WO2010081101A2 - Closure devices, systems, and methods - Google Patents

Closure devices, systems, and methods Download PDF

Info

Publication number
WO2010081101A2
WO2010081101A2 PCT/US2010/020659 US2010020659W WO2010081101A2 WO 2010081101 A2 WO2010081101 A2 WO 2010081101A2 US 2010020659 W US2010020659 W US 2010020659W WO 2010081101 A2 WO2010081101 A2 WO 2010081101A2
Authority
WO
WIPO (PCT)
Prior art keywords
anchor
tube set
closure system
elongate
anchor portion
Prior art date
Application number
PCT/US2010/020659
Other languages
French (fr)
Other versions
WO2010081101A3 (en
Inventor
Laveille K. Voss
Original Assignee
Abbott Vascular Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abbott Vascular Inc. filed Critical Abbott Vascular Inc.
Publication of WO2010081101A2 publication Critical patent/WO2010081101A2/en
Publication of WO2010081101A3 publication Critical patent/WO2010081101A3/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B17/0644Surgical staples, i.e. penetrating the tissue penetrating the tissue, deformable to closed position
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00646Type of implements
    • A61B2017/00659Type of implements located only on one side of the opening
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00646Type of implements
    • A61B2017/00668Type of implements the implement being a tack or a staple
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/0057Implements for plugging an opening in the wall of a hollow or tubular organ, e.g. for sealing a vessel puncture or closing a cardiac septal defect
    • A61B2017/00672Locating means therefor, e.g. bleed back lumen
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B2017/0645Surgical staples, i.e. penetrating the tissue being elastically deformed for insertion

Definitions

  • the present disclosure relates generally to medical devices and their methods of use.
  • the present disclosure relates to vessel closure systems and devices and corresponding methods of use. 2.
  • Catheterization and interventional procedures such as angioplasty or stenting, generally are performed by inserting a hollow needle through a patient's skin and tissue into the vascular system.
  • a guidewire may be advanced through the needle and into the patient's blood vessel accessed by the needle.
  • the needle is then removed, enabling an introducer sheath to be advanced over the guidewire into the vessel, e.g., in conjunction with or subsequent to a dilator.
  • a catheter or other device may then be advanced through a lumen of the introducer sheath and over the guidewire into a position for performing a medical procedure.
  • the introducer sheath may facilitate introducing various devices into the vessel, while minimizing trauma to the vessel wall and/or minimizing blood loss during a procedure.
  • the devices and introducer sheath Upon completing the procedure, the devices and introducer sheath would be removed, leaving a puncture site in the vessel wall.
  • external pressure would be applied to the puncture site until clotting and wound sealing occur; however, the patient must remain bedridden for a substantial period after clotting to ensure closure of the wound.
  • This procedure may also be time consuming and expensive, requiring as much as an hour of a physician's or nurse's time. It is also uncomfortable for the patient and requires that the patient remain immobilized in the operating room, catheter lab, or holding area.
  • a risk of hematoma exists from bleeding before hemostasis occurs.
  • some closure systems may be available, they provide limited control to flexibility to the operator, which may lead to improper or undesirable closure of the puncture site.
  • the present disclosure can include a closure system.
  • the closure system can include a handle member, a tube set, an inner lumen disposed at least partially within the tube set, a plunger member movably coupled to the handle member, and an anchor member at least partially disposed within the inner lumen.
  • the anchor member can include an anchor portion and an elongate portion. The anchor portion can be disposed in the inner lumen in an initial configuration and configured to move to an expanded configuration once deployed from the inner lumen.
  • the present disclosure can also include a method of closing a body lumen opening.
  • the method can include advancing a closure system at least partially into a body lumen opening.
  • the closure system can include a handle member, a tube set configured to deliver and/or deploy a closure element, an inner lumen disposed at least partially within the tube set, a plunger member movably coupled to the handle member, and an anchor member at least partially disposed within the inner lumen.
  • the anchor member can include an anchor portion and an elongate portion, the anchor portion being disposed in the inner lumen in an initial configuration and configured to move to an expanded configuration once deployed from the inner lumen.
  • the method can also include deploying the anchor portion of the anchor member within the body lumen.
  • the method can include positioning the anchor portion of the anchor member against a distal surface of the lumen wall proximate the body lumen opening. In yet further embodiments, the method can include advancing the tube set in a distal direction to position the distal end of the tube set against a proximal surface of the lumen wall proximate the body lumen opening. In addition, the method can include deploying a closure element into the lumen wall proximate the body lumen opening to close the body lumen opening.
  • the present disclosure can include an anchor member.
  • the anchor member can include an elongate portion having a distal end and proximal end.
  • the anchor member can include an anchor portion coupled to the distal end of the elongate portion.
  • the anchor portion is configured to move elastically between an initial configuration and an expanded configuration.
  • the expanded configuration can include a plurality of projections.
  • Figures 2A-2D disclose an example method of operating the closure system of Figure 1 in accordance with a further embodiment
  • Figures 3A-3B disclose an example anchor member in accordance with a yet further embodiment
  • Figures 4A-4B disclose an example anchor member in accordance with an additional example embodiment
  • Figures 5A-5D disclose an example method of operating the anchor member of Figures 3A-3B in accordance with one embodiment
  • Figures 6A-6G disclose an example method of closing a body lumen opening in accordance with a further embodiment
  • Figures 7A-7G disclose the operation of an example tube set
  • Figure 8 discloses an exploded view of an additional example closure system in accordance with a further embodiment.
  • a closure system of the present disclosure may allow an operator to quickly and efficiently close a body lumen opening while simultaneously providing the operator with a greater measure of control and flexibility in positioning and anchoring the closure system than previously available.
  • the closure system may allow an operator to achieve a more intimate securement of a closure element in the tissue surrounding a body lumen opening.
  • the closure system may be compatible with a wider range of body lumen wall thicknesses, thereby taking into account the possibility of calcifications or scar tissue in the lumen wall.
  • the closure system may be configured to advance into a body lumen opening over a guidewire.
  • the closure system may be compatible with a variety of sizes of body lumen openings and tissue tracts.
  • Embodiments of the disclosure further relate to a device closure system with a removable anchor.
  • the anchor can be deployed from a contracted state to an expanded state.
  • the anchor can be used to locate an opening in a vessel (e.g., an arteriotomy) when deploying, for example, a closure element, such as a clip or staple.
  • the anchor in conjunction with a tube set in the closure system, may sandwich the tissue surrounding the opening in the vessel. This effectively locates the opening and aids in effective and proper deployment of the closure element.
  • the closure system may then retract or remove the anchor during use of the closure system, leaving the arteriotomy or opening at least substantially closed or sealed by the closure element. During removal, the anchor can deform without dislodging the closure element. More specifically in one embodiment, the anchor is withdrawn back into the tube set and into the pre-deployed state. Thus, the closure system and close an opening in a body lumen using a removable anchor.
  • the closure system 100 may be configured to close an opening in a body lumen.
  • the closure system 100 may include a handle member 110, a tube set 120 coupled to the handle member 110, a plunger member 130, an inner lumen 140, and an anchor member 150 disposed at least partially within the inner lumen 140.
  • An operator such as a physician, may utilize the closure system 100 and the elements thereof to close an opening in a body lumen.
  • the plunger member 130 may be used to deploy the anchor member 150 to locate the distal surface of a lumen wall and position the closure system 100 relative to a body lumen opening.
  • the handle member 110 and tube set 120 may be used to deliver a closure element, such as a clip or staple, and deploy the closure element into the tissue of the body lumen wall to close or substantially close the body lumen opening.
  • the handle member 110 of the closure system 100 may be configured to assist an operator, such as a physician, to grip, manipulate, advance, and/or operate the closure system 100 in order to close a body lumen opening.
  • the handle member 110 may have a shape and size that conforms to the shape and size of a human hand.
  • the handle member 110 may also include a number of indentations 112 configured to at least partially receive the fingers and/or thumbs of the operator. The indentations 112 may assist the operator to grip and manipulate the handle member 110 and closure system 100.
  • the handle member 110 may also include one or more flanges 114 to assist an operator to grip, advance, and/or retract the handle member 110 and/or closure system 100.
  • the handle member 110 may also include any number of mechanisms necessary to deploy a closure element.
  • the handle member 110 may include a button 116 operatively associated with one or more mechanisms configured to deploy a closure element.
  • the button 116 may be positioned in or proximate to one of the one or more indentations 112.
  • the button 116 may be operatively associated with one or more elements of the tube set 120 configured to deploy the closure element 100.
  • an operator may depress the button 116 in order to push, fire, or eject a closure element from the tube set 120 into the tissue of a body lumen to close a body lumen opening.
  • the handle member 110 may include a recess 118 configured to receive at least a portion of the plunger member 130.
  • the recess 118 may be further configured to allow the plunger member 130 to move in a longitudinal direction relative to the handle member 110.
  • the recess 118 may allow the plunger member 130 to move both distally and proximally relative to the handle member 110.
  • the recess 118 may have a cross-sectional shape similar to, but slightly larger than, the cross sectional shape of the plunger member 130. As a result, the plunger member 130 may slide into and out of the recess 118 to move relative to the handle member 110.
  • the handle member 110 may include any number of rigid or semi-rigid materials.
  • the handle member 110 may include any number of polymers, plastics, metals, composites, other similar materials, or combinations thereof.
  • the tube set 120 may be coupled to and/or partially disposed within the handle member 110.
  • the tube set 120 may have a proximal end 122 coupled to the handle member 110 and opposite a distal end 124.
  • the tube set 120 may be configured to contain, deliver, and/or deploy a closure element.
  • the tube set 120 may include one or more tubular members and/or other mechanisms configured to house, advance, push, fire, and/or eject the closure element.
  • the tube set 120 may include a pusher tube, a garage tube, a carrier tube, and/or other similar elements.
  • the tube set 120 may include a spring-loaded pusher member configured to deploy the closure element when released or activated.
  • the closure element may be disposed within the tube set 120 in an initial, open configuration and may be configured to be deployed from the tube set 120 and move to a deployed, closed configuration.
  • the closure element may store sufficient energy, while in its initial, open configuration, to engage the tissue of and close an opening in a lumen wall.
  • the closure element may include any of a number of shape memory and/or superelastic materials and may be set to elastically return to a deployed, closed configuration from any other configuration.
  • the closure element may include nitinol.
  • the closure element may be a clip, staple, or other closure element.
  • the closure system 100 may also include an inner lumen 140.
  • the inner lumen 140 may be disposed at least partially within the tube set 120, the handle member 110, and/or the plunger member 130.
  • the inner lumen 140 may be movable, such as slidable, with respect to the tube set 120, the handle member 110, and/or the plunger member 130. As a result, the inner lumen 140 may move either distally or proximally relative to the tube set 120, the handle member 110, and/or the plunger member 130.
  • the inner lumen 140 may be configured to house and deliver the anchor member
  • the inner lumen 140 may be integrated into or replaced by an element of the tube set 120.
  • the inner lumen 140 may include any number of flexible or semi-rigid materials.
  • the inner lumen may include one or more polymers, elastomers, plastics, metals, composites, other similar materials, or combinations thereof.
  • the closure system 100 may include an anchor member 150.
  • the anchor member 150 may be configured to locate, position the closure system 100 relative to, and/or anchor the tissue surrounding a body lumen opening.
  • the anchor member 150 may include an anchor portion 152 and an elongate portion 154.
  • the anchor portion 152 may be configured to be positioned and/or anchored against the distal surface of a lumen wall.
  • the elongate portion 154 may be coupled to the anchor portion 152 and may be configured to control, deploy, position, stabilize, and/or retract the anchor portion 152.
  • the elongate portion 154 may extend away from the anchor portion 152 in a proximal direction through the inner lumen 140, the tube set 120, the handle member 110, and/or the plunger member 130.
  • the elongate portion 154 may be coupled at its proximal end 122 to the plunger member 130. In a yet further embodiment, the elongate portion 154 may be selectively detachable from and recouplable to the plunger member 130.
  • the anchor portion 152 of the anchor member 150 may be disposed in an initial, contracted configuration within the inner lumen 140.
  • the elongate portion 154 of the anchor member 150 may extend proximally from the anchor portion 152 to the plunger member 130.
  • the elongate portion 154 may transfer forces from the plunger member 130 to the anchor portion 152. Accordingly, by advancing the plunger member 130 or elongate portion 154 in a distal direction relative to the inner lumen 140 an operator may deploy the anchor portion 152 of the anchor member 150 from the distal end of the inner lumen 140. Retracting the plunger member 130 in a proximal direction may position and/or anchor the anchor portion 152 against a distal surface of a lumen wall. In a further embodiment, further retracting the plunger member 130 in a proximal direction may retract the anchor portion 152 of the anchor member 150 from the body lumen and/or into the inner lumen 140 or tube set 120.
  • the anchor portion 152 of the anchor member 150 may be configured to move from an initial, contracted configuration within the inner lumen 140 to a deployed, expanded configuration once deployed from the inner lumen 140.
  • the anchor portion 152 of the anchor member 150 may include one or more superelastic or shape memory materials such as shape memory alloys.
  • the anchor portion 152 be heat set in a deployed, expanded configuration.
  • the anchor portion 152 may then be elastically deformed into an initial, contracted configuration contracted and disposed within the inner lumen 140. In its initial, contracted configuration, the anchor portion 152 may store sufficient energy to return to its deployed, expanded configuration once released from the inner lumen 140.
  • a user may operate the plunger member 130 to deploy and/or retract the anchor member 150.
  • the plunger member 130 may be configured to at least partially receive the tube set 120 and/or the inner lumen 140.
  • the plunger member 130 may also be configured to receive a portion of the anchor member 150 and/or a guidewire.
  • the inner lumen 140 and/or anchor member 150 may be coated to minimize friction within the inner lumen 140 to ease deployment.
  • the proximal end 122 of the plunger member 130 may be configured to be gripped and/or operated by an operator such as a physician. For example, an operator may grip the handle member 110 with a first hand and grip the proximal end of the plunger member 130 with a second hand in order to advance or retract the plunger member 130 relative to the handle member 110. As a result, the operator may deploy the anchor portion 152 of the anchor member 150 from the inner lumen 140 and/or position the anchor portion 152 against a distal surface of a lumen wall thereby locating the body lumen opening to be closed.
  • the operator may advance the handle member 110 in a distal direction relative to the plunger member 130 and inner lumen 140 to position the distal end 124 of the tube set 120 against a proximal surface of the lumen wall.
  • the operator may facilitate the closure of the body lumen opening by at least partially gripping, sandwiching, and/or immobilizing the tissue surrounding the body lumen opening.
  • the operator may then deploy a closure element into the tissue of the lumen wall to close the body lumen opening.
  • the shape of the plunger member 130 may correspond with the shape of the recess 118 to facilitate relative movement between the handle member 110 and the plunger member 130.
  • the cross sectional shape of both the plunger member 130 and the recess 118 may be any shape desired such as circular, triangular, rectangular, or other shapes, or combinations thereof.
  • the length of the plunger member 130 and the corresponding depth of the recess 118 may be any length and depth desired to allow sufficient relative movement between the plunger member 130 and handle member 110.
  • the length of the plunger member 130 and the corresponding depth of the recess 118 may be sufficient to allow deployment of the anchor portion 152 from the inner lumen.
  • the closure system 100 may include a self-tensioning mechanism configured to automatically provide tension in the anchor member 150 once the anchor portion 152 has deployed.
  • the handle member 110 may include a spring mechanism disposed in the recess 118 and configured to resist and/or counteract movement of the plunger member 130 in a distal direction relative to the handle member 110. In particular, advancing the plunger member 130 in a distal direction relative to the handle member 110 may transfer energy to the spring mechanism, which may be released once the operator releases the plunger member 130.
  • the spring mechanism may move the plunger member 130 in a proximal direction relative to the handle member 110 thereby retracting the anchor portion 152 in a proximal direction, thereby automatically engaging the distal surface of a lumen wall, and/or advancing the handle member 110 and tube set 120 in a distal direction, thereby engaging the proximal surface of the lumen wall.
  • the spring mechanism can also create sufficient tension within the anchor member 150 to produce a desired pressure on the tissue of the lumen wall between the anchor portion 152 and the tube set 120. Accordingly, the closure system 100 may automatically and efficiently create the desired sandwiching or immobilizing force on the tissue surrounding the body lumen opening.
  • the spring mechanism may make it unnecessary for the operator to provide the movement or force necessary to position the closure system 100 relative to the body lumen opening.
  • any other self-tensioning mechanism may be included in the closure system 100 to produce to desired tension in the anchor member 150 and force upon the tissue surrounding the body lumen opening.
  • the plunger member 130 and closure system 100 may have a click or ratchet function similar to that of a "click" pen.
  • the closure system 100 may include a mechanism for determining the thickness of a lumen wall and/or the distance between the anchor portion 152 and the distal end 124 of the tube set 120.
  • the plunger member 130 may have a plurality of indicator lines along the length thereof.
  • the indicator lines may be positioned and marked to indicate the position of the deployed anchor portion 152 relative to the distal end 124 of the tube set 120.
  • the number of indicator lines exposed as the plunger member 130 is retracted may indicate the thickness of the tissue surrounding the body lumen opening being closed.
  • the indicator lines may be calibrated so that they read zero thickness when the anchor portion 152 is position directly against the distal end 124 of the tube set 120.
  • the operator may refer to the indicator lines to determine the position of the anchor portion 152 relative to the distal end 124 of the tube set 120 and/or the thickness of the tissue surrounding a body lumen opening.
  • closure system 100 may incorporate at least one component of the closure systems 600 and 800, tube sets 720 and 820, and anchor members 350, 450, 550, and 650 described in connection with Figures 3-6G, respectively.
  • Figure 2A illustrates the closure system 100 in an initial configuration.
  • the plunger member 130 may be fully retracted relative to the handle member 110, and the anchor portion 152 of the anchor member 150 may be disposed within the inner lumen 140.
  • Advancing the plunger member 130 in a distal direction relative to the handle member 110, the tube set 120, and the inner lumen 140 may deploy the anchor portion 152 of the anchor member 150 from the inner lumen 140, as shown in Figure 2B.
  • the anchor portion 152 may move from an initial, contracted configuration to a deployed, expanded configuration.
  • the plunger member 130 may include two or more plunger components.
  • the plunger member 130 may include a first component configured to deploy and/or retract the anchor member 150 and a second component configured to advance and/or retract the inner lumen 140.
  • the first and second components of the plunger member 130 may be movable with respect to one another.
  • retracting the plunger member 130 in a proximal direction relative to the handle member 110, the tube set 120, and/or the inner lumen 140 may retract the anchor portion 152 in a proximal direction, as shown in Figure 2C.
  • advancing the handle member 110 in a distal direction relative to the plunger member 130 may advance the tube set 120 in a distal direction until the distal end 124 of the tube set 120 is proximate the anchor portion 152 of the anchor member 150.
  • an operator of the closure system 100 may locate, anchor, and/or immobilize the tissue surrounding a body lumen opening between the tube set 120 and anchor portion 152.
  • FIGS 3A-3B disclose an example anchor member 350 in accordance with implementations of the present disclosure.
  • the example anchor member 350 of this configuration may be functionally similar to the example anchor member 150 previously described above and shown in Figures 1-2D in most respects, wherein certain features will not be described in relation to this configuration wherein those components may function in the manner as described above and are hereby incorporated into this additional configuration described below.
  • Like structures and/or components are given like reference numerals.
  • the anchor member 350 may incorporate at least one component of the anchor members 450, 550, and 650 described in connection with Figures 4-6G, respectively.
  • the anchor member 350 may be configured to assist an operator to locate, anchor, immobilize, and/or support a body lumen opening and/or the surrounding tissue of the lumen wall.
  • the anchor member 350 may include an anchor portion 352 and an elongate portion 354.
  • the anchor portion 352 may include any size and/or shape configured to anchor against a surface of a lumen wall or to locate a body lumen opening.
  • the anchor portion may include a plurality of projections 356 configured to engage the tissue of a lumen wall.
  • the projections 356 may be shaped, positioned, and/or oriented in any configuration desired to provide positioning or anchoring support.
  • the anchor portion 352 may include any number of projections 356 desired. In the embodiment shown in Figures 3A-3B the anchor portion 352 of the anchor member 350 includes four projections 356, however, the anchor portion 352 may have fewer or more projections 356 than four.
  • the projections may extend in a direction or a plane substantially perpendicular to the longitudinal axis of the elongate portion 354.
  • the projections 356 may be rounded.
  • the projections 356 may be leaf-shaped or pedal-shaped.
  • the anchor portion 352 may have a shape substantially similar to a four leaf clover.
  • the anchor portion 352 may be coupled to the distal end of the elongate portion 354.
  • the elongate portion 354 may include one or more elongate members 358.
  • the elongate member(s) 358 may be configured to advance, retract, position, and/or deploy the anchor portion 352.
  • the elongate member(s) 358 may be longitudinally rigid or semi-rigid to facilitate advancing or retracting the anchor portion 352.
  • the elongate member(s) 358 may have a solid configuration such as a nitinol wire or a mandrel.
  • the elongate member(s) 358 may have a generally tubular configuration.
  • the anchor portion 352 and/or elongate portion 354 may include any number of materials.
  • the anchor portion 352 may include the same materials as the elongate portion 354.
  • the anchor portion 352 may include different materials than the elongate portion 354.
  • the anchor portion 352 and elongate portion 354 may include a single shape memory or superelastic wire forming both the elongate portion 354 and the anchor portion 352.
  • the wire may be set into any shape desired for the elongate portion 354 and anchor portion 352.
  • the wire may be set in an elongate form for the elongate portion 354 and may be set with a plurality of bights or beds forming the expanded form of the anchor portion 352.
  • the wire may form a plurality of projections 356.
  • the anchor portion 352 may be configured to elastically deform to any shape and then return to its expanded shape illustrated Figures 3A-3B once released.
  • the anchor portion 352 may be elastically deformed into an elongate and/or contracted configuration and disposed within a lumen. While in this contracted configuration, the anchor portion 352 may store sufficient energy to return to its expanded configuration. Once the anchor portion 352 is deployed from the lumen, the anchor portion 352 may release the stored energy and return to its expanded configuration.
  • the anchor portion 352 of the anchor member 350 may include one or more gripping elements along a proximal surface.
  • the gripping elements may be configured to provide a frictional or immobilizing force on tissue surrounding a body lumen opening.
  • the anchor portion 352 may include a plurality of ridges or teeth along a proximal surface configured to engage and grip or immobilize the tissue surrounding a body lumen opening.
  • FIGS 4A-4B illustrate an additional anchor member 450 in accordance with a further embodiment of the present disclosure.
  • the example anchor member 450 of this configuration may be functionally similar to the example anchor members 150 and 350 previously described above and shown in Figures 1-3B in most respects, wherein certain features will not be described in relation to this configuration wherein those components may function in the manner as described above and are hereby incorporated into this additional configuration described below.
  • Like structures and/or components are given like reference numerals.
  • the anchor member 450 may incorporate at least one component of the anchor members 550 and 650 described in connection with Figures 5A-6G, respectively.
  • the anchor member 450 may include an anchor portion 452 and an elongate portion 454.
  • the anchor portion 452 may include a plurality of projections 456 extending substantially perpendicular to the longitudinal axis of the elongate portion 454.
  • the anchor portion 452 may include a figure-8 shape having two projections 456.
  • the anchor portion 452 may be configured to have any desired shape and/or size having any number of projections.
  • the elongate portion 454 may include one or more elongate members 458.
  • the elongate member(s) 458 and anchor portion 452 may be part of a single continuous piece of shape memory or superelastic wire.
  • the wire may extend along the elongate portion 454 and may form the projections 456 of the anchor portion 452 and then may terminate or alternatively extend again along the elongate portion 454.
  • portions of the wire may overlap itself or cross over in forming the anchor portion 452. The overlaps or crosses of the wire may provide better resistance against collapse or more support to the anchor portion 452.
  • FIGS 5A-5D illustrate a method of deploying and retracting an anchor member 550.
  • the example anchor member 550 of this configuration may be functionally similar to the example anchor members 150, 350, and 450 previously described above and shown in Figures 1-4B in most respects, wherein certain features will not be described in relation to this configuration wherein those components may function in the manner as described above and are hereby incorporated into this additional configuration described below.
  • Like structures and/or components are given like reference numerals.
  • the anchor member 550 may incorporate at least one component of the anchor member 650 described in connection with Figures 6A- 6G.
  • Figure 5A illustrates the anchor member 550 disposed within a lumen 540 in an initial, contracted configuration.
  • the anchor member 550 may include an elongate portion 554 and an anchor portion 552.
  • the elongate portion 554 may include a plurality of elongate members 558, such as a first elongate member 558A and a second elongate member 558B.
  • advancing the elongate portion 554, such as one or both of the elongate members 558, in a distal direction relative to the lumen 540 may deploy the anchor portion 552 from the distal end of the lumen 540.
  • the anchor portion 552 may move from an initial, contracted configuration to a deployed, expanded configuration.
  • the deployed, expanded configuration may include a plurality of projections 556.
  • retracting the elongate portion 554 in a proximal direction may provide an anchoring force.
  • retracting the elongate members 558 may anchor the anchor portion 552 against the distal surface of a lumen wall or any other surface against which the anchor portion 552 is positioned, as shown in Figure 5C.
  • retracting both elongate members 558 simultaneously may produce tension or some other force in the anchor portion 552 which may increase the resistance of the anchor portion 552 to contracting.
  • the tension of both elongate members 558 may be simultaneously transferred to the anchor portion 552 thereby creating sufficient tension in the anchor portion 552 to resist movement by the anchor portion 552 away from its expanded configuration.
  • providing an opposing force against a proximal surface of the anchor portion 552, such as with the lumen wall, may also assist in creating sufficient tension in the anchor portion 552 to resist contraction of the anchor portion 552.
  • the wires of the anchor portion 552 may overlap or cross over each other in order to increase resistance.
  • retracting only one elongate member such as the first elongate member 558A, may lessen the tension in the anchor portion 552, thereby allowing the anchor portion to move from its deployed, expanded configuration to a contracted configuration.
  • the anchor portion 552 may contract and be retracted into the lumen 540.
  • the anchor portion 552 may contract and/or be retracted into the lumen 540.
  • FIGS 6A-6G illustrate a method of closing a body lumen opening using a closure system 600.
  • the example anchor member 650 of this configuration may be functionally similar to the example anchor members 150, 350, 450, and 550 previously described above and shown in Figures 1-5D in most respects, wherein certain features will not be described in relation to this configuration wherein those components may function in the manner as described above and are hereby incorporated into this additional configuration described below.
  • Like structures and/or components are given like reference numerals.
  • the closure system 600 may incorporate at least one element of the tube set 720 of Figures 7A-7G or closure system 800 of Figure 8.
  • the closure system 600 may be at least partially advanced into a body lumen opening.
  • an operator may advance the closure system 600 over a guidewire 660 through a tissue tract 680 and through a body lumen opening 675 in a lumen wall 670.
  • the operator may advance the closure system 600 until the inner lumen 640 of the closure system 600 extends at least partially into the body lumen 690.
  • the operator may then retract the guidewire 660 from the body lumen 690.
  • the operator may deploy the anchor member 650 into the body lumen 690.
  • the operator may deploy the anchor member 650 by advancing the plunger member 630 and/or elongate portion 654 in a distal direction relative to the handle member 610, the tube set 620, and the inner lumen 640.
  • the anchor portion 652 of the anchor member 650 may move from an initial, contracted configuration to a deployed, expanded configuration.
  • the operator may retract the plunger member 630 and/or closure system 600 to position the anchor portion 652 of the anchor member 650 against the distal surface of the lumen wall 670 proximate the body lumen opening as also shown in Figure 6C.
  • the operator may retract the plunger member 630 and/or closure system 600 until she feels the anchoring force or resistance from the anchor portion 652 of the anchor member 650 against the distal surface of the lumen wall 670 thereby locating the body lumen opening 675 and anchoring or securing the tissue surrounding the body lumen opening 675.
  • the anchor portion 652 may include a plurality of projections 656 which engage and anchor the tissue of the lumen wall 670.
  • the projections 656 may extend in a direction substantially perpendicular to the longitudinal axis of the elongate portion 654, the tube set 620, and/or inner lumen 640.
  • the operator may advance the handle member 610 in a distal direction relative to the plunger member 630 in order to advance the tube set 620 in a distal direction relative to the anchor portion 652.
  • the operator may advance the handle member 610 and/or tube set 620 until the distal end 624 of the tube set 620 engages the proximal surface of the lumen wall 670 proximate or surrounding the lumen opening.
  • the operator may sandwich the tissue of the lumen wall 670 surrounding the body lumen opening 675 between the tube set 620 and the anchor portion 652. Accordingly, the operator may thereby engage and/or at least partially immobilize the tissue surrounding the body lumen opening 675. This may facilitate the successful deployment of a closure element 695 into the tissue surrounding the body lumen opening 675, thereby, facilitating the closure of the body lumen opening 675.
  • the tube set 620 and the anchor portion 652 may hold the tissue in place while a closure element is deployed into the tissue.
  • the operator may then deploy a closure element 695 into the tissue surrounding the body lumen opening.
  • the operator may depress the button 616 to eject or deploy the closure element 695 into the lumen wall 670.
  • the closure element 695 may be deployed from an initial, open configuration to a deployed, closed configuration, thereby, engaging and bringing the tissue surrounding the body lumen opening 675 together to close the body lumen opening 675.
  • the closure element 695 may include any device configured to close a body lumen opening 675.
  • the closure element 695 may include a staple, a clip, other similar devices, or combinations thereof.
  • the handle member 610, tube set 620, and/or inner lumen 640 may be retracted out of and/or away from the body lumen 690 and tissue tract 680, as shown in Figure 6F.
  • the anchor member 650 may be retracted by retracting the elongate portion 654 in a proximal direction.
  • the anchor portion 652 may be pulled through the closure element 695.
  • the closure element 695 may have superelastic properties to facilitate the withdrawal of the anchor portion 652 through the closure element 695.
  • the closure element may at least partially expand to facilitate the withdrawal of the anchor portion 652 and then return to a contracted position to close the body lumen opening 675.
  • an operator may efficiently close a body lumen opening 675 with a greater amount of flexibility and control.
  • the inner lumen 640 can be held in place against the outer surface of the body lumen while the anchor member 650 is retracted. Holding the inner lumen 640 may provide sufficient force to allow the anchor member and more particularly the anchor portion 652 to deform into the pre-deployment state inside of the inner lumen 640. As previously stated, this may be achieved by retracting a single elongate member. This may ensure that the closure element does not become dislodged as the anchor portion 652 is withdrawn and contracted.
  • the anchor wire may be substantially smaller than the closure element.
  • the wire of the anchor portion 652 may be superelastic with a diameter small enough to not require substantial force to collapse the anchor portion 652 and pull it through the deployed closure element.
  • the anchor wire may have a diameter of around .005-.007".
  • the anchor, closure element, and/or other aspects or components of the closure system disclosed herein can be made of a single material or of multiple materials. This can include a metal primary material and polymer/drug topcoat or a different metal top layer. The multiple layers can be resiliently flexible materials or rigid and inflexible materials, and selected combinations thereof.
  • resiliently flexible materials can provide force-absorbing characteristics, which can also be beneficial for absorbing stress and strains, which may inhibit crack formation at high stress zones.
  • the multiple layers can be useful for applying radiopaque materials.
  • types of materials that are used to make a closure element can be selected so that the closure element is capable of being in a first orientation (e.g., delivery orientation) during placement and capable of transforming to a second orientation (e.g., deploying orientation) when deployed to close the opening in a lumen.
  • Embodiments of the anchor, closure element and the like can include a material made from any of a variety of known suitable biocompatible materials, such as a biocompatible shape memory material (SMM).
  • SMM shape memory material
  • the SMM can be shaped in a manner that allows for a delivery orientation while within the tube set, but can automatically retain the memory shape of the closure element once deployed into the tissue to close the opening.
  • SMMs have a shape memory effect in which they can be made to remember a particular shape. Once a shape has been remembered, the SMM may be bent out of shape or deformed and then returned to its original shape by unloading from strain or heating.
  • SMMs can be shape memory alloys (SMA) comprised of metal alloys, or shape memory plastics (SMP) comprised of polymers.
  • SMA shape memory alloys
  • SMP shape memory plastics
  • the materials can also be referred to as being superelastic.
  • an SMA can have an initial shape that can then be configured into a memory shape by heating the SMA and conforming the SMA into the desired memory shape. After the SMA is cooled, the desired memory shape can be retained. This allows for the SMA to be bent, straightened, twisted, compacted, and placed into various contortions by the application of requisite forces; however, after the forces are released, the SMA can be capable of returning to the memory shape.
  • SMAs are as follows: copper-zinc-aluminum; copper-aluminum-nickel; nickel-titanium (NiTi) alloys known as nitinol; nickel-titanium platinum; nickel-titanium palladium; and cobalt- chromium-nickel alloys or cobalt-chromium-nickel-molybdenum alloys known as elgiloy alloys.
  • the temperatures at which the SMA changes its crystallographic structure are characteristic of the alloy, and can be tuned by varying the elemental ratios or by the conditions of manufacture. This can be used to tune the closure element so that it reverts to the memory shape to close the arteriotomy when deployed at body temperature and when being released from the tube set.
  • the primary material of a closure element can be of a NiTi alloy that forms superelastic nitinol.
  • nitinol materials can be trained to remember a certain shape, retained within the tube set, and then deployed from the tube set so that the tines penetrate the tissue as it returns to its trained shape and closes the opening.
  • additional materials can be added to the nitinol depending on the desired characteristic.
  • the alloy may be utilized having linear elastic properties or non-linear elastic properties.
  • An SMP is a shape-shifting plastic that can be fashioned into a closure element in accordance with the present disclosure.
  • an SMP can encounter a temperature above the lowest melting point of the individual polymers, the blend makes a transition to a rubbery state.
  • the elastic modulus can change more than two orders of magnitude across the transition temperature (Ttr).
  • Ttr transition temperature
  • an SMP can be formed into a desired shape of an endoprosthesis by heating it above the Ttr, fixing the SMP into the new shape, and cooling the material below Ttr. The SMP can then be arranged into a temporary shape by force and then resume the memory shape once the force has been released.
  • SMPs include, but are not limited to, biodegradable polymers, such as oligo( ⁇ -caprolactone)diol, oligo(p-dioxanone)diol, and non-biodegradable polymers such as, polynorborene, polyisoprene, styrene butadiene, polyurethane-based materials, vinyl acetate-polyester-based compounds, and others yet to be determined.
  • biodegradable polymers such as oligo( ⁇ -caprolactone)diol, oligo(p-dioxanone)diol
  • non-biodegradable polymers such as, polynorborene, polyisoprene, styrene butadiene, polyurethane-based materials, vinyl acetate-polyester-based compounds, and others yet to be determined.
  • any SMP can be used in accordance with the present disclosure.
  • An anchor, closure element and the like may have at least one layer made of an
  • SMM or suitable superelastic material and other suitable layers can be compressed or restrained in its delivery configuration within the garage tube or inner lumen, and then deployed into the tissue so that it transforms to the trained shape.
  • a closure element transitions to close the opening in the body lumen while an anchor may expand to anchor the closure system.
  • the anchor, closure element, or other aspects or components of the closure system can be comprised of a variety of known suitable deformable materials, including stainless steel, silver, platinum, tantalum, palladium, nickel, titanium, nitinol, nitinol having tertiary materials (U.S. 2005/0038500, which is incorporated herein by reference, in its entirety), niobium-tantalum alloy optionally doped with a tertiary material (U.S. 2004/0158309, 2007/0276488, and 2008/0312740, which are each incorporated herein by reference, in their entireties) cobalt-chromium alloys, or other known biocompatible materials.
  • biocompatible materials can include a suitable biocompatible polymer in addition to or in place of a suitable metal.
  • the polymeric closure element can include biodegradable or bioabsorbable materials, which can be either plastically deformable or capable of being set in the deployed configuration.
  • the closure element or anchor may be made from a superelastic alloy such as nickel-titanium or nitinol, and includes a ternary element selected from the group of chemical elements consisting of iridium, platinum, gold, rhenium, tungsten, palladium, rhodium, tantalum, silver, ruthenium, or hafnium.
  • the added ternary element improves the radiopacity of the nitinol closure element.
  • the nitinol closure element has improved radiopacity yet retains its superelastic and shape memory behavior and further maintains a thin body thickness for high flexibility.
  • the anchor or closure element can be made at least in part of a high strength, low modulus metal alloy comprising Niobium, Tantalum, and at least one element selected from the group consisting of Zirconium, Tungsten, and Molybdenum.
  • the closure element or anchor can be made from or be coated with a biocompatible polymer.
  • biocompatible polymeric materials can include hydrophilic polymer, hydrophobic polymer biodegradable polymers, bioabsorbable polymers, and monomers thereof.
  • polymers can include nylons, poly(alpha-hydroxy esters), polylactic acids, polylactides, poly-L- lactide, poly-DL-lactide, poly-L-lactide-co-DL-lactide, polyglycolic acids, polyglycolide, polylactic-co-glycolic acids, polyglycolide-co-lactide, polyglycolide-co-DL-lactide, polyglycolide-co-L-lactide, polyanhydrides, polyanhydride-co-imides, polyesters, polyorthoesters, polycaprolactones, polyesters, polyanydrides, polyphosphazenes, polyester amides, polyester urethanes, polycarbonates, polytrimethylene carbonates, polyglycolide-co-trimethylene carbonates, poly(PBA-carbonates), polyfumarates, polypropylene fumarate, poly(p-dioxanone), polyhydroxyalkanoates, polyamino
  • FIGS 7A-7G disclose an example tube set 720.
  • the example tube set 720 of this configuration may be functionally similar to the example tube set 120 and 620 previously described above and shown in Figures 1, 2, and 6A-6G in most respects, wherein certain features will not be described in relation to this configuration wherein those components may function in the manner as described above and are hereby incorporated into this additional configuration described below.
  • Like structures and/or components are given like reference numerals.
  • the tube set 720 may incorporate at least one component of the tube set 820 of Figure 8.
  • the tube set 720 may be utilized with the closure systems 100 and 600 disclosed in Figures 1, 2A-2D, and 6A-6G.
  • the tube set 720 may include a garage sheath 722, a pusher tube 724, and a carrier tube 726.
  • the tube set 720 may be configured to receive or house a locator element and closure element 795.
  • the tube set 720 may house an inner lumen 740, and/or anchor member 750.
  • the tube set 720 may be configured to deliver and/or deploy the closure element 795 in order to close an opening in a lumen wall.
  • the garage sheath 722 may be configured to cover, protect, and/or house the closure element 795 within the tube set 720 and/or other components of the tube set 720.
  • the garage sheath 722 may be generally tubular in shape.
  • the distal end of the garage sheath 722 may have a different configuration than the remainder of the garage sheath 722.
  • the distal end of the garage sheath 722 may have an inwardly tapered configuration.
  • the distal end may be configured to at least partially expand to facilitate deployment of the closure element 795.
  • the distal end of the garage sheath 722 may include one or more longitudinal slits thereby forming one or more flanges that may deflect radially outwardly in order to facilitate deployment of the closure element 795.
  • the tube set 720 may include a pusher tube 724.
  • the pusher tube 724 may be configured to deploy the closure element 795.
  • the pusher tube 724 may be generally tubular in shape along the length thereof.
  • the pusher tube 724 may be disposed between the carrier tube 726 and the garage sheath 722 and proximal of the closure element 795.
  • the distal end of the pusher tube 724 may include one or more fingers or projections extending from the distal end of the pusher tube 724 and configured to help stabilize and/or deploy the closure element 795.
  • the fingers or projections extending from the distal end of the pusher tube 724 may be configured in size to fit into corresponding waves, undulations, or other features along a proximal edge or surface of the closure element 795.
  • the tube set 720 may include a carrier tube 726.
  • the carrier tube 726 may be configured to carry the closure element 795 in a delivery configuration to a location proximate an opening in a body lumen.
  • the carrier tube 726 may be generally tubular in shape along the length thereof.
  • the carrier tube 726 may be disposed at least partially within the pusher tube 724 with the closure element 795 disposed thereon.
  • the distal end of the carrier tube 726 may have a different configuration than the remainder of the carrier tube 726.
  • the distal end of the carrier tube 726 may flare radially outwards to facilitate successful deployment of the closure element 795.
  • the flared distal end of the carrier tube 726 may direct one or more elements of the closure element 795 outwards to engage tissue surrounding the opening in the body lumen to better close the body lumen opening.
  • the garage sheath 722, pusher tube 724, and/or carrier tube 726 may include any of a number of materials, such as biocompatible polymers and/or metals.
  • one or more of the garage sheath 722, pusher tube 724, and/or carrier tube 726 may include stainless steel.
  • the materials of the garage sheath 722, pusher tube 724, and/or carrier tube 726 may have rigid, semi-rigid, or flexible mechanical properties as desired for a particular embodiment.
  • the garage sheath 722, pusher tube 724, and/or carrier tube 726 may be longitudinally movable relative to each other.
  • the independent longitudinal movement of each element of the tube set 720 may facilitate the deployment of the closure element 795 and corresponding closure of a body lumen opening.
  • the tube set 720 may have an initial delivery configuration, in which the closure element 795 is disposed on the corner tube 726 and the anchor member 750 is disposed within the carrier tube 726. In this initial delivery configuration, a medical care provider or user can move the tube set 720 into position within or near an opening in a body lumen.
  • the user of the tube set 720 can advance the inner lumen740 at least partially into the body lumen, as shown in Figure 7B.
  • the user may advance the anchor portion 752 of the anchor 750 by advancing the elongate member(s) 754 relative to the inner lumen 740 and tube set 720.
  • the anchor portion 752 may deploy from a delivery configuration to a deployed configuration as described in more detail above.
  • the user may retract the anchor 750 in a proximal direction to position the anchor portion 752 against the distal surface of the body lumen surrounding the opening, as shown in Figure 7C.
  • the user can retract the garage tube 722 in order to expose the closure element 795, as shown in Figure 7D.
  • the user can deploy the closure element 795 by advancing the pusher tube 724 in a distal direction relative to the carrier tube 726, as shown in Figure 7E. As the pusher tube 724 advances, it may come into contact with the closure element 795 and begin to advance the closure element 795 in a distal direction relative to the carrier tube 726. In further embodiments, as the closure element 795 advances, the flared distal end of the carrier tube 726 may expand the closure element 795 and direct one or more tines of the closure element 795 radially outward to better engage the tissue surrounding the opening in the body lumen.
  • the user can continue to advance the pusher tube 724 until the closure element 795 extends at least partially beyond the distal end of the carrier tube 726 and into engagement with the body lumen.
  • the closure element 795 may move from its expanded, delivery configuration to a deployed, collapsed configuration, thereby closing the body lumen opening, as shown in Figure 7G.
  • the user can retract the anchor portion 752 through the deployed closure element 795, as disclosed in more detail above.
  • the user may retract the tube set 720 and anchor 750 in a proximal direction away from the body lumen and out of the tissue tract, thereby leaving the deployed closure element in place.
  • FIG 8 illustrates an additional example closure system 800 in accordance with a further embodiment of the present disclosure.
  • the example closure system 800 of this configuration may be functionally similar to the example closure systems 100 and 600 and tube set 720 previously described above and shown in Figures 1, 2A-2D, 6A-6G, and 7 in most respects, wherein certain features will not be described in relation to this configuration wherein those components may function in the manner as described above and are hereby incorporated into this additional configuration described below.
  • Like structures and/or components are given like reference numerals.
  • the closure systems 100 and 600 and tube set 720 may incorporate one or more components of the closure system 800.
  • the closure system 800 may include a handle member 810, a tube set 820 configured to couple with or be partially disposed within the handle member 810, and a plunger member 830 and firing pin 816 configured for manipulation by a user in order to operate the closure system 800 and deploy a closure element, such as a clip or staple.
  • a user such as a physician, may utilize the closure system 800 and the elements thereof to close an opening in a body lumen.
  • the handle member 810 of the closure system 800 may be configured to assist an operator, such as a physician, to grip, manipulate, advance, and/or operate the closure system 800 in order to close a body lumen opening.
  • the handle member may have an upper portion 810a and a lower portion 810b.
  • the upper portion 810a and lower portion 810b may be connected using one or more fasteners, adhesives, welds, and/or other mechanisms.
  • the handle member may define a recess 818 configured to house one or more components of the closure system 800.
  • the recess 818 may be configured to receive components of the tube set 820 as well as other components of the closure system 800 disclosed in Figure 8 and described in more detail below.
  • the recess 818 may have openings along the sides thereof configured to receive portions of the tube set 820 during operation of the closure system 800.
  • the closure element 800 may also include a tube set 820.
  • the tube set 820 may include a garage tube 822, pusher tube 824, and carrier tube 826.
  • each of the garage tube 822, pusher tube 824, and carrier tube 826 may include a slider block at its proximal end configured to be disposed within and slide along the recess 818 of the handle member 810.
  • Each of the slider blocks may be further configured to lock within the openings along the sides of the recess 818 to restrict or control the movement of each member of the tube set 820. For example, after moving in a distal direction to position the components of the tube set 820 for deployment of a closure element, one or more of the slider blocks may lock into the openings to restrict further movement, such as in a proximal direction.
  • the handle member 810 may also be operatively associated with any number of mechanisms configured to deploy a closure element.
  • the handle member 810 may include a button 816 operatively associated with one or more mechanisms configured to deploy a closure element.
  • the button 816 may be operatively associated with a firing pin 817 configured to release stored energy to fire or deploy a closure element.
  • the closure system 800 may store energy in a spring 815.
  • the spring 815 may be disposed on and/or between components of the tube set 820.
  • the energy may be transferred to the spring 815 by depressing the plunger member 830. A user may release the stored energy by depressing the button 816, which may release the firing pin 817.
  • the stored energy may transfer to the pusher tube 824 in order to deploy the closure element.
  • an operator may depress the button 816 in order to push, fire, or eject a closure element from the tube set 820 into the tissue of a body lumen to close a body lumen opening.

