WO2010106671A1 - 車両用動力伝達装置の制御装置 - Google Patents

車両用動力伝達装置の制御装置 Download PDF

Info

Publication number
WO2010106671A1
WO2010106671A1 PCT/JP2009/055494 JP2009055494W WO2010106671A1 WO 2010106671 A1 WO2010106671 A1 WO 2010106671A1 JP 2009055494 W JP2009055494 W JP 2009055494W WO 2010106671 A1 WO2010106671 A1 WO 2010106671A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric motor
shift
power transmission
loss
transmission device
Prior art date
Application number
PCT/JP2009/055494
Other languages
English (en)
French (fr)
Inventor
健太 熊▲崎▼
松原 亨
田端 淳
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to US13/257,450 priority Critical patent/US9079484B2/en
Priority to DE112009004511.1T priority patent/DE112009004511B4/de
Priority to PCT/JP2009/055494 priority patent/WO2010106671A1/ja
Priority to CN200980159322.8A priority patent/CN102427979B/zh
Priority to JP2011504685A priority patent/JP5267656B2/ja
Publication of WO2010106671A1 publication Critical patent/WO2010106671A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/30Control strategies involving selection of transmission gear ratio
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/36Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings
    • B60K6/365Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the transmission gearings with the gears having orbital motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K23/00Arrangement or mounting of control devices for vehicle transmissions, or parts thereof, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/42Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by the architecture of the hybrid electric vehicle
    • B60K6/44Series-parallel type
    • B60K6/445Differential gearing distribution type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/50Architecture of the driveline characterised by arrangement or kind of transmission units
    • B60K6/54Transmission for changing ratio
    • B60K6/547Transmission for changing ratio the transmission being a stepped gearing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/10Conjoint control of vehicle sub-units of different type or different function including control of change-speed gearings
    • B60W10/11Stepped gearings
    • B60W10/115Stepped gearings with planetary gears
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units, or advanced driver assistance systems for ensuring comfort, stability and safety or drive control systems for propelling or retarding the vehicle
    • B60W30/18Propelling the vehicle
    • B60W30/18009Propelling the vehicle related to particular drive situations
    • B60W30/18109Braking
    • B60W30/18127Regenerative braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K1/00Arrangement or mounting of electrical propulsion units
    • B60K1/02Arrangement or mounting of electrical propulsion units comprising more than one electric motor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/36Temperature of vehicle components or parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/425Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/48Drive Train control parameters related to transmissions
    • B60L2240/485Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/08Electric propulsion units
    • B60W2510/087Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/10Change speed gearings
    • B60W2510/107Temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/44Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion
    • F16H2003/445Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion using gears having orbital motion without permanent connection between the input and the set of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H37/00Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00
    • F16H37/02Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings
    • F16H37/06Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts
    • F16H37/08Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing
    • F16H37/0833Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths
    • F16H37/084Combinations of mechanical gearings, not provided for in groups F16H1/00 - F16H35/00 comprising essentially only toothed or friction gearings with a plurality of driving or driven shafts; with arrangements for dividing torque between two or more intermediate shafts with differential gearing with arrangements for dividing torque between two or more intermediate shafts, i.e. with two or more internal power paths at least one power path being a continuously variable transmission, i.e. CVT
    • F16H2037/0866Power split variators with distributing differentials, with the output of the CVT connected or connectable to the output shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/003Transmissions for multiple ratios characterised by the number of forward speeds
    • F16H2200/0043Transmissions for multiple ratios characterised by the number of forward speeds the gear ratios comprising four forward speeds
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/2002Transmissions using gears with orbital motion characterised by the number of sets of orbital gears
    • F16H2200/2007Transmissions using gears with orbital motion characterised by the number of sets of orbital gears with two sets of orbital gears
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H2200/00Transmissions for multiple ratios
    • F16H2200/20Transmissions using gears with orbital motion
    • F16H2200/203Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes
    • F16H2200/2043Transmissions using gears with orbital motion characterised by the engaging friction means not of the freewheel type, e.g. friction clutches or brakes with five engaging means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/68Inputs being a function of gearing status
    • F16H59/72Inputs being a function of gearing status dependent on oil characteristics, e.g. temperature, viscosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H61/00Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing
    • F16H61/02Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used
    • F16H61/0202Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric
    • F16H61/0204Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal
    • F16H61/0213Control functions within control units of change-speed- or reversing-gearings for conveying rotary motion ; Control of exclusively fluid gearing, friction gearing, gearings with endless flexible members or other particular types of gearing characterised by the signals used the signals being electric for gearshift control, e.g. control functions for performing shifting or generation of shift signal characterised by the method for generating shift signals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/84Data processing systems or methods, management, administration

