WO2010138406A1 - Determination of optimal diameters for nanowires - Google Patents

Determination of optimal diameters for nanowires Download PDF

Info

Publication number
WO2010138406A1
WO2010138406A1 PCT/US2010/035726 US2010035726W WO2010138406A1 WO 2010138406 A1 WO2010138406 A1 WO 2010138406A1 US 2010035726 W US2010035726 W US 2010035726W WO 2010138406 A1 WO2010138406 A1 WO 2010138406A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanowire
color
pixel
photodiode
additional
Prior art date
Application number
PCT/US2010/035726
Other languages
French (fr)
Inventor
Munib Wober
Original Assignee
Zena Technologies, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zena Technologies, Inc. filed Critical Zena Technologies, Inc.
Priority to CN201080032638.3A priority Critical patent/CN102483323B/en
Publication of WO2010138406A1 publication Critical patent/WO2010138406A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/08Measuring arrangements characterised by the use of optical techniques for measuring diameters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/465Measurement of colour; Colour measuring devices, e.g. colorimeters taking into account the colour perception of the eye; using tristimulus detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/46Measurement of colour; Colour measuring devices, e.g. colorimeters
    • G01J3/50Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors
    • G01J3/51Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters
    • G01J3/513Measurement of colour; Colour measuring devices, e.g. colorimeters using electric radiation detectors using colour filters having fixed filter-detector pairs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14603Special geometry or disposition of pixel-elements, address-lines or gate-electrodes
    • H01L27/14607Geometry of the photosensitive area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J2003/1213Filters in general, e.g. dichroic, band

