WO2010105011A1 - Systems and methods for friction displays and additional haptic effects - Google Patents

Systems and methods for friction displays and additional haptic effects Download PDF

Info

Publication number
WO2010105011A1
WO2010105011A1 PCT/US2010/026907 US2010026907W WO2010105011A1 WO 2010105011 A1 WO2010105011 A1 WO 2010105011A1 US 2010026907 W US2010026907 W US 2010026907W WO 2010105011 A1 WO2010105011 A1 WO 2010105011A1
Authority
WO
WIPO (PCT)
Prior art keywords
actuator
touch
haptic
composite
friction
Prior art date
Application number
PCT/US2010/026907
Other languages
French (fr)
Inventor
Juan Manuel Cruz-Hernandez
Danny A. Grant
Original Assignee
Immersion Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/697,037 external-priority patent/US9927873B2/en
Priority claimed from US12/697,010 external-priority patent/US9874935B2/en
Priority claimed from US12/696,908 external-priority patent/US10007340B2/en
Priority claimed from US12/696,893 external-priority patent/US9746923B2/en
Priority claimed from US12/696,900 external-priority patent/US9696803B2/en
Priority claimed from US12/697,042 external-priority patent/US10564721B2/en
Priority to CN201080011747.7A priority Critical patent/CN102349041B/en
Priority to JP2011554179A priority patent/JP5694205B2/en
Priority to PCT/US2010/026907 priority patent/WO2010105011A1/en
Priority to EP18198744.7A priority patent/EP3447614A1/en
Priority to KR1020197004887A priority patent/KR20190020180A/en
Application filed by Immersion Corporation filed Critical Immersion Corporation
Priority to EP10712201.2A priority patent/EP2406703B1/en
Priority to KR1020167023565A priority patent/KR101952002B1/en
Publication of WO2010105011A1 publication Critical patent/WO2010105011A1/en

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/016Input arrangements with force or tactile feedback as computer generated output to the user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B06GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS IN GENERAL
    • B06BMETHODS OR APPARATUS FOR GENERATING OR TRANSMITTING MECHANICAL VIBRATIONS OF INFRASONIC, SONIC, OR ULTRASONIC FREQUENCY, e.g. FOR PERFORMING MECHANICAL WORK IN GENERAL
    • B06B1/00Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency
    • B06B1/02Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy
    • B06B1/06Methods or apparatus for generating mechanical vibrations of infrasonic, sonic, or ultrasonic frequency making use of electrical energy operating with piezoelectric effect or with electrostriction
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F1/00Details not covered by groups G06F3/00 - G06F13/00 and G06F21/00
    • G06F1/16Constructional details or arrangements
    • G06F1/1601Constructional details related to the housing of computer displays, e.g. of CRT monitors, of flat displays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/017Gesture based interaction, e.g. based on a set of recognized hand gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0481Interaction techniques based on graphical user interfaces [GUI] based on specific properties of the displayed interaction object or a metaphor-based environment, e.g. interaction with desktop elements like windows or icons, or assisted by a cursor's changing behaviour or appearance
    • G06F3/0483Interaction with page-structured environments, e.g. book metaphor
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • G06F3/04886Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures by partitioning the display area of the touch-screen or the surface of the digitising tablet into independently controllable areas, e.g. virtual keyboards or menus
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/14Digital output to display device ; Cooperation and interconnection of the display device with other functional units
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T15/003D [Three Dimensional] image rendering
    • G06T15/04Texture mapping
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02NELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
    • H02N2/00Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
    • H02N2/02Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing linear motion, e.g. actuators; Linear positioners ; Linear motors
    • H02N2/06Drive circuits; Control arrangements or methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2200/00Indexing scheme relating to G06F1/04 - G06F1/32
    • G06F2200/16Indexing scheme relating to G06F1/16 - G06F1/18
    • G06F2200/163Indexing scheme relating to constructional details of the computer
    • G06F2200/1637Sensing arrangement for detection of housing movement or orientation, e.g. for controlling scrolling or cursor movement on the display of an handheld computer
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/01Indexing scheme relating to G06F3/01
    • G06F2203/014Force feedback applied to GUI
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/033Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor
    • G06F3/0346Pointing devices displaced or positioned by the user, e.g. mice, trackballs, pens or joysticks; Accessories therefor with detection of the device orientation or free movement in a 3D space, e.g. 3D mice, 6-DOF [six degrees of freedom] pointers using gyroscopes, accelerometers or tilt-sensors
    • GPHYSICS
    • G08SIGNALLING
    • G08BSIGNALLING OR CALLING SYSTEMS; ORDER TELEGRAPHS; ALARM SYSTEMS
    • G08B6/00Tactile signalling systems, e.g. personal calling systems