Definitions

  • the present invention relates to a control device for a vehicle power transmission device, and more particularly to a technology that enables gear shifting in consideration of a loss of a speed change mechanism that constitutes the vehicle power transmission device during regenerative travel.
  • Patent Document 1 discloses a hybrid vehicle having an engine and an electric motor (motor generator).
  • an electric motor motor generator
  • regenerative control can be performed, in which the kinetic energy of the vehicle is converted into electric energy and stored by the electric motor.
  • Patent Document 1 when a deceleration request is generated in a vehicle and the regenerative control is executed, the electric motor is controlled by downshifting the transmission for the purpose of improving the energy regeneration efficiency. A technique for increasing the rotational speed is disclosed.
  • the present invention has been made in the background of the above circumstances, and the object of the present invention is to improve fuel efficiency by performing control in consideration of the efficiency of the entire vehicle power transmission device when performing regenerative control. Another object of the present invention is to provide a control device for a vehicle power transmission device.
  • the invention according to claim 1 is directed to a control device for a vehicle power transmission device comprising: (a) a transmission unit and an electric motor that performs regeneration via the transmission unit.
  • a control device for a vehicle power transmission device comprising: (a) a transmission unit and an electric motor that performs regeneration via the transmission unit.
  • the vehicle during regenerative travel of a vehicle including a vehicle power transmission device that includes a transmission unit and an electric motor that performs regeneration through the transmission unit, the vehicle
  • the shift portion is downshifted, so that the travel loss of the vehicle power transmission device is reduced by the shift. This reduces fuel consumption.
  • the travel loss of the vehicle power transmission device includes the loss of the transmission unit, and the loss of the transmission unit is calculated based on the hydraulic oil temperature of the transmission unit. . In this way, it is possible to accurately calculate the loss of the transmission unit that changes based on the oil temperature of the hydraulic oil.
  • the travel loss of the vehicle power transmission device includes the loss of the electric motor, and the loss of the electric motor is calculated based on the temperature of the electric motor. In this way, it is possible to accurately calculate the loss of the electric motor that changes based on the temperature.
  • the vehicle has a regenerative travel shift map that is set by the vehicle speed and the power of the electric motor and executes a shift of the transmission unit during the regenerative travel, and (b) Shifting is performed based on the regenerative travel shift map.
  • the shift of the transmission unit during the regenerative travel is executed based on the regenerative travel shift map set by the vehicle speed and the power of the electric motor, the vehicle power at the current gear ratio is achieved. Since it is possible to determine, based on the regenerative travel shift map, a case where the travel loss of the vehicle power transmission device after the shift is smaller than the travel loss of the transmission device, and downshifting of the transmission unit is performed based on the determination. In addition to the reduction in travel loss of the vehicle power transmission device due to the shift, the fuel efficiency is improved, and the amount of calculation in the shift determination is reduced.
  • the vehicle has a regenerative travel shift map that is set by the vehicle speed and the torque of the electric motor, and executes a shift of the transmission unit during the regenerative travel, and (b) during the regenerative travel Shifting is performed based on the regenerative travel shift map.
  • the shift of the transmission unit during the regenerative travel is executed based on the regenerative travel shift map set by the vehicle speed and the torque of the electric motor, the vehicle power at the current gear ratio is achieved. Since it is possible to determine, based on the regenerative travel shift map, a case where the travel loss of the vehicle power transmission device after the shift is smaller than the travel loss of the transmission device, and downshifting of the transmission unit is performed based on the determination. In addition to the reduction in travel loss of the vehicle power transmission device due to the shift, the fuel efficiency is improved, and the amount of calculation in the shift determination is reduced.
  • the downshift of the transmission unit is performed when the travel loss of the vehicle power transmission device after the shift is smaller than the travel loss of the vehicle power transmission device at the current speed ratio.
  • the shift point for executing the downshift of the transmission unit is preset according to the hydraulic oil temperature of the transmission unit. In this way, based on the shift point set in advance according to the hydraulic oil temperature, the vehicle power transmission device after the gear shift is less than the travel loss of the vehicle power transmission device at the current gear ratio. Since the downshift of the speed change unit is performed when the travel loss is small, the reduction in travel loss of the vehicle power transmission device due to the shift is reduced, and the fuel consumption is improved. Is reduced.
  • the downshift of the transmission unit is executed when the travel loss of the vehicle power transmission device after the shift is smaller than the travel loss of the vehicle power transmission device at the current gear ratio.
  • the shift point for executing the downshift of the transmission unit is preset according to the temperature of the electric motor. According to this configuration, the vehicle after the shift is more than the travel loss of the vehicle power transmission device at the current gear ratio based on the shift point set in advance according to the temperature of the motor related to the efficiency of the motor.
  • the shift portion is downshifted, so that the reduction in the travel loss of the vehicle power transmission device due to the shift is reduced, and the fuel efficiency is improved. The amount of calculation in shifting determination is reduced.
  • the vehicle power transmission device includes a differential portion provided in a power transmission path from the prime mover to the drive wheels, and (b) the differential portion is a rotating element of the differential portion.
  • the first electric motor and the second electric motor are connected to each of the two rotating elements so as to be able to transmit power. If it does in this way, at the time of deceleration of a vehicle, regeneration control can be performed by the 1st electric motor connected to the rotation element of the above-mentioned differential part, the 2nd electric motor, or any of them.
  • the differential unit transmits a first element coupled to the prime mover, a second element coupled to the first electric motor, and an output of the differential unit to the transmission unit.
  • the differential state of the differential unit can be changed, and the differential unit can be continuously changed in gear ratio. It can be operated as a step transmission.
  • the vehicle has a regenerative travel shift map that is set by the vehicle speed and the power of the second electric motor and executes a shift of the transmission unit during the regenerative travel, and (b) during the regenerative travel And performing a shift based on the regenerative travel shift map.
  • the first motor and the second motor cooperate with each other to perform regenerative output, thereby reducing the regenerative power from the second motor and reducing the reduction in motor loss during downshifting. Even in this case, it is possible to execute the shift of the transmission unit.
  • the vehicle has a regenerative travel shift map that is set by the vehicle speed and the torque of the second electric motor and executes a shift of the transmission unit during the regenerative travel, and (b) the regenerative travel Shifting at a time based on the regenerative travel shift map.
  • the first motor and the second motor cooperate with each other to perform regenerative output, thereby reducing the regenerative torque from the second motor and reducing the reduction in motor loss during downshifting. Even in this case, it is possible to execute the shift of the transmission unit.
  • the transmission unit is a mechanical stepped transmission.
  • the speed changer is a stepped speed changer that can change its speed ratio stepwise.
  • the speed change rate of the speed changer is greatly increased. It is possible to suppress an increase in the size of the transmission unit.
  • the loss of the first electric motor or the second electric motor includes a loss in an inverter related to driving of the first electric motor or the second electric motor. According to this configuration, since the loss in the inverter related to the driving of the first electric motor or the second electric motor is taken into account in the calculation of the travel loss of the vehicle power transmission device, the travel loss of the vehicle power transmission device is reduced. It can be calculated with high accuracy.
  • FIG. 2 is an operation chart for explaining a relationship between a shift operation in an automatic transmission unit of the vehicle power transmission device of FIG. 1 and a combination of operations of a hydraulic friction engagement device used therefor.
  • FIG. 3 is a collinear diagram illustrating the relative rotational speeds of the respective gear stages when the vehicle power transmission device of FIG. It is a figure explaining the input-output signal of the electronic controller provided in the power transmission device for vehicles of FIG. It is an example of the shift operation apparatus operated in order to select the multiple types of shift position provided with the shift lever. It is a functional block diagram explaining the principal part of the control function with which the electronic control apparatus of FIG. 4 was equipped.
  • FIG. 13 is a diagram for explaining an example of a regenerative travel shift map stored for each hydraulic oil temperature of the automatic transmission unit or each temperature of the second electric motor that performs regenerative control, and corresponds to FIG. 12.
  • 5 is a flowchart for explaining another example of a control function in shift determination during a regenerative travel of a vehicle, which is a control function of the electronic control device of FIG.
  • FIG. 14 is a diagram illustrating an example of a regenerative travel shift map in which the vehicle speed and the torque of the second electric motor are defined as variables representing the vehicle state, corresponding to FIG. 13.
  • Engine (motor) 10 Vehicle power transmission device 16: Power split mechanism (differential part) 20: Automatic transmission unit (stepped transmission mechanism) 24: First planetary gear unit (planetary gear unit) 100: Electronic control device (control device for vehicle power transmission device) 110: Regeneration shift determination unit 112: Vehicle state determination unit 114: Loss comparison unit 116: Shift map storage unit 118: Loss calculation unit 120: Motor loss calculation unit 122: Inverter loss calculation unit 124: Automatic transmission unit loss calculation unit M1 : 1st electric motor (electric motor) M2: Second electric motor (electric motor)
  • FIG. 1 is a skeleton diagram illustrating a vehicle power transmission device (hereinafter simply referred to as “power transmission device”) 10 that constitutes a part of a hybrid vehicle drive device to which the present invention is applied.
  • a power transmission device 10 includes an input shaft 14 as an input rotation member disposed on a common axis in a transmission case 12 (hereinafter referred to as a case 12) as a non-rotation member attached to a vehicle body,
  • the differential unit 11 as a continuously variable transmission unit directly connected to the input shaft 14 or indirectly through a pulsation absorbing damper (vibration damping device) (not shown), and the differential unit 11 to drive wheels 38 (see FIG.
  • the power transmission device 10 is preferably used for, for example, an FR (front engine / rear drive) type vehicle vertically installed in a vehicle, and directly to the input shaft 14 or directly via a pulsation absorbing damper (not shown). Is provided between an engine (prime mover) 8 that is an internal combustion engine such as a gasoline engine or a diesel engine and a pair of drive wheels 38 (see FIG. 6). Power is transmitted to the pair of drive wheels 38 sequentially through a differential gear device (final reduction gear) 36 (see FIG.
  • the power transmission device 10 has a substantially vertical structure, and the lower half is omitted in FIG.
  • the engine 8 and the differential unit 11 are directly connected.
  • This direct connection means that the connection is made without passing through a hydraulic power transmission device such as a torque converter or a fluid coupling.
  • a hydraulic power transmission device such as a torque converter or a fluid coupling.
  • the connection via the pulsation absorbing damper is included in this direct connection.
  • the differential unit 11 is a mechanical mechanism that mechanically distributes the output of the engine 8 connected to the first electric motor M1 and the input shaft 14, and distributes the output of the engine 8 to the first electric motor M1 and the transmission member 18.
  • a power distribution mechanism 16 serving as a differential mechanism, and a second electric motor M2 that is operatively connected to rotate integrally with the transmission member 18.
  • the first electric motor M1 and the second electric motor M2 of the present embodiment are so-called motor generators that also have a power generation function, but the first electric motor M1 has at least a generator (power generation) function for generating a reaction force, and the second electric motor. M2 has at least a motor (electric motor) function for outputting driving force as a driving source for traveling.
  • the power distribution mechanism 16 of this embodiment corresponds to the differential section of the present invention.
  • the first electric motor M1 and the second electric motor M2 correspond to the electric motor of the present invention.
  • the power distribution mechanism 16 is mainly composed of a single pinion type first planetary gear device 24 having a predetermined gear ratio ⁇ 1.
  • the first planetary gear unit 24 includes a first sun gear S1, a first planetary gear P1, a first carrier CA1 that supports the first planetary gear P1 so as to rotate and revolve, and a first sun gear via the first planetary gear P1.
  • a first ring gear R1 meshing with S1 is provided as a rotating element.
  • the gear ratio ⁇ 1 is ZS1 / ZR1.
  • the first carrier CA1 is connected to the input shaft 14, that is, the engine 8 to form the first rotating element RE1
  • the first sun gear S1 is connected to the first electric motor M1 to be the second rotating element RE2.
  • the first ring gear R1 is connected to the transmission member 18 to form a third rotating element RE3.
  • the first sun gear S1, the first carrier CA1, and the first ring gear R1, which are the three elements of the first planetary gear device 24, can be rotated relative to each other, so that a differential action is achieved. Therefore, the output of the engine 8 is distributed to the first electric motor M1 and the transmission member 18, and the first part of the distributed output of the engine 8 is the first.
  • the differential unit 11 (power distribution mechanism 16) is caused to function as an electrical differential device, for example, the differential unit. 11 is a so-called continuously variable transmission state, and the rotation of the transmission member 18 is continuously changed regardless of the predetermined rotation of the engine 8. That is, the differential unit 11 is an electrically stepless variable gear whose ratio ⁇ 0 (the rotational speed N IN of the input shaft 14 / the rotational speed N 18 of the transmission member 18 ) is continuously changed from the minimum value ⁇ 0min to the maximum value ⁇ 0max. It functions as a transmission.
  • the automatic transmission unit 20 is provided in a power transmission path from the transmission member 18 to the drive wheel 38, and includes a single pinion type second planetary gear unit 26 and a single pinion type third planetary gear unit 28, and is stepped. It is a planetary gear type multi-stage transmission that functions as an automatic transmission of the type.
  • the second planetary gear unit 26 includes a second sun gear S2 via a second sun gear S2, a second planetary gear P2, a second carrier CA2 that supports the second planetary gear P2 so as to rotate and revolve, and a second planetary gear P2.
  • a second ring gear R2 that meshes with the second gear R2 and has a predetermined gear ratio ⁇ 2.
  • the third planetary gear device 28 includes a third sun gear S3 via a third sun gear S3, a third planetary gear P3, a third carrier CA3 that supports the third planetary gear P3 so as to rotate and revolve, and a third planetary gear P3.
  • the gear ratio ⁇ 2 is ZS2 / ZR2.
  • the gear ratio ⁇ 3 is ZS3 / ZR3.
  • the second sun gear S2 is connected to the transmission member 18 via the third clutch C3 and selectively connected to the case 12 via the first brake B1, and the second carrier CA2 and the third ring gear are connected.
  • R3 is integrally connected to the transmission member 18 via the second clutch C2, and is selectively connected to the case 12 via the second brake B2, and the second ring gear R2, the third carrier CA3, Are integrally connected to the output shaft 22, and the third sun gear S3 is selectively connected to the transmission member 18 via the first clutch C1.
  • the second carrier CA2 and the third ring gear R3 are connected to a case 12 which is a non-rotating member via a one-way clutch F, and the rotation in the same direction as that of the engine 8 is allowed and the rotation in the reverse direction is prohibited.
  • the second carrier CA2 and the third ring gear R3 function as rotating members that cannot rotate in reverse.
  • the automatic transmission unit 20 performs clutch-to-clutch shift by releasing the disengagement side engagement device and engaging the engagement side engagement device, and selectively establishes a plurality of gear stages (shift stages).
  • the first gear is established by the engagement of the first clutch C1 and the one-way clutch F, and the engagement of the first clutch C1 and the first brake B1.
  • the third gear stage is established by the engagement of the first clutch C1 and the second clutch C2, and the fourth speed stage is established by the engagement of the second clutch C2 and the first brake B1.
  • the speed gear stage is established, and the reverse gear stage is established by engagement of the third clutch C3 and the second brake B2.
  • the neutral "N" state is established by releasing the first clutch C1, the second clutch C2, the third clutch C3, the first brake B1, and the second brake B2.
  • the second brake B2 is engaged during the engine braking of the first gear.
  • the power transmission path in the automatic transmission unit 20 is the combination of the engagement and release of the first clutch C1, the second clutch C2, the third clutch C3, the first brake B1, and the second brake B2.
  • the state is switched between a power transmission enabling state that enables power transmission through the power transmission path and a power transmission cutoff state that interrupts power transmission. That is, when any one of the first to fourth gears and the reverse gear is established, the power transmission path is in a state capable of transmitting power, and none of the gears is established.
  • the neutral “N” state is established, the power transmission path is brought into a power transmission cutoff state.
  • the first clutch C1, the second clutch C2, the third clutch C3, the first brake B1, and the second brake B2 are conventional automatic transmissions for vehicles.
  • a hydraulic friction engagement device as an engagement element often used in a machine, and a wet multi-plate type in which a plurality of friction plates stacked on each other are pressed by a hydraulic actuator, or an outer peripheral surface of a rotating drum
  • One end of one or two bands wound around is composed of a band brake or the like that is tightened by a hydraulic actuator, and is for selectively connecting the members on both sides of the band brake.
  • the hydraulic pressure supplied to operate the clutch C and the brake B of the present embodiment in the engaged state corresponds to the engagement hydraulic pressure of the present invention.
  • a continuously variable transmission is configured by the differential unit 11 that functions as a continuously variable transmission and the automatic transmission unit 20. Further, by controlling the gear ratio of the differential unit 11 to be constant, the differential unit 11 and the automatic transmission unit 20 can configure a state equivalent to a stepped transmission.
  • the differential unit 11 functions as a continuously variable transmission
  • the automatic transmission unit 20 in series with the differential unit 11 functions as a stepped transmission, whereby at least one shift of the automatic transmission unit 20 is performed.
  • the rotational speed input to the automatic transmission unit 20 with respect to the stage M (hereinafter referred to as the input rotational speed of the automatic transmission unit 20), that is, the rotational speed of the transmission member 18 (hereinafter referred to as the transmission member rotational speed N 18 ) changes steplessly.
  • the transmission member rotational speed N 18 changes steplessly.
  • a continuously variable gear ratio width is obtained at the gear stage M.
  • the overall speed ratio ⁇ T of the power transmission device 10 is a total speed ratio ⁇ T of the power transmission device 10 as a whole formed based on the speed ratio ⁇ 0 of the differential unit 11 and the speed ratio ⁇ of the automatic transmission unit 20.
  • first gear or transmission member rotational speed N 18 is continuously variable varying for each gear of the fourth gear and the reverse gear position of the automatic transmission portion 20 indicated in the table of FIG. 2
  • each gear stage has a continuously variable transmission ratio width. Therefore, the gear ratio between the gear stages can be continuously changed continuously, and the total gear ratio ⁇ T of the power transmission device 10 as a whole can be obtained continuously.
  • the gear ratio of the differential unit 11 is controlled to be constant, and the clutch C and the brake B are selectively engaged and operated, so that one of the first gear to the fourth gear or the reverse drive
  • a total gear ratio ⁇ T of the power transmission device 10 that changes in a substantially equal ratio is obtained for each gear stage. Therefore, a state equivalent to the stepped transmission is configured in the power transmission device 10.
  • FIG. 3 shows a linear relationship between the rotational speeds of the rotating elements having different connection states for each gear stage in the power transmission device 10 including the differential unit 11 and the automatic transmission unit 20.
  • a diagram is shown.
  • the collinear diagram of FIG. 3 is a two-dimensional coordinate composed of a horizontal axis indicating the relationship of the gear ratio ⁇ of each planetary gear unit 24, 26, and 28 and a vertical axis indicating the relative rotational speed.
  • the rotational speed of the 3rd rotation element RE3 mentioned later inputted into the automatic transmission part 20 from the part 11 is shown.
  • three vertical lines Y1, Y2, Y3 corresponding to the three elements of the power distribution mechanism 16 constituting the differential unit 11 are the first sun gear S1, the first corresponding to the second rotating element RE2 in order from the left side.
  • the relative rotational speeds of the first carrier CA1 corresponding to the rotating element RE1 and the first ring gear R1 corresponding to the third rotating element RE3 are shown, and the distance between them corresponds to the gear ratio ⁇ 1 of the first planetary gear unit 24. It has been established.
  • the four vertical lines Y4, Y5, Y6, and Y7 of the automatic transmission unit 20 connect the third sun gear S3 corresponding to the fourth rotation element RE4 to each other corresponding to the fifth rotation element RE5 in order from the left.
  • the distance between them is determined according to the gear ratios ⁇ 2 and ⁇ 3 of the second and third planetary gear devices 26 and 28, respectively.
  • the interval between the carrier and the ring gear is set to an interval corresponding to the gear ratio ⁇ of the planetary gear device.
  • the interval between the vertical lines Y1 and Y2 is set to an interval corresponding to “1”, and the interval between the vertical lines Y2 and Y3 is set to an interval corresponding to the gear ratio ⁇ 1.
  • the interval between the sun gear and the carrier is set to correspond to “1” for each of the second and third planetary gear devices 26 and 28, and the interval between the carrier and the ring gear corresponds to ⁇ .
  • the power transmission device 10 of the present embodiment is configured so that the first rotating element RE1 (first gear) of the first planetary gear device 24 is used in the power distribution mechanism 16 (differential unit 11).
  • 1 carrier CA1) is connected to the input shaft 14, that is, the engine 8
  • the second rotating element RE2 is connected to the first electric motor M1
  • the third rotating element (first ring gear R1) RE3 is connected to the transmission member 18 and the second electric motor M2. It is connected and configured to transmit (input) the rotation of the input shaft 14 to the automatic transmission unit 20 via the transmission member 18.
  • the relationship between the rotational speed of the first sun gear S1 and the rotational speed of the first ring gear R1 is indicated by an oblique straight line L0 passing through the intersection of Y2 and X2.
  • the first rotation element RE1 to the third rotation element RE3 are in a differential state in which they can rotate relative to each other, and are indicated by the intersections of the straight line L0 and the vertical line Y3.
  • the rotational speed of the one ring gear R1 is constrained by the vehicle speed V
  • the rotational speed of the first electric motor M1 is controlled to control the rotational speed of the first sun gear S1 indicated by the intersection of the straight line L0 and the vertical line Y1.
  • the rotation speed of the first carrier CA1 indicated by the intersection of the straight line L0 and the vertical line Y2 that is, the engine rotation speed NE is increased or decreased.
  • rotation of the first sun gear S1 is the same speed as the engine speed N E by controlling the rotational speed of the first electric motor M1 such speed ratio ⁇ 0 of the differential portion 11 is fixed to "1"
  • the rotational speed i.e., the power transmitting member 18 of the first ring gear R1 is rotated at the same rotation to the engine speed N E.
  • the rotation of the first sun gear S1 is made zero by controlling the rotation speed of the first electric motor M1 so that the speed ratio ⁇ 0 of the differential unit 11 is fixed to a value smaller than “1”, for example, about 0.7. that the straight line L0 is the state shown in FIG. 3, it is higher than the engine speed N E and the power transmitting member 18 is rotated.