Definitions

  • the embodiments relate to nanowire devices, more particularly, to manufacturing nanowire image sensors.
  • An image sensor has a large number of sensor elements (pixels), generally greater than 1 million, in a Cartesian (square) grid.
  • Conventional color image sensors are fabricated with colored filters arranged in a Bayer configuration.
  • An Example of a convention Bayer configuration is illustrated in Fig. 6.
  • the color scheme includes red, green, and blue filters (RGB).
  • the Bayer filter pattern is 50% green, 25% red and 25% blue, hence is also referred to GRGB or other permutation such as RGGB. Twice as many green elements as red or blue are used to mimic the human eye's greater resolving power with green light. Since each pixel is filtered to record only one of three colors, the data from each pixel cannot fully determine color on its own.
  • demosaicing algorithms can be used to interpolate a set of complete red, green, and blue values for each point in the sensed scene.
  • RGB values typically vary from manufacturer to manufacturer based on the manufacturer's selection of dye or phosphor used to make their filters. Further, filter degradation over time may even lead to variations in the RGB values over time in the same device.
  • the layers of a typical sensor are listed in Table I and shown in Fig. 1.
  • ILD typically the first layer on a silicon substrate is the ILD layer and the topmost layer is the overcoat.
  • ILD refers to a inter-level dielectric layer
  • METALl, METAL2 and METAL3 refer to different metal layers
  • IMDlB, IMD2B and IMD5B refer to different inter-metal dielectric layers which are spacer layers
  • PASSl, PASS2 and PASS3 refer to different passivation layers (typically dielectric layers).
  • the total thickness of the layers above the silicon substrate of the image sensor is the stack height (s) of the image sensor and is the sum of the thickness of the individual layers.
  • the sum of the thickness of the individual layers is typically about 11.6 micrometers ( ⁇ m).
  • the space above the photosensitive element of a pixel must be transparent to light to allow incident light from a full color scene to impinge on the photosensitive element located in the silicon substrate. Consequently, no metal layers are routed across the photosensitive element of a pixel, leaving the layers directly above the photosensitive element clear.
  • the pixel pitch to stack height ratio determines the cone of light (F number) that can be accepted by the pixel and conveyed to the photosensitive element on the silicon. As pixels become smaller and the stack height increases, this number decreases, thereby lowering the efficiency of the pixel. More importantly, an increased stack height with greater number of metal layers obscure the light from being transmitted through the stack to reach the photosensitive element, in particular of the rays that impinge the sensor element at an angle.
  • One solution is to decrease the stack height by a significant amount (i.e., >2 ⁇ m). However, this solution is difficult to achieve in a standard CMOS process.
  • the photosensitive element such as a photodiode.
  • two of the components of light are filtered out for each pixel using a filter.
  • the red pixel has a filter that absorbs green and blue light, only allowing red light to pass to the sensor.
  • the difference in refractive index between the microlens 14 and the overcoat layer 15 will cause some of the incident photons to reflect off the overcoat rather than be transmitted to the photosensitive element.
  • Another loss may occur due to the incident light hitting the overcoat at too severe an angle and not being transmitted to the photosensitive element. Additionally, real devices have a quantum efficiency less than 100%. That is, even when photons reach the photosensitive element, a finite number of them do not produce a signal.
  • Crosstalk is a phenomenon by which a signal transmitted in one pixel or channel of a transmission system creates an undesired effect in another pixel or channel.
  • Spatial optical crosstalk occurs when the pixel size approaches the wavelength of visible light. Diffraction causes a sharp increase in the amount of light that reaches adjacent photodiodes rather than the desired photodiode.
  • Spectral crosstalk is when light that should have been blocked by a color filter manages to pass through the filter.
  • Electrical crosstalk is when photo-generated electrons travel to adjacent pixels through the silicon substrate.
  • nanoscale technology and in particular the ability to produce nanowires has opened up possibilities of designing structures and combining materials in ways not possible in planar technology.
  • One basis for this development is that the material properties of a nanowire makes it possible to overcome the requirement of placing a color filters on each photo diode of an image sensor and to significantly increase the collection of all the light that impinges on the image sensor.
  • Nanowires of silicon can be grown on silicon without defects.
  • US 20040075464 by Samuelson et al. a plurality of devices based on nanowire structures are disclosed. DESCRIPTION OF THE FIGURES
  • Fig. 1 shows a cross sectional view of a conventional image sensor.
  • Fig. 2 shows a cross sectional view of an embodiment of an image sensor.
  • Fig. 3 shows a portion of an array of image sensors
  • Fig. 4 shows a schematic of a top view of a device containing image sensors of the embodiments disclosed herein, each image sensor having two outputs representing the complementary colors.
  • Fig. 5 is a plot of the Smith-Pokorny standard spectral response curves.
  • Fig. 6 is a schematic illustration of a conventional Bayer color scheme.
  • Fig. 7 illustrates a simulation of the absorption of a 60 nm wire and a 80 nm wire.
  • Fig. 8 illustrates a simulation of the absorption the substrates of a 60 nm wire and a 80 nm wire device.
  • Another embodiment relates to a first method of scene reconstruction by transforming digitized response from an array of nanowire photodiode devices by calculating the red, green, and blue color of the scene.
  • Another embodiment relates to a second method of scene reconstruction by transforming digitized response from an array of nanowire photodiode devices by calculating the luminance and chrominance of the scene.
  • the first scene reconstruction method the scene is reconstructed by stepping across the array of nanowire photodiode devices one photodiode at a time.
  • the second scene reconstruction method the scene is reconstructed by stepping across the array of nanowire photodiode devices two photodiodes at a time.
  • Another embodiment relates to a device having at least two different pixels that include nanowire photodiodes having nanowires with diameters optimized to minimize the differences between the spectral response of the device and the human eye.
  • the response of the human eye may be taken from a standard spectral response curve.
  • Another embodiment relates to a computer readable medium which is configured to simulate the spectral response of a nanowire photodiode and determine the error difference between the spectral response of a nanowire photodiode of a predetermined diameter and the human eye.
  • the simulation may be used to determine the optimal diameter of the nanowire in the nanowire photodiode to minimize the difference between the nanowire photodiode and the human eye.
  • An embodiment relates to a method of determining a diameter for a nanowire for a nanowire device comprising providing a first nanowire device comprising at least a first pixel and a second pixel, wherein the first pixel comprises a first nanowire comprising a predetermined material and a predetermined diameter, the first pixel configured to detect a first predetermined color and a first complementary color of the first predetermined color, and the second pixel comprises a second nanowire comprising a second predetermined material and a second predetermined diameter, the second pixel configured to detect a second predetermined color and a second complementary color of the second predetermined color, determining a first error difference between a first predetermined color spectral response of the first predetermined color of the first nanowire and one or more standard spectral response curves, determining a second error difference between a first complimentary color spectral response of the first complementary color of the first nanowire and one or more standard spectral response curves, determining a third error difference between a second predetermined color spectral response of
  • the method further comprising providing a plurality of additional nanowire devices, each of the additional nanowire devices comprising at least an additional first pixel and an additional second pixel, wherein each of the additional first pixels comprises an additional first nanowire comprising the same predetermined material as the first nanowire but having a different diameter from each of the other additional first nanowires and from the first nanowire and each of the additional second pixels comprise an additional second nanowire comprising the same predetermined material as the second nanowire but having a different diameter from each other second additional nanowires and from the second nanowire determining the total error differences between spectral responses of the plurality of additional nanowire devices and the one or more standard spectral response curves and determining the diameters of the nanowires of the nanowire device of the first nanowire device and the plurality of additional nanowire devices that produces the least error difference between the spectral responses with standard spectral response curves.
  • the standard spectral response curves are Smith-Pokorny eye response spectral curves. In another aspect, the standard spectral response curves are CIE standard observer curves. Preferably, the total least error difference is determined with a least squares analysis. In one aspect of the embodiment, the first pixel is configured to detect blue and yellow and the second pixel is configured to detect cyan and red.
  • the first pixel is configured to detect blue and yellow and the second pixel is configured to detect cyan and red and determining the first, second, third, and fourth error differences between the spectral response of the spectral responses of the first and second nanowires and the Smith-Pokorny eye response spectral curves comprises determining the constants in the following equations:
  • the nanowire device comprises an optical pipe comprising a core and a cladding, wherein the core is configured to transmit light with wavelengths up to the predetermined color.
  • the first nanowire has a diameter of approximately 60 nm and the second nanometer has a diameter of approximately 80 nm when the material used for the construction of the nano wire is Si.
  • the method further comprises fabricating a sensor array having a plurality of first and second pixels.
  • the sensor array comprises rows and columns of alternating first and second pixels.
  • Another embodiment relates to a method of scene reconstruction comprising receiving digitized responses of an array of nanowire photodiode devices, the array comprising a alternating plurality of first nanowire photodiode devices and second nanowire photodiode devices, the first nanowire photodiode devices configured to detect a first color and a first complementary color complementary to the first color and the second nanowire photodiode devices configured to detect a second color and a second complementary color complementary to the second color and transforming the digitized responses by stepping across a row of alternating first and second nanowire photodiode devices and successively calculating the red, green, and blue scene color from a pair of adjacent first and second nanowire photodiode devices, wherein stepping across the row is performed one nanowire phtodiode device at a time.
  • transforming the digitized responses comprises calculating the red, green, and blue scene color with the following equations for a first yellow/blue nanowire photodiode device adjacent to
  • Rl Ayr*Yl + Abr*Bl + Arr*R2 + Acr*C2
  • Gl Ayg*Yl + Abg*Bl + Arg*R2 + Acg*C2
  • Bl Ayb*Yl + Abb*Bl + Arb*R2 + Acb*C2
  • Yl, Bl and R2, C2 are spectral responses of the first yellow/blue nanowire photodiode device and the second red/cyan nanowire photodiode device, respectively, and Ayr, Abr, Arr, Acr, Ayg, Abg, Arg, Acg, Ayb, Abb, Arb, and Acb are constants.
  • transforming the digitized responses comprises calculating the red, green, and blue scene color with the following equations for a third yellow/blue nanowire photodiode device adjacent to the second red/cyan nanowire photodiode device:
  • R2 Ayr*Y3 + Abr*B3 + Arr*R2 + Acr*C2
  • G2 Ayg*Y3 + Abg*B3 + Arg*R2 + Acg*C2
  • B2 Ayb*Y3+ Abb*B3 + Arb*R2 + Acb*C2,
  • C2 are spectral responses of the third yellow/blue nanowire photodiode device and the second red/cyan nanowire photodiode device, respectively, and Ayr, Abr, Arr, Acr, Ayg, Abg, Arg, Acg, Ayb, Abb, Arb, and Acb are constants.
  • Another embodiment relates to a method of scene reconstruction comprising receiving digitized responses of an array of nanowire photodiode devices, the array comprising an alternating plurality of first nanowire photodiode devices and second nanowire photodiode devices, the first nanowire photodiode devices configured to detect a first color and a first complementary color complementary to the first color and the second nanowire photodiode devices configured to detect a second color and a second complementary color complementary to the second color and transforming the digitized responses by stepping across a row of alternating first and second nanowire photodiode devices and successively calculating the luminance and chrominance of the scene from a pair of adjacent first and second nanowire photodiode devices, wherein stepping across a row is performed a pair of nanodiode devices at a time.
  • transforming the digitized responses comprises calculating the luminance and chrominance of the scene with the following equations for a first yellow/blue nanowire photodiode device adjacent to a first red/cyan nanowire photodiode device:
  • Luminancel Ly*Yl + Lb*Bl
  • Luminance2 Lr*R2 + Lc*C2
  • Another aspect further comprises using a 4:2:2 subsampling in which the output pixel data stream is arranged in luminance chrominance sequence such as: Luminancel, Chrominancel, Luminance2, Chrominance2, ...
  • Another embodiment relates to a device comprising at least a first pixel and a second pixel, wherein the first pixel comprises a first nanowire comprising a predetermined material and a predetermined diameter, the first pixel configured to detect a first predetermined color and a first complementary color of the first predetermined color and the second pixel comprises a second nanowire comprising a second predetermined material and a second predetermined diameter, the second pixel configured to detect a second predetermined color and a second complementary color of the second predetermined color, wherein the first nanowire and the second nanowire have diameters which were determined to produce the least total error difference between spectral responses of the first and second pixels with standard spectral response curves.
  • the device is an optical sensor.
  • the standard spectral response curves are Smith-Pokorny eye response spectral curves. In another aspect, the standard spectral response curves are CIE standard observer curves. Preferably, the least total error difference is determined with a least squares analysis.
  • the first pixel comprises a first light pipe comprising the first nanowire and a first cladding surrounding the first nanowire and the second pixel comprises a second light pipe comprising the second nanowire and a second cladding surrounding the first nanowire.
  • the first pixel comprises a first light pipe comprising only first nanowire and a cavity surrounding the first nanowire and the second pixel comprises a second light pipe comprising the second nanowire and a second cavity surrounding the first nanowire.
  • the complementary colors are detected with a photodiodes in the substrate of the first and second pixels.
  • the first pixel further comprises a reflective surface surrounding the first light pipe and the second pixel further comprises a reflective surface surrounding the second light pipe.
  • the first pixel comprises a first substrate and a first photodiode in the first substrate
  • the second pixel comprises a second substrate and a second photodiode in the second substrate.
  • the first complementary color is detected by the first photodiode in the first substrate and the second complementary color is detected by the second photodiode in the second substrate.
  • Another embodiment relates to a tangible computer readable medium comprising computer executable instructions for simulating a first nanowire device comprising at least a first pixel and a second pixel, wherein the first pixel comprises a first nanowire comprising a predetermined material and a predetermined diameter, the first pixel configured to detect a first predetermined color and a first complementary color of the first predetermined color and the second pixel comprises a second nanowire comprising a second predetermined material and a second predetermined diameter, the second pixel configured to detect a second predetermined color and a second complementary color of the second predetermined color and determining the error difference between a spectral response of the first pixel and the second pixel with standard spectral response curves.
  • the computer readable medium further comprises instructions for simulating a plurality of additional nanowire devices, each of the additional nanowire devices comprising at least an additional first pixel and an additional second pixel, wherein each of the additional first pixels comprises an additional first nanowire comprising the same predetermined material as the first nanowire but having a different diameter from each of the other additional first nanowires and from the first nanowire and each of the additional second pixels comprise an additional second nanowire comprising the same predetermined material as the second nanowire but having a different diameter from each other second additional nanowires and from the second nanowire, determining the error difference between the spectral responses of the plurality of additional nanowire devices and one or more Standard spectral response curves and determining the diameters of the nanowires of the nanowire device of the first nanowire device and the plurality of additional nanowire devices that produces the least total error difference between the spectral responses with standard spectral response curves.
  • the least error difference is determined with a least squares analysis.
  • a waveguide has a cutoff wavelength that is the lowest frequency that the waveguide can propagate.
  • an ideal waveguide in the core whose cutoff wavelength is at green will not propagate red light
  • an ideal waveguide in the core whose cutoff wavelength is at blue will not propagate red and green light.
  • Real waveguides will suffer some spectral crosstalk. That is, a real waveguide in the core whose cutoff wavelength is at green will propagate a small amount of red light and an real waveguide in the core whose cutoff wavelength is at blue will propagate a small amount of red and green light.
  • a first pixel includes a blue waveguide embedded within a white waveguide, which could be in the cladding.
  • a second pixel includes a cyan (blue/green waveguide) embedded within a white waveguide cladding.
  • blue light remains in the blue waveguide core, while blue and/or green light remains in the cyan waveguide of the second core.
  • the remainder of the light remains in the white waveguide in one or more the claddings.
  • An optical pipe is an element to confine and transmit an electromagnetic radiation that impinges on the optical pipe.
  • the optical pipe can include a core and a cladding.
  • a core and a cladding are complementary components of the optical pipe and are configured to separate wavelengths of an electromagnetic radiation beam incident on the optical pipe at a selective wavelength through the core and cladding.
  • An active element is any type of circuit component with the ability to electrically control electron and/or hole flow (electricity controlling electricity or light, or vice versa). Components incapable of controlling current by means of another electrical signal are called passive elements. Resistors, capacitors, inductors, transformers, and even diodes are all considered passive elements. Active elements in embodiments disclosed herein include, but are not limited to, an active waveguide, transistors, silicon-controlled rectifiers (SCRs), light emitting diodes, and photodiodes.
  • SCRs silicon-controlled rectifiers
  • a waveguide is a system or material designed to confine and direct electromagnetic radiation of selective wavelengths in a direction determined by its physical boundaries.
  • the selective wavelength is a function of the diameter of the waveguide.
  • An active waveguide is a waveguide that has the ability to electrically control electron and/or hole flow (electricity controlling electricity or light, or vice versa). This ability of the active waveguide, for example, is one reason why the active waveguide could be considered to be "active" and within the genus of an active element.
  • An embodiment relates to methods to enhance the transmission of light to optically active devices on an integrated circuit (IC).
  • the device is configured to resolve black and white or luminescence information contained in the electromagnetic radiation by appropriate combinations of energies of the electromagnetic radiation detected in the core and the cladding.
  • the core comprises a waveguide.
  • the active element is configured to be a photodiode, a charge storage capacitor, or combinations thereof.
  • the core comprises a waveguide comprising a semiconductor material.
  • the device could further comprise a passivation layer around the waveguide in the core.
  • the device could further comprise a metal layer around the waveguide in the core.
  • the device could further comprise a metal layer around the passivation layer.
  • the device comprises no color or IR filter.
  • the optical pipe may be circular, non-circular or conical.
  • the device could further comprise at least a pair of metal contacts with at least one of the metal contacts being contacted to the waveguide.
  • the optical pipe is configured to separate wavelengths of an electromagnetic radiation beam incident on the optical pipe at a selective wavelength through the core and the cladding without requiring a color or IR filter.
  • the waveguide is configured to convert energy of the electromagnetic radiation transmitted through the waveguide and to generate electron hole pairs (excitons).
  • the waveguide comprises a PIN junction that is configured to detect the excitons generated in the waveguide.
  • the device could further comprise an insulator layer around the waveguide in the core and a metal layer around the insulator layer to form a capacitor that is configured to collect the excitons generated in the waveguide and store charge.
  • the could device further comprise metal contacts that connect to the metal layer and waveguide to control and detect the charge stored in the capacitor.
  • the cladding is configured to be a channel to transmit the wavelengths of the electromagnetic radiation beam that do not transmit through the core.
  • the cladding comprises a passive waveguide.
  • the device could further comprise a peripheral photosensitive element, wherein the peripheral photosensitive element is operably coupled to the cladding.
  • an electromagnetic radiation beam receiving end of the optical pipe comprises a curved surface.
  • the peripheral photosensitive element is located on or within a substrate.
  • the core and the cladding are located on a substrate comprising an electronic circuit.
  • the device could further comprise a lens structure or an optical coupler over the optical pipe, wherein the optical coupler is operably coupled to the optical pipe.
  • the optical coupler comprises a curved surface to channel the electromagnetic radiation into the optical pipe.
  • the device could further comprise a stack surrounding the optical pipe, the stack comprising metallic layers embedded in dielectric layers, wherein the dielectric layers have a lower refractive index than that of the cladding.
  • a surface of the stack comprises a reflective surface.
  • the core comprises a first waveguide and the cladding comprises a second waveguide.
  • a compound light detector comprising at least two different devices, each device comprising a optical pipe comprising a core and a cladding, the optical pipe being configured to separate wavelengths of an electromagnetic radiation beam incident on the optical pipe at a selective wavelength through the core and the cladding, wherein the core is configured to be both a channel to transmit the wavelengths up to the selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the core, and the compound light detector is configured to reconstruct a spectrum of wavelengths of the electromagnetic radiation beam.
  • the core comprises a first waveguide having the selective wavelength such that electromagnetic radiation of wavelengths beyond the selective wavelength transmits through the cladding, further wherein the selective wavelength of the core of each of the at least two different devices is different such that the at least two different devices separate the electromagnetic radiation beam incident on the compound light detector at different selective wavelengths.
  • the cladding comprises a second waveguide that permits electromagnetic radiation of wavelengths beyond the selective wavelength to remains within the cladding and be transmitted to a peripheral photosensitive element.
  • a cross-sectional area of the cladding at an electromagnetic radiation beam emitting end of the cladding is substantially equal to an area of the peripheral photosensitive element.
  • the compound light detector could further comprise a stack of metallic and non-metallic layers surrounding the optical pipe.
  • the compound light detector is configured to detect energies of the electromagnetic radiation of four different ranges of wavelengths wherein the energies of the electromagnetic radiation of the four different ranges of wavelengths are combined to construct red, green and blue colors.
  • a compound light detector comprising at least a first device and a second device, wherein the first device is configured to provide a first separation of an electromagnetic radiation beam incident on the optical pipe at a first selective wavelength without any filter, the second device is configured to provide a second separation of the electromagnetic radiation beam incident on the optical pipe at a second selective wavelength without any filter, the first selective wavelength is different from the second selective wavelength, each of the first device and the second device comprises a core that is configured to be both a channel to transmit the wavelengths up to the selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the core, and the compound light detector is configured to reconstruct a spectrum of wavelengths of the electromagnetic radiation beam.
  • the two different devices comprise cores of different diameters.
  • the spectrum of wavelengths comprises wavelengths of visible light, IR or combinations thereof.
  • the first device comprises a core of a different diameter than that of the second device and the spectrum of wavelengths comprises wavelengths of visible light, IR or combinations thereof.
  • the first device comprises a first waveguide having the first selective wavelength such that electromagnetic radiation of wavelength beyond the first selective wavelength will not be confined by the first waveguide, wherein the second device comprises a second waveguide having the second selective wavelength such that electromagnetic radiation of wavelength beyond the second selective wavelength will not be confined by the second waveguide, further wherein the first selective wavelength is different from the second selective wavelength.
  • the first device further comprises a first waveguide that permits electromagnetic radiation of wavelength of greater than the first selective wavelength to remains within the first waveguide and the second device further comprises a second waveguide that permits electromagnetic radiation of wavelength of greater than the second selective wavelength to remains within the second waveguide.
  • each of the first and second devices comprises a cladding comprising a photosensitive element.
  • the compound light detector could further comprise a stack of metallic and non-metallic layers surrounding the first and second devices.
  • the first device comprises a core of a different diameter than that of the second device and the spectrum of wavelengths comprises wavelengths of visible light.
  • a plurality of light detectors are arranged on a square lattice, an hexagonal lattice, or in a different lattice arrangement.
  • the lens structure or the optical coupler comprises a first opening and a second opening with the first opening being larger than the second opening, and a connecting surface extending between the first and second openings.
  • the connecting surface comprises a reflective surface.
  • a plurality of light detectors are arranged on a regular tessellation.
  • a coupler that may take the shape of a micro lens could be located on the optical pipe to collect and guide the electromagnetic radiation into the optical pipe.
  • the optical pipe comprises of a nanowire core of refractive index ni surrounded by a cladding of refractive index n 2 .
  • the core functions as an active waveguide and the cladding of the optical pipe could function as a passive waveguide with a peripheral photosensitive element surrounding the core to detect the electromagnetic radiation transmitted through the passive waveguide of the cladding.
  • Passive waveguides do not absorb light like color filters, but can be designed to selectively transmit selected wavelengths.
  • the cross sectional area of the end of the cladding of the optical pipe adjacent to the peripheral photosensitive element in or on the substrate below the cladding is about the same size as the area of the peripheral photosensitive element.
  • a waveguide whether passive or active, has a cutoff wavelength that is the lowest frequency that the waveguide can propagate.
  • the diameter of the semiconductor waveguide of the core serves as the control parameter for the cutoff wavelength of the waveguide.
  • the optical pipe could be circular in or cross section so as to function as a circular waveguide characterized by the following parameters: (1) the core radius (R c ); (2) the core index of refraction (ni); and (3) the cladding index of refraction f ⁇ ). These parameters generally determine the wavelength of light that can propagate through the waveguide.
  • a waveguide has a cutoff wavelength, ⁇ ct . The portion of the incident electromagnetic radiation having wavelengths longer than the cutoff wavelength would not be confined with the core.
  • an optical pipe that functions as a waveguide whose cutoff wavelength is at green will not propagate red light though the core, and an optical pipe that functions as a waveguide whose cutoff wavelength is at blue will not propagate red and green light through the core.
  • a blue waveguide and a cyan (blue/green) waveguide could be embedded within white waveguides, which could be in the cladding. Blue light could remain in the blue waveguide core, blue or green light could remain in the cyan (green/blue) waveguide of another core. The remainder of the light could remain in the white waveguides in one or more the claddings.
  • the core could also serve as a photodiode by absorbing the confined light and generating electron hole pairs (excitons).
  • an active waveguide in the core whose cutoff wavelength is at green will not propagate red light but will also absorb the confined green light and generate excitons.
  • a core is made up of a three layers, semiconductor, insulator and metal thus forming a capacitor to collect the charge generated by the light induced carriers.
  • the core could be formed by growing a nanowire and depositing an insulator layer and a metal layer surrounding the nanowire.
  • a core having a PIN junction that induces a potential gradient in the core wire could be formed by growing a nanowire and doping the nanowire core while it is growing as a PIN junction and contacting it at the appropriate points using the various metal layers that are part of any device.
  • the photosensitive elements of the embodiments typically comprise a photodiode, although not limited to only a photodiode.
  • the photodiode is doped to a concentration from about 1 x 10 16 to about 1 x 10 18 dopant atoms per cubic centimeter, while using an appropriate dopant.
  • the layers 1-11 in Figure 2 illustrate different stacking layers similar to layers
  • the stacking layers comprise dielectric material-containing and metal-containing layers.
  • the dielectric materials include as but not limited to oxides, nitrides and oxynitrides of silicon having a dielectric constant from about 4 to about
  • dielectric constant gate dielectric materials having a dielectric constant from about 20 to at least about 100.
  • These higher dielectric constant dielectric materials may include, but are not limited to hafnium oxides, hafnium silicates, titanium oxides, barium- strontium titanates (BSTs) and lead-zirconate titanates (PZTs).
  • the dielectric material-containing layers may be formed using methods appropriate to their materials of composition.
  • methods include thermal or plasma oxidation or nitridation methods, chemical vapor deposition methods (including atomic layer chemical vapor deposition methods) and physical vapor deposition methods.
  • the metal-containing layers could function as electrodes.
  • Non-limiting examples include certain metals, metal alloys, metal suicides and metal nitrides, as well as doped polysilicon materials (i.e., having a dopant concentration from about 1
  • the metal-containing layers may be deposited using any of several methods. Non-limiting examples include chemical vapor deposition methods (also including atomic layer chemical vapor deposition methods) and physical vapor deposition methods.
  • the metal-containing layers could comprise a doped polysilicon material (having a thickness typically in the range 1000 to 1500 Angstrom
  • the dielectric and metallization stack layer comprises a series of dielectric passivation layers. Also embedded within the stack layer are interconnected metallization layers. Components for the pair of interconnected metallization layers include, but are not limited to contact studs, interconnection layers, interconnection studs.
  • the individual metallization interconnection studs and metallization interconnection layers that could be used within the interconnected metallization layers may comprise any of several metallization materials that are conventional in the semiconductor fabrication art. Non-limiting examples include certain metals, metal alloys, metal nitrides and metal suicides. Most common are aluminum metallization materials and copper metallization materials, either of which often includes a barrier metallization material, as discussed in greater detail below. Types of metallization materials may differ as a function of size and location within a semiconductor structure. Smaller and lower-lying metallization features typically comprise copper containing conductor materials. Larger and upper-lying metallization features typically comprise aluminum containing conductor materials.
  • the series of dielectric passivation layers may also comprise any of several dielectric materials that are conventional in the semiconductor fabrication art. Included are generally higher dielectric constant dielectric materials having a dielectric constant from 4 to about 20. Non-limiting examples that are included within this group are oxides, nitrides and oxynitrides of silicon. For example, the series of dielectric layers may also comprise generally lower dielectric constant dielectric materials having a dielectric constant from about 2 to about 4.
  • hydrogels such as silicon hydrogel, aerogels like silicon Al, or carbon aerogel, silsesquioxane spin-on-glass dielectric materials, fluorinated glass materials, organic polymer materials, and other low dielectric constant materials such as doped silicon dioxide (e.g., doped with carbon, fluorine), and porous silicon dioxide.
  • the dielectric and metallization stack layer comprises interconnected metallization layers and discrete metallization layers comprising at least one of copper metallization materials and aluminum metallization materials.
  • the dielectric and metallization stack layer also comprises dielectric passivation layers that also comprise at least one of the generally lower dielectric constant dielectric materials disclosed above.
  • the dielectric and metallization stack layer could have an overall thickness from about 1 to about 4 microns. It may comprise from about 2 to about 4 discrete horizontal dielectric and metallization component layers within a stack.
  • the layers of the stack layer could be patterned to form patterned dielectric and metallization stack layer using methods and materials that are conventional in the semiconductor fabrication art, and appropriate to the materials from which are formed the series of dielectric passivation layers.
  • the dielectric and metallization stack layer may not be patterned at a location that includes a metallization feature located completely therein.
  • the dielectric and metallization stack layer may be patterned using wet chemical etch methods, dry plasma etch methods or aggregate methods thereof. Dry plasma etch methods as well as e-beam etching if the dimension needs to be very small, are generally preferred insofar as they provide enhanced sidewall profile control when forming the series of patterned dielectric and metallization stack layer.
  • the planarizing layer 11 may comprise any of several optically transparent planarizing materials. Non-limiting examples include spin-on-glass planarizing materials and organic polymer planarizing materials.
  • the planarizing layer 11 could extend above the optical pipe such that the planarizing layer 11 would have a thickness sufficient to at least planarize the opening of the optical pipe, thus providing a planar surface for fabrication of additional structures within the CMOS image sensor.
  • the planarizing layer could be patterned to form the patterned planarizing layer.
  • the series of color filter layers would typically include either the primary colors of red, green and blue, or the complementary colors of yellow, cyan and magenta.
  • the series of color filter layers would typically comprise a series of dyed or pigmented patterned photoresist layers that are intrinsically imaged to form the series of color filter layers.
  • the series of color filter layers may comprise dyed or pigmented organic polymer materials that are otherwise optically transparent, but extrinsically imaged while using an appropriate mask layer.
  • Alternative color filter materials may also be used.
  • the filter could also be filter for a black and white, or IR sensors wherein the filter cuts off visible and pass IR predominantly.
  • the spacer layer (13) could be one or more layers made of any material that physically, but not optically, separates the stacking layers from the micro lens (14).
  • the spacer layer could be formed of a dielectric spacer material or a laminate of dielectric spacer materials, although spacer layers formed of conductor materials are also known. Oxides, nitrides and oxynitrides of silicon are commonly used as dielectric spacer materials. Oxides, nitrides and oxynitrides of other elements are not excluded.
  • the dielectric spacer materials may be deposited using methods analogous, equivalent or identical to the methods described above.
  • the spacer layer could be formed using a blanket layer deposition and etchback method that provides the spacer layer with the characteristic inward pointed shape.
  • the micro lens (14) may comprise any of several optically transparent lens materials that are known in the art. Non-limiting examples include optically transparent inorganic materials, optically transparent organic materials and optically transparent composite materials. Most common are optically transparent organic materials.
  • the lens layers could be formed incident to patterning and reflow of an organic polymer material that has a glass transition temperature lower than the series of color filter layers 12, if present, or the patterned planarizing layer 11.
  • the high index material in the core could, for example, be silicon nitride having a refractive index of about 2.0.
  • the lower index cladding layer material could, for example, be a glass, for example a material selected from Table II, having a refractive index about 1.5.
  • PESiN refers to plasma enhanced SiN and PESiO refers to plasma enhanced SiO.
  • a micro lens could be located on the optical pipe near the incident electromagnetic radiation beam receiving end of the image sensor.
  • the function of the micro lens or in more general terms is to be a coupler, i.e., to couple the incident electromagnetic radiation beam into the optical pipe. If one were to choose a micro lens as the coupler in this embodiment, its distance from the optical pipe would be much shorter than to the photosensitive element, so the constraints on its curvature are much less stringent, thereby making it implementable with existing fabrication technology.
  • the shape of the optical pipe could be different for different embodiments.
  • the optical pipe could cylindrical, that is, the diameter of the pipe remains the substantially the same throughout the length of the optical pipe.
  • the optical pipe could conical, where the upper diameter of the cross sectional area of the optical pipe could be greater or smaller than the lower diameter of the cross sectional area of the optical pipe.
  • the terms "upper” and “lower” refer to the ends of the optical pipe located closer to the incident electromagnetic radiation beam receiving and exiting ends of the image sensor.
  • Other shapes include a stack of conical sections. Table II lists several different glasses and their refractive indices. These glasses could be used for the manufacture of the optical pipe such that refractive index of the core is higher than that of the cladding.
  • the image sensors of the embodiments could be fabricated using different transparent glasses having different refractive indices without the use of pigmented color filters.
  • an array of image sensors could be configured to obtain complementary colors having wavelengths of electromagnetic radiation separated at a cutoff wavelength in the core and cladding of each optical pipe of every image sensor.
  • the complementary colors are generally two colors when mixed in the proper proportion produce a neutral color (grey, white, or black). This configuration also enables the capture and guiding of most of the electromagnetic radiation incident beam impinging on the micro lens to the photosensitive elements (i.e., photodiodes) located at the lower end of the optical pipe.
  • Two adjacent or substantially adjacent image sensors with different color complementary separation can provide complete information to reconstruct a full color scene according to embodiments described herein.
  • This technology of embodiments disclosed herein can further supplant pigment based color reconstruction for image sensing which suffers from the inefficiency of discarding (through absorption) the non selected color for each pixel.
  • Each physical pixel of a device containing an image sensor of the embodiments disclosed herein would have two outputs representing the complementary colors, e.g., blue (complement yellow) designated as output type 1 and cyan (complement red) designated as output type 2. These outputs would be arranged as follows:
  • Each physical pixel would have complete luminance information obtained by combining its two complementary outputs.
  • the same image sensor can be used either as a full resolution black and white or full color sensor.
  • the full spectrum of wavelengths of the incident electromagnetic radiation beam (e.g., the full color information of the incident light) could be obtained by the appropriate combination of two adjacent pixels either horizontally or vertically as opposed to 4 pixels for the conventional Bayer pattern.
  • each pixel containing an image sensor of the embodiments disclosed herein could be as small as 1 micron or less in pitch and yet have sufficient sensitivity. This could open the way for contact imaging of very small structures such as biological systems.
  • the embodiments which include a plurality of embodiments of an image sensor, as well as methods for fabrication thereof, will be described in further detail within the context of the following description. The description is further understood within the context of the drawings described above. The drawings are for illustrative purposes and as such are not necessarily drawn to scale.
  • An embodiment comprises a sensor array of two different types of pixels, each different type of pixel having a core of a different diameter such that cores have diameters di and U 2 for directing light of different wavelengths ( ⁇ and X R ).
  • the two cores also serve as photodiodes to capture light of wavelengths ⁇ and X R .
  • the claddings of the two image sensors serve for transmitting the light of wave length ⁇ W ⁇ and ⁇ w- R .
  • the light of wave length ⁇ w_ ⁇ and ⁇ w- R transmitted through the cladding is detected by the peripheral photosensitive elements surrounding the cores.
  • (w) refers to the wavelength of white light. Signals from the 4 photodiodes (two located in the cores and two located in or on the substrate surrounding the core) in the compound pixel are used to construct color.
  • the embodiments include a nanostructured photodiode (PD) according to the embodiments comprise a substrate and an upstanding nanowire protruding from the substrate.
  • a pn-junction giving an active region to detect light may be present within the structure.
  • the nanowire, a part of the nanowire, or a structure in connection with the nanowire, forms a waveguide directing and detecting at least a portion of the light that impinges on the device.
  • the waveguide doubles up as spectral filter that enables the determination of the color range of the impinging light.
  • the waveguiding properties of the optical pipe of the embodiments can be improved in different ways.
  • the waveguide core has a first effective refractive index, ni (also referred as n w below), and the material in the cladding surrounding at least a portion of the waveguide has a second effective refractive index, n 2 (also referred as n c below), and by assuring that the first refractive index is larger than the second refractive index, ni> n 2 , good wave-guiding properties are provided to the optical pipe.
  • the waveguiding properties may be further improved by introducing optically active cladding layers on the waveguide core.
  • the nanowire core is used as a waveguide, and also as a nanostructured PD which may also be an active capacitor.
  • the nanostructured PD according to the embodiments is well suited for mass production, and the method described is scaleable for industrial use.
  • the nanowire technology offers possibilities in choices of materials and material combinations not possible in conventional bulk layer techniques. This is utilised in the nanostructured PD according to the embodiments to provide PDs detecting light in well defined wavelength regions not possible by conventional technique, for example blue, cyan or white.
  • the design according to the embodiments allows for inclusions of heterostructures as well as areas of different doping within the nanowire, facilitating optimization of electrical and/or optical properties.
  • a nanostructured PD comprises of an upstanding nanowire.
  • an upstanding nanowire should be interpreted as a nanowire protruding from the substrate in some angle, the upstanding nanowire for example being grown from the substrate, preferably by as vapor-liquid-solid (VLS) grown nanowires.
  • VLS vapor-liquid-solid
  • the angle with the substrate will typically be a result of the materials in the substrate and the nanowire, the surface of the substrate and growth conditions. By controlling these parameters it is possible to produce nanowires pointing in only one direction, for example vertical, or in a limited set of directions.
  • nanowires and substrates of zinc -blende and diamond semiconductors composed of elements from columns III, V and IV of the periodic table such nanowires can be grown in the [111] directions and then be grown in the normal direction to any ⁇ 111 ⁇ substrate surface.
  • Other directions given as the angle between normal to the surface and the axial direction of the nanowire include 70,53° ⁇ 111 ⁇ , 54,73° ⁇ 100 ⁇ , and 35,27° and 90°, both to ⁇ 110 ⁇ .
  • the nanowires define one, or a limited set, of directions.
  • a part of the nanowire or structure formed from the nanowire is used as a waveguide directing and confining at least a portion of the light impinging on the nanostructured PD in a direction given by the upstanding nanowire.
  • the ideal waveguiding nanostructured PD structure includes a high refractive index core with one or more surrounding cladding with refractive indices less than that of the core.
  • the structure is either circular symmetrical or close to being circular symmetrical. Light waveguiding in circular symmetrical structures are well know for fiber-optic applications and many parallels can be made to the area of rare- earth-doped fiber optic devices.
  • NA Numerical Aperture
  • the typical values of the refractive indexes for III-V semiconductor core material are in the range from 2.5 to 5.5 when combined with glass type of cladding material (such as Si ⁇ 2 or Si3N 4 ) having refractive indexes ranging from 1.4 to 2.3.
  • a larger angle of capture means light impinging at larger angles can be coupled into the waveguide for better capture efficiency.
  • One consideration in the optimization of light capture is to provide a coupler into the nanowire structure to optimize light capture into the structure.
  • a nanostructured PD according to the embodiments is schematically illustrated in FIG. 2 and comprises a substrate and a nanowire epitaxially grown from the substrate in an defined angle ⁇ .
  • a portion of or all of the nanowire could be arranged to act as a waveguiding portion directing at least a portion of the impinging light in a direction given by the elongated direction of the nanowire, and will be referred to as a waveguide.
  • a pn-junction necessary for the diode functionality is formed by varying the doping of the wire along its length while it is growing.
  • Two contact could be provided on the nanowire for example one on top or in a wrapping configuration on the circumferential outer surface (depicted) and the other contact could be provided in the substrate.
  • the substrate and part of the upstanding structure may be covered by a cover layer, for example as a thin film as illustrated or as material filling the space surrounding the nanostructured PD.
  • the nanowire typically has a diameter in the order of 50 nm to 500 nm,
  • the length of the nanowire is typically and preferably in the order of 1 to 10 ⁇ m.
  • the pn- junction results in an active region arranged in the nanowire. Impinging photons in the nanowire are converted to electron hole pairs and in one implementation are subsequently separated by the electric fields generated by the PN junction along the length of the nanowire.
  • the materials of the different members of the nanostructured PD are chosen so that the nanowire will have good waveguiding properties vis-a-vis the surrounding materials, i.e. the refractive index of the material in the nanowire should preferably be larger than the refractive indices of the surrounding materials.
  • the nanowire may be provided with one or more layers.
  • a first layer may be introduced to improve the surface properties (i.e., reduce charge leakage) of the nanowire.
  • Further layers, for example an optical layer may be introduced specifically to improve the waveguiding properties of the nanowire, in manners similar to what is well established in the area of fiber optics.
  • the optical layer typically has a refractive index in between the refractive index of the nanowire and the surrounding cladding region material.
  • the intermediate layer has a graded refractive index, which has been shown to improve light transmission in certain cases. If an optical layer is utilised the refractive index of the nanowire, n w , should define an effective refractive index for both the nanowire and the layers.
  • the ability to grow nanowires with well defined diameters is in one embodiment utilised to optimize the waveguiding properties of the nanowire or at least the waveguide with regards to the wavelength of the light confined and converted by the nanostructured PD.
  • the diameter of the nanowire is chosen so as to have a favorable correspondence to the wavelength of the desired light.
  • the dimensions of the nanowire are such that a uniform optical cavity, optimized for the specific wavelength of the produced light, is provided along the nanowire.
  • the core nanowire must be sufficiently wide to capture the desired light. A rule of thumb would be that diameter must be larger than ⁇ /2n w , wherein ⁇ is the wavelength of the desired light and n w is the refractive index of the nanowire.
  • a diameter of about 60 nm may be appropriate to confine blue light only and one 80 nm may be appropriate for to confine both blue and green light only in a silicon nanowire.
  • a diameter above 100 nm would be sufficient.
  • An approximate preferred upper limit for the diameter of the nanowire is given by the growth constrains, and is in the order of 500 nm.
  • the length of the nanowire is typically and preferably in the order of 1 - 10 ⁇ m, providing enough volume for the light conversion region
  • a reflective layer is in one embodiment, provided on the substrate and extending under the wire. The purpose of the reflective layer is to reflect light that is guided by the wire but has not been absorbed and converted to carriers in the nanostructured PD.
  • the reflective layer is preferably provided in the form of a multilayered structure comprising repeated layers of silicates for example, or as a metal film . If the diameter of the nanowire is sufficiently smaller than the wavelength of the light a large fraction of the directed light mode will extend outside the waveguide, enabling efficient reflection by a reflective layer surrounding the narrow the nanowire waveguide
  • An alternative approach to getting a reflection in the lower end of the waveguide core is to arrange a reflective layer in the substrate underneath the nanowire.
  • Yet another alternative is to introduce reflective means within the waveguide.
  • Such reflective means can be a multilayered structure provided during the growth process of the nanowire, the multilayered structure comprising repeated layers of for example SiN x / SiO x (dielectric) .
  • the previous depicted cylindrical volume element which is achievable with the referred methods of growing nanowires, should be seen as an exemplary shape.
  • Other geometries that are plausible include, but is not limited to a cylindrical bulb with a dome-shaped top, a spherical/ ellipsoidal, and pyramidal.
  • the color response of a color light sensor is closely matched to the color response of the human eye.
  • the first step to optimize the diameter of a nanowire photodetector is to align the response of the nanowire of a desired wavelength with the corresponding response curves of the human eye using computer simulation. For example, the response of a nanowire with a desired blue and green response may be aligned to the blue and green response curves of the human eye.
  • the first nanowire sensor includes a light pipe with a core configured to channel blue light.
  • the core of the first nanowire sensor is surrounded with a cladding configured to channel light of the complementary color of the core.
  • the cladding preferably channels yellow light.
  • the second nanowire sensor includes a light pipe with a core configured to channel cyan light.
  • the core of the second nanowire sensor is surrounded with a cladding configured to channel light of the complementary color to the second core.
  • the cladding preferably channels red light. The degree to which a linear combination of the spectral response of the blue and cyan nanowires and their complementary responses fit the eye response curves determines the color reproduction capability of the image sensor.
  • the Smith-Pokorny human eye response curves (shown in Fig. 5) could be used for the determination of an error difference between the spectral response of the image sensor of the claimed invention and the Smith-Pokorny human eye response curves.
  • the Smith-Pokorny human eye response curves are linear combinations of the Commission Internationale d'Eclairage (CIE) eye response curves.
  • CIE Commission Internationale d'Eclairage
  • the Smith- Pokorny human eye response curves are not only standard, but have the added benefit of having positive response at all points of the visible spectrum. Other standard response curves, however, may be used.
  • the optimal diameters of the cores of the nanowire sensors are determined by computer simulation. In this embodiment, two different nanowire sensors are used. The diameters of the nanowire cores of the first and second nanowire sensors are preselected along with the materials of the nanowire cores and claddings. Based on the material properties of the cores and the claddings and any optional features of the sensor (e.g.
  • a simulation is run to determine the spectral characteristics of the nanowire sensors.
  • the simulation includes the effect of crosstalk.
  • the spectral response of the nanowire sensors are then compared to standard spectral response curves to determine the difference, or error between the nanowire sensors and the standard spectral response curves.
  • Fig. 7 illustrates the results of a simulation of the absorption of a 60 nm nanowire and a 80 nm nanowire.
  • the 60 nm nanowire primarily absorbs blue light (approximately 450-500 nm), allowing light of higher wavelengths to leak out of the nanowire.
  • the 80 nm nanowire absorbs primarily blue light (approximately 450-500 nm) and green light (approximately 500- 570 nm), allowing light of higher wavelengths to leak out of the nanowire.
  • Fig. 8 illustrates the results of a simulation of the absorption of the substrates of a 60 nm nanowire device and a 80 nm nanowire device. That is, Fig. 8 illustrates the results of the light that leaks out of the 60 nm nanowire and 80 nanowire illustrated in Fig. 7. As can be seen in Fig.
  • the absorption is low for both the 60 nm nanowire substrate and the 80 nm nanowire substrate. That is, essentially all of the light that leaks out of the 60 nm nanowire and 80 nm nanowire reaches the substrate. Note, both the 60 nm nanowire substrate and the 80 nm nanowire substrate absorb some lower (blue/green) wavelength light. This is due to spectral crosstalk as discussed above. In one embodiment, the standard spectral response curves used are Smith-
  • the first nanowire sensor include a blue core with a complementary yellow cladding.
  • the second nanowire sensor include a cyan core with a complementary red cladding. If Rsp, Gsp, and Bsp are the Smith-Pokorny eye response spectral curves for red, green, and blue respectively, the error can be calculated from the following equations:
  • Cnw are the spectral responses of the second nanowire
  • Ayr, Abr, Arr, Acr, Ayg, Abg, Arg, Acg, Ayb, Abb, Arb, Acb are constants.
  • the value of the constants Axx are determined such that the above equations are satisfied with the least error.
  • the spectral error of the device can then be determined by taking a least square fit of the error between the best fit spectral response curves of the nanowire sensor devices and the Smith-Pokorny eye response spectral curves.
  • the spectral error of the device can be determined by other regression or curve fitting techniques, such as least square parabola and least square m th degree polynomial.
  • new diameters may be selected for the first and second nanowire devices and the process repeated until the above equations are satisfied with the least error, thereby identifying the nanowire diameters resulting to the lowest total error from the standard Smith-Pokorny eye response spectral curves.
  • digitized responses are received from a sensor array comprising alternating pixels of nanowire photodiodes.
  • the reconstruction method is based on the photodiode sensor array illustrated in Fig. 3.
  • the array has been illustrated as a 2x2 matrix.
  • the four nanowire photodiodes may be configured in the same row. Indeed, for the following explanation of the method of this embodiment, it will be assumed that the four nanowire photodiodes are in the same row.
  • the first and third nanowire photodiodes (pixels 1 and 3) have a blue core and a yellow cladding.
  • the second and fourth nanowire photodiodes (pixels 2 and 4) have a cyan core and a red cladding.
  • the scene is reconstructed by taking the digitized responses of two adjacent pixels at a time and transforming the digitized responses of the two adjacent pixels to determine the red, green, and blue color of the scene.
  • the transformation is performed with the use of color matching functions, the use of which are well known in the art. Color matching functions are a numerical description of the chromatic response of the observer. By applying the appropriate color matching function, the yellow, blue, cyan, and red outputs of adjacent pixels can be mathematically transformed to the red, blue and green response of the standard observer.
  • the transformation is performed by stepping across a row one pixel at a time. That is, first the color data from pixels 1 and 2 are transformed, then 2 and 3, then 3 and 4, and so on until the end of the row is reached. After transformation of the first row is completed, the next row is transformed in a similar manner and so on, until the entire scene or image is reconstructed.
  • the present embodiment can be transformed more quickly and more efficiently than a conventional Bayer configured color sensor.
  • the first scene reconstruction method embodiment can be performed with the following equations for the first pair of pixels (pixels 1 and 2):
  • Rl Ayr*Yl + Abr*Bl + Arr*R2 + Acr*C2
  • Gl Ayg*Yl + Abg*Bl + Arg*R2 + Acg*C2
  • Bl Ayb*Yl + Abb*Bl + Arb*R2 + Acb*C2, where Yl and Bl are spectral responses of the first yellow/blue nanowire photodiode device (pixel 1), R2and C2 are spectral responses of the second red/cyan nanowire photodiode device (pixel 2), and Ayr, Abr, Arr, Acr, Ayg, Abg, Arg, Acg, Ayb, Abb, Arb, Acb are constants.
  • the following equations may be used:
  • R2 Ayr*Y3 + Abr*B3 + Arr*R2 + Acr*C2
  • G2 Ayg*Y3 + Abg*B3 + Arg*R2 + Acg*C2
  • B2 Ayb*Y3+ Abb*B3 + Arb*R2 + Acb*C2
  • Y3 and B3 are spectral responses of the third yellow/blue nanowire photodiode device (pixel 3)
  • R2 and C2 are the spectral response of the second red/cyan nanowire photodiode device (pixel 2)
  • Ayr, Abr, Arr, Acr, Ayg, Abg, Arg, Acg, Ayb, Abb, Arb, Acb are constants.
  • the remaining pixels in the sensor array are transformed by stepping across the row one pixel at a time and solving equations as above.
  • digitized responses are also received from a sensor array comprising alternating pixels of nanowire photodiodes.
  • the first and third nanowire photodiodes (pixels 1 and 3) have a blue core and a yellow cladding.
  • the second and fourth nanowire photodiodes (pixels 2 and 4) have a cyan core and a red cladding.
  • the scene is reconstructed by taking the digitized responses of two adjacent pixels at a time and transforming the digitized responses to determine the luminance and the chrominance of the scene. In this embodiment, the transformation is performed by stepping across a row two pixels at a time.
  • first pixels 1 and 2 are transformed, then 3 and 4, then 5 and 6, and so on until the end of the row is reached.
  • the next row is transformed in a similar manner. Because, as in the first scene reconstruction method embodiment, a single row pixels can be transformed by stepping across the row, there is no need to buffer an entire row as is necessary with conventional Bayer configured color sensors.
  • the second scene reconstruction method embodiment also can be transformed more quickly and more efficiently than a conventional Bayer configured color sensor.
  • the transformation via the second scene reconstruction method embodiment can be performed with the equations below, illustrated for the first pair of pixels
  • the transformation is performed using the CIE Luv transformation which include a luminance value (L) and two chromance coordinates
  • Luminance 1 Ly* Yl + Lb*Bl
  • Luminance2 Lr* R2 + Lc*C2
  • Chrominancel Ayu*Yl + Abu*Bl + Aru*R2 + Acu*C2
  • Chrominance2 Ayv*Yl + Abv*B 1 + Arv*R2 + Acv*C2
  • Yl, Bl and R2, C2 are the spectral responses of the first and second nanowire photodiode devices, respectively, and Ly, Lb, Lr, Lc, Ayu, Ayv, Abu, Abv, Aru, Arv, Acu, and Acv are constants.
  • the remaining pixels in the array are transformed in a similar manner.
  • the data is transformed one row at a time.
  • the nanowire color sensor is configured so that more than one row can be transformed at the same time. This may be accomplished, for example, with the addition of processing circuitry.
  • the transformation may be performed in an interlaced fashion.
  • the data can be subsampled.
  • the output data stream in the 4:2:2 format is of the form:
  • Other subsampling formats include, but are not limited to, 4:2: 1, 4: 1: 1, and 4:2:0.
  • FIG 4 is a schematic illustration of a sensor according to an embodiment.
  • Each physical pixel of a device containing an image sensor of the embodiments disclosed herein would have two outputs representing the complementary colors, e.g., cyan, red (C, R) designated as output type 1 or yellow, blue (Y, B) designated as output type 2 as shown in Figure 4.
  • C, R cyan, red
  • Y, B blue
  • These four outputs of two pixels can be resolved to reconstruct a full color scene of an image viewed by a device containing the image sensors of the embodiments described herein.
  • Another embodiment relates to a computer readable medium comprising computer executable instructions for simulating nanowire photodiode (pixel) devices.
  • the diameters of nanowires of the nanowire photodiodes (pixels) can be optimized to minimize the error difference in spectral response between the nanowire photodiodes and the spectral response of the human eye.
  • the spectral response of the human eye may be represented with standard eye response curves such as the CIE curves or the Smith-Pokorny eye response spectral curves.
  • the minimum or least error difference may be determined with the use of a least squares analysis.
  • the simulation may take into account the effect of crosstalk.
  • the cladding could be absent such that the complementary color is detected by the photodiode on the substrate.
  • a signal bearing medium examples include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link, etc.).
  • a typical data processing system generally includes one or more of a system unit housing, a video display device, a memory such as volatile and non-volatile memory, processors such as microprocessors and digital signal processors, computational entities such as operating systems, drivers, graphical user interfaces, and applications programs, one or more interaction devices, such as a touch pad or screen, and/or control systems including feedback loops and control motors (e.g., feedback for sensing position and/or velocity; control motors for moving and/or adjusting components and/or quantities).
  • a typical data processing system may be implemented utilizing any suitable commercially available components, such as those typically found in data computing/communication and/or network computing/communication systems.
  • any two components so associated can also be viewed as being “operably connected,” or “operably coupled,” to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being “operably couplable,” to each other to achieve the desired functionality.
  • operably couplable include but are not limited to optical coupling to permit transmission of optical light, for example via an optical pipe or fiber, physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components.