Definitions

  • Touch-enabled devices have become increasingly popular. For instance, mobile and other devices may be configured with touch-sensitive displays so that a user can provide input by touching portions of the touch-sensitive display. As another example, a touch- enabled surface separate from a display may be used for input, such as a trackpad, mouse, or other device.
  • a user may touch a portion of the display or surface that is mapped to an on-screen graphical user interface, such as a button or control.
  • a gesture may be provided, such as a sequence of one or more touches, drags across the surface, or other recognizable patterns sensed by the device.
  • Embodiments include systems and methods for providing composite haptic effects comprising a variation in a coefficient of friction of a touch surface and one or more other outputs. By providing such surface-based effects, a device can provide a more compelling user experience than may otherwise have been achieved.
  • a method comprises detecting, using at least one sensor, a touch occurring in a touch area when an object contacts a touch surface.
  • the method can further comprise selecting a composite haptic effect to generate in response to the touch, the composite haptic effect including at least one surface-based haptic effect and at least one other effect.
  • a first haptic signal can be sent to a first actuator to cause the first actuator to vary a coefficient of friction of the touch surface.
  • the method can further comprise, based on the selected composite haptic effect, sending a second haptic signal to cause an actuator to provide a second haptic output in addition to the variation in the coefficient of friction.
  • the second haptic signal can be sent to a second actuator or the same actuator(s) used to vary the coefficient of friction can generate the second haptic output.
  • Another embodiment comprises a tangible computer storage medium embodying program code executable by a computing system for carrying out such a method.
  • Figure IA is a block diagram showing an illustrative system configured to provide composite haptic effects.
  • Figures IB and 1C show additional illustrative systems configured to provide composite haptic effects.
  • Figure 2 A shows another illustrative system configured to provide composite haptic effects.
  • Figure 2B is a cross-sectional view of the system shown in Figure 2 A.
  • Figure 3A shows another illustrative system configured to provide composite haptic effects
  • Figure 3B is a cross sectional view of the system shown in Figure 3 A.
  • Figure 4 is a flowchart showing illustrative steps in a method of providing composite haptic effects.
  • Figures 5A-5D show illustrative features that can be simulated using surface-based haptic effects.
  • Figures 6A-6H show illustrative features, specifically textures, that can be simulated using surface-based haptic effects.
  • Figure 7 is a flowchart showing illustrative steps in another method of providing composite haptic effects.
  • Figure 8 a diagram illustrating an example of a reference file for use in generating composite haptic effects.
  • One illustrative embodiment of the present invention comprises a computing system such as an iPod® portable music device or iPhone® mobile device, both available from Apple Inc. of Cupertino, California, or a Zune(R) portable device, available from Microsoft Corporation of Redmond, Washington.
  • the computing system can include and/or may be in communication with one or more sensors, such as an accelerometer, as well as sensors (e.g., optical, resistive, or capacitive) for determining a location of a touch relative to a display area corresponding in this example to the screen of the device.
  • sensors such as an accelerometer, as well as sensors (e.g., optical, resistive, or capacitive) for determining a location of a touch relative to a display area corresponding in this example to the screen of the device.
  • a composite haptic effect can comprise an effect that utilizes a variation in a coefficient of friction of a touch surface along with one or more other haptic outputs presented in combination with the variation in coefficient of friction.
  • the other output(s) may be presented at the same time as the variation in the coefficient of friction, shortly before, and/or shortly after.
  • the composite effect may be perceived as a single effect or may be perceived as a plurality of related effects.
  • the coefficient of friction of the screen can be varied based on the position, velocity, and/or acceleration of the finger.
  • the user may perceive a feature and/or a texture.
  • the friction may be varied so that the user perceives a bump, border, or other obstacle corresponding to an edge of an on-screen button.
  • the composite haptic effect may further include tactile feedback as the on-screen button is pressed.
  • a vibration-based effect may be generated so that a user perceives a feature such as a bump, border, or obstacle defining a control area, with a variation in the coefficient of friction used to indicate when the control is selected/changed.
  • a combination of variation in friction and vibrotactile effects may be used in combination to create the perception of a single texture or other feature.
  • the variation in the coefficient of friction and other effect(s) may be generated by the same actuator or by different actuators working in concert.
  • the coefficient of friction can be varied using a piezoelectric actuator, while vibrotactile effects are generated using a linear resonant actuator.
  • a portion of a touch surface can be raised/lowered (e.g., using an actuator or shape memory alloy).
  • Figure IA shows an illustrative system 100 for providing a composite haptic effect.
  • system 100 comprises a computing device 101 featuring a processor 102 interfaced with other hardware via bus 106.
  • a memory 104 which can comprise any suitable tangible (and non-transitory) computer-readable medium such as RAM, ROM, EEPROM, or the like, embodies program components that configure operation of the computing device.
  • computing device 101 further includes one or more network interface devices 110, input/output (I/O) interface components 112, and additional storage 114.
  • Network device(s) 110 can represent any components that facilitate a network connection. Examples include, but are not limited to, wired interfaces such as Ethernet, USB, IEEE 1394, and/or wireless interfaces such as IEEE 802.11, Bluetooth, or radio interfaces for accessing cellular telephone networks (e.g., transceiver/antenna for accessing a CDMA, GSM, UMTS, or other mobile communications network).
  • wired interfaces such as Ethernet, USB, IEEE 1394
  • wireless interfaces such as IEEE 802.11, Bluetooth
  • radio interfaces for accessing cellular telephone networks (e.g., transceiver/antenna for accessing a CDMA, GSM, UMTS, or other mobile communications network).
  • I/O components 112 may be used to facilitate connection to devices such as a one or more displays, keyboards, mice, speakers, microphones, and/or other hardware used to input data or output data.
  • Storage 114 represents nonvolatile storage such as magnetic, optical, or other storage media included in device 101.
  • System 100 further includes a touch surface 116, which is in this example integrated into device 101.
  • Touch surface 116 represents any surface that is configured to sense tactile input of a user.
  • One or more sensors 108 are configured to detect a touch in a touch area when an object contacts a touch surface and provide appropriate data for use by processor 102. Any suitable number, type, or arrangement of sensors can be used.
  • resistive and/or capacitive sensors may be embedded in touch surface 116 and used to determine the location of a touch and to determine other information, such as touch pressure.
  • optical sensors may be used.
  • a first actuator 118 in communication with processor 102 is coupled to touch surface 116.
  • first actuator 118 is configured to output a haptic output varying a coefficient of friction of the touch surface in response to a first haptic signal.
  • first actuator 118 may provide haptic output by moving the touch surface in a controlled manner.
  • Some haptic outputs may utilize an actuator coupled to a housing of the device, and some haptic outputs may use multiple actuators in sequence and/or in concert.
  • the coefficient of friction can be varied by vibrating the surface at different frequencies and/or amplitudes. Different combinations/sequences of variance can be used to simulate the feeling of a texture, presence of another feature such as an obstacle or protrusion, or to provide another effect.
  • first actuator 118 may use multiple actuators of the same or different type to vary the coefficient of friction of the touch surface.
  • a piezoelectric actuator is used in some embodiments to displace some or all of touch surface 116 vertically and/or horizontally at ultrasonic frequencies.
  • Figure IA also shows a second actuator 119.
  • Second actuator 119 can be used to provide a second haptic output in addition to the variation in the coefficient of friction as provided by the first actuator.
  • the second haptic output may comprise a vibrotactile haptic effect such as a vibration of the device and/or touch surface 116.
  • the second haptic output may comprise a change in the touch surface 116, such as a change in temperature, color, or texture generated by raising/lowering portions of touch surface 116.
  • Actuators 118 and 119 may each comprise multiple actuators, and may be of the same or different types.
  • Suitable actuator types include, but are not limited to, piezoelectric actuators, shape memory alloys, electroactive polymers, flexible composite piezoelectric actuators (e.g., an actuator comprising a flexible material), electromagnetic actuators, eccentric rotational mass actuators, linear resonant actuators, voice coil actuators, electrostatic actuators, and/or magnetostrictive actuators. Although shown as separate elements 118 and 119, a single actuator capable of varying the coefficient of friction of touch surface 116 and generating another haptic effect could be used instead of separate first and second actuators. Additionally, in practice one or more of the actuators could be embedded within touch surface 116.
  • a detection module 124 configures processor 102 to monitor touch surface 116 via sensor(s) 108 to determine a position of a touch.
  • module 124 may sample sensor 108 in order to track the presence or absence of a touch and, if a touch is present, to track the location, path, velocity, acceleration, pressure and/or other characteristics of the touch over time.
  • Haptic effect determination module 126 represents a program component that analyzes data regarding touch characteristics to select a composite haptic effect to generate. For example, in some embodiments, an input gesture comprising a sequence of one or more touches may be recognized and correlated to one or more composite haptic effects. As another example, some or all of the area of touch surface 116 may be mapped to a graphical user interface. Different composite haptic effects may be selected based on the location of a touch in order to simulate the presence of a feature displayed on a screen by varying the friction of touch surface and providing one or more other haptic outputs so that the feature is "felt" when a portion of touch surface 116 mapped to a screen location containing the feature is encountered.
  • Haptic effect generation module 128 represents programming that causes processor
  • generation module 128 may access stored waveforms or commands to send to actuator 118 and 119.
  • haptic effect generation module 128 may receive a desired coefficient of friction and utilize signal processing algorithms to generate an appropriate signal to send to actuator(s) 118.
  • Module 128 may receive a desired haptic effect type and select an actuator 119 and command the selected actuator to provide the desired haptic effect.
  • a desired texture may be indicated along with target coordinates for the texture.
  • An appropriate waveform can be sent to a piezoelectric or other actuator to vary the coefficient of friction using high-frequency displacement, with another waveform sent to one or more vibro tactile actuators to generate appropriate displacement of the touch surface (and/or other device components) at a (relatively) lower frequency, or to provide a pop, ping, or other effect when the feature is encountered.
  • a touch surface may or may not overlay (or otherwise correspond to) a display, depending on the particular configuration of a computing system.
  • FIG IB an external view of a computing system IOOB is shown.
  • Computing device 101 includes a touch-enabled display 116 that combines a touch surface and a display of the device.
  • the touch surface may correspond to the display exterior or one or more layers of material above the actual display components.
  • a composite haptic effect is selected based on the content of a graphical user interface 130, which in this example shows a 12-key keypad such as may be provided by a mobile device.
  • Particularly each key may include a border 132 and interior 134.
  • a composite haptic effect can be selected to generate a variation in friction corresponding to interior 134 and a different haptic output can be used to indicate when a user has reached border 132.
  • a feature 136 is included in the middle key (corresponding to the "5" key in a standard numeric keypad).
  • feature 136 may comprise a different texture from a texture of interior 134 or a simulated feature such as a bump or gap serving as a "centering" feature.
  • composite effects can be used to denote the border between keys and to indicate when the "5" key is reached by the perception of feature 136.
  • FIG. 1C illustrates another example of a touch-enabled computing system lOOC.
  • a computing device 101 features a touch surface 116 which is mapped to a graphical user interface provided in a display 122 that is included in computing system 120 interfaced to device 101.
  • computing device 101 may comprise a mouse, trackpad, or other device
  • system 120 may comprise a desktop or laptop computer, set-top box (e.g., DVD player, DVR, cable television box), or another computing system.
  • touch surface 116 and display 122 may be included in the same device, such as a touch-enabled trackpad in a laptop computer featuring display 122.
  • a graphical user interface 138 is shown, comprising a menu bar 140 and buttons 142, 144, and 146.
  • the graphical user interface may comprise an on-screen menu for a home entertainment device, while touch surface 116 is included on a remote control or peripheral.
  • touch surface 116 is included on a remote control or peripheral.
  • an area of the touch surface is mapped to menu bar 140.
  • a composite haptic effect is provided to indicate that the menu bar is selected.
  • the coefficient of friction may differ as between area 148 and areas 150, 152, and 154 (corresponding to buttons 142, 144, and 146, respectively), with vibrotactile or other feedback provided as a user moves through area 148 and crosses into one of areas 150, 152, and 154.
  • vibrotactile or other haptic output can be used to generate different simulated textures in areas 148, 150, 152, and 154, with the coefficient of friction varied within each area as buttons 142, 144, and/or 146 are actuated.
  • Figure 2 A shows another computing device 201 featuring a touch-enabled display 202, which again corresponds to a touch surface.
  • Figure 2B shows a cross-sectional view of device 201.
  • two actuators 218-1 and 282-2 are used to vary the coefficient of friction of touch surface 202 while a second actuator 219 provides another haptic output via touch surface 202.
  • actuator 219 may provide a vibrotactile output such as a pop or ping through touch surface 202 or may raise/lower one or more portions of the touch surface 202.
  • Figure 2B shows another exemplary actuator 222.
  • actuator 222 may be used in addition to or instead of one or more of actuators 218-1, 218-2, or 219.
  • actuator 222 may be used to provide a low-frequency vibration output.
  • a finger 226 contacts the display and moves to the position shown at 228, encountering a simulated feature 230.
  • a finger 226 contacts the display and moves to the position shown at 228, encountering a simulated feature 230.
  • a composite haptic effect may be used to simulate feature 230.
  • the coefficient of friction of display 202 may be increased by adjusting output of actuators 218-1/218-2.
  • actuator 219 may be used to provide a vibrotactile "pop" effect.
  • the coefficient of friction of display 202 may be decreased.
  • a composite haptic effect may comprise a group of effects.
  • lines 238 and 240 indicate a path followed by the finger moving from 226 to 228.
  • the composite haptic effect includes output generated using actuator 219 and/or 222 if the finger moves outside the path.
  • a variation in friction may be used to simulate feature 230, with a vibration output provided while feature 230 is simulated if the user's finger crosses either of lines 238 and 240.
  • Figures 3A-3B depict an illustrative hardware architecture for a device that can provide composite haptic effects.
  • the touch surface comprises glass panel 302, although another transparent material (or non-transparent) material could be used.
  • a touchpad i.e. touch-sensitive device
  • a pair of piezoelectric benders 318-1 and 318-2 are bonded to the glass. Use of glass or another transparent material along with free space between the piezoelectric benders can allow for use of a display (not shown) beneath the glass.
  • the piezoelectric benders can be commanded to reduce the static coefficient of friction of glass 302 by 42%.
  • Some embodiments utilize a bipolar pulse width modulated signal at 24kHz, with varying amplitude used to vary the coefficient of friction.
  • voltage can vary between - 80 and +80 Volts at a frequency above 2OkHz, with friction variation from 0 to 60% depending on voltage magnitude (or PWM magnitude to produce the voltage magnitude).
  • actuator 319-2 may be bonded to panel 302 and can be used to provide low-frequency vibration effects using an eccentric rotating mass (ERM) actuator and/or haptic pops, jolts, and the like via a linear resonant actuator (LRA).
  • ERP eccentric rotating mass
  • LRA linear resonant actuator
  • Actuators 319-1 and 319-3 may be bonded to the case or housing of device 301 and may comprise the same type of actuator as 319-2 or may be different from actuator 319-2 (and/or one another).
  • actuator 319-1 comprises an ERM actuator
  • actuator 319-2 comprises a shape memory alloy used to move panel 302
  • actuator 319-3 comprises an LRA actuator. Either or both actuators 319-1 and 319-3 could be bonded to both panel 302 and the housing of device 301.
  • Block 402 represents determining a position of a touch in a touch area.
  • a processor may utilize one or more sensors embedded in or viewing a touch-enabled display or surface to track a position of a touch on the surface. Based on the current and/or past position of the touch, an interaction with a graphical user interface mapped to the touch area can be determined.
  • one or more composite haptic effects can be selected at block 404, with a composite effect achieved by varying the friction of the touch surface along with providing one or more other haptic outputs.
  • the touch may occur at a position in the touch surface mapped to a particular texture or feature in a graphical user interface.
  • the composite haptic effect may comprise a simulation of the texture or feature. Additionally or alternatively, the composite haptic effect may comprise an ambient effect (e.g., a texture/feature) and dynamic effect, such as output provided when a feature is initially encountered.
  • a gesture can be recognized as a sequence of one or more touches or patterns of touch, such as based on a direction and length of a swipe across the screen, a sequence of discrete touches in a pattern, or another recognizable interaction.
  • a composite haptic effect associated with the gesture can be selected.
  • a "Z"-shaped touch trajectory may be recognized as a type of input gesture based on pattern recognition carried out by a processor of the device while the gesture is in progress.
  • One or more composite haptic effects may be associated with the "Z"-gesture in data accessible to the processor indicating an effect to output while the gesture is in progress and/or after the gesture is complete.
  • the data may provide for the surface to take on a texture or a change in friction as the gesture nears completion.
  • a texture or coefficient of friction of the display may change after the gesture is recognized in order to confirm input of the gesture.
  • one or more haptic signals are accessed and/or generated in order to provide a variation in the coefficient of friction and to generate the second haptic output (or outputs).
  • a processor may access drive signals stored in memory and associated with particular haptic effects.
  • a signal may be generated by accessing a stored algorithm and inputting parameters associated with an effect.
  • an algorithm may output data for use in generating a drive signal based on amplitude and frequency parameters.
  • a haptic signal may comprise data sent to an actuator to be decoded by the actuator.
  • the actuator may itself respond to commands specifying parameters such as amplitude and frequency.
  • the current pixel location and/or a projected pixel location for the touch based on a velocity of the touch can be compared to a bitmap specifying composite haptic effects for various pixel positions. Based on the composite haptic effect(s), suitable haptic signals can be accessed/generated to provide the output specified in the bitmap.
  • a current or projected location of a touch can be compared to data identifying the location of graphical user interface (GUI) features such as controls, textual content, boundaries, and the like. Then, if a GUI feature is identified at the location, data associating one or more composite haptic effects to the feature can be accessed. For instance, a processor may track the location of a touch and determine the touch is at or approaching a position in the touch area mapped to a particular control (e.g., a button) in the graphical user interface. The processor can then consult a listing of interface elements to determine a composite haptic effect (e.g., a texture, a friction variation) associated with the button and, based on the haptic effect, take further actions to generate the composite haptic effect.
  • GUI graphical user interface
  • Block 408 represents transmitting the haptic signal or signals to one or more actuators to achieve the composite haptic effect by varying the coefficient of friction and providing one or more other haptic outputs. For instance, if an analog drive signal is to be provided, a processor can utilize an onboard D/A converter to create the signal. If a digital command is provided to the actuator, an appropriate message can be generated by an I/O bus of the processor. The haptic effect may be felt at the point of the touch and/or elsewhere. For example, if a two-finger input gesture is provided, the texture/coefficient of friction at the first finger may be changed in response to recognizing movement of the second finger.
  • a baseline haptic signal may be sent to the actuator(s) to generate an ambient haptic effect even in the absence of a selected haptic effect in order to enhance the range of potential effects the device can produce.
  • transmitting a haptic signal may comprise sending a "stop" command, a "zero” or minimal signal, or another signal to the actuator to reduce intensity as appropriate.
  • use of certain actuators, such as piezoelectric actuators may allow for reduction in the coefficient of friction of a touch surface but not an increase in the coefficient of friction.
  • a baseline signal may be provided so that the "ordinary" friction level of the touch surface is below the coefficient of friction the touch surface would have when static. Accordingly, haptic effects may be defined with respect to the baseline, rather than static, value. If maximum friction is desired, a "zero" signal may be sent to the piezoelectric actuator to stop movement of the surface.
  • haptic effects may take any suitable form.
  • some haptic effects may comprise variations in the friction of the touch surface — some portions may be rendered "slicker” or “rougher” than others.
  • vibrotactile effects may be used, such as vibrations or series of vibrations. Vibrotactile effects and/or variations in friction may be used to simulate the feeling of distinct features, such as boundaries or obstacles. For example, a boundary or edge may be simulated by an increase in friction, with the friction decreasing if the boundary is crossed (in some instances).
  • Figures 5A-5D each depict an illustrative simulated feature.
  • Figure 5A shows a simplified example in which the white area represents an area where actuators will be activated, such as by using a non-zero voltage PWM signal.
  • the white area may correspond to a virtual button in the middle of a touch pad, where a user's finger (or another object in contact with a surface) will encounter a lower friction value.
  • Figure 5B represents an inverses situation — the finger/object may navigate freely in the white area, but may be slowed or stopped at the high friction (black) area. This may, for example, allow a user to more easily locate a button or other location in the touch area.
  • Figure 5C illustrates a simulated feature comprising a plurality of grooves.
  • a computing system comprising a touch surface configured to provide surface-based haptic effects may determine effects and signals in real time.
  • the system may first determine if the touch position is inside the circle and, if so, provide a suitable output value (Figure 5A) or cease output ( Figure 5B).
