WO2010082724A2 - 표면처리된 잉크젯 프린트용 기판 - Google Patents

표면처리된 잉크젯 프린트용 기판 Download PDF

Info

Publication number
WO2010082724A2
WO2010082724A2 PCT/KR2009/006802 KR2009006802W WO2010082724A2 WO 2010082724 A2 WO2010082724 A2 WO 2010082724A2 KR 2009006802 W KR2009006802 W KR 2009006802W WO 2010082724 A2 WO2010082724 A2 WO 2010082724A2
Authority
WO
WIPO (PCT)
Prior art keywords
organic semiconductor
substrate
insulating film
transistor
hydrophilic
Prior art date
Application number
PCT/KR2009/006802
Other languages
English (en)
French (fr)
Other versions
WO2010082724A3 (ko
WO2010082724A9 (ko
Inventor
조길원
임정아
Original Assignee
포항공과대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 포항공과대학교 산학협력단 filed Critical 포항공과대학교 산학협력단
Priority to EP09838445A priority Critical patent/EP2388841A4/en
Priority to US13/143,855 priority patent/US20120104366A1/en
Publication of WO2010082724A2 publication Critical patent/WO2010082724A2/ko
Publication of WO2010082724A3 publication Critical patent/WO2010082724A3/ko
Publication of WO2010082724A9 publication Critical patent/WO2010082724A9/ko

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • H01L21/02288Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating printing, e.g. ink-jet printing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/60Forming conductive regions or layers, e.g. electrodes
    • H10K71/611Forming conductive regions or layers, e.g. electrodes using printing deposition, e.g. ink jet printing
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Definitions