Abstract

Methods of optimizing the diameters of nanowire photodiode light sensors. The method includes comparing the response of nanowire photodiode pixels having predetermined diameters with standard spectral response curves and determining the difference between the spectral response of the photodiode pixels and the standard spectral response curves. Also included are nanowire photodiode light sensors with optimized nanowire diameters and methods of scene reconstruction.

Description

DETERMINATION OF OPTIMAL DIAMETERS FOR NANOWIRES
FIELD OF INVENTION
The embodiments relate to nanowire devices, more particularly, to manufacturing nanowire image sensors.
BACKGROUND
An image sensor has a large number of sensor elements (pixels), generally greater than 1 million, in a Cartesian (square) grid. Conventional color image sensors are fabricated with colored filters arranged in a Bayer configuration. An Example of a convention Bayer configuration is illustrated in Fig. 6. The color scheme includes red, green, and blue filters (RGB). The Bayer filter pattern is 50% green, 25% red and 25% blue, hence is also referred to GRGB or other permutation such as RGGB. Twice as many green elements as red or blue are used to mimic the human eye's greater resolving power with green light. Since each pixel is filtered to record only one of three colors, the data from each pixel cannot fully determine color on its own.
To obtain a full-color image, various demosaicing algorithms can be used to interpolate a set of complete red, green, and blue values for each point in the sensed scene.
Indeed, to obtain the full color image of the scene, data from all three color filters is required. Because data from all three color filters is required and each row of filters only has two types of color filter, at least two rows of pixels must be used to reproduce the scene using a Bayer configuration. This, in turn, has implications on the performance of image processing. Conventional digital image processors process one row at a time. Therefore, at least one row of sensor data must be held in a buffer while data from the next row is processed. In this manner, red, green, and blue data for each point in the image can be processed, however, it comes at the cost of processing speed.
One challenge of a designer of color image sensors is to consistently align the color response of the sensor pixels to the response curve of the human eye. Filter- based color sensors are device dependent. That is, different devices detect or reproduce different RGB values. The RGB values typically vary from manufacturer to manufacturer based on the manufacturer's selection of dye or phosphor used to make their filters. Further, filter degradation over time may even lead to variations in the RGB values over time in the same device. The layers of a typical sensor are listed in Table I and shown in Fig. 1.
TABLE I Typical Layer Description Thickness (μm)
15 OVERCOAT 2.00
14 MICRO LENS 0.773
13 SPACER 1.40
12 COLOR FILTER 1.20
11 PLANARIZATION 1.40
10 PASS3 0.600
9 PASS2 0.150
8 PASSl 1.00
7 IMD5B 0.350
6 METAL3 3 1.18
5 IMD2B 0.200
4 METAL2 2 1.18
3 IMDlB 0.200
2 METALl 1.18
1 ILD 0.750
In Table I, typically the first layer on a silicon substrate is the ILD layer and the topmost layer is the overcoat. In Table I, ILD refers to a inter-level dielectric layer, METALl, METAL2 and METAL3 refer to different metal layers, IMDlB, IMD2B and IMD5B refer to different inter-metal dielectric layers which are spacer layers, PASSl, PASS2 and PASS3 refer to different passivation layers (typically dielectric layers).
The total thickness of the layers above the silicon substrate of the image sensor is the stack height (s) of the image sensor and is the sum of the thickness of the individual layers. In the example of Table I, the sum of the thickness of the individual layers is typically about 11.6 micrometers (μm).
The space above the photosensitive element of a pixel must be transparent to light to allow incident light from a full color scene to impinge on the photosensitive element located in the silicon substrate. Consequently, no metal layers are routed across the photosensitive element of a pixel, leaving the layers directly above the photosensitive element clear.
The pixel pitch to stack height ratio (p/s) determines the cone of light (F number) that can be accepted by the pixel and conveyed to the photosensitive element on the silicon. As pixels become smaller and the stack height increases, this number decreases, thereby lowering the efficiency of the pixel. More importantly, an increased stack height with greater number of metal layers obscure the light from being transmitted through the stack to reach the photosensitive element, in particular of the rays that impinge the sensor element at an angle. One solution is to decrease the stack height by a significant amount (i.e., >2 μm). However, this solution is difficult to achieve in a standard CMOS process. Another issue, which possibly is the one that most limits the performance of the conventional image sensors, is that less than about one-third of the light impinging on the image sensor is transmitted to the photosensitive element such as a photodiode. In the conventional image sensors, in order to distinguish the three components of light so that the colors from a full color scene can be reproduced, two of the components of light are filtered out for each pixel using a filter. For example, the red pixel has a filter that absorbs green and blue light, only allowing red light to pass to the sensor.
Other issues may also affect the efficiency of the pixel. For example, the difference in refractive index between the microlens 14 and the overcoat layer 15 will cause some of the incident photons to reflect off the overcoat rather than be transmitted to the photosensitive element. Typically, the difference between the refractive indices of air (n=1.0) and a typical polymer (n=1.5) overcoat 15 is small, resulting in a small reflective loss. Another, larger reflective loss, however, is generated at the boundary between the inter-level dielectric layer 1 (n=1.5) and the substrate 20 (n=4-5). This is due to the larger difference between the refractive indices of the inter-level dielectric layer 1 (n=1.5) and a typical silicon substrate 20 (n=4-5). Another loss may occur due to the incident light hitting the overcoat at too severe an angle and not being transmitted to the photosensitive element. Additionally, real devices have a quantum efficiency less than 100%. That is, even when photons reach the photosensitive element, a finite number of them do not produce a signal.
Another issue that plagues image sensors is crosstalk. Crosstalk is a phenomenon by which a signal transmitted in one pixel or channel of a transmission system creates an undesired effect in another pixel or channel. For optical sensors, there are at least three types of crosstalk: (1) spatial optical crosstalk, (2) spectral crosstalk, and (3) electrical crosstalk. Spatial optical crosstalk occurs when the pixel size approaches the wavelength of visible light. Diffraction causes a sharp increase in the amount of light that reaches adjacent photodiodes rather than the desired photodiode. Spectral crosstalk is when light that should have been blocked by a color filter manages to pass through the filter. Electrical crosstalk is when photo-generated electrons travel to adjacent pixels through the silicon substrate. The development of nanoscale technology and in particular the ability to produce nanowires has opened up possibilities of designing structures and combining materials in ways not possible in planar technology. One basis for this development is that the material properties of a nanowire makes it possible to overcome the requirement of placing a color filters on each photo diode of an image sensor and to significantly increase the collection of all the light that impinges on the image sensor.
Nanowires of silicon can be grown on silicon without defects. In US 20040075464 by Samuelson et al. a plurality of devices based on nanowire structures are disclosed. DESCRIPTION OF THE FIGURES
Fig. 1 shows a cross sectional view of a conventional image sensor.
Fig. 2 shows a cross sectional view of an embodiment of an image sensor.
Fig. 3 shows a portion of an array of image sensors
Fig. 4 shows a schematic of a top view of a device containing image sensors of the embodiments disclosed herein, each image sensor having two outputs representing the complementary colors.
Fig. 5 is a plot of the Smith-Pokorny standard spectral response curves.
Fig. 6 is a schematic illustration of a conventional Bayer color scheme.
Fig. 7 illustrates a simulation of the absorption of a 60 nm wire and a 80 nm wire.
Fig. 8 illustrates a simulation of the absorption the substrates of a 60 nm wire and a 80 nm wire device. DETAILED DESCRIPTION
In the following detailed description, reference is made to the accompanying drawings, which form a part hereof. In the drawings, similar symbols typically identify similar components, unless context dictates otherwise. The illustrative embodiments described in the detailed description, drawings, and claims are not meant to be limiting. Other embodiments may be utilized, and other changes may be made, without departing from the spirit or scope of the subject matter presented here. This disclosure is drawn, inter alia, to methods, apparatus, systems, and devices related to an image sensor and nanowire pixels. An embodiment relates to a method for optimizing the diameter of the nanowires of an image sensor. Another embodiment relates to a first method of scene reconstruction by transforming digitized response from an array of nanowire photodiode devices by calculating the red, green, and blue color of the scene. Another embodiment relates to a second method of scene reconstruction by transforming digitized response from an array of nanowire photodiode devices by calculating the luminance and chrominance of the scene. In the first scene reconstruction method, the scene is reconstructed by stepping across the array of nanowire photodiode devices one photodiode at a time. In the second scene reconstruction method, the scene is reconstructed by stepping across the array of nanowire photodiode devices two photodiodes at a time. Another embodiment relates to a device having at least two different pixels that include nanowire photodiodes having nanowires with diameters optimized to minimize the differences between the spectral response of the device and the human eye. The response of the human eye may be taken from a standard spectral response curve.
Another embodiment relates to a computer readable medium which is configured to simulate the spectral response of a nanowire photodiode and determine the error difference between the spectral response of a nanowire photodiode of a predetermined diameter and the human eye. The simulation may be used to determine the optimal diameter of the nanowire in the nanowire photodiode to minimize the difference between the nanowire photodiode and the human eye.
An embodiment relates to a method of determining a diameter for a nanowire for a nanowire device comprising providing a first nanowire device comprising at least a first pixel and a second pixel, wherein the first pixel comprises a first nanowire comprising a predetermined material and a predetermined diameter, the first pixel configured to detect a first predetermined color and a first complementary color of the first predetermined color, and the second pixel comprises a second nanowire comprising a second predetermined material and a second predetermined diameter, the second pixel configured to detect a second predetermined color and a second complementary color of the second predetermined color, determining a first error difference between a first predetermined color spectral response of the first predetermined color of the first nanowire and one or more standard spectral response curves, determining a second error difference between a first complimentary color spectral response of the first complementary color of the first nanowire and one or more standard spectral response curves, determining a third error difference between a second predetermined color spectral response of the second predetermined color of the second nanowire and the one or more standard spectral response curves and determining a fourth error difference between a second complimentary color spectral response of the second complementary color of the second nanowire and the one or more standard spectral response curves, and determining a total error difference from the first, second, third, and fourth error differences.
In one aspect of this embodiment, the method further comprising providing a plurality of additional nanowire devices, each of the additional nanowire devices comprising at least an additional first pixel and an additional second pixel, wherein each of the additional first pixels comprises an additional first nanowire comprising the same predetermined material as the first nanowire but having a different diameter from each of the other additional first nanowires and from the first nanowire and each of the additional second pixels comprise an additional second nanowire comprising the same predetermined material as the second nanowire but having a different diameter from each other second additional nanowires and from the second nanowire determining the total error differences between spectral responses of the plurality of additional nanowire devices and the one or more standard spectral response curves and determining the diameters of the nanowires of the nanowire device of the first nanowire device and the plurality of additional nanowire devices that produces the least error difference between the spectral responses with standard spectral response curves.
In another aspect of this embodiment, the standard spectral response curves are Smith-Pokorny eye response spectral curves. In another aspect, the standard spectral response curves are CIE standard observer curves. Preferably, the total least error difference is determined with a least squares analysis. In one aspect of the embodiment, the first pixel is configured to detect blue and yellow and the second pixel is configured to detect cyan and red. In another aspect, the first pixel is configured to detect blue and yellow and the second pixel is configured to detect cyan and red and determining the first, second, third, and fourth error differences between the spectral response of the spectral responses of the first and second nanowires and the Smith-Pokorny eye response spectral curves comprises determining the constants in the following equations:
Rsp ~ Ayr*Ynw + Abr*Bnw + Arr*Rnw + Acr*Cnw, Gsp ~ Ayg*Ynw + Abg*Bnw + Arg*Rnw + Acg*Cnw, Bsp ~ Ayb*Ynw + Abb*Bnw + Arb*Rnw + Acb*Cnw, where Rsp, Gsp, and Bsp are the Smith-Pokorny eye response spectral curves, Ynw (yellow), Bnw (blue) and Rnw (red), and Cnw (cyan) are the spectral responses of the first and second nanowires, respectively, and Ayr, Abr, Arr, Acr, Ayg, Abg, Arg, Acg, Ayb, Abb, Arb, and Acb are constants.
In another aspect, the nanowire device comprises an optical pipe comprising a core and a cladding, wherein the core is configured to transmit light with wavelengths up to the predetermined color. In an aspect, the first nanowire has a diameter of approximately 60 nm and the second nanometer has a diameter of approximately 80 nm when the material used for the construction of the nano wire is Si. In another aspect, the method further comprises fabricating a sensor array having a plurality of first and second pixels. In another aspect, the sensor array comprises rows and columns of alternating first and second pixels.
Another embodiment relates to a method of scene reconstruction comprising receiving digitized responses of an array of nanowire photodiode devices, the array comprising a alternating plurality of first nanowire photodiode devices and second nanowire photodiode devices, the first nanowire photodiode devices configured to detect a first color and a first complementary color complementary to the first color and the second nanowire photodiode devices configured to detect a second color and a second complementary color complementary to the second color and transforming the digitized responses by stepping across a row of alternating first and second nanowire photodiode devices and successively calculating the red, green, and blue scene color from a pair of adjacent first and second nanowire photodiode devices, wherein stepping across the row is performed one nanowire phtodiode device at a time. In aspect of the embodiment, transforming the digitized responses comprises calculating the red, green, and blue scene color with the following equations for a first yellow/blue nanowire photodiode device adjacent to a second red/cyan nanowire photodiode device:
Rl = Ayr*Yl + Abr*Bl + Arr*R2 + Acr*C2, Gl = Ayg*Yl + Abg*Bl + Arg*R2 + Acg*C2, Bl = Ayb*Yl + Abb*Bl + Arb*R2 + Acb*C2,
where Yl, Bl and R2, C2, are spectral responses of the first yellow/blue nanowire photodiode device and the second red/cyan nanowire photodiode device, respectively, and Ayr, Abr, Arr, Acr, Ayg, Abg, Arg, Acg, Ayb, Abb, Arb, and Acb are constants. In another aspect, transforming the digitized responses comprises calculating the red, green, and blue scene color with the following equations for a third yellow/blue nanowire photodiode device adjacent to the second red/cyan nanowire photodiode device:
R2 = Ayr*Y3 + Abr*B3 + Arr*R2 + Acr*C2, G2 = Ayg*Y3 + Abg*B3 + Arg*R2 + Acg*C2,
B2 = Ayb*Y3+ Abb*B3 + Arb*R2 + Acb*C2,
Where Y3, B3 and R2, C2 are spectral responses of the third yellow/blue nanowire photodiode device and the second red/cyan nanowire photodiode device, respectively, and Ayr, Abr, Arr, Acr, Ayg, Abg, Arg, Acg, Ayb, Abb, Arb, and Acb are constants.
Another embodiment relates to a method of scene reconstruction comprising receiving digitized responses of an array of nanowire photodiode devices, the array comprising an alternating plurality of first nanowire photodiode devices and second nanowire photodiode devices, the first nanowire photodiode devices configured to detect a first color and a first complementary color complementary to the first color and the second nanowire photodiode devices configured to detect a second color and a second complementary color complementary to the second color and transforming the digitized responses by stepping across a row of alternating first and second nanowire photodiode devices and successively calculating the luminance and chrominance of the scene from a pair of adjacent first and second nanowire photodiode devices, wherein stepping across a row is performed a pair of nanodiode devices at a time.
In one aspect of the embodiment, transforming the digitized responses comprises calculating the luminance and chrominance of the scene with the following equations for a first yellow/blue nanowire photodiode device adjacent to a first red/cyan nanowire photodiode device:
Luminancel = Ly*Yl + Lb*Bl Luminance2 = Lr*R2 + Lc*C2 Chrominance 1 = Ayu*Yl + Abu*Bl + Aru*R2 + Acu*C2 Chrominance2 = Ayv*Y 1 + Abv*B 1 + Arv*R2 +
Acv*C2 where Yl, Bl and R2, C2 are the spectral responses of the first and second nanowire photodiode devices, respectively, and Ly, Lb, Lr, Lc, Ayu, Ayv, Abu, Abv, Aru, Arv, Acu, and Acv are constants. Another aspect further comprises using a 4:2:2 subsampling in which the output pixel data stream is arranged in luminance chrominance sequence such as: Luminancel, Chrominancel, Luminance2, Chrominance2, ...
Another embodiment relates to a device comprising at least a first pixel and a second pixel, wherein the first pixel comprises a first nanowire comprising a predetermined material and a predetermined diameter, the first pixel configured to detect a first predetermined color and a first complementary color of the first predetermined color and the second pixel comprises a second nanowire comprising a second predetermined material and a second predetermined diameter, the second pixel configured to detect a second predetermined color and a second complementary color of the second predetermined color, wherein the first nanowire and the second nanowire have diameters which were determined to produce the least total error difference between spectral responses of the first and second pixels with standard spectral response curves. In one aspect, the device is an optical sensor. In another aspect, the standard spectral response curves are Smith-Pokorny eye response spectral curves. In another aspect, the standard spectral response curves are CIE standard observer curves. Preferably, the least total error difference is determined with a least squares analysis.
In one aspect of the embodiment, the first pixel comprises a first light pipe comprising the first nanowire and a first cladding surrounding the first nanowire and the second pixel comprises a second light pipe comprising the second nanowire and a second cladding surrounding the first nanowire. In another aspect, the first pixel comprises a first light pipe comprising only first nanowire and a cavity surrounding the first nanowire and the second pixel comprises a second light pipe comprising the second nanowire and a second cavity surrounding the first nanowire. In this aspect, the complementary colors are detected with a photodiodes in the substrate of the first and second pixels. In another aspect, the first pixel further comprises a reflective surface surrounding the first light pipe and the second pixel further comprises a reflective surface surrounding the second light pipe. In another aspect, the first pixel comprises a first substrate and a first photodiode in the first substrate, the second pixel comprises a second substrate and a second photodiode in the second substrate. In another aspect, the first complementary color is detected by the first photodiode in the first substrate and the second complementary color is detected by the second photodiode in the second substrate.
Another embodiment relates to a tangible computer readable medium comprising computer executable instructions for simulating a first nanowire device comprising at least a first pixel and a second pixel, wherein the first pixel comprises a first nanowire comprising a predetermined material and a predetermined diameter, the first pixel configured to detect a first predetermined color and a first complementary color of the first predetermined color and the second pixel comprises a second nanowire comprising a second predetermined material and a second predetermined diameter, the second pixel configured to detect a second predetermined color and a second complementary color of the second predetermined color and determining the error difference between a spectral response of the first pixel and the second pixel with standard spectral response curves. One aspect of the embodiment, the computer readable medium further comprises instructions for simulating a plurality of additional nanowire devices, each of the additional nanowire devices comprising at least an additional first pixel and an additional second pixel, wherein each of the additional first pixels comprises an additional first nanowire comprising the same predetermined material as the first nanowire but having a different diameter from each of the other additional first nanowires and from the first nanowire and each of the additional second pixels comprise an additional second nanowire comprising the same predetermined material as the second nanowire but having a different diameter from each other second additional nanowires and from the second nanowire, determining the error difference between the spectral responses of the plurality of additional nanowire devices and one or more Standard spectral response curves and determining the diameters of the nanowires of the nanowire device of the first nanowire device and the plurality of additional nanowire devices that produces the least total error difference between the spectral responses with standard spectral response curves. In another aspect, the least error difference is determined with a least squares analysis.
A waveguide has a cutoff wavelength that is the lowest frequency that the waveguide can propagate. As a result, an ideal waveguide in the core whose cutoff wavelength is at green will not propagate red light, and an ideal waveguide in the core whose cutoff wavelength is at blue will not propagate red and green light. Real waveguides, of course, will suffer some spectral crosstalk. That is, a real waveguide in the core whose cutoff wavelength is at green will propagate a small amount of red light and an real waveguide in the core whose cutoff wavelength is at blue will propagate a small amount of red and green light. In one implementation, a first pixel includes a blue waveguide embedded within a white waveguide, which could be in the cladding. A second pixel includes a cyan (blue/green waveguide) embedded within a white waveguide cladding. Preferably, blue light remains in the blue waveguide core, while blue and/or green light remains in the cyan waveguide of the second core. Preferably the remainder of the light remains in the white waveguide in one or more the claddings. An optical pipe is an element to confine and transmit an electromagnetic radiation that impinges on the optical pipe. The optical pipe can include a core and a cladding.
A core and a cladding are complementary components of the optical pipe and are configured to separate wavelengths of an electromagnetic radiation beam incident on the optical pipe at a selective wavelength through the core and cladding. An active element is any type of circuit component with the ability to electrically control electron and/or hole flow (electricity controlling electricity or light, or vice versa). Components incapable of controlling current by means of another electrical signal are called passive elements. Resistors, capacitors, inductors, transformers, and even diodes are all considered passive elements. Active elements in embodiments disclosed herein include, but are not limited to, an active waveguide, transistors, silicon-controlled rectifiers (SCRs), light emitting diodes, and photodiodes. A waveguide is a system or material designed to confine and direct electromagnetic radiation of selective wavelengths in a direction determined by its physical boundaries. Preferably, the selective wavelength is a function of the diameter of the waveguide. An active waveguide is a waveguide that has the ability to electrically control electron and/or hole flow (electricity controlling electricity or light, or vice versa). This ability of the active waveguide, for example, is one reason why the active waveguide could be considered to be "active" and within the genus of an active element.
An embodiment relates to methods to enhance the transmission of light to optically active devices on an integrated circuit (IC). In some embodiments, the device is configured to resolve black and white or luminescence information contained in the electromagnetic radiation by appropriate combinations of energies of the electromagnetic radiation detected in the core and the cladding.
In the embodiments disclosed herein, preferably, the core comprises a waveguide. Preferably, the active element is configured to be a photodiode, a charge storage capacitor, or combinations thereof. More preferably, the core comprises a waveguide comprising a semiconductor material. The device could further comprise a passivation layer around the waveguide in the core. The device could further comprise a metal layer around the waveguide in the core. The device could further comprise a metal layer around the passivation layer. Preferably, the device comprises no color or IR filter. The optical pipe may be circular, non-circular or conical. Preferably, the core has a core index of refraction (ni), and the cladding has a cladding index of refraction (n2), wherein ni > n2 or ni = n2.
In some embodiments, the device could further comprise at least a pair of metal contacts with at least one of the metal contacts being contacted to the waveguide. Preferably, the optical pipe is configured to separate wavelengths of an electromagnetic radiation beam incident on the optical pipe at a selective wavelength through the core and the cladding without requiring a color or IR filter. Preferably, the waveguide is configured to convert energy of the electromagnetic radiation transmitted through the waveguide and to generate electron hole pairs (excitons). Preferably, the waveguide comprises a PIN junction that is configured to detect the excitons generated in the waveguide. In some embodiments, the device could further comprise an insulator layer around the waveguide in the core and a metal layer around the insulator layer to form a capacitor that is configured to collect the excitons generated in the waveguide and store charge. The could device further comprise metal contacts that connect to the metal layer and waveguide to control and detect the charge stored in the capacitor. Preferably, the cladding is configured to be a channel to transmit the wavelengths of the electromagnetic radiation beam that do not transmit through the core. Preferably, the cladding comprises a passive waveguide.
In some embodiments, the device could further comprise a peripheral photosensitive element, wherein the peripheral photosensitive element is operably coupled to the cladding. Preferably, an electromagnetic radiation beam receiving end of the optical pipe comprises a curved surface. Preferably, the peripheral photosensitive element is located on or within a substrate. Preferably, the core and the cladding are located on a substrate comprising an electronic circuit.
In some embodiments, the device could further comprise a lens structure or an optical coupler over the optical pipe, wherein the optical coupler is operably coupled to the optical pipe. Preferably, the optical coupler comprises a curved surface to channel the electromagnetic radiation into the optical pipe.
In some embodiments, the device could further comprise a stack surrounding the optical pipe, the stack comprising metallic layers embedded in dielectric layers, wherein the dielectric layers have a lower refractive index than that of the cladding.
Preferably, a surface of the stack comprises a reflective surface. Preferably, the core comprises a first waveguide and the cladding comprises a second waveguide.
Other embodiments relate to a compound light detector comprising at least two different devices, each device comprising a optical pipe comprising a core and a cladding, the optical pipe being configured to separate wavelengths of an electromagnetic radiation beam incident on the optical pipe at a selective wavelength through the core and the cladding, wherein the core is configured to be both a channel to transmit the wavelengths up to the selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the core, and the compound light detector is configured to reconstruct a spectrum of wavelengths of the electromagnetic radiation beam. Preferably, the core comprises a first waveguide having the selective wavelength such that electromagnetic radiation of wavelengths beyond the selective wavelength transmits through the cladding, further wherein the selective wavelength of the core of each of the at least two different devices is different such that the at least two different devices separate the electromagnetic radiation beam incident on the compound light detector at different selective wavelengths. Preferably, the cladding comprises a second waveguide that permits electromagnetic radiation of wavelengths beyond the selective wavelength to remains within the cladding and be transmitted to a peripheral photosensitive element. Preferably, a cross-sectional area of the cladding at an electromagnetic radiation beam emitting end of the cladding is substantially equal to an area of the peripheral photosensitive element. The compound light detector could further comprise a stack of metallic and non-metallic layers surrounding the optical pipe.
Preferably, the compound light detector is configured to detect energies of the electromagnetic radiation of four different ranges of wavelengths wherein the energies of the electromagnetic radiation of the four different ranges of wavelengths are combined to construct red, green and blue colors.
Other embodiments relate to a compound light detector comprising at least a first device and a second device, wherein the first device is configured to provide a first separation of an electromagnetic radiation beam incident on the optical pipe at a first selective wavelength without any filter, the second device is configured to provide a second separation of the electromagnetic radiation beam incident on the optical pipe at a second selective wavelength without any filter, the first selective wavelength is different from the second selective wavelength, each of the first device and the second device comprises a core that is configured to be both a channel to transmit the wavelengths up to the selective wavelength and an active element to detect the wavelengths up to the selective wavelength transmitted through the core, and the compound light detector is configured to reconstruct a spectrum of wavelengths of the electromagnetic radiation beam. Preferably, the two different devices comprise cores of different diameters. Preferably, the spectrum of wavelengths comprises wavelengths of visible light, IR or combinations thereof. Preferably, the first device comprises a core of a different diameter than that of the second device and the spectrum of wavelengths comprises wavelengths of visible light, IR or combinations thereof. Preferably, the first device comprises a first waveguide having the first selective wavelength such that electromagnetic radiation of wavelength beyond the first selective wavelength will not be confined by the first waveguide, wherein the second device comprises a second waveguide having the second selective wavelength such that electromagnetic radiation of wavelength beyond the second selective wavelength will not be confined by the second waveguide, further wherein the first selective wavelength is different from the second selective wavelength. Preferably, the first device further comprises a first waveguide that permits electromagnetic radiation of wavelength of greater than the first selective wavelength to remains within the first waveguide and the second device further comprises a second waveguide that permits electromagnetic radiation of wavelength of greater than the second selective wavelength to remains within the second waveguide. Preferably, each of the first and second devices comprises a cladding comprising a photosensitive element. The compound light detector could further comprise a stack of metallic and non-metallic layers surrounding the first and second devices. Preferably, the first device comprises a core of a different diameter than that of the second device and the spectrum of wavelengths comprises wavelengths of visible light. Preferably, a plurality of light detectors are arranged on a square lattice, an hexagonal lattice, or in a different lattice arrangement.
In yet other embodiments, the lens structure or the optical coupler comprises a first opening and a second opening with the first opening being larger than the second opening, and a connecting surface extending between the first and second openings. Preferably, the connecting surface comprises a reflective surface. In yet other embodiments, a plurality of light detectors are arranged on a regular tessellation.
In yet other embodiments, as shown in Figure 2, a coupler that may take the shape of a micro lens could be located on the optical pipe to collect and guide the electromagnetic radiation into the optical pipe. As shown in Figure 2, the optical pipe comprises of a nanowire core of refractive index ni surrounded by a cladding of refractive index n2.
In the configuration of the optical pipe of Figure 2, it is possible to eliminate pigmented color filters that absorb about 2/3 of the light that impinges on the image sensor. The core functions as an active waveguide and the cladding of the optical pipe could function as a passive waveguide with a peripheral photosensitive element surrounding the core to detect the electromagnetic radiation transmitted through the passive waveguide of the cladding. Passive waveguides do not absorb light like color filters, but can be designed to selectively transmit selected wavelengths. Preferably, the cross sectional area of the end of the cladding of the optical pipe adjacent to the peripheral photosensitive element in or on the substrate below the cladding is about the same size as the area of the peripheral photosensitive element.
A waveguide, whether passive or active, has a cutoff wavelength that is the lowest frequency that the waveguide can propagate. The diameter of the semiconductor waveguide of the core serves as the control parameter for the cutoff wavelength of the waveguide. In some embodiments, the optical pipe could be circular in or cross section so as to function as a circular waveguide characterized by the following parameters: (1) the core radius (Rc); (2) the core index of refraction (ni); and (3) the cladding index of refraction fø). These parameters generally determine the wavelength of light that can propagate through the waveguide. A waveguide has a cutoff wavelength, λct. The portion of the incident electromagnetic radiation having wavelengths longer than the cutoff wavelength would not be confined with the core. As a result, an optical pipe that functions as a waveguide whose cutoff wavelength is at green will not propagate red light though the core, and an optical pipe that functions as a waveguide whose cutoff wavelength is at blue will not propagate red and green light through the core.
In one implementation, a blue waveguide and a cyan (blue/green) waveguide could be embedded within white waveguides, which could be in the cladding. Blue light could remain in the blue waveguide core, blue or green light could remain in the cyan (green/blue) waveguide of another core. The remainder of the light could remain in the white waveguides in one or more the claddings.
The core could also serve as a photodiode by absorbing the confined light and generating electron hole pairs (excitons). As a result, an active waveguide in the core whose cutoff wavelength is at green will not propagate red light but will also absorb the confined green light and generate excitons.
Excitons so generated can be detected by using at least one of the following two designs:
(1) A core is made up of a three layers, semiconductor, insulator and metal thus forming a capacitor to collect the charge generated by the light induced carriers.
Contacts are made to the metal and to the semiconductor to control and detect the stored charge. The core could be formed by growing a nanowire and depositing an insulator layer and a metal layer surrounding the nanowire.
(2) A core having a PIN junction that induces a potential gradient in the core wire. The PIN junction in the core could be formed by growing a nanowire and doping the nanowire core while it is growing as a PIN junction and contacting it at the appropriate points using the various metal layers that are part of any device.
The photosensitive elements of the embodiments typically comprise a photodiode, although not limited to only a photodiode. Typically, the photodiode is doped to a concentration from about 1 x 1016 to about 1 x 1018 dopant atoms per cubic centimeter, while using an appropriate dopant.
The layers 1-11 in Figure 2 illustrate different stacking layers similar to layers
1-11 of Figure 1. The stacking layers comprise dielectric material-containing and metal-containing layers. The dielectric materials include as but not limited to oxides, nitrides and oxynitrides of silicon having a dielectric constant from about 4 to about
20, measured in vacuum. Also included, and also not limiting, are generally higher dielectric constant gate dielectric materials having a dielectric constant from about 20 to at least about 100. These higher dielectric constant dielectric materials may include, but are not limited to hafnium oxides, hafnium silicates, titanium oxides, barium- strontium titanates (BSTs) and lead-zirconate titanates (PZTs).
The dielectric material-containing layers may be formed using methods appropriate to their materials of composition. Non-limiting examples of methods include thermal or plasma oxidation or nitridation methods, chemical vapor deposition methods (including atomic layer chemical vapor deposition methods) and physical vapor deposition methods.
The metal-containing layers could function as electrodes. Non-limiting examples include certain metals, metal alloys, metal suicides and metal nitrides, as well as doped polysilicon materials (i.e., having a dopant concentration from about 1
1 R 99 x 10 to about 1 x 10 dopant atoms per cubic centimeter) and polycide (i.e., doped polysilicon/metal suicide stack) materials. The metal-containing layers may be deposited using any of several methods. Non-limiting examples include chemical vapor deposition methods (also including atomic layer chemical vapor deposition methods) and physical vapor deposition methods. The metal-containing layers could comprise a doped polysilicon material (having a thickness typically in the range 1000 to 1500 Angstrom
The dielectric and metallization stack layer comprises a series of dielectric passivation layers. Also embedded within the stack layer are interconnected metallization layers. Components for the pair of interconnected metallization layers include, but are not limited to contact studs, interconnection layers, interconnection studs.
The individual metallization interconnection studs and metallization interconnection layers that could be used within the interconnected metallization layers may comprise any of several metallization materials that are conventional in the semiconductor fabrication art. Non-limiting examples include certain metals, metal alloys, metal nitrides and metal suicides. Most common are aluminum metallization materials and copper metallization materials, either of which often includes a barrier metallization material, as discussed in greater detail below. Types of metallization materials may differ as a function of size and location within a semiconductor structure. Smaller and lower-lying metallization features typically comprise copper containing conductor materials. Larger and upper-lying metallization features typically comprise aluminum containing conductor materials.
The series of dielectric passivation layers may also comprise any of several dielectric materials that are conventional in the semiconductor fabrication art. Included are generally higher dielectric constant dielectric materials having a dielectric constant from 4 to about 20. Non-limiting examples that are included within this group are oxides, nitrides and oxynitrides of silicon. For example, the series of dielectric layers may also comprise generally lower dielectric constant dielectric materials having a dielectric constant from about 2 to about 4. Included but not limiting within this group are hydrogels such as silicon hydrogel, aerogels like silicon Al, or carbon aerogel, silsesquioxane spin-on-glass dielectric materials, fluorinated glass materials, organic polymer materials, and other low dielectric constant materials such as doped silicon dioxide (e.g., doped with carbon, fluorine), and porous silicon dioxide.
Typically, the dielectric and metallization stack layer comprises interconnected metallization layers and discrete metallization layers comprising at least one of copper metallization materials and aluminum metallization materials. The dielectric and metallization stack layer also comprises dielectric passivation layers that also comprise at least one of the generally lower dielectric constant dielectric materials disclosed above. The dielectric and metallization stack layer could have an overall thickness from about 1 to about 4 microns. It may comprise from about 2 to about 4 discrete horizontal dielectric and metallization component layers within a stack.