  • the fourth rotation element RE4 is selectively connected to the transmission member 18 via the first clutch C1
  • the fifth rotation element RE5 is connected to the output shaft 22
  • the sixth rotation element RE6 is the sixth rotation element RE6. It is selectively connected to the transmission member 18 via the second clutch C2 and selectively connected to the case 12 via the second brake B2 and the seventh rotating element RE7 is connected to the transmission member 18 via the third clutch C3. It is selectively connected to the case 12 via the first brake B1.
  • the straight line L0 is brought into the state shown in FIG. is output to the third rotating element RE3 are speed higher than the speed N E. Then, as shown in FIG.
  • FIG. 4 illustrates a signal input to the electronic control device 100 for controlling the power transmission device 10 of the present embodiment and a signal output from the electronic control device 100.
  • the electronic control device 100 includes a so-called microcomputer including a CPU, a ROM, a RAM, an input / output interface, and the like, and performs signal processing according to a program stored in the ROM in advance while using a temporary storage function of the RAM.
  • drive control such as hybrid drive control for the engine 8, the first and second electric motors M1, M2 and the shift control of the automatic transmission unit 20 is executed.
  • the electronic control device 100 includes a signal indicating the engine water temperature TEMP W , a shift position P SH of the shift lever 52 (see FIG. 5), the number of operations at the “M” position, etc. from each sensor and switch as shown in FIG. signal representing the signal indicative of engine rotational speed N E is the rotational speed of the engine 8, a signal representative of the gear ratio sequence set value, a signal for commanding the M mode (manual shift running mode), the operation state a / C air conditioner A signal representing a rotational speed of the output shaft 22 (hereinafter, output shaft rotational speed) N OUT , a signal representing the hydraulic oil temperature T OIL of the automatic transmission unit 20, a signal representing a side brake operation, a foot A signal representing the brake operation, a signal representing the catalyst temperature, a signal representing the accelerator opening Acc which is the operation amount of the accelerator pedal corresponding to the driver's required output amount, and the cam angle Signal, snow mode setting signal, vehicle longitudinal acceleration G signal, auto cruise traveling signal, vehicle weight (vehicle weight)
  • the hydraulic control circuit 70 signal for applying regulates the line pressure P L by a regulator valve (pressure regulating valve) provided in the drive for operating an electric hydraulic pump serving as a hydraulic pressure source of the original pressure for the line pressure P L is pressure adjusted Command signal, signal to drive electric heater, signal to cruise control computer, parking lock drive A signal for driving the motor is output.
  • FIG. 5 is a diagram showing an example of a shift operation device 50 as a switching device for switching a plurality of types of shift positions PSH by an artificial operation.
  • the shift operation device 50 includes, for example, a shift lever 52 that is disposed beside the driver's seat and is operated to select a plurality of types of shift positions PSH .
  • the shift lever 52 is in a neutral state, that is, a neutral state in which the power transmission path in the power transmission device 10, that is, the automatic transmission unit 20 is interrupted, and the output shaft 22 of the automatic transmission unit 20 is fixed (that is, locked).
  • Parking position “P (parking)”, reverse driving position “R (reverse)” for reverse driving, and neutral position “N” for neutralizing the power transmission path in the power transmission device 10 (Neutral) ", each of the automatic transmission modes is established and the automatic transmission control is performed within the range of the stepless transmission ratio width of the differential unit 11 and the first to fourth gears of the automatic transmission unit 20.
  • the forward automatic shift travel position “D (Dry) that executes the automatic shift control within the change range of the shiftable total transmission ratio ⁇ T of the power transmission device 10 obtained by the gear stage. ) ”, Or manually to the forward manual shift travel position“ M (manual) ”for setting a so-called shift range that establishes a manual shift travel mode (manual mode) and restricts the high-speed gear position in the automatic transmission unit 20. It is provided to be operated.
  • the hydraulic control circuit is electrically switched by a so-called shift-by-wire system that switches the power transmission state of the power transmission device 10 by electrical control, for example.
  • the “P” position and the “N” position are non-travel positions selected when the vehicle is not traveled, This is a non-drive position for selecting switching to a power transmission cut-off state of the power transmission path that disables driving of the vehicle whose power transmission path is cut off.
  • the “R” position, the “D” position, and the “M” position are travel positions selected when the vehicle travels, and can drive a vehicle to which a power transmission path in the automatic transmission unit 20 is connected. It is also a drive position for selecting switching to the power transmission possible state of the power transmission path.
  • FIG. 6 is a functional block diagram illustrating a control function of the control device of the power transmission device 10 that is a part of the control function of the electronic control device 100.
  • the automatic transmission control unit 102 includes an upshift line (solid line) and a downshift line (one point) stored in advance with the vehicle speed V and the output torque T OUT of the automatic transmission unit 20 as shown in FIG. 7 as variables.
  • the automatic transmission unit control means 102 engages and / or engages the hydraulic friction engagement device involved in the shift of the automatic transmission unit 20 so that the shift stage is achieved in accordance with, for example, the engagement operation table shown in FIG.
  • a command to release (shift output command, hydraulic pressure command), that is, the release side engagement device involved in the shift of the automatic transmission unit 20 is released and the engagement side engagement device is engaged to change the speed of the automatic transmission unit 20.
  • the linear solenoid valve in the hydraulic control circuit 4270 is operated so that the hydraulic actuator of the hydraulic friction engagement device involved in the gear shift is operated.
  • the hybrid control device 104 operates the engine 8 in an efficient operating range, and changes so as to optimize the distribution of the driving force between the engine 8 and the second electric motor M2 and the reaction force generated by the first electric motor M1.
  • the gear ratio ⁇ 0 of the differential unit 11 as an electric continuously variable transmission is controlled.
  • the target output of the vehicle is calculated from the accelerator opening Acc and the vehicle speed V as the driver's required output amount, and the required total target output is calculated from the target output of the vehicle and the required charge amount.
  • the target engine output is calculated in consideration of the transmission loss and the assist torque of the second electric motor M2 so that the total target output is obtained, and the engine rotational speed NE and the engine torque T at which the target engine output can be obtained.
  • the engine 8 is controlled so as to be E, and the power generation amount of the first electric motor M1 is controlled.
  • the hybrid control unit 104 executes the control in consideration of the gear position of the automatic transmission unit 20 for improving power performance and fuel consumption.
  • the differential unit 11 is caused to function as an electric continuously variable transmission.
  • the hybrid control means 104 both the drivability and the fuel consumption when the continuously-variable shifting control in a two-dimensional coordinate composed of the output torque (engine torque) T E of the engine rotational speed N E and the engine 8
  • the engine torque T E and the engine rotational speed N E for generating an output determines the target value of the overall speed ratio ⁇ T of the power transmission device 10, the shift of the automatic shifting portion 20 so as to obtain the target value
  • the gear ratio ⁇ 0 of the differential unit 11 is controlled in consideration of the speed, and the total gear ratio ⁇ 0 is controlled within the changeable range.
  • the hybrid control means 104 supplies the electric energy generated by the first electric motor M1 to the power storage device 60 and the second electric motor M2 through the inverter 58, the main part of the power of the engine 8 is mechanically transmitted to the transmission member 18.
  • part of the motive power of the engine 8 is consumed for power generation of the first electric motor M1 and converted into electric energy there, and electric energy is supplied to the second electric motor M2 through the inverter 58, and the second The electric motor M2 is driven and transmitted from the second electric motor M2 to the transmission member 18.
  • the hybrid control means 104 controls the first motor rotation speed N M1 and / or the second motor rotation speed N M2 by the electric CVT function of the differential section 11 regardless of whether the vehicle is stopped or traveling. It controls the rotation of the engine rotational speed N E to any rotational speed or maintained substantially constant. In other words, the hybrid control means 104 rotates the first electric motor speed N M1 and / or the second electric motor rotation speed N M2 while controlling any rotational speed or to maintain the engine speed N E substantially constant for any The rotation can be controlled to the speed.
  • the hybrid control means 104 as can be seen from the diagram of FIG. 3 when raising the engine rotation speed N E during running of the vehicle, the vehicle speed V the second electric motor rotation speed N which is bound to the (drive wheels 38)
  • the first motor rotation speed N M1 is increased while maintaining M2 substantially constant.
  • the hybrid control means 104 when maintaining the engine speed N E at the nearly fixed level during the shifting of the automatic shifting portion 20, the shift of the automatic transmission portion 20 while maintaining the engine speed N E substantially constant
  • the first motor rotation speed N M1 is changed in the opposite direction to the change in the accompanying second motor rotation speed N M2 .
  • the hybrid control means 104 controls the opening and closing of the electronic throttle valve 96 by the throttle actuator 97 for throttle control, and controls the fuel injection amount and injection timing by the fuel injection device 98 for fuel injection control.
  • a command for controlling the ignition timing by the ignition device 99 such as an igniter for control is output to the engine output control device 43 alone or in combination, and the output control of the engine 8 is executed so as to generate the necessary engine output.
  • An engine output control means is functionally provided.
  • the hybrid control means 104 drives the throttle actuator 97 on the basis of the basic pre-stored relationship (not shown) to the accelerator opening Acc, increasing the throttle valve opening theta TH as the accelerator opening Acc is increased
  • Throttle control is executed so that The engine output control device 43 controls the opening and closing of the electronic throttle valve 96 by the throttle actuator 97 for the throttle control according to the command from the hybrid control means 104, and the fuel injection by the fuel injection device 98 for the fuel injection control.
  • the engine torque control is executed by controlling the ignition timing by an ignition device 99 such as an igniter for controlling the ignition timing.
  • the hybrid control means 104 can drive the motor by the electric CVT function (differential action) of the differential device 11 regardless of whether the engine 8 is stopped or in an idle state.
  • the hybrid control means 104 is generally used in a relatively low output torque T OUT region, that is, a low engine torque TE region, or a vehicle speed region in which the vehicle speed V is relatively low. That is, the motor travel is executed in the low load region.
  • the hybrid control means 104 uses the electrical CVT function (differential action) of the differential section 11 to suppress dragging of the stopped engine 8 and improve fuel efficiency during the motor travel.
  • the motor rotation speed N M1 controlled for example by idling a negative rotational speed, to maintain the engine speed N E at zero or substantially zero as needed by the differential action of the differential portion 11.
  • the hybrid control means 104 supplies the second motor M2 with the electric energy from the first electric motor M1 and / or the electric energy from the power storage device 60 through the electric path described above. 2 So-called torque assist for assisting the power of the engine 8 is possible by driving the electric motor M2 and applying torque to the drive wheels.
  • the hybrid control means 104 cuts off the drive current to the first electric motor M1 supplied from the power storage device 60 via the inverter 58, and puts the first electric motor M1 into a no-load state.
  • the first electric motor M1 is allowed to freely rotate, that is, idle, and the differential unit 11 is in a state in which torque cannot be transmitted, that is, the power transmission path in the differential unit 11 is interrupted. In this state, the output from the differential unit 11 is not generated. That is, the hybrid control means 104 sets the differential unit 11 in a neutral state (neutral state) in which the power transmission path is electrically cut off by setting the first electric motor M1 to a no-load state.
  • the hybrid control means 104 puts the engine 8 in a non-driving state in order to improve fuel efficiency (reduce the fuel consumption rate) during coasting when the accelerator is off (coasting) or braking with a foot brake.
  • the second motor M2 is rotationally driven by force to operate as a generator, and regenerative control for charging the electric energy, that is, the second motor generated current, to the power storage device 60 via the inverter 58 is executed.
  • the hybrid control means 104 includes a function as a regeneration control means for executing the regeneration control.
  • the accelerator opening Acc, the vehicle speed V, the brake pedal operation amount, the remaining charge SOC of the power storage device 60, the automatic transmission unit 20 When the operating point of the power transmission device 10 determined based on the state quantity indicating the vehicle state exemplified by the shift speed of the gear belongs to the regeneration region in which the regeneration control determined in advance is to be executed, Perform regenerative control.
  • the electric energy regenerated by the second electric motor M2 that is, the regenerative amount in the regenerative control is obtained by a hydraulic brake in order to obtain a braking force according to the remaining charge SOC of the power storage device 56 and the brake pedal operation amount. Control is performed so that the required regeneration amount, which is a required regeneration amount determined on the basis of the braking force distribution of the braking force, is obtained.
  • the shift of the automatic transmission unit 20 it is determined whether or not the shift is performed by applying the traveling state of the vehicle to, for example, the shift map shown in FIG. 7, and the shift is determined.
  • the shift is executed at the same time.
  • the shift map for example, the vehicle speed and the required driving force, the vehicle speed and the required driving power, the vehicle speed and the accelerator opening, or the vehicle speed and the required engine rotational speed are used as the traveling state of the vehicle.
  • a shift for operating the engine 8 with high efficiency is mainly performed.
  • the shift map of FIG. 7 described above an example of a shift map in which the vehicle speed and the required driving force (required output torque) are in the traveling state of the vehicle is shown.
  • the differential unit 11 having the second electric motor M2 and the first electric motor M1 is connected so that regeneration can be performed via the automatic transmission unit 20, and the vehicle In the regenerative running state, regenerative control is performed by at least one of these electric motors.
  • the shift of the automatic transmission unit 20 is executed based on the shift map while the regenerative control is being performed, the operating state of the motor that performs the regenerative control, that is, the rotation speed and output torque of the motor change. Then, it is conceivable that when the operating state of the motor changes, the regenerative efficiency of the motor deteriorates and the fuel consumption deteriorates compared to before shifting.
  • the regenerative control is performed by the second electric motor M2
  • the regenerative control can be performed by each of the first electric motor M1 and the second electric motor M2. It is also possible for both parties to execute in cooperation.
  • FIG. 9 is a diagram illustrating an example of the efficiency of the second electric motor M2 on a plane in which the rotational speed NM2 of the second electric motor M2 is the horizontal axis and the output torque TM2 of the second electric motor M2 is the vertical axis.
  • the case where the output torque TM2 is negative corresponds to the case where the second electric motor M2 performs the regeneration control and the regeneration torque is generated.
  • a plurality of curves represented by contour lines by solid lines are isoefficiency lines connecting points representing operating states having the same efficiency. As the operating state changes in the direction indicated by the arrow in FIG. 9, that is, higher torque and higher rotational speed, the efficiency is worsened.
  • the broken line in FIG. 9 represents the equal power line.
  • the efficiency of the second electric motor M2 that performs the regenerative control changes depending on the rotational speed N M2 , the torque T M2, and the like. Therefore, when the second electric motor M2 is performing the regenerative control, When the speed change is performed and the input shaft 18 of the automatic transmission unit 20, that is, the rotation speed or torque TM2 of the second electric motor M2 is changed, the efficiency of the second electric motor M2 changes.
  • the regenerative shift determination unit 110 determines whether or not to perform a shift of the automatic transmission unit 20 instead of the shift control unit 102 when the vehicle is in a regenerative running state. Specifically, the regenerative shift determination means 110 compares the travel loss of the power transmission device 10 at the current speed ratio with the travel loss of the power transmission device 10 at the speed ratio after the shift, and the power at the speed ratio after the shift. When the travel loss of the transmission device 10 is less than the travel loss of the power transmission device 10 at the current gear ratio, a determination is made to execute the shift of the automatic transmission unit 20. The shift control unit 102 instructs the hydraulic pressure control circuit 42 to use a hydraulic pressure for executing the shift in response to the determination to execute the shift by the regenerative shift determination unit 110.
  • the regenerative shift determination unit 110 functionally includes a loss comparison unit 114, and the transmission loss at the current transmission ratio calculated by the loss calculation unit 118, which will be described later, and the power transmission at the post-shift gear ratio. The travel loss of the device 10 is compared.
  • Loss calculating means 118 calculates the travel loss of power transmission device 10 at the current gear ratio of automatic transmission unit 20 and the travel loss of power transmission device 10 at the gear ratio after the shift, respectively, when the vehicle is in a regenerative travel state. calculate.
  • the travel loss of the power transmission device 10 is specifically calculated as, for example, the sum of the travel loss of the automatic transmission unit 20 and the travel loss of the second electric motor M2 that performs regenerative control.
  • the loss calculation means 118 functionally includes an electric motor loss calculation means 120, an inverter loss calculation means 122, and an automatic transmission unit loss calculation means 124.
  • the motor loss calculating means 120 calculates the loss in the second motor M2 that performs regenerative control
  • the inverter loss calculating means 122 calculates the loss in the inverter 58 that drives the second motor M2 and the first motor M1.
  • the traveling loss of the second electric motor M2 that performs the regenerative control is the sum of the loss of the second electric motor M2 that performs the regenerative control calculated by the motor loss calculating unit 120 and the loss in the inverter 58 that is calculated by the inverter loss calculating unit 122.
  • the automatic transmission unit loss calculating means 124 calculates the travel loss of the automatic transmission unit 20.
  • the motor loss calculation means 120 detects the temperature T M2 of the second motor M2 that performs regenerative control, the rotational speed N M2 of the second motor M2 , and the second motor M2 detected by the motor temperature sensor 82.
  • the loss of the second electric motor M2 that performs regenerative control is calculated by applying the values of parameters such as the input torque to a predetermined relationship stored in advance.
  • the predetermined relationship is such that the temperature T M2 of the second electric motor M2 that performs regenerative control, the rotation speed N M2 of the second electric motor M2, the value of parameters such as the input torque to the second electric motor M2 , and the second electric motor that performs regenerative control.
  • the rotation speed N M2 of the second electric motor M2 can be calculated such as by the gear ratio of the vehicle speed V and the automatic transmission portion 20, the vehicle speed V and changing the rotation speed N M2 of the second electric motor M2 It may be calculated based on the gear ratio of the automatic transmission unit 20.
  • the vehicle speed V is calculated, for example, by taking into consideration the reduction ratio of the final reduction gear 36, the diameter of the drive wheels 38, and the like in the rotation speed NOUT of the output shaft 24 detected by the output shaft rotation speed sensor 86.
  • the inverter loss calculation means 122 applies the values of parameters such as the temperature of the inverter 58 detected by a temperature sensor (not shown) and the output (current, voltage, power, etc.) of the inverter 58 to a predetermined relationship, The loss of the inverter 58 is calculated.
  • the predetermined relationship relates the values of parameters such as the temperature and output of the inverter 58 and the loss of the inverter 58, and is obtained in advance by experiments and simulations, and is stored in a storage means such as a memory (not shown). Stored in advance.
  • the automatic transmission unit loss calculating means 124 also detects the oil temperature T OIL of the hydraulic oil of the automatic transmission unit 20 detected by the oil temperature sensor 84, the vehicle speed v, the input torque to the automatic transmission unit 20, and the operation of the automatic transmission unit 20.
  • the travel loss of the automatic transmission unit 20 is calculated by applying the values of parameters such as oil characteristics to a predetermined relationship stored in advance.
  • the predetermined relationship is such that the oil temperature T OIL of the hydraulic oil of the automatic transmission unit 20, the vehicle speed V, the input torque to the automatic transmission unit 20, the values of parameters such as the characteristics of the hydraulic oil of the automatic transmission unit 20, and the automatic transmission unit 20. And is obtained in advance through experiments and simulations, and is stored in advance in storage means such as a memory (not shown).
  • the characteristic of the hydraulic oil is, for example, the viscosity based on the material of the hydraulic oil, the deterioration state, and the like, and is obtained by inputting information about the hydraulic oil used in advance.
  • FIG. 4 is a diagram illustrating the relationship between the automatic transmission unit 20, the second electric motor M2, and the travel loss of the power transmission device 10 after a shift.
  • FIG. 10 shows the relationship when the hydraulic oil temperature T OIL of the automatic transmission unit 20 and the temperature T M2 of the second electric motor M2 are two different temperatures, ie, temperature 1 and temperature 2, respectively. .
  • a plot represented by a circle represents a running loss of the automatic transmission unit 20 calculated by the automatic transmission unit loss calculation unit 124, for example. Further, the plot represented by the square is combined with the traveling loss of the second electric motor M2 calculated by the electric motor loss calculating means 120 and the inverter loss calculating means 122, for example.
  • the plots represented by asterisks respectively represent the travel loss of the power transmission device 10 obtained as the sum of the travel loss of the automatic transmission unit 20 and the travel loss of the second electric motor M2 that performs regenerative control in this embodiment. ing.
  • the hydraulic oil temperature T OIL of the automatic transmission unit 20 and the temperature T M2 of the second electric motor M2 are the oil temperature 1
  • the oil temperature is 2 and the temperature is higher than the oil temperature 1. Is represented by a broken line.
  • the travel loss of the automatic shifting portion 20 increases the higher the input shaft rotational speed N 18, the second electric motor perform regenerative control M2 Is reduced as the rotational speed NM2 increases.
  • the travel loss of the power transmission device 10 is minimal in the vicinity of 5000 rpm.
  • the loss calculation means 118 is a case where the travel loss of the power transmission device 10 when the current gear ratio of the automatic transmission unit 20 is maintained and the gear ratio of the automatic transmission unit 20 after the shift when the gear shift is executed.
  • the travel loss of the power transmission device 10 is calculated as described above.
  • the loss comparison unit 114 of the regenerative shift determination unit 110 compares the calculated both travel losses, and the travel loss of the power transmission device 10 at the gear ratio after the shift is equal to that of the power transmission device 10 at the current gear ratio. When the travel loss is below, it is determined that the automatic transmission unit 20 performs a shift.
  • FIG. 11 is a flowchart for explaining an example of the control operation of the electronic control unit 100 in the present embodiment, that is, the control operation related to the shift determination of the automatic transmission unit 20 during the regenerative running of the vehicle.
