WO2010067508A1 - Multilayer substrate and method for manufacturing same - Google Patents

Multilayer substrate and method for manufacturing same Download PDF

Info

Publication number
WO2010067508A1
WO2010067508A1 PCT/JP2009/005897 JP2009005897W WO2010067508A1 WO 2010067508 A1 WO2010067508 A1 WO 2010067508A1 JP 2009005897 W JP2009005897 W JP 2009005897W WO 2010067508 A1 WO2010067508 A1 WO 2010067508A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
conductor
mounting component
main surface
interlayer connection
Prior art date
Application number
PCT/JP2009/005897
Other languages
French (fr)
Japanese (ja)
Inventor
森木田豊
小川伸明
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Publication of WO2010067508A1 publication Critical patent/WO2010067508A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • H05K1/186Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or connecting to patterned circuits before or during embedding
    • H05K1/187Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or connecting to patterned circuits before or during embedding the patterned circuits being prefabricated circuits, which are not yet attached to a permanent insulating substrate, e.g. on a temporary carrier
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/18Printed circuits structurally associated with non-printed electric components
    • H05K1/182Printed circuits structurally associated with non-printed electric components associated with components mounted in the printed circuit board, e.g. insert mounted components [IMC]
    • H05K1/185Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit
    • H05K1/186Components encapsulated in the insulating substrate of the printed circuit or incorporated in internal layers of a multilayer circuit manufactured by mounting on or connecting to patterned circuits before or during embedding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/30Technical effects
    • H01L2924/301Electrical effects
    • H01L2924/3025Electromagnetic shielding
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate
    • H05K1/0206Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate by printed thermal vias
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10227Other objects, e.g. metallic pieces
    • H05K2201/10378Interposers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/10Details of components or other objects attached to or integrated in a printed circuit board
    • H05K2201/10431Details of mounted components
    • H05K2201/10507Involving several components
    • H05K2201/10515Stacked components
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/10Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern
    • H05K3/20Apparatus or processes for manufacturing printed circuits in which conductive material is applied to the insulating support in such a manner as to form the desired conductive pattern by affixing prefabricated conductor pattern
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4602Manufacturing multilayer circuits characterized by a special circuit board as base or central core whereon additional circuit layers are built or additional circuit boards are laminated
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4611Manufacturing multilayer circuits by laminating two or more circuit boards
    • H05K3/4614Manufacturing multilayer circuits by laminating two or more circuit boards the electrical connections between the circuit boards being made during lamination
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/46Manufacturing multilayer circuits
    • H05K3/4644Manufacturing multilayer circuits by building the multilayer layer by layer, i.e. build-up multilayer circuits
    • H05K3/4652Adding a circuit layer by laminating a metal foil or a preformed metal foil pattern

Definitions

  • the present invention relates to a multilayer substrate composed of a core substrate and a resin layer and a method for manufacturing the same, and more particularly to a multilayer substrate in which a mounting component is built in the resin layer.
  • a resin layer is formed on one main surface of the ceramic multilayer substrate, and a mounting component is mounted inside the resin layer to reduce the height of the substrate.
  • the conventional multilayer board mounting components are mounted on the main surface of a core board such as a ceramic multilayer board. For this reason, when the resin layer is formed on the main surface of the core substrate so that the mounted component is embedded, there may be a space where the mounted component cannot be mounted inside the resin layer. For example, when a plurality of mounting components are mounted on the main surface of the core substrate, a space may be generated inside the resin layer due to a thickness difference between the mounting components. Therefore, in the conventional multilayer substrate, if it is desired to further mount a mounting component, it is necessary to increase the mounting area or to form a plurality of resin layers as described in Patent Document 1, and to mount the mounting component on each layer, Miniaturization and low profile of the multilayer substrate could not be realized.
  • an object of the present invention is to provide a multilayer substrate and a method for manufacturing the same that have a low profile and high functionality, and that make effective use of the space inside the resin layer and have a higher degree of design freedom.
  • the multilayer substrate of the present invention is formed on both main surfaces of the core substrate, the first resin layer formed on one main surface of the core substrate, and the first resin layer.