Abstract

The present disclosure includes vessel closure devices, systems, and methods. A closure system configured to close a body lumen opening may include a handle member. A tube set configured to deliver and/or deploy a closure element may be coupled to the handle member. The closure system may also include an inner lumen with an anchor member at least partially disposed in the inner lumen. A plunger member may be movably coupled to the handle member.

Description

CLOSURE DEVICES, SYSTEMS, AND METHODS
CROSS-REFERENCE TO RELATED APPLICATIONS
This application claims priority to U.S. Patent Application Serial No. 12/684,400, entitled "Closure Devices, Systems, and Methods," filed January 8, 2010, which claims the benefit of and priority to U.S. Provisional Patent Application Serial No. 61/143,751, entitled "Vessel Closure Devices and Methods," filed January 9, 2009, the disclosures of which are incorporated herein by reference in their entireties.
BACKGROUND
1. Technical Field
The present disclosure relates generally to medical devices and their methods of use. In particular, the present disclosure relates to vessel closure systems and devices and corresponding methods of use. 2. The Technology
Catheterization and interventional procedures, such as angioplasty or stenting, generally are performed by inserting a hollow needle through a patient's skin and tissue into the vascular system. A guidewire may be advanced through the needle and into the patient's blood vessel accessed by the needle. The needle is then removed, enabling an introducer sheath to be advanced over the guidewire into the vessel, e.g., in conjunction with or subsequent to a dilator.
A catheter or other device may then be advanced through a lumen of the introducer sheath and over the guidewire into a position for performing a medical procedure. Thus, the introducer sheath may facilitate introducing various devices into the vessel, while minimizing trauma to the vessel wall and/or minimizing blood loss during a procedure.
Upon completing the procedure, the devices and introducer sheath would be removed, leaving a puncture site in the vessel wall. Traditionally, external pressure would be applied to the puncture site until clotting and wound sealing occur; however, the patient must remain bedridden for a substantial period after clotting to ensure closure of the wound. This procedure may also be time consuming and expensive, requiring as much as an hour of a physician's or nurse's time. It is also uncomfortable for the patient and requires that the patient remain immobilized in the operating room, catheter lab, or holding area. In addition, a risk of hematoma exists from bleeding before hemostasis occurs. Although some closure systems may be available, they provide limited control to flexibility to the operator, which may lead to improper or undesirable closure of the puncture site.
BRIEF SUMMARY The present disclosure can include a closure system. In one embodiment, the closure system can include a handle member, a tube set, an inner lumen disposed at least partially within the tube set, a plunger member movably coupled to the handle member, and an anchor member at least partially disposed within the inner lumen. In a further embodiment, the anchor member can include an anchor portion and an elongate portion. The anchor portion can be disposed in the inner lumen in an initial configuration and configured to move to an expanded configuration once deployed from the inner lumen.
The present disclosure can also include a method of closing a body lumen opening. In one embodiment, the method can include advancing a closure system at least partially into a body lumen opening. The closure system can include a handle member, a tube set configured to deliver and/or deploy a closure element, an inner lumen disposed at least partially within the tube set, a plunger member movably coupled to the handle member, and an anchor member at least partially disposed within the inner lumen. In a further embodiment, the anchor member can include an anchor portion and an elongate portion, the anchor portion being disposed in the inner lumen in an initial configuration and configured to move to an expanded configuration once deployed from the inner lumen. The method can also include deploying the anchor portion of the anchor member within the body lumen. In further embodiments, the method can include positioning the anchor portion of the anchor member against a distal surface of the lumen wall proximate the body lumen opening. In yet further embodiments, the method can include advancing the tube set in a distal direction to position the distal end of the tube set against a proximal surface of the lumen wall proximate the body lumen opening. In addition, the method can include deploying a closure element into the lumen wall proximate the body lumen opening to close the body lumen opening.
In a yet further embodiment, the present disclosure can include an anchor member. In one embodiment, the anchor member can include an elongate portion having a distal end and proximal end. In addition, the anchor member can include an anchor portion coupled to the distal end of the elongate portion. In a yet further embodiment, the anchor portion is configured to move elastically between an initial configuration and an expanded configuration. The expanded configuration can include a plurality of projections.
These and other advantages and features of the present disclosure will become more fully apparent from the following description and appended claims, or may be learned by the practice of the disclosure as set forth hereinafter.
BRIEF DESCRIPTION OF THE DRAWINGS
To further clarify at least some of the advantages and features of the present disclosure, a more particular description of the disclosure will be rendered by reference to specific embodiments thereof which are illustrated in the appended drawings. It is appreciated that these drawings depict only illustrated embodiments of the disclosure and are therefore not to be considered limiting of its scope. The disclosure will be described and explained with additional specificity and detail through the use of the accompanying drawings in which: Figure 1 discloses a closure system in accordance with one example embodiment;
Figures 2A-2D disclose an example method of operating the closure system of Figure 1 in accordance with a further embodiment;
Figures 3A-3B disclose an example anchor member in accordance with a yet further embodiment; Figures 4A-4B disclose an example anchor member in accordance with an additional example embodiment;
Figures 5A-5D disclose an example method of operating the anchor member of Figures 3A-3B in accordance with one embodiment;
Figures 6A-6G disclose an example method of closing a body lumen opening in accordance with a further embodiment;
Figures 7A-7G disclose the operation of an example tube set; and
Figure 8 discloses an exploded view of an additional example closure system in accordance with a further embodiment.
It should be noted that the figures are not drawn to scale and that elements of similar structures or functions are generally represented by like reference numerals for illustrative purposes throughout the figures. It also should be noted that the figures are only intended to facilitate the description of example configurations of the present disclosure. DETAILED DESCRIPTION
The present disclosure relates to devices, systems, and methods for closing an opening in a body lumen. In one example embodiment, a closure system of the present disclosure may allow an operator to quickly and efficiently close a body lumen opening while simultaneously providing the operator with a greater measure of control and flexibility in positioning and anchoring the closure system than previously available. For example, the closure system may allow an operator to achieve a more intimate securement of a closure element in the tissue surrounding a body lumen opening. In a yet further embodiment, the closure system may be compatible with a wider range of body lumen wall thicknesses, thereby taking into account the possibility of calcifications or scar tissue in the lumen wall. In addition, the closure system may be configured to advance into a body lumen opening over a guidewire. Furthermore, the closure system may be compatible with a variety of sizes of body lumen openings and tissue tracts.
Embodiments of the disclosure further relate to a device closure system with a removable anchor. In one example, the anchor can be deployed from a contracted state to an expanded state. When in the expanded state, the anchor can be used to locate an opening in a vessel (e.g., an arteriotomy) when deploying, for example, a closure element, such as a clip or staple. The anchor, in conjunction with a tube set in the closure system, may sandwich the tissue surrounding the opening in the vessel. This effectively locates the opening and aids in effective and proper deployment of the closure element.
The closure system may then retract or remove the anchor during use of the closure system, leaving the arteriotomy or opening at least substantially closed or sealed by the closure element. During removal, the anchor can deform without dislodging the closure element. More specifically in one embodiment, the anchor is withdrawn back into the tube set and into the pre-deployed state. Thus, the closure system and close an opening in a body lumen using a removable anchor.
Reference is now made to Figure 1 which illustrates a closure system 100 in accordance with an implementation of the present disclosure. The closure system 100 may be configured to close an opening in a body lumen. The closure system 100 may include a handle member 110, a tube set 120 coupled to the handle member 110, a plunger member 130, an inner lumen 140, and an anchor member 150 disposed at least partially within the inner lumen 140. An operator, such as a physician, may utilize the closure system 100 and the elements thereof to close an opening in a body lumen. For example, as will be explained in more detail below, the plunger member 130 may be used to deploy the anchor member 150 to locate the distal surface of a lumen wall and position the closure system 100 relative to a body lumen opening. Thereafter, the handle member 110 and tube set 120 may be used to deliver a closure element, such as a clip or staple, and deploy the closure element into the tissue of the body lumen wall to close or substantially close the body lumen opening.
The handle member 110 of the closure system 100 may be configured to assist an operator, such as a physician, to grip, manipulate, advance, and/or operate the closure system 100 in order to close a body lumen opening. In particular, the handle member 110 may have a shape and size that conforms to the shape and size of a human hand. The handle member 110 may also include a number of indentations 112 configured to at least partially receive the fingers and/or thumbs of the operator. The indentations 112 may assist the operator to grip and manipulate the handle member 110 and closure system 100. The handle member 110 may also include one or more flanges 114 to assist an operator to grip, advance, and/or retract the handle member 110 and/or closure system 100. The handle member 110 may also include any number of mechanisms necessary to deploy a closure element. For example, the handle member 110 may include a button 116 operatively associated with one or more mechanisms configured to deploy a closure element. The button 116 may be positioned in or proximate to one of the one or more indentations 112. In a further embodiment, the button 116 may be operatively associated with one or more elements of the tube set 120 configured to deploy the closure element 100. As a result, an operator may depress the button 116 in order to push, fire, or eject a closure element from the tube set 120 into the tissue of a body lumen to close a body lumen opening.
In a further embodiment, the handle member 110 may include a recess 118 configured to receive at least a portion of the plunger member 130. The recess 118 may be further configured to allow the plunger member 130 to move in a longitudinal direction relative to the handle member 110. In particular, the recess 118 may allow the plunger member 130 to move both distally and proximally relative to the handle member 110. For example, the recess 118 may have a cross-sectional shape similar to, but slightly larger than, the cross sectional shape of the plunger member 130. As a result, the plunger member 130 may slide into and out of the recess 118 to move relative to the handle member 110. The handle member 110 may include any number of rigid or semi-rigid materials. For example, the handle member 110 may include any number of polymers, plastics, metals, composites, other similar materials, or combinations thereof.
The tube set 120 may be coupled to and/or partially disposed within the handle member 110. The tube set 120 may have a proximal end 122 coupled to the handle member 110 and opposite a distal end 124. The tube set 120 may be configured to contain, deliver, and/or deploy a closure element. In particular, the tube set 120 may include one or more tubular members and/or other mechanisms configured to house, advance, push, fire, and/or eject the closure element. For example, the tube set 120 may include a pusher tube, a garage tube, a carrier tube, and/or other similar elements. In one embodiment, the tube set 120 may include a spring-loaded pusher member configured to deploy the closure element when released or activated. Some example tube sets are disclosed in Figures 7-8 and described in more detail below.
The closure element may be disposed within the tube set 120 in an initial, open configuration and may be configured to be deployed from the tube set 120 and move to a deployed, closed configuration. In particular, in one embodiment, the closure element may store sufficient energy, while in its initial, open configuration, to engage the tissue of and close an opening in a lumen wall. For example, the closure element may include any of a number of shape memory and/or superelastic materials and may be set to elastically return to a deployed, closed configuration from any other configuration. In one embodiment, the closure element may include nitinol. In a further embodiment, the closure element may be a clip, staple, or other closure element.
The closure system 100 may also include an inner lumen 140. The inner lumen 140 may be disposed at least partially within the tube set 120, the handle member 110, and/or the plunger member 130. In a further implementation, the inner lumen 140 may be movable, such as slidable, with respect to the tube set 120, the handle member 110, and/or the plunger member 130. As a result, the inner lumen 140 may move either distally or proximally relative to the tube set 120, the handle member 110, and/or the plunger member 130. The inner lumen 140 may be configured to house and deliver the anchor member
150 to or away from a body lumen opening. In a further embodiment, the inner lumen 140 may be integrated into or replaced by an element of the tube set 120. The inner lumen 140 may include any number of flexible or semi-rigid materials. For example, the inner lumen may include one or more polymers, elastomers, plastics, metals, composites, other similar materials, or combinations thereof.
As introduced above, the closure system 100 may include an anchor member 150. The anchor member 150 may be configured to locate, position the closure system 100 relative to, and/or anchor the tissue surrounding a body lumen opening. The anchor member 150 may include an anchor portion 152 and an elongate portion 154. The anchor portion 152 may be configured to be positioned and/or anchored against the distal surface of a lumen wall. The elongate portion 154 may be coupled to the anchor portion 152 and may be configured to control, deploy, position, stabilize, and/or retract the anchor portion 152. In particular, the elongate portion 154 may extend away from the anchor portion 152 in a proximal direction through the inner lumen 140, the tube set 120, the handle member 110, and/or the plunger member 130. In a further embodiment, the elongate portion 154 may be coupled at its proximal end 122 to the plunger member 130. In a yet further embodiment, the elongate portion 154 may be selectively detachable from and recouplable to the plunger member 130.
The anchor portion 152 of the anchor member 150 may be disposed in an initial, contracted configuration within the inner lumen 140. The elongate portion 154 of the anchor member 150 may extend proximally from the anchor portion 152 to the plunger member 130. In addition, the elongate portion 154 may transfer forces from the plunger member 130 to the anchor portion 152. Accordingly, by advancing the plunger member 130 or elongate portion 154 in a distal direction relative to the inner lumen 140 an operator may deploy the anchor portion 152 of the anchor member 150 from the distal end of the inner lumen 140. Retracting the plunger member 130 in a proximal direction may position and/or anchor the anchor portion 152 against a distal surface of a lumen wall. In a further embodiment, further retracting the plunger member 130 in a proximal direction may retract the anchor portion 152 of the anchor member 150 from the body lumen and/or into the inner lumen 140 or tube set 120.
The anchor portion 152 of the anchor member 150 may be configured to move from an initial, contracted configuration within the inner lumen 140 to a deployed, expanded configuration once deployed from the inner lumen 140. To facilitate movement from an initial, contracted configuration to a deployed, expanded configuration, the anchor portion 152 of the anchor member 150 may include one or more superelastic or shape memory materials such as shape memory alloys. For example, and as will be explained in more detail below, the anchor portion 152 be heat set in a deployed, expanded configuration. The anchor portion 152 may then be elastically deformed into an initial, contracted configuration contracted and disposed within the inner lumen 140. In its initial, contracted configuration, the anchor portion 152 may store sufficient energy to return to its deployed, expanded configuration once released from the inner lumen 140. In one embodiment, a user may operate the plunger member 130 to deploy and/or retract the anchor member 150. For example, the plunger member 130 may be configured to at least partially receive the tube set 120 and/or the inner lumen 140. In a further embodiment, the plunger member 130 may also be configured to receive a portion of the anchor member 150 and/or a guidewire. In a further embodiment, the inner lumen 140 and/or anchor member 150 may be coated to minimize friction within the inner lumen 140 to ease deployment.
The proximal end 122 of the plunger member 130 may be configured to be gripped and/or operated by an operator such as a physician. For example, an operator may grip the handle member 110 with a first hand and grip the proximal end of the plunger member 130 with a second hand in order to advance or retract the plunger member 130 relative to the handle member 110. As a result, the operator may deploy the anchor portion 152 of the anchor member 150 from the inner lumen 140 and/or position the anchor portion 152 against a distal surface of a lumen wall thereby locating the body lumen opening to be closed. Thereafter, the operator may advance the handle member 110 in a distal direction relative to the plunger member 130 and inner lumen 140 to position the distal end 124 of the tube set 120 against a proximal surface of the lumen wall. By so doing, the operator may facilitate the closure of the body lumen opening by at least partially gripping, sandwiching, and/or immobilizing the tissue surrounding the body lumen opening. The operator may then deploy a closure element into the tissue of the lumen wall to close the body lumen opening.
The shape of the plunger member 130 may correspond with the shape of the recess 118 to facilitate relative movement between the handle member 110 and the plunger member 130. For example, the cross sectional shape of both the plunger member 130 and the recess 118 may be any shape desired such as circular, triangular, rectangular, or other shapes, or combinations thereof. In addition, the length of the plunger member 130 and the corresponding depth of the recess 118 may be any length and depth desired to allow sufficient relative movement between the plunger member 130 and handle member 110. For example, the length of the plunger member 130 and the corresponding depth of the recess 118 may be sufficient to allow deployment of the anchor portion 152 from the inner lumen.
In a further embodiment, the closure system 100 may include a self-tensioning mechanism configured to automatically provide tension in the anchor member 150 once the anchor portion 152 has deployed. For example, in one embodiment, the handle member 110 may include a spring mechanism disposed in the recess 118 and configured to resist and/or counteract movement of the plunger member 130 in a distal direction relative to the handle member 110. In particular, advancing the plunger member 130 in a distal direction relative to the handle member 110 may transfer energy to the spring mechanism, which may be released once the operator releases the plunger member 130.
As a result, the spring mechanism may move the plunger member 130 in a proximal direction relative to the handle member 110 thereby retracting the anchor portion 152 in a proximal direction, thereby automatically engaging the distal surface of a lumen wall, and/or advancing the handle member 110 and tube set 120 in a distal direction, thereby engaging the proximal surface of the lumen wall. The spring mechanism can also create sufficient tension within the anchor member 150 to produce a desired pressure on the tissue of the lumen wall between the anchor portion 152 and the tube set 120. Accordingly, the closure system 100 may automatically and efficiently create the desired sandwiching or immobilizing force on the tissue surrounding the body lumen opening. In addition, the spring mechanism may make it unnecessary for the operator to provide the movement or force necessary to position the closure system 100 relative to the body lumen opening. In additional embodiments, any other self-tensioning mechanism may be included in the closure system 100 to produce to desired tension in the anchor member 150 and force upon the tissue surrounding the body lumen opening. In a yet further embodiment, the plunger member 130 and closure system 100 may have a click or ratchet function similar to that of a "click" pen.
In a yet further embodiment, the closure system 100, or the elements thereof, may include a mechanism for determining the thickness of a lumen wall and/or the distance between the anchor portion 152 and the distal end 124 of the tube set 120. For example, the plunger member 130 may have a plurality of indicator lines along the length thereof. The indicator lines may be positioned and marked to indicate the position of the deployed anchor portion 152 relative to the distal end 124 of the tube set 120. In particular, the number of indicator lines exposed as the plunger member 130 is retracted may indicate the thickness of the tissue surrounding the body lumen opening being closed. The indicator lines may be calibrated so that they read zero thickness when the anchor portion 152 is position directly against the distal end 124 of the tube set 120. As a result, the operator may refer to the indicator lines to determine the position of the anchor portion 152 relative to the distal end 124 of the tube set 120 and/or the thickness of the tissue surrounding a body lumen opening.
Additionally, the closure system 100 may incorporate at least one component of the closure systems 600 and 800, tube sets 720 and 820, and anchor members 350, 450, 550, and 650 described in connection with Figures 3-6G, respectively.
Reference is now made to Figures 2A-2D, which illustrate an example method of operating the closure system 100 of Figure 1. In particular, Figure 2A illustrates the closure system 100 in an initial configuration. In this initial configuration, the plunger member 130 may be fully retracted relative to the handle member 110, and the anchor portion 152 of the anchor member 150 may be disposed within the inner lumen 140. Advancing the plunger member 130 in a distal direction relative to the handle member 110, the tube set 120, and the inner lumen 140 may deploy the anchor portion 152 of the anchor member 150 from the inner lumen 140, as shown in Figure 2B. As a result, the anchor portion 152 may move from an initial, contracted configuration to a deployed, expanded configuration. In a further implementation, the plunger member 130 may include two or more plunger components. For example, the plunger member 130 may include a first component configured to deploy and/or retract the anchor member 150 and a second component configured to advance and/or retract the inner lumen 140. In a yet further implementation, the first and second components of the plunger member 130 may be movable with respect to one another.
Thereafter, retracting the plunger member 130 in a proximal direction relative to the handle member 110, the tube set 120, and/or the inner lumen 140 may retract the anchor portion 152 in a proximal direction, as shown in Figure 2C. As shown in Figure 2D, advancing the handle member 110 in a distal direction relative to the plunger member 130 may advance the tube set 120 in a distal direction until the distal end 124 of the tube set 120 is proximate the anchor portion 152 of the anchor member 150. As a result, an operator of the closure system 100 may locate, anchor, and/or immobilize the tissue surrounding a body lumen opening between the tube set 120 and anchor portion 152. Thereafter, the operator may deploy a closure element into the body lumen surrounding the body lumen opening to close the body lumen opening. Reference is now made to Figures 3A-3B, which disclose an example anchor member 350 in accordance with implementations of the present disclosure. The example anchor member 350 of this configuration may be functionally similar to the example anchor member 150 previously described above and shown in Figures 1-2D in most respects, wherein certain features will not be described in relation to this configuration wherein those components may function in the manner as described above and are hereby incorporated into this additional configuration described below. Like structures and/or components are given like reference numerals. Additionally, the anchor member 350 may incorporate at least one component of the anchor members 450, 550, and 650 described in connection with Figures 4-6G, respectively.
The anchor member 350 may be configured to assist an operator to locate, anchor, immobilize, and/or support a body lumen opening and/or the surrounding tissue of the lumen wall. The anchor member 350 may include an anchor portion 352 and an elongate portion 354. The anchor portion 352 may include any size and/or shape configured to anchor against a surface of a lumen wall or to locate a body lumen opening. For example, the anchor portion may include a plurality of projections 356 configured to engage the tissue of a lumen wall. The projections 356 may be shaped, positioned, and/or oriented in any configuration desired to provide positioning or anchoring support. The anchor portion 352 may include any number of projections 356 desired. In the embodiment shown in Figures 3A-3B the anchor portion 352 of the anchor member 350 includes four projections 356, however, the anchor portion 352 may have fewer or more projections 356 than four.
In one embodiment, the projections may extend in a direction or a plane substantially perpendicular to the longitudinal axis of the elongate portion 354. In one configuration, the projections 356 may be rounded. In particular, the projections 356 may be leaf-shaped or pedal-shaped. In a further embodiment, the anchor portion 352 may have a shape substantially similar to a four leaf clover.
The anchor portion 352 may be coupled to the distal end of the elongate portion 354. The elongate portion 354 may include one or more elongate members 358. The elongate member(s) 358 may be configured to advance, retract, position, and/or deploy the anchor portion 352. In particular, the elongate member(s) 358 may be longitudinally rigid or semi-rigid to facilitate advancing or retracting the anchor portion 352. In one embodiment, the elongate member(s) 358 may have a solid configuration such as a nitinol wire or a mandrel. In further embodiments, the elongate member(s) 358 may have a generally tubular configuration.
The anchor portion 352 and/or elongate portion 354 may include any number of materials. In one embodiment, the anchor portion 352 may include the same materials as the elongate portion 354. In a further embodiment, the anchor portion 352 may include different materials than the elongate portion 354.
In one embodiment, the anchor portion 352 and elongate portion 354 may include a single shape memory or superelastic wire forming both the elongate portion 354 and the anchor portion 352. The wire may be set into any shape desired for the elongate portion 354 and anchor portion 352. In particular, the wire may be set in an elongate form for the elongate portion 354 and may be set with a plurality of bights or beds forming the expanded form of the anchor portion 352. As shown in Figures 3A-3B, in one configuration, the wire may form a plurality of projections 356.
The anchor portion 352 may be configured to elastically deform to any shape and then return to its expanded shape illustrated Figures 3A-3B once released. For example, the anchor portion 352 may be elastically deformed into an elongate and/or contracted configuration and disposed within a lumen. While in this contracted configuration, the anchor portion 352 may store sufficient energy to return to its expanded configuration. Once the anchor portion 352 is deployed from the lumen, the anchor portion 352 may release the stored energy and return to its expanded configuration.
In a further embodiment, the anchor portion 352 of the anchor member 350 may include one or more gripping elements along a proximal surface. The gripping elements may be configured to provide a frictional or immobilizing force on tissue surrounding a body lumen opening. For example, the anchor portion 352 may include a plurality of ridges or teeth along a proximal surface configured to engage and grip or immobilize the tissue surrounding a body lumen opening.
Reference is now made to Figures 4A-4B, which illustrate an additional anchor member 450 in accordance with a further embodiment of the present disclosure. The example anchor member 450 of this configuration may be functionally similar to the example anchor members 150 and 350 previously described above and shown in Figures 1-3B in most respects, wherein certain features will not be described in relation to this configuration wherein those components may function in the manner as described above and are hereby incorporated into this additional configuration described below. Like structures and/or components are given like reference numerals. Additionally, the anchor member 450 may incorporate at least one component of the anchor members 550 and 650 described in connection with Figures 5A-6G, respectively.
In one embodiment, the anchor member 450 may include an anchor portion 452 and an elongate portion 454. The anchor portion 452 may include a plurality of projections 456 extending substantially perpendicular to the longitudinal axis of the elongate portion 454. As shown, the anchor portion 452 may include a figure-8 shape having two projections 456. However, the anchor portion 452 may be configured to have any desired shape and/or size having any number of projections.
The elongate portion 454 may include one or more elongate members 458. In one embodiment, the elongate member(s) 458 and anchor portion 452 may be part of a single continuous piece of shape memory or superelastic wire. For example, the wire may extend along the elongate portion 454 and may form the projections 456 of the anchor portion 452 and then may terminate or alternatively extend again along the elongate portion 454. In a further embodiment, portions of the wire may overlap itself or cross over in forming the anchor portion 452. The overlaps or crosses of the wire may provide better resistance against collapse or more support to the anchor portion 452.
Reference is now made to Figures 5A-5D, which illustrate a method of deploying and retracting an anchor member 550. The example anchor member 550 of this configuration may be functionally similar to the example anchor members 150, 350, and 450 previously described above and shown in Figures 1-4B in most respects, wherein certain features will not be described in relation to this configuration wherein those components may function in the manner as described above and are hereby incorporated into this additional configuration described below. Like structures and/or components are given like reference numerals. Additionally, the anchor member 550 may incorporate at least one component of the anchor member 650 described in connection with Figures 6A- 6G.
In particular, Figure 5A illustrates the anchor member 550 disposed within a lumen 540 in an initial, contracted configuration. As shown, the anchor member 550 may include an elongate portion 554 and an anchor portion 552. The elongate portion 554 may include a plurality of elongate members 558, such as a first elongate member 558A and a second elongate member 558B.
As shown in Figure 5B advancing the elongate portion 554, such as one or both of the elongate members 558, in a distal direction relative to the lumen 540 may deploy the anchor portion 552 from the distal end of the lumen 540. As a result, the anchor portion 552 may move from an initial, contracted configuration to a deployed, expanded configuration. In one embodiment, the deployed, expanded configuration may include a plurality of projections 556. In a further embodiment, retracting the elongate portion 554 in a proximal direction may provide an anchoring force. For example, retracting the elongate members 558 may anchor the anchor portion 552 against the distal surface of a lumen wall or any other surface against which the anchor portion 552 is positioned, as shown in Figure 5C. In one embodiment, retracting both elongate members 558 simultaneously may produce tension or some other force in the anchor portion 552 which may increase the resistance of the anchor portion 552 to contracting. For example, the tension of both elongate members 558 may be simultaneously transferred to the anchor portion 552 thereby creating sufficient tension in the anchor portion 552 to resist movement by the anchor portion 552 away from its expanded configuration. In addition, providing an opposing force against a proximal surface of the anchor portion 552, such as with the lumen wall, may also assist in creating sufficient tension in the anchor portion 552 to resist contraction of the anchor portion 552. In a further implementation, the wires of the anchor portion 552 may overlap or cross over each other in order to increase resistance.
As shown in Figure 5D, retracting only one elongate member, such as the first elongate member 558A, may lessen the tension in the anchor portion 552, thereby allowing the anchor portion to move from its deployed, expanded configuration to a contracted configuration. As a result, by retracting only the first elongate member 558A, without applying tension to the second elongate member 558B or with applying a distal force to the second elongate member 558B, the anchor portion 552 may contract and be retracted into the lumen 540. In further implementations, by retracting only the second elongate member 558B, without applying tension to the first elongate member 558A or with applying a distal force to the first elongate member 558A, the anchor portion 552 may contract and/or be retracted into the lumen 540.
Reference is now made to Figures 6A-6G, which illustrate a method of closing a body lumen opening using a closure system 600. The example anchor member 650 of this configuration may be functionally similar to the example anchor members 150, 350, 450, and 550 previously described above and shown in Figures 1-5D in most respects, wherein certain features will not be described in relation to this configuration wherein those components may function in the manner as described above and are hereby incorporated into this additional configuration described below. Like structures and/or components are given like reference numerals. In addition, the closure system 600 may incorporate at least one element of the tube set 720 of Figures 7A-7G or closure system 800 of Figure 8.
As shown in Figure 6A, the closure system 600 may be at least partially advanced into a body lumen opening. For example, after completing a percutaneous medical procedure, an operator may advance the closure system 600 over a guidewire 660 through a tissue tract 680 and through a body lumen opening 675 in a lumen wall 670. In particular, the operator may advance the closure system 600 until the inner lumen 640 of the closure system 600 extends at least partially into the body lumen 690. Once the closure system 600 has been advanced at least partially into the body lumen 690 the operator may then retract the guidewire 660 from the body lumen 690.
As shown in Figure 6B, once the closure system 600 is advanced into the body lumen 690, the operator may deploy the anchor member 650 into the body lumen 690. As explained in more detail above, the operator may deploy the anchor member 650 by advancing the plunger member 630 and/or elongate portion 654 in a distal direction relative to the handle member 610, the tube set 620, and the inner lumen 640. Once deployed from the inner lumen, the anchor portion 652 of the anchor member 650 may move from an initial, contracted configuration to a deployed, expanded configuration. As shown in Figure 6C, once the anchor portion 652 of the anchor member 650 has been deployed within the body lumen 690, the operator may retract the plunger member 630 and/or closure system 600 to position the anchor portion 652 of the anchor member 650 against the distal surface of the lumen wall 670 proximate the body lumen opening as also shown in Figure 6C. In particular, the operator may retract the plunger member 630 and/or closure system 600 until she feels the anchoring force or resistance from the anchor portion 652 of the anchor member 650 against the distal surface of the lumen wall 670 thereby locating the body lumen opening 675 and anchoring or securing the tissue surrounding the body lumen opening 675. As shown, the anchor portion 652 may include a plurality of projections 656 which engage and anchor the tissue of the lumen wall 670. In particular, the projections 656 may extend in a direction substantially perpendicular to the longitudinal axis of the elongate portion 654, the tube set 620, and/or inner lumen 640.
Once the anchor portion 652 has located the body lumen opening 675 and/or anchored or secured the tissue surrounding the body lumen opening 675, the operator may advance the handle member 610 in a distal direction relative to the plunger member 630 in order to advance the tube set 620 in a distal direction relative to the anchor portion 652. In particular, the operator may advance the handle member 610 and/or tube set 620 until the distal end 624 of the tube set 620 engages the proximal surface of the lumen wall 670 proximate or surrounding the lumen opening. As a result, in one embodiment, by advancing the tube set 620 in a distal direction and/or retracting the anchor portion 652 in a proximal direction, the operator may sandwich the tissue of the lumen wall 670 surrounding the body lumen opening 675 between the tube set 620 and the anchor portion 652. Accordingly, the operator may thereby engage and/or at least partially immobilize the tissue surrounding the body lumen opening 675. This may facilitate the successful deployment of a closure element 695 into the tissue surrounding the body lumen opening 675, thereby, facilitating the closure of the body lumen opening 675. In particular, the tube set 620 and the anchor portion 652 may hold the tissue in place while a closure element is deployed into the tissue. Therefore, as shown in Figure 6E the operator may then deploy a closure element 695 into the tissue surrounding the body lumen opening. In one embodiment, the operator may depress the button 616 to eject or deploy the closure element 695 into the lumen wall 670. In particular, the closure element 695 may be deployed from an initial, open configuration to a deployed, closed configuration, thereby, engaging and bringing the tissue surrounding the body lumen opening 675 together to close the body lumen opening 675. The closure element 695 may include any device configured to close a body lumen opening 675. For example, the closure element 695 may include a staple, a clip, other similar devices, or combinations thereof.
As shown in Figure 6F, once the closure element 695 has been deployed, the handle member 610, tube set 620, and/or inner lumen 640 may be retracted out of and/or away from the body lumen 690 and tissue tract 680, as shown in Figure 6F. Thereafter, the anchor member 650 may be retracted by retracting the elongate portion 654 in a proximal direction. For example, in one embodiment the anchor portion 652 may be pulled through the closure element 695. The closure element 695 may have superelastic properties to facilitate the withdrawal of the anchor portion 652 through the closure element 695. For example, the closure element may at least partially expand to facilitate the withdrawal of the anchor portion 652 and then return to a contracted position to close the body lumen opening 675. Accordingly, by following one or more of the acts disclosed in Figures 6A-6G, an operator may efficiently close a body lumen opening 675 with a greater amount of flexibility and control. In one embodiment, the inner lumen 640 can be held in place against the outer surface of the body lumen while the anchor member 650 is retracted. Holding the inner lumen 640 may provide sufficient force to allow the anchor member and more particularly the anchor portion 652 to deform into the pre-deployment state inside of the inner lumen 640. As previously stated, this may be achieved by retracting a single elongate member. This may ensure that the closure element does not become dislodged as the anchor portion 652 is withdrawn and contracted. In further embodiments, the anchor wire may be substantially smaller than the closure element. As a result, pulling the anchor portion 652 through the closure element may not affect the positioning of the closure element since the closure element anchors in the tissue by design. In one implementation, the wire of the anchor portion 652 may be superelastic with a diameter small enough to not require substantial force to collapse the anchor portion 652 and pull it through the deployed closure element. For example, the anchor wire may have a diameter of around .005-.007". In one configuration, the anchor, closure element, and/or other aspects or components of the closure system disclosed herein can be made of a single material or of multiple materials. This can include a metal primary material and polymer/drug topcoat or a different metal top layer. The multiple layers can be resiliently flexible materials or rigid and inflexible materials, and selected combinations thereof. The use of resiliently flexible materials can provide force-absorbing characteristics, which can also be beneficial for absorbing stress and strains, which may inhibit crack formation at high stress zones. Also, the multiple layers can be useful for applying radiopaque materials. For example, types of materials that are used to make a closure element can be selected so that the closure element is capable of being in a first orientation (e.g., delivery orientation) during placement and capable of transforming to a second orientation (e.g., deploying orientation) when deployed to close the opening in a lumen.
Embodiments of the anchor, closure element and the like can include a material made from any of a variety of known suitable biocompatible materials, such as a biocompatible shape memory material (SMM). For example, the SMM can be shaped in a manner that allows for a delivery orientation while within the tube set, but can automatically retain the memory shape of the closure element once deployed into the tissue to close the opening. SMMs have a shape memory effect in which they can be made to remember a particular shape. Once a shape has been remembered, the SMM may be bent out of shape or deformed and then returned to its original shape by unloading from strain or heating. Typically, SMMs can be shape memory alloys (SMA) comprised of metal alloys, or shape memory plastics (SMP) comprised of polymers. The materials can also be referred to as being superelastic.
Usually, an SMA can have an initial shape that can then be configured into a memory shape by heating the SMA and conforming the SMA into the desired memory shape. After the SMA is cooled, the desired memory shape can be retained. This allows for the SMA to be bent, straightened, twisted, compacted, and placed into various contortions by the application of requisite forces; however, after the forces are released, the SMA can be capable of returning to the memory shape. The main types of SMAs are as follows: copper-zinc-aluminum; copper-aluminum-nickel; nickel-titanium (NiTi) alloys known as nitinol; nickel-titanium platinum; nickel-titanium palladium; and cobalt- chromium-nickel alloys or cobalt-chromium-nickel-molybdenum alloys known as elgiloy alloys. The temperatures at which the SMA changes its crystallographic structure are characteristic of the alloy, and can be tuned by varying the elemental ratios or by the conditions of manufacture. This can be used to tune the closure element so that it reverts to the memory shape to close the arteriotomy when deployed at body temperature and when being released from the tube set.
For example, the primary material of a closure element can be of a NiTi alloy that forms superelastic nitinol. In the present case, nitinol materials can be trained to remember a certain shape, retained within the tube set, and then deployed from the tube set so that the tines penetrate the tissue as it returns to its trained shape and closes the opening. Also, additional materials can be added to the nitinol depending on the desired characteristic. The alloy may be utilized having linear elastic properties or non-linear elastic properties. An SMP is a shape-shifting plastic that can be fashioned into a closure element in accordance with the present disclosure. Also, it can be beneficial to include at least one layer of an SMA and at least one layer of an SMP to form a multilayered body; however, any appropriate combination of materials can be used to form a multilayered device. When an SMP encounters a temperature above the lowest melting point of the individual polymers, the blend makes a transition to a rubbery state. The elastic modulus can change more than two orders of magnitude across the transition temperature (Ttr). As such, an SMP can be formed into a desired shape of an endoprosthesis by heating it above the Ttr, fixing the SMP into the new shape, and cooling the material below Ttr. The SMP can then be arranged into a temporary shape by force and then resume the memory shape once the force has been released. Examples of SMPs include, but are not limited to, biodegradable polymers, such as oligo(ε-caprolactone)diol, oligo(p-dioxanone)diol, and non-biodegradable polymers such as, polynorborene, polyisoprene, styrene butadiene, polyurethane-based materials, vinyl acetate-polyester-based compounds, and others yet to be determined. As such, any SMP can be used in accordance with the present disclosure.
An anchor, closure element and the like may have at least one layer made of an
SMM or suitable superelastic material and other suitable layers can be compressed or restrained in its delivery configuration within the garage tube or inner lumen, and then deployed into the tissue so that it transforms to the trained shape. For example, a closure element transitions to close the opening in the body lumen while an anchor may expand to anchor the closure system.
Also, the anchor, closure element, or other aspects or components of the closure system can be comprised of a variety of known suitable deformable materials, including stainless steel, silver, platinum, tantalum, palladium, nickel, titanium, nitinol, nitinol having tertiary materials (U.S. 2005/0038500, which is incorporated herein by reference, in its entirety), niobium-tantalum alloy optionally doped with a tertiary material (U.S. 2004/0158309, 2007/0276488, and 2008/0312740, which are each incorporated herein by reference, in their entireties) cobalt-chromium alloys, or other known biocompatible materials. Such biocompatible materials can include a suitable biocompatible polymer in addition to or in place of a suitable metal. The polymeric closure element can include biodegradable or bioabsorbable materials, which can be either plastically deformable or capable of being set in the deployed configuration.
In one embodiment, the closure element or anchor may be made from a superelastic alloy such as nickel-titanium or nitinol, and includes a ternary element selected from the group of chemical elements consisting of iridium, platinum, gold, rhenium, tungsten, palladium, rhodium, tantalum, silver, ruthenium, or hafnium. The added ternary element improves the radiopacity of the nitinol closure element. The nitinol closure element has improved radiopacity yet retains its superelastic and shape memory behavior and further maintains a thin body thickness for high flexibility. In one embodiment, the anchor or closure element can be made at least in part of a high strength, low modulus metal alloy comprising Niobium, Tantalum, and at least one element selected from the group consisting of Zirconium, Tungsten, and Molybdenum.
In further embodiments, the closure element or anchor can be made from or be coated with a biocompatible polymer. Examples of such biocompatible polymeric materials can include hydrophilic polymer, hydrophobic polymer biodegradable polymers, bioabsorbable polymers, and monomers thereof. Examples of such polymers can include nylons, poly(alpha-hydroxy esters), polylactic acids, polylactides, poly-L- lactide, poly-DL-lactide, poly-L-lactide-co-DL-lactide, polyglycolic acids, polyglycolide, polylactic-co-glycolic acids, polyglycolide-co-lactide, polyglycolide-co-DL-lactide, polyglycolide-co-L-lactide, polyanhydrides, polyanhydride-co-imides, polyesters, polyorthoesters, polycaprolactones, polyesters, polyanydrides, polyphosphazenes, polyester amides, polyester urethanes, polycarbonates, polytrimethylene carbonates, polyglycolide-co-trimethylene carbonates, poly(PBA-carbonates), polyfumarates, polypropylene fumarate, poly(p-dioxanone), polyhydroxyalkanoates, polyamino acids, poly-L-tyrosines, poly(beta-hydroxybutyrate), polyhydroxybutyrate-hydroxyvaleric acids, polyethylenes, polypropylenes, polyaliphatics, polyvinylalcohols, polyvinylacetates, hydrophobic/hydrophilic copolymers, alkylvinylalcohol copolymers, ethylenevinylalcohol copolymers (EVAL), propylenevinylalcohol copolymers, polyvinylpyrrolidone (PVP), combinations thereof, polymers having monomers thereof, or the like.
Reference is now made to Figures 7A-7G, which disclose an example tube set 720. The example tube set 720 of this configuration may be functionally similar to the example tube set 120 and 620 previously described above and shown in Figures 1, 2, and 6A-6G in most respects, wherein certain features will not be described in relation to this configuration wherein those components may function in the manner as described above and are hereby incorporated into this additional configuration described below. Like structures and/or components are given like reference numerals. Additionally, the tube set 720 may incorporate at least one component of the tube set 820 of Figure 8. In further embodiments, the tube set 720 may be utilized with the closure systems 100 and 600 disclosed in Figures 1, 2A-2D, and 6A-6G.
The tube set 720 may include a garage sheath 722, a pusher tube 724, and a carrier tube 726. In addition, the tube set 720 may be configured to receive or house a locator element and closure element 795. In one embodiment, the tube set 720 may house an inner lumen 740, and/or anchor member 750. In further embodiments, the tube set 720 may be configured to deliver and/or deploy the closure element 795 in order to close an opening in a lumen wall.
The garage sheath 722 may be configured to cover, protect, and/or house the closure element 795 within the tube set 720 and/or other components of the tube set 720. In one embodiment, the garage sheath 722 may be generally tubular in shape. In a further embodiment, the distal end of the garage sheath 722 may have a different configuration than the remainder of the garage sheath 722. For example, the distal end of the garage sheath 722 may have an inwardly tapered configuration. In further embodiments, the distal end may be configured to at least partially expand to facilitate deployment of the closure element 795. For example, the distal end of the garage sheath 722 may include one or more longitudinal slits thereby forming one or more flanges that may deflect radially outwardly in order to facilitate deployment of the closure element 795.
In addition to the garage sheath 722, the tube set 720 may include a pusher tube 724. The pusher tube 724 may be configured to deploy the closure element 795. In one embodiment, the pusher tube 724 may be generally tubular in shape along the length thereof. The pusher tube 724 may be disposed between the carrier tube 726 and the garage sheath 722 and proximal of the closure element 795. In a further embodiment, the distal end of the pusher tube 724 may include one or more fingers or projections extending from the distal end of the pusher tube 724 and configured to help stabilize and/or deploy the closure element 795. For example, the fingers or projections extending from the distal end of the pusher tube 724 may be configured in size to fit into corresponding waves, undulations, or other features along a proximal edge or surface of the closure element 795. In addition to the pusher tube 724, the tube set 720 may include a carrier tube 726.
The carrier tube 726 may be configured to carry the closure element 795 in a delivery configuration to a location proximate an opening in a body lumen. In one embodiment, the carrier tube 726 may be generally tubular in shape along the length thereof. The carrier tube 726 may be disposed at least partially within the pusher tube 724 with the closure element 795 disposed thereon. In further embodiments, the distal end of the carrier tube 726 may have a different configuration than the remainder of the carrier tube 726. For example, the distal end of the carrier tube 726 may flare radially outwards to facilitate successful deployment of the closure element 795. For example, the flared distal end of the carrier tube 726 may direct one or more elements of the closure element 795 outwards to engage tissue surrounding the opening in the body lumen to better close the body lumen opening.
The garage sheath 722, pusher tube 724, and/or carrier tube 726 may include any of a number of materials, such as biocompatible polymers and/or metals. In one example, one or more of the garage sheath 722, pusher tube 724, and/or carrier tube 726 may include stainless steel. The materials of the garage sheath 722, pusher tube 724, and/or carrier tube 726 may have rigid, semi-rigid, or flexible mechanical properties as desired for a particular embodiment.
The garage sheath 722, pusher tube 724, and/or carrier tube 726 may be longitudinally movable relative to each other. The independent longitudinal movement of each element of the tube set 720 may facilitate the deployment of the closure element 795 and corresponding closure of a body lumen opening. As shown in Figure 7A, the tube set 720 may have an initial delivery configuration, in which the closure element 795 is disposed on the corner tube 726 and the anchor member 750 is disposed within the carrier tube 726. In this initial delivery configuration, a medical care provider or user can move the tube set 720 into position within or near an opening in a body lumen.
Once the tube set 720 is in position proximate a body lumen opening, the user of the tube set 720 can advance the inner lumen740 at least partially into the body lumen, as shown in Figure 7B. Once the inner lumen 740 is partially disposed within the body lumen, the user may advance the anchor portion 752 of the anchor 750 by advancing the elongate member(s) 754 relative to the inner lumen 740 and tube set 720. As a result, the anchor portion 752 may deploy from a delivery configuration to a deployed configuration as described in more detail above.
Once the anchor portion 752 is deployed within the body lumen, the user may retract the anchor 750 in a proximal direction to position the anchor portion 752 against the distal surface of the body lumen surrounding the opening, as shown in Figure 7C. In a further embodiment, the user can retract the garage tube 722 in order to expose the closure element 795, as shown in Figure 7D.
Once the carrier tube 726 is anchored against the body lumen, the user can deploy the closure element 795 by advancing the pusher tube 724 in a distal direction relative to the carrier tube 726, as shown in Figure 7E. As the pusher tube 724 advances, it may come into contact with the closure element 795 and begin to advance the closure element 795 in a distal direction relative to the carrier tube 726. In further embodiments, as the closure element 795 advances, the flared distal end of the carrier tube 726 may expand the closure element 795 and direct one or more tines of the closure element 795 radially outward to better engage the tissue surrounding the opening in the body lumen.
As shown in Figure 7F, the user can continue to advance the pusher tube 724 until the closure element 795 extends at least partially beyond the distal end of the carrier tube 726 and into engagement with the body lumen. Once deployed beyond the carrier tube 726, the closure element 795 may move from its expanded, delivery configuration to a deployed, collapsed configuration, thereby closing the body lumen opening, as shown in Figure 7G. In addition, the user can retract the anchor portion 752 through the deployed closure element 795, as disclosed in more detail above. In further embodiments, the user may retract the tube set 720 and anchor 750 in a proximal direction away from the body lumen and out of the tissue tract, thereby leaving the deployed closure element in place.
Reference is now made to Figure 8, which illustrates an additional example closure system 800 in accordance with a further embodiment of the present disclosure. The example closure system 800 of this configuration may be functionally similar to the example closure systems 100 and 600 and tube set 720 previously described above and shown in Figures 1, 2A-2D, 6A-6G, and 7 in most respects, wherein certain features will not be described in relation to this configuration wherein those components may function in the manner as described above and are hereby incorporated into this additional configuration described below. Like structures and/or components are given like reference numerals. Additionally, the closure systems 100 and 600 and tube set 720 may incorporate one or more components of the closure system 800.
As shown, the closure system 800 may include a handle member 810, a tube set 820 configured to couple with or be partially disposed within the handle member 810, and a plunger member 830 and firing pin 816 configured for manipulation by a user in order to operate the closure system 800 and deploy a closure element, such as a clip or staple. As a result, a user, such as a physician, may utilize the closure system 800 and the elements thereof to close an opening in a body lumen.
The handle member 810 of the closure system 800 may be configured to assist an operator, such as a physician, to grip, manipulate, advance, and/or operate the closure system 800 in order to close a body lumen opening. In one embodiment, the handle member may have an upper portion 810a and a lower portion 810b. The upper portion 810a and lower portion 810b may be connected using one or more fasteners, adhesives, welds, and/or other mechanisms. In further embodiments, the handle member may define a recess 818 configured to house one or more components of the closure system 800. The recess 818 may be configured to receive components of the tube set 820 as well as other components of the closure system 800 disclosed in Figure 8 and described in more detail below. In yet further embodiments, the recess 818 may have openings along the sides thereof configured to receive portions of the tube set 820 during operation of the closure system 800. As shown, the closure element 800 may also include a tube set 820. In one embodiment, the tube set 820 may include a garage tube 822, pusher tube 824, and carrier tube 826. In further embodiments, each of the garage tube 822, pusher tube 824, and carrier tube 826 may include a slider block at its proximal end configured to be disposed within and slide along the recess 818 of the handle member 810. Each of the slider blocks may be further configured to lock within the openings along the sides of the recess 818 to restrict or control the movement of each member of the tube set 820. For example, after moving in a distal direction to position the components of the tube set 820 for deployment of a closure element, one or more of the slider blocks may lock into the openings to restrict further movement, such as in a proximal direction.
The handle member 810 may also be operatively associated with any number of mechanisms configured to deploy a closure element. For example, the handle member 810 may include a button 816 operatively associated with one or more mechanisms configured to deploy a closure element. The button 816 may be operatively associated with a firing pin 817 configured to release stored energy to fire or deploy a closure element. For example, the closure system 800 may store energy in a spring 815. In one embodiment, the spring 815 may be disposed on and/or between components of the tube set 820. In further embodiments, the energy may be transferred to the spring 815 by depressing the plunger member 830. A user may release the stored energy by depressing the button 816, which may release the firing pin 817. In one embodiment, the stored energy may transfer to the pusher tube 824 in order to deploy the closure element. As a result, an operator may depress the button 816 in order to push, fire, or eject a closure element from the tube set 820 into the tissue of a body lumen to close a body lumen opening. The present disclosure may be embodied in other specific forms without departing from its spirit or essential characteristics. The described embodiments are to be considered in all respects only as illustrative and not restrictive. The scope of the disclosure is, therefore, indicated by the appended claims rather than by the foregoing description. All changes which come within the meaning and range of equivalency of the claims are to be embraced within their scope.