  • the present invention relates to a substrate for inkjet printing of organic semiconductors, and more particularly to a substrate for inkjet printing of organic semiconductors whose surface energy is controlled to form a uniform and crystalline organic semiconductor thin film.
  • Organic thin film transistors are being actively researched as driving elements of next generation display devices.
  • Organic thin film transistors use organic films instead of silicon films as semiconductor layers.
  • low molecular weight organic thin film transistors such as oligothiophene, pentacene, and the like may be used. It is classified into a polymer organic thin film transistor such as thiophene (polythiophene) series.
  • each pixel includes two organic thin film transistors, for example, one switching organic thin film transistor and one At least one organic light emitting diode including an organic film layer interposed between the driving organic thin film transistor, one capacitor, and upper and lower electrodes is provided.
  • a flexible organic light emitting display device uses a flexible substrate as a substrate, and the flexible substrate includes a plastic substrate. Since plastic substrates have very poor thermal stability, it is required to manufacture organic light emitting display devices using low temperature processes.
  • an organic thin film transistor using an organic film as a semiconductor layer is capable of a low temperature process, and thus has been in the spotlight as a switching element of a flexible organic light emitting display device.
  • Korean Patent Laid-Open Publication No. 2004-0028010 discloses a pentacene thin film transistor that can shorten thin film deposition time and improve hole mobility.
  • Korean Patent Publication No. 2004-0084427 discloses a device structure of an organic thin film transistor that can improve the electrical performance of the transistor and a method of manufacturing the same.
  • Japanese Patent Laid-Open No. 2003-92410 discloses a thin film transistor in which a channel region is composed of an organic compound having a radical, so that carrier mobility and on / off current ratio can be improved.
  • OLEDs organic light emitting diodes
  • OFETs organic field transistors
  • OSCs organic solar cells
  • RFID RFID
  • WO 1999/39373 discloses an organic material such as an organic semiconductor dissolved in a solvent such as chloroform on a substrate by ink jet printing, and the solvent is evaporated to leave the organic material on the substrate, thereby depositing the organic material.
  • a method of forming a pattern on a substrate is disclosed.
  • Korean Patent Application No. 2008 No. 64335 proposes a method capable of exhibiting a uniform morphology on a surface after drying by using a mixed solvent having different boiling points and surface tensions.
  • Such methods consist of adjusting the drying mechanism by controlling the components of the printing ink to be printed. Accordingly, there has been a problem that various solvents are required depending on the type of semiconductor used.
  • Another object of the present invention is to provide a substrate for inkjet printing, which forms a uniform organic semiconductor layer after drying.
  • Still another object of the present invention is to provide a method for processing an inkjet print substrate having an organic semiconductor layer having a uniform thickness and high crystallinity after drying.
  • Another object of the present invention is to provide a novel organic semiconductor transistor.
  • the present invention provides a method of forming a crystalline semiconductor thin film by dropping an organic semiconductor solution on a hydrophilic surface.
  • the organic semiconductor solution may be dropped in the form of droplets on the surface of the substrate in various ways, preferably inkjet printing may be dropped on the surface of the substrate.
  • the inkjet printing apparatus may use known products, and there is no particular limitation.
  • the hydrophilic surface is not theoretically limited, but the drop diameter of the droplet is fixed at the initial stage of drying, and the capillary flow of the solvent flows from the center to compensate for the loss of evaporation during drying.
  • the organic semiconductor material first crystallizes, and the molecules supplied by the capillary flow are self-assembled by intermolecular interactions, forming crystals oriented towards the center of the droplets around the droplets. .
  • the hydrophilic surface may be a layer in which an organic semiconductor solution is dropped and dried to form an organic semiconductor layer, for example, an insulating layer, for example, a dielectric layer of a transistor made of silicon oxide or a polymer insulator.
  • an organic semiconductor layer for example, an insulating layer, for example, a dielectric layer of a transistor made of silicon oxide or a polymer insulator.
  • a silicon oxide layer Preferably it is a silicon oxide layer.
  • the surface on which inkjet printing is made for example, the silicon oxide or polymer insulating layer forming the dielectric layer of the transistor is activated by -OH group while completely removing contaminants on the surface by UV-ozone or oxygen plasma treatment. It is possible to form a hydrophilic surface.
  • the surface on which the inkjet printing is performed may be implemented by forming a self-assembled monolayer having high surface energy.
  • a layer of mertotopropyltrimethoxysilane (MPS) may be formed on the surface of the silicon oxide layer.
  • a low molecular weight organic semiconductor so that the organic semiconductor can have crystallinity after drying.
  • the material for forming the organic semiconductor layer include pentacene, for example, 6,13-bis (triisopropylsilylethynyl) pentacene, tetracene, anthracene, naphthalene, alpha-6-thiophene, perylene and derivatives thereof, Low molecular weight organic semiconductors such as rubrene and its derivatives, coronene and its derivatives, perylene tetracarbosilic diimide and its derivatives, perylene tetracarbolic silic dianhydride and its derivatives, preferably pentanesen, Most preferably 6,13-bis (triisopropylsilylethynyl) pentacene.
  • the organic semiconductor solution should be capable of stable discharge through the nozzle of the inkjet printer.
  • the discharged droplets form a ring-shaped thin film after drying, it becomes difficult to have uniform crystallinity over the entire droplet of the organic semiconductor layer.
  • the solvent system capable of forming the organic semiconductor in the form of a circular thin film is a main solvent that can be used as a conventional solvent for inkjet printing, for example, a co-solvent having different boiling points and surface tension in chlorobenzene, an example A combination of dodecane can be used.
  • the discharged droplets do not form a ring-shaped thin film after drying.
  • a solvent having a high boiling point for example, a solvent having a low vapor pressure having a boiling point of 200 ° C. or higher, such as tetralin
  • the discharged droplets do not form a ring-shaped thin film after drying.
  • the thin film forming method of the present invention can be mainly used for semiconductive or charge transport materials, elements or devices, and can also be used for optical, electro-optical or electronic devices, FETs, integrated circuits (ICs), TFTs or OLEDs obtained using the same. .
  • Circular thin films formed according to the present invention are TFTs for flat panel displays, TFT arrays, radio frequency identification (RFID) tags, electroluminescent displays, backlights, semiconducting or charge transport materials, including thin films made using ink for inkjet printing, It can be widely used in elements or devices, FETs, ICs, TFTs or OLEDs.
  • RFID radio frequency identification
  • the present invention provides a method for manufacturing an organic semiconductor transistor
  • a silicon insulating film may be used as the gate insulating film, and an organic insulating film may be used.
  • a preferred embodiment is a silicon oxide insulating film.
  • the surface treatment such that the insulating film has hydrophilicity may be performed through UV-ozone or oxygen plasma treatment.
  • the surface treatment may be achieved by forming a hydrophilic self-assembled monolayer.
  • Mermonopropyl trimethoxysilane (MPS) may be used as the monomolecular film.
  • the gate insulating film having the hydrophilicity has a surface energy of at least 45 mJ / m 2, preferably at least 50 mJ / m 2.
  • the source and drain electrodes are preferably configured to form concentric circles spaced at regular intervals.
  • the present invention in one aspect, the substrate
  • a gate provided in the substrate
  • Source and drain electrodes formed on the insulating film
  • the hydrophilic insulating film has a surface energy of at least 45 mJ / m 2, preferably at least 50 mJ / m as the insulating materials such as silicon oxide or polymer film are UV-ozone or oxygen plasma treated or a self-assembled monomolecular film is formed on the surface.
  • M 2 or more most preferably an insulating film having a surface energy of 200 mJ / m 2 or more.