  • a second mounting component mounted on a surface conductor formed on the main surface, and the first mounting component and the second mounting component are embedded in the first resin layer.
  • the first mounting component and the second mounting component have different thicknesses, and are provided at positions facing the first mounting component or the second mounting component with a small thickness. It is preferable to include a third mounting component embedded in the resin layer.
  • the multilayer substrate of the present invention preferably includes an interlayer connection conductor that is formed inside the first resin layer and connects the surface conductors formed on both main surfaces of the first resin layer.
  • the multilayer substrate of the present invention includes a surface conductor and / or an interlayer connection conductor that connects the interlayer connection conductor and the surface conductor formed on the main surface facing the main surface contacting the core substrate of the first resin layer. It is preferable.
  • the multilayer substrate of the present invention preferably includes a second resin layer formed on a main surface facing the main surface of the first resin layer that contacts the core substrate.
  • an interlayer connection conductor connected to the second mounting component is formed inside the second resin layer.
  • the second mounting component is a bare chip, and the interlayer connection conductor formed inside the second resin layer is connected to the main surface facing the main surface having the terminal electrode of the bare chip. It is preferable that the heat radiator is made.
  • the second resin layer is thinner than the first resin layer.
  • the multilayer substrate of the present invention includes a surface conductor formed on a main surface of the second resin layer that is opposed to the main surface in contact with the first resin layer, and a core substrate of the surface conductor and the first resin layer. It is preferable to provide the first resin layer and the second resin layer with surface conductors and / or interlayer connection conductors that connect the surface conductors formed on the main surfaces in contact therewith.
  • the present invention is also directed to a method for manufacturing a multilayer substrate as described above.
  • the multilayer substrate manufacturing method of the present invention includes a step of preparing a core substrate, a step of forming a surface conductor on one main surface of the core substrate, a step of mounting a first mounting component on the surface conductor, A step of forming a first resin layer on the main surface of the core substrate so that the mounting component is embedded; and a second mounting component from the main surface facing the main surface of the first resin layer contacting the core substrate. Burying and forming a surface conductor connected to the second mounting component.
  • the first mounting component and the second mounting component it is preferable to mount the first mounting component and the second mounting component by different methods.
  • substrate of this invention includes the process of forming the interlayer connection conductor which connects the surface conductor formed in both the main surfaces of the 1st resin layer inside the 1st resin layer. .
  • the step of forming the interlayer connection conductor inside the first resin layer includes embedding the second mounting component in the first resin layer, It is preferably performed after curing.
  • the method for manufacturing a multilayer board according to the present invention includes a surface conductor and / or an interlayer connection conductor that connects an interlayer connection conductor formed inside the first resin layer and a surface conductor to which the second mounting component is connected. It is preferable to provide the process of forming.
  • the method for manufacturing a multilayer substrate of the present invention includes a step of forming an interlayer connection conductor and a surface conductor and / or an interlayer connection conductor formed in the first resin layer by plating.
  • the manufacturing method of the multilayer substrate of the present invention includes a step of forming the second resin layer on the main surface of the first resin layer that faces the main surface in contact with the core substrate.
  • the method for manufacturing a multilayer board according to the present invention includes a step of forming an interlayer connection conductor inside the second resin layer.
  • the interlayer connection conductor is formed so as to be connected to the second mounting component in the step of forming the interlayer connection conductor inside the second resin layer.
  • the multilayer substrate manufacturing method of the present invention includes a main surface having a bare chip terminal electrode in a step of preparing a bare chip as a second mounting component and a step of forming an interlayer connection conductor inside the second resin layer. It is preferable to form an interlayer connection conductor by forming an interlayer connection conductor hole at a position connected to the main surface opposite to, and filling the interlayer connection conductor hole with a heat conductive paste.
  • the method for manufacturing a multilayer substrate according to the present invention includes a step of forming a surface conductor on a main surface of the second resin layer opposite to the main surface in contact with the first resin layer, and the surface conductor and the first resin layer. It is preferable to include a step of forming a surface conductor and / or an interlayer connection conductor for connecting the surface conductor formed on the main surface in contact with the core substrate on the first resin layer and the second resin layer.