  • the shift position P SH is the “D” position, that is, whether or not the vehicle can travel using a plurality of shift speeds of the automatic transmission unit 20. Further, it is determined whether or not the vehicle is in a coast
  • the shift after shifting when the vehicle travels at the current gear ratio of the automatic transmission unit 20 and when the automatic transmission unit 20 performs a shift is calculated.
  • the value of the travel loss of the automatic transmission unit 20 is calculated for each of the cases of traveling at a ratio.
  • the calculation of the travel loss of the automatic transmission unit 20 in this step is performed based on the oil temperature T OIL of the hydraulic oil in the automatic transmission unit 20 detected by the oil temperature sensor 84.
  • SA4 corresponding to the loss comparison means 114 of the regenerative shift determination means 110, etc., based on the travel loss of the automatic transmission unit 20 calculated in SA2 and SA3, respectively, and the travel loss of the second electric motor M2 for which regeneration control is performed.
  • the travel efficiency of the power transmission device 10 is calculated for each of the case where the vehicle travels at the current gear ratio of the automatic transmission unit 20 and the case where the vehicle travels at the gear ratio after the shift when the gear shift of the automatic transmission unit 20 is performed. The comparison is performed.
  • the traveling efficiency of the power transmission device 10 is calculated as, for example, the sum of the traveling loss of the automatic transmission unit 20 and the traveling loss of the second electric motor M2 for which the regeneration control is performed.
  • the travel loss of the power transmission device 10 when traveling at the current gear ratio of the automatic transmission unit 20 is the same as when the vehicle travels at the gear ratio after the shift when the automatic transmission unit 20 is shifted. If the driving efficiency of the power transmission device 10 is exceeded, the determination in this step is affirmed and SA5 is executed. On the other hand, the travel loss of the power transmission device 10 when traveling at the current gear ratio of the automatic transmission unit 20 is the power transmission device 10 when traveling at the speed ratio after the shift when the automatic transmission unit 20 is shifted. When the traveling efficiency is equal to or less than the traveling efficiency, the determination at this step is denied and SA6 is executed.
  • the regenerative travel is performed in the control device 100 of the power transmission device 10 including the automatic transmission unit 20 and the differential unit 11 including the second electric motor that performs regeneration via the automatic transmission unit 20, the regenerative travel is performed. Since the automatic transmission unit 20 is downshifted when the travel loss of the power transmission device 10 after the shift is smaller than the travel loss of the power transmission device 10 at the current gear ratio, the travel of the power transmission device 10 is performed by shifting. Reduction in loss is reduced, and fuel efficiency is improved.
  • the travel loss of the power transmission device 10 includes the loss of the automatic transmission unit 20, and the loss of the automatic transmission unit 20 is calculated based on the hydraulic oil temperature T OIL of the automatic transmission unit 20. Therefore, the loss of the automatic transmission unit 20 that changes based on the oil temperature T OIL of the hydraulic oil can be calculated with high accuracy.
  • the traveling loss of the power transmission device 10 includes the loss of the second electric motor M2 that performs regenerative control, and the loss of the second electric motor M2 is calculated based on the temperature T M2 of the electric motor. Therefore, the loss of the second electric motor M2 that changes based on the temperature T M2 can be calculated with high accuracy.
  • the power transmission device 10 includes the differential unit 11 provided in the power transmission path from the engine 8 to the drive wheel 38, and the differential unit 11 includes the differential mechanism 16, Including a first electric motor M1 connected to the second rotating element RE2 among the rotating elements of the differential mechanism 16 so as to be able to transmit power, and a second electric motor M2 connected to the third rotating element RE3 so as to be able to transmit power. It is characterized by. In this way, when the vehicle is decelerated, the regenerative control is performed by the first electric motor M1 and the second electric motor M2 connected to the rotating elements RE2 and RE3 of the differential unit 11 so as to be able to transmit power, respectively, or any of them. Can do.
  • the differential mechanism 16 automatically shifts the output of the first element RE1 connected to the engine 8, the second element RE2 connected to the first electric motor M1, and the differential mechanism 16.
  • the second motor M2 is connected to the third element RE3, so that the first motor M1 connected via the differential mechanism 16 is included.
  • the regenerative output can be generated by the second electric motor M2 or any one of them.
  • the differential state of the differential mechanism 16 can be changed, and the differential mechanism can be continuously changed in gear ratio. It can be operated as a step transmission.
  • the automatic transmission unit 20 is a mechanical stepped transmission that can change its transmission ratio stepwise, so that the amount of change in the transmission ratio of the automatic transmission unit 20 is increased. It is possible to suppress the size of the automatic transmission unit 20 from being increased.
  • the loss of the first electric motor M1 or the second electric motor M2 includes the loss in the inverter 58 related to the driving of the first electric motor M1 or the second electric motor M2.
  • the loss in the inverter 58 is taken into consideration, so that the travel loss of the power transmission device 10 is calculated with high accuracy, and the comparison can be performed with high accuracy.
  • the regenerative shift determining means 110 functionally includes a vehicle state determining means 112.
  • the vehicle state determination means 112 is a regenerative travel shift map in which the vehicle state such as the vehicle speed v, the output power of the second electric motor M2 for which regenerative control is performed, or the output torque is stored in advance in a shift map storage means 116 to be described later.
  • the shift map storage means 116 stores in advance the regenerative travel shift map, that is, a relationship for determining whether or not to perform the downshift of the automatic transmission unit 20 when the vehicle is performing regenerative travel. This relationship uses, for example, the vehicle speed v and the output power of the second electric motor M2 that performs regenerative control, or the vehicle speed v and the output torque of the second electric motor M2 that performs regenerative control.
  • the regenerative travel shift map stored in the shift map storage means 116 for determining the shift stage used in the automatic transmission unit 20 includes the vehicle speed v and the power or torque of the second electric motor M2. It is considered a variable.
  • the vehicle state determination unit 112 of the regenerative shift determination unit 110 when the vehicle is performing regenerative travel, includes the vehicle state including the vehicle speed v and the power or torque of the second electric motor M2, and the regenerative travel shift map. From this, it is determined whether or not the automatic transmission unit 20 is to be shifted.
  • FIG. 12 is a diagram showing an example of a regenerative travel shift map in which the vehicle speed v and the output power of the second electric motor M2 are variables.
  • the positive output power means that the second electric motor M2 is in a power running state
  • the negative output power means that the second electric motor M2 is in a regenerative state.
  • the region where the output power is negative corresponds to the regenerative travel shift map.
  • the region where the output power is positive is also defined, but at least the region where the output power is negative and the case where the second electric motor M2 that performs regenerative control is in the regenerative control state is defined. It only has to be done.
  • the region where the output power is positive may be used as a shift map for shift determination by the shift control means 102.
  • the regenerative travel shift map of FIG. 12 is defined so that the loss of the power transmission device 10 is not deteriorated by the shift of the automatic transmission unit 20.
  • the shift line representing the downshift is such that the loss of the power transmission device 10 when the automatic transmission 20 is shifted is smaller than the loss when the shift is not performed. This corresponds to the boundary between the region representing the traveling state and the region representing the traveling state in which the loss of the power transmission device 10 when the automatic transmission 20 is shifted is greater than the loss when the shifting is not performed.
  • the shift line representing the downshift in the regenerative travel shift map is a series of shift points indicating the vehicle state in which the automatic transmission unit 20 performs the downshift.
  • the regenerative travel shift map as shown in FIG. 12 is obtained in advance experimentally or by simulation or the like.
  • the efficiency of the efficiency of the second electric motor M2 and the automatic transmission unit 20 that perform regenerative control is respectively the temperature of the second electric motor M2 and the temperature of the hydraulic oil of the automatic transmission unit 20 (hereinafter referred to as the efficiency). , Simply called temperature). Therefore, the shift map storage means 116 may store the regenerative travel shift map in advance for each of a plurality of different temperatures. Then, the regenerative travel speed change according to the temperature T M2 of the second electric motor M 2 that performs the regenerative control detected by the motor temperature sensor 82 or the oil temperature T OIL of the hydraulic oil of the automatic transmission unit 20 detected by the oil temperature sensor 84. A map is selected, and the shift of the automatic transmission unit 20 is determined by the vehicle response determination unit 112 based on the selected regenerative travel shift map.
  • FIG. 13 is a diagram illustrating an example of a regenerative travel shift map for a plurality of different temperatures.
  • the regenerative travel map represented by a one-dot chain line is a relationship for determining the shift of the automatic transmission unit 20 during the regenerative travel of the vehicle at a predetermined temperature 1 and is represented by a two-dot chain line.
  • the generated regenerative travel map is an example of a regenerative travel map at a temperature 2 that is higher than the predetermined temperature.
  • temperature 2 in the case of temperature 2 compared to the case of temperature 1, if the vehicle speed is the same, the shift of the automatic transmission unit 20 is changed in a vehicle state in which the power of the second electric motor M2 that performs regenerative control is smaller. It is supposed to be executed.
  • FIG. 14 is a flowchart for explaining an example of the control operation of the electronic control unit 100 in the present embodiment, that is, the control operation related to the shift determination of the automatic transmission unit 20 during the regenerative traveling of the vehicle.
  • the shift position P SH is the “D” position, that is, whether or not the vehicle is capable of traveling using a plurality of shift stages of the automatic transmission unit 20. Further, it is determined whether the
  • SB3 corresponding to the vehicle state determination means 112 of the regenerative shift determination means 110, etc., it is determined whether or not the automatic transmission 20 is to be shifted based on the regenerative travel shift map selected in SB2. Specifically, for example, based on where the vehicle state that is the current vehicle speed and the power of the second electric motor M2 for which the regeneration control is executed is located in the regeneration travel shift map selected in SB2, the automatic transmission unit At 20, a gear position to be used is determined. If the gear to be used is different from the current gear, the shift to the gear to be used is determined, the determination in this step is affirmed, and SB4 is executed. On the other hand, if the shift speed to be used is the same as the current shift speed, the shift determination is not performed and the determination in this step is denied and SB5 is executed.
  • the shift map storage means 116 is set by the vehicle speed v and the power of the second electric motor M2 that performs the regeneration control, and the regenerative travel for executing the shift of the automatic transmission unit 20 during the regenerative travel.
  • the shift map is stored, and the vehicle state determination unit 112 of the regenerative shift control unit 110 shifts based on the regenerative travel shift map stored in the shift map storage unit 116 during regenerative travel.
  • the shift of the automatic transmission unit 20 at the time of regenerative travel is executed.
  • the travel loss of the power transmission device 10 at the current speed ratio can be determined based on the regenerative travel shift map, and the automatic transmission unit 2 can be determined based on the determination. Because of the down-shift is performed, travel loss of the power transmission device 10 is reduced to be reduced by shifting, in addition to the fuel consumption is improved, the amount of computation in the shift determination is reduced.
  • the shift map storage means 116 is set by the vehicle speed v and the torque of the second electric motor M2 that performs regenerative control, and regenerative for executing the shift of the automatic transmission unit 20 during regenerative travel.
  • the travel shift map is stored, and the vehicle state determination unit 112 of the regenerative shift control unit 110 performs a shift based on the regenerative travel shift map stored in the shift map storage unit 116 during the regenerative travel.
  • the shift of the automatic transmission unit 20 during regenerative travel is executed, so the travel loss of the power transmission device 10 at the current speed ratio If the travel loss of the power transmission device 10 after the shift is smaller than that based on the regenerative travel shift map, the automatic shift can be performed based on the determination. Since 20 of the down shift is performed, travel loss of the power transmission device 10 is reduced to be reduced by shifting, in addition to the fuel consumption is improved, the amount of computation in the shift determination is reduced.
  • the regenerative travel shift map stored in the shift map storage unit 116 corresponds to the hydraulic oil temperature T OIL of the automatic transmission unit 20. That is, the automatic transmission unit 20 is configured such that the downshift of the automatic transmission unit 20 is performed when the traveling loss of the power transmission device 10 after the shift is smaller than the traveling loss of the power transmission device 10 at the current gear ratio.
  • the shift point for performing the downshift is set in advance according to the hydraulic oil temperature T OIL of the automatic transmission unit 20, based on the shift point set in advance according to the hydraulic oil temperature TOIL .
  • the downshift of the automatic transmission unit 20 is performed, and the travel loss of the power transmission device 10 is caused by the shift.
  • the amount of calculation in the shift determination is reduced.
  • the regenerative travel shift map stored in the shift map storage means 116 is in accordance with the temperature T M2 of the second electric motor M2 that performs regenerative control. That is, the automatic transmission unit 20 is configured such that the downshift of the automatic transmission unit 20 is performed when the traveling loss of the power transmission device 10 after the shift is smaller than the traveling loss of the power transmission device 10 at the current gear ratio.
  • the shift map storage means 116 is set by the vehicle speed v and the power of the second electric motor M2, and the regenerative travel shift map for executing the shift of the automatic transmission unit 20 during the regenerative travel. Since the vehicle state determination means 112 of the regenerative shift control means 110 stores the speed based on the regenerative travel shift map stored in the shift map storage means 116 during the regenerative travel, the first motor M1 and the second motor The regenerative output from the second electric motor M2 is reduced by the regenerative output in cooperation with M2, and the differential unit includes both the loss of the first electric motor M1 and the loss of the second electric motor M2 during the downshift. Even when the amount of reduction in the loss of 11 is small, the automatic transmission 20 can be shifted.
  • the shift map storage means 116 is set by the vehicle speed v and the torque of the second electric motor M2, and the regenerative travel shift map for executing the shift of the automatic transmission unit 20 during the regenerative travel. Since the vehicle state determination means 112 of the regenerative shift control means 110 stores the speed based on the regenerative travel shift map stored in the shift map storage means 116 during the regenerative travel, the first motor M1 and the second motor The regenerative output from the second electric motor M2 is reduced by the regenerative output in cooperation with M2, and the differential unit includes both the loss of the first electric motor M1 and the loss of the second electric motor M2 during the downshift. Even when the amount of reduction in the loss of 11 is small, the automatic transmission 20 can be shifted.
  • the automatic transmission unit 20 of the above-described embodiment is a transmission of four forward speeds and one reverse speed, but the gear positions and connection relations of the transmission are not particularly limited.
  • the present invention can be applied to any transmission that can change the gear ratio stepwise and has a different running loss for each gear ratio.
  • the first carrier CA1 is connected to the engine 8, the first sun gear S1 is connected to the first electric motor M1, and the first ring gear R1 is connected to the transmission member 18.
  • the connection relationship is not necessarily limited thereto, and the engine 8, the first electric motor M1, and the transmission member 18 are connected to any of the three rotation elements CA1, S1, and R1 of the first planetary gear device 24. They can be connected.
  • the first motor M1 and the second motor M2 are arranged concentrically with the input shaft 14, the first motor M1 is connected to the first sun gear S1, and the second motor M2 is connected to the transmission member 18.
  • the first motor M1 is operatively connected to the first sun gear S1 through, for example, a gear, a belt, a speed reducer, etc.
  • the second motor M2 is a transmission member. 18 may be connected.
  • the engine 8 is directly connected to the input shaft 14.
  • the engine 8 only needs to be operatively connected via, for example, a gear, a belt, or the like, and needs to be disposed on a common shaft center. Absent.
  • the hydraulic friction engagement devices such as the first clutch C1 and the second clutch C2 are magnetic powder type, electromagnetic type, mechanical type such as powder (magnetic powder) clutch, electromagnetic clutch, and meshing type dog clutch. You may be comprised from the engaging apparatus.
  • the hydraulic control circuit 70 is constituted by a switching device, an electromagnetic switching device, or the like that switches an electrical command signal circuit to the electromagnetic clutch, not a valve device that switches an oil passage.
  • the automatic transmission unit 20 is connected in series with the differential unit 11 via the transmission member 18, but a counter shaft is provided in parallel with the input shaft 14, and is concentrically on the counter shaft.
  • An automatic transmission unit 20 may be provided.
  • the differential unit 11 and the automatic transmission unit 20 are coupled so as to be able to transmit power via, for example, a pair of transmission members composed of a counter gear pair as a transmission member 18, a sprocket and a chain, and the like. .
  • the power distribution mechanism 16 as the differential mechanism of the above-described embodiment includes, for example, a pinion that is rotationally driven by the engine 8 and a pair of bevel gears meshing with the pinion that are differentially provided to the first electric motor M1 and the second electric motor M2. It may be a differential gear device that is connected to each other.
  • the power distribution mechanism 16 of the above-described embodiment is composed of one set of planetary gear devices, but is composed of two or more planetary gear devices, and has three or more stages in the non-differential state (constant speed change state). It may function as a transmission.
  • the planetary gear device is not limited to a single pinion type, and may be a double pinion type planetary gear device.
  • the oil temperature T OIL of the hydraulic oil in the automatic transmission unit 20 and the temperature T M2 of the second electric motor M2 that performs regenerative control are assumed to be the same.
  • the regenerative travel shift map is stored for each temperature, the present invention is not limited to this. That is, when the oil temperature T OIL of the hydraulic oil of the automatic transmission unit 20 and the temperature T M2 of the second electric motor M2 that performs regenerative control are different, the regenerative travel shift map may be stored for each combination thereof.
  • the electric motor that performs the regenerative control is the second electric motor M2, but is not limited thereto. That is, the regeneration control may be performed in both the first electric motor M1 and the second electric motor M2.
  • the temperature sensor 82 detects the temperature of the second electric motor M2 in the above-described embodiment.
  • the temperature sensor 82 may detect the temperature of the first electric motor M1. That is, it is only necessary to detect the temperature of the electric motor on which the regeneration control is executed.
  • the regenerative control may be executed in the first electric motor M1 by fixing any of the rotating elements of the planetary gear device 24 of the differential section 11 so as not to rotate.
  • the loss of the power transmission device 10 may be the sum of the travel loss of the automatic transmission unit 20 and the loss of the motor for which regenerative control is performed, or the travel loss of the automatic transmission unit 20 and the first motor M1 and It is good also as the sum with the loss of differential part 11 which has the 2nd electric motor M2.
  • the power transmission device 10 has the power distribution mechanism 16 that distributes the driving force of the engine 8 to the first electric motor M1 and the automatic transmission unit 20, but the configuration of the power transmission device is the same. Not limited to. That is, the present invention can be applied to any power transmission device that has at least one electric motor that can be regenerated via the automatic transmission unit 20. Specifically, the power distribution mechanism 16 is not an essential component, and it is sufficient that at least one electric motor is available as the regenerative motor. Further, the regenerative electric motor is not limited to a mode in which it is directly connected to the input shaft 18 of the automatic transmission unit 20. Therefore, for example, the present invention can be applied even to a so-called parallel hybrid type power transmission device in which an electric motor is connected to a power transmission member that transmits power from the engine to the automatic transmission unit.
  • the variable representing the vehicle state is the vehicle speed and the power of the second electric motor M2 that performs regenerative control.
  • the regenerative travel map may be defined as a map in which the vehicle speed and the torque of the second electric motor M2 that performs regenerative control are variables representing the vehicle state.
  • FIG. 15 is a diagram illustrating an example of a regenerative travel shift map in which the vehicle speed and the torque of the second electric motor M2 that performs regenerative control are defined as variables representing the vehicle state, and corresponds to FIG.
  • the regenerative travel shift map defined by the vehicle speed and the torque of the second electric motor M2 that performs the regenerative control may be stored in the shift map storage means 116.
  • the vehicle state determination means 112 determines whether to perform a shift based on the vehicle state including the vehicle speed v and the output torque of the second electric motor M2 that performs the regeneration control based on the regenerative travel shift map.
  • the vehicle speed v and the power of the second electric motor M2 that performs the regenerative control, or the vehicle speed v and the regenerative control are used as variables representing the vehicle state.
  • the regenerative travel shift map using the torque of the second electric motor M2 to be used is used. Instead, it is constituted by the vehicle speed v, the second electric motor M2, the first electric motor M1, the differential gear device 24, and the like.
  • a regenerative travel shift map using the power of the differential unit 11 including the power split mechanism 16 or a regenerative travel shift map using the vehicle speed v and the torque of the differential unit 11 may be used.
  • FIG. 16 is a diagram illustrating an example of a regenerative travel shift map in which the vehicle speed and the power of the differential unit 11 are defined as variables representing the vehicle state.
  • FIG. 17 is a diagram illustrating an example of a regenerative travel shift map in which the vehicle speed and the torque of the differential unit 11 are defined as variables representing the vehicle state.
  • the regenerative travel shift map defined by the vehicle speed and the power or torque of the differential unit 11 that performs regenerative control may be stored in the shift map storage means 116.
  • the vehicle state determination means 112 determines whether to perform a shift based on the vehicle state including the vehicle speed v and the power or torque of the differential unit 11 based on the regenerative travel shift map.
  • the power or torque of the differential unit 11 is changed to the vehicle state, whereby the first electric motor M1 and the second electric motor M2 constituting the differential unit 11 are used.
  • the shift of the automatic transmission unit 20 is determined during execution of the regenerative control in consideration of the reduction in the efficiency of the power transmission device 10. be able to.
  • the inverter loss calculating means 120 calculates the loss of the inverter 58.
  • the inverter loss calculating means 120 is not limited to calculating the loss of the inverter 58 itself, and the first electric motor M1 and the second electric motor. It may be calculated including loss in an electric device (not shown) other than the inverter 58 for driving M2.