  • the organic semiconductor thin film is preferably 6,13-bis (triisopropylsilylethynyl) pentacene having high pi-pi stackability in a direction parallel to the surface of the dielectric layer.
  • the source and drain electrodes are self-assembled from the periphery of the droplet to the center while the inkjet droplet is dried to form a circular organic semiconductor layer, the crystallinity that appears in the center direction from the periphery after drying It is preferable that the source having a circular ring shape and the drain having a circular ring shape are manufactured in an isolated form at regular intervals while forming concentric circles. A circular gap is formed between the source electrode and the drain electrode.
  • the present invention provides a method for forming an organic semiconductor layer using inkjet printing, wherein the surface energy of the substrate is controlled to control the crystallinity of the semiconductor thin film.
  • the surface energy of the substrate is controlled to control the crystallinity of the semiconductor thin film. The higher the surface energy of the substrate, the higher the crystallinity of the semiconductor thin film, and the lower the surface energy of the substrate, the lower the crystallinity of the semiconductor thin film.
  • the surface energy of the substrate may vary depending on the treatment method of the substrate surface, and the substrate may be treated with UV-ozone or oxygen plasma, or a method of forming a self-assembled monolayer on the surface may be used.
  • UV-Ozone or Oxygen Plasma contaminants can be removed from the surface of silicon oxide to activate -OH groups on the surface to increase the surface energy, and self-assembly such as mertotopropyltrimethoxysilane (MPS) having a hydrophilic surface It is possible to form a high molecular energy layer to form a high surface energy.
  • the self-assembled molecular layer on the surface is octadecyltrichlorosilane (OTS), 1,1,1,3,3,3-hexamethyldisilazane (HMDS), 1H, 1H, 2H, 2H. It is possible to form surfaces with low surface energy such as perfluorooctyltrichlorosilane (FDTS).
  • OTS octadecyltrichlorosilane
  • HMDS 1,1,1,3,3,3-hexamethyldisilazane
  • FDTS perfluorooctyltrichlorosilane
  • the present invention provides a substrate for inkjet printing, wherein the surface energy of the surface on which the organic semiconductor solution is inkjet printed is 45 mJ / m 2 or more, and preferably the surface energy is 200 mJ / m 2 or more.
  • the substrate may be an inorganic or organic polymer layer such as silicon oxide, and may also be a self-assembled molecular layer formed on the inorganic or organic layer.
  • the present invention provides a method of manufacturing a substrate for inkjet printing, wherein the inkjet printing surface is treated with UV-ozone or oxygen plasma, or a self-assembled monomolecular film is formed with mertotopropyltrimethoxysilane.
  • the present invention provides a method capable of controlling the crystallinity of a semiconductor thin film formed by inkjet printing of an organic semiconductor.
  • the present invention also provides a high performance organic thin film transistor comprising an inkjet printed semiconductor layer, and a thin film having a hydrophilic surface capable of exhibiting high crystallinity in inkjet printing.
  • the present invention provides new ways to transform the hydrophobic surface of the substrate into a hydrophilic surface.
  • FIG. 1 is an inkjet printed TIPS PEN solution surface treated with a UV-treated silicon oxide surface and (b) MPS, (c) HMDS, (d) OTS, and (e) FDTS (POM image shown inset). An optical microscope image of the enemy. (Scale bar is 50 ⁇ m). (f) is the height profile of the TIPS PEN single dot.
  • Figure 2 shows (a) inkjet print (b) out-of-plain x-ray diffraction ( ⁇ -2 ⁇ ) on a dielectric layer surface treated with various SAMs (b) spin-coated TIPS PEN film.
  • FIG. 4 is an evaporation process of one TIPS PEN droplet printed on a hydrophilic substrate.
  • FIG. 5 is an evaporation process of one TIPS PEN droplet printed on a hydrophobic substrate.
  • FIG. 7 is an inkjet printed optical microscope and polarization image (scale bar: optical 50) of TIPS PEN droplets of (a) chlorobenzene, (b) tetralin, and (c) 1,2,4, -trichlorobenzene solvent. ⁇ m, polarized light 100 ⁇ m)
  • FIG. 8 is an optical microscope image of inkjet printed TIPS PEN droplets in an OTS treated channel region.
  • TIPS PEN 6,13-bis (triisopropylsilylethenyl) pentacene
  • the silicon wafer and cover glass were washed with Pirana solution (70 vol% H 2 SO 4 + 30 vol% H 2 O 2) at 100 ° C. for 30 minutes and then again with distilled water.
  • the vacuum dried reaction flask was filled under argon with anhydrous toluene, washed silicon wafer or cover glass.
  • Alkylsilane (10 mM) was added to the flask and self-assembled on the wafer under argon for 1 hour.
  • the reaction time was 2 minutes.
  • the treated wafers were washed several times with toluene and ethanol and baked in a 120 ° C.
  • HMDS 1,1,1,3,3,3-hexamethyldisilazane
  • 1-2 wt% TIPS PEN tetralin solution was printed on SAM treated SiO 2.
  • the home-built inkjet printer was equipped with a single nozzle drop-on-demand Piazoelectric print head (Microfab Jet Drive III), a biaxial motor position system, and a CCD camera with LEDs for visualizing droplet ejection.
  • Single droplets with a volume of ⁇ 60 picoliters were ejected on demand from a nozzle having a diameter of 80 micrometers.
  • the vertical separation distance between the nozzle and the substrate was typically 0.5 mm.
  • the substrate temperature was maintained at the same temperature as the room (26 ° C., humidity 30%).
  • a SAM-treated glass substrate was used, and images were recorded from the side and bottom, as shown in FIG. 3 using two cameras (0.06 sec / frame).
  • Inkjet printed TIPS PEN droplets on UV-treated silicon oxide surfaces and substrates surface-treated with (b) MPS, (c) HMDS, (d) OTS, and (e) FDTS (POM images are inset).
  • Optical microscope (OM) images were taken. (Scale bar is 50 ⁇ m).
  • the height profile of the TIPS PEN single dots was measured and shown in FIG. 1.
  • the contact angle was measured by dropping water and tetralin on a UV-treated surface and a dielectric layer surface-treated with various SAMs. It is shown in Table 1 together with the surface energy.
  • the morphology of the droplets was analyzed by polarized light microscopy [(POM), Axioplan, Zesis].
  • ⁇ / 2 ⁇ mode X-ray diffraction (XRD) measurements were performed using a synchroton source at 10C1 beamline in Pohang Accelerator Laboratory (PAL), Korea.
  • the electrical characteristics of the transistors were performed by measuring the current-voltage curves (Keithley 2400 and 236).
  • FIG. 4 (a) shows the morphology change of inkjet printed TIPS PEN droplets on hydrophilic UV-ozone treated surfaces.
  • Fig. 4 (c) it is shown in three processes, in which the droplet is spread while the surface is wetted for 0.36 seconds on the surface, and in the next stage, the contact diameter reaches maximum and then decreases until the contact line is fixed. As the drying process proceeded, the contact diameter of the droplets was fixed and TIPS PEN crystallization proceeded in the contact line. TIPS PEN molecules are self-assembling and the finally aligned crystals are aligned to the center of the droplet in the contact line.
  • the droplets When the contact line is fixed during drying, the droplets have a fixed diameter so that a capillary flow of solvent occurs from the center to the contact line to compensate for the evaporated losses. This outward capillary flow transports the solute to the periphery of the droplet. Therefore, the concentration of TIPS PEN in the contact line is higher than in the center part. Therefore, the concentration near the contact line approaches the concentration necessary for crystallization rather than the concentration in the center, and crystallization occurs in the fixed contact line.
  • the molecules supplied by the capillary flow self assemble by intermolecular pi-pie interactions. This process is illustrated in Figure 4 (d). As shown in FIG.
  • the evaporation process of the hydrophobic substrate is performed in two steps.
  • the initial contact diameter is maintained and the contact angle is reduced, and the contact diameter is reduced while the next contact angle is maintained.
  • the gold source and drain electrodes were made in a closed source layout.
  • the length (L) / width (W) of the channels were 20/829 ⁇ m, 50/1570 ⁇ m, and 100/2199 ⁇ m.
  • a 3-nm thick titanium layer was used for the adhesion of the gold electrode.
  • Inkjet printed TIPS PEN crystals were deposited on the surface of the device treated with UV-ozone for 20 minutes to have hydrophilicity. TIPS PEN was selectively deposited on the patterned electrode using the position system of the inkjet printer.
  • the printed TIPS PEN did not wet the channel, and thus, the OFET could not be manufactured, which is due to the difference in surface energy between the hydrophobic channel region and the Au electrode.
  • the transistor showed 2.7 ⁇ A at the gate voltage of -10V, and the calculated field effect mobility and sub-threshold slope were 0.08 to 0.15 cmV -1 s -1 and 0.8V / decade, respectively.
  • the on-off current ratio exceeded 10 6 . The results are shown in FIG.