  • the method for manufacturing a multilayer substrate includes a step of preparing a core substrate having a surface conductor on at least one main surface, mounting a first mounting component on the surface conductor, and the surface conductor and / or the Forming a conductive post on the first mounting component; preparing a support having a surface conductor on one main surface; and mounting the second mounting component on the surface conductor formed on the support And a step of placing the support on the conductive post so that the surface conductor and / or the second mounting component formed on the support and the conductive post are connected to each other. And a step of filling a resin between the core substrate and the support to form a first resin layer, and a step of peeling the support from the first resin layer.
  • the method for manufacturing a multilayer board according to the present invention includes a step of preparing a core substrate having a surface conductor on at least one main surface, a step of mounting a first mounting component on the surface conductor, and a surface conductor on one main surface. And a second mounting component mounted on the surface conductor formed on the support, and the surface conductor and / or the second mounting component formed on the support. Forming a conductive post on the conductive post, and connecting the conductive post to the surface conductor and / or the first mounting component formed on the core substrate.
  • the first mounting component mounted on one main surface of the core substrate, and the second mounting component mounted on the main surface facing the main surface contacting the core substrate of the first resin layer are embedded in the first resin layer, the height of the multilayer substrate can be reduced.
  • mounting components can be mounted from different main surfaces in one layer called the first resin layer, the space inside the resin layer can be used effectively, and the degree of design freedom can be further increased. Furthermore, by using this space to arrange more mounting parts, a highly functional multilayer board is realized.
  • FIG. 1 is a schematic cross-sectional view showing a multilayer substrate according to a first embodiment of the present invention. It is a schematic sectional drawing which shows the other multilayer substrate based on the 1st Example of this invention. It is a schematic process drawing which shows the manufacturing method of the multilayer board
  • FIG. It is a schematic process diagram which shows the manufacturing method of the multilayer board
  • FIG. 1 is a schematic sectional view showing a multilayer substrate according to a first embodiment of the present invention.
  • the multilayer substrate 1 includes a ceramic multilayer substrate 2 as a core substrate and a first resin layer 12 formed on one main surface 3 of the ceramic multilayer substrate 2.
  • a resin substrate may be used as the core substrate.
  • the ceramic multilayer substrate 2 is formed by laminating a plurality of ceramic layers 2a to 2c.
  • a surface conductor 5 provided on the surface of each layer and an interlayer connection conductor 7 penetrating each layer in the thickness direction are formed.
  • Circuit elements such as capacitors and inductors can be formed inside the ceramic multilayer substrate 2 by wiring between the surface conductors 5 and the interlayer connection conductors 7.
  • a first mounting component 10 is mounted on the surface conductor 15 formed on the one main surface 3 of the ceramic multilayer substrate 2.
  • an active element such as a semiconductor device such as an IC or a passive element such as a chip resistor can be used.
  • a mounting method of the first mounting component 10 it may be mounted using solder or a conductive adhesive, or may be mounted by wire bonding.
  • a multilayer ceramic capacitor was used as the first mounting component 10 and was mounted on the surface conductor 15 by solder reflow.
  • the surface conductor 25 formed on the opposite main surface 13 of the ceramic multilayer substrate 2 may be used for connection to a mother board such as a printed circuit board (not shown) or may be used for mounting a mounting component.
  • a first resin layer 12 is formed on one main surface 3 of the ceramic multilayer substrate 2.
  • the first resin layer 12 is formed so that the first mounting component 10 is embedded. At this time, the first resin layer 12 may be formed so that a part of the first mounting component 10 is exposed.
  • a surface conductor 35a is formed on the main surface 23 of the first resin layer 12 facing the main surface 3 in contact with the ceramic multilayer substrate 2.
  • the second mounting component 20 is mounted on the surface conductor 35a.
  • various mounting components can be used similarly to the first mounting component 10.
  • the second mounting component 20 can be mounted by various methods in the same manner as the first mounting component 10.
  • a bare chip was used as the second mounting component 20, and this was mounted on the surface conductor 35a by wire bonding.
  • a surface conductor 35b for heat dissipation is formed on the main surface 20b opposite to the main surface 20a having the bare-chip terminal electrodes.