Abstract

 回生制御の実行時において車両用動力伝達装置全体の効率を考慮した制御を行なうことによって燃費を向上させることのできる、車両用動力伝達装置の制御装置を提供する。 自動変速部20とその自動変速部20を介して回生を行なう第2電動機M2を含む差動部11とを備えた動力伝達装置10の制御装置100において、回生走行時、現変速比での動力伝達装置10の走行損失よりも、変速後の動力伝達装置10の走行損失が小さい場合に、自動変速部20のダウンシフトを行なうので、変速によって動力伝達装置10の走行損失が低下することが低減され、燃費が向上される。

Description

車両用動力伝達装置の制御装置
 本発明は、車両用動力伝達装置の制御装置に関するものであり、特に、回生走行時において車両用動力伝達装置を構成する変速機構などの損失を考慮した変速を可能にする技術に関するものである。
 複数の動力源を有するいわゆるハイブリッド自動車が知られている。例えば特許文献1には、エンジンと電動機(モータジェネレータ)とを有するハイブリッド自動車が開示されている。かかるハイブリッド自動車においては、車両の減速時において前記電動機によって車両の運動エネルギーを電気エネルギーに変換し蓄積する、いわゆる回生制御を行なうことができる。
 特許文献1には、車両において減速要求が発生した場合であって、前記回生制御の実行される場合に、エネルギーの回生効率が向上することを目的として、変速機をダウンシフトすることにより電動機の回転速度を上昇させる技術が開示されている。
特開2007-50866号公報
 ところで、変速機の効率や、電動機の損失は温度によって変化するので、特許文献1に記載のように、回生制御の実行時に変速機をダウンシフトさせて電動機の回転速度を上昇させ、エネルギーの回生効率を向上させた場合であっても、電動機の損失が上昇したり、あるいは変速機の効率が悪化することにより、動力伝達装置全体としての効率が悪化する場合があるという問題があった。かかる課題は未公知のものである。
 本発明は以上の事情を背景として為されたもので、その目的とするところは、回生制御の実行時において車両用動力伝達装置全体の効率を考慮した制御を行なうことによって燃費を向上させることのできる、車両用動力伝達装置の制御装置を提供することにある。
 かかる目的を達成するための請求項1にかかる発明は、(a)変速部と該変速部を介して回生を行なう電動機とを備えた車両用動力伝達装置の制御装置において、(b)回生走行時、現変速比での該車両用動力伝達装置の走行損失よりも、変速後の該車両用動力伝達装置の走行損失が小さい場合に、前記変速部のダウンシフトを行なうことを特徴とする。
 請求項1にかかる発明によれば、変速部と該変速部を介して回生を行なう電動機とを備えた車両用動力伝達装置を備えた車両の回生走行時において、現変速比での該車両用動力伝達装置の走行損失よりも、変速後の該車両用動力伝達装置の走行損失が小さい場合に、前記変速部のダウンシフトが行なわれるので、変速によって車両用動力伝達装置の走行損失が低下することが低減され、燃費が向上される。
 好適には、前記車両用動力伝達装置の走行損失は、前記変速部の損失を含み、前記変速部の損失は、該変速部の作動油油温に基づいて算出されること、を特徴とする。このようにすれば、作動油の油温に基づいて変化する前記変速部の損失を精度よく算出することができる。
 また好適には、前記車両用動力伝達装置の走行損失は、前記電動機の損失を含み、前記電動機の損失は、該電動機の温度に基づいて算出されること、を特徴とする。このようにすれば、温度に基づいて変化する電動機の損失を精度よく算出することができる。
 好適には、(a)車速と前記電動機のパワーとによって設定され、前記回生走行時における前記変速部の変速を実行するための回生走行変速マップを有し、(b)前記回生走行時において該回生走行変速マップに基づいて変速を行なうこと、を特徴とする。このようにすれば、車速と前記電動機のパワーとによって設定される回生走行変速マップに基づいて、前記回生走行時における前記変速部の変速が実行されるので、現変速比での該車両用動力伝達装置の走行損失よりも、変速後の該車両用動力伝達装置の走行損失が小さい場合を前記回生走行変速マップに基づいて判断でき、該判断に基づいて前記変速部のダウンシフトが行なわれるので、変速によって車両用動力伝達装置の走行損失が低下することが低減され、燃費が向上されるのに加え、変速判断における演算量が低減される。
 また好適には、(a)車速と前記電動機のトルクとによって設定され、前記回生走行時における前記変速部の変速を実行するための回生走行変速マップを有し、(b)前記回生走行時において該回生走行変速マップに基づいて変速を行なうこと、を特徴とする。このようにすれば、車速と前記電動機のトルクとによって設定される回生走行変速マップに基づいて、前記回生走行時における前記変速部の変速が実行されるので、現変速比での該車両用動力伝達装置の走行損失よりも、変速後の該車両用動力伝達装置の走行損失が小さい場合を前記回生走行変速マップに基づいて判断でき、該判断に基づいて前記変速部のダウンシフトが行なわれるので、変速によって車両用動力伝達装置の走行損失が低下することが低減され、燃費が向上されるのに加え、変速判断における演算量が低減される。
 好適には、現変速比での前記車両用動力伝達装置の走行損失よりも、変速後の前記車両用動力伝達装置の走行損失が小さい場合に前記変速部のダウンシフトが実行されるように、前記変速部のダウンシフトを実行するための変速点が、前記変速部の作動油油温に応じて予め設定されること、を特徴とする。このようにすれば、予め作動油油温に応じて設定される変速点に基づいて、現変速比での前記車両用動力伝達装置の走行損失よりも、変速後の前記車両用動力伝達装置の走行損失が小さい場合に前記変速部のダウンシフトが実行されるので、変速によって車両用動力伝達装置の走行損失が低下することが低減され、燃費が向上されるのに加え、変速判断における演算量が低減される。
 また好適には、現変速比での前記車両用動力伝達装置の走行損失よりも、変速後の前記車両用動力伝達装置の走行損失が小さい場合に前記変速部のダウンシフトが実行されるように、前記変速部のダウンシフトを実行するための変速点が前記電動機の温度に応じて予め設定されること、を特徴とする。このようにすれば、予め電動機の効率に関係する電動機の温度に応じて設定される変速点に基づいて、現変速比での前記車両用動力伝達装置の走行損失よりも、変速後の前記車両用動力伝達装置の走行損失が小さい場合に前記変速部のダウンシフトが実行されるので、変速によって車両用動力伝達装置の走行損失が低下することが低減され、燃費が向上されるのに加え、変速判断における演算量が低減される。
 好適には、(a)前記車両用動力伝達装置は、原動機から駆動輪への動力伝達経路に設けられた差動部を含み、(b)前記差動部は、該差動部の回転要素のうち2つの回転要素のそれぞれに動力伝達可能に連結された第1電動機および第2電動機を含むこと、を特徴とする。このようにすれば、車両の減速時において前記差動部の回転要素に動力伝達可能に連結された第1電動機および第2電動機もしくはそれらのいずれかにより回生制御を行なうことができる。
 好適には、(a)前記差動部は、前記原動機に連結された第1要素と、前記第1電動機に連結された第2要素と、該差動部の出力を前記変速部に伝達する伝達部材に連結された第3要素とを含み、(b)前記第2電動機は該第3要素に連結されること、を特徴とする。このようにすれば、前記差動部を介して連結された第1電動機および第2電動機、あるいはいずれか一方によって回生出力を発生させることができる。また、前記第1電動機と前記第2電動機の運転状態を制御することにより、前記差動部の差動状態を変化させることができ、前記差動部を変速比を連続して変更可能な無段変速機として作動させることができる。
 好適には、(a)車速と前記第2電動機のパワーとによって設定され、前記回生走行時における前記変速部の変速を実行するための回生走行変速マップを有し、(b)前記回生走行時において該回生走行変速マップに基づいて変速を行なうこと、を特徴とする。このようにすれば、前記第1電動機と前記第2電動機とが協調して回生出力を行なうことにより、第2電動機からの回生パワーが低減され、ダウンシフト時の電動機の損失における低減量が小さくなる場合においても、変速部の変速を実行することができる。
 また好適には、(a)車速と前記第2電動機のトルクとによって設定され、前記回生走行時における前記変速部の変速を実行するための回生走行変速マップを有し、(b)前記回生走行時において該回生走行変速マップに基づいて変速を行なうこと、を特徴とする。このようにすれば、前記第1電動機と前記第2電動機とが協調して回生出力を行なうことにより、第2電動機からの回生トルクが低減され、ダウンシフト時の電動機の損失における低減量が小さくなる場合においても、変速部の変速を実行することができる。
 さらに好適には、前記変速部は、機械式有段変速機である。このようにすれば、上記変速部は、その変速比を段階的に変化させることができる有段変速部であるので、前述の効果に加え、その変速部の変速比の変化量を大きく際に、変速部の大きさを大きくなることが抑制できる。
 また好適には、前記第1電動機または前記第2電動機の損失には、前記第1電動機または前記第2電動機の駆動に関連するインバータにおける損失が含まれる。このようにすれば、車両用動力伝達装置の走行損失の算出において、前記第1電動機または前記第2電動機の駆動に関連するインバータにおける損失が考慮されるので、車両用動力伝達装置の走行損失を精度よく算出することができる。
本発明が適用される車両用動力伝達装置の構成の一例を説明する図である。 図1の車両用動力伝達装置の自動変速部における変速作動とそれに用いられる油圧式摩擦係合装置の作動の組み合わせとの関係を説明する作動図表である。 図1の車両用動力伝達装置が有段変速作動させられる場合における各ギヤ段の相対回転速度を説明する共線図である。 図1の車両用動力伝達装置に設けられた電子制御装置の入出力信号を説明する図である。 シフトレバーを備えた複数種類のシフトポジションを選択するために操作されるシフト操作装置の一例である。 図4の電子制御装置に備えられた制御機能の要部を説明する機能ブロック線図である。 自動変速部の変速制御において用いられる変速線図の一例を示す図である。 エンジンの効率を表わす燃費マップの一例であり、破線はエンジンの最適燃費率曲線である。 車両用動力伝達装置において回生制御が行なわれる第2電動機の効率を、回転速度とトルクとによって表わされる運転状態について表わした図である。 車両用動力伝達装置、その車両用動力伝達装置を構成する自動変速部および第2電動機の損失を、変速が行なわれる変速点ごとに表わした図である。 図4の電子制御装置の制御機能である車両の回生走行中における変速判断における制御機能の一例を説明するフローチャートである。 図6の変速マップ記憶手段に記憶される回生走行変速マップの一例を説明する図である。 自動変速部の作動油油温、あるいは回生制御を行なう第2電動機の温度ごとに記憶される回生走行変速マップの一例を説明する図であって、図12に対応する図である。 図4の電子制御装置の制御機能である車両の回生走行中における変速判断における制御機能の別の例を説明するフローチャートである 車速と第2電動機のトルクとを車両状態を表わす変数として定義される回生走行変速マップの一例を表わす図であって、図13に対応する図である。 車速と動力分割機構のパワーとを車両状態を表わす変数として定義される回生走行変速マップの一例を表わす図である。 車速と動力分割機構のトルクとを車両状態を表わす変数として定義される回生走行変速マップの一例を表わす図である。
符号の説明
8:エンジン(原動機)
10:車両用動力伝達装置
16:動力分割機構(差動部)
20:自動変速部(有段変速機構)
24:第1遊星歯車装置(遊星歯車装置)
100:電子制御装置(車両用動力伝達装置の制御装置)
110:回生時変速判断手段
112:車両状態判断手段
114:損失比較手段
116:変速マップ記憶手段
118:損失算出手段
120:電動機損失算出手段
122:インバータ損失算出手段
124:自動変速部損失算出手段
M1:第1電動機(電動機)
M2:第2電動機(電動機)
 以下、本発明の一実施例について、図面を参照しつつ詳細に説明する。
 図1は、本発明が適用されたハイブリッド車両の駆動装置の一部を構成する車両用動力伝達装置(以下単に「動力伝達装置」という。)10を説明する骨子図である。図1において、動力伝達装置10は車体に取り付けられる非回転部材としてのトランスミッションケース12(以下、ケース12という)内において共通の軸心上に配設された入力回転部材としての入力軸14と、この入力軸14に直接或いは図示しない脈動吸収ダンパー(振動減衰装置)などを介して間接的に連結された無段変速部としての差動部11と、その差動部11から駆動輪38(図6参照)への動力伝達経路で伝達部材18を介して直列に連結されている動力伝達部としての自動変速部20と、この自動変速部20に連結されている出力回転部材としての出力軸22とを直列に備えている。この動力伝達装置10は、例えば車両において縦置きされるFR(フロントエンジン・リヤドライブ)型車両に好適に用いられるものであり、入力軸14に直接に或いは図示しない脈動吸収ダンパーを介して直接的に連結された走行用の駆動源として例えばガソリンエンジンやディーゼルエンジン等の内燃機関であるエンジン(原動機)8と一対の駆動輪38(図6参照)との間に設けられて、エンジン8からの動力を動力伝達経路の一部を構成する差動歯車装置(終減速機)36(図6参照)および一対の車軸等を順次介して一対の駆動輪38へ伝達する。なお、本実施例の自動変速部20が、本発明の変速部に対応している。また、動力伝達装置10は略上下対象の構造を有しており、図1においては下半分が省略されている。
 このように、本実施例の動力伝達装置10においては、エンジン8と差動部11とは直結されている。この直結にはトルクコンバータやフルードカップリング等の流体式伝動装置を介すことなく連結されているということであり、例えば上記脈動吸収ダンパーなどを介する連結はこの直結に含まれる。
 差動部11は、第1電動機M1と、入力軸14に連結されたエンジン8の出力を機械的に分配する機械的機構であってエンジン8の出力を第1電動機M1および伝達部材18に分配する差動機構としての動力分配機構16と、伝達部材18と一体的に回転するように作動的に連結されている第2電動機M2とを備えている。本実施例の第1電動機M1および第2電動機M2は発電機能をも有する所謂モータジェネレータであるが、第1電動機M1は反力を発生させるためのジェネレータ(発電)機能を少なくとも備え、第2電動機M2は走行用の駆動源として駆動力を出力するためのモータ(電動機)機能を少なくとも備えている。なお、本実施例の動力分配機構16が、本発明の差動部に対応している。また、第1電動機M1および第2電動機M2が本発明の電動機に対応している。
 動力分配機構16は、所定のギヤ比ρ1を有するシングルピニオン型の第1遊星歯車装置24を主体として構成されている。この第1遊星歯車装置24は、第1サンギヤS1、第1遊星歯車P1、その第1遊星歯車P1を自転および公転可能に支持する第1キャリヤCA1、第1遊星歯車P1を介して第1サンギヤS1と噛み合う第1リングギヤR1を回転要素として備えている。なお、第1サンギヤS1の歯数をZS1、第1リングギヤR1の歯数をZR1とすると、上記ギヤ比ρ1はZS1/ZR1である。
 この動力分配機構16においては、第1キャリヤCA1は入力軸14すなわちエンジン8に連結されて第1回転要素RE1を構成し、第1サンギヤS1は第1電動機M1に連結されて第2回転要素RE2を構成し、第1リングギヤR1は伝達部材18に連結されて第3回転要素RE3を構成している。このように構成された動力分配機構16は、第1遊星歯車装置24の3要素である第1サンギヤS1、第1キャリヤCA1、第1リングギヤR1がそれぞれ相互に相対回転可能とされて差動作用が作動可能すなわち差動作用が働く差動状態とされることから、エンジン8の出力が第1電動機M1と伝達部材18に分配されると共に、分配されたエンジン8の出力の一部で第1電動機M1から発生させられた電気エネルギで蓄電されたり第2電動機M2が回転駆動されるので、差動部11(動力分配機構16)は電気的な差動装置として機能させられて例えば差動部11は所謂無段変速状態とされて、エンジン8の所定回転に拘わらず伝達部材18の回転が連続的に変化させられる。すなわち、差動部11はその変速比γ0(入力軸14の回転速度NIN/伝達部材18の回転速度N18)が最小値γ0minから最大値γ0maxまで連続的に変化させられる電気的な無段変速機として機能する。
 自動変速部20は、伝達部材18から駆動輪38への動力伝達経路に設けられており、シングルピニオン型の第2遊星歯車装置26、シングルピニオン型の第3遊星歯車装置28を備え、有段式の自動変速機として機能する遊星歯車式の多段変速機である。第2遊星歯車装置26は、第2サンギヤS2、第2遊星歯車P2、その第2遊星歯車P2を自転および公転可能に支持する第2キャリヤCA2、第2遊星歯車P2を介して第2サンギヤS2と噛み合う第2リングギヤR2を備えており、所定のギヤ比ρ2を有している。第3遊星歯車装置28は、第3サンギヤS3、第3遊星歯車P3、その第3遊星歯車P3を自転および公転可能に支持する第3キャリヤCA3、第3遊星歯車P3を介して第3サンギヤS3と噛み合う第3リングギヤR3を備えており、所定のギヤ比ρ3を有している。第2サンギヤS2の歯数をZS2、第2リングギヤR2の歯数をZR2、第3サンギヤS3の歯数をZS3、第3リングギヤR3の歯数をZR3とすると、上記ギヤ比ρ2はZS2/ZR2、上記ギヤ比ρ3はZS3/ZR3である。
 自動変速部20では、第2サンギヤS2は第3クラッチC3を介して伝達部材18に連結されると共に第1ブレーキB1を介してケース12に選択的に連結され、第2キャリヤCA2と第3リングギヤR3とが一体的に連結されて第2クラッチC2を介して伝達部材18に連結されると共に第2ブレーキB2を介してケース12に選択的に連結され、第2リングギヤR2と第3キャリヤCA3とが一体的に連結されて出力軸22に連結され、第3サンギヤS3が第1クラッチC1を介して伝達部材18に選択的に連結されている。さらに第2キャリヤCA2と第3リングギヤR3とは一方向クラッチFを介して非回転部材であるケース12に連結されてエンジン8と同方向の回転が許容され逆方向の回転が禁止されている。これにより、第2キャリヤCA2および第3リングギヤR3は、逆回転不能な回転部材として機能する。
 また、この自動変速部20は、解放側係合装置の解放と係合側係合装置の係合とによりクラッチツウクラッチ変速が実行されて複数のギヤ段(変速段)が選択的に成立させられることにより、略等比的に変化する変速比γ(=伝達部材18の回転速度N18/出力軸22の回転速度NOUT)が各ギヤ段毎に得られる。例えば、図2の係合作動表に示されるように、第1クラッチC1の係合および一方向クラッチFにより第1速ギヤ段が成立させられ、第1クラッチC1および第1ブレーキB1の係合により第2速ギヤ速段が成立させられ、第1クラッチC1および第2クラッチC2の係合により第3速ギヤ段が成立させられ、第2クラッチC2および第1ブレーキB1の係合により第4速ギヤ段が成立させられ、第3クラッチC3および第2ブレーキB2の係合により後進ギヤ段が成立させられる。また、第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、および第2ブレーキB2の解放によりニュートラル「N」状態とされる。また、第1速ギヤ段のエンジンブレーキの際には、第2ブレーキB2が係合させられる。
 このように、自動変速部20内の動力伝達経路は、第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、および第2ブレーキB2の係合と解放との作動の組合せにより、その動力伝達経路の動力伝達を可能とする動力伝達可能状態と、動力伝達を遮断する動力伝達遮断状態との間で切り換えられる。つまり、第1速ギヤ段乃至第4速ギヤ段および後進ギヤ段の何れかが成立させられることで上記動力伝達経路が動力伝達可能状態とされ、何れのギヤ段も成立させられないことで例えばニュートラル「N」状態が成立させられることで上記動力伝達経路が動力伝達遮断状態とされる。
 前記第1クラッチC1、第2クラッチC2、第3クラッチC3、第1ブレーキB1、および第2ブレーキB2(以下、特に区別しない場合はクラッチC、ブレーキBと表す)は、従来の車両用自動変速機においてよく用いられている係合要素としての油圧式摩擦係合装置であって、互いに重ねられた複数枚の摩擦板が油圧アクチュエータにより押圧される湿式多板型や、回転するドラムの外周面に巻き付けられた1本または2本のバンドの一端が油圧アクチュエータによって引き締められるバンドブレーキなどにより構成され、それが介挿されている両側の部材を選択的に連結するためのものである。なお、本実施例のクラッチCおよびブレーキBを係合状態に作動させるために供給される油圧が、本発明の係合油圧に対応している。
 以上のように構成された動力伝達装置10において、無段変速機として機能する差動部11と自動変速部20とで無段変速機が構成される。また、差動部11の変速比を一定となるように制御することにより、差動部11と自動変速部20とで有段変速機と同等の状態を構成することが可能とされる。
 具体的には、差動部11が無段変速機として機能し、且つ差動部11に直列の自動変速部20が有段変速機として機能することにより、自動変速部20の少なくとも1つの変速段Mに対して自動変速部20に入力される回転速度(以下、自動変速部20の入力回転速度)すなわち伝達部材18の回転速度(以下、伝達部材回転速度N18)が無段的に変化させられてその変速段Mにおいて無段的な変速比幅が得られる。したがって、動力伝達装置10の総合変速比γT(=入力軸14の回転速度NIN/出力軸22の回転速度NOUT)が無段階に得られ、動力伝達装置10において無段変速機が構成される。この動力伝達装置10の総合変速比γTは、差動部11の変速比γ0と自動変速部20の変速比γとに基づいて形成される動力伝達装置10全体としてのトータル変速比γTである。
 例えば、図2の係合作動表に示される自動変速部20の第1速ギヤ段乃至第4速ギヤ段や後進ギヤ段の各ギヤ段に対し伝達部材回転速度N18が無段的に変化させられて各ギヤ段は無段的な変速比幅が得られる。したがって、その各ギヤ段の間が無段的に連続変化可能な変速比となって、動力伝達装置10全体としてのトータル変速比γTが無段階に得られる。
 また、差動部11の変速比が一定となるように制御され、且つクラッチCおよびブレーキBが選択的に係合作動させられて第1速ギヤ段乃至第4速ギヤ段のいずれか或いは後進ギヤ段(後進変速段)が選択的に成立させられることにより、略等比的に変化する動力伝達装置10のトータル変速比γTが各ギヤ段毎に得られる。したがって、動力伝達装置10において有段変速機と同等の状態が構成される。
 図3は、差動部11と自動変速部20とから構成される動力伝達装置10において、ギヤ段毎に連結状態が異なる各回転要素の回転速度の相対関係を直線上で表すことができる共線図を示している。この図3の共線図は、各遊星歯車装置24、26、28のギヤ比ρの関係を示す横軸と、相対的回転速度を示す縦軸とから成る二次元座標であり、3本の横線のうちの下側の横線X1が回転速度零を示し、上側の横線X2が回転速度「1.0」すなわち入力軸14に連結されたエンジン8の回転速度Nを示し、X3が差動部11から自動変速部20に入力される後述する第3回転要素RE3の回転速度を示している。
 また、差動部11を構成する動力分配機構16の3つの要素に対応する3本の縦線Y1、Y2、Y3は、左側から順に第2回転要素RE2に対応する第1サンギヤS1、第1回転要素RE1に対応する第1キャリヤCA1、第3回転要素RE3に対応する第1リングギヤR1の相対回転速度を示すものであり、それらの間隔は第1遊星歯車装置24のギヤ比ρ1に応じて定められている。さらに、自動変速部20の4本の縦線Y4、Y5、Y6、Y7は、左から順に、第4回転要素RE4に対応する第3サンギヤS3を、第5回転要素RE5に対応する相互に連結された第2リングギヤR2および第3キャリヤCA3を、第6回転要素RE6に対応する相互に連結された第2キャリヤCA2および第3リングギヤR3を、第7回転要素RE7に対応する第2サンギヤS2をそれぞれ表し、それらの間隔は第2、第3遊星歯車装置26、28のギヤ比ρ2、ρ3に応じてそれぞれ定められている。共線図の縦軸間の関係においてサンギヤとキャリヤとの間が「1」に対応する間隔とされるとキャリヤとリングギヤとの間が遊星歯車装置のギヤ比ρに対応する間隔とされる。すなわち、差動部11では縦線Y1とY2との縦線間が「1」に対応する間隔に設定され、縦線Y2とY3との間隔はギヤ比ρ1に対応する間隔に設定される。また、自動変速部20では各第2、第3遊星歯車装置26、28毎にそのサンギヤとキャリヤとの間が「1」に対応する間隔に設定され、キャリヤとリングギヤとの間がρに対応する間隔に設定される。
 上記図3の共線図を用いて表現すれば、本実施例の動力伝達装置10は、動力分配機構16(差動部11)において、第1遊星歯車装置24の第1回転要素RE1(第1キャリヤCA1)が入力軸14すなわちエンジン8に連結され、第2回転要素RE2が第1電動機M1に連結され、第3回転要素(第1リングギヤR1)RE3が伝達部材18および第2電動機M2に連結されて、入力軸14の回転を伝達部材18を介して自動変速部20へ伝達する(入力させる)ように構成されている。このとき、Y2とX2の交点を通る斜めの直線L0により第1サンギヤS1の回転速度と第1リングギヤR1の回転速度との関係が示される。
 例えば、差動部11においては、第1回転要素RE1乃至第3回転要素RE3が相互に相対回転可能とされる差動状態とされており、直線L0と縦線Y3との交点で示される第1リングギヤR1の回転速度が車速Vに拘束されて略一定である場合には、第1電動機M1の回転速度を制御することによって直線L0と縦線Y1との交点で示される第1サンギヤS1の回転が上昇或いは下降させられると、直線L0と縦線Y2との交点で示される第1キャリヤCA1の回転速度すなわちエンジン回転速度Nが上昇或いは下降させられる。
 また、差動部11の変速比γ0が「1」に固定されるように第1電動機M1の回転速度を制御することによって第1サンギヤS1の回転がエンジン回転速度Nと同じ回転とされると、直線L0は横線X2と一致させられ、エンジン回転速度Nと同じ回転で第1リングギヤR1の回転速度すなわち伝達部材18が回転させられる。或いは、差動部11の変速比γ0が「1」より小さい値例えば0.7程度に固定されるように第1電動機M1の回転速度を制御することによって第1サンギヤS1の回転が零とされると、直線L0は図3に示す状態とされ、エンジン回転速度Nよりも増速されて伝達部材18が回転させられる。
 また、自動変速部20において第4回転要素RE4は第1クラッチC1を介して伝達部材18に選択的に連結され、第5回転要素RE5は出力軸22に連結され、第6回転要素RE6は第2クラッチC2を介して伝達部材18に選択的に連結されると共に第2ブレーキB2を介してケース12に選択的に連結され、第7回転要素RE7は第3クラッチC3を介して伝達部材18に選択的に連結されると共に第1ブレーキB1を介してケース12に選択的に連結されている。