  • the system may provide the feature of Figure 5C by determining if the touch occurs in an area with desired high-friction and, if so, drive the actuator(s).
  • Figure 5D presents a more complex pattern.
  • the pattern in Figure 5D may correspond to desired features associated with an array of keys, such as an array of mobile phone keys, a simulated keyboard, or other controls.
  • real time rendering could be used for any of Figures 5A-5D, more complex logic may be needed to render each specific circle/button in the pattern.
  • These and even more arbitrary patters may increase the complexity of programming and computation time.
  • the surface- based haptic effects can be determined ahead of time and stored in a file. At runtime, the file can be accessed based on a touch position to allow for faster determination and generation of appropriate haptic signals.
  • such a file could include data to drive the actuators to provide a first haptic effect (e.g., high friction) when the touch position is mapped to the circles, and the file could include data to drive the actuators to provide a second effect (e.g., low friction) when the touch position is mapped to a location outside the circles
  • Figures 5A-5D may be simulated using other types of actuators in addition to or instead of piezoelectric actuators.
  • vibrotactile actuators may be used to provide a vibration, pop, pulse, click, or the like when the circles of figures 5 A, 5B, or 5D are encountered and/or when the pattern of Figure 5C is encountered (e.g., a pop or click at each transition from black to white).
  • the haptic effects that can be produced by the actuators can vary depending on the current, voltage, frequency as well as start and stop times. Such haptic effects include, but are not limited to, vibrations, pulses, pops, clicks, damping characteristics, and varying textures.
  • the multiple actuators are utilized to generate different haptic effects for different applications.
  • the two actuators are configured to provide a vibration or pop upon the user's finger or stylus passing over the boundaries of a graphical object (e.g. keyboard keys), as discussed above.
  • the features of Figures 5A-5D may be simulated using composite haptic effects. For example, a variation of friction may be used along with a click, pop, or other response when an object touching the surface moves from black to white or vice-versa.
  • Vibrotactile effects and/or variations in friction may additionally or alternatively be used to simulate various textures. Additional detail regarding generation and use of textures can be found in U.S. Patent Application Nos. 12/697,010, 12/697,042, and 12/697,037, referenced above and entitled “Systems and Methods for a Texture Engine,” (Attorney Docket IMM354 (51851-383720)), “Systems and Methods for Using Multiple Actuators to Realize Textures," (Attorney Docket No. IMM355 (51851-383719)), and “Systems and Methods for Using Textures in Graphical User Interface Widgets," (Attorney Docket No. IMM356 (51851-383718)), respectively.
  • patterns of differing friction or patterns of vibration may be provided to mimic the feeling of textures such as brick, rocks, sand, grass, fur, various fabric types, water, molasses, and other fluids, leather, wood, ice, lizard skin, metals, and other texture patterns.
  • textures not analogous to real-world textures may also be used, such as high-magnitude vibrotactile or other feedback when a "danger" texture is desired.
  • a texture can simulate a surface property by providing an output perceived as a spatially varying force.
  • a texture is contrasted to a vibration output intended to be directly perceived as a time varying force, though of course vibrations can be used in simulating texture.
  • a texture may simulate the force felt when a stick or finger is moved over a grating.
  • the texture force can be characterized by a programmer/developer using parameters that can include a magnitude and a grit.
  • the magnitude specifies the amount of force applied to the object encountering the touch surface (e-g- > at each "bump" of the grating).
  • the grit is basically the spacing between forces (e.g., spacing between each of the grating bumps).
  • additional command parameters can be provided to control the position of the "bumps" of the texture force. For example, information can be included to instruct the distance between bumps to vary exponentially over a distance, or vary according to a specified formula. Additionally, a given texture may be defined as a plurality of superimposed grits and magnitudes.
  • Figure 6A is an illustration of one of the textures that a texture engine may generate according to one embodiment of the present invention.
  • the embodiment shown in Figure 6A comprises brick.
  • the texture of brick is characterized by having a rough irregular texture from bricks, punctuated with the feel of gritty valleys from the mortar.
  • a system for a texture engine may generate the rough irregular texture of brick by driving an actuator, such as a
  • LRA LRA, LPA, or FPA
  • this variance may be adjusted for different roughness.
  • the transition from brick to mortar may be rendered by a high duration pop created by an ERM. Additionally, the coefficient of friction may be varied between the brick and mortar portions. If the mortar is thick enough, a fine texture may be rendered by driving an actuator with a lower magnitude signal with a higher variance than that used to drive the actuator outputting the texture of the brick.
  • Figure 6B is an illustration of one of the textures that a texture engine may generate according to one embodiment of the present invention.
  • the embodiment shown in Figure 6B comprises rocks.
  • the texture of rocks is characterized by smooth surfaces punctuated with transitions as the user moves from rock to rock.
  • an actuator such as an FPA and/or piezoelectric actuator can be used to create patches of low friction.
  • Individual rocks may be rendered by a non- visual edge map of the displayed image, and outputting a high magnitude haptic signal to an actuator, such as an LRA, LPA or ERM, when the touch-sensitive interface detects the user's movement.
  • an actuator such as an LRA, LPA or ERM
  • a high- magnitude output can be provided whenever the touch-sensitive interface detects that the user's finger is transitioning from one rock to another.
  • the coefficient of friction may be varied as between rocks, as well.
  • Figure 6C is an illustration of one of the textures that a texture engine may generate according to one embodiment of the present invention.
  • the embodiment shown in Figure 6C comprises sand or sandpaper.
  • Sand is characterized by a rough, gritty feel as well as the sensation a pile of sand particles building up in front of the user's finger.
  • an actuator such as an LRA, LPA or FPA is driven with a random signal with high maximum variance while the user's finger is moving.
  • the processor may adjust the variance of the signal to create different degrees of roughness.
  • an actuator such as an FPA may be used.
  • the processor will drive the actuator with a signal that starts with a low intensity and builds as the user moves their finger in one direction.
  • a piezoelectric or other actuator can be used to increase the coefficient of friction to simulate sand build-up as well.
  • the texture shown in Figure 6C may comprise sandpaper.
  • Sandpaper is characterized by having a rough, gritty feel.
  • the processor drives an actuator, such as an LRA, LPA or FPA with a random signal with high maximum variance.
  • this signal is output only while the user's finger is moving across the surface the touch sensitive interface.
  • the processor may adjust the variance of the signal to change the level of roughness. Additionally, the roughness may be generated or emphasized through abrupt changes in the coefficient of friction.
  • Figure 6D is an illustration of one of the textures that a texture engine may generate according to one embodiment of the present invention.
  • the texture comprises the texture of grass.
  • Grass is characterized by a periodic light sensation that almost tickles the user's finger.
  • the processor may drive an actuator, such as an FPA or piezoelectric actuator, with a signal configured to create patches of low friction overlaid with patches of grass.
  • the processor may render individual grass blades by having a non-visual edge map of the displayed image and outputting a low magnitude signal to an actuator such as an LPA or ERM when the user interface detects movement between the simulated blades.
  • Figure 6E is an illustration of one of the textures that a texture engine may generate according to one embodiment of the present invention.
  • the texture comprises the texture of fabric. Fabric is characterized by a light smooth sensation.
  • the processor may drive an actuator such as an LPA or an LRA with low magnitude high frequency signals as the user's finger moves across the surface of the touch-sensitive interface.
  • the "grain" of the fabric may be simulated by varying friction levels of the display to provide lower friction when moving along the grain.
  • FIG. 6F is an illustration of one of the textures that a texture engine may generate according to one embodiment of the present invention.
  • the texture comprises the texture of water or molasses. Water is characterized by having almost no sensation. However, water that is disturbed may splash around and hit against he user's finger.
  • the processor may drive an actuator such as an FPA to reduce the friction on the surface of the touch-sensitive interface.
  • the processor may output the haptic signal only when the user is touching the screen.
  • the processor may drive the actuator with a signal configured to increase the friction on the user's finger as it moves across the surface of the touch-sensitive interface.
  • Figure 6G is an illustration of one of the textures that a texture engine may generate according to one embodiment of the present invention.
  • the texture comprises the texture of leather.
  • Leather is characterized by an overall smooth feeling that comprises the bumps and valleys of the surface of the leather.
  • the processor may drive an actuator, such as an FPA or piezoelectric actuator, with a signal configured to output a haptic effect that reduces friction as the user's finger moves across the surface of the touch-sensitive interface.
  • the processor can output the cracks and bumps by driving the actuator with a very short low magnitude haptic signal at times when the touch-sensitive interface detects that the user's finger is moving.
  • FIG. 6H is an illustration of one of the textures that a texture engine may generate according to one embodiment of the present invention.
  • the texture comprises the texture of wood.
  • Wood may be characterized by an irregular bumpy texture punctuated by a sharp transition as the user moves from board to board.
  • the processor may drive an actuator such as an LRA, LPA, or FPA with a non- visual edge map of the displayed image and drive the actuator with a very short low magnitude signal at various times when the user's finger is moving.
  • the processor may output a haptic signal configured to cause the actuator to generate a high magnitude, short duration, pop.
  • the friction of the touch surface can be varied when moving between planks, but can be maintained (or only slightly varied) when moving along the grain of the wood. In other embodiments, haptic effects associated with different textures may be output.
  • the processor may transmit a haptic signal configured to cause the actuator to output a haptic effect configured to cause the user to feel a texture associated with the texture of ice.
  • Ice is characterized by low friction, in some embodiments, ice has a completely smooth texture, in other embodiments, ice comprises a fine low magnitude gritty texture.
  • the processor may determine a haptic signal configured to cause the actuator to reduce the friction as much as possible while the user moves their finger across the surface of the touch-sensitive interface.
  • the processor may drive an actuator such as an LPA or LRA, with a haptic signal configured to output low magnitude effects while the user moves their finger.
  • the processor may drive the actuator with a signal configured to cause the actuator to output a haptic effect approximating the texture of lizard skin.
  • Lizard skin is characterized by an overall smooth sensation punctuated by transitions from bump to bump on the skin.
  • the processor may drive an actuator with a haptic signal configured to cause the actuator to create patches of low friction on the touch-sensitive interface.
  • the processor may render cracks on the surface of the skin by outputting high magnitude haptic signals periodically when the touch-sensitive interface detects that the user's finger is moving across its surface.
  • the processor may drive the actuator with a signal configured to cause the actuator to output a haptic effect approximating the texture of fur.
  • Fur is characterized by a periodic light sensation that is very soft to the touch.
  • the processor may drive the actuator with a haptic signal configured to cause the actuator to output a haptic effect configured to reduce the friction the user feels on the surface of the touch-sensitive interface.
  • the processor may further render individual hairs outputting a low magnitude pulsing haptic signals as the touch-sensitive interface detects the user's movement.
  • the processor may drive the actuator with a signal configured to cause the actuator to output a haptic effect approximating the texture of metal.
  • Metal is characterized by a smooth low friction surface that, in some embodiments, includes light grit.
  • the processor may drive the actuator with a signal configured to lower the friction the user feels on the surface of the touch-sensitive interface.
  • the processor may render individual bumps by outputting brief high magnitude haptic signals when the touch-sensitive interface detects that the user is moving over its surface. These brief high magnitude signals may approximate grit on the surface of the metal.
  • the processor may drive the actuator with a signal configured to cause the actuator to output a haptic effect approximating another sensation, for example, heat.
  • the processor may output a haptic signal configured to cause the actuator to output a high frequency jolting effect when the user touches elements of the display that are associated with heat.
  • Figure 7 is a flowchart showing illustrative steps in another method 700 of providing composite haptic effects.
  • Figure 7 is a flowchart showing an exemplary method 700 for providing a simulated feature by creating and using a reference file.
  • Figure 8 shows an example of a reference file comprising an array of pixels.
  • Blocks 702 and 704 represent preprocessing — activities that occur prior to use of a reference file to determine a composite haptic effect.
  • a single reference file is used to determine friction values and at least one other haptic output used in providing a composite haptic effect.
  • a "reference file" may comprise multiple files used together.
  • Block 702 represents creating a layout of a location and block 704 represents storing the layout in an image file, such as an array of pixels in a bitmap or other image file.
  • image file such as an array of pixels in a bitmap or other image file.
  • arbitrary shapes may be "drawn" in order to specify desired friction values.
  • white pixels are shown to indicate where no friction adjustment or other output is intended, while shaded pixels indicate a value of a desired coefficient of friction or even a value usable to drive an actuator (e.g., a desired PWM voltage level, frequency, etc.).
  • white pixels may indicate maximum drive, while various degrees of shading indicate lower drive values, with black representing zero drive.
  • white pixels and black pixels only are used, with the colors corresponding to on/off states of the actuators of a device.
  • each pixel may comprise multiple values (e.g., each pixel may have an RGB value), with the multiple values providing different data, such as drive levels for different actuators and the like.
  • a reference file may include multiple layers for specifying various parameters for each pixel position. For example, one layer may be used to define variations in the coefficient of friction, with one or more other layers used to define drive values or other information for use in outputting a vibrotactile or other haptic output. This example shows a relatively small number of pixels; in practice, the array may comprise thousands or millions of pixels.
  • buttons 802, 804, and 806 are shown, with button borders indicated by solid shading.
  • Respective interiors 808, 810, and 812 have different shading and are intended to represent different textures, friction values, or other effects corresponding to the button interiors.
  • a menu bar is shown with different shading at 814, along with two menu commands 816 and 818 with the same shading as one another, corresponding to different haptic effects that can be used to indicate when the menu bar is encountered and then when menu items are encountered.
  • transition areas between low and high (or high and low) friction or other effects could be included.
  • a reference file can be loaded into memory and read as shown at block 706 to determine composite haptic effects for output.
  • some or all of the pixel array may be maintained in working memory of a processor carrying out a position detection and feature simulation routine.
  • the pixel array is distributed alongside a corresponding image of a graphical user interface.
  • the pixel array is a layer or component of the graphical user interface image, and in further embodiments the array is a separate file not associated with a graphical user interface.
  • Block 708 represents determining a position of a touch.
  • a sensor may provide data used to determine a pixel position of a touch in an array of pixels mapped to a touch area. Non-pixel coordinates may be used in identifying the location of a touch, with appropriate transforms used during the mapping step below.
  • Block 712 represents activating one or more actuators to provide a surface-based haptic effect based at least in part on data from the image file.
  • the pixel value in the image file may be mapped to a desired coefficient of friction.
  • a device carrying out method 700 may determine, based on the pixel position and the desired coefficient of friction, a suitable signal or signals to send to one or more actuators to generate the desired coefficient of friction.
  • the pixel value may indicate a drive signal more directly, such as a voltage/amplitude/frequency value or offset for a PWM signal to be sent to a piezoelectric actuator.
  • Data of the array may also be configured for use in generating a drive signal for another type of actuator.
  • each pixel address may be associated with three intensity values (i.e., RGB).
  • Each of the three intensity values can be associated with a signal intensity/frequency for a corresponding actuator in some embodiments.
  • some values may specify intensity and others specify duration of operation for the same actuator.
  • different pixel intensity values may be correlated to different desired textures or components used to drive actuators to simulate a single texture. For example, textures 808, 810, and 812 may be achieved using a combination of friction variations and vibrations. When a touch occurs at a location mapped to the areas, the appropriate actuator(s) can be used to generate the textures.
  • Method 700 may determine touch locations mapped to multiple pixels in the image file. For example, a large touch may correspond to a range of pixel addresses in the image file. Values from the range of pixel addresses may be considered together, or analysis may be made to "pinpoint" the touch location and use values from a corresponding single pixel address.
  • method 700 checks at 714 for one or more events tied to a haptic effect.
  • a composite haptic effect may utilize one or more actuators that provide a haptic output to confirm a selection, indicate a change in status, or otherwise provide feedback to a user.
  • Block 716 represents using one or more actuators to provide haptic output corresponding to the event, and then continuing back to 708 to determine the touch position.
  • a user may move a finger or other object across a region of a touch surface that is mapped to button 802 and on to a region mapped to button 804. Texture 808 may be generated and then, as the finger/object moves to button 804, a click, pop, or other effect may be output to indicate the button borders.
  • a click or button-press event may be registered if the user lingers over a button for a predetermined time and/or if the touch- enabled system registers a touch or increase in pressure.
  • a click, pop, or other effect can be output to simulate the response of a physical button (or another response).
  • a computing device featuring a touch surface with surface- based haptic effects can output different surface-based haptic effects based on sequences of inputs.
  • the simulated features of the touch surface can vary based on a state of a device associated with the surface. In some embodiments, this can be implemented using a reference file with multiple layers; each layer can correspond to a particular state. The states can be changed based on various input conditions, for instance.
  • a touch surface may be configured to act as a keypad, such as on a mobile device.
  • the keypad may feature three rows of keys corresponding to numbers 1-9 and a fourth row with "0," "*", and "#" keys.
  • the touch surface may be configured to provide a centering feature, such as a higher friction level at the "5" key than in the remainder of the layout.
  • the computing device can be configured to change the state of the touch surface in response to user input based on tracking the input relative to the touch-sensitive area. For example, once the system determines that the user has found the "5" key, e.g. by detecting touching, hovering, or other activity indicating that the key has been located (but not necessarily selected), the surface-based effects can be provided based on a different state. If a multi-layer reference file is used, for example, a different layer can be loaded into memory. In the second state, for instance, boundaries between keys can be provided so that a user can proceed from the center to a desired key without the need for visual feedback (although, of course, visual, auditory, or other feedback can be provided alongside any embodiments of the present subject matter).
  • effects can vary in various embodiments. For example, effects may be used to identify particular portions of a touch surface mapped to areas in a graphical user interface, simulated keys or other controls, or may be provided for aesthetic or entertainment purposes (e.g., as part of a design and/or in a game). Effects may be provided for communication purposes as well. For example, Braille or other tactile-based communications methods can be facilitated.
  • adapted to or “configured to” herein is meant as open and inclusive language that does not foreclose devices adapted to or configured to perform additional tasks or steps. Additionally, the use of “based on” is meant to be open and inclusive, in that a process, step, calculation, or other action "based on” one or more recited conditions or values may, in practice, be based on additional conditions or values beyond those recited. Headings, lists, and numbering included herein are for ease of explanation only and are not meant to be limiting. Embodiments in accordance with aspects of the present subject matter can be implemented in digital electronic circuitry, in computer hardware, firmware, software, or in combinations of the preceding. In one embodiment, a computer may comprise a processor or processors.
  • the processor comprises or has access to a computer-readable medium, such as a random access memory (RAM) coupled to the processor.
  • the processor executes computer- executable program instructions stored in memory, such as executing one or more computer programs including a sensor sampling routine, a haptic effect selection routine, and suitable programming to produce signals to generate the selected haptic effects as noted above.
  • Such processors may comprise a microprocessor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), field programmable gate arrays (FPGAs), and state machines.
  • Such processors may further comprise programmable electronic devices such as PLCs, programmable interrupt controllers (PICs), programmable logic devices (PLDs), programmable read-only memories (PROMs), electronically programmable read-only memories (EPROMs or EEPROMs), or other similar devices.
  • Such processors may comprise, or may be in communication with, media, for example tangible computer-readable media, that may store instructions that, when executed by the processor, can cause the processor to perform the steps described herein as carried out, or assisted, by a processor.
  • Embodiments of computer-readable media may comprise, but are not limited to, all electronic, optical, magnetic, or other storage devices capable of providing a processor, such as the processor in a web server, with computer-readable instructions.
  • Other examples of media comprise, but are not limited to, a floppy disk, CD-ROM, magnetic disk, memory chip, ROM, RAM, ASIC, configured processor, all optical media, all magnetic tape or other magnetic media, or any other medium from which a computer processor can read.
  • various other devices may include computer-readable media, such as a router, private or public network, or other transmission device.
  • the processor, and the processing, described may be in one or more structures, and may be dispersed through one or more structures.
  • the processor may comprise code for carrying out one or more of the methods (or parts of methods) described herein.