  • the surface conductors 35a and 35b are embedded in the first resin layer 12.
  • the multilayer substrate 1 includes the first mounting component 10 mounted on the surface conductor 15 formed on the main surface 3 in contact with the ceramic multilayer substrate 2 of the first resin layer 12, and the first resin layer 12.
  • a plurality of mounting components 10, 20 with the second mounting component 20 mounted on the surface conductor 35 a formed on the main surface 23 facing the main surface 3 in contact with the ceramic multilayer substrate 2 are the first resin layer 12.
  • the mounting components 10 and 20 can be mounted from both main surfaces of the first resin layer 12, the space inside the first resin layer 12 can be used effectively, and more mounting components than in the past can be used. 10 and 20 can be mounted, and the multi-layer substrate 1 can be highly functionalized. Moreover, since the space inside the 1st resin layer 12 can be used effectively, the freedom degree of design can be raised.
  • the third mounting component 30 is mounted at a position facing the thin second mounting component 20. May be.
  • the third mounting component 30 is mounted on the surface conductor 15 formed on the one main surface 3 of the ceramic multilayer substrate 2 and embedded in the first resin layer 12.
  • the third mounting component 30 may be mounted at a position facing the thin first mounting component 10.
  • the third mounting component 30 is mounted on the surface conductor 35 a formed on the main surface 23 of the first resin layer 12 that faces the main surface 3 that contacts the ceramic multilayer substrate 2, and is mounted on the first resin layer 12. Buried. Thereby, even when the thicknesses of the mounting components 10 and 20 are different, the space inside the first resin layer 12 can be used effectively.
  • an interlayer connection conductor 17 that connects the surface conductors 15 and 35 formed on both main surfaces of the first resin layer 12 is formed inside the first resin layer 12. Yes.
  • the surface conductor 35 a formed on the main surface 23 of the first resin layer 12 and the surface conductor 15 formed on the main surface 3 of the ceramic multilayer substrate 2 can be connected.
  • signal processing of the second mounting component 20 is performed.
  • the ceramic multilayer substrate 2 Since the ceramic multilayer substrate 2 is suitable for fine wiring, the wiring can be concentrated on the ceramic multilayer substrate 2 without complicating the wiring inside the first resin layer 12. This is effective in realizing a multi-layer board and a multi-layer module with a lower profile and higher function.
  • the surface conductor 35 a on which the second mounting component 20 is mounted is in contact only with the side surface portion of the interlayer connection conductor 17. Therefore, it is desirable to provide the surface conductor 35c that connects the surface conductor 35a and the interlayer connection conductor 17 because the connection reliability between the surface conductor 35a and the interlayer connection conductor 17 can be improved.
  • the surface conductor 35c further forms a resin layer having an interlayer connection conductor on the main surface 23 of the first resin layer, and this interlayer connection conductor reinforces the connection between the interlayer connection conductor 17 and the surface conductor 35a. May be.
  • the second resin layer 22 may be formed on the main surface 23 of the first resin layer 12. Thereby, wiring can be formed in the 2nd resin layer 22, and the multilayer substrate 11 made highly functional is realizable.
  • the second resin layer 22 can function as an insulating layer between the second mounting component 20 and the motherboard.
  • the fourth mounting component 40 may be mounted on the surface conductor 25 formed on the main surface 13 of the ceramic multilayer substrate 2. Thereby, the multilayer substrate 11 can be further enhanced in function.
  • an interlayer connection conductor 27 penetrating the second resin layer 22 in the thickness direction may be formed inside the second resin layer 22.
  • the second mounting component 20 is a bare chip, specifically, a bare IC as in this embodiment
  • the interlayer connection conductor 27 is connected to the main surface 20b facing the main surface 20a having the terminal electrode of the bare chip, Since the interlayer connection conductor 27 functions as a heat radiator and the heat generated from the bare chip can be released to the mother board, a multilayer board and a multilayer module having excellent heat dissipation can be realized.
  • a heat radiating surface conductor 35b for connection to the interlayer connection conductor 27 is formed on the main surface 20b of the bare chip.