Claims

CLAIMSWhat is claimed is:
1. A closure system comprising: a handle member; a tube set configured to deliver and/or deploy a closure element, the tube set having a distal end and a proximal end, the proximal end of the tube set being coupled to the handle member; an inner lumen disposed at least partially within the tube set; a plunger member movably coupled to the handle member; and an anchor member at least partially disposed within the inner lumen, the anchor member comprising an anchor portion and an elongate portion, the anchor portion being disposed in the inner lumen in an initial configuration and configured to move to an expanded configuration once deployed from the inner lumen.
2. The closure system of claim 1, the plunger member being longitudinally slidable with respect to the handle member.
3. The closure system of claim 1, a closure element disposed within the tube set in an initial configuration and being configured to move to a deployed configuration once deployed from the tube set.
4. The closure system of claim 1, the plunger member being at least partially disposed within a recess in the handle member.
5. The closure system of claim 1, the inner lumen being movable relative to the tube set and handle member.
6. The closure system of claim 1, the anchor member comprising shape memory or superelastic materials.
7. The closure system of claim 6, the anchor portion further comprising an elongate wire forming the elongate portion and anchor portion.
8. The closure system of claim 1, the expanded configuration of the anchor portion comprising a plurality of projections extending in a direction substantially perpendicular to the longitudinal axis of the elongate portion of the anchor member.
9. The closure system of claim 8, wherein at least one of the projections is shaped similar to a petal or leaf.
10. The closure system of claim 9, wherein the expanded configuration of the anchor portion is substantially similar in shape to a four-leaf clover, figure eight, a ball, or a configuration having more than four leaves.
11. The closure system of claim 1, wherein the elongate portion of the anchor member is coupled to the plunger member.
12. The closure system of claim 11, wherein the plunger member is configured to slide in a distal direction relative to the handle member to deploy the anchor portion of the anchor member.
13. The closure system of claim 12, wherein the handle member is configured to move in a distal direction relative to the plunger member to advance the distal end of the tube set to proximity with the anchor portion of the anchor member.
14. The closure system of claim 1, further comprising the handle member and/or tube set being configured to deploy the closure element from the distal end of the tube set.
15. The closure system of claim 1, the closure element comprising a clip or staple.
16. The closure system of claim 1, the handle member further comprising one or more indentations or flanges configured to facilitate gripping or manipulating the handle member.
17. The closure system of claim 1, wherein the tube set comprises a garage tube, a pusher tube, and a carrier tube.
18. A method of closing a body lumen opening comprising: advancing a closure system at least partially into a body lumen opening, the closure system comprising: a handle member; a tube set configured to deliver and/or deploy a closure element, the tube set having a distal end and a proximal end, the proximal end of the tube set being coupled to the handle member; an inner lumen disposed at least partially within the tube set; a plunger member movably coupled to the handle member; and an anchor member at least partially disposed within the inner lumen, the anchor member comprising an anchor portion and an elongate portion, the anchor portion being disposed in the inner lumen in an initial configuration and configured to move to an expanded configuration once deployed from the inner lumen; deploying the anchor portion of the anchor member within the body lumen; positioning the anchor portion of the anchor member against a distal surface of the lumen wall proximate the body lumen opening; advancing the tube set in a distal direction to position the distal end of the tube set against a proximal surface of the lumen wall proximate the body lumen opening; and deploying a closure element into the lumen wall proximate the body lumen opening to close the body lumen opening.
19. The method of claim 18, further comprising advancing the plunger member to deploy the anchor portion of the anchor member and retracting the plunger member to retract the anchor portion of the anchor member.
20. An anchor member comprising: an elongate portion having a distal end and proximal end; and an anchor portion coupled to the distal end of the elongate portion, the anchor portion being configured to move elastically between an initial configuration and an expanded configuration, the expanded configuration comprising a plurality of projections.
21. The anchor member of claim 20, wherein the plurality of projections extend in a direction substantially perpendicular to the longitudinal axis of the elongate portion.
22. The anchor member of claim 20, the plurality of projections comprising at least 2 projections.
23. The anchor member of claim 20, further comprising the anchor member comprising a shape memory or superelastic wire being set in the expanded configuration.
24. The anchor member of claim 20, the elongate portion comprising a first elongate member and a second elongate member.
25. The anchor member of claim 24, wherein the anchor portion is configured to provide more resistance to movement from an expanded configuration to a contracted configuration when tension is applied to both the first elongate member and the second elongate member than when tension is only applied to one of the first elongate member and second elongate member.
26. The anchor member of claim 20, wherein the expanded configuration is substantially similar in shape to a four-leaf clover, figure eight, a ball, or a configuration having more than four leaves.
PCT/US2010/020659 2009-01-09 2010-01-11 Closure devices, systems, and methods WO2010081101A2 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US14375109P 2009-01-09 2009-01-09
US61/143,751 2009-01-09
US12/684,400 2010-01-08
US12/684,400 US9173644B2 (en) 2009-01-09 2010-01-08 Closure devices, systems, and methods

Publications (2)

Publication Number Publication Date
WO2010081101A2 true WO2010081101A2 (en) 2010-07-15
WO2010081101A3 WO2010081101A3 (en) 2011-03-10

Family

ID=42317200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2010/020659 WO2010081101A2 (en) 2009-01-09 2010-01-11 Closure devices, systems, and methods

Country Status (2)

Country Link
US (2) US9173644B2 (en)
WO (1) WO2010081101A2 (en)

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8690910B2 (en) 2000-12-07 2014-04-08 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US8858594B2 (en) 2008-12-22 2014-10-14 Abbott Laboratories Curved closure device
US8893947B2 (en) 2007-12-17 2014-11-25 Abbott Laboratories Clip applier and methods of use
US8905937B2 (en) 2009-02-26 2014-12-09 Integrated Vascular Systems, Inc. Methods and apparatus for locating a surface of a body lumen
US8920442B2 (en) 2005-08-24 2014-12-30 Abbott Vascular Inc. Vascular opening edge eversion methods and apparatuses
US8926633B2 (en) 2005-06-24 2015-01-06 Abbott Laboratories Apparatus and method for delivering a closure element
US8926656B2 (en) 2003-01-30 2015-01-06 Integated Vascular Systems, Inc. Clip applier and methods of use
US9050087B2 (en) 2000-01-05 2015-06-09 Integrated Vascular Systems, Inc. Integrated vascular device with puncture site closure component and sealant and methods of use
US9050068B2 (en) 2005-07-01 2015-06-09 Abbott Laboratories Clip applier and methods of use
US9060769B2 (en) 2000-09-08 2015-06-23 Abbott Vascular Inc. Surgical stapler
US9089311B2 (en) 2009-01-09 2015-07-28 Abbott Vascular Inc. Vessel closure devices and methods
US9089674B2 (en) 2000-10-06 2015-07-28 Integrated Vascular Systems, Inc. Apparatus and methods for positioning a vascular sheath
US9149276B2 (en) 2011-03-21 2015-10-06 Abbott Cardiovascular Systems, Inc. Clip and deployment apparatus for tissue closure
US9173644B2 (en) 2009-01-09 2015-11-03 Abbott Vascular Inc. Closure devices, systems, and methods
US9282965B2 (en) 2008-05-16 2016-03-15 Abbott Laboratories Apparatus and methods for engaging tissue
US9295469B2 (en) 2002-06-04 2016-03-29 Abbott Vascular Inc. Blood vessel closure clip and delivery device
US9301746B2 (en) 2013-10-11 2016-04-05 Abbott Cardiovascular Systems, Inc. Suture-based closure with hemostatic tract plug
US9314230B2 (en) 2009-01-09 2016-04-19 Abbott Vascular Inc. Closure device with rapidly eroding anchor
US9320522B2 (en) 2000-12-07 2016-04-26 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US9498196B2 (en) 2002-02-21 2016-11-22 Integrated Vascular Systems, Inc. Sheath apparatus and methods for delivering a closure device
US9579091B2 (en) 2000-01-05 2017-02-28 Integrated Vascular Systems, Inc. Closure system and methods of use
US9962144B2 (en) 2006-06-28 2018-05-08 Abbott Laboratories Vessel closure device
US10111664B2 (en) 2000-01-05 2018-10-30 Integrated Vascular Systems, Inc. Closure system and methods of use
US10398418B2 (en) 2003-01-30 2019-09-03 Integrated Vascular Systems, Inc. Clip applier and methods of use
US10537313B2 (en) 2009-01-09 2020-01-21 Abbott Vascular, Inc. Closure devices and methods
US10537312B2 (en) 2012-12-21 2020-01-21 Abbott Cardiovascular Systems, Inc. Articulating suturing device

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7842068B2 (en) 2000-12-07 2010-11-30 Integrated Vascular Systems, Inc. Apparatus and methods for providing tactile feedback while delivering a closure device
US6461364B1 (en) 2000-01-05 2002-10-08 Integrated Vascular Systems, Inc. Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
US7211101B2 (en) 2000-12-07 2007-05-01 Abbott Vascular Devices Methods for manufacturing a clip and clip
US7806904B2 (en) 2000-12-07 2010-10-05 Integrated Vascular Systems, Inc. Closure device
IES20010547A2 (en) 2001-06-07 2002-12-11 Christy Cummins Surgical Staple
US8202293B2 (en) 2003-01-30 2012-06-19 Integrated Vascular Systems, Inc. Clip applier and methods of use
US8758398B2 (en) 2006-09-08 2014-06-24 Integrated Vascular Systems, Inc. Apparatus and method for delivering a closure element
US8821534B2 (en) 2010-12-06 2014-09-02 Integrated Vascular Systems, Inc. Clip applier having improved hemostasis and methods of use
US7857828B2 (en) 2003-01-30 2010-12-28 Integrated Vascular Systems, Inc. Clip applier and methods of use
IES20040368A2 (en) 2004-05-25 2005-11-30 James E Coleman Surgical stapler
US9545300B2 (en) * 2004-12-22 2017-01-17 W. L. Gore & Associates, Inc. Filament-wound implantable devices
US9456811B2 (en) 2005-08-24 2016-10-04 Abbott Vascular Inc. Vascular closure methods and apparatuses
US8808310B2 (en) 2006-04-20 2014-08-19 Integrated Vascular Systems, Inc. Resettable clip applier and reset tools
US8226681B2 (en) 2007-06-25 2012-07-24 Abbott Laboratories Methods, devices, and apparatus for managing access through tissue
US8876861B2 (en) * 2007-09-12 2014-11-04 Transluminal Technologies, Inc. Closure device, deployment apparatus, and method of deploying a closure device
US20090157101A1 (en) 2007-12-17 2009-06-18 Abbott Laboratories Tissue closure system and methods of use
US7841502B2 (en) 2007-12-18 2010-11-30 Abbott Laboratories Modular clip applier
US8398676B2 (en) 2008-10-30 2013-03-19 Abbott Vascular Inc. Closure device
US8323312B2 (en) 2008-12-22 2012-12-04 Abbott Laboratories Closure device
US9414820B2 (en) 2009-01-09 2016-08-16 Abbott Vascular Inc. Closure devices, systems, and methods
US20100185234A1 (en) 2009-01-16 2010-07-22 Abbott Vascular Inc. Closure devices, systems, and methods
US20110054492A1 (en) 2009-08-26 2011-03-03 Abbott Laboratories Medical device for repairing a fistula
US8303624B2 (en) 2010-03-15 2012-11-06 Abbott Cardiovascular Systems, Inc. Bioabsorbable plug
US8758399B2 (en) 2010-08-02 2014-06-24 Abbott Cardiovascular Systems, Inc. Expandable bioabsorbable plug apparatus and method
US8603116B2 (en) 2010-08-04 2013-12-10 Abbott Cardiovascular Systems, Inc. Closure device with long tines
US9332981B2 (en) 2011-05-19 2016-05-10 Abbott Cardiovascular Systems, Inc. Closure devices and methods
US9492156B2 (en) * 2011-11-28 2016-11-15 St. Jude Medical Puerto Rico Llc Large bore anchor device
US9332976B2 (en) 2011-11-30 2016-05-10 Abbott Cardiovascular Systems, Inc. Tissue closure device
US9456814B2 (en) * 2012-04-09 2016-10-04 Abbott Cardiovascular Systems, Inc. Closure devices, systems, and methods
US10639022B2 (en) * 2015-11-03 2020-05-05 W. L. Gore & Associates, Inc. Endoscopic organ manipulation devices and methods
US10448938B2 (en) 2016-06-16 2019-10-22 Phillips Medical, LLC Methods and systems for sealing a puncture of a vessel
US10624620B2 (en) 2017-05-12 2020-04-21 Phillips Medical, LLC Systems and methods for sealing a puncture of a vessel
US10716551B2 (en) 2017-05-12 2020-07-21 Phillips Medical, LLC Systems and methods for sealing a puncture of a vessel
WO2019209710A1 (en) * 2018-04-23 2019-10-31 Cardiac Pacemakers, Inc. Subcutaneous lead fixation member
US20230072138A1 (en) * 2021-09-08 2023-03-09 Covidien Lp Surgical fastener having a base and a leg

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040158309A1 (en) 2003-02-10 2004-08-12 W. C. Heraeus Gmbh & Co. Kg Metal alloy for medical devices and implants
US20050038500A1 (en) 2000-12-27 2005-02-17 Boylan John F. Radiopaque nitinol alloys for medical devices
US20070276488A1 (en) 2003-02-10 2007-11-29 Jurgen Wachter Medical implant or device

