両面に前記表面層が設けられた前記窒化珪素製絶縁シートと、
     この絶縁シートの一方の表面の表面層に面して配置された板状の押さえ部材と、
     前記絶縁シートの他方の表面の表面層に面して配置された半導体モジュールと、
     この半導体モジュールの表面のうち前記絶縁シートと反対の表面側に配置され、前記半導体モジュールで発生した熱を放熱する放熱部材と、
     前記押さえ部材と放熱部材との間を締め付ける締め付け部材とを備え、
     前記押さえ部材と放熱部材とが前記締め付け部材を用いて締め付けられることにより、前記押さえ部材と放熱部材との間に配置された前記絶縁シートと半導体モジュールとが圧接されたことを特徴とする請求項10に記載の半導体モジュール構造体。
PCT/JP2010/061976 2009-07-24 2010-07-15 窒化珪素製絶縁シートおよびそれを用いた半導体モジュール構造体 WO2011010597A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2011523619A JP5675610B2 (ja) 2009-07-24 2010-07-15 窒化珪素製絶縁シートおよびそれを用いた半導体モジュール構造体
US13/386,735 US8916961B2 (en) 2009-07-24 2010-07-15 Insulation sheet made from silicon nitride, and semiconductor module structure using the same
US14/534,808 US20150061107A1 (en) 2009-07-24 2014-11-06 Insulation sheet made from silicon nitride, and semiconductor module structure using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009173740 2009-07-24
JP2009-173740 2009-07-24

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/386,735 A-371-Of-International US8916961B2 (en) 2009-07-24 2010-07-15 Insulation sheet made from silicon nitride, and semiconductor module structure using the same
US14/534,808 Continuation US20150061107A1 (en) 2009-07-24 2014-11-06 Insulation sheet made from silicon nitride, and semiconductor module structure using the same

Publications (1)

Publication Number Publication Date
WO2011010597A1 true WO2011010597A1 (ja) 2011-01-27

Family

ID=43499070

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/061976 WO2011010597A1 (ja) 2009-07-24 2010-07-15 窒化珪素製絶縁シートおよびそれを用いた半導体モジュール構造体

Country Status (3)

Country Link
US (2) US8916961B2 (ja)
JP (2) JP5675610B2 (ja)
WO (1) WO2011010597A1 (ja)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187511A (ja) * 2010-03-04 2011-09-22 Toshiba Corp 窒化珪素基板およびそれを用いた半導体モジュール
WO2012070463A1 (ja) * 2010-11-22 2012-05-31 株式会社東芝 圧接構造用セラミックスヒートシンク材およびそれを用いた半導体モジュール並びに半導体モジュールの製造方法
WO2015060274A1 (ja) 2013-10-23 2015-04-30 株式会社東芝 窒化珪素基板およびそれを用いた窒化珪素回路基板
EP2767524A4 (en) * 2011-10-11 2015-08-19 Hitachi Metals Ltd SILICON NITRIDE SUBSTRATE AND METHOD FOR MANUFACTURING SILICON NITRIDE SUBSTRATE
EP2851945A4 (en) * 2012-05-17 2016-01-27 Mitsubishi Electric Corp SEMICONDUCTOR MODULE AND SEMICONDUCTOR DEVICE
JPWO2017056360A1 (ja) * 2015-09-28 2018-07-19 株式会社東芝 回路基板および半導体装置
JP2020114788A (ja) * 2019-01-17 2020-07-30 日立金属株式会社 メタライズド窒化ケイ素基板およびメタライズド窒化ケイ素基板の製造方法
US11070856B2 (en) 2013-12-09 2021-07-20 Saturn Licensing Llc Data processing device and data processing method
DE112021004004T5 (de) 2020-07-29 2023-06-01 Japan Fine Ceramics Co. Ltd. Siliziumnitridsubstrat und Verfahren zur Herstellung hiervon

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2964117B1 (fr) * 2010-08-27 2012-09-28 Commissariat Energie Atomique Creuset pour la solidification de lingot de silicium
EP3184500B1 (de) * 2015-12-22 2024-02-07 Heraeus Electronics GmbH & Co. KG Herstellungsverfahren eines metall-keramik-substrates mit verbesserter flächen-nutzung
JP6462958B2 (ja) * 2016-06-16 2019-01-30 三菱電機株式会社 半導体実装用放熱ベース板およびその製造方法
US11505454B2 (en) * 2019-09-25 2022-11-22 Taiwan Semiconductor Manufacturing Company Ltd. MEMS structure and manufacturing method thereof
JP7455184B1 (ja) 2022-12-23 2024-03-25 株式会社Maruwa 窒化ケイ素薄板及び窒化ケイ素樹脂複合板