  • the second resin layer 22 is preferably thinner than the first resin layer 12. This is because the multilayer substrate 11 can be reduced in height, and the shorter the interlayer connection conductor 27 serving as a heat radiator, the better the heat dissipation.
  • a surface conductor 45 is formed on the main surface 33 of the second resin layer 22, and the surface conductor 45 and the surface conductor 15 formed on the main surface 3 of the ceramic multilayer substrate 2 are connected.
  • An interlayer connection conductor 37 may be formed. This is for connecting the surface conductor 45 used for connection to the mother board and the surface conductor 15 formed on the main surface 3 of the ceramic multilayer board 2 when connecting the multilayer board 11 and the mother board.
  • the interlayer connection conductor 37 only needs to connect the surface conductor 45 and the surface conductor 15, and one interlayer connection conductor 37 that penetrates the first resin layer 12 and the second resin layer 22 in the thickness direction.
  • the interlayer connection conductor of the first resin layer 12 and the interlayer connection conductor of the second resin layer 22 may be connected by a surface conductor.
  • 3 to 9 are schematic process diagrams showing a method for manufacturing the multilayer substrate according to FIG.
  • a ceramic multilayer substrate 2 as a core substrate as shown in FIG. 3 is prepared.
  • the ceramic multilayer substrate 2 is produced as follows.
  • a ceramic slurry is applied onto the carrier film by a doctor blade method or the like to form a ceramic green sheet.
  • the ceramic slurry is obtained by appropriately mixing ceramic powder such as Al 2 O 3 and a binder, a dispersant, a solvent, and the like. This ceramic green sheet becomes the ceramic layers 2a to 2c after firing.
  • the ceramic green sheet is provided with a hole for an interlayer connection conductor that penetrates the ceramic green sheet in the thickness direction with a laser or a mold.
  • the interlayer connection conductor hole is filled with a conductive paste in which a metal powder mainly composed of Ag or Cu, a resin, a solvent, or the like is mixed.
  • the conductive paste filled in the hole for the interlayer connection conductor becomes the interlayer connection conductor 7 after firing.
  • the conductive paste is also applied on the ceramic green sheet so as to form a desired circuit pattern.
  • the conductive paste applied on the ceramic green sheet becomes the surface conductors 5, 15 and 25 after firing.
  • various methods such as screen printing, electrophotography, and ink jet method can be used.
  • a plurality of ceramic green sheets are laminated and pressure-bonded as necessary, and fired in a predetermined atmosphere of about 800 to 1000 ° C. to obtain a ceramic multilayer substrate 2 having an interlayer connection conductor 7 and surface conductors 5, 15, 25. .
  • the surface conductors 15 and 25 formed on both main surfaces 3 and 13 of the ceramic multilayer substrate 2 are plated with Ni, Au or the like as necessary.
  • the first mounting component 10 and the third mounting component 30 are mounted on the surface conductor 15 formed on the main surface 3 of the ceramic multilayer substrate 2.
  • solder is printed on the surface conductor 15, and after mounting the first mounting component 10 and the third mounting component 30, the solder is melted in a reflow furnace, and the first mounting component 10 and The third mounting component 30 and the surface conductor 15 were fixed.
  • the first mounting component 10 and the third mounting component 30 may be mounted on the surface conductor 15 by wire bonding. However, it is desirable to mount the first mounting component 10 and the third mounting component 30 by the same mounting method.
  • the fourth mounting component 40 may be mounted on the surface conductor 25 formed on the opposite main surface 13 of the ceramic multilayer substrate 2.
  • a semi-cured first resin layer 12 is formed on the main surface 3 of the ceramic multilayer substrate 2.
  • the first resin layer 12 is formed to a thickness such that the first mounting component 10 and the third mounting component 30 are embedded.
  • a resin layer may be formed on the main surface 13 of the ceramic multilayer substrate 2 so as to cover the fourth mounting component 40.
  • the semi-cured resin layer refers to a B stage state or a prepreg.
  • the first resin layer 12 it is possible to use epoxy, phenol, a mixture of an inorganic filler such as cyanate thermosetting resin and Al 2 O 3, such as, SiO 2, TiO 2. These mixtures are formed as a semi-cured resin sheet and laminated on the main surface 3 of the ceramic multilayer substrate 2.