Abstract

Systems, methods, and computer program products for providing composite haptic effects are disclosed. One disclosed method includes detecting a touch occurring in a touch area when an object contacts a touch surface and selecting a composite haptic effect to generate in response to the touch, the composite haptic effect including at least one surface-based haptic effect and at least one other effect. Based on the selected composite haptic effect, a first haptic signal can be sent to cause an actuator to vary a coefficient of friction of the touch surface and a second actuator can be caused to provide a second haptic output in addition to the variation in the coefficient of friction. The second haptic signal can be sent to a second actuator or the same actuator (s) used to vary the coefficient of friction and can be used to generate the second haptic output.

Description

SYSTEMS AND METHODS FOR FRICTION DISPLAYS AND ADDITIONAL HAPTIC EFFECTS Cross-Reference to Related Applications
This patent application claims priority to U.S. Provisional Patent Application No. 61/159,482, entitled "Locating Features Using a Friction Display," filed March 12, 2009, which is incorporated by reference herein in its entirety.
This patent application claims priority to U.S. Provisional Patent Application No. 61/262,041, entitled "System and Method for Increasing Haptic Bandwidth in an Electronic Device" filed November 17, 2009, which is incorporated by reference herein in its entirety.
This patent application claims priority to U.S. Provisional Patent Application No. 61 /262,038, entitled "Friction Rotary Device for Haptic Feedback" filed November 17, 2009, which is incorporated by reference herein in its entirety.
This patent application claims priority to U.S. Utility Patent Application No. 12/696,893, entitled "Systems And Methods For Providing Features In A Friction Display" filed January 29, 2010, which is incorporated by reference herein in its entirety. This patent application claims priority to U.S. Utility Patent Application No.
12/696,900, entitled "Systems And Methods For Friction Displays And Additional Haptic Effects" filed January 29, 2010, which is incorporated by reference herein in its entirety.
This patent application claims priority to U.S. Utility Patent Application No. 12/696,908, entitled "Systems And Methods For Interfaces Featuring Surface-Based Haptic Effects" filed January 29, 2010, which is incorporated by reference herein in its entirety.
This patent application claims priority to U.S. Utility Patent Application No. 12/697,010, entitled "Systems And Methods For A Texture Engine" filed January 29, 2010, which is incorporated by reference herein in its entirety.
This patent application claims priority to U.S. Utility Patent Application No. 12/697,037, entitled "Systems And Methods For Using Textures In Graphical User Interface Widgets" filed January 29, 2010, which is incorporated by reference herein in its entirety.
This patent application claims priority to U.S. Utility Patent Application No. 12/697,042, entitled "Systems And Methods For Using Multiple Actuators To Realize Textures" filed January 29, 2010, which is incorporated by reference herein in its entirety. Background
Touch-enabled devices have become increasingly popular. For instance, mobile and other devices may be configured with touch-sensitive displays so that a user can provide input by touching portions of the touch-sensitive display. As another example, a touch- enabled surface separate from a display may be used for input, such as a trackpad, mouse, or other device.
For example, a user may touch a portion of the display or surface that is mapped to an on-screen graphical user interface, such as a button or control. As another example, a gesture may be provided, such as a sequence of one or more touches, drags across the surface, or other recognizable patterns sensed by the device. Although touch-enabled displays and other touch-based interfaces have greatly enhanced device functionality, drawbacks remain. For instance, even if a keyboard is displayed on a screen, a user accustomed to a physical keyboard may not have the same experience while using the touch- enabled device. Summary
Embodiments include systems and methods for providing composite haptic effects comprising a variation in a coefficient of friction of a touch surface and one or more other outputs. By providing such surface-based effects, a device can provide a more compelling user experience than may otherwise have been achieved.
In one embodiment, a method comprises detecting, using at least one sensor, a touch occurring in a touch area when an object contacts a touch surface. The method can further comprise selecting a composite haptic effect to generate in response to the touch, the composite haptic effect including at least one surface-based haptic effect and at least one other effect. Based on the selected composite haptic effect, a first haptic signal can be sent to a first actuator to cause the first actuator to vary a coefficient of friction of the touch surface. The method can further comprise, based on the selected composite haptic effect, sending a second haptic signal to cause an actuator to provide a second haptic output in addition to the variation in the coefficient of friction. The second haptic signal can be sent to a second actuator or the same actuator(s) used to vary the coefficient of friction can generate the second haptic output. Another embodiment comprises a tangible computer storage medium embodying program code executable by a computing system for carrying out such a method. These illustrative embodiments are mentioned not to limit or define the limits of the present subject matter, but to provide examples to aid understanding thereof. Additional embodiments include systems and devices configured to provide composite haptic effects and computer storage media embodying program code for providing composite haptic effects. Illustrative embodiments are discussed in the Detailed Description, and further description is provided there. Advantages offered by various embodiments may be further understood by examining this specification and/or by practicing one or more embodiments of the claimed subject matter.
Brief Description of the Drawings
A full and enabling disclosure is set forth more particularly in the remainder of the specification. The specification makes reference to the following appended figures.
Figure IA is a block diagram showing an illustrative system configured to provide composite haptic effects.
Figures IB and 1C show additional illustrative systems configured to provide composite haptic effects. Figure 2 A shows another illustrative system configured to provide composite haptic effects.
Figure 2B is a cross-sectional view of the system shown in Figure 2 A. Figure 3A shows another illustrative system configured to provide composite haptic effects, while Figure 3B is a cross sectional view of the system shown in Figure 3 A. Figure 4 is a flowchart showing illustrative steps in a method of providing composite haptic effects.
Figures 5A-5D show illustrative features that can be simulated using surface-based haptic effects.
Figures 6A-6H show illustrative features, specifically textures, that can be simulated using surface-based haptic effects.
Figure 7 is a flowchart showing illustrative steps in another method of providing composite haptic effects.
Figure 8 a diagram illustrating an example of a reference file for use in generating composite haptic effects. Detailed Description
Reference will now be made in detail to various and alternative illustrative embodiments and to the accompanying drawings. Each example is provided by way of explanation, and not as a limitation. It will be apparent to those skilled in the art that modifications and variations can be made. For instance, features illustrated or described as part of one embodiment may be used on another embodiment to yield a still further embodiment. Thus, it is intended that this disclosure include modifications and variations as come within the scope of the appended claims and their equivalents. Illustrative Example of a Device Configured to Provide Composite Haptic Effects
One illustrative embodiment of the present invention comprises a computing system such as an iPod® portable music device or iPhone® mobile device, both available from Apple Inc. of Cupertino, California, or a Zune(R) portable device, available from Microsoft Corporation of Redmond, Washington. The computing system can include and/or may be in communication with one or more sensors, such as an accelerometer, as well as sensors (e.g., optical, resistive, or capacitive) for determining a location of a touch relative to a display area corresponding in this example to the screen of the device.
As the user interacts with the device, one or more actuators are used to provide tactile effects, including (but not limited to) composite haptic effects. A composite haptic effect can comprise an effect that utilizes a variation in a coefficient of friction of a touch surface along with one or more other haptic outputs presented in combination with the variation in coefficient of friction. The other output(s) may be presented at the same time as the variation in the coefficient of friction, shortly before, and/or shortly after. The composite effect may be perceived as a single effect or may be perceived as a plurality of related effects.
For example, as a user moves a finger across the device, the coefficient of friction of the screen can be varied based on the position, velocity, and/or acceleration of the finger. Depending on how the friction is varied, the user may perceive a feature and/or a texture. As a particular example, the friction may be varied so that the user perceives a bump, border, or other obstacle corresponding to an edge of an on-screen button. The composite haptic effect may further include tactile feedback as the on-screen button is pressed. As another example, a vibration-based effect may be generated so that a user perceives a feature such as a bump, border, or obstacle defining a control area, with a variation in the coefficient of friction used to indicate when the control is selected/changed. Still further, a combination of variation in friction and vibrotactile effects may be used in combination to create the perception of a single texture or other feature.
The variation in the coefficient of friction and other effect(s) may be generated by the same actuator or by different actuators working in concert. For instance, the coefficient of friction can be varied using a piezoelectric actuator, while vibrotactile effects are generated using a linear resonant actuator. As another example of examples of a haptic output that can be used alongside variations in the coefficient of friction, a portion of a touch surface can be raised/lowered (e.g., using an actuator or shape memory alloy). Illustrative Systems for Providing Surface-Based Haptic Effects in Conjunction with Other
Haptic Effects
Figure IA shows an illustrative system 100 for providing a composite haptic effect. Particularly, in this example, system 100 comprises a computing device 101 featuring a processor 102 interfaced with other hardware via bus 106. A memory 104, which can comprise any suitable tangible (and non-transitory) computer-readable medium such as RAM, ROM, EEPROM, or the like, embodies program components that configure operation of the computing device. In this example, computing device 101 further includes one or more network interface devices 110, input/output (I/O) interface components 112, and additional storage 114.
Network device(s) 110 can represent any components that facilitate a network connection. Examples include, but are not limited to, wired interfaces such as Ethernet, USB, IEEE 1394, and/or wireless interfaces such as IEEE 802.11, Bluetooth, or radio interfaces for accessing cellular telephone networks (e.g., transceiver/antenna for accessing a CDMA, GSM, UMTS, or other mobile communications network).
I/O components 112 may be used to facilitate connection to devices such as a one or more displays, keyboards, mice, speakers, microphones, and/or other hardware used to input data or output data. Storage 114 represents nonvolatile storage such as magnetic, optical, or other storage media included in device 101. System 100 further includes a touch surface 116, which is in this example integrated into device 101. Touch surface 116 represents any surface that is configured to sense tactile input of a user. One or more sensors 108 are configured to detect a touch in a touch area when an object contacts a touch surface and provide appropriate data for use by processor 102. Any suitable number, type, or arrangement of sensors can be used. For example, resistive and/or capacitive sensors may be embedded in touch surface 116 and used to determine the location of a touch and to determine other information, such as touch pressure. As another example, optical sensors may be used.
In this example, a first actuator 118 in communication with processor 102 is coupled to touch surface 116. In some embodiments, first actuator 118 is configured to output a haptic output varying a coefficient of friction of the touch surface in response to a first haptic signal. Additionally or alternatively, first actuator 118 may provide haptic output by moving the touch surface in a controlled manner. Some haptic outputs may utilize an actuator coupled to a housing of the device, and some haptic outputs may use multiple actuators in sequence and/or in concert. For example, the coefficient of friction can be varied by vibrating the surface at different frequencies and/or amplitudes. Different combinations/sequences of variance can be used to simulate the feeling of a texture, presence of another feature such as an obstacle or protrusion, or to provide another effect.
Although a single first actuator 118 is shown here, embodiments may use multiple actuators of the same or different type to vary the coefficient of friction of the touch surface. For example, a piezoelectric actuator is used in some embodiments to displace some or all of touch surface 116 vertically and/or horizontally at ultrasonic frequencies.
Figure IA also shows a second actuator 119. Second actuator 119 can be used to provide a second haptic output in addition to the variation in the coefficient of friction as provided by the first actuator. For example, the second haptic output may comprise a vibrotactile haptic effect such as a vibration of the device and/or touch surface 116. As another example, the second haptic output may comprise a change in the touch surface 116, such as a change in temperature, color, or texture generated by raising/lowering portions of touch surface 116. Actuators 118 and 119 may each comprise multiple actuators, and may be of the same or different types. Suitable actuator types include, but are not limited to, piezoelectric actuators, shape memory alloys, electroactive polymers, flexible composite piezoelectric actuators (e.g., an actuator comprising a flexible material), electromagnetic actuators, eccentric rotational mass actuators, linear resonant actuators, voice coil actuators, electrostatic actuators, and/or magnetostrictive actuators. Although shown as separate elements 118 and 119, a single actuator capable of varying the coefficient of friction of touch surface 116 and generating another haptic effect could be used instead of separate first and second actuators. Additionally, in practice one or more of the actuators could be embedded within touch surface 116. Turning to memory 104, exemplary program components 124, 126, and 128 are depicted to illustrate how a device can be configured in some embodiments to provide composite haptic effects. In this example, a detection module 124 configures processor 102 to monitor touch surface 116 via sensor(s) 108 to determine a position of a touch. For example, module 124 may sample sensor 108 in order to track the presence or absence of a touch and, if a touch is present, to track the location, path, velocity, acceleration, pressure and/or other characteristics of the touch over time.
Haptic effect determination module 126 represents a program component that analyzes data regarding touch characteristics to select a composite haptic effect to generate. For example, in some embodiments, an input gesture comprising a sequence of one or more touches may be recognized and correlated to one or more composite haptic effects. As another example, some or all of the area of touch surface 116 may be mapped to a graphical user interface. Different composite haptic effects may be selected based on the location of a touch in order to simulate the presence of a feature displayed on a screen by varying the friction of touch surface and providing one or more other haptic outputs so that the feature is "felt" when a portion of touch surface 116 mapped to a screen location containing the feature is encountered. However, haptic effects may be provided via touch surface 116 even if a corresponding element is not displayed in the interface (e.g., a haptic effect may be provided if a boundary in the interface is crossed, even if the boundary is not displayed). Haptic effect generation module 128 represents programming that causes processor
102 to generate and transmit a haptic signal to actuator(s) 118/119 to generate the selected composite haptic effect at least when a touch is occurring. For example, generation module 128 may access stored waveforms or commands to send to actuator 118 and 119. As another example, haptic effect generation module 128 may receive a desired coefficient of friction and utilize signal processing algorithms to generate an appropriate signal to send to actuator(s) 118. Module 128 may receive a desired haptic effect type and select an actuator 119 and command the selected actuator to provide the desired haptic effect.
As a further example, a desired texture may be indicated along with target coordinates for the texture. An appropriate waveform can be sent to a piezoelectric or other actuator to vary the coefficient of friction using high-frequency displacement, with another waveform sent to one or more vibro tactile actuators to generate appropriate displacement of the touch surface (and/or other device components) at a (relatively) lower frequency, or to provide a pop, ping, or other effect when the feature is encountered.
A touch surface may or may not overlay (or otherwise correspond to) a display, depending on the particular configuration of a computing system. In Figure IB, an external view of a computing system IOOB is shown. Computing device 101 includes a touch-enabled display 116 that combines a touch surface and a display of the device. The touch surface may correspond to the display exterior or one or more layers of material above the actual display components. In this example, a composite haptic effect is selected based on the content of a graphical user interface 130, which in this example shows a 12-key keypad such as may be provided by a mobile device. Particularly each key may include a border 132 and interior 134. A composite haptic effect can be selected to generate a variation in friction corresponding to interior 134 and a different haptic output can be used to indicate when a user has reached border 132. In this example, a feature 136 is included in the middle key (corresponding to the "5" key in a standard numeric keypad). For instance, feature 136 may comprise a different texture from a texture of interior 134 or a simulated feature such as a bump or gap serving as a "centering" feature. As a user moves a finger across the keypad, composite effects can be used to denote the border between keys and to indicate when the "5" key is reached by the perception of feature 136.
As was noted above, a touch surface need not overlay a display. Figure 1C illustrates another example of a touch-enabled computing system lOOC. In this example, a computing device 101 features a touch surface 116 which is mapped to a graphical user interface provided in a display 122 that is included in computing system 120 interfaced to device 101. For example, computing device 101 may comprise a mouse, trackpad, or other device, while system 120 may comprise a desktop or laptop computer, set-top box (e.g., DVD player, DVR, cable television box), or another computing system. As another example, touch surface 116 and display 122 may be included in the same device, such as a touch-enabled trackpad in a laptop computer featuring display 122.