The layers of the stack layer could be patterned to form patterned dielectric and metallization stack layer using methods and materials that are conventional in the semiconductor fabrication art, and appropriate to the materials from which are formed the series of dielectric passivation layers. The dielectric and metallization stack layer may not be patterned at a location that includes a metallization feature located completely therein. The dielectric and metallization stack layer may be patterned using wet chemical etch methods, dry plasma etch methods or aggregate methods thereof. Dry plasma etch methods as well as e-beam etching if the dimension needs to be very small, are generally preferred insofar as they provide enhanced sidewall profile control when forming the series of patterned dielectric and metallization stack layer.
The planarizing layer 11 may comprise any of several optically transparent planarizing materials. Non-limiting examples include spin-on-glass planarizing materials and organic polymer planarizing materials. The planarizing layer 11 could extend above the optical pipe such that the planarizing layer 11 would have a thickness sufficient to at least planarize the opening of the optical pipe, thus providing a planar surface for fabrication of additional structures within the CMOS image sensor. The planarizing layer could be patterned to form the patterned planarizing layer.
Optionally, there could be a series of color filter layers 12 located upon the patterned planarizing layer 11. The series of color filter layers, if present, would typically include either the primary colors of red, green and blue, or the complementary colors of yellow, cyan and magenta. The series of color filter layers would typically comprise a series of dyed or pigmented patterned photoresist layers that are intrinsically imaged to form the series of color filter layers. Alternatively, the series of color filter layers may comprise dyed or pigmented organic polymer materials that are otherwise optically transparent, but extrinsically imaged while using an appropriate mask layer. Alternative color filter materials may also be used. The filter could also be filter for a black and white, or IR sensors wherein the filter cuts off visible and pass IR predominantly.
The spacer layer (13) could be one or more layers made of any material that physically, but not optically, separates the stacking layers from the micro lens (14). The spacer layer could be formed of a dielectric spacer material or a laminate of dielectric spacer materials, although spacer layers formed of conductor materials are also known. Oxides, nitrides and oxynitrides of silicon are commonly used as dielectric spacer materials. Oxides, nitrides and oxynitrides of other elements are not excluded. The dielectric spacer materials may be deposited using methods analogous, equivalent or identical to the methods described above. The spacer layer could be formed using a blanket layer deposition and etchback method that provides the spacer layer with the characteristic inward pointed shape.
The micro lens (14) may comprise any of several optically transparent lens materials that are known in the art. Non-limiting examples include optically transparent inorganic materials, optically transparent organic materials and optically transparent composite materials. Most common are optically transparent organic materials. Typically the lens layers could be formed incident to patterning and reflow of an organic polymer material that has a glass transition temperature lower than the series of color filter layers 12, if present, or the patterned planarizing layer 11. In the optical pipe, the high index material in the core could, for example, be silicon nitride having a refractive index of about 2.0. The lower index cladding layer material could, for example, be a glass, for example a material selected from Table II, having a refractive index about 1.5.
TABLE II
Typical Material Index of Refraction
Micro Lens (Polymer) 1.583
Spacer 1.512 Color Filter 1.541
Planarization 1.512
PESiN 2.00
PESiO 1.46
SiO 1.46
In Table II, PESiN refers to plasma enhanced SiN and PESiO refers to plasma enhanced SiO.
Optionally, a micro lens could be located on the optical pipe near the incident electromagnetic radiation beam receiving end of the image sensor. The function of the micro lens or in more general terms is to be a coupler, i.e., to couple the incident electromagnetic radiation beam into the optical pipe. If one were to choose a micro lens as the coupler in this embodiment, its distance from the optical pipe would be much shorter than to the photosensitive element, so the constraints on its curvature are much less stringent, thereby making it implementable with existing fabrication technology.
The shape of the optical pipe could be different for different embodiments. In one configuration, the optical pipe could cylindrical, that is, the diameter of the pipe remains the substantially the same throughout the length of the optical pipe. In another configuration, the optical pipe could conical, where the upper diameter of the cross sectional area of the optical pipe could be greater or smaller than the lower diameter of the cross sectional area of the optical pipe. The terms "upper" and "lower" refer to the ends of the optical pipe located closer to the incident electromagnetic radiation beam receiving and exiting ends of the image sensor. Other shapes include a stack of conical sections. Table II lists several different glasses and their refractive indices. These glasses could be used for the manufacture of the optical pipe such that refractive index of the core is higher than that of the cladding. The image sensors of the embodiments could be fabricated using different transparent glasses having different refractive indices without the use of pigmented color filters. By nesting optical pipes that function as waveguides and using a micro lens coupler as shown in Figure 2, an array of image sensors could be configured to obtain complementary colors having wavelengths of electromagnetic radiation separated at a cutoff wavelength in the core and cladding of each optical pipe of every image sensor. The complementary colors are generally two colors when mixed in the proper proportion produce a neutral color (grey, white, or black). This configuration also enables the capture and guiding of most of the electromagnetic radiation incident beam impinging on the micro lens to the photosensitive elements (i.e., photodiodes) located at the lower end of the optical pipe. Two adjacent or substantially adjacent image sensors with different color complementary separation can provide complete information to reconstruct a full color scene according to embodiments described herein. This technology of embodiments disclosed herein can further supplant pigment based color reconstruction for image sensing which suffers from the inefficiency of discarding (through absorption) the non selected color for each pixel.
Each physical pixel of a device containing an image sensor of the embodiments disclosed herein would have two outputs representing the complementary colors, e.g., blue (complement yellow) designated as output type 1 and cyan (complement red) designated as output type 2. These outputs would be arranged as follows:
1212121212121212... 2121212121212121...
1212121212121212... Each physical pixel would have complete luminance information obtained by combining its two complementary outputs. As a result, the same image sensor can be used either as a full resolution black and white or full color sensor.
In the embodiments of the image sensors disclosed herein, the full spectrum of wavelengths of the incident electromagnetic radiation beam (e.g., the full color information of the incident light) could be obtained by the appropriate combination of two adjacent pixels either horizontally or vertically as opposed to 4 pixels for the conventional Bayer pattern.
Depending on minimum transistor sizes, each pixel containing an image sensor of the embodiments disclosed herein could be as small as 1 micron or less in pitch and yet have sufficient sensitivity. This could open the way for contact imaging of very small structures such as biological systems. The embodiments, which include a plurality of embodiments of an image sensor, as well as methods for fabrication thereof, will be described in further detail within the context of the following description. The description is further understood within the context of the drawings described above. The drawings are for illustrative purposes and as such are not necessarily drawn to scale. An embodiment comprises a sensor array of two different types of pixels, each different type of pixel having a core of a different diameter such that cores have diameters di and U2 for directing light of different wavelengths (λβ and XR). The two cores also serve as photodiodes to capture light of wavelengths λβ and XR. The claddings of the two image sensors serve for transmitting the light of wave length λW β and λw-R. The light of wave length λw_β and λw-R transmitted through the cladding is detected by the peripheral photosensitive elements surrounding the cores. Note that (w) refers to the wavelength of white light. Signals from the 4 photodiodes (two located in the cores and two located in or on the substrate surrounding the core) in the compound pixel are used to construct color.
The embodiments include a nanostructured photodiode (PD) according to the embodiments comprise a substrate and an upstanding nanowire protruding from the substrate. A pn-junction giving an active region to detect light may be present within the structure. The nanowire, a part of the nanowire, or a structure in connection with the nanowire, forms a waveguide directing and detecting at least a portion of the light that impinges on the device. In addition the waveguide doubles up as spectral filter that enables the determination of the color range of the impinging light.
The waveguiding properties of the optical pipe of the embodiments can be improved in different ways. The waveguide core has a first effective refractive index, ni (also referred as nw below), and the material in the cladding surrounding at least a portion of the waveguide has a second effective refractive index, n2 (also referred as nc below), and by assuring that the first refractive index is larger than the second refractive index, ni> n2, good wave-guiding properties are provided to the optical pipe. The waveguiding properties may be further improved by introducing optically active cladding layers on the waveguide core. The nanowire core is used as a waveguide, and also as a nanostructured PD which may also be an active capacitor. The nanostructured PD according to the embodiments is well suited for mass production, and the method described is scaleable for industrial use.
The nanowire technology offers possibilities in choices of materials and material combinations not possible in conventional bulk layer techniques. This is utilised in the nanostructured PD according to the embodiments to provide PDs detecting light in well defined wavelength regions not possible by conventional technique, for example blue, cyan or white. The design according to the embodiments allows for inclusions of heterostructures as well as areas of different doping within the nanowire, facilitating optimization of electrical and/or optical properties.
A nanostructured PD according to the embodiments comprises of an upstanding nanowire. For the purpose of this application an upstanding nanowire should be interpreted as a nanowire protruding from the substrate in some angle, the upstanding nanowire for example being grown from the substrate, preferably by as vapor-liquid-solid (VLS) grown nanowires. The angle with the substrate will typically be a result of the materials in the substrate and the nanowire, the surface of the substrate and growth conditions. By controlling these parameters it is possible to produce nanowires pointing in only one direction, for example vertical, or in a limited set of directions. For example nanowires and substrates of zinc -blende and diamond semiconductors composed of elements from columns III, V and IV of the periodic table, such nanowires can be grown in the [111] directions and then be grown in the normal direction to any {111} substrate surface. Other directions given as the angle between normal to the surface and the axial direction of the nanowire include 70,53° { 111}, 54,73° { 100}, and 35,27° and 90°, both to { 110}. Thus the nanowires define one, or a limited set, of directions.
According to the embodiments, a part of the nanowire or structure formed from the nanowire is used as a waveguide directing and confining at least a portion of the light impinging on the nanostructured PD in a direction given by the upstanding nanowire. The ideal waveguiding nanostructured PD structure includes a high refractive index core with one or more surrounding cladding with refractive indices less than that of the core. The structure is either circular symmetrical or close to being circular symmetrical. Light waveguiding in circular symmetrical structures are well know for fiber-optic applications and many parallels can be made to the area of rare- earth-doped fiber optic devices. However, one difference is that fiber amplifier are optically pumped to enhance the light guided through them while the described nanostructured PD can be seen as an efficient light to electricity converter. One well known figure of merit is the so called Numerical Aperture, NA. The NA determines the angle of light captured by the waveguide. The NA and angle of captured light is an important parameter in the optimization of a new PD structure.
For a PD operating in IR and above IR, using GaAs is good, but for a PD operating in the visible light region, silicon would be preferable. For example to create circuits, Si and doped Si materials are preferable. Similarly, for a PD working in the visible range of light, one would prefer to use Si.
In one embodiment, the typical values of the refractive indexes for III-V semiconductor core material are in the range from 2.5 to 5.5 when combined with glass type of cladding material (such as Siθ2 or Si3N4) having refractive indexes ranging from 1.4 to 2.3. A larger angle of capture means light impinging at larger angles can be coupled into the waveguide for better capture efficiency.
One consideration in the optimization of light capture is to provide a coupler into the nanowire structure to optimize light capture into the structure. In general, it would be preferred to have the NA be highest where the light collection takes place. This would maximize the light captured and guided into the PD.
A nanostructured PD according to the embodiments is schematically illustrated in FIG. 2 and comprises a substrate and a nanowire epitaxially grown from the substrate in an defined angle θ. A portion of or all of the nanowire could be arranged to act as a waveguiding portion directing at least a portion of the impinging light in a direction given by the elongated direction of the nanowire, and will be referred to as a waveguide. In one possible implementatioin, a pn-junction necessary for the diode functionality is formed by varying the doping of the wire along its length while it is growing. Two contact could be provided on the nanowire for example one on top or in a wrapping configuration on the circumferential outer surface (depicted) and the other contact could be provided in the substrate. The substrate and part of the upstanding structure may be covered by a cover layer, for example as a thin film as illustrated or as material filling the space surrounding the nanostructured PD.
The nanowire typically has a diameter in the order of 50 nm to 500 nm, The length of the nanowire is typically and preferably in the order of 1 to 10 μm. The pn- junction results in an active region arranged in the nanowire. Impinging photons in the nanowire are converted to electron hole pairs and in one implementation are subsequently separated by the electric fields generated by the PN junction along the length of the nanowire. The materials of the different members of the nanostructured PD are chosen so that the nanowire will have good waveguiding properties vis-a-vis the surrounding materials, i.e. the refractive index of the material in the nanowire should preferably be larger than the refractive indices of the surrounding materials.
In addition, the nanowire may be provided with one or more layers. A first layer, may be introduced to improve the surface properties (i.e., reduce charge leakage) of the nanowire. Further layers, for example an optical layer may be introduced specifically to improve the waveguiding properties of the nanowire, in manners similar to what is well established in the area of fiber optics. The optical layer typically has a refractive index in between the refractive index of the nanowire and the surrounding cladding region material. Alternatively the intermediate layer has a graded refractive index, which has been shown to improve light transmission in certain cases. If an optical layer is utilised the refractive index of the nanowire, nw, should define an effective refractive index for both the nanowire and the layers.
The ability to grow nanowires with well defined diameters, as described above and exemplified below, is in one embodiment utilised to optimize the waveguiding properties of the nanowire or at least the waveguide with regards to the wavelength of the light confined and converted by the nanostructured PD. In the embodiment, the diameter of the nanowire is chosen so as to have a favorable correspondence to the wavelength of the desired light. Preferably the dimensions of the nanowire are such that a uniform optical cavity, optimized for the specific wavelength of the produced light, is provided along the nanowire. The core nanowire must be sufficiently wide to capture the desired light. A rule of thumb would be that diameter must be larger than λ/2nw, wherein λ is the wavelength of the desired light and nw is the refractive index of the nanowire. As an example a diameter of about 60 nm may be appropriate to confine blue light only and one 80 nm may be appropriate for to confine both blue and green light only in a silicon nanowire. In the infra-red and near infra-red, a diameter above 100 nm would be sufficient. An approximate preferred upper limit for the diameter of the nanowire is given by the growth constrains, and is in the order of 500 nm. The length of the nanowire is typically and preferably in the order of 1 - 10 μm, providing enough volume for the light conversion region A reflective layer is in one embodiment, provided on the substrate and extending under the wire. The purpose of the reflective layer is to reflect light that is guided by the wire but has not been absorbed and converted to carriers in the nanostructured PD. The reflective layer is preferably provided in the form of a multilayered structure comprising repeated layers of silicates for example, or as a metal film . If the diameter of the nanowire is sufficiently smaller than the wavelength of the light a large fraction of the directed light mode will extend outside the waveguide, enabling efficient reflection by a reflective layer surrounding the narrow the nanowire waveguide
An alternative approach to getting a reflection in the lower end of the waveguide core is to arrange a reflective layer in the substrate underneath the nanowire. Yet another alternative is to introduce reflective means within the waveguide. Such reflective means can be a multilayered structure provided during the growth process of the nanowire, the multilayered structure comprising repeated layers of for example SiNx/ SiOx (dielectric) . The previous depicted cylindrical volume element which is achievable with the referred methods of growing nanowires, should be seen as an exemplary shape. Other geometries that are plausible include, but is not limited to a cylindrical bulb with a dome-shaped top, a spherical/ ellipsoidal, and pyramidal.
Preferably, the color response of a color light sensor is closely matched to the color response of the human eye. In one embodiment, the first step to optimize the diameter of a nanowire photodetector is to align the response of the nanowire of a desired wavelength with the corresponding response curves of the human eye using computer simulation. For example, the response of a nanowire with a desired blue and green response may be aligned to the blue and green response curves of the human eye. By closely matching the response of the photodiodes of the color light sensor to the response of the human eye, problems such as matamerism (when tow color samples appear to match under a particular light source and then do not match under a different light source) and loss of color fidelity under varying light illumination can be reduced or essentially eliminated. One embodiment includes two different nanowire sensors or pixels. Preferably, the first nanowire sensor includes a light pipe with a core configured to channel blue light. Preferably, the core of the first nanowire sensor is surrounded with a cladding configured to channel light of the complementary color of the core. In the case of a core channeling blue light, the cladding preferably channels yellow light. Preferably, the second nanowire sensor includes a light pipe with a core configured to channel cyan light. Preferably, the core of the second nanowire sensor is surrounded with a cladding configured to channel light of the complementary color to the second core. In the case of a core channeling cyan light, the cladding preferably channels red light. The degree to which a linear combination of the spectral response of the blue and cyan nanowires and their complementary responses fit the eye response curves determines the color reproduction capability of the image sensor.
Numerous standard response curves of the human eye are known. In some embodiments, the Smith-Pokorny human eye response curves (shown in Fig. 5) could be used for the determination of an error difference between the spectral response of the image sensor of the claimed invention and the Smith-Pokorny human eye response curves. The Smith-Pokorny human eye response curves are linear combinations of the Commission Internationale d'Eclairage (CIE) eye response curves. The Smith- Pokorny human eye response curves are not only standard, but have the added benefit of having positive response at all points of the visible spectrum. Other standard response curves, however, may be used. Other standard response curves include, but are not limited to, CIE RGB, CIE, XYZ, CIE Lab, CIE UVW, and CIE Luv. In the CIE Luv system, u and v are chromaticity coordinates (or chrominance) and L is the luminance. In one embodiment, the optimal diameters of the cores of the nanowire sensors are determined by computer simulation. In this embodiment, two different nanowire sensors are used. The diameters of the nanowire cores of the first and second nanowire sensors are preselected along with the materials of the nanowire cores and claddings. Based on the material properties of the cores and the claddings and any optional features of the sensor (e.g. reflective layer surrounding the light pipe, reflective layer on the substrate, etc.), a simulation is run to determine the spectral characteristics of the nanowire sensors. Preferably, the simulation includes the effect of crosstalk. The spectral response of the nanowire sensors are then compared to standard spectral response curves to determine the difference, or error between the nanowire sensors and the standard spectral response curves.
In one aspect, the computer simulation was run with FuIlW A VE™ software from RSOFT Design Group. FuIlWA VE™ is a Finite Difference Time Domain (FDTD) Maxwell's Equations solver. Results of this aspect are illustrated in Figs. 7 and 8. Fig. 7 illustrates the results of a simulation of the absorption of a 60 nm nanowire and a 80 nm nanowire. As can be seen from Fig. 7, in the case of Si, the 60 nm nanowire primarily absorbs blue light (approximately 450-500 nm), allowing light of higher wavelengths to leak out of the nanowire. The 80 nm nanowire absorbs primarily blue light (approximately 450-500 nm) and green light (approximately 500- 570 nm), allowing light of higher wavelengths to leak out of the nanowire. Thus, the
60 nm nanowire primarily retains only blue light while allowing the compliment, yellow light, to leak out. The 80 nm nanowire primarily retains only blue and green (cyan) light while allowing its compliment, red light, to leak out. Note, both the 60 nm nanowire and the 80 nm nanowire absorb some higher (orange/red) wavelength light. This is due to spectral crosstalk as discussed above. Fig. 8 illustrates the results of a simulation of the absorption of the substrates of a 60 nm nanowire device and a 80 nm nanowire device. That is, Fig. 8 illustrates the results of the light that leaks out of the 60 nm nanowire and 80 nanowire illustrated in Fig. 7. As can be seen in Fig. 8, the absorption is low for both the 60 nm nanowire substrate and the 80 nm nanowire substrate. That is, essentially all of the light that leaks out of the 60 nm nanowire and 80 nm nanowire reaches the substrate. Note, both the 60 nm nanowire substrate and the 80 nm nanowire substrate absorb some lower (blue/green) wavelength light. This is due to spectral crosstalk as discussed above. In one embodiment, the standard spectral response curves used are Smith-
Pokorny eye response spectral curves (illustrated in Fig. 5). In the following example (illustrated in Fig. 3), the first nanowire sensor include a blue core with a complementary yellow cladding. The second nanowire sensor include a cyan core with a complementary red cladding. If Rsp, Gsp, and Bsp are the Smith-Pokorny eye response spectral curves for red, green, and blue respectively, the error can be calculated from the following equations:
Rsp = Ayr*Ynw + Abr*Bnw + Arr*Rnw + Acr*Cnw, Gsp = Ayg*Ynw + Abg*Bnw + Arg*Rnw + Acg*Cnw, Bsp = Ayb*Ynw + Abb*Bnw + Arb*Rnw + Acb*Cnw, where Ynw and Bnw are the spectral responses of the first nanowire, Rnw and
Cnw are the spectral responses of the second nanowire, and Ayr, Abr, Arr, Acr, Ayg, Abg, Arg, Acg, Ayb, Abb, Arb, Acb are constants. The value of the constants Axx are determined such that the above equations are satisfied with the least error. The spectral error of the device can then be determined by taking a least square fit of the error between the best fit spectral response curves of the nanowire sensor devices and the Smith-Pokorny eye response spectral curves. In alternative embodiments, the spectral error of the device can be determined by other regression or curve fitting techniques, such as least square parabola and least square mth degree polynomial. After the spectral error of the device is calculated, new diameters may be selected for the first and second nanowire devices and the process repeated until the above equations are satisfied with the least error, thereby identifying the nanowire diameters resulting to the lowest total error from the standard Smith-Pokorny eye response spectral curves.
In alternative embodiments, rather than a simulation, actual devices are fabricated and the actual spectral responses measured. The spectral errors between the actual device and a standard spectral response curve are determined. In this way, the diameter of the nanowire sensor devices can be optimized with actual nanowire sensor devices.
Other embodiments relate to scene reconstruction based on digitized responses taken with nanowire sensor devices. Each pair of pixels has complete luminance information obtained by combining its two complementary outputs. As a result, the same image sensor can be used either as a full resolution black and white or full color sensor. Further, the color reconstruction could be done to obtain full color information by the appropriate combination of two adjacent pixels. The pixels may be either horizontally or vertically adjacent. Further, because all the information can be obtained with two adjacent pixels, the reconstruction method of the present embodiment is more efficient and may be faster than the 4 pixel method required by the Bayer pattern of convention image sensors.
In a first scene reconstruction method embodiment, digitized responses are received from a sensor array comprising alternating pixels of nanowire photodiodes. In the following example, the reconstruction method is based on the photodiode sensor array illustrated in Fig. 3. In Fig. 3, the array has been illustrated as a 2x2 matrix. However, the four nanowire photodiodes may be configured in the same row. Indeed, for the following explanation of the method of this embodiment, it will be assumed that the four nanowire photodiodes are in the same row.
In this embodiment, the first and third nanowire photodiodes (pixels 1 and 3) have a blue core and a yellow cladding. The second and fourth nanowire photodiodes (pixels 2 and 4) have a cyan core and a red cladding. In this embodiment, the scene is reconstructed by taking the digitized responses of two adjacent pixels at a time and transforming the digitized responses of the two adjacent pixels to determine the red, green, and blue color of the scene. The transformation is performed with the use of color matching functions, the use of which are well known in the art. Color matching functions are a numerical description of the chromatic response of the observer. By applying the appropriate color matching function, the yellow, blue, cyan, and red outputs of adjacent pixels can be mathematically transformed to the red, blue and green response of the standard observer.
In this embodiment, the transformation is performed by stepping across a row one pixel at a time. That is, first the color data from pixels 1 and 2 are transformed, then 2 and 3, then 3 and 4, and so on until the end of the row is reached. After transformation of the first row is completed, the next row is transformed in a similar manner and so on, until the entire scene or image is reconstructed.
Because a single row of pixels can be transformed by stepping across the row, there is no need to buffer an entire row of pixels as is necessary to transform conventional Bayer configured color sensors (discussed above). Thus, the present embodiment can be transformed more quickly and more efficiently than a conventional Bayer configured color sensor.
The first scene reconstruction method embodiment can be performed with the following equations for the first pair of pixels (pixels 1 and 2):
Rl = Ayr*Yl + Abr*Bl + Arr*R2 + Acr*C2, Gl = Ayg*Yl + Abg*Bl + Arg*R2 + Acg*C2,
Bl = Ayb*Yl + Abb*Bl + Arb*R2 + Acb*C2, where Yl and Bl are spectral responses of the first yellow/blue nanowire photodiode device (pixel 1), R2and C2 are spectral responses of the second red/cyan nanowire photodiode device (pixel 2), and Ayr, Abr, Arr, Acr, Ayg, Abg, Arg, Acg, Ayb, Abb, Arb, Acb are constants. For the second pair of pixels (pixels 2 and 3), the following equations may be used:
R2 = Ayr*Y3 + Abr*B3 + Arr*R2 + Acr*C2, G2 = Ayg*Y3 + Abg*B3 + Arg*R2 + Acg*C2, B2 = Ayb*Y3+ Abb*B3 + Arb*R2 + Acb*C2, Where Y3 and B3 are spectral responses of the third yellow/blue nanowire photodiode device (pixel 3), R2 and C2 are the spectral response of the second red/cyan nanowire photodiode device (pixel 2), and Ayr, Abr, Arr, Acr, Ayg, Abg, Arg, Acg, Ayb, Abb, Arb, Acb are constants. The remaining pixels in the sensor array are transformed by stepping across the row one pixel at a time and solving equations as above.
In a second scene reconstruction method embodiment, digitized responses are also received from a sensor array comprising alternating pixels of nanowire photodiodes. In this embodiment (array in Fig. 3), the first and third nanowire photodiodes (pixels 1 and 3) have a blue core and a yellow cladding. The second and fourth nanowire photodiodes (pixels 2 and 4) have a cyan core and a red cladding. In this embodiment, the scene is reconstructed by taking the digitized responses of two adjacent pixels at a time and transforming the digitized responses to determine the luminance and the chrominance of the scene. In this embodiment, the transformation is performed by stepping across a row two pixels at a time. That is, first pixels 1 and 2 are transformed, then 3 and 4, then 5 and 6, and so on until the end of the row is reached. After the first row is completed, the next row is transformed in a similar manner. Because, as in the first scene reconstruction method embodiment, a single row pixels can be transformed by stepping across the row, there is no need to buffer an entire row as is necessary with conventional Bayer configured color sensors. Thus, the second scene reconstruction method embodiment also can be transformed more quickly and more efficiently than a conventional Bayer configured color sensor.
The transformation via the second scene reconstruction method embodiment can be performed with the equations below, illustrated for the first pair of pixels
(pixels 1 and 2). In this example, the transformation is performed using the CIE Luv transformation which include a luminance value (L) and two chromance coordinates
(u, v) to fully describe the color.
Luminance 1 = Ly* Yl + Lb*Bl, Luminance2 = Lr* R2 + Lc*C2,
Chrominancel = Ayu*Yl + Abu*Bl + Aru*R2 + Acu*C2, Chrominance2 = Ayv*Yl + Abv*B 1 + Arv*R2 + Acv*C2,
Where Yl, Bl and R2, C2 are the spectral responses of the first and second nanowire photodiode devices, respectively, and Ly, Lb, Lr, Lc, Ayu, Ayv, Abu, Abv, Aru, Arv, Acu, and Acv are constants. The remaining pixels in the array are transformed in a similar manner. In the above scene reconstruction methods, the data is transformed one row at a time. In alternative embodiments, the nanowire color sensor is configured so that more than one row can be transformed at the same time. This may be accomplished, for example, with the addition of processing circuitry. In still another embodiment, the transformation may be performed in an interlaced fashion. In an alternative embodiment, the data can be subsampled. Because the human visual system is less sensitive to the position and motion of color than the luminance, bandwidth can be optimized by storing more luminance detail than color detail. Subsampling can be done, for example, with 4:2:2 subsampling. With 4:2:2 subsampling, the two chrominance components are sampled at half the sample rate of luminance. Thus, the horizontal chrominance resolution is halved. This reduces the bandwidth of a video signal by one-third with little to no visual difference. The output data stream in the 4:2:2 format is of the form:
Luminance 1, Chrominance 1, Luminance2, Chrominance2, ... Other subsampling formats include, but are not limited to, 4:2: 1, 4: 1: 1, and 4:2:0.
Figure 4 is a schematic illustration of a sensor according to an embodiment. Each physical pixel of a device containing an image sensor of the embodiments disclosed herein would have two outputs representing the complementary colors, e.g., cyan, red (C, R) designated as output type 1 or yellow, blue (Y, B) designated as output type 2 as shown in Figure 4. These four outputs of two pixels can be resolved to reconstruct a full color scene of an image viewed by a device containing the image sensors of the embodiments described herein.
Another embodiment relates to a computer readable medium comprising computer executable instructions for simulating nanowire photodiode (pixel) devices. With this embodiment, the diameters of nanowires of the nanowire photodiodes (pixels) can be optimized to minimize the error difference in spectral response between the nanowire photodiodes and the spectral response of the human eye. The spectral response of the human eye may be represented with standard eye response curves such as the CIE curves or the Smith-Pokorny eye response spectral curves. The minimum or least error difference may be determined with the use of a least squares analysis. The simulation may take into account the effect of crosstalk.
In one embodiment, the cladding could be absent such that the complementary color is detected by the photodiode on the substrate.
The foregoing detailed description has set forth various embodiments of the devices and/or processes via the use of diagrams, flowcharts, and/or examples.
Insofar as such diagrams, flowcharts, and/or examples contain one or more functions and/or operations, it will be understood by those within the art that each function and/or operation within such diagrams, flowcharts, or examples can be implemented, individually and/or collectively, by a wide range of hardware, software, firmware, or virtually any combination thereof. In one embodiment, several portions of the subject matter described herein may be implemented via Application Specific Integrated Circuits (ASICs), Field Programmable Gate Arrays (FPGAs), digital signal processors (DSPs), or other integrated formats. However, those skilled in the art will recognize that some aspects of the embodiments disclosed herein, in whole or in part, can be equivalently implemented in integrated circuits, as one or more computer programs running on one or more computers (e.g., as one or more programs running on one or more computer systems), as one or more programs running on one or more processors (e.g., as one or more programs running on one or more microprocessors), as firmware, or as virtually any combination thereof, and that designing the circuitry and/or writing the code for the software and or firmware would be well within the skill of one of skill in the art in light of this disclosure. In addition, those skilled in the art will appreciate that the mechanisms of the subject matter described herein are capable of being distributed as a program product in a variety of forms, and that an illustrative embodiment of the subject matter described herein applies regardless of the particular type of signal bearing medium used to actually carry out the distribution. Examples of a signal bearing medium include, but are not limited to, the following: a recordable type medium such as a floppy disk, a hard disk drive, a Compact Disc (CD), a Digital Video Disk (DVD), a digital tape, a computer memory, etc.; and a transmission type medium such as a digital and/or an analog communication medium (e.g., a fiber optic cable, a waveguide, a wired communications link, a wireless communication link, etc.).
Those skilled in the art will recognize that it is common within the art to describe devices and/or processes in the fashion set forth herein, and thereafter use engineering practices to integrate such described devices and/or processes into data processing systems. That is, at least a portion of the devices and/or processes described herein can be integrated into a data processing system via a reasonable amount of experimentation. Those having skill in the art will recognize that a typical data processing system generally includes one or more of a system unit housing, a video display device, a memory such as volatile and non-volatile memory, processors such as microprocessors and digital signal processors, computational entities such as operating systems, drivers, graphical user interfaces, and applications programs, one or more interaction devices, such as a touch pad or screen, and/or control systems including feedback loops and control motors (e.g., feedback for sensing position and/or velocity; control motors for moving and/or adjusting components and/or quantities). A typical data processing system may be implemented utilizing any suitable commercially available components, such as those typically found in data computing/communication and/or network computing/communication systems.
The herein described subject matter sometimes illustrates different components contained within, or connected with, different other components. It is to be understood that such depicted architectures are merely exemplary, and that in fact many other architectures can be implemented which achieve the same functionality. In a conceptual sense, any arrangement of components to achieve the same functionality is effectively "associated" such that the desired functionality is achieved. Hence, any two components herein combined to achieve a particular functionality can be seen as "associated with" each other such that the desired functionality is achieved, irrespective of architectures or intermedial components. Likewise, any two components so associated can also be viewed as being "operably connected," or "operably coupled," to each other to achieve the desired functionality, and any two components capable of being so associated can also be viewed as being "operably couplable," to each other to achieve the desired functionality. Specific examples of operably couplable include but are not limited to optical coupling to permit transmission of optical light, for example via an optical pipe or fiber, physically interacting components and/or wirelessly interactable and/or wirelessly interacting components and/or logically interacting and/or logically interactable components. With respect to the use of substantially any plural and/or singular terms herein, those having skill in the art can translate from the plural to the singular and/or from the singular to the plural as is appropriate to the context and/or application. The various singular/plural permutations may be expressly set forth herein for sake of clarity. It will be understood by those within the art that, in general, terms used herein, and especially in the appended claims (e.g., bodies of the appended claims) are generally intended as "open" terms (e.g., the term "including" should be interpreted as "including but not limited to," the term "having" should be interpreted as "having at least," the term "includes" should be interpreted as "includes but is not limited to," etc.). It will be further understood by those within the art that if a specific number of an introduced claim recitation is intended, such an intent will be explicitly recited in the claim, and in the absence of such recitation no such intent is present. For example, as an aid to understanding, the following appended claims may contain usage of the introductory phrases "at least one" and "one or more" to introduce claim recitations. However, the use of such phrases should not be construed to imply that the introduction of a claim recitation by the indefinite articles "a" or "an" limits any particular claim containing such introduced claim recitation to inventions containing only one such recitation, even when the same claim includes the introductory phrases "one or more" or "at least one" and indefinite articles such as "a" or "an" (e.g., "a" and/or "an" should typically be interpreted to mean "at least one" or "one or more"); the same holds true for the use of definite articles used to introduce claim recitations. In addition, even if a specific number of an introduced claim recitation is explicitly recited, those skilled in the art will recognize that such recitation should typically be interpreted to mean at least the recited number (e.g., the bare recitation of "two recitations," without other modifiers, typically means at least two recitations, or two or more recitations). Furthermore, in those instances where a convention analogous to "at least one of A, B, and C, etc." is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., " a system having at least one of A, B, and C" would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). In those instances where a convention analogous to "at least one of A, B, or C, etc." is used, in general such a construction is intended in the sense one having skill in the art would understand the convention (e.g., " a system having at least one of A, B, or C" would include but not be limited to systems that have A alone, B alone, C alone, A and B together, A and C together, B and C together, and/or A, B, and C together, etc.). It will be further understood by those within the art that virtually any disjunctive word and/or phrase presenting two or more alternative terms, whether in the description, claims, or drawings, should be understood to contemplate the possibilities of including one of the terms, either of the terms, or both terms. For example, the phrase "A or B" will be understood to include the possibilities of "A" or "B" or "A and B."
All references, including but not limited to patents, patent applications, and non-patent literature are hereby incorporated by reference herein in their entirety.
While various aspects and embodiments have been disclosed herein, other aspects and embodiments will be apparent to those skilled in the art. The various aspects and embodiments disclosed herein are for purposes of illustration and are not intended to be limiting, with the true scope and spirit being indicated by the following claims.