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104156A (ja) * 1996-06-14 1998-01-06 Mitsubishi Electric Corp 半導体装置用絶縁基板及び半導体装置
JPH11224923A (ja) * 1998-02-04 1999-08-17 Toshiba Corp 半導体スタック
JP2002201075A (ja) * 2000-10-27 2002-07-16 Toshiba Corp 窒化けい素セラミックス基板およびそれを用いた窒化けい素セラミックス回路基板並びにその製造方法
JP2002329814A (ja) * 2001-03-01 2002-11-15 Dowa Mining Co Ltd 半導体実装用絶縁基板及びパワーモジュール
JP2003063879A (ja) * 2001-08-29 2003-03-05 Dowa Mining Co Ltd 金属と金属またはセラミックスとの接合方法
WO2003090277A1 (en) * 2002-04-19 2003-10-30 Mitsubishi Materials Corporation Circuit board, process for producing the same and power module

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6047202B2 (ja) * 1976-01-13 1985-10-21 東北大学金属材料研究所長 超硬高純度の配向多結晶質窒化珪素
EP0422558B1 (en) * 1989-10-09 2001-03-28 Mitsubishi Materials Corporation Ceramic substrate used for fabricating electric or electronic circuit
DE69031039T2 (de) * 1990-04-16 1997-11-06 Denki Kagaku Kogyo Kk Keramische leiterplatte
JPH04192552A (ja) * 1990-11-27 1992-07-10 Nec Corp 半導体素子用パッケージ
TW350194B (en) * 1994-11-30 1999-01-11 Mitsubishi Gas Chemical Co Metal-foil-clad composite ceramic board and process for the production thereof the invention relates to the metal-foil-clad composite ceramic board and process for the production
JP2795626B2 (ja) * 1995-08-21 1998-09-10 北川工業株式会社 放熱機能付き電子部品
ATE378800T1 (de) * 1999-05-28 2007-11-15 Denki Kagaku Kogyo Kk Schaltungskeramiksubstrat und sein herstellungsverfahren
JP4013423B2 (ja) * 1999-10-15 2007-11-28 住友電気工業株式会社 セラミックス層と金属導体層の接合体
JP5038565B2 (ja) * 2000-09-22 2012-10-03 株式会社東芝 セラミックス回路基板およびその製造方法
US6613443B2 (en) * 2000-10-27 2003-09-02 Kabushiki Kaisha Toshiba Silicon nitride ceramic substrate, silicon nitride ceramic circuit board using the substrate, and method of manufacturing the substrate
JP2005101624A (ja) * 2004-10-15 2005-04-14 Kyocera Corp パワーモジュール用配線基板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH104156A (ja) * 1996-06-14 1998-01-06 Mitsubishi Electric Corp 半導体装置用絶縁基板及び半導体装置
JPH11224923A (ja) * 1998-02-04 1999-08-17 Toshiba Corp 半導体スタック
JP2002201075A (ja) * 2000-10-27 2002-07-16 Toshiba Corp 窒化けい素セラミックス基板およびそれを用いた窒化けい素セラミックス回路基板並びにその製造方法
JP2002329814A (ja) * 2001-03-01 2002-11-15 Dowa Mining Co Ltd 半導体実装用絶縁基板及びパワーモジュール
JP2003063879A (ja) * 2001-08-29 2003-03-05 Dowa Mining Co Ltd 金属と金属またはセラミックスとの接合方法
WO2003090277A1 (en) * 2002-04-19 2003-10-30 Mitsubishi Materials Corporation Circuit board, process for producing the same and power module