Family Cites Families (892)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US254119A (en) * 1882-02-28 Culinary apparatus
US112385A (en) * 1871-03-07 Improvement in slide-valves for steam riveting-machines
US312789A (en) * 1885-02-24 Feedebick u
US556082A (en) 1896-03-10 Julius boeddinghaus
US438400A (en) 1890-10-14 Connector for electric conductors
US123816A (en) * 1872-02-20 Improvement in door or shutter fasteners
US23248A (en) * 1859-03-15 Improvement in compositions for roofing
US287046A (en) 1883-10-23 Combined cork and screw nozzle
US1088393A (en) 1913-09-20 1914-02-24 Oscar E Backus Button.
US1123290A (en) 1914-05-12 1915-01-05 Otto Von Herff Surgical clip.
US1242139A (en) 1915-08-20 1917-10-09 Robert L Callahan Means for fastening sacks.
US1331401A (en) 1919-09-12 1920-02-17 Summers Henry Clay Button-fastening
US1480935A (en) 1922-04-03 1924-01-15 Dora P Gleason Barrette
US1596004A (en) 1923-04-04 1926-08-17 Bengoa Miguel Becerro De Hypodermic syringe
US1647958A (en) 1926-11-02 1927-11-01 Ariberto E Ciarlante Hair-curling material and method of preparing the same
US1880569A (en) 1930-09-27 1932-10-04 John P Weis Surgical clip applying instrument
US2087074A (en) 1936-08-17 1937-07-13 Tucker Ralph Button
US2210061A (en) 1939-01-24 1940-08-06 Aircraft Screw Prod Co Inserting tool
US2254620A (en) 1939-11-14 1941-09-02 George I Miller Clip
US2371978A (en) 1941-12-13 1945-03-20 Roy G Perham Clamp for retaining the edges of a wound in apposition
US2316297A (en) 1943-01-15 1943-04-13 Beverly A Southerland Surgical instrument
US2453227A (en) 1946-09-21 1948-11-09 George Martin Button staple anchor and shield
US2583625A (en) 1946-10-29 1952-01-29 Thomas & Betts Corp Method of and tool for crimping tubes
US2910067A (en) 1952-10-13 1959-10-27 Technical Oil Tool Corp Wound clip and extractor therefor
US2684070A (en) 1953-03-23 1954-07-20 Walter L Kelsey Surgical clip
US2755699A (en) 1953-07-16 1956-07-24 Heli Coil Corp Wire coil screw thread insert with grip end having an angular configuration
US2951482A (en) 1955-09-22 1960-09-06 Gregory B Sullivan Surgical saw
US3113379A (en) 1956-02-28 1963-12-10 Joseph J Frank Closure fastening
US2944311A (en) 1956-10-20 1960-07-12 Schneckenberger Adolf Detachable fastening device
US3015403A (en) 1959-04-08 1962-01-02 American Thermos Products Comp Threaded stopper expanding pouring lip combination for vacuum bottle
US2969887A (en) 1959-04-08 1961-01-31 American Thermos Products Comp Threaded pouring lip stopper combination for vacuum bottle
US3120230A (en) 1960-10-24 1964-02-04 Jack H Sanders Surgical clamp
US3209754A (en) 1961-08-10 1965-10-05 Ernest C Wood Surgical clip
US3142878A (en) 1963-04-10 1964-08-04 James V Santora Staple button fastener
US3357070A (en) 1966-03-11 1967-12-12 Harriet L Soloan Accessories for hairdos and articles of apparel
US3494533A (en) 1966-10-10 1970-02-10 United States Surgical Corp Surgical stapler for stitching body organs
US3348595A (en) 1967-03-15 1967-10-24 Walter Landor Bag closure structure
US3482428A (en) 1967-07-12 1969-12-09 Nikolai Nikolaevich Kapitanov Surgical apparatus for suturing tissues with metal staples
US3523351A (en) 1967-10-20 1970-08-11 Sargent & Co Locator and holder in a crimping tool for an electrical connector
US3586002A (en) 1968-01-08 1971-06-22 Ernest C Wood Surgical skin clip
US3510923A (en) 1968-06-20 1970-05-12 American Hospital Supply Corp Parallel jaw ratchet clip and retractor
US3604425A (en) 1969-04-11 1971-09-14 New Research And Dev Lab Inc Hemostatic clip
US3618447A (en) 1969-09-15 1971-11-09 Phillips Petroleum Co Deterioration fasteners
US3682180A (en) 1970-06-08 1972-08-08 Coilform Co Inc Drain clip for surgical drain
US3757629A (en) 1971-05-10 1973-09-11 R Schneider Resilient plastic staple
BE789131A (en) 1971-09-24 1973-03-22 Extracorporeal Med Spec SURGICAL NEEDLE FOR PERFORMING MEDICAL OPERATIONS
US3985138A (en) 1972-08-25 1976-10-12 Jarvik Robert K Preformed ligatures for bleeders and methods of applying such ligatures
US3856016A (en) 1972-11-03 1974-12-24 H Davis Method for mechanically applying an occlusion clip to an anatomical tubular structure
US3823719A (en) 1972-11-14 1974-07-16 Acme United Corp Finger operated forceps type surgical instrument
GB1358466A (en) 1972-11-22 1974-07-03 Vnii Ispytatel Med Tech Surgical instrument for stitching tissue with suture wire
US3874388A (en) 1973-02-12 1975-04-01 Ochsner Med Found Alton Shunt defect closure system
US3828791A (en) 1973-03-21 1974-08-13 M Santos Surgical instruments
US3805337A (en) 1973-04-23 1974-04-23 Raymond Lee Organization Inc Spring wire hose clamp
SU495067A1 (en) 1973-06-21 1975-12-15 Новосибирский научно-исследовательский институт патологии кровообращения Patch to close the interventricular heart defects
GB1413191A (en) 1973-07-04 1975-11-12 Vnii Khirurgicheskoi Apparatur Device for the eversion of hollow organs and vascular stapling instrument incorporating same
NL7403762A (en) 1974-03-20 1975-09-23 Leer Koninklijke Emballage STOP OF PLASTIC OR SIMILAR MATERIAL, WITH EXTERNAL THREADS.
US3939820A (en) 1974-10-29 1976-02-24 Datascope Corporation Single-chamber, multi-section balloon for cardiac assistance
US3926194A (en) 1974-11-20 1975-12-16 Ethicon Inc Sutures with reduced diameter at suture tip
US4018228A (en) 1975-02-24 1977-04-19 Goosen Carl C Surgical punch apparatus
US3960147A (en) 1975-03-10 1976-06-01 Murray William M Compression bone staples and methods of compressing bone segments
GB1486351A (en) 1975-06-06 1977-09-21 Rocket Of London Ltd Surgical clip applicator
US4014492A (en) 1975-06-11 1977-03-29 Senco Products, Inc. Surgical staple
US4007743A (en) 1975-10-20 1977-02-15 American Hospital Supply Corporation Opening mechanism for umbrella-like intravascular shunt defect closure device
MX144149A (en) 1976-04-28 1981-09-02 Kendall & Co IMPROVED DEVICE TO VERIFY THE POSITION OF A NEEDLE IN THE BODY OF A PATIENT
DE2730691C2 (en) 1976-07-16 1982-12-16 Maruho Co. Ltd., Osaka Surgical clip, connecting element for several surgical clips and forceps for opening and closing the same
US4047533A (en) 1976-09-20 1977-09-13 American Cyanamid Company Absorbable surgical sutures coated with polyoxyethylene-polyoxypropylene copolymer lubricant
US4112944A (en) 1976-12-13 1978-09-12 Williams Gayland M Tube clamp and piercing device
DE2658478C2 (en) 1976-12-23 1978-11-30 Aesculap-Werke Ag Vormals Jetter & Scheerer, 7200 Tuttlingen Vascular clips for surgical use
SU715082A1 (en) 1977-01-24 1980-02-15 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suturing apparatus
US4153321A (en) 1977-03-17 1979-05-08 Kravex Manufacturing Company Battery booster cable
US4217902A (en) 1977-05-02 1980-08-19 March Alfred L Hemostatic clip
US4169476A (en) 1977-08-12 1979-10-02 Wolf Medical Instruments Corporation Applicator for surgical clip
US4201215A (en) 1977-09-06 1980-05-06 Crossett E S Apparatus and method for closing a severed sternum
US4345606A (en) 1977-12-13 1982-08-24 Littleford Philip O Split sleeve introducers for pacemaker electrodes and the like
US4215699A (en) 1978-04-03 1980-08-05 The Kendall Company Position indicating device
US4207870A (en) 1978-06-15 1980-06-17 Becton, Dickinson And Company Blood sampling assembly having porous vent means vein entry indicator
US4273129A (en) 1978-06-29 1981-06-16 Richard Wolf Gmbh Forceps for applying clips to fallopian tubes
US4189808A (en) 1978-09-20 1980-02-26 Brown Theodore G Retainer and closure for a garbage can liner bag
USRE31855F1 (en) 1978-12-01 1986-08-19 Tear apart cannula
SU886898A1 (en) 1978-12-08 1981-12-07 Всесоюзный научно-исследовательский и испытательный институт медицинской техники Surgical suturing apparatus
US4214587A (en) 1979-02-12 1980-07-29 Sakura Chester Y Jr Anastomosis device and method
US4440170A (en) 1979-03-06 1984-04-03 Ethicon, Inc. Surgical clip applying instrument
US4267995A (en) 1979-10-09 1981-05-19 Mcmillan Ronald R Wire holder
US4278091A (en) 1980-02-01 1981-07-14 Howmedica, Inc. Soft tissue retainer for use with bone implants, especially bone staples
US4396139A (en) 1980-02-15 1983-08-02 Technalytics, Inc. Surgical stapling system, apparatus and staple
US4317451A (en) 1980-02-19 1982-03-02 Ethicon, Inc. Plastic surgical staple
US4317445A (en) 1980-03-31 1982-03-02 Baxter Travenol Laboratories, Inc. Catheter insertion unit with separate flashback indication for the cannula
US4318401A (en) 1980-04-24 1982-03-09 President And Fellows Of Harvard College Percutaneous vascular access portal and catheter
US4428376A (en) 1980-05-02 1984-01-31 Ethicon Inc. Plastic surgical staple
FR2481594A1 (en) 1980-05-02 1981-11-06 Ethicon Inc PERFECTED PLASTIC SURGICAL STAPLE
US4327485A (en) 1980-05-21 1982-05-04 Amp Incorporated Pistol grip tool
SU912155A1 (en) 1980-07-31 1982-03-15 Крымский Медицинский Институт Device for closure of wounds
CA1170536A (en) 1980-08-25 1984-07-10 United States Surgical Corporation Surgical staples
US4505274A (en) 1980-10-17 1985-03-19 Propper Manufacturing Co., Inc. Suture clip
US4368736A (en) 1980-11-17 1983-01-18 Kaster Robert L Anastomotic fitting
US4526174A (en) 1981-03-27 1985-07-02 Minnesota Mining And Manufacturing Company Staple and cartridge for use in a tissue stapling device and a tissue closing method
US4412832A (en) 1981-04-30 1983-11-01 Baxter Travenol Laboratories, Inc. Peelable catheter introduction device
US4411654A (en) 1981-04-30 1983-10-25 Baxter Travenol Laboratories, Inc. Peelable catheter with securing ring and suture sleeve
US4485816A (en) 1981-06-25 1984-12-04 Alchemia Shape-memory surgical staple apparatus and method for use in surgical suturing
US4449531A (en) 1981-08-27 1984-05-22 Ethicon, Inc. Non-metallic, bio-compatible hemostatic clips with interlocking latch means
US4570633A (en) 1981-09-28 1986-02-18 Ethicon, Inc. Surgical clip applier instrument adapter jaws
US4480356A (en) 1981-10-07 1984-11-06 Martin Donald A Double-grip clip
US4724840A (en) 1982-02-03 1988-02-16 Ethicon, Inc. Surgical fastener applier with rotatable front housing and laterally extending curved needle for guiding a flexible pusher
DE3204522A1 (en) 1982-02-10 1983-08-25 B. Braun Melsungen Ag, 3508 Melsungen SURGICAL SKIN CLIP DEVICE
DE3204532C2 (en) 1982-02-10 1983-12-08 B. Braun Melsungen Ag, 3508 Melsungen Surgical skin staple
US4475544A (en) 1982-02-23 1984-10-09 Reis Norman I Bone gripping forceps
US4860746A (en) 1982-04-20 1989-08-29 Inbae Yoon Elastic surgical ring clip and ring loader
US4664305A (en) 1982-05-04 1987-05-12 Blake Joseph W Iii Surgical stapler
JPS58181006U (en) 1982-05-28 1983-12-03 佐藤 定行 staple
US4492232A (en) 1982-09-30 1985-01-08 United States Surgical Corporation Surgical clip applying apparatus having fixed jaws
US4523591A (en) 1982-10-22 1985-06-18 Kaplan Donald S Polymers for injection molding of absorbable surgical devices
US4525157A (en) 1983-07-28 1985-06-25 Manresa, Inc. Closed system catheter with guide wire
DE3473989D1 (en) 1983-10-13 1988-10-20 Morgenstern Jurgen Physiological sensor
US4665906A (en) 1983-10-14 1987-05-19 Raychem Corporation Medical devices incorporating sim alloy elements
US4586503A (en) 1983-12-01 1986-05-06 University Of New Mexico Surgical microclip
US4929240A (en) 1983-12-01 1990-05-29 University Of New Mexico Surgical clip and applier
US6221102B1 (en) 1983-12-09 2001-04-24 Endovascular Technologies, Inc. Intraluminal grafting system
US5104399A (en) 1986-12-10 1992-04-14 Endovascular Technologies, Inc. Artificial graft and implantation method
US4917087A (en) 1984-04-10 1990-04-17 Walsh Manufacturing (Mississuaga) Limited Anastomosis devices, kits and method
US4607638A (en) 1984-04-20 1986-08-26 Design Standards Corporation Surgical staples
DE3420455C1 (en) 1984-06-01 1985-05-15 Peter Dr.-Ing. 7889 Grenzach-Wyhlen Osypka Separating device for an insertion sleeve
US4651737A (en) 1984-10-15 1987-03-24 American Cyanamid Company Nonmetallic surgical clip
US4610252A (en) 1984-10-15 1986-09-09 Catalano J Denis Dual muscle clamp
US4596559A (en) 1984-11-02 1986-06-24 Fleischhacker John J Break-away handle for a catheter introducer set
SU1243708A1 (en) 1985-02-04 1986-07-15 Научно-производственное объединение "Мединструмент" Arrangement for bringing wound edges closer
US4610251A (en) 1985-04-19 1986-09-09 Kumar Sarbjeet S Surgical staple
EP0205672B1 (en) 1985-06-27 1988-09-28 Haagexport B.V. Device for closing bags and the like
US4635634A (en) 1985-07-12 1987-01-13 Santos Manuel V Surgical clip applicator system
CN85106639B (en) 1985-09-03 1988-08-03 第三军医大学野战外科研究所 Instrument for blood vessel anastomosis
DE3533423A1 (en) 1985-09-19 1987-03-26 Wolf Gmbh Richard APPLICATOR PLIERS FOR SURGICAL HANDLING FOR USE IN ENDOSCOPY
SU1324650A1 (en) 1986-01-03 1987-07-23 Харьковский научно-исследовательский институт общей и неотложной хирургии Arrangement for providing hemostasis with the heart wounded
US4693249A (en) 1986-01-10 1987-09-15 Schenck Robert R Anastomosis device and method
JPS62236560A (en) 1986-04-09 1987-10-16 テルモ株式会社 Catheter for repairing blood vessel
US4777950A (en) 1986-04-11 1988-10-18 Kees Surgical Specialty Co. Vascular clip
US4967949A (en) 1986-07-11 1990-11-06 Vastech Medical Products Inc. Apparatus for effecting occlusion of the vas deferens
US4874122A (en) 1986-07-14 1989-10-17 Minnesota Mining And Manufacturing Company Bent back box staple and staple closing mechanism with split actuator
SU1456109A1 (en) 1986-07-23 1989-02-07 Сибирский физико-технический институт им.В.Д.Кузнецова при Томском государственном университете Arrangement for bringing together the wound edges
SU1405828A1 (en) 1986-09-17 1988-06-30 Запорожский Областной Отдел Здравоохранения Arrangement for osteosynthesis of fractures of skull flat bones
US4738658A (en) 1986-09-19 1988-04-19 Aries Medical Incorporated Tapered hemostatic device for use in conjunction with a catheter for alleviating blood leakage and method for using same
US4789090A (en) 1986-11-03 1988-12-06 Blake Joseph W Iii Surgical stapler
US4771782A (en) 1986-11-14 1988-09-20 Millar Instruments, Inc. Method and assembly for introducing multiple catheters into a biological vessel
US4834757A (en) 1987-01-22 1989-05-30 Brantigan John W Prosthetic implant
US4852568A (en) 1987-02-17 1989-08-01 Kensey Nash Corporation Method and apparatus for sealing an opening in tissue of a living being
US4744364A (en) 1987-02-17 1988-05-17 Intravascular Surgical Instruments, Inc. Device for sealing percutaneous puncture in a vessel
US4890612A (en) 1987-02-17 1990-01-02 Kensey Nash Corporation Device for sealing percutaneous puncture in a vessel
US4719917A (en) 1987-02-17 1988-01-19 Minnesota Mining And Manufacturing Company Surgical staple
USRE34866E (en) 1987-02-17 1995-02-21 Kensey Nash Corporation Device for sealing percutaneous puncture in a vessel
US4865026A (en) 1987-04-23 1989-09-12 Barrett David M Sealing wound closure device
US4772266A (en) 1987-05-04 1988-09-20 Catheter Technology Corp. Catheter dilator/sheath assembly and method
US5100418A (en) 1987-05-14 1992-03-31 Inbae Yoon Suture tie device system and applicator therefor
US5171250A (en) 1987-05-14 1992-12-15 Inbae Yoon Surgical clips and surgical clip applicator and cutting and transection device
US5478353A (en) 1987-05-14 1995-12-26 Yoon; Inbae Suture tie device system and method for suturing anatomical tissue proximate an opening
US5366459A (en) 1987-05-14 1994-11-22 Inbae Yoon Surgical clip and clip application procedures
US5011487A (en) 1987-06-24 1991-04-30 United States Surgical Corporation Vascular clamp assembly
US4836204A (en) 1987-07-06 1989-06-06 Landymore Roderick W Method for effecting closure of a perforation in the septum of the heart
SU1616624A1 (en) 1987-07-14 1990-12-30 Предприятие П/Я А-3697 Surgical suturing apparatus
US4887601A (en) 1987-11-06 1989-12-19 Ophthalmic Ventures Limited Partnership Adjustable surgical staple and method of using the same
US5510115A (en) 1987-11-16 1996-04-23 Baxter Travenol Laboratories, Inc. Method and composition for administration of beneficial agent by controlled dissolution
US5030226A (en) 1988-01-15 1991-07-09 United States Surgical Corporation Surgical clip applicator
JP2561853B2 (en) 1988-01-28 1996-12-11 株式会社ジェイ・エム・エス Shaped memory molded article and method of using the same
US5114065A (en) 1988-05-23 1992-05-19 Technalytics, Inc. Surgical stapler
US5254105A (en) 1988-05-26 1993-10-19 Haaga John R Sheath for wound closure caused by a medical tubular device
US5330445A (en) 1988-05-26 1994-07-19 Haaga John R Sheath for wound closure caused by a medical tubular device
US5002562A (en) 1988-06-03 1991-03-26 Oberlander Michael A Surgical clip
CA2004658C (en) 1988-06-03 1995-10-10 Michael A. Oberlander Arthroscopic clip and insertion tool
US5015247A (en) 1988-06-13 1991-05-14 Michelson Gary K Threaded spinal implant
US4902508A (en) 1988-07-11 1990-02-20 Purdue Research Foundation Tissue graft composition
SU1560133A1 (en) 1988-07-11 1990-04-30 Сибирский Физико-Технический Институт При Томском Государственном Университете Им.В.В.Куйбышева Device for connecting lips of wound
US4885003A (en) 1988-07-25 1989-12-05 Cordis Corporation Double mesh balloon catheter device
US4917089A (en) 1988-08-29 1990-04-17 Sideris Eleftherios B Buttoned device for the transvenous occlusion of intracardiac defects
US5167643A (en) 1990-04-27 1992-12-01 Lynn Lawrence A Needle protection station
IE893270L (en) 1988-10-11 1990-04-11 Seamus Geoghegan Ophthalmic staple and instruments for implementing use
US5047047A (en) 1988-10-26 1991-09-10 Inbae Yoon Wound closing device
US4961729A (en) 1988-12-13 1990-10-09 Vaillancourt Vincent L Catheter insertion assembly
US4976721A (en) 1988-12-14 1990-12-11 The Research Foundation Of State University Of New York Surgical clamping device
US4886067A (en) 1989-01-03 1989-12-12 C. R. Bard, Inc. Steerable guidewire with soft adjustable tip
FR2641692A1 (en) 1989-01-17 1990-07-20 Nippon Zeon Co Plug for closing an opening for a medical application, and device for the closure plug making use thereof
US4997439A (en) 1989-01-26 1991-03-05 Chen Fusen H Surgical closure or anastomotic device
JPH07103457B2 (en) 1989-02-10 1995-11-08 トミー株式会社 Shape memory alloy straightening wire
US4983176A (en) 1989-03-06 1991-01-08 University Of New Mexico Deformable plastic surgical clip
US5053047A (en) 1989-05-16 1991-10-01 Inbae Yoon Suture devices particularly useful in endoscopic surgery and methods of suturing
US5100422A (en) 1989-05-26 1992-03-31 Impra, Inc. Blood vessel patch
US5620461A (en) 1989-05-29 1997-04-15 Muijs Van De Moer; Wouter M. Sealing device
US5007921A (en) 1989-10-26 1991-04-16 Brown Alan W Surgical staple
US5026390A (en) 1989-10-26 1991-06-25 Brown Alan W Surgical staple
GB8924806D0 (en) 1989-11-03 1989-12-20 Neoligaments Ltd Prosthectic ligament system
US5059201A (en) 1989-11-03 1991-10-22 Asnis Stanley E Suture threading, stitching and wrapping device for use in open and closed surgical procedures
US5122122A (en) 1989-11-22 1992-06-16 Dexide, Incorporated Locking trocar sleeve
CA2122041A1 (en) 1989-12-04 1993-04-29 Kenneth Kensey Plug device for sealing openings and method of use
US5061274A (en) 1989-12-04 1991-10-29 Kensey Nash Corporation Plug device for sealing openings and method of use
US5226908A (en) 1989-12-05 1993-07-13 Inbae Yoon Multi-functional instruments and stretchable ligating and occluding devices
US5797958A (en) 1989-12-05 1998-08-25 Yoon; Inbae Endoscopic grasping instrument with scissors
GB8928196D0 (en) 1989-12-13 1990-02-14 Merrell Dow Pharmaceuticals Li Pharmaceutical lozenges
US5421832A (en) 1989-12-13 1995-06-06 Lefebvre; Jean-Marie Filter-catheter and method of manufacturing same
US5156609A (en) 1989-12-26 1992-10-20 Nakao Naomi L Endoscopic stapling device and method
US5891088A (en) 1990-02-02 1999-04-06 Ep Technologies, Inc. Catheter steering assembly providing asymmetric left and right curve configurations
US5035692A (en) 1990-02-13 1991-07-30 Nicholas Herbert Hemostasis clip applicator
US5197971A (en) 1990-03-02 1993-03-30 Bonutti Peter M Arthroscopic retractor and method of using the same
US5032127A (en) 1990-03-07 1991-07-16 Frazee John G Hemostatic clip and applicator therefor
US5171259A (en) 1990-04-02 1992-12-15 Kanji Inoue Device for nonoperatively occluding a defect
US5021059A (en) 1990-05-07 1991-06-04 Kensey Nash Corporation Plug device with pulley for sealing punctures in tissue and methods of use
DE4014653A1 (en) 1990-05-08 1991-11-14 Beiersdorf Ag SURGICAL CLAMP
US5116349A (en) 1990-05-23 1992-05-26 United States Surgical Corporation Surgical fastener apparatus
US5078731A (en) 1990-06-05 1992-01-07 Hayhurst John O Suture clip
US5193533A (en) 1990-07-09 1993-03-16 Brigham And Women's Hospital High-pressure jet ventilation catheter
US7008439B1 (en) 1990-09-21 2006-03-07 Datascope Investments Corp. Device and method for sealing puncture wounds
US5391183A (en) 1990-09-21 1995-02-21 Datascope Investment Corp Device and method sealing puncture wounds
US5108421A (en) 1990-10-01 1992-04-28 Quinton Instrument Company Insertion assembly and method of inserting a vessel plug into the body of a patient
US5192300A (en) 1990-10-01 1993-03-09 Quinton Instrument Company Insertion assembly and method of inserting a vessel plug into the body of a patient
CA2027427A1 (en) 1990-10-12 1992-04-13 William S. Laidlaw Plug for sealing wood preservative in wood structures
US5042707A (en) 1990-10-16 1991-08-27 Taheri Syde A Intravascular stapler, and method of operating same
FR2668361A1 (en) 1990-10-30 1992-04-30 Mai Christian OSTEOSYNTHESIS CLIP AND PLATE WITH SELF-RETENTIVE DYNAMIC COMPRESSION.
US5053008A (en) 1990-11-21 1991-10-01 Sandeep Bajaj Intracardiac catheter
US5366458A (en) 1990-12-13 1994-11-22 United States Surgical Corporation Latchless surgical clip
US5122156A (en) 1990-12-14 1992-06-16 United States Surgical Corporation Apparatus for securement and attachment of body organs
US5425489A (en) 1990-12-20 1995-06-20 United States Surgical Corporation Fascia clip and instrument
CA2055985A1 (en) 1990-12-20 1992-06-21 Daniel Shichman Fascia clip
US5419765A (en) 1990-12-27 1995-05-30 Novoste Corporation Wound treating device and method for treating wounds
US5250058A (en) 1991-01-17 1993-10-05 Ethicon, Inc. Absorbable anastomosic fastener means
US5131379A (en) 1991-01-29 1992-07-21 Sewell Jr Frank K Device and method for inserting a cannula into a duct
US5108420A (en) 1991-02-01 1992-04-28 Temple University Aperture occlusion device
CA2060040A1 (en) 1991-02-08 1992-08-10 Miguel A. Velez Surgical staple and endoscopic stapler
US5246156A (en) 1991-09-12 1993-09-21 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
US5171249A (en) 1991-04-04 1992-12-15 Ethicon, Inc. Endoscopic multiple ligating clip applier
US5470010A (en) 1991-04-04 1995-11-28 Ethicon, Inc. Multiple fire endoscopic stapling mechanism
AR244071A1 (en) 1991-09-05 1993-10-29 Groiso Jorge Abel An elastic staple for osteosynthesis and a tool for placing it.
US5192602A (en) 1991-05-14 1993-03-09 Spencer Victor V Louvered filter and paint arrestor
US5243857A (en) 1991-06-14 1993-09-14 Molex Incorporated Fixture for testing electrical terminations
US5236435A (en) 1991-07-22 1993-08-17 Sewell Jr Frank Laparoscopic surgical staple system
US5167634A (en) 1991-08-22 1992-12-01 Datascope Investment Corp. Peelable sheath with hub connector
CA2078530A1 (en) 1991-09-23 1993-03-24 Jay Erlebacher Percutaneous arterial puncture seal device and insertion tool therefore
US5281422A (en) 1991-09-24 1994-01-25 Purdue Research Foundation Graft for promoting autogenous tissue growth
US5497933A (en) 1991-10-18 1996-03-12 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
US5289963A (en) 1991-10-18 1994-03-01 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
US5141520A (en) 1991-10-29 1992-08-25 Marlowe Goble E Harpoon suture anchor
US5290310A (en) 1991-10-30 1994-03-01 Howmedica, Inc. Hemostatic implant introducer
EP0545091B1 (en) 1991-11-05 1999-07-07 The Children's Medical Center Corporation Occluder for repair of cardiac and vascular defects
US5676689A (en) 1991-11-08 1997-10-14 Kensey Nash Corporation Hemostatic puncture closure system including vessel location device and method of use
US5411520A (en) 1991-11-08 1995-05-02 Kensey Nash Corporation Hemostatic vessel puncture closure system utilizing a plug located within the puncture tract spaced from the vessel, and method of use
US5222974A (en) 1991-11-08 1993-06-29 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5282827A (en) 1991-11-08 1994-02-01 Kensey Nash Corporation Hemostatic puncture closure system and method of use
US5242456A (en) 1991-11-21 1993-09-07 Kensey Nash Corporation Apparatus and methods for clamping tissue and reflecting the same
US5176648A (en) 1991-12-13 1993-01-05 Unisurge, Inc. Introducer assembly and instrument for use therewith
US6056768A (en) 1992-01-07 2000-05-02 Cates; Christopher U. Blood vessel sealing system
DE4200255A1 (en) 1992-01-08 1993-07-15 Sueddeutsche Feinmechanik SPLIT CANNULA AND METHOD FOR PRODUCING SUCH A
US5433721A (en) 1992-01-17 1995-07-18 Ethicon, Inc. Endoscopic instrument having a torsionally stiff drive shaft for applying fasteners to tissue
JP3393383B2 (en) 1992-01-21 2003-04-07 リージェンツ オブ ザ ユニバーシティ オブ ミネソタ Septal defect closure device
US5163343A (en) 1992-02-21 1992-11-17 Gish Donald A System for fastening plies of fabric
US5509900A (en) 1992-03-02 1996-04-23 Kirkman; Thomas R. Apparatus and method for retaining a catheter in a blood vessel in a fixed position
US6059825A (en) 1992-03-05 2000-05-09 Angiodynamics, Inc. Clot filter
CA2090980C (en) 1992-03-06 2004-11-30 David Stefanchik Ligating clip applier
AU3796893A (en) 1992-03-18 1993-10-21 Izi Corporation Post-surgical gross pathology specimen marker
US5304183A (en) 1992-03-23 1994-04-19 Laparomed Corporation Tethered clamp retractor
US5217024A (en) 1992-03-27 1993-06-08 Dorsey Denis P Tissue sampling device with visual and tactile indicator
WO1993020768A1 (en) 1992-04-13 1993-10-28 Ep Technologies, Inc. Steerable microwave antenna systems for cardiac ablation
US5236440A (en) 1992-04-14 1993-08-17 American Cyanamid Company Surgical fastener
US6063085A (en) 1992-04-23 2000-05-16 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
WO1993021844A1 (en) 1992-04-23 1993-11-11 Scimed Life Systems, Inc. Apparatus and method for sealing vascular punctures
US5540712A (en) 1992-05-01 1996-07-30 Nitinol Medical Technologies, Inc. Stent and method and apparatus for forming and delivering the same
US5242457A (en) 1992-05-08 1993-09-07 Ethicon, Inc. Surgical instrument and staples for applying purse string sutures
DE4215449C1 (en) 1992-05-11 1993-09-02 Ethicon Gmbh & Co Kg, 2000 Norderstedt, De
US5766246A (en) 1992-05-20 1998-06-16 C. R. Bard, Inc. Implantable prosthesis and method and apparatus for loading and delivering an implantable prothesis
US5192288A (en) 1992-05-26 1993-03-09 Origin Medsystems, Inc. Surgical clip applier
US5269792A (en) 1992-05-26 1993-12-14 Origin Medsystems, Inc. Surgical clip
US5431667A (en) 1992-05-26 1995-07-11 Origin Medsystems, Inc. Gas-sealed instruments for use in laparoscopic surgery
US5255679A (en) 1992-06-02 1993-10-26 Cardiac Pathways Corporation Endocardial catheter for mapping and/or ablation with an expandable basket structure having means for providing selective reinforcement and pressure sensing mechanism for use therewith, and method
JPH0647050A (en) 1992-06-04 1994-02-22 Olympus Optical Co Ltd Tissue suture and ligature device
US5797931A (en) 1992-06-04 1998-08-25 Olympus Optical Co., Ltd. Tissue-fixing surgical instrument, tissue-fixing device, and method of fixing tissues
US5242459A (en) 1992-07-10 1993-09-07 Laparomed Corporation Device and method for applying a ligating loop
US5413571A (en) 1992-07-16 1995-05-09 Sherwood Medical Company Device for sealing hemostatic incisions
US5290243A (en) 1992-07-16 1994-03-01 Technalytics, Inc. Trocar system
US5292332A (en) 1992-07-27 1994-03-08 Lee Benjamin I Methods and device for percutanceous sealing of arterial puncture sites
US5443481A (en) 1992-07-27 1995-08-22 Lee; Benjamin I. Methods and device for percutaneous sealing of arterial puncture sites
US5334199A (en) 1992-08-17 1994-08-02 Inbae Yoon Ligating instrument and methods of ligating tissue in endoscopic operative procedures
US5342393A (en) 1992-08-27 1994-08-30 Duke University Method and device for vascular repair
US5364408A (en) 1992-09-04 1994-11-15 Laurus Medical Corporation Endoscopic suture system
US5471982A (en) 1992-09-29 1995-12-05 Ep Technologies, Inc. Cardiac mapping and ablation systems
US5306254A (en) 1992-10-01 1994-04-26 Kensey Nash Corporation Vessel position locating device and method of use
US5304184A (en) 1992-10-19 1994-04-19 Indiana University Foundation Apparatus and method for positive closure of an internal tissue membrane opening
US5383897A (en) 1992-10-19 1995-01-24 Shadyside Hospital Method and apparatus for closing blood vessel punctures
DE4235506A1 (en) 1992-10-21 1994-04-28 Bavaria Med Tech Drug injection catheter
US5309927A (en) 1992-10-22 1994-05-10 Ethicon, Inc. Circular stapler tissue retention spring method
US5676974A (en) 1992-10-23 1997-10-14 Santiago H. Valdes Pharmaceutical compositions containing giroxina and phospholipase A2 and methods of increasing a patient's CD4 count using the pharmaceutical compositions
US5344439A (en) 1992-10-30 1994-09-06 Medtronic, Inc. Catheter with retractable anchor mechanism
FR2700464B1 (en) 1992-11-13 1995-04-14 Maurice Bertholet Connecting piece for bone elements.
US5972000A (en) 1992-11-13 1999-10-26 Influence Medical Technologies, Ltd. Non-linear anchor inserter device and bone anchors
CZ281454B6 (en) 1992-11-23 1996-10-16 Milan Mudr. Csc. Krajíček Aid for non-surgical closing of a hole in a vessel wall
US5417699A (en) 1992-12-10 1995-05-23 Perclose Incorporated Device and method for the percutaneous suturing of a vascular puncture site
US5334216A (en) 1992-12-10 1994-08-02 Howmedica Inc. Hemostatic plug
US5327908A (en) 1993-01-08 1994-07-12 United States Surgical Corporation Surgical apparatus for measuring body tissue
US5292309A (en) 1993-01-22 1994-03-08 Schneider (Usa) Inc. Surgical depth measuring instrument and method
US5304204A (en) 1993-02-09 1994-04-19 Ethicon, Inc. Receiverless surgical fasteners
US5797960A (en) 1993-02-22 1998-08-25 Stevens; John H. Method and apparatus for thoracoscopic intracardiac procedures
US5425705A (en) 1993-02-22 1995-06-20 Stanford Surgical Technologies, Inc. Thoracoscopic devices and methods for arresting the heart
US5814058A (en) 1993-03-05 1998-09-29 Innerdyne, Inc. Method and apparatus employing conformable sleeve for providing percutaneous access
US5320639A (en) 1993-03-12 1994-06-14 Meadox Medicals, Inc. Vascular plug delivery system
US5843167A (en) 1993-04-22 1998-12-01 C. R. Bard, Inc. Method and apparatus for recapture of hooked endoprosthesis
US5456400A (en) 1993-04-22 1995-10-10 United States Surgical Corporation Apparatus and clip for fastening body tissue
DE69425453T2 (en) 1993-04-23 2001-04-12 Novartis Ag Drug delivery device with controlled release
FR2704132B1 (en) 1993-04-23 1995-07-13 Ethnor System for ligature and / or suture for endoscopic surgery.
US5335680A (en) 1993-04-26 1994-08-09 Moore Pamela K Hair clip
US5447265A (en) 1993-04-30 1995-09-05 Minnesota Mining And Manufacturing Company Laparoscopic surgical instrument with a mechanism for preventing its entry into the abdominal cavity once it is depleted and removed from the abdominal cavity
US5352229A (en) 1993-05-12 1994-10-04 Marlowe Goble E Arbor press staple and washer and method for its use
US5383896A (en) 1993-05-25 1995-01-24 Gershony; Gary Vascular sealing device
US5478354A (en) 1993-07-14 1995-12-26 United States Surgical Corporation Wound closing apparatus and method
US5486195A (en) 1993-07-26 1996-01-23 Myers; Gene Method and apparatus for arteriotomy closure
US5507755A (en) 1993-08-03 1996-04-16 Origin Medsystems, Inc. Apparatus and method for closing puncture wounds
US5462561A (en) 1993-08-05 1995-10-31 Voda; Jan K. Suture device
US5431639A (en) 1993-08-12 1995-07-11 Boston Scientific Corporation Treating wounds caused by medical procedures