Claims

WHAT IS CLAIMED IS:
1. A method of determining a diameter for a nanowire for a nanowire device comprising: providing a first nanowire device comprising at least a first pixel and a second pixel, wherein the first pixel comprises a first nanowire comprising a predetermined material and a predetermined diameter, the first pixel configured to detect a first predetermined color and a first complementary color of the first predetermined color, and the second pixel comprises a second nanowire comprising a second predetermined material and a second predetermined diameter, the second pixel configured to detect a second predetermined color and a second complementary color of the second predetermined color; determining a first error difference between a first predetermined color spectral response of the first predetermined color of the first nanowire and one or more standard spectral response curves; determining a second error difference between a first complimentary color spectral response of the first complementary color of the first nanowire and one or more standard spectral response curves; determining a third error difference between a second predetermined color spectral response of the second predetermined color of the second nanowire and the one or more standard spectral response curves; and determining a fourth error difference between a second complimentary color spectral response of the second complementary color of the second nanowire and the one or more standard spectral response curves; and determining a total error difference from the first, second, third, and fourth error differences.
2. The method of claim 1, further comprising: providing a plurality of additional nanowire devices, each of the additional nanowire devices comprising at least an additional first pixel and an additional second pixel, wherein each of the additional first pixels comprises an additional first nanowire comprising the same predetermined material as the first nanowire but having a different diameter from each of the other additional first nanowires and from the first nanowire and each of the additional second pixels comprise an additional second nanowire comprising the same predetermined material as the second nanowire but having a different diameter from each other second additional nanowires and from the second nanowire; determining total error differences between spectral responses of the plurality of additional nanowire devices and the one or more standard spectral response curves; and determining the diameters of the nanowires of the nanowire device of the first nanowire device and the plurality of additional nanowire devices that produces the least total error difference between the spectral responses with the standard spectral response curves.
3. The method of claim 1, wherein the standard spectral response curves are Smith-Pokorny eye response spectral curves.
4. The method of claim 1, wherein the standard spectral response curves are CIE standard observer curves.
5. The method of claim 1, wherein the total least error difference is determined with a least squares analysis.
6. The method of claim 1, wherein the first pixel is configured to detect blue and yellow and the second pixel is configured to detect cyan and red.
7. The method of claim 3, wherein the first pixel is configured to detect blue and yellow and the second pixel is configured to detect cyan and red and determining the first, second, third, and fourth error differences between the spectral responses of the first and second nanowires and the Smith-Pokorny eye response spectral curves comprises determining the constants in the following equations: Rsp = Ayr*Ynw + Abr*Bnw + Arr*Rnw + Acr*Cnw, Gsp = Ayg*Ynw + Abg*Bnw + Arg*Rnw + Acg*Cnw, Bsp = Ayb*Ynw + Abb*Bnw + Arb*Rnw + Acb*Cnw, where Rsp, Gsp, and Bsp are the Smith-Pokorny eye response spectral curves, Ynw (yellow), Bnw (blue) and Rnw (red), Cnw (cyan) are the spectral responses of the first and second nanowires, respectively, and Ayr, Abr, Arr, Acr, Ayg, Abg, Arg, Acg, Ayb, Abb, Arb, and Acb are constants.
8. The method of claim 1, wherein the nanowire device comprises an optical pipe comprising a core and a cladding, wherein the core is configured to transmit light with wavelengths up to the predetermined color.
9. The method of claim 1, wherein the first nanowire has a diameter of approximately 60 nm and the second nanometer has a diameter of approximately 80 nm.
10. The method of claim 2, further comprising fabricating a sensor array having a plurality of first and second pixels.
11. The method of claim 10, wherein the sensor array comprises rows and columns of alternating first and second pixels.
12. A method of scene reconstruction comprising: receiving digitized responses of an array of nanowire photodiode devices, the array comprising a alternating plurality of first nanowire photodiode devices and second nanowire photodiode devices, the first nanowire photodiode devices configured to detect a first color and a first complementary color complementary to the first color and the second nanowire photodiode devices configured to detect a second color and a second complementary color complementary to the second color; and transforming the digitized responses by stepping across a row of alternating first and second nanowire photodiode devices and successively calculating the red, green, and blue scene color from a pair of adjacent first and second nanowire photodiode devices, wherein stepping across the row is performed one nanowire photodiode device at a time.
13. The method of claim 12, wherein transforming the digitized responses comprises calculating the red, green, and blue scene color with the following equations for a first yellow/blue nanowire photodiode device adjacent to a second red/cyan nanowire photodiode device:
Rl = Ayr*Yl + Abr*Bl + Arr*R2 + Acr*C2, Gl = Ayg*Yl + Abg*Bl + Arg*R2 + Acg*C2, Bl = Ayb*Yl + Abb*Bl + Arb*R2 + Acb*C2, where Yl, Bl and R2, C2, are spectral responses of the first yellow/blue nanowire photodiode device and the second red/cyan nanowire photodiode device, respectively, and Ayr, Abr, Arr, Acr, Ayg, Abg, Arg, Acg, Ayb, Abb, Arb, and Acb are constants.
14. The method of claim 13, wherein transforming the digitized responses comprises calculating the red, green, and blue scene color with the following equations for a third yellow/blue nanowire photodiode device adjacent to the second red/cyan nanowire photodiode device: R2 = Ayr*Y3 + Abr*B3 + Arr*R2 + Acr*C2,
G2 = Ayg*Y3 + Abg*B3 + Arg*R2 + Acg*C2, B2 = Ayb*Y3+ Abb*B3 + Arb*R2 + Acb*C2,
Where Y3, B3 and R2, C2 are spectral responses of the third yellow/blue nanowire photodiode device and the second red/cyan nanowire photodiode device, respectively, and Ayr, Abr, Arr, Acr, Ayg, Abg, Arg, Acg, Ayb,
Abb, Arb, and Acb are constants.
15. A method of scene reconstruction comprising receiving digitized responses of an array of nanowire photodiode devices, the array comprising an alternating plurality of first nanowire photodiode devices and second nanowire photodiode devices, the first nanowire photodiode devices configured to detect a first color and a first complementary color complementary to the first color and the second nanowire photodiode devices configured to detect a second color and a second complementary color complementary to the second color; and transforming the digitized responses by stepping across a row of alternating first and second nanowire photodiode devices and successively calculating the luminance and chrominance of the scene from a pair of adjacent first and second nanowire photodiode devices, wherein stepping across a row is performed a pair of nanodiodes devices at a time.
16. The method of claim 15, wherein transforming the digitized responses comprises calculating the luminance and chrominance of the scene with the following equations for a first yellow/blue nanowire photodiode device adjacent to a first red/cyan nanowire photodiode device: Luminance 1 = Ly*Yl + Lb*Bl,
Luminance2 = Lr* R2 + Lc*C2,
Chrominancel = Ayu*Yl + Abu*Bl + Aru*R2 + Acu*C2, Chrominance2 = Ayv*Yl + Abv*Bl + Arv*R2 + Acv*C2, where Yl, Bl and R2, C2 are the spectral responses of the first and second nanowire photodiode devices, respectively, and Ly, Lb, Lr, Lc, Ayu, Ayv,
Abu, Abv, Aru, Arv, Acu, and Acv are constants.
17. The method of claim 15, further comprising using a 4:2:2 subsampling.
18. A device comprising at least a first pixel and a second pixel, wherein the first pixel comprises a first nanowire comprising a predetermined material and a predetermined diameter, the first pixel configured to detect a first predetermined color and a first complementary color of the first predetermined color and the second pixel comprises a second nanowire comprising a second predetermined material and a second predetermined diameter, the second pixel configured to detect a second predetermined color and a second complementary color of the second predetermined color, wherein the first nanowire and the second nanowire have diameters which were determined to produce the least total error difference between spectral responses of the first and second pixels with standard spectral response curves.
19. The device of claim 18, wherein the device is an optical sensor.
20. The device of claim 18, wherein the standard spectral response curves are Smith-Pokorny eye response spectral curves.
21. The device of claim 18, wherein the standard spectral response curves are CIE standard observer curves.
22. The device of claim 18, wherein the least total error difference is determined with a least squares analysis.
23. The device of claim 18, wherein the first pixel comprises a first light pipe comprising the first nanowire and a first cladding surrounding the first nanowire and the second pixel comprises a second light pipe comprising the second nanowire and a second cladding surrounding the first nanowire.
24. The device of claim 23, wherein the first pixel further comprises a reflective surface surrounding the first light pipe and the second pixel further comprises a reflective surface surrounding the second light pipe.
25. The device of claim 23, wherein the first pixel comprises a first substrate and a first photodiode in the first substrate, the second pixel comprises a second substrate and a second photodiode in the second substrate.
26. The device of claim 25, wherein the first complementary color is detected by the first photodiode in the first substrate and the second complementary color is detected by the second photodiode in the second substrate.
27. A tangible computer readable medium comprising computer executable instructions for: simulating a first nanowire device comprising at least a first pixel and a second pixel, wherein the first pixel comprises a first nanowire comprising a predetermined material and a predetermined diameter, the first pixel configured to detect a first predetermined color and a first complementary color of the first predetermined color and the second pixel comprises a second nanowire comprising a second predetermined material and a second predetermined diameter, the second pixel configured to detect a second predetermined color and a second complementary color of the second predetermined color; and determining a first error difference between a first predetermined color spectral response of the first predetermined color of the first nanowire and one or more standard spectral response curves; determining a second error difference between a first complimentary color spectral response of the first complementary color of the first nanowire and one or more standard spectral response curves; determining a third error difference between a second predetermined color spectral response of the second predetermined color of the second nanowire and the one or more standard spectral response curves; and determining a fourth error difference between a second complimentary color spectral response of the second complementary color of the second nanowire and the one or more standard spectral response curves; and determining a total error difference from the first, second, third, and fourth error differences.
28. The computer readable medium of claim 27, further comprising instructions for: simulating a plurality of additional nanowire devices, each of the additional nanowire devices comprising at least an additional first pixel and an additional second pixel, wherein each of the additional first pixels comprises an additional first nanowire comprising the same predetermined material as the first nanowire but having a different diameter from each of the other additional first nanowires and from the first nanowire and each of the additional second pixels comprise an additional second nanowire comprising the same predetermined material as the second nanowire but having a different diameter from each other second additional nanowires and from the second nanowire; determining the error difference between the spectral responses of the plurality of additional nanowire devices and the one or more standard spectral response curves; and determining the diameters of the nanowires of the nanowire device of the first nanowire device and the plurality of additional nanowire devices that produces the least total error difference between the spectral responses with standard spectral response curves.
29. The computer readable medium of claim 27, wherein the least error difference is determined with a least squares analysis.
30. The computer readable medium of claim 27, wherein the simulation includes the effect of crosstalk.
PCT/US2010/035726 2009-05-26 2010-05-21 Determination of optimal diameters for nanowires WO2010138406A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201080032638.3A CN102483323B (en) 2009-05-26 2010-05-21 Determination of optimal diameters for nanowires

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/472,264 2009-05-26
US12/472,264 US8269985B2 (en) 2009-05-26 2009-05-26 Determination of optimal diameters for nanowires

Publications (1)

Publication Number Publication Date
WO2010138406A1 true WO2010138406A1 (en) 2010-12-02

Family

ID=43219812

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/035726 WO2010138406A1 (en) 2009-05-26 2010-05-21 Determination of optimal diameters for nanowires

Country Status (4)

Country Link
US (4) US8269985B2 (en)
CN (2) CN104330042A (en)
TW (1) TWI426225B (en)
WO (1) WO2010138406A1 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US9406709B2 (en) 2010-06-22 2016-08-02 President And Fellows Of Harvard College Methods for fabricating and using nanowires
US8546742B2 (en) * 2009-06-04 2013-10-01 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
US8835831B2 (en) 2010-06-22 2014-09-16 Zena Technologies, Inc. Polarized light detecting device and fabrication methods of the same
US8890271B2 (en) 2010-06-30 2014-11-18 Zena Technologies, Inc. Silicon nitride light pipes for image sensors
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US8791470B2 (en) 2009-10-05 2014-07-29 Zena Technologies, Inc. Nano structured LEDs
US8866065B2 (en) 2010-12-13 2014-10-21 Zena Technologies, Inc. Nanowire arrays comprising fluorescent nanowires
US9343490B2 (en) 2013-08-09 2016-05-17 Zena Technologies, Inc. Nanowire structured color filter arrays and fabrication method of the same
US8229255B2 (en) 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US8735797B2 (en) 2009-12-08 2014-05-27 Zena Technologies, Inc. Nanowire photo-detector grown on a back-side illuminated image sensor
US8299472B2 (en) 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
US8274039B2 (en) 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US9478685B2 (en) 2014-06-23 2016-10-25 Zena Technologies, Inc. Vertical pillar structured infrared detector and fabrication method for the same
US8889455B2 (en) 2009-12-08 2014-11-18 Zena Technologies, Inc. Manufacturing nanowire photo-detector grown on a back-side illuminated image sensor
US8748799B2 (en) 2010-12-14 2014-06-10 Zena Technologies, Inc. Full color single pixel including doublet or quadruplet si nanowires for image sensors
US8269985B2 (en) 2009-05-26 2012-09-18 Zena Technologies, Inc. Determination of optimal diameters for nanowires
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
US8519379B2 (en) 2009-12-08 2013-08-27 Zena Technologies, Inc. Nanowire structured photodiode with a surrounding epitaxially grown P or N layer
US9299866B2 (en) 2010-12-30 2016-03-29 Zena Technologies, Inc. Nanowire array based solar energy harvesting device
US20130187051A1 (en) * 2011-10-06 2013-07-25 Massachusetts Institute Of Technology Frequency multiplexed superconducting nanowire photon detectors
TWI591809B (en) 2015-08-04 2017-07-11 國立交通大學 Photodetecting device and use thereof
CN105655366B (en) * 2016-02-23 2019-10-15 上海天马微电子有限公司 Display screen and display device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070138459A1 (en) * 2005-10-13 2007-06-21 Wong Stanislaus S Ternary oxide nanostructures and methods of making same
WO2008131313A2 (en) * 2007-04-18 2008-10-30 Invisage Technologies, Inc. Materials systems and methods for optoelectronic devices