 自動変速部20では、例えば差動部11において第1電動機M1の回転速度を制御することによって第1サンギヤS1の回転速度を略零とすると、直線L0は図3に示す状態とされ、エンジン回転速度Nよりも増速されて第3回転要素RE3に出力される。そして図3に示すように、第1クラッチC1と第2ブレーキB2とが係合させられることにより、第4回転要素RE4の回転速度を示す縦線Y4と横線X3との交点と第6回転要素RE6の回転速度を示す縦線Y6と横線X1との交点とを通る斜めの直線L1と、出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第1速の出力軸22の回転速度が示される。同様に、第1クラッチC1と第1ブレーキB1とが係合させられることにより決まる斜めの直線L2と出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第2速の出力軸22の回転速度が示され、第1クラッチC1と第2クラッチC2とが係合させられることにより決まる水平な直線L3と出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第3速の出力軸22の回転速度が示され、第2クラッチC2と第1ブレーキB1とが係合させられることにより決まる斜めの直線L4と出力軸22と連結された第5回転要素RE5の回転速度を示す縦線Y5との交点で第4速の出力軸22の回転速度が示される。
 図4は、本実施例の動力伝達装置10を制御するための電子制御装置100に入力される信号及びその電子制御装置100から出力される信号を例示している。この電子制御装置100は、CPU、ROM、RAM、及び入出力インターフェースなどから成る所謂マイクロコンピュータを含んで構成されており、RAMの一時記憶機能を利用しつつROMに予め記憶されたプログラムに従って信号処理を行うことによりエンジン8、第1、第2電動機M1、M2に関するハイブリッド駆動制御、自動変速部20の変速制御等の駆動制御を実行するものである。
 電子制御装置100には、図4に示すような各センサやスイッチなどから、エンジン水温TEMPを表す信号、シフトレバー52(図5参照)のシフトポジションPSHや「M」ポジションにおける操作回数等を表す信号、エンジン8の回転速度であるエンジン回転速度Nを表す信号、ギヤ比列設定値を表す信号、Mモード(手動変速走行モード)を指令する信号、エアコンの作動状態A/Cを表す信号、出力軸22の回転速度(以下、出力軸回転速度)NOUTに対応する車速Vを表す信号、自動変速部20の作動油温TOILを表す信号、サイドブレーキ操作を表す信号、フットブレーキ操作を表す信号、触媒温度を表す信号、運転者の出力要求量に対応するアクセルペダルの操作量であるアクセル開度Accを表す信号、カム角を表す信号、スノーモード設定を表す信号、車両の前後加速度Gを表す信号、オートクルーズ走行を表す信号、車両の重量(車重)を表す信号、各車輪の車輪速を表す信号、第1電動機M1の回転速度NM1(以下、第1電動機回転速度NM1という)を表す信号、第2電動機M2の回転速度NM2(以下、第2電動機回転速度NM2という)を表す信号、第2電動機M2の温度TM2を表わす信号、蓄電装置60(図6参照)の充電容量(充電状態)SOCを表す信号などが、それぞれ供給される。
 また、上記電子制御装置100からは、エンジン出力を制御するエンジン出力制御装置43(図6参照)への制御信号例えばエンジン8の吸気管95に備えられた電子スロットル弁96のスロットル弁開度θTHを操作するスロットルアクチュエータ97への駆動信号や燃料噴射装置98による吸気管95或いはエンジン8の筒内への燃料供給量を制御する燃料供給量信号や点火装置99によるエンジン8の点火時期を指令する点火信号、過給圧を調整するための過給圧調整信号、電動エアコンを作動させるための電動エアコン駆動信号、電動機M1およびM2の作動を指令する指令信号、シフトインジケータを作動させるためのシフトポジション(操作位置)表示信号、ギヤ比を表示させるためのギヤ比表示信号、スノーモードであることを表示させるためのスノーモード表示信号、制動時の車輪のスリップを防止するABSアクチュエータを作動させるためのABS作動信号、Mモードが選択されていることを表示させるMモード表示信号、差動部11や自動変速部20の油圧式摩擦係合装置の油圧アクチュエータを制御するために油圧制御回路42(図6参照)に含まれる電磁弁(リニアソレノイドバルブ)を作動させるバルブ指令信号、この油圧制御回路70に設けられたレギュレータバルブ(調圧弁)によりライン油圧Pを調圧するための信号、そのライン油圧Pが調圧されるための元圧の油圧源である電動油圧ポンプを作動させるための駆動指令信号、電動ヒータを駆動するための信号、クルーズコントロール制御用コンピュータへの信号、パーキングロック駆動モータを駆動するための信号等が、それぞれ出力される。
 図5は複数種類のシフトポジションPSHを人為的操作により切り換える切換装置としてのシフト操作装置50の一例を示す図である。このシフト操作装置50は、例えば運転席の横に配設され、複数種類のシフトポジションPSHを選択するために操作されるシフトレバー52を備えている。
 そのシフトレバー52は、動力伝達装置10内つまり自動変速部20内の動力伝達経路が遮断されたニュートラル状態すなわち中立状態とし且つ自動変速部20の出力軸22を回転不能に固定する(すなわちロックする)ための駐車ポジション「P(パーキング)」、後進走行のための後進走行ポジション「R(リバース)」、動力伝達装置10内の動力伝達経路が遮断された中立状態とするための中立ポジション「N(ニュートラル)」、自動変速モードを成立させて差動部11の無段的な変速比幅と自動変速部20の第1速ギヤ段乃至第4速ギヤ段の範囲で自動変速制御される各ギヤ段とで得られる動力伝達装置10の変速可能なトータル変速比γTの変化範囲内で自動変速制御を実行させる前進自動変速走行ポジション「D(ドライブ)」、または手動変速走行モード(手動モード)を成立させて自動変速部20における高速側の変速段を制限する所謂変速レンジを設定するための前進手動変速走行ポジション「M(マニュアル)」へ手動操作されるように設けられている。
 上記シフトレバー52の各シフトポジションPSHへの手動操作に連動して図2の係合作動表に示す後進ギヤ段「R」、ニュートラル「N」、前進ギヤ段「D」における各変速段等が成立するように、例えば電気制御により動力伝達装置10の動力伝達状態を切り替える所謂シフトバイワイヤシステムによって油圧制御回路が電気的に切り換えられる。
 上記「P」乃至「M」ポジションに示す各シフトポジションPSHにおいて、「P」ポジションおよび「N」ポジションは、車両を走行させないときに選択される非走行ポジションであって、自動変速部20内の動力伝達経路が遮断された車両を駆動不能とする動力伝達経路の動力伝達遮断状態へ切換えを選択するための非駆動ポジションである。また、「R」ポジション、「D」ポジションおよび「M」ポジションは、車両を走行させるときに選択される走行ポジションであって、自動変速部20内の動力伝達経路が連結された車両を駆動可能とする動力伝達経路の動力伝達可能状態への切換えを選択するための駆動ポジションでもある。
 具体的には、シフトレバー52が「P」ポジションへ手動操作されることでクラッチCおよびブレーキBのいずれもが解放されて自動変速部20内の動力伝達経路が動力伝達遮断状態とされると共に自動変速部20の出力軸22がロックされ、「N」ポジションへ手動操作されることでクラッチCおよびブレーキBのいずれもが解放されて自動変速部20内の動力伝達経路が動力伝達遮断状態とされ、「R」、「D」、および「M」ポジションのいずれかへ手動操作されることで各ポジションに対応したいずれかのギヤ段が成立させられて自動変速部20内の動力伝達経路が動力伝達可能状態とされる。
 図6は、電子制御装置100による制御機能の一部である動力伝達装置10の制御装置の制御機能を説明する機能ブロック線図である。図6において、自動変速部制御手段102は、図7に示すような車速Vと自動変速部20の出力トルクTOUTとを変数として予め記憶されたアップシフト線(実線)およびダウンシフト線(一点鎖線)を有する関係(変速線図、変速マップ)から実際の車速Vおよび自動変速部20の要求出力トルクTOUTで示される車両状態に基づいて、自動変速部20の変速を実行すべきか否かを判断しすなわち自動変速部20の変速すべき変速段を判断し、その判断した変速段が得られるように自動変速部20の自動変速制御を実行する。
 このとき、自動変速部制御手段102は、例えば図2に示す係合作動表に従って変速段が達成されるように、自動変速部20の変速に関与する油圧式摩擦係合装置を係合および/または解放させる指令(変速出力指令、油圧指令)を、すなわち自動変速部20の変速に関与する解放側係合装置を解放すると共に係合側係合装置を係合して自動変速部20の変速が実行されるように、油圧制御回路4270内のリニアソレノイドバルブを作動させてその変速に関与する油圧式摩擦係合装置の油圧アクチュエータを作動させる。
 ハイブリッド制御装置104は、エンジン8を効率のよい作動域で作動させる一方で、エンジン8と第2電動機M2との駆動力の配分や第1電動機M1の発電による反力を最適になるように変化させて差動部11の電気的な無段変速機としての変速比γ0を制御する。例えば、そのときの走行車速Vにおいて、運転者の出力要求量としてのアクセル開度Accや車速Vから車両の目標出力を算出し、その車両の目標出力と充電要求量から必要なトータル目標出力を算出し、そのトータル目標出力が得られるように伝達損失、第2電動機M2のアシストトルク等を考慮して目標エンジン出力を算出し、その目標エンジン出力が得られるエンジン回転速度NとエンジントルクTとなるようにエンジン8を制御するとともに第1電動機M1の発電量を制御する。
 例えば、ハイブリッド制御手段104は、その制御を動力性能や燃費向上などのために自動変速部20の変速段を考慮して実行する。このようなハイブリッド制御では、エンジン8を効率のよい作動域で作動させるために定まるエンジン回転速度Nと車速Vおよび自動変速部20の変速段で定まる伝達部材18の回転速度とを整合させるために、差動部11が電気的な無段変速機として機能させられる。すなわち、ハイブリッド制御手段104は、エンジン回転速度Nとエンジン8の出力トルク(エンジントルク)Tとで構成される二次元座標内において無段変速走行の時に運転性と燃費性とを両立するように予め実験的に求められて記憶された図8の破線に示すようなエンジン8の最適燃費率曲線に沿ってエンジン8が作動させられるように、例えば目標出力を充足するために必要なエンジン出力を発生するためのエンジントルクTとエンジン回転速度Nとなるように、動力伝達装置10のトータル変速比γTの目標値を定め、その目標値が得られるように自動変速部20の変速段を考慮して差動部11の変速比γ0を制御し、トータル変速比γ0をその変速可能な変化範囲内で制御する。
 このとき、ハイブリッド制御手段104は、第1電動機M1により発電された電気エネルギをインバータ58を通して蓄電装置60や第2電動機M2に供給するので、エンジン8の動力の主要部は機械的に伝達部材18へ伝達されるが、エンジン8の動力の一部は第1電動機M1の発電のために消費されてそこで電気エネルギに変換され、インバータ58を通して電気エネルギが第2電動機M2へ供給され、その第2電動機M2が駆動されて第2電動機M2から伝達部材18へ伝達される。この電気エネルギの発生から第2電動機M2で消費されるまでに関連する機器により、エンジン8の動力の一部を電気エネルギに変換し、その電気エネルギを機械的エネルギに変換するまでの電気パスが構成される。
 また、ハイブリッド制御手段104は、車両の停止中または走行中に拘わらず、差動部11の電気的CVT機能によって第1電動機回転速度NM1および/または第2電動機回転速度NM2を制御してエンジン回転速度Nを略一定に維持したり任意の回転速度に回転制御する。言い換えれば、ハイブリッド制御手段104は、エンジン回転速度Nを略一定に維持したり任意の回転速度に制御しつつ第1電動機回転速度NM1および/または第2電動機回転速度NM2を任意の回転速度に回転制御することができる。
 例えば、図3の共線図からもわかるようにハイブリッド制御手段104は車両走行中にエンジン回転速度Nを引き上げる場合には、車速V(駆動輪38)に拘束される第2電動機回転速度NM2を略一定に維持しつつ第1電動機回転速度NM1の引き上げを実行する。また、ハイブリッド制御手段104は、自動変速部20の変速中にエンジン回転速度Nを略一定に維持する場合には、エンジン回転速度Nを略一定に維持しつつ自動変速部20の変速に伴う第2電動機回転速度NM2の変化とは反対方向に第1電動機回転速度NM1を変化させる。
 また、ハイブリッド制御手段104は、スロットル制御のためにスロットルアクチュエータ97により電子スロットル弁96を開閉制御させる他、燃料噴射制御のために燃料噴射装置98による燃料噴射量や噴射時期を制御させ、点火時期制御のためにイグナイタ等の点火装置99による点火時期を制御させる指令を単独で或いは組み合わせてエンジン出力制御装置43に出力して、必要なエンジン出力を発生させるようにエンジン8の出力制御を実行するエンジン出力制御手段を機能的に備えている。
 例えば、ハイブリッド制御手段104は、基本的には図示しない予め記憶された関係からアクセル開度Accに基づいてスロットルアクチュエータ97を駆動し、アクセル開度Accが増加するほどスロットル弁開度θTHを増加させるようにスロットル制御を実行する。また、このエンジン出力制御装置43は、ハイブリッド制御手段104による指令に従って、スロットル制御のためにスロットルアクチュエータ97により電子スロットル弁96を開閉制御する他、燃料噴射制御のために燃料噴射装置98による燃料噴射を制御し、点火時期制御のためにイグナイタ等の点火装置99による点火時期を制御するなどしてエンジントルク制御を実行する。
 また、ハイブリッド制御手段104は、エンジン8の停止またはアイドル状態に拘わらず、差動装置11の電気的CVT機能(差動作用)によってモータ走行させることができる。例えば、ハイブリッド制御手段104は、一般的にエンジン効率が高トルク域に比較して悪いとされる比較的低出力トルクTOUT域すなわち低エンジントルクT域、或いは車速Vの比較的低車速域すなわち低負荷域において、モータ走行を実行する。また、ハイブリッド制御手段104は、このモータ走行時には、停止しているエンジン8の引き摺りを抑制して燃費を向上させるために、差動部11の電気的CVT機能(差動作用)によって、第1電動機回転速度NM1を負の回転速度で制御例えば空転させて、差動部11の差動作用により必要に応じてエンジン回転速度Nを零乃至略零に維持する。
 また、ハイブリッド制御手段104は、エンジン走行領域であっても、上述した電気パスによる第1電動機M1からの電気エネルギおよび/または蓄電装置60からの電気エネルギを第2電動機M2へ供給し、その第2電動機M2を駆動して駆動輪にトルクを付与することにより、エンジン8の動力を補助するための所謂トルクアシストが可能である。
 また、ハイブリッド制御手段104は、蓄電装置60からインバータ58を介して供給される第1電動機M1への駆動電流を遮断して第1電動機M1を無負荷状態とする。第1電動機M1は無負荷状態とされると自由回転することすなわち空転することが許容され、差動部11はトルクの伝達が不能な状態すなわち差動部11内の動力伝達経路が遮断された状態と同等の状態であって、且つ差動部11からの出力が発生されない状態とされる。すなわち、ハイブリッド制御手段104は、第1電動機M1を無負荷状態とすることにより差動部11をその動力伝達経路が電気的に遮断される中立状態(ニュートラル状態)とする。
 また、ハイブリッド制御手段104は、アクセルオフの惰性走行時(コースト走行時)やフットブレーキによる制動時などには、燃費を向上(燃料消費率を低減)させるためにエンジン8を非駆動状態にして、駆動輪38から伝達される車両の運動エネルギを差動部11で電気エネルギに変換する回生制御、具体的には、上記車両の運動エネルギすなわち駆動輪38からエンジン8側へ伝達される逆駆動力により第2電動機M2を回転駆動させて発電機として作動させ、その電気エネルギすなわち第2電動機発電電流をインバータ58を介して蓄電装置60へ充電する回生制御を実行する。すなわち、ハイブリッド制御手段104は上記回生制御を実行する回生制御手段としての機能を含んでおり、アクセル開度Acc、車速V、ブレーキペダル操作量、蓄電装置60の充電残量SOC、自動変速部20の変速段などで例示される車両状態を示す状態量に基づいて定まる動力伝達装置10の動作点が、予め実験的に定められた上記回生制御を実行すべき回生領域に属する場合には、上記回生制御を実行する。この回生制御では、上記第2電動機M2により回生される電気エネルギすなわちこの回生制御における回生量が、蓄電装置56の充電残量SOCやブレーキペダル操作量に応じた制動力を得るために油圧ブレーキによる制動力の制動力配分等に基づいて決定された必要とされる回生量である回生要求量となるように制御される。
 ところで、自動変速部20の変速は、前述のように車両の走行状態を例えば図7に示す変速マップに適用することにより変速を行なうか否かの判断がなされ、変速を行なう判断がされた場合にその変速が実行される。ここで、前記変速マップは、例えば車速と要求駆動力、車速と要求駆動パワー、車速とアクセル開度、あるいは車速と要求エンジン回転速度などが前記車両の走行状態として用いられる。かかる変速マップを用いた変速判断によっては、エンジン8の効率がよい状態で運転するための変速が主として行なわれる。例えば、前述の図7の変速マップにおいては、車速と要求駆動力(要求出力トルク)を車両の走行状態とする変速マップの例が示されている。
 一方、本実施例の動力伝達装置10においては、自動変速部20を介して回生を行なうことができるように第2電動機M2および第1電動機M1を有する差動部11が接続されており、車両の回生走行状態においてはこれらの電動機の少なくとも一方により回生制御が行なわれる。かかる回生制御が実行されている際に自動変速部20の変速が前記変速マップに基づいて実行されると、回生制御を実行する電動機の運転状態、すなわち電動機の回転速度や出力トルクが変化する。そして、電動機の運転状態が変化することにより、変速前と比べて電動機の回生効率が悪くなり、燃費が悪化することが考えられる。なお、以下の実施例においては、回生制御は第2電動機M2によって行なわれる場合の例について説明するが、回生制御は第1電動機M1および第2電動機M2のそれぞれの単独によって実行されることも可能であるし、両者が協調して実行することも可能である。
 図9は、第2電動機M2の効率の一例を、第2電動機M2の回転速度NM2を横軸、第2電動機M2の出力トルクTM2を縦軸とする平面において表わした図である。なお、出力トルクTM2が負である場合は、第2電動機M2が回生制御を行なっており、回生トルクが発生している場合に対応する。図9において、実線により等高線状に表わされた複数の曲線は、それぞれ効率が等しい運転状態を表わす点を結んだ等効率線である。図9の矢印に示す方向、すなわち高トルク、高回転速度側に運転状態が変化するほど、効率が悪くなっている。なお、図9において破線は、等パワー線を表わしている。このように、回生制御を行なう第2電動機M2の効率は、その回転速度NM2やトルクTM2などにより変化するので、第2電動機M2が回生制御を実行している際に自動変速部20の変速が行なわれ、自動変速部20の入力軸18、すなわち第2電動機M2の回転速度やトルクTM2が変化させられると、第2電動機M2の効率が変化する。
 そこで、回生時変速判断手段110は、車両が回生走行状態にある場合において、変速制御手段102に代えて自動変速部20の変速を実行するか否かの判断を行なう。具体的には回生時変速判断手段110は、現変速比での動力伝達装置10の走行損失と変速後の変速比における動力伝達装置10の走行損失とを比較し、変速後の変速比における動力伝達装置10の走行損失が現変速比での動力伝達装置10の走行損失を下回る場合に、自動変速部20の変速を実行する判断を行なう。前記変速制御手段102は、この回生時変速判断手段110による変速を実行する判断を受けて、油圧制御回路42に対し変速を実行するための油圧などを指示する。回生時変速判断手段110は、損失比較手段114を機能的に有し、後述する損失算出手段118によって算出される現変速比での動力伝達装置10の走行損失と変速後の変速比における動力伝達装置10の走行損失とを比較する。
 損失算出手段118は、車両が回生走行状態にある場合において、自動変速部20の現変速比での動力伝達装置10の走行損失と変速後の変速比における動力伝達装置10の走行損失とをそれぞれ算出する。ここで、本実施例において動力伝達装置10の走行損失は、具体的には例えば、自動変速部20の走行損失と回生制御を行なう第2電動機M2の走行損失の合計として算出される。
 損失算出手段118は、電動機損失算出手段120、インバータ損失算出手段122、および自動変速部損失算出手段124を機能的に有している。このうち電動機損失算出手段120は回生制御を行なう第2電動機M2における損失を算出し、インバータ損失算出手段122は第2電動機M2および第1電動機M1を駆動するインバータ58における損失を算出する。前記回生制御を行なう第2電動機M2の走行損失は、電動機損失算出手段120によって算出される回生制御を行なう第2電動機M2の損失と、インバータ損失算出手段122によって算出されるインバータ58における損失の合計として算出される。また、自動変速部損失算出手段124は、自動変速部20の走行損失を算出する。
 具体的には、電動機損失算出手段120は、電動機温度センサ82によって検出される、回生制御を行なう第2電動機M2の温度TM2、その第2電動機M2の回転速度NM2、第2電動機M2への入力トルク等のパラメータの値を、予め記憶された所定の関係に適用することにより、回生制御を行なう第2電動機M2の損失を算出する。前記所定の関係は、回生制御を行なう第2電動機M2の温度TM2、第2電動機M2の回転速度NM2、第2電動機M2への入力トルク等のパラメータの値と回生制御を行なう第2電動機M2の損失とを関連づける例えば図9のようなマップや関係式などであって、予め実験やシミュレーションなどによって第1電動機M1および第2電動機M2のそれぞれについて得られるものであり、図示しないメモリなどの記憶手段に予め記憶されている。なお、前記第2電動機M2の回転速度NM2は、例えば車速Vと自動変速部20の変速比などによって算出することができるので、前記第2電動機M2の回転速度NM2に変えて車速Vおよび自動変速部20の変速比に基づいて算出されるものとしてもよい。ここで、車速Vは例えば、出力軸回転速度センサ86によって検出される出力軸24の回転速度NOUTに終減速機36の減速比や駆動輪38の径などを考慮することによって算出される。
 また、インバータ損失算出手段122は、図示しない温度センサによって検出されるインバータ58の温度、インバータ58の出力(電流、電圧、電力など)等のパラメータの値を、所定の関係に適用することにより、インバータ58の損失を算出する。前記所定の関係は、インバータ58の温度、出力等のパラメータの値とインバータ58の損失とを関連づけるものであって、予め実験やシミュレーションなどによって得られるものであり、図示しないメモリなどの記憶手段に予め記憶されている。
 また、自動変速部損失算出手段124は、油温センサ84によって検出される自動変速部20の作動油の油温TOIL、車速v、自動変速部20への入力トルク、自動変速部20の作動油の特性等のパラメータの値を、予め記憶された所定の関係に適用することにより、自動変速部20の走行損失を算出する。前記所定の関係は、自動変速部20の作動油の油温TOIL、車速V、自動変速部20への入力トルク、自動変速部20の作動油の特性等のパラメータの値と自動変速部20の走行損失とを関連付けるものであって、予め実験やシミュレーションなどによって得られるものであり、図示しないメモリなどの記憶手段に予め記憶されている。なお、作動油の特性とは、例えば作動油の材質、劣化状態等に基づく粘度であり、予め使用されている作動油についての情報が入力されることにより得られる。
 図10は、自動変速部20が例えば第4速段から第3速段への変速を行なう際の自動変速部20の入力軸回転速度N18(=第2電動機回転速度NM2)の値と、変速後における自動変速部20、第2電動機M2、および動力伝達装置10の走行損失との関係をそれぞれ表わした図である。図10においては、自動変速部20の作動油油温TOILおよび第2電動機M2の温度TM2が、それぞれ異なる2種類の温度である温度1および温度2の場合における関係がそれぞれ示されている。
 図10において、丸で表わされたプロットは、例えば自動変速部損失算出手段124によって算出される自動変速部20の走行損失を表わしている。また、四角で表わされたプロットは、例えば電動機損失算出手段120およびインバータ損失算出手段122によって算出される第2電動機M2の走行損失を合わしている。また、アスタリスクで表わされたプロットは、本実施例において自動変速部20の走行損失と回生制御を行なう第2電動機M2の走行損失との合計として得られる動力伝達装置10の走行損失をそれぞれ表わしている。また、自動変速部20の作動油油温TOILおよび第2電動機M2の温度TM2が前記油温1の場合について実線で表わされ、油温1よりも高い温度である油温2の場合について破線であらわされている。
 油温1である場合、すなわち図10において実線で表わされた関係について着目すると、自動変速部20の走行損失は入力軸回転速度N18が高いほど大きくなり、回生制御を行なう第2電動機M2の走行損失は、回転速度NM2が上昇するほど小さくなる。また、図10においては、動力伝達装置10の走行損失は、5000rpm付近において極小となっている。
 油温1よりも高温である油温2である場合、すなわち図10の破線についてもこの傾向は同様である。しかしながら、温度が高温であることにより、自動変速部20の作動油の粘度が変化したり、あるいは回生制御を実行する第2電動機M2の効率が変化することにより、入力軸回転速度N18と動力伝達装置10の効率との関係はも油温1のそれとは異なっている。例えば、油温2における動力伝達装置10の効率の極小は、入力軸回転速度N18が6000rpm付近に現れている。このように、損失算出手段118における損失の算出は、自動変速部20の作動油油温TOILおよび第2電動機M2の温度TM2に応じて行なわれる。
 損失算出手段118は、現在の自動変速部20の変速比を維持した場合の動力伝達装置10の走行損失と、変速を実行した場合の変速後の自動変速部20の変速比となった場合の動力伝達装置10の走行損失とをそれぞれ上述のように算出する。そして、前記回生時変速判断手段110の損失比較手段114は、算出された両走行損失を比較し、変速後の変速比における動力伝達装置10の走行損失が現変速比での動力伝達装置10の走行損失を下回る場合に、自動変速部20の変速を実行する判断を行なう。
 図11は、本実施例における電子制御装置100の制御作動、すなわち車両の回生走行中における自動変速部20の変速判断に関する制御作動の一例を説明するフローチャートである。
 まず、SA1においては、車両の走行状態についての判断が行なわれる。具体的には例えば、シフトポジションPSHが「D」ポジションである、すなわち自動変速部20の複数の変速段を使用して走行可能な状態であるか否かが判断される。さらに車両がコースト走行状態であって、電動機による回生制御が行なわれているか否かが判断される。自動変速部20の複数の変速段を使用して走行可能な状態であり、電動機による回生制御が行なわれている走行状態である場合には、本ステップの判断が肯定され、SA2が実行される。自動変速部20の複数の変速段を使用して走行可能な状態でない場合や、電動機による回生制御が行なわれていない走行状態である場合には、本ステップの判断が否定され、SA7が実行される。