  • an inorganic filler such as cyanate thermosetting resin and Al 2 O 3, such as, SiO 2, TiO 2.
  • the second mounting component 20 is embedded in the main surface 23 of the first resin layer 12 facing the main surface 13 of the ceramic multilayer substrate 2 to form a surface conductor 35a on which the second mounting component is mounted. To do.
  • a copper foil patterned to form surface conductors 35a and 35b is formed on a carrier film 8 such as a PET film by a method such as pasting.
  • the bare chip which is the 2nd mounting components 20 is mounted on the copper foil used as the surface conductor 35a by wire bonding.
  • a copper foil serving as a heat dissipating surface conductor 35b is formed on the main surface 20b opposite to the main surface 20a having the bare-chip terminal electrodes.
  • the carrier film 8 is laminated and pressure-bonded to the main surface 23 of the first resin layer 12 in a semi-cured state
  • the carrier film is peeled off.
  • the second mounting component 20 is embedded in the first resin layer 12, and the patterned copper foil is transferred to the main surface 23 of the first resin layer 12 to form the surface conductor 35a.
  • the step of embedding the second mounting component 20 in the first resin layer 12 and the step of forming the surface conductor 35a on which the second mounting component 20 is mounted are not necessarily performed simultaneously.
  • the surface conductors 35a and 35b may be formed after the second mounting component 20 is formed on the carrier film 8 with an adhesive or the like, embedded in the first resin layer 12, and the carrier film 8 is peeled off. .
  • the first mounting component 10 to be mounted by solder reflow and the second mounting component 20 to be mounted by wire bonding are mounted from different main surfaces 3 and 23 of the first resin layer 12.
  • mounting components are mounted from both main surfaces of the first resin layer in this way, it is not necessary to form a plurality of resin layers when mounting components having different mounting methods, and the multilayer substrate 11 can be further reduced. Can be turned upside down.
  • the multilayer substrate 11 is heat-treated, the thermosetting resin contained in the resin sheet is cured, and the first resin layer 12 that has been in a semi-cured state is cured.
  • an interlayer connection hole 17a is formed by a laser or the like.
  • the interlayer connection conductor hole 17a may be formed when the first resin layer 12 is in a semi-cured state, but is preferably formed after the first resin layer 12 is cured. In the case of the semi-cured state, the diameter of the hole may be larger than a desired size when forming the interlayer connection conductor hole 17a, and the hole may be deformed at the time of curing.
  • the interlayer connection conductor hole 17 a is formed on the surface conductor 15 formed on the main surface 3 of the ceramic multilayer substrate 2 and the main surface 23 of the first resin layer 12, and is connected to the second mounting component 20. It is formed so that it can be connected to the surface conductor 35a.
  • the interlayer connection conductor is formed by filling the interlayer connection conductor hole 17a with a conductive paste by screen printing or the like.
  • a conductive paste a mixture of metal particles such as Ag and Cu and a thermosetting resin such as epoxy, phenol and cyanate can be used.
  • the multilayer substrate 11 is heated to cure the thermosetting resin contained in the interlayer connection conductor.
  • the interlayer connection conductor formed in the surface conductor 35a and the first resin layer is formed. Means contact only on the side surface, and there is a risk that connection reliability is weak. Therefore, as shown in FIG. 5, it is preferable that a surface conductor 35 c for connecting the surface conductor 35 a and the interlayer connection conductor 17 is further formed on the main surface 23 of the first resin layer 12.
  • the interlayer connection conductor 17 and the surface conductor 35c are formed by plating, they can be formed at the same time, so that the manufacturing process can be facilitated.
  • a resin layer having an interlayer connection conductor may be further formed on the main surface 23 of the first resin layer, and the connection between the interlayer connection conductor 17 and the surface conductor 35a may be reinforced by this interlayer connection conductor.
  • the multilayer substrate 11 and the multilayer module that perform the signal processing of the second mounting component 20 connected to the surface conductor 35a formed on the main surface 23 of the first resin layer 12 by the ceramic multilayer substrate 2 are provided. Can be manufactured.
  • an interlayer connection conductor 17 may be formed in the first resin layer 12 before the second mounting component 20 is embedded in the first resin layer 12.