Family Cites Families (386)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1918848A (en) 1929-04-26 1933-07-18 Norwich Res Inc Polarizing refracting bodies
US3903427A (en) 1973-12-28 1975-09-02 Hughes Aircraft Co Solar cell connections
US4017332A (en) 1975-02-27 1977-04-12 Varian Associates Solar cells employing stacked opposite conductivity layers
US4357415A (en) 1980-03-06 1982-11-02 Eastman Kodak Company Method of making a solid-state color imaging device having a color filter array using a photocrosslinkable barrier
FR2495412A1 (en) 1980-12-02 1982-06-04 Thomson Csf DIRECTLY MODULATED INFORMATION TRANSMISSION SYSTEM FOR OPTICALLY BANDWIDTH OPTICALLY LINKED LIGHT EXTENDED TO LOW FREQUENCIES AND CONTINUOUS
US4400221A (en) 1981-07-08 1983-08-23 The United States Of America As Represented By The Secretary Of The Air Force Fabrication of gallium arsenide-germanium heteroface junction device
US4387265A (en) 1981-07-17 1983-06-07 University Of Delaware Tandem junction amorphous semiconductor photovoltaic cell
US5696863A (en) 1982-08-06 1997-12-09 Kleinerman; Marcos Y. Distributed fiber optic temperature sensors and systems
US5247349A (en) 1982-11-16 1993-09-21 Stauffer Chemical Company Passivation and insulation of III-V devices with pnictides, particularly amorphous pnictides having a layer-like structure
US4678772A (en) 1983-02-28 1987-07-07 Yissum Research Development Company Of The Hebrew University Of Jerusalem Compositions containing glycyrrhizin
US4513168A (en) 1984-04-19 1985-04-23 Varian Associates, Inc. Three-terminal solar cell circuit
US4620237A (en) 1984-10-22 1986-10-28 Xerox Corporation Fast scan jitter measuring system for raster scanners
JPS61250605A (en) 1985-04-27 1986-11-07 Power Reactor & Nuclear Fuel Dev Corp Image fiber with optical waveguide
US4827335A (en) 1986-08-29 1989-05-02 Kabushiki Kaisha Toshiba Color image reading apparatus with two color separation filters each having two filter elements
EP0275063A3 (en) 1987-01-12 1992-05-27 Sumitomo Electric Industries Limited Light emitting element comprising diamond and method for producing the same
JPH0721562B2 (en) 1987-05-14 1995-03-08 凸版印刷株式会社 Color filter
JPH0288498A (en) 1988-06-13 1990-03-28 Sumitomo Electric Ind Ltd Diamond laser crystal and its formation
FR2633101B1 (en) 1988-06-16 1992-02-07 Commissariat Energie Atomique PHOTODIODE AND MATRIX OF PHOTODIODES ON HGCDTE AND METHODS OF MAKING SAME
US5311047A (en) 1988-11-16 1994-05-10 National Science Council Amorphous SI/SIC heterojunction color-sensitive phototransistor
US5124543A (en) 1989-08-09 1992-06-23 Ricoh Company, Ltd. Light emitting element, image sensor and light receiving element with linearly varying waveguide index
US5401968A (en) 1989-12-29 1995-03-28 Honeywell Inc. Binary optical microlens detector array
US4971928A (en) 1990-01-16 1990-11-20 General Motors Corporation Method of making a light emitting semiconductor having a rear reflecting surface
US5362972A (en) 1990-04-20 1994-11-08 Hitachi, Ltd. Semiconductor device using whiskers
US5096520A (en) 1990-08-01 1992-03-17 Faris Sades M Method for producing high efficiency polarizing filters
GB9025837D0 (en) 1990-11-28 1991-01-09 De Beers Ind Diamond Light emitting diamond device
US5272518A (en) 1990-12-17 1993-12-21 Hewlett-Packard Company Colorimeter and calibration system
US5374841A (en) 1991-12-18 1994-12-20 Texas Instruments Incorporated HgCdTe S-I-S two color infrared detector
US5356488A (en) 1991-12-27 1994-10-18 Rudolf Hezel Solar cell and method for its manufacture
DE59403063D1 (en) 1993-02-17 1997-07-17 Hoffmann La Roche Optical component
US5468652A (en) 1993-07-14 1995-11-21 Sandia Corporation Method of making a back contacted solar cell
US5625210A (en) 1995-04-13 1997-04-29 Eastman Kodak Company Active pixel sensor integrated with a pinned photodiode
US5747796A (en) 1995-07-13 1998-05-05 Sharp Kabushiki Kaisha Waveguide type compact optical scanner and manufacturing method thereof
JP3079969B2 (en) 1995-09-14 2000-08-21 日本電気株式会社 Complete contact image sensor and method of manufacturing the same
US5767507A (en) 1996-07-15 1998-06-16 Trustees Of Boston University Polarization sensitive photodetectors and detector arrays
US5671914A (en) 1995-11-06 1997-09-30 Spire Corporation Multi-band spectroscopic photodetector array
US6033582A (en) 1996-01-22 2000-03-07 Etex Corporation Surface modification of medical implants
US5723945A (en) 1996-04-09 1998-03-03 Electro Plasma, Inc. Flat-panel display
US5853446A (en) 1996-04-16 1998-12-29 Corning Incorporated Method for forming glass rib structures
GB2312524A (en) 1996-04-24 1997-10-29 Northern Telecom Ltd Planar optical waveguide cladding by PECVD method
US6074892A (en) 1996-05-07 2000-06-13 Ciena Corporation Semiconductor hetero-interface photodetector
US5986297A (en) * 1996-05-22 1999-11-16 Eastman Kodak Company Color active pixel sensor with electronic shuttering, anti-blooming and low cross-talk
US5612780A (en) 1996-06-05 1997-03-18 Harris Corporation Device for detecting light emission from optical fiber
US5943463A (en) 1996-06-17 1999-08-24 Sharp Kabushiki Kaisha Color image sensor and a production method of an optical waveguide array for use therein
JP2917920B2 (en) 1996-06-27 1999-07-12 日本電気株式会社 Solid-state imaging device and method of manufacturing the same
AUPO281896A0 (en) 1996-10-04 1996-10-31 Unisearch Limited Reactive ion etching of silica structures for integrated optics applications
US6388648B1 (en) 1996-11-05 2002-05-14 Clarity Visual Systems, Inc. Color gamut and luminance matching techniques for image display systems
US5798535A (en) 1996-12-20 1998-08-25 Motorola, Inc. Monolithic integration of complementary transistors and an LED array
DE69808064T2 (en) 1997-04-17 2003-05-22 Beers Ind Diamonds Pty Ltd De SINTERING PROCEDURE FOR DIAMONDS AND DIAMOND BREEDING
GB9710062D0 (en) 1997-05-16 1997-07-09 British Tech Group Optical devices and methods of fabrication thereof
US5968528A (en) 1997-05-23 1999-10-19 The Procter & Gamble Company Skin care compositions
US5857053A (en) 1997-06-17 1999-01-05 Lucent Technologies Inc. Optical fiber filter
US5900623A (en) 1997-08-11 1999-05-04 Chrontel, Inc. Active pixel sensor using CMOS technology with reverse biased photodiodes
US6046466A (en) 1997-09-12 2000-04-04 Nikon Corporation Solid-state imaging device
KR100250448B1 (en) 1997-11-06 2000-05-01 정선종 Fabrication of silicon nano-structures using silicon nitride
US5880495A (en) 1998-01-08 1999-03-09 Omnivision Technologies, Inc. Active pixel with a pinned photodiode
KR20010040506A (en) 1998-02-02 2001-05-15 유니액스 코포레이션 Image Sensors Made from Organic Semiconductors
US6771314B1 (en) 1998-03-31 2004-08-03 Intel Corporation Orange-green-blue (OGB) color system for digital image sensor applications
US6301420B1 (en) 1998-05-01 2001-10-09 The Secretary Of State For Defence In Her Britannic Majesty's Government Of The United Kingdom Of Great Britain And Northern Ireland Multicore optical fibre
US6463204B1 (en) 1998-12-18 2002-10-08 Fujitsu Network Communications, Inc. Modular lightpipe system
US6326649B1 (en) 1999-01-13 2001-12-04 Agere Systems, Inc. Pin photodiode having a wide bandwidth
WO2000052765A1 (en) 1999-03-01 2000-09-08 Photobit Corporation Active pixel sensor with fully-depleted buried photoreceptor
GB2348399A (en) 1999-03-31 2000-10-04 Univ Glasgow Reactive ion etching with control of etch gas flow rate, pressure and rf power
JP3706527B2 (en) 1999-06-30 2005-10-12 Hoya株式会社 Electron beam drawing mask blanks, electron beam drawing mask, and method of manufacturing electron beam drawing mask
US6124167A (en) 1999-08-06 2000-09-26 Micron Technology, Inc. Method for forming an etch mask during the manufacture of a semiconductor device
US6407439B1 (en) 1999-08-19 2002-06-18 Epitaxial Technologies, Llc Programmable multi-wavelength detector array
US6805139B1 (en) 1999-10-20 2004-10-19 Mattson Technology, Inc. Systems and methods for photoresist strip and residue treatment in integrated circuit manufacturing
US6465824B1 (en) 2000-03-09 2002-10-15 General Electric Company Imager structure
US6610351B2 (en) 2000-04-12 2003-08-26 Quantag Systems, Inc. Raman-active taggants and their recognition
US20020020846A1 (en) 2000-04-20 2002-02-21 Bo Pi Backside illuminated photodiode array
JP2002057359A (en) 2000-06-01 2002-02-22 Sharp Corp Laminated solar battery
US7555333B2 (en) 2000-06-19 2009-06-30 University Of Washington Integrated optical scanning image acquisition and display
US6690871B2 (en) 2000-07-10 2004-02-10 Massachusetts Institute Of Technology Graded index waveguide
WO2002013958A2 (en) 2000-08-11 2002-02-21 General Electric Company High pressure and high temperature production of diamonds
US7301199B2 (en) 2000-08-22 2007-11-27 President And Fellows Of Harvard College Nanoscale wires and related devices
US20060175601A1 (en) 2000-08-22 2006-08-10 President And Fellows Of Harvard College Nanoscale wires and related devices
EP2360298A3 (en) 2000-08-22 2011-10-05 President and Fellows of Harvard College Method for depositing a semiconductor nanowire
US6542231B1 (en) 2000-08-22 2003-04-01 Thermo Finnegan Llc Fiber-coupled liquid sample analyzer with liquid flow cell
JP2002151715A (en) 2000-11-08 2002-05-24 Sharp Corp Thin-film solar cell
US6800870B2 (en) 2000-12-20 2004-10-05 Michel Sayag Light stimulating and collecting methods and apparatus for storage-phosphor image plates
DE50108998D1 (en) 2000-12-21 2006-04-27 St Microelectronics Nv PICTURE SENSOR WITH CENTRAL CLOSURE
CN1274032C (en) 2001-01-31 2006-09-06 信越半导体株式会社 Solar cell and method for producing same
JP3809342B2 (en) 2001-02-13 2006-08-16 喜萬 中山 Light emitting / receiving probe and light emitting / receiving probe apparatus
WO2002069623A1 (en) 2001-02-28 2002-09-06 Sony Corporation Image input device
CN1306619C (en) 2001-03-30 2007-03-21 加利福尼亚大学董事会 Methods of fabricating nanostructures and nanowires and devices fabricated therefrom
US6563995B2 (en) 2001-04-02 2003-05-13 Lightwave Electronics Optical wavelength filtering apparatus with depressed-index claddings
US20040058407A1 (en) 2001-04-10 2004-03-25 Miller Scott E. Reactor systems having a light-interacting component
US20030006363A1 (en) 2001-04-27 2003-01-09 Campbell Scott Patrick Optimization of alignment between elements in an image sensor
US6709929B2 (en) 2001-06-25 2004-03-23 North Carolina State University Methods of forming nano-scale electronic and optoelectronic devices using non-photolithographically defined nano-channel templates
US6846565B2 (en) 2001-07-02 2005-01-25 Board Of Regents, The University Of Texas System Light-emitting nanoparticles and method of making same
US8816443B2 (en) 2001-10-12 2014-08-26 Quantum Semiconductor Llc Method of fabricating heterojunction photodiodes with CMOS
US7109517B2 (en) 2001-11-16 2006-09-19 Zaidi Saleem H Method of making an enhanced optical absorption and radiation tolerance in thin-film solar cells and photodetectors
FR2832995B1 (en) 2001-12-04 2004-02-27 Thales Sa CATALYTIC GROWTH PROCESS OF NANOTUBES OR NANOFIBERS COMPRISING A DIFFUSION BARRIER OF THE NISI ALLOY TYPE
US6987258B2 (en) 2001-12-19 2006-01-17 Intel Corporation Integrated circuit-based compound eye image sensor using a light pipe bundle
US6720594B2 (en) 2002-01-07 2004-04-13 Xerox Corporation Image sensor array with reduced pixel crosstalk
US6566723B1 (en) 2002-01-10 2003-05-20 Agilent Technologies, Inc. Digital color image sensor with elevated two-color photo-detector and related circuitry
CA2458124C (en) 2002-01-14 2011-03-08 China Petroleum & Chemical Corporation A power transmission mechanism, a fluid-driven impactor and its use
US7078296B2 (en) 2002-01-16 2006-07-18 Fairchild Semiconductor Corporation Self-aligned trench MOSFETs and methods for making the same
US20040026684A1 (en) 2002-04-02 2004-02-12 Nanosys, Inc. Nanowire heterostructures for encoding information
US20030189202A1 (en) 2002-04-05 2003-10-09 Jun Li Nanowire devices and methods of fabrication
US6852619B2 (en) 2002-05-31 2005-02-08 Sharp Kabushiki Kaisha Dual damascene semiconductor devices
US6660930B1 (en) 2002-06-12 2003-12-09 Rwe Schott Solar, Inc. Solar cell modules with improved backskin
US7311889B2 (en) 2002-06-19 2007-12-25 Fujitsu Limited Carbon nanotubes, process for their production, and catalyst for production of carbon nanotubes
US7335908B2 (en) 2002-07-08 2008-02-26 Qunano Ab Nanostructures and methods for manufacturing the same
KR100541320B1 (en) 2002-07-19 2006-01-10 동부아남반도체 주식회사 A pinned photodiode for a CMOS image sensor and fabricating method thereof
WO2004010552A1 (en) * 2002-07-19 2004-01-29 President And Fellows Of Harvard College Nanoscale coherent optical components
CN100466297C (en) 2002-09-05 2009-03-04 奈米系统股份有限公司 Nanostructures,nano coompositon and photovolaitic device
JP3672900B2 (en) 2002-09-11 2005-07-20 松下電器産業株式会社 Pattern formation method
US8120079B2 (en) 2002-09-19 2012-02-21 Quantum Semiconductor Llc Light-sensing device for multi-spectral imaging
US7067867B2 (en) 2002-09-30 2006-06-27 Nanosys, Inc. Large-area nonenabled macroelectronic substrates and uses therefor
US7135728B2 (en) 2002-09-30 2006-11-14 Nanosys, Inc. Large-area nanoenabled macroelectronic substrates and uses therefor
JP2004128060A (en) 2002-09-30 2004-04-22 Canon Inc Growth method of silicon film, manufacturing method of solar cell, semiconductor substrate, and solar cell
WO2004031746A1 (en) 2002-10-02 2004-04-15 Lumen Health Innovations, Inc. Apparatus and methods relating to high speed spectroscopy and excitation-emission matrices
US7507293B2 (en) 2002-10-28 2009-03-24 Hewlett-Packard Development Company, L.P. Photonic crystals with nanowire-based fabrication
EP2233564A3 (en) 2002-10-30 2012-11-21 Hitachi, Ltd. Cell culture sheet comprising a functional substrate with a group of columnar micro-pillars and its manufacturing method
GB0227261D0 (en) 2002-11-21 2002-12-31 Element Six Ltd Optical quality diamond material
US7163659B2 (en) 2002-12-03 2007-01-16 Hewlett-Packard Development Company, L.P. Free-standing nanowire sensor and method for detecting an analyte in a fluid
AU2003294822A1 (en) 2002-12-09 2004-06-30 Quantum Semiconductor Llc Cmos image sensor
US6969897B2 (en) 2002-12-10 2005-11-29 Kim Ii John Optoelectronic devices employing fibers for light collection and emission
US6837212B2 (en) 2002-12-19 2005-01-04 Caterpillar Inc. Fuel allocation at idle or light engine load
FR2850882B1 (en) 2003-02-11 2005-03-18 Eurecat Sa PASSIVATION OF SULFIDE HYDROCONVERSION CATALYST
CA2419704A1 (en) 2003-02-24 2004-08-24 Ignis Innovation Inc. Method of manufacturing a pixel with organic light-emitting diode
US7061028B2 (en) 2003-03-12 2006-06-13 Taiwan Semiconductor Manufacturing, Co., Ltd. Image sensor device and method to form image sensor device
US7050660B2 (en) 2003-04-07 2006-05-23 Eksigent Technologies Llc Microfluidic detection device having reduced dispersion and method for making same
US6888974B2 (en) 2003-04-23 2005-05-03 Intel Corporation On-chip optical signal routing
US8212138B2 (en) 2003-05-16 2012-07-03 The United States Of America As Represented By The Administrator Of National Aeronautics And Space Administration Reverse bias protected solar array with integrated bypass battery
US7462774B2 (en) 2003-05-21 2008-12-09 Nanosolar, Inc. Photovoltaic devices fabricated from insulating nanostructured template
US7465661B2 (en) 2003-05-28 2008-12-16 The United States Of America As Represented By The Secretary Of The Navy High aspect ratio microelectrode arrays
WO2005014784A2 (en) 2003-06-20 2005-02-17 Tumer Tumay O System for molecular imaging
US7265037B2 (en) 2003-06-20 2007-09-04 The Regents Of The University Of California Nanowire array and nanowire solar cells and methods for forming the same
US6913649B2 (en) * 2003-06-23 2005-07-05 Sharp Laboratories Of America, Inc. System and method for forming single-crystal domains using crystal seeds
US7416911B2 (en) 2003-06-24 2008-08-26 California Institute Of Technology Electrochemical method for attaching molecular and biomolecular structures to semiconductor microstructures and nanostructures
DE102004031950A1 (en) 2003-06-26 2005-02-10 Kyocera Corp. Semiconductor / electrode contact structure and such a semiconductor device using
US7170001B2 (en) 2003-06-26 2007-01-30 Advent Solar, Inc. Fabrication of back-contacted silicon solar cells using thermomigration to create conductive vias
US7649141B2 (en) 2003-06-30 2010-01-19 Advent Solar, Inc. Emitter wrap-through back contact solar cells on thin silicon wafers
US7148528B2 (en) 2003-07-02 2006-12-12 Micron Technology, Inc. Pinned photodiode structure and method of formation
US7335259B2 (en) 2003-07-08 2008-02-26 Brian A. Korgel Growth of single crystal nanowires
US7420156B2 (en) * 2003-08-06 2008-09-02 University Of Pittsburgh Metal nanowire based bandpass filter arrays in the optical frequency range
US20080297878A1 (en) * 2003-10-01 2008-12-04 Board Of Regents, The University Of Texas System Compositions, methods and systems for making and using electronic paper
US6960526B1 (en) 2003-10-10 2005-11-01 The United States Of America As Represented By The Secretary Of The Army Method of fabricating sub-100 nanometer field emitter tips comprising group III-nitride semiconductors
US7330404B2 (en) 2003-10-10 2008-02-12 Seagate Technology Llc Near-field optical transducers for thermal assisted magnetic and optical data storage
US7019402B2 (en) 2003-10-17 2006-03-28 International Business Machines Corporation Silicon chip carrier with through-vias using laser assisted chemical vapor deposition of conductor
US7823783B2 (en) 2003-10-24 2010-11-02 Cognex Technology And Investment Corporation Light pipe illumination system and method
US20050116271A1 (en) 2003-12-02 2005-06-02 Yoshiaki Kato Solid-state imaging device and manufacturing method thereof
US6969899B2 (en) 2003-12-08 2005-11-29 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor with light guides
US7208094B2 (en) 2003-12-17 2007-04-24 Hewlett-Packard Development Company, L.P. Methods of bridging lateral nanowires and device using same
DE10360274A1 (en) 2003-12-18 2005-06-02 Tesa Ag Optical data storer with a number of superposed storage sites each having a reflection layer, preferably a metal layer, where the absorption or reflection can be altered selectively by thermal treatment useful for storage of optical data
EP1700329A2 (en) 2003-12-22 2006-09-13 Koninklijke Philips Electronics N.V. Fabricating a set of semiconducting nanowires, and electric device comprising a set of nanowires
WO2005064337A1 (en) 2003-12-22 2005-07-14 Koninklijke Philips Electronics N.V. Optical nanowire biosensor based on energy transfer
WO2005064687A1 (en) 2003-12-23 2005-07-14 Koninklijke Philips Electronics N.V. Semiconductor device comprising a pn-heterojunction
US7647695B2 (en) * 2003-12-30 2010-01-19 Lockheed Martin Corporation Method of matching harnesses of conductors with apertures in connectors
US7052927B1 (en) 2004-01-27 2006-05-30 Raytheon Company Pin detector apparatus and method of fabrication
US6969568B2 (en) 2004-01-28 2005-11-29 Freescale Semiconductor, Inc. Method for etching a quartz layer in a photoresistless semiconductor mask
US6927145B1 (en) 2004-02-02 2005-08-09 Advanced Micro Devices, Inc. Bitline hard mask spacer flow for memory cell scaling
JP2005252210A (en) 2004-02-03 2005-09-15 Sharp Corp Solar cell
US7254287B2 (en) 2004-02-12 2007-08-07 Panorama Labs, Pty Ltd. Apparatus, method, and computer program product for transverse waveguided display system
US7381579B2 (en) * 2004-02-26 2008-06-03 Samsung Sdi Co., Ltd. Donor sheet, method of manufacturing the same, method of manufacturing TFT using the donor sheet, and method of manufacturing flat panel display device using the donor sheet
JP2005251804A (en) 2004-03-01 2005-09-15 Canon Inc Imaging device
US7471428B2 (en) 2004-03-12 2008-12-30 Seiko Epson Corporation Contact image sensor module and image reading device equipped with the same
TWI312583B (en) 2004-03-18 2009-07-21 Phoseon Technology Inc Micro-reflectors on a substrate for high-density led array
US7115971B2 (en) 2004-03-23 2006-10-03 Nanosys, Inc. Nanowire varactor diode and methods of making same
US7223641B2 (en) 2004-03-26 2007-05-29 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, method for manufacturing the same, liquid crystal television and EL television
US7019391B2 (en) 2004-04-06 2006-03-28 Bao Tran NANO IC packaging
US7061106B2 (en) 2004-04-28 2006-06-13 Advanced Chip Engineering Technology Inc. Structure of image sensor module and a method for manufacturing of wafer level package
KR20070011550A (en) 2004-04-30 2007-01-24 나노시스, 인크. Systems and methods for nanowire growth and harvesting
US8280214B2 (en) 2004-05-13 2012-10-02 The Regents Of The University Of California Nanowires and nanoribbons as subwavelength optical waveguides and their use as components in photonic circuits and devices
CN102097458B (en) 2004-06-04 2013-10-30 伊利诺伊大学评议会 Methods and devices for fabricating and assembling printable semiconductor elements
JP2006013403A (en) 2004-06-29 2006-01-12 Sanyo Electric Co Ltd Solar cell, solar cell module, its manufacturing method, and its reparing method
US8035142B2 (en) 2004-07-08 2011-10-11 Micron Technology, Inc. Deuterated structures for image sensors and methods for forming the same
US7427798B2 (en) 2004-07-08 2008-09-23 Micron Technology, Inc. Photonic crystal-based lens elements for use in an image sensor
FR2873492B1 (en) 2004-07-21 2006-11-24 Commissariat Energie Atomique PHOTOACTIVE NANOCOMPOSITE AND METHOD OF MANUFACTURING THE SAME
US20090046749A1 (en) 2004-08-04 2009-02-19 Kiminori Mizuuchi Coherent light source
US7713849B2 (en) 2004-08-20 2010-05-11 Illuminex Corporation Metallic nanowire arrays and methods for making and using same
US7285812B2 (en) 2004-09-02 2007-10-23 Micron Technology, Inc. Vertical transistors
EP2261650A3 (en) 2004-09-15 2011-07-06 IntegenX Inc. Microfluidic devices
US20060071290A1 (en) 2004-09-27 2006-04-06 Rhodes Howard E Photogate stack with nitride insulating cap over conductive layer
EP1643565B1 (en) 2004-09-30 2020-03-04 OSRAM Opto Semiconductors GmbH Radiation detector
US20080260225A1 (en) 2004-10-06 2008-10-23 Harold Szu Infrared Multi-Spectral Camera and Process of Using Infrared Multi-Spectral Camera
US20060196375A1 (en) * 2004-10-22 2006-09-07 Seth Coe-Sullivan Method and system for transferring a patterned material
US7544977B2 (en) 2006-01-27 2009-06-09 Hewlett-Packard Development Company, L.P. Mixed-scale electronic interface
US7208783B2 (en) 2004-11-09 2007-04-24 Micron Technology, Inc. Optical enhancement of integrated circuit photodetectors
KR100745595B1 (en) 2004-11-29 2007-08-02 삼성전자주식회사 Microlens of an image sensor and method for forming the same
US7306963B2 (en) 2004-11-30 2007-12-11 Spire Corporation Precision synthesis of quantum dot nanostructures for fluorescent and optoelectronic devices
US7193289B2 (en) 2004-11-30 2007-03-20 International Business Machines Corporation Damascene copper wiring image sensor
TWI263802B (en) 2004-12-03 2006-10-11 Innolux Display Corp Color filter
US7235475B2 (en) 2004-12-23 2007-06-26 Hewlett-Packard Development Company, L.P. Semiconductor nanowire fluid sensor and method for fabricating the same
US7342268B2 (en) 2004-12-23 2008-03-11 International Business Machines Corporation CMOS imager with Cu wiring and method of eliminating high reflectivity interfaces therefrom
US7245370B2 (en) 2005-01-06 2007-07-17 Hewlett-Packard Development Company, L.P. Nanowires for surface-enhanced Raman scattering molecular sensors
KR100688542B1 (en) 2005-03-28 2007-03-02 삼성전자주식회사 Vertical type nanotube semiconductor device and method of manufacturing the same
WO2006110341A2 (en) 2005-04-01 2006-10-19 North Carolina State University Nano-structured photovoltaic solar cells and related methods
US20070238265A1 (en) 2005-04-05 2007-10-11 Keiichi Kurashina Plating apparatus and plating method
KR101145146B1 (en) 2005-04-07 2012-05-14 엘지디스플레이 주식회사 TFT and method of fabricating of the same
US7272287B2 (en) 2005-05-11 2007-09-18 Fitel Usa Corp Optical fiber filter for suppression of amplified spontaneous emission
US7230286B2 (en) 2005-05-23 2007-06-12 International Business Machines Corporation Vertical FET with nanowire channels and a silicided bottom contact
TWI429066B (en) 2005-06-02 2014-03-01 Sony Corp Semiconductor image sensor module and manufacturing method thereof
GB0511300D0 (en) 2005-06-03 2005-07-13 Ct For Integrated Photonics Th Control of vertical axis for passive alignment of optical components with wave guides
US7262408B2 (en) 2005-06-15 2007-08-28 Board Of Trustees Of Michigan State University Process and apparatus for modifying a surface in a work region
US20090050204A1 (en) 2007-08-03 2009-02-26 Illuminex Corporation. Photovoltaic device using nanostructured material