Whether integrated with a display or otherwise, the depiction of 2-D rectangular touch surfaces in the examples herein is not meant to be limiting. Other embodiments include curved or irregular touch-enabled surfaces that are further configured to provide surface- based haptic effects. Returning to Figure 1C, in this example a graphical user interface 138 is shown, comprising a menu bar 140 and buttons 142, 144, and 146. For example, the graphical user interface may comprise an on-screen menu for a home entertainment device, while touch surface 116 is included on a remote control or peripheral. As shown at 148, an area of the touch surface is mapped to menu bar 140. When a user contacts area 148, a composite haptic effect is provided to indicate that the menu bar is selected. For example, the coefficient of friction may differ as between area 148 and areas 150, 152, and 154 (corresponding to buttons 142, 144, and 146, respectively), with vibrotactile or other feedback provided as a user moves through area 148 and crosses into one of areas 150, 152, and 154. As another example, vibrotactile or other haptic output can be used to generate different simulated textures in areas 148, 150, 152, and 154, with the coefficient of friction varied within each area as buttons 142, 144, and/or 146 are actuated.
Figure 2 A shows another computing device 201 featuring a touch-enabled display 202, which again corresponds to a touch surface. Figure 2B shows a cross-sectional view of device 201. As can be seen in Figure 2B, in this example two actuators 218-1 and 282-2 are used to vary the coefficient of friction of touch surface 202 while a second actuator 219 provides another haptic output via touch surface 202. For instance, actuator 219 may provide a vibrotactile output such as a pop or ping through touch surface 202 or may raise/lower one or more portions of the touch surface 202. Additionally, Figure 2B shows another exemplary actuator 222. For example, actuator 222 may be used in addition to or instead of one or more of actuators 218-1, 218-2, or 219. For example, if actuator 219 raises/lowers portions of display 202, actuator 222 may be used to provide a low-frequency vibration output.
Returning to Figure 2 A, an example of providing a composite effect is illustrated at 220. Specifically, a finger 226 contacts the display and moves to the position shown at 228, encountering a simulated feature 230. As can be seen in Figure 2B, as the finger moves, it initially contacts a first area 232 of the display, then a second area 234, and a third area 236. A composite haptic effect may be used to simulate feature 230. For instance, while the finger encounters area 232 and moves toward area 234, the coefficient of friction of display 202 may be increased by adjusting output of actuators 218-1/218-2. As area 234 is approached and then encountered, actuator 219 may be used to provide a vibrotactile "pop" effect. As the finger moves across area 236, the coefficient of friction of display 202 may be decreased.
A composite haptic effect may comprise a group of effects. For example, lines 238 and 240 indicate a path followed by the finger moving from 226 to 228. In one embodiment, the composite haptic effect includes output generated using actuator 219 and/or 222 if the finger moves outside the path. For example, a variation in friction may be used to simulate feature 230, with a vibration output provided while feature 230 is simulated if the user's finger crosses either of lines 238 and 240.
Figures 3A-3B depict an illustrative hardware architecture for a device that can provide composite haptic effects. In this example, the touch surface comprises glass panel 302, although another transparent material (or non-transparent) material could be used. For instance, rather than glass, a touchpad (i.e. touch-sensitive device) could be used. A pair of piezoelectric benders 318-1 and 318-2 are bonded to the glass. Use of glass or another transparent material along with free space between the piezoelectric benders can allow for use of a display (not shown) beneath the glass. In some embodiments, the piezoelectric benders can be commanded to reduce the static coefficient of friction of glass 302 by 42%. Some embodiments utilize a bipolar pulse width modulated signal at 24kHz, with varying amplitude used to vary the coefficient of friction. As an example, voltage can vary between - 80 and +80 Volts at a frequency above 2OkHz, with friction variation from 0 to 60% depending on voltage magnitude (or PWM magnitude to produce the voltage magnitude). These example voltage, frequency, and variation ranges are for purposes of example only and are not intended to be limiting.
In the cross-sectional view of Figure 3B, a plurality of second actuators 319-1, 319-2, and 319-3 are illustrated. For instance, actuator 319-2 may be bonded to panel 302 and can be used to provide low-frequency vibration effects using an eccentric rotating mass (ERM) actuator and/or haptic pops, jolts, and the like via a linear resonant actuator (LRA). Actuators 319-1 and 319-3 may be bonded to the case or housing of device 301 and may comprise the same type of actuator as 319-2 or may be different from actuator 319-2 (and/or one another). For example, in one embodiment, actuator 319-1 comprises an ERM actuator, actuator 319-2 comprises a shape memory alloy used to move panel 302, and actuator 319-3 comprises an LRA actuator. Either or both actuators 319-1 and 319-3 could be bonded to both panel 302 and the housing of device 301.
Illustrative Methods for Determining Haptic Effects to Provide Figure 4 is a flowchart showing an illustrative method 400 for providing an interface with composite haptic effects including at least one surface-based haptic effects. Block 402 represents determining a position of a touch in a touch area. For example, a processor may utilize one or more sensors embedded in or viewing a touch-enabled display or surface to track a position of a touch on the surface. Based on the current and/or past position of the touch, an interaction with a graphical user interface mapped to the touch area can be determined.
Based on the interaction, one or more composite haptic effects can be selected at block 404, with a composite effect achieved by varying the friction of the touch surface along with providing one or more other haptic outputs.
For example, the touch may occur at a position in the touch surface mapped to a particular texture or feature in a graphical user interface. The composite haptic effect may comprise a simulation of the texture or feature. Additionally or alternatively, the composite haptic effect may comprise an ambient effect (e.g., a texture/feature) and dynamic effect, such as output provided when a feature is initially encountered.
As an example, a gesture can be recognized as a sequence of one or more touches or patterns of touch, such as based on a direction and length of a swipe across the screen, a sequence of discrete touches in a pattern, or another recognizable interaction. If a gesture is recognized, a composite haptic effect associated with the gesture can be selected. For instance, a "Z"-shaped touch trajectory may be recognized as a type of input gesture based on pattern recognition carried out by a processor of the device while the gesture is in progress. One or more composite haptic effects may be associated with the "Z"-gesture in data accessible to the processor indicating an effect to output while the gesture is in progress and/or after the gesture is complete. For example, the data may provide for the surface to take on a texture or a change in friction as the gesture nears completion. Additionally or alternatively, a texture or coefficient of friction of the display may change after the gesture is recognized in order to confirm input of the gesture.
At block 406, one or more haptic signals are accessed and/or generated in order to provide a variation in the coefficient of friction and to generate the second haptic output (or outputs). For example, a processor may access drive signals stored in memory and associated with particular haptic effects. As another example, a signal may be generated by accessing a stored algorithm and inputting parameters associated with an effect. For example, an algorithm may output data for use in generating a drive signal based on amplitude and frequency parameters. As another example, a haptic signal may comprise data sent to an actuator to be decoded by the actuator. For instance, the actuator may itself respond to commands specifying parameters such as amplitude and frequency.
As an example, for a simulated feature such as a gap, obstacle, or texture the current pixel location and/or a projected pixel location for the touch based on a velocity of the touch can be compared to a bitmap specifying composite haptic effects for various pixel positions. Based on the composite haptic effect(s), suitable haptic signals can be accessed/generated to provide the output specified in the bitmap.
As another example, a current or projected location of a touch can be compared to data identifying the location of graphical user interface (GUI) features such as controls, textual content, boundaries, and the like. Then, if a GUI feature is identified at the location, data associating one or more composite haptic effects to the feature can be accessed. For instance, a processor may track the location of a touch and determine the touch is at or approaching a position in the touch area mapped to a particular control (e.g., a button) in the graphical user interface. The processor can then consult a listing of interface elements to determine a composite haptic effect (e.g., a texture, a friction variation) associated with the button and, based on the haptic effect, take further actions to generate the composite haptic effect.
Block 408 represents transmitting the haptic signal or signals to one or more actuators to achieve the composite haptic effect by varying the coefficient of friction and providing one or more other haptic outputs. For instance, if an analog drive signal is to be provided, a processor can utilize an onboard D/A converter to create the signal. If a digital command is provided to the actuator, an appropriate message can be generated by an I/O bus of the processor. The haptic effect may be felt at the point of the touch and/or elsewhere. For example, if a two-finger input gesture is provided, the texture/coefficient of friction at the first finger may be changed in response to recognizing movement of the second finger. In some embodiments, a baseline haptic signal may be sent to the actuator(s) to generate an ambient haptic effect even in the absence of a selected haptic effect in order to enhance the range of potential effects the device can produce. Thus, transmitting a haptic signal may comprise sending a "stop" command, a "zero" or minimal signal, or another signal to the actuator to reduce intensity as appropriate. As an example, use of certain actuators, such as piezoelectric actuators, may allow for reduction in the coefficient of friction of a touch surface but not an increase in the coefficient of friction. To provide a range of options, a baseline signal may be provided so that the "ordinary" friction level of the touch surface is below the coefficient of friction the touch surface would have when static. Accordingly, haptic effects may be defined with respect to the baseline, rather than static, value. If maximum friction is desired, a "zero" signal may be sent to the piezoelectric actuator to stop movement of the surface.
Surface-based haptic effects may take any suitable form. For example, some haptic effects may comprise variations in the friction of the touch surface — some portions may be rendered "slicker" or "rougher" than others. As another example, vibrotactile effects may be used, such as vibrations or series of vibrations. Vibrotactile effects and/or variations in friction may be used to simulate the feeling of distinct features, such as boundaries or obstacles. For example, a boundary or edge may be simulated by an increase in friction, with the friction decreasing if the boundary is crossed (in some instances).
Figures 5A-5D each depict an illustrative simulated feature. Figure 5A shows a simplified example in which the white area represents an area where actuators will be activated, such as by using a non-zero voltage PWM signal. For example, the white area may correspond to a virtual button in the middle of a touch pad, where a user's finger (or another object in contact with a surface) will encounter a lower friction value. Figure 5B represents an inverses situation — the finger/object may navigate freely in the white area, but may be slowed or stopped at the high friction (black) area. This may, for example, allow a user to more easily locate a button or other location in the touch area.
Figure 5C illustrates a simulated feature comprising a plurality of grooves. As a user's finger or another object moves horizontally across the stripes, the finger/object will encounter increasing and decreasing friction that is perceived as a series of grooves. As was noted above, a computing system comprising a touch surface configured to provide surface-based haptic effects may determine effects and signals in real time. For example, for any of Figures 5A-5D, the system may first determine if the touch position is inside the circle and, if so, provide a suitable output value (Figure 5A) or cease output (Figure 5B). Similarly, the system may provide the feature of Figure 5C by determining if the touch occurs in an area with desired high-friction and, if so, drive the actuator(s).
Figure 5D presents a more complex pattern. For instance, the pattern in Figure 5D may correspond to desired features associated with an array of keys, such as an array of mobile phone keys, a simulated keyboard, or other controls. Although real time rendering could be used for any of Figures 5A-5D, more complex logic may be needed to render each specific circle/button in the pattern. These and even more arbitrary patters may increase the complexity of programming and computation time. Thus, in some embodiments, the surface- based haptic effects can be determined ahead of time and stored in a file. At runtime, the file can be accessed based on a touch position to allow for faster determination and generation of appropriate haptic signals. For Figure 5D, such a file could include data to drive the actuators to provide a first haptic effect (e.g., high friction) when the touch position is mapped to the circles, and the file could include data to drive the actuators to provide a second effect (e.g., low friction) when the touch position is mapped to a location outside the circles
The features of Figures 5A-5D may be simulated using other types of actuators in addition to or instead of piezoelectric actuators. For example, vibrotactile actuators may be used to provide a vibration, pop, pulse, click, or the like when the circles of figures 5 A, 5B, or 5D are encountered and/or when the pattern of Figure 5C is encountered (e.g., a pop or click at each transition from black to white). The haptic effects that can be produced by the actuators can vary depending on the current, voltage, frequency as well as start and stop times. Such haptic effects include, but are not limited to, vibrations, pulses, pops, clicks, damping characteristics, and varying textures. In an embodiment, the multiple actuators are utilized to generate different haptic effects for different applications. For example, the two actuators are configured to provide a vibration or pop upon the user's finger or stylus passing over the boundaries of a graphical object (e.g. keyboard keys), as discussed above. The features of Figures 5A-5D may be simulated using composite haptic effects. For example, a variation of friction may be used along with a click, pop, or other response when an object touching the surface moves from black to white or vice-versa.
Vibrotactile effects and/or variations in friction may additionally or alternatively be used to simulate various textures. Additional detail regarding generation and use of textures can be found in U.S. Patent Application Nos. 12/697,010, 12/697,042, and 12/697,037, referenced above and entitled "Systems and Methods for a Texture Engine," (Attorney Docket IMM354 (51851-383720)), "Systems and Methods for Using Multiple Actuators to Realize Textures," (Attorney Docket No. IMM355 (51851-383719)), and "Systems and Methods for Using Textures in Graphical User Interface Widgets," (Attorney Docket No. IMM356 (51851-383718)), respectively.
For instance, patterns of differing friction or patterns of vibration may be provided to mimic the feeling of textures such as brick, rocks, sand, grass, fur, various fabric types, water, molasses, and other fluids, leather, wood, ice, lizard skin, metals, and other texture patterns. Other textures not analogous to real-world textures may also be used, such as high-magnitude vibrotactile or other feedback when a "danger" texture is desired.
Generally, a texture can simulate a surface property by providing an output perceived as a spatially varying force. Thus, a texture is contrasted to a vibration output intended to be directly perceived as a time varying force, though of course vibrations can be used in simulating texture.
As an example, a texture may simulate the force felt when a stick or finger is moved over a grating. In one embodiment, the texture force can be characterized by a programmer/developer using parameters that can include a magnitude and a grit. The magnitude specifies the amount of force applied to the object encountering the touch surface (e-g-> at each "bump" of the grating). The grit is basically the spacing between forces (e.g., spacing between each of the grating bumps). Alternatively, additional command parameters can be provided to control the position of the "bumps" of the texture force. For example, information can be included to instruct the distance between bumps to vary exponentially over a distance, or vary according to a specified formula. Additionally, a given texture may be defined as a plurality of superimposed grits and magnitudes.
Figure 6A is an illustration of one of the textures that a texture engine may generate according to one embodiment of the present invention. The embodiment shown in Figure 6A comprises brick. The texture of brick is characterized by having a rough irregular texture from bricks, punctuated with the feel of gritty valleys from the mortar. A system for a texture engine may generate the rough irregular texture of brick by driving an actuator, such as a
LRA, LPA, or FPA, with a random signal with medium to high maximum variance while the user's finger is moving. In some embodiments, this variance may be adjusted for different roughness. In some embodiments, the transition from brick to mortar may be rendered by a high duration pop created by an ERM. Additionally, the coefficient of friction may be varied between the brick and mortar portions. If the mortar is thick enough, a fine texture may be rendered by driving an actuator with a lower magnitude signal with a higher variance than that used to drive the actuator outputting the texture of the brick.
Figure 6B is an illustration of one of the textures that a texture engine may generate according to one embodiment of the present invention. The embodiment shown in Figure 6B comprises rocks. The texture of rocks is characterized by smooth surfaces punctuated with transitions as the user moves from rock to rock. In order to output the texture of a rock, an actuator, such as an FPA and/or piezoelectric actuator can be used to create patches of low friction. Individual rocks may be rendered by a non- visual edge map of the displayed image, and outputting a high magnitude haptic signal to an actuator, such as an LRA, LPA or ERM, when the touch-sensitive interface detects the user's movement. For example, a high- magnitude output can be provided whenever the touch-sensitive interface detects that the user's finger is transitioning from one rock to another. The coefficient of friction may be varied as between rocks, as well. Figure 6C is an illustration of one of the textures that a texture engine may generate according to one embodiment of the present invention. The embodiment shown in Figure 6C comprises sand or sandpaper. Sand is characterized by a rough, gritty feel as well as the sensation a pile of sand particles building up in front of the user's finger. In order to output the rough gritty texture, of sand, an actuator, such as an LRA, LPA or FPA is driven with a random signal with high maximum variance while the user's finger is moving. In some embodiments, the processor may adjust the variance of the signal to create different degrees of roughness. To create the feeling of sand piling up, an actuator such as an FPA may be used. In such an embodiment, when user moves their finger across the touch screen, the processor will drive the actuator with a signal that starts with a low intensity and builds as the user moves their finger in one direction. A piezoelectric or other actuator can be used to increase the coefficient of friction to simulate sand build-up as well.