Abstract

본 발명은 유기물 반도체의 잉크젯 프린트용 기판에 관한 것으로서, 보다 상세하게는 균일하고 결정성 있는 유기물 반도체 박막을 형성하도록 표면에너지가 조절되는 유기물 반도체의 잉크젯 프린트용 기판에 관한 것이다. 본 발명에 따른 잉크젯 프린트용 기판은 유전층의 표면이 친수성 표면으로 처리되어 있어, 기판에 인쇄된 유기반도체 분자들이 높은 결정성을 가지면서 자기 조립된다.

Description

표면처리된 잉크젯 프린트용 기판
본 발명은 유기물 반도체의 잉크젯 프린트용 기판에 관한 것으로서, 보다 상세하게는 균일하고 결정성 있는 유기물 반도체 박막을 형성하도록 표면에너지가 조절되는 유기물 반도체의 잉크젯 프린트용 기판에 관한 것이다.
유기 박막 트랜지스터는 차세대 디스플레이장치의 구동소자로서 활발한 연구가 진행되고 있다. 유기 박막 트랜지스터(OTFT, organic thin film transistor)는 반도체층으로 실리콘막 대신에 유기막을 사용하는 것으로서, 유기막의 재료에 따라 올리고티오펜(oligothiophene), 펜타센(pentacene) 등과 같은 저분자 유기물 박막 트랜지스터와 폴리티오펜(polythiophene) 계열 등과 같은 고분자 유기물 박막 트랜지스터로 분류된다.
이러한 유기 박막 트랜지스터를 스위칭 소자로 사용하는 유기 전계 발광표시장치는 기판상에 다수의 화소가 매트릭스 형태로 배열되고, 각 화소는 2개의 유기박막 트랜지스터, 예를 들어 하나의 스위칭 유기 박막 트랜지스터 및 하나의 구동 유기 박막 트랜지스터와 하나의 캐패시터 그리고 상, 하부전극사이에 유기막층이 개재된 유기전계 발광소자를 적어도 구비한다.
통상적으로, 플렉서블 유기전계 발광표시장치는 기판으로 플렉서블 기판을 사용하고, 상기 플렉서블 기판은 플라스틱 기판을 포함한다. 플라스틱 기판은 열안정성이 매우 취약하여 저온공정을 이용하여 유기 전계 발광표시장치를 제조하는 것이 요구되고 있다.
이에 따라 반도체층으로 유기막을 사용하는 유기 박막 트랜지스터는 저온공정이 가능하므로, 플렉서블 유기전계 발광표시장치의 스위칭소자로서 각광을 받고 있다.
국내특허 공개공보 2004-0028010호에는 박막증착시간을 단축시킬 수 있으며, 정공이동도를 향상시킬 수 있는 펜타센 박막 트랜지스터를 개시하였다. 국내특허공보 2004-0084427호에는 트랜지스터의 전기적 성능을 향상시킬 수 있는 유기박막 트랜지스터의 소자구조 및 그 제조방법을 개시하였다. 또한, 일본특허 공개공보 2003-92410호에는 채널영역이 라디칼(radical)을 갖는 유기화합물로 구성되어, 캐리어 이동도와 온/오프 전류비를 향상시킬 수 있는 박막 트랜지스터를 개시하였다.
그러나, 이러한 방식은 제조 비용이 비싸 보다 저가에 제조할 수 있는 공정에 대한 요구가 계속되었는데, 잉크젯 프린팅 기술은 유기발광다이오드(OLEDs), 유기전계 트렌지스터(OFETs), 유기태양전지(OSCs), RFID 장치와 같은 유기 전자 소자를 제조함에 저가의 제조공정 확보를 위해 필수적인 직접 패턴화 기법으로 각광받고 있다.
WO 1999/39373에 공개공보에서는 잉크젯 인쇄에 의해 기질상에 클로로포름과 같은 용매에 용해된 유기반도체와 같은 유기재료를 침전시키고, 용매를 증발시켜 유기재료는 기질상에 남게 하여 유기재료 침전에 의해 기질상에 패턴을 형성하는 방법을 개시하고 있다.
그러나 잉크젯 인쇄에 의해서 형성되는 유기물 반도체층의 경우, 건조과정에서 표면에 불균일한 모폴로지를 형성하고 또한 결정성이 낮아 스핀 코팅이나 증착에 의해서 형성되는 유기물 반도체에 비해서 성능이 낮은 문제가 제기되고 있다.
이러한 문제를 해결하기 위해서, 폴리(알킬시오펜), 올리고시오펜, 또는 펜타센 전구체와 같은 새로운 유기 반도체 물질들이 개발되고 있으며, 유기물 반도체의 용매의 종류나 기재의 표면 젖음성, 또는 용액의 농도와 같은 인쇄인자를 개선하는 방안들이 연구되고 있다.(M. Plotner, T. Wegener, S. Richter, W. J. Fischer, Synthe. Met. 2004, 147, 299., S. K. Volkman, S. Moleda, B. Mattix, P. C. Chang, V. Subramanian, Mater. Res. Soc. Symp. Proc. 2003. 771, 391., P. C. Chang, S. E. Molesa, A. R. Murphy, J. M. J. Frechet, V. Subramanian, IEEE Trans. Electron Devices 2006, 53, 594)
그러나, 용매의 건조 과정에서 커피 스테인 효과로 인해 건조 후 균일한 모폴로지가 형성되기 어렵고, 균일한 모폴로지를 나타내더라도 결정성을 나타내지 못하는 문제가 해결되지 않고 있다.
대한민국 특허출원 2008년 제 64335 호에서는 비점과 표면장력이 상이한 혼합 용매를 사용함으로써, 건조 후에 표면에 균일한 모폴로지를 나타낼 수 있는 방법을 제시하고 있다.
상기와 같은 방식들은 인쇄되는 프린트용 잉크의 성분을 조절하여 건조 메카니즘을 조절하는 방식으로 이루어져 있다. 이에 따라, 사용되는 반도체의 종류에 따라 다양한 용매가 요구되는 문제가 있어왔다.
이에 따라, 건조되는 잉크젯 액적의 모폴로지를 조절할 수 있는 새로운 방안에 대한 요구가 계속되고 있다.
본 발명의 목적은 건조 후 두께가 균일한 유기물 반도체층을 형성하는 새로운 잉크젯 프린트 방법을 제공하는 것이다.
본 발명의 다른 목적은 건조 후 균일한 유기물 반도체층을 형성하는 잉크젯 프린트용 기판을 제공하는 것이다.
본 발명의 또 다른 목적은 건조 후, 두께가 균일하고 높은 결정성을 가지는 유기물 반도체층을 가지는 잉크젯 프린트용 기판을 가공하는 방법을 제공하는 것이다.
본 발명의 또 다른 목적은 새로운 유기물 반도체 트렌지스터를 제공하는 것이다.
본 발명의 또 다른 목적은 기판의 표면에너지를 조절하는 방법을 제공하는 것이다.
상기와 같은 문제를 해결하기 위해서, 본 발명은 친수성 표면에 유기 반도체 용액을 적하시켜 결정성 반도체 박막을 형성하는 것을 방법을 제공한다.
본 발명에 있어서, 상기 유기 반도체 용액은 다양한 방식으로 기판 표면에 액적 형태로 적하될 수 있으며, 바람직하게는 잉크젯 인쇄되어 기판의 표면에 적하될 수 있다. 본 발명의 실시에 있어서, 잉크젯 인쇄장치는 공지된 제품들을 사용할 수 있으며, 특별한 제한은 없다.
본 발명에 있어서, 상기 친수성 표면은 이론적으로 한정된 것은 아니지만, 적하된 액적이 건조 초기에 액적의 접촉직경이 고정되며, 건조 중 증발된 손실을 보충하기 위해서 용매의 캐필러리 흐름이 중앙에서부터 접촉라인 쪽으로 일어나게 되며, 접촉라인에서 유기 반도체 물질이 먼저 결정화가 일어나게 되며, 캐필러리 흐름에 의해 공급되는 분자들은 분자간 상호작용에 의해서 자기 조립되어, 액적의 주변에서 중앙쪽으로 방향성을 가지는 결정이 형성되게 된다.
본 발명에 있어서, 상기 친수성 표면은 유기 반도체 용액이 적하·건조되어 유기물 반도체층이 형성되는 층, 일예로 절연층, 예를 들어 실리콘 옥사이드나 고분자 절연체로 이루어지는 트랜지스터의 유전층일 수 있다. 바람직하게는 실리콘 옥사이드층이다.
발명의 일 실시에 있어서, 잉크젯 인쇄가 이루어지는 표면, 일예로 트렌지스터의 유전층을 이루는 실리콘 옥사이드나 고분자 절연층은 UV-오존 또는 산소 플라즈마 처리에 의해서 표면에 오염된 오염물들이 완전히 제거되면서 -OH기가 활성화된 친수성 표면을 형성할 수 있게 된다.
본 발명의 다른 실시에 있어서, 상기 잉크젯 인쇄가 이루어지는 표면은 표면에너지가 높은 자기조립성 단분자막을 형성함으로써 구현될 수 있다. 일예로 머켑토프로필트리메톡시실란(MPS)층이 실리콘 옥사이드층 표면에 형성될 수 있다.
본 발명에 있어서, 상기 유기물 반도체는 건조 후 결정성을 가질 수 있도록 저분자 유기물 반도체를 사용하는 것이 좋다. 유기 반도체층을 형성하는 물질로는 펜타센, 일예로 6,13-비스(트리이소프로필실릴에티닐)펜타센, 테트라센, 안트라센, 나프탈렌, 알파-6-티오펜, 페릴렌 및 그 유도체, 루브렌 및 그 유도체, 코로넨 및 그 유도체, 페릴렌 테트라카르볼실릭 디이미드 및 그 유도체, 페릴렌 테트라카르볼 실릭 디안하이드라이드 및 그 유도체와 같은 저분자량 유기물 반도체이며, 바람직하게는 펜탄센, 가장 바람직하게는 6,13-비스(트리이소프로필실릴에티닐)펜타센이다.
본 발명에 있어서, 상기 유기 반도체 용액은 잉크젯 프린터의 노즐을 통해서 안정적인 토출이 가능하여야 한다. 토출된 액적이 건조 후, 링 형태의 박막을 형성할 경우, 유기 반도체층의 액적 전체에 걸쳐서 균일한 결정성을 가지기 어렵게 된다.