US8084728B2 (en) 2005-07-06 2011-12-27 Capella Microsystems, Corp. Optical sensing device
DE102005033455A1 (en) 2005-07-18 2007-01-25 GEMÜ Gebr. Müller Apparatebau GmbH & Co. KG Drive device for linear movement of elongated bodies
WO2007011047A1 (en) 2005-07-22 2007-01-25 Zeon Corporation Grid polarizer and method for manufacturing same
ATE392013T1 (en) * 2005-07-29 2008-04-15 Imec Inter Uni Micro Electr WAVELENGTH SENSITIVE PHOTO DETECTOR WITH ENGINEERED NANOSTRUCTURES
US7683407B2 (en) 2005-08-01 2010-03-23 Aptina Imaging Corporation Structure and method for building a light tunnel for use with imaging devices
US7307327B2 (en) 2005-08-04 2007-12-11 Micron Technology, Inc. Reduced crosstalk CMOS image sensors
KR100750933B1 (en) 2005-08-14 2007-08-22 삼성전자주식회사 Top-emitting White Light Emitting Devices Using Nano-structures of Rare-earth Doped Transparent Conducting ZnO And Method Of Manufacturing Thereof
US7485908B2 (en) 2005-08-18 2009-02-03 United States Of America As Represented By The Secretary Of The Air Force Insulated gate silicon nanowire transistor and method of manufacture
US7265328B2 (en) 2005-08-22 2007-09-04 Micron Technology, Inc. Method and apparatus providing an optical guide for an imager pixel having a ring of air-filled spaced slots around a photosensor
US7634162B2 (en) 2005-08-24 2009-12-15 The Trustees Of Boston College Apparatus and methods for nanolithography using nanoscale optics
US7943847B2 (en) 2005-08-24 2011-05-17 The Trustees Of Boston College Apparatus and methods for solar energy conversion using nanoscale cometal structures
US7649665B2 (en) 2005-08-24 2010-01-19 The Trustees Of Boston College Apparatus and methods for optical switching using nanoscale optics
US7736954B2 (en) 2005-08-26 2010-06-15 Sematech, Inc. Methods for nanoscale feature imprint molding
US20070052050A1 (en) 2005-09-07 2007-03-08 Bart Dierickx Backside thinned image sensor with integrated lens stack
EP2485052B1 (en) 2005-09-13 2015-05-06 Affymetrix, Inc. Encoded microparticles
US7608823B2 (en) 2005-10-03 2009-10-27 Teledyne Scientific & Imaging, Llc Multimode focal plane array with electrically isolated commons for independent sub-array biasing
US8133637B2 (en) 2005-10-06 2012-03-13 Headwaters Technology Innovation, Llc Fuel cells and fuel cell catalysts incorporating a nanoring support
US7286740B2 (en) 2005-10-07 2007-10-23 Sumitomo Electric Industries, Ltd. Optical fiber, optical transmission line, optical module and optical transmission system
CN1956223A (en) 2005-10-26 2007-05-02 松下电器产业株式会社 Semiconductor device and method for fabricating the same
EP1952304A4 (en) 2005-11-08 2014-10-08 Gen Atomics Apparatus and methods for use in flash detection
US20070104441A1 (en) 2005-11-08 2007-05-10 Massachusetts Institute Of Technology Laterally-integrated waveguide photodetector apparatus and related coupling methods
US7728277B2 (en) 2005-11-16 2010-06-01 Eastman Kodak Company PMOS pixel structure with low cross talk for active pixel image sensors
US8337721B2 (en) 2005-12-02 2012-12-25 Vanderbilt University Broad-emission nanocrystals and methods of making and using same
US7262400B2 (en) 2005-12-02 2007-08-28 Taiwan Semiconductor Manufacturing Co., Ltd. Image sensor device having an active layer overlying a substrate and an isolating region in the active layer
JP2007158119A (en) 2005-12-06 2007-06-21 Canon Inc Electric element having nano wire and its manufacturing method, and electric element assembly
US7439560B2 (en) 2005-12-06 2008-10-21 Canon Kabushiki Kaisha Semiconductor device using semiconductor nanowire and display apparatus and image pick-up apparatus using the same
US7524694B2 (en) 2005-12-16 2009-04-28 International Business Machines Corporation Funneled light pipe for pixel sensors
JP4745816B2 (en) 2005-12-20 2011-08-10 富士通セミコンダクター株式会社 Image processing circuit and image processing method
US7368779B2 (en) 2006-01-04 2008-05-06 Taiwan Semiconductor Manufacturing Co., Ltd. Hemi-spherical structure and method for fabricating the same
US20070155025A1 (en) 2006-01-04 2007-07-05 Anping Zhang Nanowire structures and devices for use in large-area electronics and methods of making the same
KR100767629B1 (en) 2006-01-05 2007-10-17 한국과학기술원 Complementary Metal Oxide Semiconductor image sensor having high photosensitivity and method for fabricating thereof
JP4952227B2 (en) 2006-01-06 2012-06-13 富士通株式会社 Fine particle size sorter
US20070290193A1 (en) 2006-01-18 2007-12-20 The Board Of Trustees Of The University Of Illinois Field effect transistor devices and methods
JP2007226935A (en) 2006-01-24 2007-09-06 Sony Corp Audio reproducing device, audio reproducing method, and audio reproducing program
JP2007201091A (en) 2006-01-25 2007-08-09 Fujifilm Corp Process for fabricating solid state image sensor
US20070187787A1 (en) 2006-02-16 2007-08-16 Ackerson Kristin M Pixel sensor structure including light pipe and method for fabrication thereof
US7358583B2 (en) 2006-02-24 2008-04-15 Tower Semiconductor Ltd. Via wave guide with curved light concentrator for image sensing devices
KR101019941B1 (en) 2006-03-10 2011-03-09 에스티씨. 유엔엠 Pulsed growth of gan nanowires and applications in group ? nitride semiconductor substrate materials and devices
TW200742425A (en) 2006-03-24 2007-11-01 Matsushita Electric Ind Co Ltd Solid-state image pickup device
US7718347B2 (en) 2006-03-31 2010-05-18 Applied Materials, Inc. Method for making an improved thin film solar cell interconnect using etch and deposition process
US20070246689A1 (en) 2006-04-11 2007-10-25 Jiaxin Ge Transparent thin polythiophene films having improved conduction through use of nanomaterials
US7566875B2 (en) 2006-04-13 2009-07-28 Integrated Micro Sensors Inc. Single-chip monolithic dual-band visible- or solar-blind photodetector
US7381966B2 (en) 2006-04-13 2008-06-03 Integrated Micro Sensors, Inc. Single-chip monolithic dual-band visible- or solar-blind photodetector
US7582857B2 (en) 2006-04-18 2009-09-01 The Trustees Of The University Of Pennsylvania Sensor and polarimetric filters for real-time extraction of polarimetric information at the focal plane
US7924413B2 (en) 2006-04-28 2011-04-12 Hewlett-Packard Development Company, L.P. Nanowire-based photonic devices
US20070272828A1 (en) 2006-05-24 2007-11-29 Micron Technology, Inc. Method and apparatus providing dark current reduction in an active pixel sensor
US7696964B2 (en) 2006-06-09 2010-04-13 Philips Lumileds Lighting Company, Llc LED backlight for LCD with color uniformity recalibration over lifetime
US7718995B2 (en) 2006-06-20 2010-05-18 Panasonic Corporation Nanowire, method for fabricating the same, and device having nanowires
US7579593B2 (en) 2006-07-25 2009-08-25 Panasonic Corporation Night-vision imaging apparatus, control method of the same, and headlight module
US20080044984A1 (en) 2006-08-16 2008-02-21 Taiwan Semiconductor Manufacturing Co., Ltd. Methods of avoiding wafer breakage during manufacture of backside illuminated image sensors
US7786376B2 (en) 2006-08-22 2010-08-31 Solexel, Inc. High efficiency solar cells and manufacturing methods
US7893348B2 (en) 2006-08-25 2011-02-22 General Electric Company Nanowires in thin-film silicon solar cells
EP1892769A2 (en) * 2006-08-25 2008-02-27 General Electric Company Single conformal junction nanowire photovoltaic devices
JP4321568B2 (en) 2006-08-29 2009-08-26 ソニー株式会社 Solid-state imaging device and imaging device
JP2008066497A (en) 2006-09-07 2008-03-21 Sony Corp Photodetector and method for manufacturing photodetector
CN101140637A (en) 2006-09-08 2008-03-12 鸿富锦精密工业(深圳)有限公司 System and method for turn electric order list to work list
KR20090075819A (en) 2006-09-19 2009-07-09 큐나노 에이비 Assembly of nanoscaled field effect transistors
US7361989B1 (en) 2006-09-26 2008-04-22 International Business Machines Corporation Stacked imager package
KR100772114B1 (en) 2006-09-29 2007-11-01 주식회사 하이닉스반도체 Method of manufacturing semiconductor device
JP4296193B2 (en) 2006-09-29 2009-07-15 株式会社東芝 Optical device
JP5116277B2 (en) 2006-09-29 2013-01-09 株式会社半導体エネルギー研究所 Semiconductor device, display device, liquid crystal display device, display module, and electronic apparatus
US7525170B2 (en) 2006-10-04 2009-04-28 International Business Machines Corporation Pillar P-i-n semiconductor diodes
TWI426531B (en) * 2006-10-12 2014-02-11 Cambrios Technologies Corp Nanowire-based transparent conductors and applications thereof
US7427525B2 (en) 2006-10-13 2008-09-23 Hewlett-Packard Development Company, L.P. Methods for coupling diamond structures to photonic devices
US7608905B2 (en) 2006-10-17 2009-10-27 Hewlett-Packard Development Company, L.P. Independently addressable interdigitated nanowires
US7888159B2 (en) * 2006-10-26 2011-02-15 Omnivision Technologies, Inc. Image sensor having curved micro-mirrors over the sensing photodiode and method for fabricating
US7537951B2 (en) 2006-11-15 2009-05-26 International Business Machines Corporation Image sensor including spatially different active and dark pixel interconnect patterns
US7781781B2 (en) 2006-11-17 2010-08-24 International Business Machines Corporation CMOS imager array with recessed dielectric
EP1926211A3 (en) 2006-11-21 2013-08-14 Imec Diamond enhanced thickness shear mode resonator
KR101232179B1 (en) 2006-12-04 2013-02-12 엘지디스플레이 주식회사 Apparatus And Method of Fabricating Thin Film Pattern
US20080128760A1 (en) 2006-12-04 2008-06-05 Electronics And Telecommunications Research Institute Schottky barrier nanowire field effect transistor and method for fabricating the same
KR100993056B1 (en) 2006-12-05 2010-11-08 주식회사 엘지화학 Method for high resolution ink-jet print using pre-patterned substrate and conductive substrate manufactured using the same
JP4795214B2 (en) 2006-12-07 2011-10-19 チェイル インダストリーズ インコーポレイテッド Wire grid polarizer and manufacturing method thereof
US8183587B2 (en) 2006-12-22 2012-05-22 Qunano Ab LED with upstanding nanowire structure and method of producing such
US8049203B2 (en) 2006-12-22 2011-11-01 Qunano Ab Nanoelectronic structure and method of producing such
CN102255018B (en) 2006-12-22 2013-06-19 昆南诺股份有限公司 Nanostructured LED array with collimating reflectors and manufacture method thereof
WO2008084830A1 (en) 2007-01-10 2008-07-17 Nec Corporation Optical control element
KR100830587B1 (en) 2007-01-10 2008-05-21 삼성전자주식회사 Image sensor and method of displaying a image using the same
US7977568B2 (en) 2007-01-11 2011-07-12 General Electric Company Multilayered film-nanowire composite, bifacial, and tandem solar cells
US8003883B2 (en) 2007-01-11 2011-08-23 General Electric Company Nanowall solar cells and optoelectronic devices
US7960807B2 (en) 2007-02-09 2011-06-14 Intersil Americas Inc. Ambient light detectors using conventional CMOS image sensor process
US8440997B2 (en) 2007-02-27 2013-05-14 The Regents Of The University Of California Nanowire photodetector and image sensor with internal gain
EP1971129A1 (en) 2007-03-16 2008-09-17 STMicroelectronics (Research & Development) Limited Improvements in or relating to image sensors
US20080233280A1 (en) 2007-03-22 2008-09-25 Graciela Beatriz Blanchet Method to form a pattern of functional material on a substrate by treating a surface of a stamp
SE532485C2 (en) 2007-03-27 2010-02-02 Qunano Ab Nanostructure for charge storage
US7906778B2 (en) 2007-04-02 2011-03-15 Hewlett-Packard Development Company, L.P. Methods of making nano-scale structures having controlled size, nanowire structures and methods of making the nanowire structures
US7803698B2 (en) 2007-04-09 2010-09-28 Hewlett-Packard Development Company, L.P. Methods for controlling catalyst nanoparticle positioning and apparatus for growing a nanowire
US8027086B2 (en) 2007-04-10 2011-09-27 The Regents Of The University Of Michigan Roll to roll nanoimprint lithography
US7652280B2 (en) 2007-04-11 2010-01-26 General Electric Company Light-emitting device and article
EP2137543B1 (en) 2007-04-19 2012-02-08 Oerlikon Solar AG, Trübbach Test equipment for automated quality control of thin film solar modules
US7719688B2 (en) 2007-04-24 2010-05-18 Hewlett-Packard Development Company, L.P. Optical device and method of making the same
US8212235B2 (en) 2007-04-25 2012-07-03 Hewlett-Packard Development Company, L.P. Nanowire-based opto-electronic device
US7719678B2 (en) 2007-04-25 2010-05-18 Hewlett-Packard Development Company, L.P. Nanowire configured to couple electromagnetic radiation to selected guided wave, devices using same, and methods of fabricating same
US8330090B2 (en) 2007-05-07 2012-12-11 Nxp, B.V. Photosensitive device and method of manufacturing a photosensitive device using nanowire diodes
TW200915551A (en) * 2007-05-10 2009-04-01 Koninkl Philips Electronics Nv Spectrum detector and manufacturing method therefore
JP2008288243A (en) 2007-05-15 2008-11-27 Sony Corp Solid-state imaging device, manufacturing method thereof and imaging device
KR100901236B1 (en) 2007-05-16 2009-06-08 주식회사 동부하이텍 Image Sensor and Method for Manufacturing thereof
KR101426941B1 (en) 2007-05-30 2014-08-06 주성엔지니어링(주) Solar cell and method for fabricating the same
US7812692B2 (en) 2007-06-01 2010-10-12 Georgia Tech Research Corporation Piezo-on-diamond resonators and resonator systems
CN101803035B (en) 2007-06-19 2016-08-24 昆南诺股份有限公司 Solar battery structure based on nano wire
US7736979B2 (en) 2007-06-20 2010-06-15 New Jersey Institute Of Technology Method of forming nanotube vertical field effect transistor
US7663202B2 (en) 2007-06-26 2010-02-16 Hewlett-Packard Development Company, L.P. Nanowire photodiodes and methods of making nanowire photodiodes
EP2171761A4 (en) 2007-07-19 2011-11-02 California Inst Of Techn Structures of ordered arrays of semiconductors
TW200919318A (en) 2007-08-01 2009-05-01 Silverbrook Res Pty Ltd System for conferring interactivity on previously printed graphic images containing URI text
JP5285880B2 (en) 2007-08-31 2013-09-11 シャープ株式会社 Photoelectric conversion element, photoelectric conversion element connector, and photoelectric conversion module
US8885987B2 (en) 2007-09-06 2014-11-11 Quantum Semiconductor Llc Photonic via waveguide for pixel arrays
US7786440B2 (en) 2007-09-13 2010-08-31 Honeywell International Inc. Nanowire multispectral imaging array
US7623560B2 (en) 2007-09-27 2009-11-24 Ostendo Technologies, Inc. Quantum photonic imagers and methods of fabrication thereof
WO2009042901A1 (en) 2007-09-28 2009-04-02 Regents Of The University Of Minnesota Image sensor with high dynamic range imaging and integrated motion detection
US7790495B2 (en) 2007-10-26 2010-09-07 International Business Machines Corporation Optoelectronic device with germanium photodetector
FR2923602B1 (en) 2007-11-12 2009-11-20 Commissariat Energie Atomique ELECTROMAGNETIC RADIATION DETECTOR WITH NANOFIL THERMOMETER AND METHOD OF MAKING SAME
US7822300B2 (en) 2007-11-20 2010-10-26 Aptina Imaging Corporation Anti-resonant reflecting optical waveguide for imager light pipe
US8588920B2 (en) 2007-11-21 2013-11-19 The Trustees Of Boston College Apparatus and methods for visual perception using an array of nanoscale waveguides
KR101385250B1 (en) 2007-12-11 2014-04-16 삼성전자주식회사 CMOS image sensor
KR101000064B1 (en) 2007-12-18 2010-12-10 엘지전자 주식회사 Hetero-junction silicon solar cell and fabrication method thereof
US8106289B2 (en) 2007-12-31 2012-01-31 Banpil Photonics, Inc. Hybrid photovoltaic device
US7880207B2 (en) 2008-01-14 2011-02-01 International Business Machines Corporation Photo detector device
US8030729B2 (en) 2008-01-29 2011-10-04 Hewlett-Packard Development Company, L.P. Device for absorbing or emitting light and methods of making the same
US20090189145A1 (en) 2008-01-30 2009-07-30 Shih-Yuan Wang Photodetectors, Photovoltaic Devices And Methods Of Making The Same
US20090188552A1 (en) 2008-01-30 2009-07-30 Shih-Yuan Wang Nanowire-Based Photovoltaic Cells And Methods For Fabricating The Same
US20090199597A1 (en) 2008-02-07 2009-08-13 Danley Jeffrey D Systems and methods for collapsing air lines in nanostructured optical fibers
US20090201400A1 (en) 2008-02-08 2009-08-13 Omnivision Technologies, Inc. Backside illuminated image sensor with global shutter and storage capacitor
US20110147870A1 (en) 2008-02-15 2011-06-23 Kah Wee Ang Photodetector with valence-mending adsorbate region and a method of fabrication thereof
US20090206405A1 (en) 2008-02-15 2009-08-20 Doyle Brian S Fin field effect transistor structures having two dielectric thicknesses
US20090266418A1 (en) 2008-02-18 2009-10-29 Board Of Regents, The University Of Texas System Photovoltaic devices based on nanostructured polymer films molded from porous template
US8101526B2 (en) 2008-03-12 2012-01-24 City University Of Hong Kong Method of making diamond nanopillars
WO2009114768A1 (en) 2008-03-14 2009-09-17 Albonia Innovative Technologies Ltd. Electrostatic desalination and water purification
WO2009116018A2 (en) 2008-03-21 2009-09-24 Oerlikon Trading Ag, Trübbach Photovoltaic cell and methods for producing a photovoltaic cell
KR101448152B1 (en) 2008-03-26 2014-10-07 삼성전자주식회사 Distance measuring sensor having vertical photogate and three dimensional color image sensor having the same
JP4770857B2 (en) 2008-03-27 2011-09-14 日本テキサス・インスツルメンツ株式会社 Semiconductor device
KR20090105732A (en) 2008-04-03 2009-10-07 삼성전자주식회사 Solar cell
JP2011523902A (en) 2008-04-14 2011-08-25 バンドギャップ エンジニアリング, インコーポレイテッド Process for manufacturing nanowire arrays
KR20090109980A (en) 2008-04-17 2009-10-21 한국과학기술연구원 Visible-range semiconductor nanowire-based photosensor and method for manufacturing the same
US20110036396A1 (en) 2008-04-30 2011-02-17 The Regents Of The University Of California Method and apparatus for fabricating optoelectromechanical devices by structural transfer using re-usable substrate
US7902540B2 (en) 2008-05-21 2011-03-08 International Business Machines Corporation Fast P-I-N photodetector with high responsitivity
US8138493B2 (en) 2008-07-09 2012-03-20 Qunano Ab Optoelectronic semiconductor device
KR101435519B1 (en) 2008-07-24 2014-08-29 삼성전자주식회사 Image sensor having light focusing structure
US7863625B2 (en) 2008-07-24 2011-01-04 Hewlett-Packard Development Company, L.P. Nanowire-based light-emitting diodes and light-detection devices with nanocrystalline outer surface
US8198706B2 (en) 2008-07-25 2012-06-12 Hewlett-Packard Development Company, L.P. Multi-level nanowire structure and method of making the same
JP5454476B2 (en) 2008-07-25 2014-03-26 コニカミノルタ株式会社 Transparent electrode and method for producing transparent electrode
EP2321853A4 (en) 2008-08-14 2015-04-15 Brookhaven Science Ass Llc Structured pillar electrodes
US8229255B2 (en) 2008-09-04 2012-07-24 Zena Technologies, Inc. Optical waveguides in image sensors
US8299472B2 (en) 2009-12-08 2012-10-30 Young-June Yu Active pixel sensor with nanowire structured photodetectors
CN102144298B (en) 2008-09-04 2013-07-31 昆南诺股份有限公司 Nanostructured photodiode
US9082673B2 (en) 2009-10-05 2015-07-14 Zena Technologies, Inc. Passivated upstanding nanostructures and methods of making the same
US7646943B1 (en) 2008-09-04 2010-01-12 Zena Technologies, Inc. Optical waveguides in image sensors
US20100148221A1 (en) 2008-11-13 2010-06-17 Zena Technologies, Inc. Vertical photogate (vpg) pixel structure with nanowires
US8384007B2 (en) 2009-10-07 2013-02-26 Zena Technologies, Inc. Nano wire based passive pixel image sensor
US20100304061A1 (en) 2009-05-26 2010-12-02 Zena Technologies, Inc. Fabrication of high aspect ratio features in a glass layer by etching
US9515218B2 (en) 2008-09-04 2016-12-06 Zena Technologies, Inc. Vertical pillar structured photovoltaic devices with mirrors and optical claddings
US9000353B2 (en) 2010-06-22 2015-04-07 President And Fellows Of Harvard College Light absorption and filtering properties of vertically oriented semiconductor nano wires
US8269985B2 (en) 2009-05-26 2012-09-18 Zena Technologies, Inc. Determination of optimal diameters for nanowires
US8274039B2 (en) 2008-11-13 2012-09-25 Zena Technologies, Inc. Vertical waveguides with various functionality on integrated circuits
US8519379B2 (en) 2009-12-08 2013-08-27 Zena Technologies, Inc. Nanowire structured photodiode with a surrounding epitaxially grown P or N layer
US8546742B2 (en) 2009-06-04 2013-10-01 Zena Technologies, Inc. Array of nanowires in a single cavity with anti-reflective coating on substrate
KR101143706B1 (en) 2008-09-24 2012-05-09 인터내셔널 비지네스 머신즈 코포레이션 Nanoelectronic device
US7972885B1 (en) 2008-09-25 2011-07-05 Banpil Photonics, Inc. Broadband imaging device and manufacturing thereof
WO2010039631A1 (en) 2008-09-30 2010-04-08 The Regents Of The University Of California Photonic crystal solar cell
US8591661B2 (en) 2009-12-11 2013-11-26 Novellus Systems, Inc. Low damage photoresist strip method for low-K dielectrics
US20100090341A1 (en) 2008-10-14 2010-04-15 Molecular Imprints, Inc. Nano-patterned active layers formed by nano-imprint lithography
EP2180526A2 (en) 2008-10-23 2010-04-28 Samsung Electronics Co., Ltd. Photovoltaic device and method for manufacturing the same
FR2937791B1 (en) 2008-10-24 2010-11-26 Thales Sa POLARIMETRIC IMAGING DEVICE OPTIMIZED IN RELATION TO THE POLARIZATION CONTRAST
WO2010048607A2 (en) 2008-10-24 2010-04-29 Carnegie Institution Of Washington Enhanced optical properties of chemical vapor deposited single crystal diamond by low-pressure/high-temperature annealing
WO2010062644A2 (en) 2008-10-28 2010-06-03 The Regents Of The University Of California Vertical group iii-v nanowires on si, heterostructures, flexible arrays and fabrication
KR20100063536A (en) 2008-12-03 2010-06-11 삼성에스디아이 주식회사 Light emission device and display device using same as light source
CN102326258A (en) 2008-12-19 2012-01-18 惠普开发有限公司 Photovoltaic structure and on short column, adopt the manufacturing approach of nano wire
KR20100079058A (en) 2008-12-30 2010-07-08 주식회사 동부하이텍 Image sensor and method for manufacturing thereof
US20100200065A1 (en) 2009-02-12 2010-08-12 Kyu Hyun Choi Photovoltaic Cell and Fabrication Method Thereof
TW201034212A (en) 2009-03-13 2010-09-16 guo-hong Shen Thin-film solar cell structure
US8242353B2 (en) 2009-03-16 2012-08-14 International Business Machines Corporation Nanowire multijunction solar cell
US7888155B2 (en) 2009-03-16 2011-02-15 Industrial Technology Research Institute Phase-change memory element and method for fabricating the same
TWI425643B (en) 2009-03-31 2014-02-01 Sony Corp Solid-state imaging device, fabrication method thereof, imaging apparatus, and fabrication method of anti-reflection structure
US20100244108A1 (en) 2009-03-31 2010-09-30 Glenn Eric Kohnke Cmos image sensor on a semiconductor-on-insulator substrate and process for making same
WO2010118198A1 (en) 2009-04-09 2010-10-14 E. I. Du Pont De Nemours And Company Glass compositions used in conductors for photovoltaic cells
WO2010119916A1 (en) 2009-04-13 2010-10-21 Olympus Corporation Fluorescence sensor, needle-type fluorescence sensor, and method for measuring analyte
US20100282314A1 (en) 2009-05-06 2010-11-11 Thinsilicion Corporation Photovoltaic cells and methods to enhance light trapping in semiconductor layer stacks
US8809672B2 (en) 2009-05-27 2014-08-19 The Regents Of The University Of California Nanoneedle plasmonic photodetectors and solar cells
JP5504695B2 (en) 2009-05-29 2014-05-28 ソニー株式会社 Solid-state imaging device, method for manufacturing solid-state imaging device, and electronic apparatus
US8211735B2 (en) 2009-06-08 2012-07-03 International Business Machines Corporation Nano/microwire solar cell fabricated by nano/microsphere lithography
US8823848B2 (en) 2009-06-11 2014-09-02 The Arizona Board Of Regents On Behalf Of The University Of Arizona Microgrid imaging polarimeters with frequency domain reconstruction
US8304759B2 (en) 2009-06-22 2012-11-06 Banpil Photonics, Inc. Integrated image sensor system on common substrate
US8558336B2 (en) 2009-08-17 2013-10-15 United Microelectronics Corp. Semiconductor photodetector structure and the fabrication method thereof
EP2290718B1 (en) 2009-08-25 2015-05-27 Samsung Electronics Co., Ltd. Apparatus for generating electrical energy and method for manufacturing the same
US8115097B2 (en) 2009-11-19 2012-02-14 International Business Machines Corporation Grid-line-free contact for a photovoltaic cell
US8563395B2 (en) 2009-11-30 2013-10-22 The Royal Institute For The Advancement Of Learning/Mcgill University Method of growing uniform semiconductor nanowires without foreign metal catalyst and devices thereof
JP5608384B2 (en) 2010-02-05 2014-10-15 東京エレクトロン株式会社 Semiconductor device manufacturing method and plasma etching apparatus
US8194197B2 (en) 2010-04-13 2012-06-05 Sharp Kabushiki Kaisha Integrated display and photovoltaic element
US8431817B2 (en) 2010-06-08 2013-04-30 Sundiode Inc. Multi-junction solar cell having sidewall bi-layer electrical interconnect
US8324010B2 (en) 2010-06-29 2012-12-04 Himax Imaging, Inc. Light pipe etch control for CMOS fabrication