US5830125A (en) 1993-08-12 1998-11-03 Scribner-Browne Medical Design Incorporated Catheter introducer with suture capability
FR2710254B1 (en) 1993-09-21 1995-10-27 Mai Christian Multi-branch osteosynthesis clip with self-retaining dynamic compression.
PL171425B1 (en) 1993-09-27 1997-04-30 Przed Uslugowe I Prod Handlowe Method of closing up an open wound and device therefor
US5607436A (en) 1993-10-08 1997-03-04 United States Surgical Corporation Apparatus for applying surgical clips
US5725554A (en) 1993-10-08 1998-03-10 Richard-Allan Medical Industries, Inc. Surgical staple and stapler
US5560532A (en) 1993-10-08 1996-10-01 United States Surgical Corporation Apparatus and method for applying surgical staples to body tissue
WO1995010296A1 (en) 1993-10-12 1995-04-20 Glycomed Incorporated A library of glyco-peptides useful for identification of cell adhesion inhibitors
US5776147A (en) 1993-10-20 1998-07-07 Applied Medical Resources Corporation Laparoscopic surgical clamp
US5423857A (en) 1993-11-02 1995-06-13 Ethicon, Inc. Three piece surgical staple
US5527322A (en) 1993-11-08 1996-06-18 Perclose, Inc. Device and method for suturing of internal puncture sites
US5503635A (en) 1993-11-12 1996-04-02 United States Surgical Corporation Apparatus and method for performing compressional anastomoses
US5464413A (en) 1993-11-15 1995-11-07 Siska, Jr.; William Nose clip
US5476505A (en) 1993-11-18 1995-12-19 Advanced Cardiovascular Systems, Inc. Coiled stent and delivery system
NL194533C (en) 1993-12-08 2002-07-02 Benedict Marie Doorschodt Biopsy needle assembly.
US5609597A (en) 1993-12-09 1997-03-11 Lehrer; Theodor Apparatus and method of extracorporeally applying and locking laparoscopic suture and loop ligatures
WO1995016407A1 (en) 1993-12-13 1995-06-22 Brigham And Women's Hospital Aortic valve supporting device
AU1011595A (en) 1994-01-13 1995-07-20 Ethicon Inc. Spiral surgical tack
US5728122A (en) 1994-01-18 1998-03-17 Datascope Investment Corp. Guide wire with releaseable barb anchor
FR2715290B1 (en) 1994-01-25 1996-04-05 Newpact Eurl Surgical staple with ligaments.
US5443477A (en) 1994-02-10 1995-08-22 Stentco, Inc. Apparatus and method for deployment of radially expandable stents by a mechanical linkage
US5453090A (en) 1994-03-01 1995-09-26 Cordis Corporation Method of stent delivery through an elongate softenable sheath
US5404621A (en) 1994-03-10 1995-04-11 Heinke; Richard M. Closure for plastic bags
DE4408108A1 (en) 1994-03-10 1995-09-14 Bavaria Med Tech Catheter for injecting a fluid or a drug
US6117157A (en) 1994-03-18 2000-09-12 Cook Incorporated Helical embolization coil
WO1995026683A1 (en) 1994-03-31 1995-10-12 Boston Scientific Corporation Vascular plug with vessel locator
US5695524A (en) 1994-04-05 1997-12-09 Tracor Aerospace, Inc. Constant width, adjustable grip, staple apparatus and method
US5715987A (en) 1994-04-05 1998-02-10 Tracor Incorporated Constant width, adjustable grip, staple apparatus and method
US5416584A (en) 1994-04-25 1995-05-16 Honeywell Inc. Sinusoidal noise injection into the dither of a ring laser gyroscope
DE4415521C2 (en) 1994-05-04 2003-01-30 Storz Reling Sybill Gesamthand Instrument for use in endoscopic procedures
US5425740A (en) 1994-05-17 1995-06-20 Hutchinson, Jr.; William B. Endoscopic hernia repair clip and method
US5478309A (en) 1994-05-27 1995-12-26 William P. Sweezer, Jr. Catheter system and method for providing cardiopulmonary bypass pump support during heart surgery
US5498201A (en) 1994-06-06 1996-03-12 Volk Enterprises, Inc. Retainer for poultry hocks
US5454413A (en) 1994-06-14 1995-10-03 Morelli; Richard L. Automobile traction enhancement device
US5732872A (en) 1994-06-17 1998-03-31 Heartport, Inc. Surgical stapling instrument
US6302898B1 (en) 1994-06-24 2001-10-16 Advanced Closure Systems, Inc. Devices for sealing punctures in body vessels
US5725552A (en) 1994-07-08 1998-03-10 Aga Medical Corporation Percutaneous catheter directed intravascular occlusion devices
US5544802A (en) 1994-07-27 1996-08-13 Crainich; Lawrence Surgical staple and stapler device therefor
FR2722975A1 (en) 1994-07-28 1996-02-02 Dynamique Sante Sarl Surgical implant for fastening ligament against bone surface
US5582616A (en) 1994-08-05 1996-12-10 Origin Medsystems, Inc. Surgical helical fastener with applicator
US5972023A (en) 1994-08-15 1999-10-26 Eva Corporation Implantation device for an aortic graft method of treating aortic aneurysm
US5549633A (en) 1994-08-24 1996-08-27 Kensey Nash Corporation Apparatus and methods of use for preventing blood seepage at a percutaneous puncture site
US5496332A (en) 1994-10-20 1996-03-05 Cordis Corporation Wound closure apparatus and method for its use
AU3783195A (en) 1994-11-15 1996-05-23 Advanced Cardiovascular Systems Inc. Intraluminal stent for attaching a graft
CA2301351C (en) 1994-11-28 2002-01-22 Advanced Cardiovascular Systems, Inc. Method and apparatus for direct laser cutting of metal stents
IL111985A (en) 1994-12-14 1999-04-11 Medical Influence Technologies Staple and thread assembly particularly for use in power-driven staplers for medical suturing
US5879366A (en) 1996-12-20 1999-03-09 W.L. Gore & Associates, Inc. Self-expanding defect closure device and method of making and using
US6171329B1 (en) 1994-12-19 2001-01-09 Gore Enterprise Holdings, Inc. Self-expanding defect closure device and method of making and using
US5620452A (en) 1994-12-22 1997-04-15 Yoon; Inbae Surgical clip with ductile tissue penetrating members
US5720755A (en) 1995-01-18 1998-02-24 Dakov; Pepi Tubular suturing device and methods of use
JP3798838B2 (en) 1995-01-20 2006-07-19 オリンパス株式会社 Ligation device
US5634936A (en) 1995-02-06 1997-06-03 Scimed Life Systems, Inc. Device for closing a septal defect
WO1996024291A1 (en) 1995-02-07 1996-08-15 Cardiovascular Ventures, Inc. Puncture sealing system
US5649959A (en) 1995-02-10 1997-07-22 Sherwood Medical Company Assembly for sealing a puncture in a vessel
US5695504A (en) 1995-02-24 1997-12-09 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US5797933A (en) 1996-07-16 1998-08-25 Heartport, Inc. Coronary shunt and method of use
US5904697A (en) 1995-02-24 1999-05-18 Heartport, Inc. Devices and methods for performing a vascular anastomosis
US5695505A (en) 1995-03-09 1997-12-09 Yoon; Inbae Multifunctional spring clips and cartridges and applicators therefor
RU2086192C1 (en) 1995-03-17 1997-08-10 Ялмар Яковлевич Татти Surgical suture appliance
US5575771A (en) 1995-04-24 1996-11-19 Walinsky; Paul Balloon catheter with external guidewire
FR2733413B1 (en) 1995-04-27 1997-10-17 Jbs Sa CERVICAL CAGE DEVICE FOR PERFORMING INTERSOMATIC ARTHRODESIS
US5681280A (en) 1995-05-02 1997-10-28 Heart Rhythm Technologies, Inc. Catheter control system
FR2734147B1 (en) 1995-05-19 1997-10-10 Klein Jean Michel IMPLANTABLE OSTEOSYNTHESIS DEVICE
US5634911A (en) 1995-05-19 1997-06-03 General Surgical Innovations, Inc. Screw-type skin seal with inflatable membrane
US5755727A (en) * 1995-06-02 1998-05-26 Cardiologics L.L.C. Method device for locating and sealing a blood vessel
EP0774922B1 (en) 1995-06-07 2002-08-14 Medtronic, Inc. Wound closure device
US5709224A (en) 1995-06-07 1998-01-20 Radiotherapeutics Corporation Method and device for permanent vessel occlusion
US5645565A (en) 1995-06-13 1997-07-08 Ethicon Endo-Surgery, Inc. Surgical plug
US6013084A (en) 1995-06-30 2000-01-11 Target Therapeutics, Inc. Stretch resistant vaso-occlusive coils (II)
US5700273A (en) 1995-07-14 1997-12-23 C.R. Bard, Inc. Wound closure apparatus and method
US5669935A (en) 1995-07-28 1997-09-23 Ethicon, Inc. One-way suture retaining device for braided sutures
US6096344A (en) 1995-07-28 2000-08-01 Advanced Polymer Systems, Inc. Bioerodible porous compositions
US5810846A (en) 1995-08-03 1998-09-22 United States Surgical Corporation Vascular hole closure
AU3410095A (en) 1995-08-24 1997-03-19 Inbae Yoon Suture tie device system and method for suturing anatomical tissue proximate an opening
US6117144A (en) 1995-08-24 2000-09-12 Sutura, Inc. Suturing device and method for sealing an opening in a blood vessel or other biological structure
US5683405A (en) 1995-08-25 1997-11-04 Research Medical Inc. Vascular occluder
US6071300A (en) 1995-09-15 2000-06-06 Sub-Q Inc. Apparatus and method for percutaneous sealing of blood vessel punctures
US5645566A (en) 1995-09-15 1997-07-08 Sub Q Inc. Apparatus and method for percutaneous sealing of blood vessel punctures
US5700270A (en) 1995-10-20 1997-12-23 United States Surgical Corporation Surgical clip applier
US5674231A (en) 1995-10-20 1997-10-07 United States Surgical Corporation Apparatus and method for vascular hole closure
ATE188862T1 (en) 1995-10-31 2000-02-15 Oticon As ANASTOMOTIC INSTRUMENT FOR USE IN A TERMINOLATERAL ANASTOMOSIS
US5827298A (en) 1995-11-17 1998-10-27 Innovasive Devices, Inc. Surgical fastening system and method for using the same
US6287322B1 (en) 1995-12-07 2001-09-11 Loma Linda University Medical Center Tissue opening locator and everter and method
US6425901B1 (en) 1995-12-07 2002-07-30 Loma Linda University Medical Center Vascular wound closure system
WO1997020505A1 (en) 1995-12-07 1997-06-12 Loma Linda University Medical Center Vascular wound closure device
US6004341A (en) 1996-12-05 1999-12-21 Loma Linda University Medical Center Vascular wound closure device
US5626614A (en) 1995-12-22 1997-05-06 Applied Medical Resources Corporation T-anchor suturing device and method for using same
EP1011889B1 (en) 1996-01-30 2002-10-30 Medtronic, Inc. Articles for and methods of making stents
USD383539S (en) 1996-02-01 1997-09-09 Ethicon Endo-Surgery, Inc. Handle for a surgical instrument
AU733341B2 (en) 1996-02-02 2001-05-10 Transvascular, Inc. A device, system and method for interstitial transvascular intervention
DE19604817C2 (en) 1996-02-09 2003-06-12 Pfm Prod Fuer Die Med Ag Device for closing defect openings in the human or animal body
US5810776A (en) 1996-02-13 1998-09-22 Imagyn Medical, Inc. Method and apparatus for performing laparoscopy
US5769870A (en) 1996-02-20 1998-06-23 Cardiothoracic Systems, Inc. Perfusion device for maintaining blood flow in a vessel while isolating an anastomosis
US5951575A (en) 1996-03-01 1999-09-14 Heartport, Inc. Apparatus and methods for rotationally deploying needles
US5810851A (en) 1996-03-05 1998-09-22 Yoon; Inbae Suture spring device
US5782844A (en) 1996-03-05 1998-07-21 Inbae Yoon Suture spring device applicator
US5853422A (en) 1996-03-22 1998-12-29 Scimed Life Systems, Inc. Apparatus and method for closing a septal defect
US5728132A (en) 1996-04-08 1998-03-17 Tricardia, L.L.C. Self-sealing vascular access device
AR001590A1 (en) 1996-04-10 1997-11-26 Jorge Alberto Baccaro Abnormal vascular communications occluder device and applicator cartridge of said device
US6149660A (en) 1996-04-22 2000-11-21 Vnus Medical Technologies, Inc. Method and apparatus for delivery of an appliance in a vessel
US6117125A (en) 1996-05-02 2000-09-12 Cook Incorporated Method for predetermining uniform flow rate of a fluid from a tubular body and device therefrom
EP0900051A1 (en) 1996-05-08 1999-03-10 Salviac Limited An occluder device
DK0906089T3 (en) 1996-05-13 2003-12-08 Novartis Consumer Health Sa The buccal delivery system
US5690674A (en) 1996-07-02 1997-11-25 Cordis Corporation Wound closure with plug
US5728133A (en) 1996-07-09 1998-03-17 Cardiologics, L.L.C. Anchoring device and method for sealing percutaneous punctures in vessels
US5957900A (en) 1996-07-10 1999-09-28 Asahi Kogaku Kogyo Kabushiki Kaisha Treatment accessory for endoscope
US5833698A (en) 1996-07-23 1998-11-10 United States Surgical Corporation Anastomosis instrument and method
US7169158B2 (en) 1996-07-23 2007-01-30 Tyco Healthcare Group Lp Anastomosis instrument and method for performing same
US5855312A (en) 1996-07-25 1999-01-05 Toledano; Haviv Flexible annular stapler for closed surgery of hollow organs
US5820631A (en) 1996-08-01 1998-10-13 Nr Medical, Inc. Device and method for suturing tissue adjacent to a blood vessel
US5830217A (en) 1996-08-09 1998-11-03 Thomas J. Fogarty Soluble fixation device and method for stent delivery catheters
US5902310A (en) 1996-08-12 1999-05-11 Ethicon Endo-Surgery, Inc. Apparatus and method for marking tissue
WO1998007375A1 (en) 1996-08-22 1998-02-26 The Trustees Of Columbia University Endovascular flexible stapling device
CA2263421C (en) 1996-08-23 2012-04-17 William A. Cook Graft prosthesis, materials and methods
US5730758A (en) 1996-09-12 1998-03-24 Allgeyer; Dean O. Staple and staple applicator for use in skin fixation of catheters
US6488692B1 (en) 1996-09-16 2002-12-03 Origin Medsystems, Inc. Access and cannulation device and method for rapidly placing same and for rapidly closing same in minimally invasive surgery
US5868763A (en) 1996-09-16 1999-02-09 Guidant Corporation Means and methods for performing an anastomosis
US5830221A (en) 1996-09-20 1998-11-03 United States Surgical Corporation Coil fastener applier
US5766217A (en) 1996-09-23 1998-06-16 Christy; William J. Surgical loop delivery device and method
US6152936A (en) 1996-09-23 2000-11-28 Esd Medical, Llc Surgical loop delivery device
US5948001A (en) 1996-10-03 1999-09-07 United States Surgical Corporation System for suture anchor placement
WO1998016161A1 (en) 1996-10-11 1998-04-23 Transvascular, Inc. Methods and apparatus for bypassing arterial obstructions and/or performing other transvascular procedures
US5755778A (en) 1996-10-16 1998-05-26 Nitinol Medical Technologies, Inc. Anastomosis device
GB2318295A (en) 1996-10-17 1998-04-22 Malachy Gleeson Wire-guided surgical stapler for closure of a puncture site in a blood vessel
US5861003A (en) 1996-10-23 1999-01-19 The Cleveland Clinic Foundation Apparatus and method for occluding a defect or aperture within body surface
WO1998018389A1 (en) 1996-10-25 1998-05-07 University Of Massachusetts Surgical vessel clips and methods for closing vessels
US5749826A (en) 1996-11-06 1998-05-12 Faulkner; James W. Urinary incontinence control device
JP2001504017A (en) 1996-11-15 2001-03-27 クック インコーポレーティッド. Separable sleeve, stent deployment device
US5947999A (en) 1996-12-03 1999-09-07 Groiso; Jorge A. Surgical clip and method
US5735873A (en) 1996-12-19 1998-04-07 Maclean; David S. Surgical tool handle
US5782861A (en) 1996-12-23 1998-07-21 Sub Q Inc. Percutaneous hemostasis device
US5868755A (en) 1997-01-16 1999-02-09 Atrion Medical Products, Inc. Sheath retractor mechanism and method
US5957938A (en) 1997-02-05 1999-09-28 United States Surgical Corporation Tissue everting needle
US6045570A (en) 1997-02-11 2000-04-04 Biointerventional Corporation Biological sealant mixture and system for use in percutaneous occlusion of puncture sites and tracts in the human body and method
US6056769A (en) 1997-02-11 2000-05-02 Biointerventional Corporation Expansile device for use in blood vessels and tracts in the body and tension application device for use therewith and method
US5951589A (en) 1997-02-11 1999-09-14 Biointerventional Corporation Expansile device for use in blood vessels and tracts in the body and tension application device for use therewith and method
US5861005A (en) 1997-02-11 1999-01-19 X-Site, L.L.C. Arterial stapling device
US6146385A (en) 1997-02-11 2000-11-14 Smith & Nephew, Inc. Repairing cartilage
US6056770A (en) 1997-02-11 2000-05-02 Biointerventional Corporation Expansile device for use in blood vessels and tracts in the body and method
US5782860A (en) 1997-02-11 1998-07-21 Biointerventional Corporation Closure device for percutaneous occlusion of puncture sites and tracts in the human body and method
EP0858776A3 (en) 1997-02-14 2000-01-12 Tricardia, L.L.C. Hemostatic agent delivery device having built-in pressure sensor
EP0934092A4 (en) 1997-03-06 2008-03-26 Boston Scient Scimed Inc Distal protection device and method
US5752966A (en) 1997-03-07 1998-05-19 Chang; David W. Exovascular anastomotic device
US5908149A (en) 1997-03-12 1999-06-01 Ethicon Endo-Surgery, Inc. Skin stapler with multi-directional release mechanism
DE29723736U1 (en) 1997-03-18 1999-02-18 Wurster Helmut Dipl Ing Surgical clamp for connecting tissue parts
DE19711288B4 (en) 1997-03-18 2004-11-04 Helmut Dipl.-Ing. Wurster Applicator to hold and close a surgical clip
US5984948A (en) 1997-04-14 1999-11-16 Hasson; Harrith M. Device for closing an opening in tissue and method of closing a tissue opening using the device
US5897487A (en) 1997-04-15 1999-04-27 Asahi Kogaku Kogyo Kabushiki Kaisha Front end hood for endoscope
WO1998047447A1 (en) 1997-04-23 1998-10-29 Dubrul William R Bifurcated stent and distal protection system
US5957936A (en) 1997-05-01 1999-09-28 Inbae Yoon Instrument assemblies for performing anatomical tissue ligation
GB2325488A (en) 1997-05-16 1998-11-25 Joseph Michael Paul Criscuolo Retaining clip
US6896687B2 (en) 1997-05-19 2005-05-24 Pepi Dakov Connectors for hollow anatomical structures and methods of use
US6409739B1 (en) 1997-05-19 2002-06-25 Cardio Medical Solutions, Inc. Device and method for assisting end-to side anastomosis
US5845657A (en) 1997-05-29 1998-12-08 Carberry; Geoff Hair styling device
US5976158A (en) 1997-06-02 1999-11-02 Boston Scientific Corporation Method of using a textured ligating band
US6443158B1 (en) 1997-06-19 2002-09-03 Scimed Life Systems, Inc. Percutaneous coronary artery bypass through a venous vessel
US6001110A (en) 1997-06-20 1999-12-14 Boston Scientific Corporation Hemostatic clips
US6161263A (en) 1997-06-25 2000-12-19 Anderson; Paul Sock pair retention apparatus
US5957940A (en) 1997-06-30 1999-09-28 Eva Corporation Fasteners for use in the surgical repair of aneurysms
US5928260A (en) 1997-07-10 1999-07-27 Scimed Life Systems, Inc. Removable occlusion system for aneurysm neck
EP0895753A1 (en) 1997-07-31 1999-02-10 Academisch Ziekenhuis Utrecht Temporary vascular seal for anastomosis
AU8772198A (en) 1997-08-05 1999-03-08 Target Therapeutics, Inc. Detachable aneurysm neck bridge
US6174322B1 (en) 1997-08-08 2001-01-16 Cardia, Inc. Occlusion device for the closure of a physical anomaly such as a vascular aperture or an aperture in a septum
US6024750A (en) 1997-08-14 2000-02-15 United States Surgical Ultrasonic curved blade
US6063114A (en) 1997-09-04 2000-05-16 Kensey Nash Corporation Connector system for vessels, ducts, lumens or hollow organs and methods of use
US5954732A (en) 1997-09-10 1999-09-21 Hart; Charles C. Suturing apparatus and method
US6059800A (en) 1997-09-10 2000-05-09 Applied Medical Resources Corporation Suturing apparatus and method
FR2768324B1 (en) 1997-09-12 1999-12-10 Jacques Seguin SURGICAL INSTRUMENT FOR PERCUTANEOUSLY FIXING TWO AREAS OF SOFT TISSUE, NORMALLY MUTUALLY REMOTE, TO ONE ANOTHER
US5858082A (en) 1997-09-15 1999-01-12 Cruz; Hector Gonzalo Self-interlocking reinforcement fibers
US5964782A (en) 1997-09-18 1999-10-12 Scimed Life Systems, Inc. Closure device and method
US5928251A (en) 1997-09-18 1999-07-27 United States Surgical Corporation Occlusion clamp and occlusion clamp applicator
US6276704B1 (en) 1997-09-23 2001-08-21 Charles J. Suiter Adjustable wheelchair having a tilting and reclining seat
US6015815A (en) 1997-09-26 2000-01-18 Abbott Laboratories Tetrazole-containing rapamycin analogs with shortened half-lives
US5868762A (en) 1997-09-25 1999-02-09 Sub-Q, Inc. Percutaneous hemostatic suturing device and method
US6030364A (en) 1997-10-03 2000-02-29 Boston Scientific Corporation Apparatus and method for percutaneous placement of gastro-intestinal tubes
US5984949A (en) 1997-10-06 1999-11-16 Levin; John M. Tissue hooks and tools for applying same
TW527195B (en) 1997-10-09 2003-04-11 Ssp Co Ltd Fast-soluble solid pharmaceutical combinations
US5984934A (en) 1997-10-10 1999-11-16 Applied Medical Resources Corporation Low-profile surgical clip
US6117148A (en) 1997-10-17 2000-09-12 Ravo; Biagio Intraluminal anastomotic device
NL1007349C2 (en) 1997-10-24 1999-04-27 Suyker Wilhelmus Joseph Leonardus System for the mechanical production of anastomoses between hollow structures; as well as device and applicator for use therewith.
US5951518A (en) 1997-10-31 1999-09-14 Teleflex, Incorporated Introducing device with flared sheath end
US6171277B1 (en) 1997-12-01 2001-01-09 Cordis Webster, Inc. Bi-directional control handle for steerable catheter
US5906631A (en) 1997-12-05 1999-05-25 Surface Genesis, Inc. Method and device for sealing vascular puncture wounds
US6254642B1 (en) 1997-12-09 2001-07-03 Thomas V. Taylor Perorally insertable gastroesophageal anti-reflux valve prosthesis and tool for implantation thereof
US6036720A (en) 1997-12-15 2000-03-14 Target Therapeutics, Inc. Sheet metal aneurysm neck bridge
US5976174A (en) 1997-12-15 1999-11-02 Ruiz; Carlos E. Medical hole closure device and methods of use
US6626919B1 (en) 1997-12-29 2003-09-30 Lee L. Swanstrom Method and apparatus for attaching or locking an implant to an anatomic vessel or hollow organ wall
US5976161A (en) 1998-01-07 1999-11-02 University Of New Mexico Tissue everting apparatus and method
US6033427A (en) 1998-01-07 2000-03-07 Lee; Benjamin I. Method and device for percutaneous sealing of internal puncture sites
US6193734B1 (en) 1998-01-23 2001-02-27 Heartport, Inc. System for performing vascular anastomoses
ATE320229T1 (en) 1998-01-30 2006-04-15 St Jude Medical Atg Inc MEDICAL TRANSPLANT CONNECTOR OR PLUG AND METHOD FOR PRODUCING THE SAME
US6036703A (en) 1998-02-06 2000-03-14 Ethicon Endo-Surgery Inc. Method and apparatus for establishing anastomotic passageways
CH693017A5 (en) 1998-02-10 2003-01-31 Jump Jeffrey B surgical device occlusion defects.
US6352543B1 (en) 2000-04-29 2002-03-05 Ventrica, Inc. Methods for forming anastomoses using magnetic force
US6280460B1 (en) 1998-02-13 2001-08-28 Heartport, Inc. Devices and methods for performing vascular anastomosis
US5951576A (en) 1998-03-02 1999-09-14 Wakabayashi; Akio End-to-side vascular anastomosing stapling device
NO981277D0 (en) 1998-03-20 1998-03-20 Erik Fosse Method and apparatus for suture-free anastomosis
WO1999049910A2 (en) 1998-03-31 1999-10-07 Transvascular, Inc. Transvascular catheters having imaging transducers
IE980241A1 (en) 1998-04-02 1999-10-20 Salviac Ltd Delivery catheter with split sheath
US6706051B2 (en) 1998-04-08 2004-03-16 Bhk Holding, Ltd. Hemostatic system for body cavities
US6241740B1 (en) 1998-04-09 2001-06-05 Origin Medsystems, Inc. System and method of use for ligating and cutting tissue
US6149667A (en) 1998-05-11 2000-11-21 Surgical Connections, Inc. Devices and methods for treating E.G. urinary stress incontinence
WO1999060941A1 (en) 1998-05-26 1999-12-02 Circulation, Inc. Apparatus for providing coronary retroperfusion and methods of use
US7060084B1 (en) 1998-05-29 2006-06-13 By-Pass, Inc. Vascular closure device
US7063711B1 (en) 1998-05-29 2006-06-20 By-Pass, Inc. Vascular surgery
US6726704B1 (en) 1998-05-29 2004-04-27 By-Pass, Inc. Advanced closure device
AU4056499A (en) 1998-05-29 1999-12-20 By-Pass, Ltd. Vascular port device
US20040087985A1 (en) 1999-03-19 2004-05-06 Amir Loshakove Graft and connector delivery
JP2002516696A (en) 1998-05-29 2002-06-11 バイ−パス・インク. Methods and devices for vascular surgery
US20050283188A1 (en) 1998-05-29 2005-12-22 By-Pass, Inc. Vascular closure device
WO2000056227A1 (en) 1999-03-19 2000-09-28 By-Pass, Inc. Advanced closure device
WO2000056228A1 (en) 1999-03-19 2000-09-28 By-Pass, Inc. Low profile anastomosis connector
US5919207A (en) 1998-06-02 1999-07-06 Taheri; Syde A. Percutaneous arterial closure with staples
US6613059B2 (en) 1999-03-01 2003-09-02 Coalescent Surgical, Inc. Tissue connector apparatus and methods
US6599311B1 (en) 1998-06-05 2003-07-29 Broncus Technologies, Inc. Method and assembly for lung volume reduction
US5910155A (en) 1998-06-05 1999-06-08 United States Surgical Corporation Vascular wound closure system
US5941890A (en) 1998-06-26 1999-08-24 Ethicon Endo-Surgery, Inc. Implantable surgical marker
US6228098B1 (en) 1998-07-10 2001-05-08 General Surgical Innovations, Inc. Apparatus and method for surgical fastening
US6048358A (en) 1998-07-13 2000-04-11 Barak; Shlomo Method and apparatus for hemostasis following arterial catheterization
WO2000007640A2 (en) 1998-07-22 2000-02-17 Angiolink Corporation Vascular suction cannula, dilator and surgical stapler
JP2003521270A (en) 1998-08-04 2003-07-15 フュージョン メディカル テクノロジーズ, インコーポレイテッド Percutaneous tissue tract occlusion assemblies and methods
US6334865B1 (en) 1998-08-04 2002-01-01 Fusion Medical Technologies, Inc. Percutaneous tissue track closure assembly and method
DE19859952A1 (en) 1998-08-11 2000-02-17 S & T Marketing Ag Neuhausen Micro-surgical clamps are produced from a flat strip of metal remaining attached within a recess in the strip
US6206913B1 (en) 1998-08-12 2001-03-27 Vascular Innovations, Inc. Method and system for attaching a graft to a blood vessel
US6198974B1 (en) 1998-08-14 2001-03-06 Cordis Webster, Inc. Bi-directional steerable catheter
US6605294B2 (en) 1998-08-14 2003-08-12 Incept Llc Methods of using in situ hydration of hydrogel articles for sealing or augmentation of tissue or vessels
US6703047B2 (en) 2001-02-02 2004-03-09 Incept Llc Dehydrated hydrogel precursor-based, tissue adherent compositions and methods of use
US7335220B2 (en) 2004-11-05 2008-02-26 Access Closure, Inc. Apparatus and methods for sealing a vascular puncture
US6179860B1 (en) 1998-08-19 2001-01-30 Artemis Medical, Inc. Target tissue localization device and method
DE19839188C2 (en) 1998-08-28 2003-08-21 Storz Endoskop Gmbh Schaffhaus endoscope
US6200329B1 (en) 1998-08-31 2001-03-13 Smith & Nephew, Inc. Suture collet
US6093194A (en) 1998-09-14 2000-07-25 Endocare, Inc. Insertion device for stents and methods for use
US6203553B1 (en) 1999-09-08 2001-03-20 United States Surgical Stapling apparatus and method for heart valve replacement
WO2000016701A1 (en) 1998-09-18 2000-03-30 United States Surgical Corporation Endovascular fastener applicator
US6296657B1 (en) 1998-10-07 2001-10-02 Gregory G. Brucker Vascular sealing device and method
US6019779A (en) 1998-10-09 2000-02-01 Intratherapeutics Inc. Multi-filar coil medical stent
US6220248B1 (en) 1998-10-21 2001-04-24 Ethicon Endo-Surgery, Inc. Method for implanting a biopsy marker
DE69925854T2 (en) 1998-10-23 2006-05-11 Sherwood Services Ag ENDOSCOPIC BIPOLAR ELECTRO-SURGICAL TONGUE
US6152144A (en) 1998-11-06 2000-11-28 Appriva Medical, Inc. Method and device for left atrial appendage occlusion
US6113612A (en) 1998-11-06 2000-09-05 St. Jude Medical Cardiovascular Group, Inc. Medical anastomosis apparatus
US6152937A (en) 1998-11-06 2000-11-28 St. Jude Medical Cardiovascular Group, Inc. Medical graft connector and methods of making and installing same
US6102271A (en) 1998-11-23 2000-08-15 Ethicon Endo-Surgery, Inc. Circular stapler for hemorrhoidal surgery
US6200330B1 (en) 1998-11-23 2001-03-13 Theodore V. Benderev Systems for securing sutures, grafts and soft tissue to bone and periosteum
US6080183A (en) 1998-11-24 2000-06-27 Embol-X, Inc. Sutureless vessel plug and methods of use
US6210407B1 (en) 1998-12-03 2001-04-03 Cordis Webster, Inc. Bi-directional electrode catheter
US6126675A (en) 1999-01-11 2000-10-03 Ethicon, Inc. Bioabsorbable device and method for sealing vascular punctures
US6074395A (en) 1999-02-02 2000-06-13 Linvatec Corporation Cannulated tissue anchor insertion system
US6904647B2 (en) 1999-02-10 2005-06-14 James H. Byers, Jr. Clamping devices
US6120524A (en) 1999-02-16 2000-09-19 Taheri; Syde A. Device for closing an arterial puncture and method
US6083242A (en) 1999-02-17 2000-07-04 Holobeam, Inc. Surgical staples with deformation zones of non-uniform cross section
US6248124B1 (en) 1999-02-22 2001-06-19 Tyco Healthcare Group Arterial hole closure apparatus
US20040092964A1 (en) 1999-03-04 2004-05-13 Modesitt D. Bruce Articulating suturing device and method
US7001400B1 (en) 1999-03-04 2006-02-21 Abbott Laboratories Articulating suturing device and method
US6136010A (en) 1999-03-04 2000-10-24 Perclose, Inc. Articulating suturing device and method
US7235087B2 (en) 1999-03-04 2007-06-26 Abbott Park Articulating suturing device and method
US8137364B2 (en) 2003-09-11 2012-03-20 Abbott Laboratories Articulating suturing device and method
US6964668B2 (en) 1999-03-04 2005-11-15 Abbott Laboratories Articulating suturing device and method
EP1161185A2 (en) 1999-03-09 2001-12-12 St. Jude Medical Cardiovascular Group, Inc. Medical grafting methods and apparatus
AU3746200A (en) 1999-03-15 2000-10-04 Bolder Technologies Corporation Tin-clad substrates for use as current collectors, batteries comprised thereof and methods for preparing same
KR20020067616A (en) 1999-03-19 2002-08-23 바이-패스, 인크. Vascular surgery
US7563267B2 (en) 1999-04-09 2009-07-21 Evalve, Inc. Fixation device and methods for engaging tissue
US6752813B2 (en) 1999-04-09 2004-06-22 Evalve, Inc. Methods and devices for capturing and fixing leaflets in valve repair
US20040044350A1 (en) 1999-04-09 2004-03-04 Evalve, Inc. Steerable access sheath and methods of use
US6623494B1 (en) 1999-04-16 2003-09-23 Integrated Vascular Interventional Technologies, L.C. (Ivit, Lc) Methods and systems for intraluminally directed vascular anastomosis
US6626921B2 (en) 1999-04-16 2003-09-30 Integrated Vascular Interventional Technologies, L.C. Externally positioned anvil apparatus for cutting anastomosis
US6632197B2 (en) 1999-04-16 2003-10-14 Thomas R. Lyon Clear view cannula
US6569173B1 (en) 1999-12-14 2003-05-27 Integrated Vascular Interventional Technologies, L.C. Compression plate anastomosis apparatus
JP2000300571A (en) 1999-04-19 2000-10-31 Nissho Corp Closure plug for transcatheter operation
IT1312196B1 (en) 1999-04-21 2002-04-09 Implant Italia S R L SEMI-RIGID COMPRESSION CLAMP FOR STERNOTOMY, AND CLAMP FOR ITS APPLICATION.
US6287335B1 (en) 1999-04-26 2001-09-11 William J. Drasler Intravascular folded tubular endoprosthesis
US6302870B1 (en) 1999-04-29 2001-10-16 Precision Vascular Systems, Inc. Apparatus for injecting fluids into the walls of blood vessels, body cavities, and the like
US6261258B1 (en) 1999-05-03 2001-07-17 Marius Saines Hemostatic device for angioplasty
US6712836B1 (en) 1999-05-13 2004-03-30 St. Jude Medical Atg, Inc. Apparatus and methods for closing septal defects and occluding blood flow
WO2000069364A2 (en) 1999-05-18 2000-11-23 Vascular Innovations, Inc. Implantable medical device such as an anastomosis device
US6699256B1 (en) 1999-06-04 2004-03-02 St. Jude Medical Atg, Inc. Medical grafting apparatus and methods
US6179849B1 (en) 1999-06-10 2001-01-30 Vascular Innovations, Inc. Sutureless closure for connecting a bypass graft to a target vessel
US6165204A (en) 1999-06-11 2000-12-26 Scion International, Inc. Shaped suture clip, appliance and method therefor
EP1196092A1 (en) 1999-06-18 2002-04-17 Radi Medical Systems Ab A tool, a sealing device, a system and a method for closing a wound
US6626899B2 (en) 1999-06-25 2003-09-30 Nidus Medical, Llc Apparatus and methods for treating tissue
US6398796B2 (en) 1999-07-13 2002-06-04 Scion Cardio-Vascular, Inc. Suture with toggle and delivery system
US6206895B1 (en) 1999-07-13 2001-03-27 Scion Cardio-Vascular, Inc. Suture with toggle and delivery system
US6267773B1 (en) 1999-07-15 2001-07-31 Donald L. Gadberry Low profile surgical clip
US6110184A (en) 1999-08-04 2000-08-29 Weadock; Kevin S. Introducer with vascular sealing mechanism
JP3917332B2 (en) 1999-08-04 2007-05-23 ペンタックス株式会社 Endoscope operation wire connecting part
AU5812299A (en) 1999-09-07 2001-04-10 Microvena Corporation Retrievable septal defect closure device
US7341595B2 (en) 1999-09-13 2008-03-11 Rex Medical, L.P Vascular hole closure device
CA2381818C (en) 1999-09-13 2009-08-04 Rex Medical, L.P. Vascular closure
US7267679B2 (en) 1999-09-13 2007-09-11 Rex Medical, L.P Vascular hole closure device
US6358258B1 (en) 1999-09-14 2002-03-19 Abbott Laboratories Device and method for performing end-to-side anastomosis
US6421899B1 (en) 1999-09-15 2002-07-23 Emhart Llc Extraction and adjustment tool for tangless inserts
US6231561B1 (en) 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
CA2384817C (en) 1999-09-23 2009-10-20 Sub-Q, Inc. Device and method for determining a depth of an incision