본 발명의 일 실시에 있어서, 상기 원형 박막 형태의 유기 반도체를 형성할 수 있는 용매계로는 종래 잉크젯 프린트용 용제로 사용될 수 있는 주용매, 일예로 클로로벤젠에 비점과 표면장력이 다른 보조용매, 일예로 도데칸의 조합이 사용될 수 있다.
본 발명의 다른 실시에 있어서, 비점이 높은 용매, 일예로 테트랄린과 같이 200 ℃이상의 비점을 가지는 증기압이 낮은 용매의 경우, 토출된 액적이 건조 후, 링 형태의 박막을 형성하지 않아, 단독으로 사용할 수 있다.
본 발명의 박막 형성 방법은 주로 반도전성 또는 전하 수송 물질, 요소 또는 디바이스에 사용할 수 있으며, 이를 이용해서 얻어지는 광학, 전자광학 또는 전자 디바이스, FET, 집적 회로(IC), TFT 또는 OLED에도 사용될 수 있다.
본 발명에 따라 형성되는 원형 박막들은 잉크젯 프린트용 잉크를 이용하여 제조되는 박막을 포함하는 평면 디스플레이용 TFT, TFT 어레이, 전파 식별(RFID) 태그, 전기발광 디스플레이, 백라이트, 반도전성 또는 전하 수송 물질, 요소 또는 디바이스, FET, IC, TFT 또는 OLED에 광범위하게 사용될 수 있다.
본 발명은 일 측면에서, 유기물 반도체 트렌지스터를 제조하는 방법으로서
기판을 마련하는 단계;
상기 기판에 게이트를 형성하는 단계;
상기 게이트 상에 게이트 절연막을 형성하는 단계;
상기 게이트 절연막에 소스와 드레인 전극을 형성하는 단계;
상기 절연막이 친수성을 가지도록 표면처리하는 단계;
상기 소스와 드레인 전극 사이에 유기물 반도체 용액을 적하시켜 건조시키는 단계; 를 포함하는 방법을 제공한다.
본 발명에 있어서, 상기 게이트 절연막은 실리콘 절연막을 사용할 수 있으며, 유기물 절연막을 사용할 수 있다. 바람직한 실시예는 실리콘 옥사이드 절연막이다.
본 발명에 있어서, 상기 절연막이 친수성을 가지도록 하는 표면처리는 UV-오존 또는 산소 플라즈마 처리를 통해서 이루어질 수 있다. 또한, 상기 표면처리는 친수성 자기조립 단분자막을 형성을 통해 이루어질 수 있다. 상기 단분자막은 머켑토프로필트리메톡시실란(MPS)을 사용할 수 있다.
본 발명에 있어서, 상기 친수성을 가지는 게이트 절연막은 표면처리된 표면의 표면에너지가 45 mJ/㎡ 이상, 바람직하게는 50 mJ/㎡ 이상이 좋다.
본 발명에 있어서, 유기 반도체 용액의 액적이 표면에 적하된 후 건조되면,원형 박막의 주변에서부터 중심부로 결정성이 나타나게 되므로, 상기 소스와 드레인 전극은 일정간격으로 이격된 동심원을 이루면서 구성되는 것이 바람직하다.
본 발명은 일 측면에 있어서, 기판;
상기 기판에 마련되는 게이트;
상기 게이트에 형성되는 친수성 절연막;
상기 절연막에 형성되는 소스와 드레인 전극; 및
상기 소스와 드레인 전극 사이에 잉크젯 프린트된 유기물 반도체 박막
을 포함하는 트렌지스터를 제공한다.
본 발명에 있어서, 상기 친수성 절연막은 실리콘 옥사이드 또는 고분자막과 같은 절연막 재료들이 UV-오존 또는 산소 플라즈마 처리되거나 표면에 자기 조립성 단분자막이 형성되어 표면에너지가 45 mJ/㎡ 이상, 바람직하게는 50 mJ/㎡ 이상 , 가장 바람직하게는 표면에너지가 200 mJ/㎡ 이상인 절연막이다. 본 발명에서와 같이 표면에너지가 높은 절연막의 표면에 잉크젯 프린트된 유기물 반도체 용액이 적하될 경우, 이론적으로 한정된 것은 아니지만, 적하된 액적의 테두리가 고정된 상태에서 건조되어, 유기물 반도체 물질이 액적의 주변부에서부터 결정성을 가지면서 자기조립된다.
본 발명에 있어서, 상기 유기 반도체 박막은 유전층 표면에 평행한 방향을 따라서 분자가 pi-pi적층성이 높은 6,13-비스(트리이소프로필실릴에티닐)펜타센이 바람직하다.
본 발명에 있어서, 소스와 드레인 전극은 상기 잉크젯 액적이 건조되어 원형의 유기 반도체층을 형성하는 동안 유기물 반도체 물질이 액적의 주변부에서부터 중심부로 자기조립되어, 건조 후 주변에서 중심방향으로 나타나는 결정성을 효과적으로 이용할 수 있도록 원형 링 형태의 소스와 원형 링 형태의 드레인이 동심원을 이루면서 일정간격으로 격리된 형태로 제조되는 것이 바람직하다. 상기 소스 전극과 드레인 전극사이에 원형의 갭이 형성된다.
본 발명은 일 측면에 있어서, 잉크젯 인쇄를 이용하여 유기 반도체층을 형성하는 방법에 있어서, 기판의 표면에너지를 조절하여 반도체 박막의 결정성을 조절하는 방법을 제공한다. 기판의 표면에너지가 높아지면 반도체 박막의 결정성을 높아지며, 기판의 표면에너지가 낮아지면 반도체 박막의 결정성이 낮아지는 경향을 나타내게 된다.
기판의 표면에너지는 기판 표면의 처리 방법에 따라 달라질 수 있으며, 상기 기판을 UV-오존이나 산소플라즈마로 처리하거나 또는 표면에 자기조립성 단분자층을 형성하는 방법을 사용할 수 있다. UV-오존이나 산소플라즈마의 경우 실리콘옥사이드의 표면에서 오염물질을 제거하여 표면에 -OH기를 활성화시켜 표면에너지를 높일 수 있으며, 친수성 표면을 가지는 머켑토프로필트리메톡시실란(MPS)와 같은 자기조립성 분자층을 형성하여 표면에너지를 높게 형성할 수 있다. 다른 일 실시에 있어서는 표면에 자기조립성 분자층을 옥타데실트리클로로실란(OTS), 1,1,1,3,3,3-헥사메틸디실라잔(HMDS), 1H,1H,2H,2H-퍼플로로옥틸트리클로로실란(FDTS)와 같은 낮은 표면에너지를 가지는 표면을 형성할 수 있게 된다.
본 발명은 일 측면에서, 유기반도체 용액이 잉크젯 인쇄되는 표면의 표면에너지가 45 mJ/㎡ 이상, 바람직하게는 표면에너지가 200 mJ/㎡ 이상인 것을 특징으로 하는 잉크젯 프린트용 기판을 제공한다.
상기 기판은 실리콘옥사이드와 같은 무기질이나 유기 고분자층일 수 있으며, 또한 상기 무기 또는 유기층에 형성된 자기조립성 분자층일 수 있다.
본 발명은 일 측면에서, 잉크젯 인쇄면을 UV-오존 또는 산소 플라즈마로 처리하거나, 머켑토프로필트리메톡시실란으로 자기조립성 단분자막을 형성하는 것을 특징으로 하는 잉크젯 인쇄용 기판의 제조방법을 제공한다.
본 발명에 의해서 유기 반도체의 잉크젯 인쇄로 형성되는 반도체 박막의 결정성을 제어할 수 있는 방법이 제공되었다.
또한, 본 발명에 의해서 잉크젯 인쇄된 반도체층을 포함하는 고성능의 유기 박막 트랜지스터가 제공되었으며, 잉크젯 인쇄시 높은 결정성을 나타낼 수 있는 친수성 표면을 가지는 박막이 제공되었다.
또한, 본 발명에 의해서 기판의 소수성 표면을 친수성 표면으로 변형할 수 있는 새로운 방안들이 제공되었다.
도 1은 UV-처리된 실리콘 옥사이드 표면과 (b)MPS, (c)HMDS, (d)OTS, 및 (e) FDTS(POM 이미지는 삽입그림으로 표현)로 표면처리된 잉크젯 프린트된 TIPS PEN 액적의 광학현미경(OM)이미지이다. (스케일바는 50 ㎛). (f)는 TIPS PEN 싱글닷의 높이 프로파일이다.
도 2는 다양한 SAMs으로 표면처리된 유전층 표면에서 (a)잉크젯 프린트 (b)스핀코팅된 TIPS PEN 필름에 대한 Out-of-plain x-레이 회절(θ-2θ)
도 3은 (a)실험 셋업 및 (b) 프린트된 액적의 지오메트리이다.
도 4는 친수성 기판에 인쇄된 하나의 TIPS PEN 액적의 증발 과정이다. (a)수직 CCD카메라에서 얻어진 원표면에서 TIPS PEN 액적의 증발에서 in-situ 시간-resolved OM 이미지. (b) 원표면과 MPS 표면에서 시간에 따른 액적 증발시 접촉 직경의 변화. (c) 인쇄된 TIPS PEN 액적의 증발 과정에서 세 단계의 개략적 다이아그램. (d) 건조되는 액적의 접촉라인 근반에서 TIPS PEN 분자의 증발-매개된 자가 조립에 대한 개략적 표현이다.
도 5는 소수성 기판에 인쇄된 하나의 TIPS PEN 액적의 증발과정이다. (a) 수직 CCD 카메라에서 얻어진 OTS 표면에서 TIPS PEN 액적의 증발과정에서 in-situ 시간-resolved OM 이미지이다 (b) HMDS, OTS, 및 FDTS 표면의 시간에 따른 접촉 직경 및 접촉 각의 변화. (c)TIPS PEN 액적의 증발 과정에서 2단계의 개략적 표현이다.
도 6은 UV-오존 처리된 유전층 표면(스케일 바=100㎛)에서 잉크젯 인쇄된 TIPS PEN 트렌지스터의 (a)편광된 OM이미지와 전기적 특성(b)출력과 (c)이송특성
도 7은 (a)클로로벤젠, (b)테트랄린, 및 (c)1,2,4,-트리클로로벤젠 용매의 TIPS PEN 액적이 잉크젯 인쇄된 광학 현미경 및 편광 이미지(스케일 바:광학 50 ㎛, 편광 100 ㎛)
도 8은 OTS 처리된 채널 영역에서 잉크젯 인쇄된 TIPS PEN액적의 광학현미경 이미지.
실시예
사용물질