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011187511A (ja) * 2010-03-04 2011-09-22 Toshiba Corp 窒化珪素基板およびそれを用いた半導体モジュール
WO2012070463A1 (ja) * 2010-11-22 2012-05-31 株式会社東芝 圧接構造用セラミックスヒートシンク材およびそれを用いた半導体モジュール並びに半導体モジュールの製造方法
US9057569B2 (en) 2010-11-22 2015-06-16 Kabushiki Kaisha Toshiba Ceramic heat sink material for pressure contact structure and semiconductor module using the same
US9655237B2 (en) 2011-10-11 2017-05-16 Hitachi Metals, Ltd. Silicon nitride substrate and method for producing silicon nitride substrate
EP2767524A4 (en) * 2011-10-11 2015-08-19 Hitachi Metals Ltd SILICON NITRIDE SUBSTRATE AND METHOD FOR MANUFACTURING SILICON NITRIDE SUBSTRATE
EP2851945A4 (en) * 2012-05-17 2016-01-27 Mitsubishi Electric Corp SEMICONDUCTOR MODULE AND SEMICONDUCTOR DEVICE
US9630846B2 (en) 2013-10-23 2017-04-25 Kabushiki Kaisha Toshiba Silicon nitride substrate and silicon nitride circuit board using the same
WO2015060274A1 (ja) 2013-10-23 2015-04-30 株式会社東芝 窒化珪素基板およびそれを用いた窒化珪素回路基板
US9884762B2 (en) 2013-10-23 2018-02-06 Kabushiki Kaisha Toshiba Silicon nitride substrate and silicon nitride circuit board using the same
US10322934B2 (en) 2013-10-23 2019-06-18 Kabushiki Kaisha Toshiba Silicon nitride substrate and silicon nitride circuit board using the same
US11070856B2 (en) 2013-12-09 2021-07-20 Saturn Licensing Llc Data processing device and data processing method
US11722713B2 (en) 2013-12-09 2023-08-08 Saturn Licensing Llc Data processing device and data processing method
JPWO2017056360A1 (ja) * 2015-09-28 2018-07-19 株式会社東芝 回路基板および半導体装置
JP2020114788A (ja) * 2019-01-17 2020-07-30 日立金属株式会社 メタライズド窒化ケイ素基板およびメタライズド窒化ケイ素基板の製造方法
DE112021004004T5 (de) 2020-07-29 2023-06-01 Japan Fine Ceramics Co. Ltd. Siliziumnitridsubstrat und Verfahren zur Herstellung hiervon

Also Published As

Publication number Publication date
US20120119349A1 (en) 2012-05-17
JPWO2011010597A1 (ja) 2012-12-27
US20150061107A1 (en) 2015-03-05
US8916961B2 (en) 2014-12-23
JP5675610B2 (ja) 2015-02-25
JP2015092600A (ja) 2015-05-14

Similar Documents

Publication Publication Date Title
JP5675610B2 (ja) 窒化珪素製絶縁シートおよびそれを用いた半導体モジュール構造体
EP3358614B1 (en) Circuit substrate and semiconductor device
JP6224171B2 (ja) 半導体モジュールの製造方法
EP3321957B1 (en) Ceramic metal circuit board and semiconductor device using same
JP5023165B2 (ja) セラミックス回路基板
EP2259308B1 (en) Substrate for power module with heat sink and method for producing the same, power module with heat sink, and substrate for power module
JP5598522B2 (ja) 回路基板及びこれを用いた半導体モジュール、回路基板の製造方法
EP2296177A1 (en) Substrate for power module, power module, and method for producing substrate for power module
US11270926B2 (en) Heat sink and method for manufacturing same
WO2011149065A1 (ja) 回路基板およびこれを用いた電子装置
JP2000323618A (ja) 銅回路接合基板及びその製造方法
EP3605601B1 (en) Method for producing insulated circuit board with heat sink
CN111225891B (zh) 接合体及绝缘电路基板
JP5366859B2 (ja) 窒化珪素基板およびそれを用いた半導体モジュール
JPH11330308A (ja) セラミックス回路基板およびその製造方法
EP3702341B1 (en) Bonded body and insulated circuit board
JP2008147309A (ja) セラミックス基板およびこれを用いた半導体モジュール
WO2007000963A1 (ja) 段差を有するセラミックス基板の製造方法
JP4476428B2 (ja) 窒化アルミニウム回路基板およびその製造方法
TW201035377A (en) Aluminum-graphite complex, heat radiating component using the same and LED luminescent member
WO2023058667A1 (ja) 金属ベース基板
EP4120335A1 (en) Heat sink integrated insulating circuit board
EP4331766A1 (en) Heat sink, and heat sink integrated-type insulating circuit board
JP2000196270A (ja) セラミック基板の取り付け構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10802217

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011523619

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13386735

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 10802217

Country of ref document: EP

Kind code of ref document: A1