 損失算出手段118の自動変速部損失算出手段124などに対応するSA2においては、現在の自動変速部20の変速比で走行した場合と、自動変速部20の変速を行なった場合の変速後の変速比で走行した場合とのそれぞれについて、自動変速部20の走行損失の値が算出される。本ステップにおける自動変速部20の走行損失の算出は、油温センサ84によって検出される自動変速部20における作動油の油温TOILなどに基づいて行なわれる。
 損失算出手段118の電動機損失算出手段120およびインバータ損失算出手段122などに対応するSA3においては、現在の自動変速部20の変速比で走行した場合と、自動変速部20の変速を行なった場合の変速後の変速比で走行した場合とのそれぞれについて、回生制御が行なわれる電動機である第2電動機M2の走行損失の値が算出される。この第2電動機M2の走行損失は、第2電動機M2の駆動に関与するインバータ58の損失が含むように算出される。本ステップにおける第2電動機M2の走行損失の算出は、温度センサ82によって検出される第2電動機M2の温度TM2などに基づいて行なわれる。
 回生時変速判断手段110の損失比較手段114などに対応するSA4においては、SA2およびSA3でそれぞれ算出された自動変速部20の走行損失と回生制御が行なわれる第2電動機M2の走行損失に基づいて、現在の自動変速部20の変速比で走行した場合と、自動変速部20の変速を行なった場合の変速後の変速比で走行した場合とのそれぞれについて、動力伝達装置10の走行効率が算出され、比較が行なわれる。ここで動力伝達装置10の走行効率は例えば、自動変速部20の走行損失と回生制御が行なわれる第2電動機M2の走行損失との合計として算出される。そして、比較の結果、現在の自動変速部20の変速比で走行した場合の動力伝達装置10の走行損失が、自動変速部20の変速を行なった場合の変速後の変速比で走行した場合の動力伝達装置10の走行効率を上回る場合には、本ステップの判断が肯定され、SA5が実行される。一方、現在の自動変速部20の変速比で走行した場合の動力伝達装置10の走行損失が、自動変速部20の変速を行なった場合の変速後の変速比で走行した場合の動力伝達装置10の走行効率と等しいもしくはこれを下回る場合には、本ステップの判断が否定され、SA6が実行される。
 SA4の判断が肯定された場合に実行されるSA5においては、自動変速部20の変速判断が行なわれ、変速後の変速段を成立するために係合される摩擦係合装置に対し油圧の供給を行い、解放される摩擦係合装置に対し油圧が供給されないように油圧制御回路42が制御される。
 SA5の判断が否定された場合に実行されるSA6においては、自動変速部20の変速判断が行なわれず、それまで走行するのに用いられていた変速段が維持される。
 SA1の判断が否定された場合に実行されるSA7においては、本実施例における制御、すなわち車両の回生走行中における自動変速部20の変速制御が行なわれず、それ以外の制御が行なわれるか、あるいは本フローチャートが終了させられる。
 前述の実施例によれば、自動変速部20とその自動変速部20を介して回生を行なう第2電動機を含む差動部11とを備えた動力伝達装置10の制御装置100において、回生走行時、現変速比での動力伝達装置10の走行損失よりも、変速後の動力伝達装置10の走行損失が小さい場合に、自動変速部20のダウンシフトを行なうので、変速によって動力伝達装置10の走行損失が低下することが低減され、燃費が向上される。
 また前述の実施例によれば、動力伝達装置10の走行損失は自動変速部20の損失を含み、自動変速部20の損失は自動変速部20の作動油油温TOILに基づいて算出されるので、作動油の油温TOILに基づいて変化する自動変速部20の損失を精度よく算出することができる。
 また前述の実施例によれば、動力伝達装置10の走行損失は、回生制御を行なう第2電動機M2の損失を含み、第2電動機M2の損失は、電動機の温度TM2に基づいて算出されるので、温度TM2に基づいて変化する第2電動機M2の損失を精度よく算出することができる。
 また前述の実施例によれば、動力伝達装置10は、エンジン8から駆動輪38への動力伝達経路に設けられた差動部11を含み、その差動部11は、差動機構16と、その差動機構16の回転要素のうち第2回転要素RE2に動力伝達可能に連結された第1電動機M1と、第3回転要素RE3に動力可能に連結された第2電動機M2とを含むこと、を特徴とする。このようにすれば、車両の減速時において差動部11の回転要素RE2、RE3にそれぞれ動力伝達可能に連結された第1電動機M1および第2電動機M2もしくはそれらのいずれかにより回生制御を行なうことができる。
 また前述の実施例によれば、差動機構16は、エンジン8に連結された第1要素RE1と、第1電動機M1に連結された第2要素RE2と、差動機構16の出力を自動変速部20に伝達する伝達部材18に連結された第3要素RE3とを含み、第2電動機M2は、第3要素RE3に連結されるので、差動機構16を介して連結された第1電動機M1および第2電動機M2、あるいはいずれか一方によって回生出力を発生させることができる。また、第1電動機M1と第2電動機M2の運転状態を制御することにより、差動機構16の差動状態を変化させることができ、前記差動機構を変速比を連続して変更可能な無段変速機として作動させることができる。
 また前述の実施例によれば、自動変速部20は、その変速比を段階的に変化させることができる機械式有段変速機であるので、その自動変速部20の変速比の変化量を大きくする際に自動変速部20の大きさが大きくなることが抑制できる。
 また前述の実施例によれば、第1電動機M1または第2電動機M2の損失には、第1電動機M1または第2電動機M2の駆動に関連するインバータ58における損失が含まれるので、動力伝達装置10の走行損失の算出においてインバータ58における損失が考慮され、動力伝達装置10の走行損失が精度よく算出され、それらの比較を精度よく行なうことができる。
 続いて、本発明の別の実施例について説明する。なお、以下の説明において実施例相互に共通する部分については同一の符号を付して説明を省略する。
 本実施例においては、回生時変速判断手段110は、車両状態判断手段112を機能的に有する。この車両状態判断手段112は、例えば車速vや回生制御が行なわれる第2電動機M2の出力パワー、もしくは出力トルクなどの車両状態を、後述する変速マップ記憶手段116に予め記憶された回生走行変速マップに適用することによって、自動変速部20の変速の判断を行なう。
 変速マップ記憶手段116は、前記回生走行変速マップ、すなわち、車両が回生走行を行なっている場合において、自動変速部20のダウン変速を行なうか否かを判断するための関係を予め記憶する。この関係は、例えば車速vと回生制御が行なわれる第2電動機M2の出力パワー、あるいは車速vと回生制御が行なわれる第2電動機M2の出力トルクを変数とするものである。
 ところで、車両の回生走行時において自動変速部20がダウン変速されると、自動変速部20の入力軸、すなわち第2電動機M2が連結された伝達部材18のトルクは低下させられ、回転速度が上昇させられる。回生制御を行なう第2電動機M2の特性が例えば前述の図9のように表わされる場合、第2電動機M2の運転状態が低トルク、高回転速度側に変更させられると、第2電動機M2の効率が向上する。しかしながら、第2電動機M2の特性が図9の例に表わされる場合、トルクの大きさ、すなわちトルクの絶対値が所定のトルク未満になると、低トルク高回転速度となるように運転状態を変化させても、その運転状態の変化によって向上する効率の向上代が小さくなる。一方、前述の図10に示したように、高回転速度において自動変速部20の変速を行なった場合には、回転要素の高回転化により自動変速部20の効率が上昇する。そのため、第2電動機M2の効率の向上を打ち消す程度に自動変速部20の効率が悪化することにより、結果として燃費が悪化してしまう可能性がある。
 そこで、本実施例においては、変速マップ記憶手段116が記憶する、自動変速部20において用いられる変速段を決定するための回生走行変速マップは、車速vと第2電動機M2のパワーもしくはトルクとを変数とされている。そして、回生時変速判断手段110の車両状態判断手段112は、車両が回生走行を行なっている場合においては、車速vおよび第2電動機M2のパワーもしくはトルクとを含む車両状態と前記回生走行変速マップとから自動変速部20の変速を行なうか否かを判断する。
 図12は、車速vと第2電動機M2の出力パワーとを変数とする回生走行変速マップの一例を示した図である。図12において出力パワーが正であることは、第2電動機M2が力行状態であることを意味し、出力パワーが負であることは、第2電動機M2が回生状態であることを意味している。すなわち、図12に示す変速マップのうち、出力パワーが負の領域が回生走行変速マップに対応する。なお、図12に示す変速マップにおいては、出力パワーが正の領域についても定義されているが、少なくとも出力パワーが負の領域、回生制御を行なう第2電動機M2が回生制御状態である場合について定義されていればよい。あるいは出力パワーが正の領域については、変速マップとして変速制御手段102による変速判断に用いられる様にしてもよい。
 ここで、図12の回生走行変速マップは、動力伝達装置10の損失が自動変速部20の変速によって悪化することのないように定義される。言いかえれば、図12の回生走行変速マップにおいてダウン変速を表わす変速線は、自動変速部20の変速を行なった場合の動力伝達装置10の損失が変速を行なわなかった場合の損失よりも小さくなる走行状態を表わす領域と、自動変速部20の変速を行なった場合の動力伝達装置10の損失が変速を行なわなかった場合の損失よりも大きくなる走行状態を表わす領域との境界に対応する。また、回生走行変速マップにおいてダウン変速を表わす変速線は、自動変速部20のダウン変速を行なう車両状態を示す変速点の連なりである。図12に示すような回生走行変速マップは、予め実験的に、あるいはシミュレーションなどによって得られる。
 また、前述の図10に示したように、回生制御を行なう第2電動機M2および自動変速部20の効率の効率は、それぞれ第2電動機M2の温度および自動変速部20の作動油の温度(以下、単に温度という。)に応じて異なる。そのため、変速マップ記憶手段116は、前記回生走行変速マップを、複数の異なる温度ごとに予め記憶しておくようにしてもよい。そして、電動機温度センサ82によって検出される回生制御を行なう第2電動機M2の温度TM2、あるいは油温センサ84によって検出される自動変速部20の作動油の油温TOILに応じた回生走行変速マップが選択され、その選択された回生走行変速マップに基づいて、車両応対判断手段112により自動変速部20の変速が判断される。
 図13は、複数の異なる温度についての回生走行変速マップの一例を説明する図である。図13において一点鎖線で表わされた回生走行マップは所定の温度である温度1における車両の回生走行時において、自動変速部20の変速を判断するための関係であり、二点鎖線で表わされた回生走行マップは前記所定の温度よりも高い温度である温度2における回生走行マップの一例である。図13においては、温度1の場合に比べて温度2の場合においては、同じ車速であれば回生制御を行なう第2電動機M2のパワーの大きさがより小さい車両状態で自動変速部20の変速が実行されるものとされている。
 図14は、本実施例における電子制御装置100の制御作動、すなわち車両の回生走行中における自動変速部20の変速判断に関する制御作動の一例を説明するフローチャートであって、前述の実施例における図11に対応する。
 まず、SB1においては、図11のSA1と同様に車両の走行状態についての判断が行なわれる。具体的には例えば、シフトポジションPSHが「D」ポジションであるか、すなわち自動変速部20の複数の変速段を使用して走行可能な状態であるか否かが判断される。さらに車両がコースト走行状態であって、電動機による回生制御が行なわれているか否かが判断される。自動変速部20の複数の変速段を使用して走行可能な状態であり、電動機による回生制御が行なわれている走行状態である場合には、本ステップの判断が肯定され、SB2が実行される。自動変速部20の複数の変速段を使用して走行可能な状態でない場合や、電動機による回生制御が行なわれていない走行状態である場合には、本ステップの判断が否定され、SB6が実行される。
 SB2においては、第2電動機M2温度センサ82によって検出される回生制御が実行される第2電動機温度TM2および油温センサ84によって検出される自動変速部20の作動油の油温TOIL、あるいはこれらのいずれかに基づいて、変速マップ記憶手段116に記憶された複数の回生走行変速マップのうちから、適切な回生走行変速マップが選択される。
 回生時変速判断手段110の車両状態判断手段112などに対応するSB3においては、SB2で選択された回生走行変速マップに基づいて、自動変速部20の変速を行なうか否かが判断される。具体的には例えば、現在の車速および回生制御が実行される第2電動機M2のパワーである車両状態が、SB2で選択された回生走行変速マップにおいていずれに位置するかに基づいて、自動変速部20において用いられるべき変速段が判断される。そして、前記用いられるべき変速段と現在の変速段とが異なる場合には、該用いられるべき変速段への変速が判断され、本ステップの判断が肯定されてSB4が実行される。一方、前記用いられるべき変速段と現在の変速段とが同一である場合には、変速の判断は行なわれず、本ステップの判断が否定されてSB5が実行される。
 SB3の判断が肯定された場合に実行されるSB4においては、自動変速部20の変速判断が行なわれ、変速後の変速段を成立するために係合される摩擦係合装置に対し油圧の供給が行われ、また、解放される摩擦係合装置に対し油圧が供給されないように油圧制御回路42が制御される。
 SB3の判断が否定された場合に実行されるSB5においては、自動変速部20の変速判断が行なわれず、それまで走行するのに用いられていた変速段が維持される。
 SB1の判断が否定された場合に実行されるSB6においては、本実施例における制御、すなわち車両の回生走行中における自動変速部20の変速制御が行なわれず、それ以外の制御が行なわれるか、あるいは本フローチャートが終了させられる。
 前述の実施例によれば、変速マップ記憶手段116は、車速vと回生制御を行なう第2電動機M2のパワーとによって設定され、回生走行時における自動変速部20の変速を実行するための回生走行変速マップを記憶し、回生時変速制御手段110の車両状態判断手段112は、回生走行時において変速マップ記憶手段116に記憶された回生走行変速マップに基づいて変速を行なうので、車速vと回生制御を行なう第2電動機M2のパワーとによって設定される回生走行変速マップに基づいて、回生走行時における自動変速部20の変速が実行されるので、現変速比での動力伝達装置10の走行損失よりも、変速後の動力伝達装置10の走行損失が小さい場合を回生走行変速マップに基づいて判断でき、その判断に基づいて自動変速部20のダウンシフトが行なわれるので、変速によって動力伝達装置10の走行損失が低下することが低減され、燃費が向上されるのに加え、変速判断における演算量が低減される。
 また前述の実施例によれば、変速マップ記憶手段116は、車速vと回生制御を行なう第2電動機M2のトルクとによって設定され、回生走行時における自動変速部20の変速を実行するための回生走行変速マップを記憶し、回生時変速制御手段110の車両状態判断手段112は、回生走行時において変速マップ記憶手段116に記憶された回生走行変速マップに基づいて変速を行なうので、車速vと回生制御を行なう第2電動機M2のトルクとによって設定される回生走行変速マップに基づいて、回生走行時における自動変速部20の変速が実行されるので、現変速比での動力伝達装置10の走行損失よりも、変速後の動力伝達装置10の走行損失が小さい場合を回生走行変速マップに基づいて判断でき、その判断に基づいて自動変速部20のダウンシフトが行なわれるので、変速によって動力伝達装置10の走行損失が低下することが低減され、燃費が向上されるのに加え、変速判断における演算量が低減される。
 また前述の実施例によれば、変速マップ記憶手段116が記憶する回生走行変速マップは、自動変速部20の作動油油温TOILに応じたものである。すなわち、現変速比での動力伝達装置10の走行損失よりも、変速後の動力伝達装置10の走行損失が小さい場合に自動変速部20のダウンシフトが実行されるように、自動変速部20のダウンシフトを実行するための変速点が、自動変速部20の作動油油温TOILに応じて予め設定されるので、予め作動油油温TOILに応じて設定される変速点に基づいて、現変速比での動力伝達装置10の走行損失よりも、変速後の動力伝達装置10の走行損失が小さい場合に自動変速部20のダウンシフトが実行され、変速によって動力伝達装置10の走行損失が低下することが低減され、燃費が向上されるのに加え、変速判断における演算量が低減される。
 また前述の実施例によれば、変速マップ記憶手段116が記憶する回生走行変速マップは、回生制御を行なう第2電動機M2の温度TM2に応じたものである。すなわち、現変速比での動力伝達装置10の走行損失よりも、変速後の動力伝達装置10の走行損失が小さい場合に自動変速部20のダウンシフトが実行されるように、自動変速部20のダウンシフトを実行するための変速点が回生制御を行なう第2電動機M2の温度TM2に応じて予め設定されるので、予め回生制御を行なう第2電動機M2の温度TM2に応じて設定される変速点に基づいて、現変速比での動力伝達装置10の走行損失よりも、変速後の動力伝達装置10の走行損失が小さい場合に自動変速部20のダウンシフトが実行され、変速によって動力伝達装置10の走行損失が低下することが低減され、燃費が向上されるのに加え、変速判断における演算量が低減される。
 また前述の実施例によれば、変速マップ記憶手段116は、車速vと第2電動機M2のパワーとによって設定され、回生走行時における自動変速部20の変速を実行するための回生走行変速マップを記憶し、回生時変速制御手段110の車両状態判断手段112は、回生走行時において変速マップ記憶手段116に記憶された回生走行変速マップに基づいて変速を行なうので、第1電動機M1と第2電動機M2とが協調して回生出力を行なうことにより、第2電動機M2からの回生パワーが低減され、ダウンシフト時において、第1電動機M1の損失および第2電動機M2の損失の両方を含む差動部11の損失における低減量が小さくなる場合においても、自動変速部20の変速を実行することができる。
 また前述の実施例によれば、変速マップ記憶手段116は、車速vと第2電動機M2のトルクとによって設定され、回生走行時における自動変速部20の変速を実行するための回生走行変速マップを記憶し、回生時変速制御手段110の車両状態判断手段112は、回生走行時において変速マップ記憶手段116に記憶された回生走行変速マップに基づいて変速を行なうので、第1電動機M1と第2電動機M2とが協調して回生出力を行なうことにより、第2電動機M2からの回生トルクが低減され、ダウンシフト時において、第1電動機M1の損失および第2電動機M2の損失の両方を含む差動部11の損失における低減量が小さくなる場合においても、自動変速部20の変速を実行することができる。
 以上、本発明の実施例を図面に基づいて詳細に説明したが、本発明はその他の態様においても適用される。
 例えば、前述の実施例の自動変速部20は、前進4段後進1段の変速機であったが、変速機の変速段および連結関係は、特に限定されるものではない。変速比を段階的に変速可能であって、その変速比ごとに走行損失の異なる変速機であれば、本発明を適用することができる。
 また、前述の実施例の動力分配機構16では、第1キャリヤCA1がエンジン8に連結され、第1サンギヤS1が第1電動機M1に連結され、第1リングギヤR1が伝達部材18に連結されていたが、それらの連結関係は、必ずしもそれに限定されるものではなく、エンジン8、第1電動機M1、伝達部材18は、第1遊星歯車装置24の3回転要素CA1、S1、R1のうちの何れと連結されていても差し支えない。
 また、前述の実施例では、第1電動機M1および第2電動機M2は、入力軸14に同心に配置されて第1電動機M1は第1サンギヤS1に連結され第2電動機M2は伝達部材18に連結されていたが、必ずしもそのように配置される必要はなく、例えばギヤ、ベルト、減速機等を介して作動的に第1電動機M1は第1サンギヤS1に連結され、第2電動機M2は伝達部材18に連結されてもよい。
 また、前述の実施例では、エンジン8は入力軸14と直結されていたが、例えばギヤ、ベルト等を介して作動的に連結されていればよく、共通の軸心上に配置される必要もない。
 また、前述の実施例では、第1クラッチC1や第2クラッチC2などの油圧式摩擦係合装置は、パウダー(磁粉)クラッチ、電磁クラッチ、噛み合い型のドグクラッチなどの磁粉式、電磁式、機械式係合装置から構成されていてもよい。例えば電磁クラッチであるような場合には、油圧制御回路70は油路を切り換える弁装置ではなく電磁クラッチへの電気的な指令信号回路を切り換えるスイッチング装置や電磁切換装置等により構成される。
 また、前述の実施例では、自動変速部20は伝達部材18を介して差動部11と直列に連結されていたが、入力軸14と平行にカウンタ軸が設けられそのカウンタ軸上に同心に自動変速部20が配設されてもよい。この場合には、差動部11と自動変速部20とは、例えば伝達部材18としてのカウンタギヤ対、スプロケットおよびチェーンで構成される1組の伝達部材などを介して動力伝達可能に連結される。
 また、前述の実施例の差動機構としての動力分配機構16は、例えばエンジン8によって回転駆動されるピニオンと、そのピニオンに噛み合う一対のかさ歯車が第1電動機M1および第2電動機M2に差動的に連結された差動歯車装置であってもよい。
 また、前述の実施例の動力分配機構16は、1組の遊星歯車装置から構成されていたが、2以上の遊星歯車装置から構成されて、非差動状態(定変速状態)では3段以上の変速機として機能するものであってもよい。また、その遊星歯車装置はシングルピニオン型に限られたものではなくダブルピニオン型の遊星歯車装置であってもよい。
 また、前述の実施例においては、自動変速部20の作動油の油温TOILと回生制御を行なう第2電動機M2の温度TM2とは同じものであるとされ、変速マップ記憶手段116は、その温度ごと回生走行変速マップを記憶するものとされたが、これに限られない。すなわち、自動変速部20の作動油の油温TOILと回生制御を行なう第2電動機M2の温度TM2とが異なる場合にそれらの組み合わせごとに回生走行変速マップを記憶するものとしてもよい。
 また、前述の実施例においては、回生制御を行なう電動機は第2電動機M2であるとされたが、これに限定されない。すなわち、回生制御が第1電動機M1および第2電動機M2の両方において行なわれても良い。この場合において、前述の実施例において温度センサ82は第2電動機M2の温度を検出するものとされていたが、第1電動機M1の温度を検出するものであってもよい。すなわち、回生制御の実行される電動機の温度が検出されればよい。また、例えば差動部11の遊星歯車装置24のいずれかの回転要素を回転不能に固定することによって、第1電動機M1において回生制御が実行されてもよい。このとき、動力伝達装置10の損失としては、自動変速部20の走行損失と回生制御が行なわれる電動機の損失との和としても良いし、あるいは自動変速部20の走行損失と第1電動機M1および第2電動機M2を有する差動部11の損失との和としても良い
 また、前述の実施例においては、動力伝達装置10はエンジン8の駆動力を第1電動機M1および自動変速部20に分配する動力分配機構16を有していたが、動力伝達装置の構成はこれに限られない。すなわち、自動変速部20を介して回生可能な電動機を少なくとも1つ有する動力伝達装置であれば、本発明を適用することができる。具体的には、動力分配機構16は必須の構成要件ではないし、また、前記回生可能な電動機としては少なくとも一つの電動機があればよい。また、該回生可能な電動機も、自動変速部20の入力軸18に直接連結されている態様に限られない。従って、例えば、エンジンから自動変速部へ動力を伝達する動力伝達部材に電動機が連結されるような、いわゆるパラレルハイブリッド形式の動力伝達装置であっても本発明が適用できる。
 また前述の実施例2においては、図12および図13に示すように、回生走行変速マップにおいては、車両状態を表わす変数は車速と回生制御を行なう第2電動機M2のパワーとされた。これに代えて、回生走行マップは、車速と回生制御を行なう第2電動機M2のトルクとを車両状態を表わす変数とするマップとして定義されてもよい。図15は、車速と回生制御を行なう第2電動機M2のトルクとを車両状態を表わす変数として定義される回生走行変速マップの一例を表わす図であって、前記図13に対応するものである。このように車速と回生制御を行なう第2電動機M2のトルクによって定義される回生走行変速マップが変速マップ記憶手段116に記憶されていてもよい。この場合、車両状態判断手段112は、車速vと回生制御を行なう第2電動機M2の出力トルクとを含む車両状態を回生走行変速マップに基づいて変速の実行判断を行なう。
 また前述の実施例2においては、図12、図13および図15に示すように、車両状態を表わす変数として、車速vと回生制御を行なう第2電動機M2のパワー、あるいは車速vと回生制御を行なう第2電動機M2のトルクが用いられた回生走行変速マップが用いられたが、これに代えて、車速vと、前記第2電動機M2、第1電動機M1および差動歯車装置24などにより構成される動力分割機構16含む差動部11のパワーとが用いられた回生走行変速マップ、あるいは車速vと差動部11のトルクとが用いられた回生走行変速マップが用いられてもよい。
 図16は、車速と差動部11のパワーとを車両状態を表わす変数として定義される回生走行変速マップの一例を表わす図である。また、図17は、車速と差動部11のトルクとを車両状態を表わす変数として定義される回生走行変速マップの一例を表わす図である。これらは前記図13に対応する。このように車速と回生制御を行なう差動部11のパワーあるいはトルクによって定義される回生走行変速マップが変速マップ記憶手段116に記憶されていてもよい。この場合、車両状態判断手段112は、車速vと差動部11のパワーあるいはトルクとを含む車両状態を回生走行変速マップに基づいて変速の実行判断を行なう。このように、第2電動機M2のパワーあるいはトルクに代えて、差動部11のパワーあるいはトルクを車両状態とすることにより、差動部11を構成する第1電動機M1と第2電動機M2とにおいて協調して、あるいは両者のいずれか一方において回生制御が実行される場合においても、動力伝達装置10の効率が悪化の低減を考慮した回生制御の実行中における自動変速部20の変速の判断を行なうことができる。
 また、前述の実施例においては、インバータ損失算出手段120は、インバータ58の損失を算出するものとされたが、インバータ58そのものの損失を算出するのに限られず、第1電動機M1および第2電動機M2を駆動するためのインバータ58以外の図示しない電気機器における損失を含めて算出するものであってもよい。
 その他、一々例示はしないが、本発明はその趣旨を逸脱しない範囲内において種々の変更が加えられて実施されるものである。