In another embodiment, the texture shown in Figure 6C may comprise sandpaper. Sandpaper is characterized by having a rough, gritty feel. To create the rough, gritty feel the processor drives an actuator, such as an LRA, LPA or FPA with a random signal with high maximum variance. In some embodiments, this signal is output only while the user's finger is moving across the surface the touch sensitive interface. In some embodiments, the processor may adjust the variance of the signal to change the level of roughness. Additionally, the roughness may be generated or emphasized through abrupt changes in the coefficient of friction. Figure 6D is an illustration of one of the textures that a texture engine may generate according to one embodiment of the present invention. In the embodiment shown in Figure 6D, the texture comprises the texture of grass. Grass is characterized by a periodic light sensation that almost tickles the user's finger. In order to create the sensation of grass, the processor may drive an actuator, such as an FPA or piezoelectric actuator, with a signal configured to create patches of low friction overlaid with patches of grass. In some embodiments, the processor may render individual grass blades by having a non-visual edge map of the displayed image and outputting a low magnitude signal to an actuator such as an LPA or ERM when the user interface detects movement between the simulated blades. Figure 6E is an illustration of one of the textures that a texture engine may generate according to one embodiment of the present invention. In the embodiment shown in Figure 6E, the texture comprises the texture of fabric. Fabric is characterized by a light smooth sensation. In order to create the sensation of the texture of fabric, the processor may drive an actuator such as an LPA or an LRA with low magnitude high frequency signals as the user's finger moves across the surface of the touch-sensitive interface. The "grain" of the fabric may be simulated by varying friction levels of the display to provide lower friction when moving along the grain.
Figure 6F is an illustration of one of the textures that a texture engine may generate according to one embodiment of the present invention. In the embodiment shown in Figure 6F, the texture comprises the texture of water or molasses. Water is characterized by having almost no sensation. However, water that is disturbed may splash around and hit against he user's finger. To emulate the texture of water, the processor may drive an actuator such as an FPA to reduce the friction on the surface of the touch-sensitive interface. To emulate the water sloshing, the processor may output the haptic signal only when the user is touching the screen. To emulate the texture of a more viscous fluid, such as molasses, or oil, the processor may drive the actuator with a signal configured to increase the friction on the user's finger as it moves across the surface of the touch-sensitive interface.
Figure 6G is an illustration of one of the textures that a texture engine may generate according to one embodiment of the present invention. In the embodiment shown in Figure 6G, the texture comprises the texture of leather. Leather is characterized by an overall smooth feeling that comprises the bumps and valleys of the surface of the leather. In order to create the sensations of the texture of leather, the processor may drive an actuator, such as an FPA or piezoelectric actuator, with a signal configured to output a haptic effect that reduces friction as the user's finger moves across the surface of the touch-sensitive interface. The processor can output the cracks and bumps by driving the actuator with a very short low magnitude haptic signal at times when the touch-sensitive interface detects that the user's finger is moving.
Figure 6H is an illustration of one of the textures that a texture engine may generate according to one embodiment of the present invention. In the embodiment shown in Figure 6E, the texture comprises the texture of wood. Wood may be characterized by an irregular bumpy texture punctuated by a sharp transition as the user moves from board to board. In order to create the irregular bumpy texture, the processor may drive an actuator such as an LRA, LPA, or FPA with a non- visual edge map of the displayed image and drive the actuator with a very short low magnitude signal at various times when the user's finger is moving. To output the transition from plank to plank, the processor may output a haptic signal configured to cause the actuator to generate a high magnitude, short duration, pop. The friction of the touch surface can be varied when moving between planks, but can be maintained (or only slightly varied) when moving along the grain of the wood. In other embodiments, haptic effects associated with different textures may be output.
For example, in one embodiment, the processor may transmit a haptic signal configured to cause the actuator to output a haptic effect configured to cause the user to feel a texture associated with the texture of ice. Ice is characterized by low friction, in some embodiments, ice has a completely smooth texture, in other embodiments, ice comprises a fine low magnitude gritty texture. In order to create the texture of ice, the processor may determine a haptic signal configured to cause the actuator to reduce the friction as much as possible while the user moves their finger across the surface of the touch-sensitive interface. In another embodiment, the processor may drive an actuator such as an LPA or LRA, with a haptic signal configured to output low magnitude effects while the user moves their finger. These low magnitude effects may be associated with imperfections or grit on the surface of the ice. In another embodiment, the processor may drive the actuator with a signal configured to cause the actuator to output a haptic effect approximating the texture of lizard skin. Lizard skin is characterized by an overall smooth sensation punctuated by transitions from bump to bump on the skin. In order to implement a haptic effect comprising the texture of lizard skin, the processor may drive an actuator with a haptic signal configured to cause the actuator to create patches of low friction on the touch-sensitive interface. The processor may render cracks on the surface of the skin by outputting high magnitude haptic signals periodically when the touch-sensitive interface detects that the user's finger is moving across its surface. These high magnitude signals may approximate the cracks in the surface of the skin. In yet another embodiment, the processor may drive the actuator with a signal configured to cause the actuator to output a haptic effect approximating the texture of fur. Fur is characterized by a periodic light sensation that is very soft to the touch. In order to implement a haptic effect comprising the texture of fur, the processor may drive the actuator with a haptic signal configured to cause the actuator to output a haptic effect configured to reduce the friction the user feels on the surface of the touch-sensitive interface. The processor may further render individual hairs outputting a low magnitude pulsing haptic signals as the touch-sensitive interface detects the user's movement.
In yet another embodiment, the processor may drive the actuator with a signal configured to cause the actuator to output a haptic effect approximating the texture of metal. Metal is characterized by a smooth low friction surface that, in some embodiments, includes light grit. In order to implement a haptic effect comprising the texture of metal, the processor may drive the actuator with a signal configured to lower the friction the user feels on the surface of the touch-sensitive interface. In some embodiments, the processor may render individual bumps by outputting brief high magnitude haptic signals when the touch-sensitive interface detects that the user is moving over its surface. These brief high magnitude signals may approximate grit on the surface of the metal.
In yet another embodiment, the processor may drive the actuator with a signal configured to cause the actuator to output a haptic effect approximating another sensation, for example, heat. In such an embodiment, the processor may output a haptic signal configured to cause the actuator to output a high frequency jolting effect when the user touches elements of the display that are associated with heat.
Figure 7 is a flowchart showing illustrative steps in another method 700 of providing composite haptic effects. Figure 7 is a flowchart showing an exemplary method 700 for providing a simulated feature by creating and using a reference file. Figure 8 shows an example of a reference file comprising an array of pixels. Blocks 702 and 704 represent preprocessing — activities that occur prior to use of a reference file to determine a composite haptic effect. In this example, a single reference file is used to determine friction values and at least one other haptic output used in providing a composite haptic effect. Additionally, a "reference file" may comprise multiple files used together.
Block 702 represents creating a layout of a location and block 704 represents storing the layout in an image file, such as an array of pixels in a bitmap or other image file. For example, arbitrary shapes may be "drawn" in order to specify desired friction values. In Figure 8, white pixels are shown to indicate where no friction adjustment or other output is intended, while shaded pixels indicate a value of a desired coefficient of friction or even a value usable to drive an actuator (e.g., a desired PWM voltage level, frequency, etc.). Alternatively, white pixels may indicate maximum drive, while various degrees of shading indicate lower drive values, with black representing zero drive. In an embodiment, white pixels and black pixels only are used, with the colors corresponding to on/off states of the actuators of a device.
In this example, different degrees of shading are represented by cross-hatching. In practice, each pixel may comprise multiple values (e.g., each pixel may have an RGB value), with the multiple values providing different data, such as drive levels for different actuators and the like. Additionally, a reference file may include multiple layers for specifying various parameters for each pixel position. For example, one layer may be used to define variations in the coefficient of friction, with one or more other layers used to define drive values or other information for use in outputting a vibrotactile or other haptic output. This example shows a relatively small number of pixels; in practice, the array may comprise thousands or millions of pixels.
In this example, three buttons 802, 804, and 806 are shown, with button borders indicated by solid shading. Respective interiors 808, 810, and 812 have different shading and are intended to represent different textures, friction values, or other effects corresponding to the button interiors. A menu bar is shown with different shading at 814, along with two menu commands 816 and 818 with the same shading as one another, corresponding to different haptic effects that can be used to indicate when the menu bar is encountered and then when menu items are encountered. Although not shown here, transition areas between low and high (or high and low) friction or other effects could be included.
Returning to Figure 7 and method 700, once a reference file is created, it can be loaded into memory and read as shown at block 706 to determine composite haptic effects for output. For example, some or all of the pixel array may be maintained in working memory of a processor carrying out a position detection and feature simulation routine. In an embodiment, the pixel array is distributed alongside a corresponding image of a graphical user interface. In additional embodiments, the pixel array is a layer or component of the graphical user interface image, and in further embodiments the array is a separate file not associated with a graphical user interface.
Block 708 represents determining a position of a touch. For example, a sensor may provide data used to determine a pixel position of a touch in an array of pixels mapped to a touch area. Non-pixel coordinates may be used in identifying the location of a touch, with appropriate transforms used during the mapping step below.
Block 710 represents mapping the touch position to an entry (or entries) in the image file. For instance, the touch area may be mapped directly so that a touch at pixel (x,y) = (10, 12) results in accessing one or more pixel values in the image at image (x,y) = (10,12).
However, more complex mappings may be used. For example, a touch position and velocity may be used to map a pixel value in the touch area to a different pixel value in the image file. For instance, the size of the touch area and the size of the pixel array may differ, with a scaling factor used to map touch locations to pixel values. Block 712 represents activating one or more actuators to provide a surface-based haptic effect based at least in part on data from the image file. For instance, the pixel value in the image file may be mapped to a desired coefficient of friction. A device carrying out method 700 may determine, based on the pixel position and the desired coefficient of friction, a suitable signal or signals to send to one or more actuators to generate the desired coefficient of friction. As another example, the pixel value may indicate a drive signal more directly, such as a voltage/amplitude/frequency value or offset for a PWM signal to be sent to a piezoelectric actuator. Data of the array may also be configured for use in generating a drive signal for another type of actuator.
As a more complex example, each pixel address may be associated with three intensity values (i.e., RGB). Each of the three intensity values can be associated with a signal intensity/frequency for a corresponding actuator in some embodiments. As another example, some values may specify intensity and others specify duration of operation for the same actuator. As a further example, different pixel intensity values may be correlated to different desired textures or components used to drive actuators to simulate a single texture. For example, textures 808, 810, and 812 may be achieved using a combination of friction variations and vibrations. When a touch occurs at a location mapped to the areas, the appropriate actuator(s) can be used to generate the textures.
Method 700 may determine touch locations mapped to multiple pixels in the image file. For example, a large touch may correspond to a range of pixel addresses in the image file. Values from the range of pixel addresses may be considered together, or analysis may be made to "pinpoint" the touch location and use values from a corresponding single pixel address.
In this example, method 700 checks at 714 for one or more events tied to a haptic effect. As was noted above, a composite haptic effect may utilize one or more actuators that provide a haptic output to confirm a selection, indicate a change in status, or otherwise provide feedback to a user. Block 716 represents using one or more actuators to provide haptic output corresponding to the event, and then continuing back to 708 to determine the touch position. For example, a user may move a finger or other object across a region of a touch surface that is mapped to button 802 and on to a region mapped to button 804. Texture 808 may be generated and then, as the finger/object moves to button 804, a click, pop, or other effect may be output to indicate the button borders. A click or button-press event may be registered if the user lingers over a button for a predetermined time and/or if the touch- enabled system registers a touch or increase in pressure. In response to the click event, a click, pop, or other effect can be output to simulate the response of a physical button (or another response).
In some embodiments, a computing device featuring a touch surface with surface- based haptic effects can output different surface-based haptic effects based on sequences of inputs. Thus, the simulated features of the touch surface can vary based on a state of a device associated with the surface. In some embodiments, this can be implemented using a reference file with multiple layers; each layer can correspond to a particular state. The states can be changed based on various input conditions, for instance.
For example, a touch surface may be configured to act as a keypad, such as on a mobile device. The keypad may feature three rows of keys corresponding to numbers 1-9 and a fourth row with "0," "*", and "#" keys. For an initial state, the touch surface may be configured to provide a centering feature, such as a higher friction level at the "5" key than in the remainder of the layout.
The computing device can be configured to change the state of the touch surface in response to user input based on tracking the input relative to the touch-sensitive area. For example, once the system determines that the user has found the "5" key, e.g. by detecting touching, hovering, or other activity indicating that the key has been located (but not necessarily selected), the surface-based effects can be provided based on a different state. If a multi-layer reference file is used, for example, a different layer can be loaded into memory. In the second state, for instance, boundaries between keys can be provided so that a user can proceed from the center to a desired key without the need for visual feedback (although, of course, visual, auditory, or other feedback can be provided alongside any embodiments of the present subject matter). The informational content or meaning of surface-based haptic effects can vary in various embodiments. For example, effects may be used to identify particular portions of a touch surface mapped to areas in a graphical user interface, simulated keys or other controls, or may be provided for aesthetic or entertainment purposes (e.g., as part of a design and/or in a game). Effects may be provided for communication purposes as well. For example, Braille or other tactile-based communications methods can be facilitated. General Considerations
The use of "adapted to" or "configured to" herein is meant as open and inclusive language that does not foreclose devices adapted to or configured to perform additional tasks or steps. Additionally, the use of "based on" is meant to be open and inclusive, in that a process, step, calculation, or other action "based on" one or more recited conditions or values may, in practice, be based on additional conditions or values beyond those recited. Headings, lists, and numbering included herein are for ease of explanation only and are not meant to be limiting. Embodiments in accordance with aspects of the present subject matter can be implemented in digital electronic circuitry, in computer hardware, firmware, software, or in combinations of the preceding. In one embodiment, a computer may comprise a processor or processors. The processor comprises or has access to a computer-readable medium, such as a random access memory (RAM) coupled to the processor. The processor executes computer- executable program instructions stored in memory, such as executing one or more computer programs including a sensor sampling routine, a haptic effect selection routine, and suitable programming to produce signals to generate the selected haptic effects as noted above.
Such processors may comprise a microprocessor, a digital signal processor (DSP), an application-specific integrated circuit (ASIC), field programmable gate arrays (FPGAs), and state machines. Such processors may further comprise programmable electronic devices such as PLCs, programmable interrupt controllers (PICs), programmable logic devices (PLDs), programmable read-only memories (PROMs), electronically programmable read-only memories (EPROMs or EEPROMs), or other similar devices.
Such processors may comprise, or may be in communication with, media, for example tangible computer-readable media, that may store instructions that, when executed by the processor, can cause the processor to perform the steps described herein as carried out, or assisted, by a processor. Embodiments of computer-readable media may comprise, but are not limited to, all electronic, optical, magnetic, or other storage devices capable of providing a processor, such as the processor in a web server, with computer-readable instructions. Other examples of media comprise, but are not limited to, a floppy disk, CD-ROM, magnetic disk, memory chip, ROM, RAM, ASIC, configured processor, all optical media, all magnetic tape or other magnetic media, or any other medium from which a computer processor can read. Also, various other devices may include computer-readable media, such as a router, private or public network, or other transmission device. The processor, and the processing, described may be in one or more structures, and may be dispersed through one or more structures. The processor may comprise code for carrying out one or more of the methods (or parts of methods) described herein.
While the present subject matter has been described in detail with respect to specific embodiments thereof, it will be appreciated that those skilled in the art, upon attaining an understanding of the foregoing may readily produce alterations to, variations of, and equivalents to such embodiments. Accordingly, it should be understood that the present disclosure has been presented for purposes of example rather than limitation, and does not preclude inclusion of such modifications, variations and/or additions to the present subject matter as would be readily apparent to one of ordinary skill in the art.