  • the surface conductor 35a and the interlayer connection conductor 17 are connected not only on the side surface but also on the main surface. Therefore, there is no fear that these connection reliability is weak, which is preferable in that it is not necessary to form a surface conductor or an interlayer connection conductor to reinforce the connection.
  • an interlayer connection conductor hole for forming the interlayer connection conductor 17 is formed in the semi-cured first resin layer 12. This is because the second mounting component 20 cannot be embedded in the first resin layer 12 after curing.
  • the interlayer connection conductor 17 may be formed at the stage of the resin sheet before lamination.
  • the resin sheet 12 a may be laminated on the main surface 3 of the ceramic multilayer substrate 2 after the second mounting component 20 is embedded in the resin sheet 12 a.
  • the first resin layer 12 may be formed by making the mixture of the thermosetting resin and the inorganic filler described above into a paste and dropping it on the main surface 3 of the ceramic multilayer substrate 2.
  • the second resin layer 22 is formed on the main surface 23 of the first resin layer 12 facing the main surface 3 in contact with the ceramic multilayer substrate 2.
  • a semi-cured resin sheet can be used in the same manner as the first resin layer 12. Specifically, similarly to the first resin layer 12, a second resin layer 22 is obtained by laminating a semi-cured resin sheet on the main surface 23 of the first resin layer 12, and then curing the resin sheet. Form.
  • the second resin layer 22 thinner than the first resin layer 12 in order to reduce the height of the multilayer substrate 11 and to dissipate heat from the second mounting component 20 described later.
  • interlayer connection conductors 27 and 37 are also formed inside the semi-cured second resin layer 22.
  • the interlayer connection conductor 27 is located at a position where it can be connected to the surface conductor 35b formed on the main surface 20b opposite to the main surface 20a having the terminal electrode of the bare chip that is the second mounting component 20. 22 is formed so as to penetrate in the thickness direction.
  • the interlayer connection conductor 37 penetrates the second resin layer 22 and the first resin layer 12 in the thickness direction at a position connected to the surface conductor 15 formed on the main surface 3 of the ceramic multilayer substrate 2. To form.
  • the semi-cured second resin layer 22 is formed on the main surface 23 of the first resin layer 12.
  • the interlayer connecting conductor 27 penetrates the semi-cured second resin layer 22 in the thickness direction, and the interlayer connecting conductor 37 is cured with the semi-cured second resin layer 22.
  • a hole for an interlayer connection conductor is formed by a laser or the like so as to penetrate through the first resin layer 12 in the thickness direction.
  • the interlayer connection conductor hole to be the interlayer connection conductor 27 is filled with a heat conductive paste
  • the interlayer connection conductor hole to be the interlayer connection conductor 37 is filled with a conductive paste by a method such as screen printing.
  • a conductive paste can be used for a heat conductive paste.
  • a copper foil patterned to form the surface conductor 45 is formed on the carrier film 8, and this is laminated and pressure-bonded to the main surface 33 of the second resin layer 22, and the carrier film is peeled off.
  • the surface conductor 45 is formed on the main surface 33 of the second resin layer 22.
  • the second resin layer 22 in a semi-cured state and the heat conductive paste and the conductive paste filled in the hole for the interlayer connection conductor are heated to cure them, and the second resin layer 22 in the cured state is cured.
  • the multilayer connection board 11 is produced by forming the interlayer connection conductors 27 and 37. Note that heat treatment is preferably performed by thermocompression when forming the surface conductor 45 because the manufacturing process can be simplified.
  • the interlayer connection conductor 27 manufactured in this way is used as a heat radiating body for releasing heat generated from the bare chip to the motherboard.
  • the second resin layer 22 is preferably formed thinner than the first resin layer 12. This is because the interlayer connection conductor 27 can be shortened to further improve the heat dissipation.