US6984219B2 (en) 1999-09-23 2006-01-10 Mark Ashby Depth and puncture control for blood vessel hemostasis system
US6319258B1 (en) 1999-09-29 2001-11-20 Ethicon, Inc. Absorbable rivet/pin applier for use in surgical procedures
US6312447B1 (en) 1999-10-13 2001-11-06 The General Hospital Corporation Devices and methods for percutaneous mitral valve repair
US6626930B1 (en) 1999-10-21 2003-09-30 Edwards Lifesciences Corporation Minimally invasive mitral valve repair method and apparatus
US6409753B1 (en) 1999-10-26 2002-06-25 Scimed Life Systems, Inc. Flexible stent
US6689150B1 (en) 1999-10-27 2004-02-10 Atritech, Inc. Filter apparatus for ostium of left atrial appendage
US6383208B1 (en) 1999-11-05 2002-05-07 Onux Medical, Inc. Apparatus and method for approximating and closing the walls of a hole or puncture in a physiological shell structure
US6273903B1 (en) 1999-11-08 2001-08-14 Peter J. Wilk Endoscopic stapling device and related staple
US6428548B1 (en) 1999-11-18 2002-08-06 Russell F. Durgin Apparatus and method for compressing body tissue
US6689062B1 (en) 1999-11-23 2004-02-10 Microaccess Medical Systems, Inc. Method and apparatus for transesophageal cardiovascular procedures
US6695854B1 (en) 1999-11-29 2004-02-24 General Surgical Innovations, Inc. Blood vessel clip and applicator
US6602263B1 (en) 1999-11-30 2003-08-05 St. Jude Medical Atg, Inc. Medical grafting methods and apparatus
GB9930654D0 (en) 1999-12-23 2000-02-16 Halpin Richard M B Device for controlling extra-vascular haemorrhage
DE59901090D1 (en) 1999-12-23 2002-05-02 Storz Karl Gmbh & Co Kg Decentralized drive screw
US6790218B2 (en) 1999-12-23 2004-09-14 Swaminathan Jayaraman Occlusive coil manufacture and delivery
US20050187564A1 (en) 1999-12-23 2005-08-25 Swaminathan Jayaraman Occlusive coil manufacturing and delivery
US8758400B2 (en) 2000-01-05 2014-06-24 Integrated Vascular Systems, Inc. Closure system and methods of use
US6942674B2 (en) 2000-01-05 2005-09-13 Integrated Vascular Systems, Inc. Apparatus and methods for delivering a closure device
US6461364B1 (en) 2000-01-05 2002-10-08 Integrated Vascular Systems, Inc. Vascular sheath with bioabsorbable puncture site closure apparatus and methods of use
WO2001049186A2 (en) 2000-01-05 2001-07-12 Integrated Vascular Systems, Inc. Apparatus for closing tissue punctures
US6391048B1 (en) 2000-01-05 2002-05-21 Integrated Vascular Systems, Inc. Integrated vascular device with puncture site closure component and sealant and methods of use
US9579091B2 (en) 2000-01-05 2017-02-28 Integrated Vascular Systems, Inc. Closure system and methods of use
US6780197B2 (en) 2000-01-05 2004-08-24 Integrated Vascular Systems, Inc. Apparatus and methods for delivering a vascular closure device to a body lumen
US7842068B2 (en) 2000-12-07 2010-11-30 Integrated Vascular Systems, Inc. Apparatus and methods for providing tactile feedback while delivering a closure device
US6197042B1 (en) 2000-01-05 2001-03-06 Medical Technology Group, Inc. Vascular sheath with puncture site closure apparatus and methods of use
JP4347486B2 (en) 2000-01-24 2009-10-21 辰雄 金重 Indwelling catheter
US6547806B1 (en) 2000-02-04 2003-04-15 Ni Ding Vascular sealing device and method of use
GB2359024A (en) 2000-02-09 2001-08-15 Anson Medical Ltd Fixator for arteries
JP3844661B2 (en) 2000-04-19 2006-11-15 ラディ・メディカル・システムズ・アクチェボラーグ Intra-arterial embolus
US6786915B2 (en) 2000-04-19 2004-09-07 Radi Medical Systems Ab Reinforced absorbable medical sealing device
US6942691B1 (en) 2000-04-27 2005-09-13 Timothy A. M. Chuter Modular bifurcated graft for endovascular aneurysm repair
US7361185B2 (en) 2001-05-09 2008-04-22 Canica Design, Inc. Clinical and surgical system and method for moving and stretching plastic tissue
US6305891B1 (en) 2000-05-15 2001-10-23 Mark S. Burlingame Fastening device and a spacer, and a method of using the same
WO2001091628A2 (en) 2000-05-31 2001-12-06 Origin Medsystems, Inc. Method and apparatus for performing end-to-end and end-to-side anastomosis with eversion of tissue edges
US7534242B2 (en) 2003-02-25 2009-05-19 Artemis Medical, Inc. Tissue separating catheter assembly and method
IL136702A (en) 2000-06-12 2005-11-20 Niti Alloys Tech Ltd Surgical clip
US6689147B1 (en) 2000-06-13 2004-02-10 J. Kenneth Koster, Jr. Anastomosis punch device and method
US6702826B2 (en) 2000-06-23 2004-03-09 Viacor, Inc. Automated annular plication for mitral valve repair
WO2002005865A2 (en) 2000-07-14 2002-01-24 Sub-Q, Inc. Sheath-mounted arterial plug delivery device
US6443963B1 (en) 2000-07-26 2002-09-03 Orthopaedic Biosystems, Ltd. Apparatus and method for repairing or reattaching soft tissue
AU2001260010B2 (en) 2000-07-27 2004-08-26 Synthes Gmbh Cranial flap clamp and instrument for use therewith
US6428472B1 (en) 2000-08-08 2002-08-06 Kent Haas Surgical retractor having a malleable support
EP1309280A2 (en) 2000-08-11 2003-05-14 SDGI Holdings, Inc. Surgical instrumentation and method for treatment of the spine
US6572629B2 (en) 2000-08-17 2003-06-03 Johns Hopkins University Gastric reduction endoscopy
US6533762B2 (en) 2000-09-01 2003-03-18 Angiolink Corporation Advanced wound site management systems and methods
WO2002017771A2 (en) 2000-09-01 2002-03-07 Advanced Vascular Technologies, Llc Multi-fastener surgical apparatus and method
US7074232B2 (en) 2000-09-01 2006-07-11 Medtronic Angiolink, Inc. Advanced wound site management systems and methods
US20040093024A1 (en) 2000-09-01 2004-05-13 James Lousararian Advanced wound site management systems and methods
US6767356B2 (en) 2000-09-01 2004-07-27 Angiolink Corporation Advanced wound site management systems and methods
US6755842B2 (en) 2000-09-01 2004-06-29 Angiolink Corporation Advanced wound site management systems and methods
AU2000274774A1 (en) 2000-09-01 2002-03-22 Angiolink Corporation Wound site management and wound closure device
US6517555B1 (en) 2000-09-05 2003-02-11 Clear Sight, Inc. Method for treating presbyopia
AU2001288006A1 (en) 2000-09-08 2002-03-22 Thomas Anthony Device for locating a puncture hole in a liquid-carrying vessel
JP2004508879A (en) 2000-09-21 2004-03-25 アトリテック, インコーポレイテッド Apparatus for implanting a device in the atrial appendage
US6626918B1 (en) 2000-10-06 2003-09-30 Medical Technology Group Apparatus and methods for positioning a vascular sheath
US6776785B1 (en) 2000-10-12 2004-08-17 Cardica, Inc. Implantable superelastic anastomosis device
US6633234B2 (en) 2000-10-20 2003-10-14 Ethicon Endo-Surgery, Inc. Method for detecting blade breakage using rate and/or impedance information
US6663633B1 (en) 2000-10-25 2003-12-16 Pierson, Iii Raymond H. Helical orthopedic fixation and reduction device, insertion system, and associated methods
US6645225B1 (en) 2000-11-01 2003-11-11 Alvan W. Atkinson Method and apparatus for plugging a patent foramen ovale formed in the heart
US6508828B1 (en) 2000-11-03 2003-01-21 Radi Medical Systems Ab Sealing device and wound closure device
WO2002064012A2 (en) 2000-11-07 2002-08-22 Artemis Medical, Inc. Target tissue localization assembly and method
US6551319B2 (en) 2000-11-08 2003-04-22 The Cleveland Clinic Foundation Apparatus for implantation into bone
US6966917B1 (en) 2000-11-09 2005-11-22 Innovation Interventional Technologies B.V. Deformable connector for mechanically connecting hollow structures
US6884235B2 (en) 2000-12-06 2005-04-26 Rex Medical, L.P. Introducer sheath with retainer and radiopaque insert
US7211101B2 (en) 2000-12-07 2007-05-01 Abbott Vascular Devices Methods for manufacturing a clip and clip
US7806904B2 (en) 2000-12-07 2010-10-05 Integrated Vascular Systems, Inc. Closure device
US7905900B2 (en) 2003-01-30 2011-03-15 Integrated Vascular Systems, Inc. Clip applier and methods of use
US6695867B2 (en) 2002-02-21 2004-02-24 Integrated Vascular Systems, Inc. Plunger apparatus and methods for delivering a closure device
US8690910B2 (en) 2000-12-07 2014-04-08 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US6719777B2 (en) 2000-12-07 2004-04-13 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US6623510B2 (en) 2000-12-07 2003-09-23 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US8083768B2 (en) 2000-12-14 2011-12-27 Ensure Medical, Inc. Vascular plug having composite construction
US6896692B2 (en) 2000-12-14 2005-05-24 Ensure Medical, Inc. Plug with collet and apparatus and method for delivering such plugs
US6846319B2 (en) 2000-12-14 2005-01-25 Core Medical, Inc. Devices for sealing openings through tissue and apparatus and methods for delivering them
US6623509B2 (en) 2000-12-14 2003-09-23 Core Medical, Inc. Apparatus and methods for sealing vascular punctures
US6890343B2 (en) 2000-12-14 2005-05-10 Ensure Medical, Inc. Plug with detachable guidewire element and methods for use
US6969397B2 (en) 2000-12-14 2005-11-29 Ensure Medical, Inc. Guide wire element for positioning vascular closure devices and methods for use
US20040059376A1 (en) 2001-01-31 2004-03-25 Helmut Breuniger Device for the introduction and fashioning of skin clips
US6569185B2 (en) 2001-02-15 2003-05-27 Scimed Life Systems Inc Continuous infusion technique for arterial sealing
US6578585B1 (en) 2001-02-21 2003-06-17 Barbara Stachowski Barrette
US6743195B2 (en) 2001-03-14 2004-06-01 Cardiodex Balloon method and apparatus for vascular closure following arterial catheterization
USD457958S1 (en) 2001-04-06 2002-05-28 Sherwood Services Ag Vessel sealer and divider
US7025776B1 (en) 2001-04-24 2006-04-11 Advanced Catheter Engineering, Inc. Arteriotomy closure devices and techniques
US20020173803A1 (en) 2001-05-01 2002-11-21 Stephen Ainsworth Self-closing surgical clip for tissue
US6535764B2 (en) 2001-05-01 2003-03-18 Intrapace, Inc. Gastric treatment and diagnosis device and method
JP4267867B2 (en) 2001-05-03 2009-05-27 ラディ・メディカル・システムズ・アクチェボラーグ Wound occlusion element guide device
ATE272359T1 (en) 2001-05-09 2004-08-15 Radi Medical Systems DEVICE FOR SEALING AN ARTERIAL PERFORATION
US7083629B2 (en) 2001-05-30 2006-08-01 Satiety, Inc. Overtube apparatus for insertion into a body
US6537300B2 (en) 2001-05-30 2003-03-25 Scimed Life Systems, Inc. Implantable obstruction device for septal defects
US7338514B2 (en) 2001-06-01 2008-03-04 St. Jude Medical, Cardiology Division, Inc. Closure devices, related delivery methods and tools, and related methods of use
IES20010547A2 (en) 2001-06-07 2002-12-11 Christy Cummins Surgical Staple
US7033379B2 (en) 2001-06-08 2006-04-25 Incisive Surgical, Inc. Suture lock having non-through bore capture zone
CA2448900C (en) 2001-06-08 2011-05-17 Morris Innovative Research, Inc. Method and apparatus for sealing access
JP4159805B2 (en) 2001-06-15 2008-10-01 ラディ・メディカル・システムズ・アクチェボラーグ Pushing mechanism for closing method
US20020198589A1 (en) 2001-06-22 2002-12-26 Leong Veronica Jade Tessellated stent and method of manufacture
US6626920B2 (en) 2001-07-05 2003-09-30 Converge Medical, Inc. Distal anastomosis system
US7288105B2 (en) 2001-08-01 2007-10-30 Ev3 Endovascular, Inc. Tissue opening occluder
US6743259B2 (en) 2001-08-03 2004-06-01 Core Medical, Inc. Lung assist apparatus and methods for use
WO2003013374A1 (en) 2001-08-06 2003-02-20 Penn State Research Foundation Multifunctional tool and method for minimally invasive surgery
IES20010749A2 (en) 2001-08-09 2003-02-19 Christy Cummins Surgical Stapling Device
IES20010748A2 (en) 2001-08-09 2003-02-19 Christy Cummins Surgical Stapling Device and Method
US6645205B2 (en) 2001-08-15 2003-11-11 Core Medical, Inc. Apparatus and methods for reducing lung volume
US6929634B2 (en) 2001-08-22 2005-08-16 Gore Enterprise Holdings, Inc. Apparatus and methods for treating stroke and controlling cerebral flow characteristics
US6634537B2 (en) 2001-08-23 2003-10-21 Tung-I Chen Detachable insulation wire-pressing element of a stapling device
US6989003B2 (en) 2001-08-31 2006-01-24 Conmed Corporation Obturator and cannula for a trocar adapted for ease of insertion and removal
US7338506B2 (en) 2001-09-05 2008-03-04 Caro Nicholas C Scleral clip and procedures for using same
US20090054912A1 (en) 2001-09-06 2009-02-26 Heanue Taylor A Systems and Methods for Treating Septal Defects
US6776784B2 (en) 2001-09-06 2004-08-17 Core Medical, Inc. Clip apparatus for closing septal defects and methods of use
US20070129755A1 (en) 2005-12-05 2007-06-07 Ovalis, Inc. Clip-based systems and methods for treating septal defects
US6596013B2 (en) 2001-09-20 2003-07-22 Scimed Life Systems, Inc. Method and apparatus for treating septal defects
US6685707B2 (en) 2001-09-25 2004-02-03 Walter Lorenz Surgical, Inc. Cranial clamp and method for fixating a bone plate
JP2003190175A (en) 2001-11-15 2003-07-08 Cordis Neurovascular Inc Aneurysm neck cover for sealing aneurysm
US6620165B2 (en) 2001-11-26 2003-09-16 Bioplate, Inc. Bone alignment and fixation plate and installation method
US20080249504A1 (en) 2007-04-06 2008-10-09 Lattouf Omar M Instrument port
WO2003096895A1 (en) 2002-01-18 2003-11-27 Std Manufacturing, Inc. Ablation technology for catheter based delivery systems
US20030139819A1 (en) 2002-01-18 2003-07-24 Beer Nicholas De Method and apparatus for closing septal defects
US6736822B2 (en) 2002-02-20 2004-05-18 Mcclellan Scott B. Device and method for internal ligation of tubular structures
US20040093027A1 (en) 2002-03-04 2004-05-13 Walter Fabisiak Barbed tissue connector for sealing vascular puncture wounds
US7077850B2 (en) 2002-05-01 2006-07-18 Scimed Life Systems, Inc. Tissue fastening devices and related insertion tools and methods
JP4350646B2 (en) 2002-05-08 2009-10-21 ラディ・メディカル・システムズ・アクチェボラーグ Decomposable medical sealing device
AU2003234309A1 (en) 2002-05-10 2003-11-11 Core Medical, Inc. Plug with collet and detachable guidewire element for positioning vascular closure devices and methods for use
JP4508866B2 (en) 2002-06-04 2010-07-21 アボット ヴァスキュラー デヴァイシス Vascular closure clip and delivery device
WO2003103476A2 (en) 2002-06-05 2003-12-18 Nmt Medical, Inc. Patent foramen ovale (pfo) closure device with radial and circumferential support
IES20030490A2 (en) 2002-07-03 2004-01-14 Paul Hooi Surgical stapling device
EP1526810B1 (en) 2002-07-31 2009-04-15 Abbott Laboratories Vascular Enterprises Limited Apparatus for sealing surgical punctures
JP2005534388A (en) 2002-08-01 2005-11-17 アボット ラボラトリーズ バスキュラー エンタープライゼズ リミテッド Self trauma seal device
MXPA05001845A (en) 2002-08-15 2005-11-17 Gmp Cardiac Care Inc Stent-graft with rails.
US7322995B2 (en) 2002-09-13 2008-01-29 Damage Control Surgical Technologies, Inc. Method and apparatus for vascular and visceral clipping
ES2298556T3 (en) 2002-09-23 2008-05-16 Nmt Medical, Inc. SEPTAL PUNCTURE DEVICE.
US20040068273A1 (en) 2002-10-02 2004-04-08 Ibionics Corporation Automatic laparoscopic incision closing apparatus
US7087064B1 (en) 2002-10-15 2006-08-08 Advanced Cardiovascular Systems, Inc. Apparatuses and methods for heart valve repair
US7493154B2 (en) 2002-10-23 2009-02-17 Medtronic, Inc. Methods and apparatus for locating body vessels and occlusions in body vessels
US7160309B2 (en) 2002-12-31 2007-01-09 Laveille Kao Voss Systems for anchoring a medical device in a body lumen
GB0300786D0 (en) 2003-01-14 2003-02-12 Barker Stephen G E Laparoscopic port hernia device
US7008442B2 (en) 2003-01-20 2006-03-07 Medtronic Vascular, Inc. Vascular sealant delivery device and sheath introducer and method
US7115135B2 (en) 2003-01-22 2006-10-03 Cardia, Inc. Occlusion device having five or more arms
US8758398B2 (en) 2006-09-08 2014-06-24 Integrated Vascular Systems, Inc. Apparatus and method for delivering a closure element
US8905937B2 (en) 2009-02-26 2014-12-09 Integrated Vascular Systems, Inc. Methods and apparatus for locating a surface of a body lumen
US7857828B2 (en) 2003-01-30 2010-12-28 Integrated Vascular Systems, Inc. Clip applier and methods of use
US8202293B2 (en) 2003-01-30 2012-06-19 Integrated Vascular Systems, Inc. Clip applier and methods of use
JP4094445B2 (en) 2003-01-31 2008-06-04 オリンパス株式会社 Endoscopic mucosal resection tool
AU2004220635A1 (en) 2003-03-06 2004-09-23 Applied Medical Resources Corporation Spring clip and method for assembling same
DE10310995B3 (en) 2003-03-06 2004-09-16 Aesculap Ag & Co. Kg Closure device for a puncture channel and applicator device
US7381210B2 (en) 2003-03-14 2008-06-03 Edwards Lifesciences Corporation Mitral valve repair system and method for use
US7850654B2 (en) 2003-04-24 2010-12-14 St. Jude Medical Puerto Rico B.V. Device and method for positioning a closure device
US7112216B2 (en) 2003-05-28 2006-09-26 Boston Scientific Scimed, Inc. Stent with tapered flexibility
US6942641B2 (en) 2003-05-30 2005-09-13 J. Michael Seddon Catheter
US9289195B2 (en) 2003-06-04 2016-03-22 Access Closure, Inc. Auto-retraction apparatus and methods for sealing a vascular puncture
US20040249412A1 (en) 2003-06-04 2004-12-09 Snow Brent W. Apparatus and methods for puncture site closure
US7331979B2 (en) 2003-06-04 2008-02-19 Access Closure, Inc. Apparatus and methods for sealing a vascular puncture
US7316706B2 (en) 2003-06-20 2008-01-08 Medtronic Vascular, Inc. Tensioning device, system, and method for treating mitral valve regurgitation
US20070093869A1 (en) 2003-06-20 2007-04-26 Medtronic Vascular, Inc. Device, system, and method for contracting tissue in a mammalian body
US8480706B2 (en) 2003-07-14 2013-07-09 W.L. Gore & Associates, Inc. Tubular patent foramen ovale (PFO) closure device with catch system
ES2428967T3 (en) 2003-07-14 2013-11-12 W.L. Gore & Associates, Inc. Oval foramen tubular permeable closure device (FOP) with retention system
DE10335648A1 (en) 2003-07-30 2005-03-03 Eberhard-Karls-Universität Tübingen Closing plug for an opening in a wall of a vessel or hollow organ
US20050027587A1 (en) * 2003-08-01 2005-02-03 Latona Richard Edward System and method for determining object effectiveness
WO2005027753A1 (en) 2003-09-19 2005-03-31 St. Jude Medical, Inc. Apparatus and methods for tissue gathering and securing
US20050075654A1 (en) 2003-10-06 2005-04-07 Brian Kelleher Methods and devices for soft tissue securement
US7931670B2 (en) 2003-10-15 2011-04-26 St. Jude Medical Puerto Rico Llc Tissue puncture closure device with automatic tamping
US8007514B2 (en) 2003-10-17 2011-08-30 St. Jude Medical Puerto Rico Llc Automatic suture locking device
US7361183B2 (en) 2003-10-17 2008-04-22 Ensure Medical, Inc. Locator and delivery device and method of use
US8852229B2 (en) 2003-10-17 2014-10-07 Cordis Corporation Locator and closure device and method of use
US7326230B2 (en) 2003-10-23 2008-02-05 Sundaram Ravikumar Vascular sealing device and method of use
DE602004009335T2 (en) 2003-10-24 2008-07-03 ev3 Endovascular, Inc., Plymouth CLOSING SYSTEM FOR OPEN FORMS OVAL
IL158960A0 (en) 2003-11-19 2004-05-12 Neovasc Medical Ltd Vascular implant
CA2547999A1 (en) 2003-11-25 2005-06-09 Boston Scientific Limited Hemostatic pressure plug
US7731726B2 (en) 2003-12-03 2010-06-08 St. Jude Medical Puerto Rico Llc Suture based vascular closure apparatus and method incorporating a pre-tied knot
WO2005055801A2 (en) 2003-12-15 2005-06-23 By-Pass, Inc. Biodegradable closure device
US7717929B2 (en) 2003-12-19 2010-05-18 Radi Medical Systems Ab Technique for securing a suture
US20050149117A1 (en) 2003-12-24 2005-07-07 Farhad Khosravi Apparatus and methods for delivering sealing materials during a percutaneous procedure to facilitate hemostasis
US20050245876A1 (en) 2003-12-24 2005-11-03 Accessclosure, Inc. Apparatus and methods for facilitating access through a puncture including sealing compound therein
US20070060950A1 (en) 2003-12-24 2007-03-15 Farhad Khosravi Apparatus and methods for delivering sealing materials during a percutaneous procedure to facilitate hemostasis
US7618427B2 (en) 2003-12-29 2009-11-17 Ethicon Endo-Surgery, Inc. Device and method for intralumenal anastomosis
US20050154401A1 (en) 2004-01-08 2005-07-14 Scimed Life Systems, Inc. Suturing device for implantable device
US20070053963A1 (en) 2004-01-13 2007-03-08 Hotchkiss Robert N Drug delivery to a joint
US7445596B2 (en) 2004-01-29 2008-11-04 Cannuflow, Inc. Atraumatic arthroscopic instrument sheath
EP1720595B1 (en) 2004-03-03 2011-05-11 C.R.Bard, Inc. Loop-tip catheter
US7066944B2 (en) 2004-03-11 2006-06-27 Laufer Michael D Surgical fastening system
WO2005092204A2 (en) 2004-03-22 2005-10-06 Accessclosure, Inc. Apparatus for sealing a vascular puncture
US20050267524A1 (en) 2004-04-09 2005-12-01 Nmt Medical, Inc. Split ends closure device
US9017374B2 (en) 2004-04-09 2015-04-28 Cardiva Medical, Inc. Device and method for sealing blood vessels
WO2005110240A1 (en) 2004-05-07 2005-11-24 Nmt Medical, Inc. Catching mechanisms for tubular septal occluder
US20050256532A1 (en) 2004-05-12 2005-11-17 Asha Nayak Cardiovascular defect patch device and method
US7799042B2 (en) 2004-05-13 2010-09-21 The Cleveland Clinic Foundation Skin lesion exciser and skin-closure device therefor
WO2005115521A1 (en) 2004-05-14 2005-12-08 Medtronic, Inc. Medical tubing connector assembly incorporating strain relief sleeve
IES20040368A2 (en) 2004-05-25 2005-11-30 James E Coleman Surgical stapler
US7645285B2 (en) 2004-05-26 2010-01-12 Idx Medical, Ltd Apparatus and methods for occluding a hollow anatomical structure
US7678135B2 (en) 2004-06-09 2010-03-16 Usgi Medical, Inc. Compressible tissue anchor assemblies
EP1611850A1 (en) 2004-06-28 2006-01-04 Cardio Life Research S.A. Occlusion and tight punction device for an anatomical structure
US7556632B2 (en) 2004-07-09 2009-07-07 Reza Zadno Device and method for repairing tissue
US8348971B2 (en) 2004-08-27 2013-01-08 Accessclosure, Inc. Apparatus and methods for facilitating hemostasis within a vascular puncture
US20060058844A1 (en) 2004-09-13 2006-03-16 St. Jude Medical Puerto Rico B.V. Vascular sealing device with locking system
US8262693B2 (en) 2004-11-05 2012-09-11 Accessclosure, Inc. Apparatus and methods for sealing a vascular puncture
US7582104B2 (en) 2004-12-08 2009-09-01 Cardia, Inc. Daisy design for occlusion device
US8105352B2 (en) 2004-12-16 2012-01-31 Radi Medical Systems Ab Medical sealing device
US20060142784A1 (en) 2004-12-28 2006-06-29 Stavros Kontos Device and method for suturing internal structures puncture wounds
US20080114395A1 (en) 2005-01-14 2008-05-15 Radi Medical Systems Ab Closure Device
US8128640B2 (en) 2005-02-07 2012-03-06 Ivy Sports Medicine LLC System and method for all-inside suture fixation for implant attachment and soft tissue repair
US7931671B2 (en) 2005-03-11 2011-04-26 Radi Medical Systems Ab Medical sealing device
US7344544B2 (en) 2005-03-28 2008-03-18 Cardica, Inc. Vascular closure system
US8177741B2 (en) 2005-04-12 2012-05-15 Cook Medical Technologies Llc Catheter with superelastic retention device
US7806856B2 (en) 2005-04-22 2010-10-05 Accessclosure, Inc. Apparatus and method for temporary hemostasis
WO2006115904A2 (en) 2005-04-22 2006-11-02 Accessclosure, Inc. Apparatus and methods for sealing a puncture in tissue
US8002742B2 (en) 2005-04-22 2011-08-23 Accessclosure, Inc. Apparatus and methods for sealing a puncture in tissue
US7622628B2 (en) 2005-05-04 2009-11-24 Innovasa Corporation Hemostatic wire guided bandage and method of use
US8088144B2 (en) 2005-05-04 2012-01-03 Ensure Medical, Inc. Locator and closure device and method of use
USD566272S1 (en) 2005-05-19 2008-04-08 Integrated Vascular Systems, Inc. Vessel closure device
US8926633B2 (en) 2005-06-24 2015-01-06 Abbott Laboratories Apparatus and method for delivering a closure element
US20060293698A1 (en) 2005-06-28 2006-12-28 Medtronic Vascular, Inc. Retainer device for mitral valve leaflets
US8007508B2 (en) 2005-07-01 2011-08-30 Cox John A System for tissue dissection and retraction
US8313497B2 (en) 2005-07-01 2012-11-20 Abbott Laboratories Clip applier and methods of use
US20080312686A1 (en) 2005-07-01 2008-12-18 Abbott Laboratories Antimicrobial closure element and closure element applier
US8398703B2 (en) 2005-07-29 2013-03-19 Cvdevices, Llc Devices and methods for magnetic tissue support
US8029522B2 (en) 2005-08-05 2011-10-04 Ethicon Endo-Surgery, Inc. Method and apparatus for sealing a gastric opening
US8920442B2 (en) * 2005-08-24 2014-12-30 Abbott Vascular Inc. Vascular opening edge eversion methods and apparatuses
US8758397B2 (en) 2005-08-24 2014-06-24 Abbott Vascular Inc. Vascular closure methods and apparatuses
US20070060895A1 (en) 2005-08-24 2007-03-15 Sibbitt Wilmer L Jr Vascular closure methods and apparatuses
WO2007025302A2 (en) 2005-08-26 2007-03-01 G-Surge Medical Solutions, Inc. Suturing apparatus and methods
US20070185530A1 (en) 2005-09-01 2007-08-09 Chao Chin-Chen Patent foramen ovale closure method
US7846179B2 (en) 2005-09-01 2010-12-07 Ovalis, Inc. Suture-based systems and methods for treating septal defects
US20070060951A1 (en) 2005-09-15 2007-03-15 Shannon Francis L Atrial tissue fixation device
US7875041B2 (en) 2005-09-28 2011-01-25 Olympus Medical Systems Corp. Suturing method for penetrating hole
WO2007044510A1 (en) 2005-10-05 2007-04-19 Loma Linda University Medical Center Vascular wound closure device and method
US10143456B2 (en) 2005-10-07 2018-12-04 Alex Javois Left atrial appendage occlusion device
US20070083231A1 (en) 2005-10-07 2007-04-12 Benjamin Lee Vascular closure
US20070112365A1 (en) 2005-11-15 2007-05-17 Applied Medical Resources Corporation Partial occlusion surgical guide clip
US7850712B2 (en) 2005-11-15 2010-12-14 Ethicon Endo-Surgery, Inc. Self-shielding suture anchor
WO2007059243A1 (en) 2005-11-15 2007-05-24 Aoi Medical, Inc. Arterial closure button
US20070149996A1 (en) 2005-12-28 2007-06-28 Medtronic Vascular, Inc. Low profile filter
WO2007081836A1 (en) 2006-01-09 2007-07-19 Cook Incorporated Patent foramen ovale closure device and method
US20070172430A1 (en) 2006-01-20 2007-07-26 Nastech Pharmaceutical Company Inc. Dry powder compositions for rna influenza therapeutics
US8162974B2 (en) 2006-02-02 2012-04-24 Boston Scientific Scimed, Inc. Occlusion apparatus, system, and method
US7625392B2 (en) 2006-02-03 2009-12-01 James Coleman Wound closure devices and methods
WO2007092323A1 (en) 2006-02-07 2007-08-16 Sutura, Inc. Reverse tapered guidewire and method of use
US7892244B2 (en) 2006-03-09 2011-02-22 Niti Surgical Solutions Ltd. Surgical compression clips
US20070225755A1 (en) 2006-03-22 2007-09-27 Radi Medical Systems Ab Closure device
US20070225758A1 (en) 2006-03-22 2007-09-27 Radi Medical Systems Ab Closure device
US20070225756A1 (en) 2006-03-22 2007-09-27 Radi Medical Systems Ab Closure device and insertion assembly
US20070225757A1 (en) 2006-03-22 2007-09-27 Radi Medical Systems Ab Closure device
US8808310B2 (en) 2006-04-20 2014-08-19 Integrated Vascular Systems, Inc. Resettable clip applier and reset tools
US20070265658A1 (en) 2006-05-12 2007-11-15 Aga Medical Corporation Anchoring and tethering system
US20070275036A1 (en) 2006-05-18 2007-11-29 Celldyne Biopharma, Llc Avian follistatin product
USD611144S1 (en) 2006-06-28 2010-03-02 Abbott Laboratories Apparatus for delivering a closure element
US8556930B2 (en) 2006-06-28 2013-10-15 Abbott Laboratories Vessel closure device
US7512567B2 (en) * 2006-06-29 2009-03-31 Yt Acquisition Corporation Method and system for providing biometric authentication at a point-of-sale via a mobile device
US20080033459A1 (en) 2006-08-03 2008-02-07 Surgsolutions, Llp Suturing apparatus for closing tissue defects
US20080215089A1 (en) 2006-09-21 2008-09-04 Williams Michael S Stomach wall closure devices
WO2008045703A2 (en) 2006-10-09 2008-04-17 Isik Frank F Vascular access devices and methods of use
US8029532B2 (en) 2006-10-11 2011-10-04 Cook Medical Technologies Llc Closure device with biomaterial patches
JP4584230B2 (en) 2006-11-14 2010-11-17 オリンパスメディカルシステムズ株式会社 Clip device
DE102006056283A1 (en) 2006-11-29 2008-06-05 Biomagnetik Park Gmbh Occlusion device for closing left heart auricle of patient, has cladding bag provided with fillable opening at its proximal end and partially made of thermoplastic polyurethane, where bag is partially filled with non-degradable plastic
WO2008074027A1 (en) 2006-12-13 2008-06-19 Biomerix Corporation Aneurysm occlusion devices
US20080177288A1 (en) 2007-01-19 2008-07-24 Carlson Mark A Remote Suturing Device
WO2008097967A2 (en) * 2007-02-05 2008-08-14 Boston Scientific Limited Self-orientating suture wound closure device
US7533790B1 (en) 2007-03-08 2009-05-19 Cardica, Inc. Surgical stapler
US8080034B2 (en) 2007-03-29 2011-12-20 St. Jude Medical, Inc. Vascular hemostasis device and deployment apparatus
US9545258B2 (en) 2007-05-17 2017-01-17 Boston Scientific Scimed, Inc. Tissue aperture securing and sealing apparatuses and related methods of use
CA2688261C (en) 2007-05-25 2013-04-30 Wilson-Cook Medical, Inc. Medical devices, systems and methods for closing perforations
US20080300628A1 (en) 2007-06-01 2008-12-04 Abbott Laboratories Medical Devices
US7967842B2 (en) 2007-06-01 2011-06-28 Ethicon Endo-Surgery, Inc. Integrated securement and closure apparatus
US8226681B2 (en) 2007-06-25 2012-07-24 Abbott Laboratories Methods, devices, and apparatus for managing access through tissue
US7875054B2 (en) 2007-10-01 2011-01-25 Boston Scientific Scimed, Inc. Connective tissue closure device and method
US8062308B2 (en) 2007-10-23 2011-11-22 Minos Medical Devices and methods for securing tissue
US8142490B2 (en) 2007-10-24 2012-03-27 Cordis Corporation Stent segments axially connected by thin film
US8980299B2 (en) 2007-10-31 2015-03-17 Cordis Corporation Method of making a vascular closure device
US8016880B2 (en) 2007-11-16 2011-09-13 Medtronic Vascular, Inc. Stent having spiral channel for drug delivery
US20090157101A1 (en) 2007-12-17 2009-06-18 Abbott Laboratories Tissue closure system and methods of use
US8893947B2 (en) 2007-12-17 2014-11-25 Abbott Laboratories Clip applier and methods of use
US7841502B2 (en) 2007-12-18 2010-11-30 Abbott Laboratories Modular clip applier
US20090187215A1 (en) 2007-12-19 2009-07-23 Abbott Laboratories Methods and apparatus to reduce a dimension of an implantable device in a smaller state
US8103327B2 (en) 2007-12-28 2012-01-24 Rhythmia Medical, Inc. Cardiac mapping catheter
US20090216267A1 (en) 2008-02-26 2009-08-27 Boston Scientific Scimed, Inc. Closure device with rapidly dissolving anchor
AU2009222028A1 (en) 2008-03-03 2009-09-11 Applied Medical Resources Corporation Balloon trocar advanced fixation
US20090227938A1 (en) 2008-03-05 2009-09-10 Insitu Therapeutics, Inc. Wound Closure Devices, Methods of Use, and Kits
US9282965B2 (en) 2008-05-16 2016-03-15 Abbott Laboratories Apparatus and methods for engaging tissue
US8409228B2 (en) 2008-06-06 2013-04-02 Duane D. Blatter Tissue management methods, apparatus, and systems
US9943302B2 (en) 2008-08-12 2018-04-17 Covidien Lp Medical device for wound closure and method of use
AU2009289474B2 (en) 2008-09-04 2015-09-03 Curaseal Inc. Inflatable devices for enteric fistula treatment
DE102008053809A1 (en) 2008-10-29 2010-05-12 Medi-Globe Gmbh Surgical thread positioning system for closing an opening within a tissue wall
US8398676B2 (en) 2008-10-30 2013-03-19 Abbott Vascular Inc. Closure device
US8858594B2 (en) 2008-12-22 2014-10-14 Abbott Laboratories Curved closure device
US9414820B2 (en) 2009-01-09 2016-08-16 Abbott Vascular Inc. Closure devices, systems, and methods
US20100179589A1 (en) 2009-01-09 2010-07-15 Abbott Vascular Inc. Rapidly eroding anchor
US9173644B2 (en) 2009-01-09 2015-11-03 Abbott Vascular Inc. Closure devices, systems, and methods
US20100179567A1 (en) 2009-01-09 2010-07-15 Abbott Vascular Inc. Closure devices, systems, and methods
US9089311B2 (en) 2009-01-09 2015-07-28 Abbott Vascular Inc. Vessel closure devices and methods
US20100185234A1 (en) 2009-01-16 2010-07-22 Abbott Vascular Inc. Closure devices, systems, and methods
KR101075531B1 (en) 2009-09-14 2011-10-20 국립암센터 Hemostatic clip and hemostatic clip operation apparatus using the same
US20110082495A1 (en) 2009-10-02 2011-04-07 Ruiz Carlos E Apparatus And Methods For Excluding The Left Atrial Appendage
US8603116B2 (en) 2010-08-04 2013-12-10 Abbott Cardiovascular Systems, Inc. Closure device with long tines
US9149276B2 (en) 2011-03-21 2015-10-06 Abbott Cardiovascular Systems, Inc. Clip and deployment apparatus for tissue closure
US8821529B2 (en) 2011-03-25 2014-09-02 Aga Medical Corporation Device and method for occluding a septal defect