6,13-비스(트리이소프로필실릴에테닐)펜타센(TIPS PEN)은 John E. Anthony 등이 보고한 방법에 따라 제조하여 정제하여 사용하였으며, 머켑토프로필트리메톡시실란, 옥타데실트리클로로실란, 트리클로로(1H,1H,2H,2H-퍼플로로옥틸)실란은 구입해서 사용하였다. 모든 알킬 실란은 사용전에 데시케이터에 보관하였다.
실리콘 웨이퍼와 커버글라스는 피라나 용액(70 부피% H2SO4 + 30 부피% H2O2)으로 100 ℃에서 30 분동안 세척하고, 다시 증류수로 세척하였다. 진공 건조된 반응 플라스크는 무수 톨루엔, 세척된 실리콘 웨이퍼 또는 커버글라스로 아르곤하에서 채워졌다. 알킬실란(10mM)이 플라스크에 투입되고, 1시간동안 아르곤하에서 웨이퍼에 자기조립되었다. 트리클로로(1H,1H,2H,2H-퍼플로로옥틸)실란의 경우, 반응시간은 2분이었다. 처리된 웨이퍼는 톨루엔과 에탄올로 수차례 세척하고, 120℃ 오븐에서 20분간 구워졌다. 구워진 후, 시료들은 톨루엔에서 초음파 세척되었고, 에탄올로 완전히 세척한 다음, 진공 건조하였다. 1,1,1,3,3,3-헥사메틸디실라잔(HMDS)는 세정된 기판에 스핀코팅된 후 150℃에서 1시간동안 구워졌다. 친수성 원 표면은 20분동안 UV-오존 처리하여 얻어졌다.
잉크젯 프린팅.
1-2 중량%의 TIPS PEN 테트랄린 용액이 SAM 처리된 SiO2에 인쇄되었다. 홈-빌트된 잉크젯 프린터에는 싱글노즐 드랍-온-디멘드 피아조일렉트릭 프린트 헤드(Microfab Jet Drive III), 이축 모터 포지션 시스템, 및 액적 토출을 시각화하기 위한 LED가 달린 CCD 카메라가 장착되었다. ~60 피코리터의 부피를 가지는 싱글 액적이 80 마이크로미터의 직경을 가지는 노즐로부터 요구에 따라 토출되었다. 노즐과 기판사이의 수직 이격거리는 전형적으로 0.5 mm였다. 기판 온도는 방(26 ℃, 습도 30%)과 동일한 온도로 유지되었다. 적하된 액적의 건조 거동을 시각화하기 위해, SAM으로 처리된 유리기판이 사용되었으며, 이미지는 두개의 카메라(0.06 초/프레임)를 이용하여 도 3에서 도시된 바와 같이, 측면과 밑면으로부터 기록되었다.
UV-처리된 실리콘 옥사이드 표면과 (b)MPS, (c)HMDS, (d)OTS, 및 (e) FDTS(POM 이미지는 삽입그림으로 표현)로 표면처리된 기판에서 잉크젯 프린트된 TIPS PEN 액적의 광학현미경(OM)이미지를 촬영하였다. (스케일바는 50 ㎛). 또한, TIPS PEN 싱글닷들의 높이 프로파일을 측정하여 도 1에 도시하였다.
또한, UV-처리된 표면과 다양한 SAM으로 표면처리된 유전층에 물과 테트랄린을 적하하여 접촉각을 측정하였다. 표면에너지와 함께 표 1에 나타내었다.
표 1
Figure PCTKR2009006802-appb-I000001
표면에너지는 증류수와 디아이오드메탄을 프포브 액체로 이용하여 접촉각을 측정하여 측정되었으며, 지오메트릭 mean equation은 (1+cosθ)γpl=2(γdγd pl)1/2+2(γsγp pl)1/2, 여기서, γs와 γpl은 기판과 프로브 액체의 각각 표면에너지이며, 첨자 d와 p는 각각 표면에너지의 분산성과 극성에 의한 상호작용 성분을 의미한다.
UV-표면처리된 표면과 높은 표면에너지를 가지는 MPS 표면에서는 결정에서 일축의 분자 정렬을 의미하는 깨끗한 광학 컨트라스트를 가지는 수십 마이크론미터-사이즈 결정이 POM 이미지에서 촬영되었다. 반면, HMDS 처리된 표면에서는 1㎛의 높이와 50㎛의 직경을 가지는 TIPS PEN의 응집체가 관측되었고, POM 이미지에서는 소량의 결정들이 침적의 가장자리 부위에서 관측되었다. HMDS보다 더 낮은 표면에너지를 가지는 OTS 및 FDTS 표면에서는 작아진 직경과 증가된 높이의 농축된 응집체들이 형성되었으며, POM 이미지에서 광학 컨트래스트가 없었으며, 이는 마이크로미터 스케일에서 결정성 정렬이 없음을 나타낸다.
잉크젯 인쇄된 TIPS PEN 필름의 결정성 마이크로 구조를 확인하기 위해서, X-레이 회절시험을 하였다. XRD 의 강도가 필름 두께에 민감하기 때문에, 모든 표면에 대해 잉크젯 인쇄된 닷-정렬은 ~300㎛의 동일한 닷-투-닷 거리로 시험되었다. 결과를 도 2에 나타내었다.
친수성의 UV-처리된 표면과 MPS 표면에 자기 조립된 결정에 대한 회절 스펙트럼은 TIPS PEN 단위셀에서 도2(a)에 도시된 바와 같이, c-축 16.8 Å에 상응하는 (00l)반사만을 나타내었다. 이는 TIPS PEN분자가 매우 높은 결정성과 배열성을 나타냄을 의미한다. 스핀코팅의 경우는 다양한 표면에너지의 표면에 대해서 차이를 나타내지 않았다.
액적의 모폴로지는 편광 광학 현미경[(POM), Axioplan, Zesis]으로 분석하였다. θ/2θ 모드 X-레이 회절(XRD) 측정은 한국 포항가속기실험실(PAL)에서 10C1빔라인에서 싱크로톤 소스를 이용하여 수행하였다. 트랜지스터의 전기적 특성은 전류-전압 커브(Keithley 2400 및 236)를 측정하여 수행하였다.
다양한 표면에서 잉크젯 인쇄된 TIPS PEN 액적의 자가 조립 과정을 측정하기 위해서 도 3에서와 같은 실험 셋업이 이루어졌다. 초기 접촉각(Ψc), 접촉 직경(dc), 액적의 높이가 촬영된 이미지로부터 얻어졌다.
도 4(a)에서는 친수성 UV-오존처리된 표면에서 잉크젯 프린트된 TIPS PEN 액적의 모폴로지 변화를 보여준다. 도 4(c)에서와 같이 3가지 과정으로 나타나는데, 초기 단계에서는 액적이 표면에서 0.36초동안 표면을 적시면서 스프레드되고, 다음 단계에서는 접촉 직경이 최대에 이른 후 접촉라인이 고정될 때까지 줄어든다. 건조 과정이 진행됨에 따라 액적의 접촉직경이 고정되고 TIPS PEN 결정화가 접촉라인에서 진행되었다. TIPS PEN 분자는 자가 조립성이며, 최종적으로 정렬된 결정은 접촉라인에서 액적의 중심부로 정렬되었다.
건조 중 접촉라인이 고정될 때, 액적은 고정된 직경을 가지게되어, 증발된 손실을 보충하기 위해서 용매의 캐필러리 흐름이 중앙에서부터 접촉라인 쪽으로 일어나게 된다. 이 외곽으로의 캐필러리 흐름은 용질을 액적의 주변으로 이송시키게 된다. 따라서, 접촉라인에서 TIPS PEN의 농도는 중앙부에서보다 높게 된다. 따라서 중앙부의 농도보다 접촉라인 근방의 농도가 결정화에 필요한 농도에 접근하게 되어 고정된 접촉라인에서 결정화가 일어나게 된다. 캐필러리 흐름에 의해 공급되는 분자들은 분자간 파이-파이 상호작용에 의해서 자기 조립된다. 도4(d)에서 이러한 과정이 도시되어 있다. 도 7에서 도시된 바와 같이, UV-오존 처리된 실리콘 옥사이드 기판에 (a)클로로벤젠, (b)테트랄린, (c) 1,2,4-트리클로로벤젠을 용매로 TIPS PEN을 잉크젯 인쇄한 결과 테트랄린보다 더 높은 비점을 가지는 트리클로로벤젠(214 ℃)의 경우 링-형태의 침적은 일어나지 않았으며, 테트랄린의 경우 결정성이 더 좋았다.
소수성 기판에 증발과정은 도 5에서 도시된 바와 같이, 2 단계로 이루어지는데, 초기 접촉직경은 유지되면서 접촉각이 감소하는 단계와 다음 접촉각의 유지면서 접촉직경이 줄어드는 단계로 나뉜다.
OFET 장치의 제조 및 잉크젯 프린팅
하부접촉식 전계 효과 트랜지스터는 과도핑된 n-타입 Si 웨이퍼를 게이트 전극으로 이용하고, 300 nm 두께의 열산화된 SiO2 층(캐패시턴스=10.8nF/㎠)를 게이트 유전층으로 이용하여 제조되었다. 통상적인 포토리소그래피를 이용하여, 금 소스 및 드레인 전극이 폐쇄원 레이아웃으로 제조되었다. 채널의 길이(L)/폭(W)은 20/829 ㎛, 50/1570㎛, 및 100/2199 ㎛이었다. 3-nm 두께의 티타늄층이 금 전극의 접착을 위해 사용되었다. 친수성을 가지도록 UV-오존으로 20분간 처리된 장치의 표면에 잉크젯 프린트된 TIPS PEN 결정을 침적시켰다. TIPS PEN은 잉크젯 프린터의 포지션 시스템을 이용하여 패턴화된 전극상에 선택적으로 침적되었다.
도 8과 같이 소수성 표면에서는 인쇄된 TIPS PEN이 채널을 적시지 못해, OFET를 제조할 수 없었으며, 이는 소수성 채널 영역과 Au 전극사이의 표면에너지 차이에 의한 것이다.
반면, UV-오존 처리된 유전층 표면(스케일 바=100㎛)에서 잉크젯 인쇄된 TIPS PEN 트렌지스터는 단지 한 방울의 액적으로 적하한 경우에도 배향된 결정성 구조를 가지는 TIPS PEN 결정을 형성하였다. 트렌지스터는 게이트 전압 -10V에서 2.7 ㎂를 나타내었으며, 계산된 전계 효과 이동도와 서브-트레숄드 기울기는 각각 0.08~0.15 ㎠V-1s-1 과 0.8V/디케이드였다. on-off 전류비는 106을 넘었다. 결과를 도 6에 도시하였다.