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070138459A1 (en) * 2005-10-13 2007-06-21 Wong Stanislaus S Ternary oxide nanostructures and methods of making same
WO2008131313A2 (en) * 2007-04-18 2008-10-30 Invisage Technologies, Inc. Materials systems and methods for optoelectronic devices

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
EKROLL: "On the Nature of Simultaneous Colour Contrast", DISSERTATION UNIVERSITY OF KIEL, 2005, pages 1 - 165, Retrieved from the Internet <URL:http://deposit.ddb.de/cgi-bi/dokserv?idn=977248461&dok_var=d1&dok_ext=pdf&filename=977248461.pdf> [retrieved on 20100709] *
PARRAGA ET AL.: "Color and Luminance Information in Natural Scenes.", JOURNAL OPTICAL SOCIETY AM A OPT IMAGE SCI VIS, vol. 15, no. 6, June 1998 (1998-06-01), pages 1708 *

Also Published As

Publication number Publication date
US20100302440A1 (en) 2010-12-02
CN102483323A (en) 2012-05-30
US8269985B2 (en) 2012-09-18
TW201109619A (en) 2011-03-16
US20130341501A1 (en) 2013-12-26
US20130016258A1 (en) 2013-01-17
CN104330042A (en) 2015-02-04
US8810808B2 (en) 2014-08-19
US20140353575A1 (en) 2014-12-04
TWI426225B (en) 2014-02-11
US8514411B2 (en) 2013-08-20
CN102483323B (en) 2014-10-22

Similar Documents

Publication Publication Date Title
US8810808B2 (en) Determination of optimal diameters for nanowires
US9177985B2 (en) Array of nanowires in a single cavity with anti-reflective coating on substrate
US9304035B2 (en) Vertical waveguides with various functionality on integrated circuits
US9429723B2 (en) Optical waveguides in image sensors
US7646943B1 (en) Optical waveguides in image sensors
US9082673B2 (en) Passivated upstanding nanostructures and methods of making the same
CN103339744B (en) The single pixel of full color that is double or quadruple silicon nanowires is comprised for imageing sensor
JP5300344B2 (en) Photodetection element, imaging element, photodetection method, and imaging method
US8735797B2 (en) Nanowire photo-detector grown on a back-side illuminated image sensor
CN101894849B (en) Two-dimensional solid-state imaging device
US20100148221A1 (en) Vertical photogate (vpg) pixel structure with nanowires
JP2011124407A (en) Solid-state imaging element and method of manufacturing the same

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080032638.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10781037

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10781037

Country of ref document: EP

Kind code of ref document: A1