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050038500A1 (en) 2000-12-27 2005-02-17 Boylan John F. Radiopaque nitinol alloys for medical devices
US20040158309A1 (en) 2003-02-10 2004-08-12 W. C. Heraeus Gmbh & Co. Kg Metal alloy for medical devices and implants
US20070276488A1 (en) 2003-02-10 2007-11-29 Jurgen Wachter Medical implant or device
US20080312740A1 (en) 2003-02-10 2008-12-18 Jurgen Wachter Metal alloy for medical devices and implants

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9050087B2 (en) 2000-01-05 2015-06-09 Integrated Vascular Systems, Inc. Integrated vascular device with puncture site closure component and sealant and methods of use
US10111664B2 (en) 2000-01-05 2018-10-30 Integrated Vascular Systems, Inc. Closure system and methods of use
US9579091B2 (en) 2000-01-05 2017-02-28 Integrated Vascular Systems, Inc. Closure system and methods of use
US9060769B2 (en) 2000-09-08 2015-06-23 Abbott Vascular Inc. Surgical stapler
US9089674B2 (en) 2000-10-06 2015-07-28 Integrated Vascular Systems, Inc. Apparatus and methods for positioning a vascular sheath
US9320522B2 (en) 2000-12-07 2016-04-26 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US10245013B2 (en) 2000-12-07 2019-04-02 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US8690910B2 (en) 2000-12-07 2014-04-08 Integrated Vascular Systems, Inc. Closure device and methods for making and using them
US9498196B2 (en) 2002-02-21 2016-11-22 Integrated Vascular Systems, Inc. Sheath apparatus and methods for delivering a closure device
US10201340B2 (en) 2002-02-21 2019-02-12 Integrated Vascular Systems, Inc. Sheath apparatus and methods for delivering a closure device
US9980728B2 (en) 2002-06-04 2018-05-29 Abbott Vascular Inc Blood vessel closure clip and delivery device
US9295469B2 (en) 2002-06-04 2016-03-29 Abbott Vascular Inc. Blood vessel closure clip and delivery device
US11589856B2 (en) 2003-01-30 2023-02-28 Integrated Vascular Systems, Inc. Clip applier and methods of use
US10398418B2 (en) 2003-01-30 2019-09-03 Integrated Vascular Systems, Inc. Clip applier and methods of use
US8926656B2 (en) 2003-01-30 2015-01-06 Integated Vascular Systems, Inc. Clip applier and methods of use
US8926633B2 (en) 2005-06-24 2015-01-06 Abbott Laboratories Apparatus and method for delivering a closure element
US11344304B2 (en) 2005-07-01 2022-05-31 Abbott Laboratories Clip applier and methods of use
US10085753B2 (en) 2005-07-01 2018-10-02 Abbott Laboratories Clip applier and methods of use
US9050068B2 (en) 2005-07-01 2015-06-09 Abbott Laboratories Clip applier and methods of use
US8920442B2 (en) 2005-08-24 2014-12-30 Abbott Vascular Inc. Vascular opening edge eversion methods and apparatuses
US9962144B2 (en) 2006-06-28 2018-05-08 Abbott Laboratories Vessel closure device
US8893947B2 (en) 2007-12-17 2014-11-25 Abbott Laboratories Clip applier and methods of use
US9282965B2 (en) 2008-05-16 2016-03-15 Abbott Laboratories Apparatus and methods for engaging tissue
US10413295B2 (en) 2008-05-16 2019-09-17 Abbott Laboratories Engaging element for engaging tissue
US8858594B2 (en) 2008-12-22 2014-10-14 Abbott Laboratories Curved closure device
US11439378B2 (en) 2009-01-09 2022-09-13 Abbott Cardiovascular Systems, Inc. Closure devices and methods
US9314230B2 (en) 2009-01-09 2016-04-19 Abbott Vascular Inc. Closure device with rapidly eroding anchor
US9173644B2 (en) 2009-01-09 2015-11-03 Abbott Vascular Inc. Closure devices, systems, and methods
US10537313B2 (en) 2009-01-09 2020-01-21 Abbott Vascular, Inc. Closure devices and methods
US9089311B2 (en) 2009-01-09 2015-07-28 Abbott Vascular Inc. Vessel closure devices and methods
US8905937B2 (en) 2009-02-26 2014-12-09 Integrated Vascular Systems, Inc. Methods and apparatus for locating a surface of a body lumen
US9149276B2 (en) 2011-03-21 2015-10-06 Abbott Cardiovascular Systems, Inc. Clip and deployment apparatus for tissue closure
US11672518B2 (en) 2012-12-21 2023-06-13 Abbott Cardiovascular Systems, Inc. Articulating suturing device
US10537312B2 (en) 2012-12-21 2020-01-21 Abbott Cardiovascular Systems, Inc. Articulating suturing device
US9301746B2 (en) 2013-10-11 2016-04-05 Abbott Cardiovascular Systems, Inc. Suture-based closure with hemostatic tract plug
US10806439B2 (en) 2013-10-11 2020-10-20 Abbott Cardiovascular Systems, Inc. Suture-based closure with hemostatic tract plug
US11666315B2 (en) 2013-10-11 2023-06-06 Abbott Cardiovascular Systems, Inc. Suture-based closure with hemostatic tract plug
US9757108B2 (en) 2013-10-11 2017-09-12 Abbott Cardiovascular Systems, Inc. Suture-based closure with hemostatic tract plug