Claims

What is Claimed:
1. A system comprising: a sensor configured to detect a touch in a touch area when an object contacts a touch surface; a first actuator in communication with the processor and coupled to the touch surface, the first actuator configured to provide a haptic output varying a coefficient of friction of the touch surface in response to a haptic signal; a second actuator in communication with the processor and coupled to at least one of the touch surface and a housing comprising the touch surface, the second actuator configured to provide a second haptic output, different from the output varying the coefficient of friction, in response to the haptic signal; and a processor in communication with the first actuator, second actuator, and sensor, the processor configured to: select a composite haptic effect to generate, and transmit a haptic signal to at least one of the first and second actuator to generate the selected composite haptic effect.
2. The system set forth in claim 1, wherein the first actuator comprises at least one of a piezoelectric actuator, a shape memory alloy, an electroactive polymer, a composite piezoelectric actuator, an electromagnetic actuator, an eccentric rotational mass actuator, a linear resonant actuator, or a voice coil actuator; and wherein the second actuator comprises at least one of a piezoelectric actuator, a shape memory alloy, an electroactive polymer, a composite piezoelectric actuator, an electromagnetic actuator, an eccentric rotational mass actuator, a linear resonant actuator, or a voice coil actuator.
3. The system set forth in claim 1, wherein the processor is further configured to determine a position of the touch and wherein selecting the composite haptic effect comprises determining a haptic output or combination of outputs that will simulate the presence of a feature in the touch surface and at or near the determined position.
4. The system set forth in claim 1, wherein the processor is configured to transmit a haptic signal to both the first and second actuators to generate the selected composite haptic effect.
5. The system set forth in claim 4, wherein the processor is configured to send a first haptic signal to the first actuator to vary the coefficient of friction to simulate a background texture while sending a second haptic signal to the second actuator to simulate the presence of a feature overlaying the background texture.
6. The system set forth in claim 1, wherein selecting the composite haptic effect comprises: determining a position of the touch in a display area; accessing a mapping file that maps each of a plurality of positions to a respective haptic effect; and identifying a composite haptic effect mapped to a selected position, the position selected based on the determined position of the touch.
7. The system set forth in claim 6, wherein the position in the mapping file comprises a plurality of values, including a first value used to generate a first haptic signal to send to the first actuator and a second value used to generate a signal for providing the second haptic output.
8. The system set forth in claim 6, wherein the selected position is determined based on the position of the touch and a velocity of the touch.
9. The system set forth in claim 1, wherein the processor is further configured to determine a pressure of the touch based on data from the sensor, wherein the composite haptic effect is selected based at least in part on the pressure of the touch.
10. The system set forth in claim 1, further comprising a display, the display comprising a plurality of pixels and defining a display area, the display configured to output an image based at least in part on a display signal, wherein the touch surface corresponds to the display or a material above the display, and wherein the processor is configured to output the display signal.
11. A computer-implemented method, comprising: detecting, using at least one sensor, a touch occurring in a touch area when an object contacts a touch surface; selecting a composite haptic effect to generate in response to the touch, the composite haptic effect including at least one surface-based haptic effect; based on the selected composite haptic effect, sending a first haptic signal to a first actuator to cause the first actuator to vary a coefficient of friction of the touch surface; and based on the selected composite haptic effect, sending a second haptic signal to cause an actuator to provide a second haptic different from the variation in the coefficient of friction.
12. The method set forth in claim 11, wherein the second haptic signal is sent to a second actuator.
13. The method set forth in claim 12, wherein the first actuator comprises at least one of a piezoelectric actuator, a shape memory alloy, an electroactive polymer, a composite piezoelectric actuator, an electromagnetic actuator, an eccentric rotational mass actuator, a linear resonant actuator, or a voice coil actuator; and wherein the second actuator comprises at least one of a piezoelectric actuator, a shape memory alloy, an electroactive polymer, a composite piezoelectric actuator, an electromagnetic actuator, an eccentric rotational mass actuator, a linear resonant actuator, or a voice coil actuator.
14. The method set forth in claim 11, further comprising: determining a position of the touch, wherein selecting the composite haptic effect comprises determining a haptic effect that will simulate the presence of a feature in the touch surface and at or near the determined position.
15. The method set forth in claim 11, wherein the composite haptic effect comprises: varying the coefficient of friction to simulate one of a background texture and a simulated feature; and using the second haptic output to simulate the other of the background texture and the simulated feature.
16. The method set forth in claim 11, wherein the first haptic signal is configured to cause the first actuator to vary the coefficient of friction to simulate a feature and the second haptic signal is configured to cause the second actuator to provide tactile feedback in response to interacting with the simulated feature.
17. The method set forth in claim 16, wherein the simulated feature comprises a simulated key and the second haptic signal is configured to provide tactile feedback in response to data indicating the simulated key has been pressed.
18. The method set forth in claim 11, wherein selecting the composite haptic effects comprises: determining a position of the touch; accessing a mapping file that maps each of a plurality of positions to a respective plurality of haptic effects; and identifying a plurality of haptic effects mapped to a selected position, the position selected based on the determined position of the touch.
19. The method set forth in claim 11, further comprising: outputting a graphical user interface using a display, wherein the touch surface corresponds to at least one of: the display; a material above the display; or a peripheral device comprising an area mapped to at least a portion of the graphical user interface.
20. A tangible computer storage medium embodying program code executable by a computing system, the program code comprising: program code for causing the computing system to track a location of a touch on a touch surface; program code for causing the computing system to select a composite haptic effect to generate based on the interaction; program code for causing the computing system to transmit a haptic signal to at least one actuator to generate the selected composite haptic effect by varying a coefficient of friction of the touch surface; and program code for causing the computing system to transmit a haptic signal to at least one actuator to generate the selected composite haptic effect by generating a second haptic output.
PCT/US2010/026907 2009-03-12 2010-03-11 Systems and methods for friction displays and additional haptic effects WO2010105011A1 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
KR1020167023565A KR101952002B1 (en) 2009-03-12 2010-03-11 Systems and methods for friction displays and additional haptic effects
EP10712201.2A EP2406703B1 (en) 2009-03-12 2010-03-11 System and method for friction displays and additional haptic effects
CN201080011747.7A CN102349041B (en) 2009-03-12 2010-03-11 For the system and method for rub display and additional tactile effect
KR1020197004887A KR20190020180A (en) 2009-03-12 2010-03-11 Systems and methods for friction displays and additional haptic effects
EP18198744.7A EP3447614A1 (en) 2009-03-12 2010-03-11 System and method for friction displays and additional haptic effects
PCT/US2010/026907 WO2010105011A1 (en) 2009-03-12 2010-03-11 Systems and methods for friction displays and additional haptic effects
JP2011554179A JP5694205B2 (en) 2009-03-12 2010-03-11 Friction display system and method and additional haptic effect

Applications Claiming Priority (19)