Claims (13)

  1.  変速部と該変速部を介して回生を行なう電動機とを備えた車両用動力伝達装置の制御装置において、
     回生走行時、現変速比での該車両用動力伝達装置の走行損失よりも、変速後の該車両用動力伝達装置の走行損失が小さい場合に、前記変速部のダウンシフトを行なうこと、を特徴とする車両用動力伝達装置の制御装置。
  2.  前記車両用動力伝達装置の走行損失は、前記変速部の損失を含み、
     前記変速部の損失は、該変速部の作動油油温に基づいて算出されること、を特徴とする請求項1に記載の車両用動力伝達装置の制御装置。
  3.  前記車両用動力伝達装置の走行損失は、前記電動機の損失を含み、
     前記電動機の損失は、該電動機の温度に基づいて算出されること、を特徴とする請求項1または2に記載の車両用動力伝達装置の制御装置。
  4.  車速と前記電動機のパワーとによって設定され、前記回生走行時における前記変速部の変速を実行するための回生走行変速マップを有し、
     前記回生走行時において該回生走行変速マップに基づいて変速を行なうこと、を特徴とする請求項1乃至3のいずれか1に記載の車両用動力伝達装置の制御装置。
  5.  車速と前記電動機のトルクとによって設定され、前記回生走行時における前記変速部の変速を実行するための回生走行変速マップを有し、
     前記回生走行時において該回生走行変速マップに基づいて変速を行なうこと、を特徴とする請求項1乃至3のいずれか1に記載の車両用動力伝達装置の制御装置。
  6.  現変速比での前記車両用動力伝達装置の走行損失よりも、変速後の前記車両用動力伝達装置の走行損失が小さい場合に前記変速部のダウンシフトが実行されるように、前記変速部のダウンシフトを実行するための変速点が前記変速部の作動油油温に応じて予め設定されること、を特徴とする請求項1乃至5のいずれか1に記載の車両用動力伝達装置の制御装置。
  7.  現変速比での前記車両用動力伝達装置の走行損失よりも、変速後の前記車両用動力伝達装置の走行損失が小さい場合に前記変速部のダウンシフトが実行されるように、前記変速部のダウンシフトを実行するための変速点が前記電動機の温度に応じて予め設定されること、を特徴とする請求項1乃至5のいずれか1に記載の車両用動力伝達装置の制御装置。
  8.  前記車両用動力伝達装置は、原動機から駆動輪への動力伝達経路に設けられた差動部を含み、
     該差動部は、該差動部の回転要素のうち2つの回転要素のそれぞれに動力伝達可能に連結された第1電動機および第2電動機を含むこと、を特徴とする請求項1乃至7のいずれか1に記載の車両用動力伝達装置の制御装置。
  9.  前記差動部は、前記原動機に連結された第1要素と、前記第1電動機に連結された第2要素と、該差動部の出力を前記変速部に伝達する伝達部材に連結された第3要素とを含み、前記第2電動機は該第3要素に連結されること、を特徴とする請求項8に記載の車両用動力伝達装置の制御装置。
  10.  車速と前記第2電動機のパワーとによって設定され、前記回生走行時における前記変速部の変速を実行するための回生走行変速マップを有し、前記回生走行時において該回生走行変速マップに基づいて変速を行なうこと、を特徴とする請求項9に記載の車両用動力伝達装置の制御装置。
  11.  車速と前記第2電動機のトルクとによって設定され、前記回生走行時における前記変速部の変速を実行するための回生走行変速マップを有し、前記回生走行時において該回生走行変速マップに基づいて変速を行なうこと、を特徴とする請求項9または10に記載の車両用動力伝達装置の制御装置。
  12.  前記変速部は、機械式有段変速機であること、を特徴とする請求項1乃至11のいずれか1に記載の車両用動力伝達装置の制御装置。
  13.  前記第1電動機または前記第2電動機の損失には、前記第1電動機または前記第2電動機の駆動に関連するインバータにおける損失を含むこと、を特徴とする請求項1乃至12のいずれか1に記載の車両用動力伝達装置の制御装置。
PCT/JP2009/055494 2009-03-19 2009-03-19 車両用動力伝達装置の制御装置 WO2010106671A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US13/257,450 US9079484B2 (en) 2009-03-19 2009-03-19 Control device for vehicle power transmission device
DE112009004511.1T DE112009004511B4 (de) 2009-03-19 2009-03-19 STEUERUNGSVORRICHTUNG FüR EINE FAHRZEUGLEISTUNGSÜBERTRAGUNGSVORRICHTUNG
PCT/JP2009/055494 WO2010106671A1 (ja) 2009-03-19 2009-03-19 車両用動力伝達装置の制御装置
CN200980159322.8A CN102427979B (zh) 2009-03-19 2009-03-19 车辆用动力传递装置的控制装置
JP2011504685A JP5267656B2 (ja) 2009-03-19 2009-03-19 車両用動力伝達装置の制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/055494 WO2010106671A1 (ja) 2009-03-19 2009-03-19 車両用動力伝達装置の制御装置

Publications (1)

Publication Number Publication Date
WO2010106671A1 true WO2010106671A1 (ja) 2010-09-23

Family

ID=42739340

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/055494 WO2010106671A1 (ja) 2009-03-19 2009-03-19 車両用動力伝達装置の制御装置

Country Status (5)

Country Link
US (1) US9079484B2 (ja)
JP (1) JP5267656B2 (ja)
CN (1) CN102427979B (ja)
DE (1) DE112009004511B4 (ja)
WO (1) WO2010106671A1 (ja)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214176A (ja) * 2011-04-01 2012-11-08 Honda Motor Co Ltd 車両用駆動装置
WO2013035730A1 (ja) * 2011-09-05 2013-03-14 本田技研工業株式会社 ハイブリッド車両の制御装置および制御方法
JP2013052804A (ja) * 2011-09-05 2013-03-21 Honda Motor Co Ltd ハイブリッド車両の制御装置および制御方法
JP2013052802A (ja) * 2011-09-05 2013-03-21 Honda Motor Co Ltd ハイブリッド車両の制御装置および制御方法
JP2013052797A (ja) * 2011-09-05 2013-03-21 Honda Motor Co Ltd 車両の制御装置および制御方法
JP2013248961A (ja) * 2012-05-31 2013-12-12 Toyota Motor Corp 車両の制御装置
WO2017138385A1 (ja) * 2016-02-08 2017-08-17 いすゞ自動車株式会社 ハイブリッド車両及びハイブリッド車両の制御方法
JP2017201681A (ja) * 2016-05-04 2017-11-09 エルエス産電株式会社Lsis Co., Ltd. 変圧器の損失電力予測装置

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010106671A1 (ja) * 2009-03-19 2010-09-23 トヨタ自動車株式会社 車両用動力伝達装置の制御装置
JP4909385B2 (ja) * 2009-07-24 2012-04-04 本田技研工業株式会社 車両用自動変速機
US8337352B2 (en) 2010-06-22 2012-12-25 Oshkosh Corporation Electromechanical variable transmission
US9132736B1 (en) 2013-03-14 2015-09-15 Oshkosh Defense, Llc Methods, systems, and vehicles with electromechanical variable transmission
JP6036491B2 (ja) * 2013-04-01 2016-11-30 トヨタ自動車株式会社 車両の制御装置
JP2015016781A (ja) * 2013-07-11 2015-01-29 トヨタ自動車株式会社 ハイブリッド車両の制御装置
US9260105B2 (en) * 2013-08-05 2016-02-16 GM Global Technology Operations LLC System and method of power management for a hybrid vehicle
US9302674B2 (en) * 2013-09-05 2016-04-05 GM Global Technology Operations LLC Method to maximize available regeneration while maintaining linear vehicle deceleration rate
JP6087805B2 (ja) * 2013-12-26 2017-03-01 株式会社東芝 運転曲線作成装置、運転支援装置、運転制御装置および運転曲線作成方法
DE102014204795A1 (de) * 2014-03-14 2015-09-17 Zf Friedrichshafen Ag Getriebe für ein Kraftfahrzeug
CN105620307B (zh) * 2014-10-31 2018-08-14 上海惠太多元新能源科技有限公司 纯电动汽车的驱动系统和方法
US10578195B2 (en) 2015-02-17 2020-03-03 Oshkosh Corporation Inline electromechanical variable transmission system
US9656659B2 (en) 2015-02-17 2017-05-23 Oshkosh Corporation Multi-mode electromechanical variable transmission
US10421350B2 (en) 2015-10-20 2019-09-24 Oshkosh Corporation Inline electromechanical variable transmission system
US10584775B2 (en) 2015-02-17 2020-03-10 Oshkosh Corporation Inline electromechanical variable transmission system
US11701959B2 (en) 2015-02-17 2023-07-18 Oshkosh Corporation Inline electromechanical variable transmission system
US9651120B2 (en) 2015-02-17 2017-05-16 Oshkosh Corporation Multi-mode electromechanical variable transmission
US10982736B2 (en) 2015-02-17 2021-04-20 Oshkosh Corporation Multi-mode electromechanical variable transmission
US9650032B2 (en) 2015-02-17 2017-05-16 Oshkosh Corporation Multi-mode electromechanical variable transmission
DE102015211409B4 (de) * 2015-06-22 2023-02-02 Robert Bosch Gmbh Feststellbremse in einem Fahrzeug
CN110603182B (zh) 2017-01-20 2022-11-22 北极星工业有限公司 无级变速器的诊断方法
JP6791027B2 (ja) * 2017-06-09 2020-11-25 トヨタ自動車株式会社 車両の制御装置
CN110077390A (zh) * 2019-03-22 2019-08-02 中国第一汽车股份有限公司 一种支持48v能量回收的dct变速器控制方法及系统
JP2023153581A (ja) * 2022-04-05 2023-10-18 マツダ株式会社 車両の変速制御装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0998516A (ja) * 1995-07-24 1997-04-08 Toyota Motor Corp 車両用駆動制御装置
JPH09117008A (ja) * 1995-10-13 1997-05-02 Toyota Motor Corp ハイブリッド駆動装置
JPH11125328A (ja) * 1997-10-27 1999-05-11 Honda Motor Co Ltd ハイブリッド車両
JP2006118667A (ja) * 2004-10-25 2006-05-11 Toyota Motor Corp 車両用駆動装置の制御装置
JP2007050866A (ja) * 2005-08-19 2007-03-01 Toyota Motor Corp ハイブリッド車の制御装置
JP2008149907A (ja) * 2006-12-18 2008-07-03 Toyota Motor Corp ハイブリッド駆動装置の制御装置

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05340372A (ja) * 1992-06-10 1993-12-21 Tokico Ltd 油冷式空気圧縮機
DE4438914A1 (de) 1994-11-03 1996-05-09 Juergen Weimer Getriebesteuerung für Elektrofahrzeuge
JP3358381B2 (ja) * 1995-04-24 2002-12-16 日産自動車株式会社 無段自動変速機の制御装置
JP4029945B2 (ja) * 1996-11-07 2008-01-09 アイシン・エィ・ダブリュ株式会社 自動変速機の潤滑油制御装置
JPH118667A (ja) 1997-06-17 1999-01-12 Nec Home Electron Ltd 携帯通信装置
JP3945045B2 (ja) 1998-10-22 2007-07-18 トヨタ自動車株式会社 回生制動トルクの制御装置
JP4193965B2 (ja) * 2001-01-11 2008-12-10 ジヤトコ株式会社 自動変速機の変速制御装置
JP3536820B2 (ja) * 2001-02-05 2004-06-14 日産自動車株式会社 ハイブリッド式車両制御装置
JP2003065102A (ja) * 2001-08-27 2003-03-05 Toyota Motor Corp 車両用パワープラントの制御装置
JP3515561B2 (ja) * 2002-01-15 2004-04-05 本田技研工業株式会社 ハイブリッド車両の制御装置
US7822524B2 (en) * 2003-12-26 2010-10-26 Toyota Jidosha Kabushiki Kaisha Vehicular drive system
JP2006182274A (ja) * 2004-12-28 2006-07-13 Denso Corp ロックアップクラッチ装備車両の回生制御装置
JP4259494B2 (ja) * 2005-03-04 2009-04-30 トヨタ自動車株式会社 車両用駆動装置の制御装置
DE112006001409B4 (de) * 2005-05-30 2019-10-31 Toyota Jidosha Kabushiki Kaisha Steuervorrichtung für Fahrzeugschaltmechanismus
JP4063295B2 (ja) * 2005-10-26 2008-03-19 トヨタ自動車株式会社 ハイブリッド車用駆動装置の制御装置
JP2008137518A (ja) 2006-12-04 2008-06-19 Daihatsu Motor Co Ltd 発電量制御方法
JP4169081B1 (ja) * 2007-05-25 2008-10-22 トヨタ自動車株式会社 動力出力装置、それを備えたハイブリッド自動車、および動力出力装置の制御方法
JP2008296778A (ja) * 2007-05-31 2008-12-11 Toyota Motor Corp 連結装置、変速機およびそれを備えた動力出力装置、ならびに連結装置の制御方法
JP2009083583A (ja) * 2007-09-28 2009-04-23 Toyota Motor Corp 車両の制御装置
KR100915207B1 (ko) * 2007-10-16 2009-09-02 볼보 컨스트럭션 이키프먼트 홀딩 스웨덴 에이비 중장비용 유압회로
JP4424421B2 (ja) * 2008-01-17 2010-03-03 トヨタ自動車株式会社 電動車両の制御装置およびそれを備えた電動車両、ならびに電動車両の制御方法およびその制御方法をコンピュータに実行させるためのプログラムを記録したコンピュータ読取可能な記録媒体
JP2009243498A (ja) * 2008-03-28 2009-10-22 Aisin Aw Co Ltd 駆動制御装置
WO2010106671A1 (ja) * 2009-03-19 2010-09-23 トヨタ自動車株式会社 車両用動力伝達装置の制御装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0998516A (ja) * 1995-07-24 1997-04-08 Toyota Motor Corp 車両用駆動制御装置
JPH09117008A (ja) * 1995-10-13 1997-05-02 Toyota Motor Corp ハイブリッド駆動装置
JPH11125328A (ja) * 1997-10-27 1999-05-11 Honda Motor Co Ltd ハイブリッド車両
JP2006118667A (ja) * 2004-10-25 2006-05-11 Toyota Motor Corp 車両用駆動装置の制御装置
JP2007050866A (ja) * 2005-08-19 2007-03-01 Toyota Motor Corp ハイブリッド車の制御装置
JP2008149907A (ja) * 2006-12-18 2008-07-03 Toyota Motor Corp ハイブリッド駆動装置の制御装置

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012214176A (ja) * 2011-04-01 2012-11-08 Honda Motor Co Ltd 車両用駆動装置
WO2013035730A1 (ja) * 2011-09-05 2013-03-14 本田技研工業株式会社 ハイブリッド車両の制御装置および制御方法
JP2013052804A (ja) * 2011-09-05 2013-03-21 Honda Motor Co Ltd ハイブリッド車両の制御装置および制御方法
JP2013052802A (ja) * 2011-09-05 2013-03-21 Honda Motor Co Ltd ハイブリッド車両の制御装置および制御方法
JP2013052797A (ja) * 2011-09-05 2013-03-21 Honda Motor Co Ltd 車両の制御装置および制御方法
JP2013248961A (ja) * 2012-05-31 2013-12-12 Toyota Motor Corp 車両の制御装置
WO2017138385A1 (ja) * 2016-02-08 2017-08-17 いすゞ自動車株式会社 ハイブリッド車両及びハイブリッド車両の制御方法
JP2017201681A (ja) * 2016-05-04 2017-11-09 エルエス産電株式会社Lsis Co., Ltd. 変圧器の損失電力予測装置

Also Published As

Publication number Publication date
DE112009004511B4 (de) 2018-07-12
JPWO2010106671A1 (ja) 2012-09-20
CN102427979B (zh) 2014-11-05
US9079484B2 (en) 2015-07-14
US20120022737A1 (en) 2012-01-26
CN102427979A (zh) 2012-04-25
DE112009004511T5 (de) 2012-05-31
JP5267656B2 (ja) 2013-08-21

Similar Documents

Publication Publication Date Title
JP5267656B2 (ja) 車両用動力伝達装置の制御装置
JP4215092B2 (ja) ハイブリッド車両のエンジン起動装置
JP4983453B2 (ja) 車両用駆動装置の制御装置
JP5092540B2 (ja) 車両用動力伝達装置の制御装置
JP4973165B2 (ja) 車両用駆動装置の制御装置
JP5018445B2 (ja) 車両用動力伝達装置の制御装置
JP4501925B2 (ja) 車両用駆動装置の制御装置
JP4238927B1 (ja) 車両用自動変速機の制御装置
JP5098402B2 (ja) 車両用駆動装置の制御装置
JP4683137B2 (ja) 動力伝達装置の制御装置
JP4858310B2 (ja) 車両用動力伝達装置の制御装置
JP2008207690A (ja) 車両用駆動装置の制御装置
JP2009012730A (ja) ハイブリッド車両用動力伝達装置のエンジン始動装置
JP5076654B2 (ja) 車両用動力伝達装置の制御装置
JP2010070008A (ja) 車両用駆動装置の制御装置
JP2009040103A (ja) 車両用動力伝達装置の制御装置
JP5445306B2 (ja) 車両用自動変速機の変速段設定方法
JP2008296610A (ja) 車両用動力伝達装置の制御装置
JP4998072B2 (ja) 車両用動力伝達装置の制御装置
JP4483879B2 (ja) 車両用駆動装置の制御装置
JP5018452B2 (ja) 車両用動力伝達装置の制御装置
JP2010143491A (ja) 車両用動力伝達装置の制御装置
JP2009280177A (ja) 車両用動力伝達装置の制御装置
JP5195376B2 (ja) 車両用駆動装置の制御装置
JP4967634B2 (ja) 車両用駆動装置の制御装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980159322.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09841876

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011504685

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13257450

Country of ref document: US

Ref document number: 1120090045111

Country of ref document: DE

Ref document number: 112009004511

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09841876

Country of ref document: EP

Kind code of ref document: A1