Also Published As

Publication number Publication date
WO2010081101A3 (en) 2011-03-10
US20100179571A1 (en) 2010-07-15
US20160151057A1 (en) 2016-06-02
US9173644B2 (en) 2015-11-03

Similar Documents

Publication Publication Date Title
US9173644B2 (en) Closure devices, systems, and methods
US11439378B2 (en) Closure devices and methods
US20100179567A1 (en) Closure devices, systems, and methods
US10507013B2 (en) Closure devices, systems, and methods
US20160000417A1 (en) Vessel closure devices, systems, and methods
US9414820B2 (en) Closure devices, systems, and methods
US9585647B2 (en) Medical device for repairing a fistula
US7182769B2 (en) Sealing clip, delivery systems, and methods
US10743864B2 (en) Suturing systems and methods
US20080109030A1 (en) Arteriotomy closure devices and techniques
US11918206B2 (en) Needle harvesting devices, systems and methods
US8992567B1 (en) Compressible, deformable, or deflectable tissue closure devices and method of manufacture
WO2010081103A1 (en) Vessel closure devices and methods
CN110461247A (en) Micro-wound tissue stitching devices
US8852220B2 (en) Thrombus penetrating devices, systems, and methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10700633

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct app. not ent. europ. phase

Ref document number: 10700633

Country of ref document: EP

Kind code of ref document: A2