Application Number Priority Date Filing Date Title
US15948209P 2009-03-12 2009-03-12
US61/159,482 2009-03-12
US26203809P 2009-11-17 2009-11-17
US26204109P 2009-11-17 2009-11-17
US61/262,041 2009-11-17
US61/262,038 2009-11-17
US12/696,900 2010-01-29
US12/697,037 US9927873B2 (en) 2009-03-12 2010-01-29 Systems and methods for using textures in graphical user interface widgets
US12/697,037 2010-01-29
US12/697,042 US10564721B2 (en) 2009-03-12 2010-01-29 Systems and methods for using multiple actuators to realize textures
US12/696,900 US9696803B2 (en) 2009-03-12 2010-01-29 Systems and methods for friction displays and additional haptic effects
US12/696,908 2010-01-29
US12/696,893 2010-01-29
US12/696,893 US9746923B2 (en) 2009-03-12 2010-01-29 Systems and methods for providing features in a friction display wherein a haptic effect is configured to vary the coefficient of friction
US12/697,010 2010-01-29
US12/697,042 2010-01-29
US12/696,908 US10007340B2 (en) 2009-03-12 2010-01-29 Systems and methods for interfaces featuring surface-based haptic effects
US12/697,010 US9874935B2 (en) 2009-03-12 2010-01-29 Systems and methods for a texture engine
PCT/US2010/026907 WO2010105011A1 (en) 2009-03-12 2010-03-11 Systems and methods for friction displays and additional haptic effects

Publications (1)

Publication Number Publication Date
WO2010105011A1 true WO2010105011A1 (en) 2010-09-16

Family

ID=73451209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/026907 WO2010105011A1 (en) 2009-03-12 2010-03-11 Systems and methods for friction displays and additional haptic effects

Country Status (5)

Country Link
EP (2) EP2406703B1 (en)
JP (1) JP5694205B2 (en)
KR (2) KR101952002B1 (en)
CN (1) CN102349041B (en)
WO (1) WO2010105011A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120295709A1 (en) * 2011-05-20 2012-11-22 Sony Corporation Haptic device for 3-d gaming
JP2013508806A (en) * 2009-10-19 2013-03-07 ノースウェスタン ユニバーシティ Haptic device with controlled frictional force
WO2013157626A1 (en) * 2012-04-20 2013-10-24 株式会社ニコン Electronic device and vibration control method
JP2014010830A (en) * 2012-06-29 2014-01-20 Immersion Corp Method and device for providing tactile feedback to short cut touch gesture
US8681130B2 (en) 2011-05-20 2014-03-25 Sony Corporation Stylus based haptic peripheral for touch screen and tablet devices
JP5507760B2 (en) * 2012-01-17 2014-05-28 パナソニック株式会社 Electronics
US8749533B2 (en) 2011-05-20 2014-06-10 Sony Corporation Haptic device for carving and molding objects
US8773403B2 (en) 2011-05-20 2014-07-08 Sony Corporation Haptic device for position detection
US20150169065A1 (en) * 2010-04-14 2015-06-18 Samsung Electronics Co., Ltd. Method and apparatus for processing virtual world
US9836150B2 (en) 2012-11-20 2017-12-05 Immersion Corporation System and method for feedforward and feedback with haptic effects
US10203757B2 (en) 2014-08-21 2019-02-12 Immersion Corporation Systems and methods for shape input and output for a haptically-enabled deformable surface
CN110546594A (en) * 2017-04-24 2019-12-06 法国原子能源和替代能源委员会 Time reversal interface for producing acoustic lubrication
US10518170B2 (en) 2014-11-25 2019-12-31 Immersion Corporation Systems and methods for deformation-based haptic effects
US10747322B2 (en) 2009-03-12 2020-08-18 Immersion Corporation Systems and methods for providing features in a friction display
US11126263B2 (en) 2016-07-22 2021-09-21 Harman International Industries, Incorporated Haptic system for actuating materials

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TR200400547T4 (en) * 2000-12-12 2004-07-21 Franz L�Sser Ag Spinning reel roller
US10564721B2 (en) 2009-03-12 2020-02-18 Immersion Corporation Systems and methods for using multiple actuators to realize textures
US20100236843A1 (en) * 2009-03-20 2010-09-23 Sony Ericsson Mobile Communications Ab Data input device
JP5496032B2 (en) * 2010-09-17 2014-05-21 京セラ株式会社 Tactile sensation presentation apparatus and control method for tactile sensation presentation apparatus
EP2703947B1 (en) * 2012-08-27 2019-02-27 Siemens Aktiengesellschaft Operating device for a technical system
US9368005B2 (en) 2012-08-31 2016-06-14 Immersion Corporation Sound to haptic effect conversion system using mapping
CN103677374B (en) * 2012-09-24 2019-07-26 联想(北京)有限公司 A kind of output method and a kind of electronic equipment
US9196134B2 (en) 2012-10-31 2015-11-24 Immersion Corporation Method and apparatus for simulating surface features on a user interface with haptic effects
JP6028534B2 (en) * 2012-11-19 2016-11-16 アイシン・エィ・ダブリュ株式会社 Operation support system, operation support method, and computer program
JP6020083B2 (en) * 2012-11-19 2016-11-02 アイシン・エィ・ダブリュ株式会社 Operation support system, operation support method, and computer program
US20140139451A1 (en) * 2012-11-20 2014-05-22 Vincent Levesque Systems and Methods For Providing Mode or State Awareness With Programmable Surface Texture
US9880623B2 (en) * 2013-01-24 2018-01-30 Immersion Corporation Friction modulation for three dimensional relief in a haptic device
US9547366B2 (en) * 2013-03-14 2017-01-17 Immersion Corporation Systems and methods for haptic and gesture-driven paper simulation
US9041647B2 (en) * 2013-03-15 2015-05-26 Immersion Corporation User interface device provided with surface haptic sensations
US9939900B2 (en) * 2013-04-26 2018-04-10 Immersion Corporation System and method for a haptically-enabled deformable surface
US9405369B2 (en) 2013-04-26 2016-08-02 Immersion Corporation, Inc. Simulation of tangible user interface interactions and gestures using array of haptic cells
WO2015016210A1 (en) * 2013-08-01 2015-02-05 株式会社ニコン Electronic device, and electronic device control program
US9245429B2 (en) * 2013-09-06 2016-01-26 Immersion Corporation Haptic warping system
US9639158B2 (en) * 2013-11-26 2017-05-02 Immersion Corporation Systems and methods for generating friction and vibrotactile effects
JPWO2015121958A1 (en) * 2014-02-14 2017-03-30 富士通株式会社 Electronic device, input device, and drive control method for electronic device
WO2015121964A1 (en) * 2014-02-14 2015-08-20 富士通株式会社 Input device
JP6319328B2 (en) * 2014-02-14 2018-05-09 富士通株式会社 Educational tactile sensation providing apparatus and system
CN103995591B (en) * 2014-05-16 2017-03-01 北京智谷睿拓技术服务有限公司 The method and apparatus producing tactile feedback
US9696806B2 (en) 2014-07-02 2017-07-04 Immersion Corporation Systems and methods for multi-output electrostatic haptic effects
CN104407707B (en) * 2014-12-08 2017-07-11 厦门大学 A kind of large texture tactile representation system
CN104679241B (en) * 2015-01-30 2018-02-06 南京航空航天大学 A kind of wide cut frictional force control tactile representation device and method
JP2018510052A (en) * 2015-01-30 2018-04-12 イマージョン コーポレーションImmersion Corporation Electrostatic tactile actuator and user interface having electrostatic tactile actuator
KR102130776B1 (en) * 2018-05-16 2020-07-08 주식회사 닷 Information output apparatus
JP6781236B2 (en) * 2018-11-16 2020-11-04 株式会社デンソーテン Operating device
US11099664B2 (en) 2019-10-11 2021-08-24 Hovsep Giragossian Talking multi-surface keyboard
WO2023155104A1 (en) * 2022-02-17 2023-08-24 Boe Technology Group Co., Ltd. Electronic apparatus and method of operating electronic apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050057528A1 (en) * 2003-09-01 2005-03-17 Martin Kleen Screen having a touch-sensitive user interface for command input
US20060119586A1 (en) * 2004-10-08 2006-06-08 Immersion Corporation, A Delaware Corporation Haptic feedback for button and scrolling action simulation in touch input devices
US20060209037A1 (en) * 2004-03-15 2006-09-21 David Wang Method and system for providing haptic effects
EP1748350A2 (en) * 2005-07-28 2007-01-31 Avago Technologies General IP (Singapore) Pte. Ltd Touch device and method for providing tactile feedback
US20080068348A1 (en) * 1998-06-23 2008-03-20 Immersion Corporation Haptic feedback for touchpads and other touch controls

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5999168A (en) * 1995-09-27 1999-12-07 Immersion Corporation Haptic accelerator for force feedback computer peripherals
JP3987182B2 (en) * 1998-01-26 2007-10-03 Idec株式会社 Information display device and operation input device
CN2377597Y (en) * 1998-11-20 2000-05-10 刘中华 Supersonic position parameter sensing device for specific object in plane
US6822635B2 (en) * 2000-01-19 2004-11-23 Immersion Corporation Haptic interface for laptop computers and other portable devices
US6639586B2 (en) * 2000-04-11 2003-10-28 Cirque Corporation Efficient entry of characters from a large character set into a portable information appliance
JP2005258666A (en) * 2004-03-10 2005-09-22 Sony Corp Input device, electronic device, and method for inputting touch to electronic device as feedback
JP2006163206A (en) * 2004-12-09 2006-06-22 Ntt Docomo Inc Tactile sense presentation device
US8405618B2 (en) * 2006-03-24 2013-03-26 Northwestern University Haptic device with indirect haptic feedback
KR20150044979A (en) * 2006-09-13 2015-04-27 임머숀 코퍼레이션 Systems and methods for casino gaming haptics
US7890863B2 (en) * 2006-10-04 2011-02-15 Immersion Corporation Haptic effects with proximity sensing
JP2010528381A (en) * 2007-05-30 2010-08-19 マーティン ポインティング ディバイシズ Touch pointing device with guide wire
EP2000884A1 (en) * 2007-06-08 2008-12-10 Research In Motion Limited Shape-changing disply for a handheld electronic device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080068348A1 (en) * 1998-06-23 2008-03-20 Immersion Corporation Haptic feedback for touchpads and other touch controls
US20050057528A1 (en) * 2003-09-01 2005-03-17 Martin Kleen Screen having a touch-sensitive user interface for command input
US20060209037A1 (en) * 2004-03-15 2006-09-21 David Wang Method and system for providing haptic effects
US20060119586A1 (en) * 2004-10-08 2006-06-08 Immersion Corporation, A Delaware Corporation Haptic feedback for button and scrolling action simulation in touch input devices
EP1748350A2 (en) * 2005-07-28 2007-01-31 Avago Technologies General IP (Singapore) Pte. Ltd Touch device and method for providing tactile feedback

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10747322B2 (en) 2009-03-12 2020-08-18 Immersion Corporation Systems and methods for providing features in a friction display
JP2013508806A (en) * 2009-10-19 2013-03-07 ノースウェスタン ユニバーシティ Haptic device with controlled frictional force
US20150169065A1 (en) * 2010-04-14 2015-06-18 Samsung Electronics Co., Ltd. Method and apparatus for processing virtual world
US9952668B2 (en) * 2010-04-14 2018-04-24 Samsung Electronics Co., Ltd. Method and apparatus for processing virtual world
US8681130B2 (en) 2011-05-20 2014-03-25 Sony Corporation Stylus based haptic peripheral for touch screen and tablet devices
US20120295709A1 (en) * 2011-05-20 2012-11-22 Sony Corporation Haptic device for 3-d gaming
US8749533B2 (en) 2011-05-20 2014-06-10 Sony Corporation Haptic device for carving and molding objects
US8773403B2 (en) 2011-05-20 2014-07-08 Sony Corporation Haptic device for position detection
US8956230B2 (en) * 2011-05-20 2015-02-17 Sony Corporation Haptic device for 3-D gaming
JP5507760B2 (en) * 2012-01-17 2014-05-28 パナソニック株式会社 Electronics
JPWO2013108595A1 (en) * 2012-01-17 2015-05-11 パナソニック株式会社 Electronics
WO2013157626A1 (en) * 2012-04-20 2013-10-24 株式会社ニコン Electronic device and vibration control method
JP2014010830A (en) * 2012-06-29 2014-01-20 Immersion Corp Method and device for providing tactile feedback to short cut touch gesture
US9836150B2 (en) 2012-11-20 2017-12-05 Immersion Corporation System and method for feedforward and feedback with haptic effects
US10203757B2 (en) 2014-08-21 2019-02-12 Immersion Corporation Systems and methods for shape input and output for a haptically-enabled deformable surface
US10509474B2 (en) 2014-08-21 2019-12-17 Immersion Corporation Systems and methods for shape input and output for a haptically-enabled deformable surface
US10518170B2 (en) 2014-11-25 2019-12-31 Immersion Corporation Systems and methods for deformation-based haptic effects
US11126263B2 (en) 2016-07-22 2021-09-21 Harman International Industries, Incorporated Haptic system for actuating materials
US11275442B2 (en) 2016-07-22 2022-03-15 Harman International Industries, Incorporated Echolocation with haptic transducer devices
US11392201B2 (en) 2016-07-22 2022-07-19 Harman International Industries, Incorporated Haptic system for delivering audio content to a user
CN110546594A (en) * 2017-04-24 2019-12-06 法国原子能源和替代能源委员会 Time reversal interface for producing acoustic lubrication
CN110546594B (en) * 2017-04-24 2023-05-12 法国原子能源和替代能源委员会 Time reversal interface for producing acoustic lubrication

Also Published As

Publication number Publication date
CN102349041A (en) 2012-02-08
KR101952002B1 (en) 2019-02-25
KR20160104748A (en) 2016-09-05
JP2012520523A (en) 2012-09-06
EP3447614A1 (en) 2019-02-27
KR20190020180A (en) 2019-02-27
EP2406703A1 (en) 2012-01-18
EP2406703B1 (en) 2018-11-28
CN102349041B (en) 2015-11-25
JP5694205B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
US10466792B2 (en) Systems and methods for friction displays and additional haptic effects
EP2406703B1 (en) System and method for friction displays and additional haptic effects
US10747322B2 (en) Systems and methods for providing features in a friction display
EP2406700B1 (en) System and method for providing features in a friction display
JP2012520523A5 (en)
EP2406702A1 (en) Systems and methods for interfaces featuring surface-based haptic effects

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080011747.7

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10712201

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010712201

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2011554179

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20117023988

Country of ref document: KR

Kind code of ref document: A