Claims (36)

  1. 친수성 표면에 유기 반도체 용액을 적하시켜 결정성 반도체 박막을 형성하는 것을 특징으로 하는 방법.
  2. 제1항에 있어서, 상기 친수성 표면은 트랜지스터의 유전층인 것을 특징으로 하는 방법.
  3. 제1항 또는 제2항에 있어서, 상기 친수성 표면은 UV-오존 또는 산소 플라즈마 처리된 표면인 것을 특징으로 하는 방법.
  4. 제3항에 있어서, 상기 친수성 표면은 실리콘 옥사이드 또는 고분자 절연층인것을 특징으로 하는 방법.
  5. 제1항 또는 제2항에 있어서, 상기 친수성 표면은 표면에너지가 45 mJ/㎡ 이상인 것을 특징으로 하는 방법.
  6. 제5항에 있어서, 상기 친수성 표면은 유전층에 형성된 자기조립 단분자막인 것을 특징으로 하는 방법.
  7. 제6항에 있어서, 상기 자기조립 단분자막은 머켑토프로필트리메톡시실란(MPS)인 것을 특징으로 하는 방법.
  8. 제1항 또는 제2항에 있어서, 상기 유기 반도체 용액은 잉크젯 인쇄를 통해 적하되는 것을 특징으로 하는 방법.
  9. 제8항에 있어서, 상기 유기 반도체 용액은 친수성 표면과의 접촉각이 5°이하인 것을 특징으로 하는 방법.
  10. 제8항에 있어서, 상기 유기 반도체는 6,13-비스(트리이소프로필실릴에티닐)펜타센인 것을 특징으로 하는 방법.
  11. 제8항에 있어서, 상기 유기 반도체 용액에서 용매의 비점이 200 ℃ 이상인 것을 특징으로 하는 방법.
  12. 제11항에 있어서, 상기 용매는 테트랄린인 것을 특징으로 하는 방법.
  13. 기판을 마련하는 단계;
    상기 기판에 게이트를 형성하는 단계;
    상기 게이트 상에 게이트 절연막을 형성하는 단계;
    상기 게이트 절연막에 소스와 드레인 전극을 형성하는 단계;
    상기 절연막이 친수성을 가지도록 표면처리하는 단계;
    상기 소스와 드레인 전극 사이에 유기물 반도체 용액을 적하시켜 건조시키는 단계;
    를 포함하는 것을 특징으로 하는 트렌지스터 제조 방법.
  14. 제13항에 있어서, 상기 절연막은 실리콘 옥사이드 또는 고분자 절연층인 것을 특징으로 하는 트렌지스터 제조 방법.
  15. 제13항 또는 제14항에 있어서, 상기 표면처리는 UV-오존 또는 산소 플라즈마 처리인 것을 특징으로 하는 트렌지스터 제조 방법.
  16. 제13항 또는 제14항에 있어서, 상기 표면처리는 자기조립 단분자막을 형성하는 것임을 특징으로 하는 트렌지스터 제조 방법.
  17. 제16항에 있어서, 상기 자기조립 단분자막은 머켑토프로필트리메톡시실란(MPS)인 것을 특징으로 하는 트렌지스터 제조 방법.
  18. 제13항 또는 제14항에 있어서, 상기 표면처리된 표면의 표면에너지가 45 mJ/㎡ 이상인 것을 특징으로 하는 트렌지스터 제조 방법.
  19. 제13항 또는 제14항에 있어서, 상기 유기 반도체 용액은 잉크젯 인쇄를 통해 적하되는 것을 특징으로 하는 트렌지스터 제조 방법.
  20. 제13항 또는 제14항에 있어서, 상기 유기 반도체 용액은 표면처리된 절연막과의 접촉각이 5°이하인 것을 특징으로 하는 방법.
  21. 제19항에 있어서, 상기 유기 반도체는 6,13-비스(트리이소프로필실릴에티닐)펜타센인 것을 특징으로 하는 방법.
  22. 제19항에 있어서, 상기 용매는 테트랄린인 것을 특징으로 하는 방법.
  23. 제13항 또는 제14항에 있어서, 상기 소스 및 드레인 전극은 동심원을 이루면서 이격되는 것을 특징으로 하는 방법.
  24. 기판;
    상기 기판에 마련되는 게이트;
    상기 게이트에 형성되는 친수성 절연막;
    상기 절연막에 형성되는 소스와 드레인 전극; 및
    상기 소스와 드레인 전극 사이에 잉크젯 프린트된 유기물 반도체 박막
    을 포함하는 트렌지스터.
  25. 제24항에 있어서, 상기 절연막은 UV-오존 또는 산소 플라즈마 처리된 실리콘 옥사이드 또는 고분자 절연막인 것을 특징으로 하는 트렌지스터.
  26. 제24항 또는 제25항에 있어서, 상기 표면에 자기조립 단분자막이 형성된 실리콘 옥사이드인 것을 특징으로 하는 트렌지스터.
  27. 제26항에 있어서, 상기 자기조립 단분자막은 머켑토프로필트리메톡시실란(MPS)인 것을 특징으로 하는 트렌지스터.
  28. 제24항에 있어서, 상기 친수성 절연막은 표면에너지가 45 mJ/㎡ 이상인 절연막임을 특징으로 하는 트렌지스터.
  29. 제24항에 있어서, 상기 친수성 절연막은 표면에너지가 200 mJ/㎡ 이상인 절연막임을 특징으로 하는 트렌지스터.
  30. 제24항 또는 제25항에 있어서, 상기 유기 반도체는 6,13-비스(트리이소프로필실릴에티닐)펜타센인 것을 특징으로 하는 트렌지스터.
  31. 제30항에 있어서, 상기 소스 및 드레인 전극은 동심원을 이루면서 이격되는 것을 특징으로 하는 트렌지스터.
  32. 잉크젯 인쇄를 이용하여 유기 반도체층을 형성하는 방법에 있어서, 기판의 표면에너지를 조절하여 반도체 박막의 결정성을 조절하는 것을 특징으로 하는 방법.
  33. 제32항에 있어서, 기판의 표면에너지를 높여 반도체 박막의 결정성을 높이는 것을 특징으로 하는 방법.
  34. 유기반도체 용액이 잉크젯 인쇄되는 표면의 표면에너지가 45 mJ/㎡ 이상인 것을 특징으로 하는 잉크젯 프린트용 기판.
  35. 제34항에 있어서, 표면에너지가 200 mJ/㎡ 이상인 것을 특징으로 하는 잉크젯 프린트용 기판.
  36. 잉크젯 인쇄면을 UV-오존 또는 산소 플라즈마로 처리하거나, 머켑토프로필트리메톡시실란으로 자기조립성 단분자막을 형성하는 것을 특징으로 하는 잉크젯 인쇄용 기판의 제조방법.
PCT/KR2009/006802 2009-01-15 2009-11-19 표면처리된 잉크젯 프린트용 기판 WO2010082724A2 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP09838445A EP2388841A4 (en) 2009-01-15 2009-11-19 SURFACE-TREATED SUBSTRATE FOR INKJET PRINTER
US13/143,855 US20120104366A1 (en) 2009-01-15 2009-11-19 Surface-treated substrate for an inkjet printer

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020090003479A KR101069585B1 (ko) 2009-01-15 2009-01-15 표면처리된 잉크젯 프린트용 기판
KR10-2009-0003479 2009-01-15

Publications (3)

Publication Number Publication Date
WO2010082724A2 true WO2010082724A2 (ko) 2010-07-22
WO2010082724A3 WO2010082724A3 (ko) 2010-09-10
WO2010082724A9 WO2010082724A9 (ko) 2010-10-28

Family

ID=42340180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006802 WO2010082724A2 (ko) 2009-01-15 2009-11-19 표면처리된 잉크젯 프린트용 기판

Country Status (4)

Country Link
US (1) US20120104366A1 (ko)
EP (1) EP2388841A4 (ko)
KR (1) KR101069585B1 (ko)
WO (1) WO2010082724A2 (ko)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101020629B1 (ko) * 2009-03-30 2011-03-09 연세대학교 산학협력단 자외선 조사를 이용한 절연막의 선택적 표면 처리방법
KR101884824B1 (ko) 2011-09-07 2018-08-03 삼성디스플레이 주식회사 박막 트랜지스터 및 그 제조 방법
FR2996163B1 (fr) * 2012-10-03 2016-02-05 Essilor Int Procede d'impression d'un motif par jet d'encre sur une surface
US9680097B2 (en) * 2013-04-06 2017-06-13 Indian Institute Of Technology Kanpur Organic thin film transistors and methods for their manufacturing and use
KR102151754B1 (ko) * 2013-11-20 2020-09-04 삼성디스플레이 주식회사 유기발광 디스플레이 장치 및 그 제조방법
EP3406675A1 (en) * 2017-05-22 2018-11-28 InnovationLab GmbH Electronic and optoelectronic devices having anisotropic properties and method for their production
CN108550697A (zh) * 2017-10-30 2018-09-18 上海幂方电子科技有限公司 柔性有机太阳能电池及其全印刷制备方法
CN114464762B (zh) * 2022-02-14 2023-12-01 中国科学院化学研究所 单一取向有机半导体晶体图案化阵列的印刷制备方法及其应用
CN116396637B (zh) * 2023-04-06 2024-02-27 中国科学院苏州纳米技术与纳米仿生研究所 调节喷墨打印薄膜微观组分分布的方法、共混墨水及应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039373A2 (en) 1998-01-30 1999-08-05 Trustees Of Princeton University Fabrication of organic semiconductor devices using ink jet printing
JP2003092410A (ja) 2001-09-19 2003-03-28 Nec Corp 薄膜トランジスタ
KR20040028010A (ko) 2002-09-28 2004-04-03 삼성전자주식회사 유기 게이트 절연막 및 이를 이용한 유기박막 트랜지스터
KR20040084427A (ko) 2003-03-28 2004-10-06 주식회사 하이닉스반도체 고전압 소자 및 그 제조 방법
KR20080064335A (ko) 2007-01-04 2008-07-09 엘지전자 주식회사 노광용 마스크, 이를 이용한 노광 방법 및 표시장치용 기판제조방법

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5847413A (en) * 1994-08-31 1998-12-08 Semiconductor Energy Laboratory Co., Ltd. Differential amplifier circuit and analog buffer
WO1999048339A1 (fr) * 1998-03-17 1999-09-23 Seiko Epson Corporation Substrat de formation de motifs sur film mince et son traitement de surface
JP2004087682A (ja) * 2002-08-26 2004-03-18 Chi Mei Electronics Corp 薄膜トランジスタ、画像表示素子および画像表示装置
JP4934995B2 (ja) * 2005-06-03 2012-05-23 大日本印刷株式会社 有機半導体材料、有機半導体構造物及び有機半導体装置
KR100647710B1 (ko) * 2005-10-21 2006-11-23 삼성에스디아이 주식회사 박막 트랜지스터, 이의 제조 방법 및 이를 구비한 평판표시 장치
JP4904903B2 (ja) * 2006-04-20 2012-03-28 大日本印刷株式会社 有機エレクトロルミネッセンス素子の製造方法
KR20080066152A (ko) * 2007-01-11 2008-07-16 엘지전자 주식회사 계면특성이 향상된 유기 반도체층을 갖는 유기박막트랜지스터 및 그 제조 방법
KR20080078348A (ko) * 2007-02-23 2008-08-27 삼성전자주식회사 박막 트랜지스터 표시판 및 그 제조 방법
JP4821007B2 (ja) * 2007-03-14 2011-11-24 国立大学法人大阪大学 Iii族元素窒化物結晶の製造方法およびiii族元素窒化物結晶
KR101379616B1 (ko) * 2007-07-31 2014-03-31 삼성전자주식회사 계면특성이 향상된 유기박막트랜지스터 및 그의 제조방법
JPWO2009038171A1 (ja) * 2007-09-21 2011-01-06 凸版印刷株式会社 有機エレクトロルミネッセンスディスプレイ及びその製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999039373A2 (en) 1998-01-30 1999-08-05 Trustees Of Princeton University Fabrication of organic semiconductor devices using ink jet printing
JP2003092410A (ja) 2001-09-19 2003-03-28 Nec Corp 薄膜トランジスタ
KR20040028010A (ko) 2002-09-28 2004-04-03 삼성전자주식회사 유기 게이트 절연막 및 이를 이용한 유기박막 트랜지스터
KR20040084427A (ko) 2003-03-28 2004-10-06 주식회사 하이닉스반도체 고전압 소자 및 그 제조 방법
KR20080064335A (ko) 2007-01-04 2008-07-09 엘지전자 주식회사 노광용 마스크, 이를 이용한 노광 방법 및 표시장치용 기판제조방법

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
M. PLOTNER, T. WEGENER, S. RICHTER, W.J. FISCHER, SYNTHE. MET., vol. 147, 2004, pages 299
P.C. CHANG, S.E. MOLESA, A.R. MURPHY, J.M. J. FRECHET, V. SUBRAMANIAN, IEEE TRANS. ELECTRON DEVICES, vol. 53, 2006, pages 594
S.K. VOLKMAN, S. MOLEDA, B. MATTIX, P.C. CHANG, V. SUBRAMANIAN, MATER. RES. SOC. SYMP. PROC., vol. 771, 2003, pages 391
See also references of EP2388841A4

Also Published As

Publication number Publication date
EP2388841A2 (en) 2011-11-23
WO2010082724A3 (ko) 2010-09-10
EP2388841A4 (en) 2012-12-05
US20120104366A1 (en) 2012-05-03
KR20100084063A (ko) 2010-07-23
KR101069585B1 (ko) 2011-10-05
WO2010082724A9 (ko) 2010-10-28

Similar Documents

Publication Publication Date Title
WO2010082724A2 (ko) 표면처리된 잉크젯 프린트용 기판
Duan et al. Solution‐processed centimeter‐scale highly aligned organic crystalline arrays for high‐performance organic field‐effect transistors
US8455373B2 (en) Ink-jet print ink and organic thin film transistor using thereof
Lee et al. High-performance thin-film transistor with 6, 13-bis (triisopropylsilylethynyl) pentacene by inkjet printing
US7704784B2 (en) Semiconductor devices having regions of induced high and low conductivity, and methods of making the same
Kim et al. Organic TFT array on a paper substrate
EP2304821B1 (en) Mixed solvent systems for deposition of organic semiconductors
JP2009290187A (ja) 自己組織化単分子膜の形成方法及び構造体、電界効果型トランジスタ
KR20070122203A (ko) 박막 트랜지스터용 중합체성 게이트 유전체
JP5205763B2 (ja) 有機薄膜トランジスタ
JP5470763B2 (ja) カーボンナノチューブ分散溶液、有機半導体コンポジット溶液、有機半導体薄膜ならびに有機電界効果型トランジスタ
KR20080003813A (ko) 박막 트랜지스터용 반도체 재료
TWI514570B (zh) 場效電晶體,其製造方法及使用其等之電子裝置
Chen et al. Organic semiconductor crystal engineering for high‐resolution layer‐controlled 2D Crystal Arrays
WO2006051874A1 (ja) 電界効果トランジスタ
He et al. Manipulate organic crystal morphology and charge transport
WO2012043912A1 (ko) 스프레이 방식을 이용한 박막트랜지스터 및 전자회로를 제조하는 방법
KR20140043649A (ko) 유기 반도체 박막의 제조 방법
WO2012169696A1 (ko) 바코팅을 이용한 유기반도체 박막의 제조방법
CN102870202A (zh) 有机半导体膜及其制造方法和接触印刷用印模
Zhang et al. Brush-controlled oriented growth of TCNQ microwire arrays for field-effect transistors
WO2011139006A1 (ko) 전하 주입성을 향상시킨 유기박막트랜지스터 및 이의 제조방법
Chang et al. Self-patterning of high-performance thin film transistors
Feng et al. Improving performance of selective-dewetting patterned organic transistors via semiconductor-dielectric blends
JP2007188923A (ja) 電界効果型トランジスタおよびそれを用いた画像表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838445

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009838445

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13143855

Country of ref document: US