  • the interlayer connection conductor 37 connects the surface conductor 45 used for connection with the motherboard and the surface conductor 15 formed on the main surface 3 of the ceramic multilayer substrate 2 when connecting the multilayer substrate 11 and the motherboard. Used for. Therefore, the interlayer connection conductor 37 only needs to connect the surface conductor 45 and the surface conductor 15. For example, an interlayer connection conductor is formed in the first resin layer 12 at a position where it can be connected to the surface conductor 15, and the interlayer connection conductor formed in the second resin layer 22 at a position different from this is connected to the first resin layer 12.
  • the surface conductor 45 may be connected to the surface conductor formed on the main surface 23 of the resin layer 12.
  • the interlayer connection conductor hole formed inside the second resin layer 22 may be formed in the state of the resin sheet before lamination, as in the case of the first resin layer 12.
  • the hole for the interlayer connection conductor may be formed.
  • the copper foil used as the surface conductor 45 cannot be adhere
  • the second resin layer 22 may be formed by dropping a paste-like resin onto the main surface 23 of the first resin layer 12 and curing it. Good.
  • a single multilayer substrate is illustrated, but actually, a plurality of multilayer substrates are produced as a collective substrate, and this is divided by a chocolate break method or a dicer cutting method. As a result, individual multilayer substrates can be obtained.
  • a ceramic multilayer substrate 2 as a core substrate is prepared as in the case of the example of the manufacturing method.
  • the surface conductor 15 of the conductive paste described above is formed on at least a necessary portion of the main surface 3.
  • another surface mounting component or the like may be mounted on the opposite main surface 13 of the ceramic multilayer substrate 2
  • the fifth and sixth mounting components 50, 60 are mounted on the opposite main surface 13.
  • a plurality of conductive posts 70 are formed as described later.
  • a copper foil 80 is disposed above the opposite main surface 13 (downward on the paper surface), and the copper foil 80 functions as a shield electrode.
  • the first mounting component (on the surface conductor 15 at the component mounting position on the one main surface 3 of the ceramic multilayer substrate 2 is mounted by the process of mounting the component on the saddle core substrate and forming the conductive post in FIG.
  • a capacitor 10 is mounted.
  • the conductive posts 90 are formed on the corresponding surface conductor 15 and the upper surface of the electrode of the first mounting component 10.
  • the conductive posts 70 and 90 discharge a conductive solution containing Cu or Ag nanoparticles from a nozzle discharge port by a known inkjet method, jet dispenser method, or the like, and the nanoparticles are placed on the surface conductor 15 or the like.
  • a conductive solution containing Cu or Ag nanoparticles from a nozzle discharge port by a known inkjet method, jet dispenser method, or the like, and the nanoparticles are placed on the surface conductor 15 or the like.
  • It can also be formed by soldering a metal block (small piece) on the surface conductor 15 or the like.
  • a thin plate-like support body 100 made of a transfer plate such as a PET film or SUS is prepared by the support body preparation step of FIG. 10C, and solder is formed on one main surface (upper surface) 101 of the support body 100.
  • a plurality of surface conductors 110 are formed by printing or the like.
  • one or a plurality of second mounting components 20 are mounted on the surface conductor 110 at the mounting position of the support 100 by the component mounting process of the support in FIG. In FIG. 10D, two second mounting components 20 are mounted. At this time, the second mounting component 20 can be mounted on the surface conductor 110 not by wire bonding but by normal solder bump mounting or the like.
  • the required surface conductor 110 of the support 100 is connected to each conductive post 90 of the ceramic multilayer substrate 2 by the support placement step of FIG.
  • the support body 100 is pushed down to bring the surface conductors 110 of the support body 100 into contact with the end faces of the conductive posts 90 of the ceramic multilayer substrate 2.
  • the whole is heated and each conductive post 90 and each surface conductor 110 are fixed by soldering.
  • the conductive post 90 is formed by depositing the nanoparticles, the conductive post 90 is not completely cured when the conductive post 90 is formed, and the ceramic multilayer substrate is formed by the support mounting process of FIG.
  • the conductive post 90 and the surface conductor 110 can be fixed and electrically connected by being completely cured.
  • the conductive post 90 is made of a metal block, the conductive post 90 and the surface conductor 110 can be fixed and electrically connected using cream solder.
  • the first resin layer 120 corresponding to the resin layer 12 of the first embodiment is filled by filling the resin between the support 100 and the ceramic multilayer substrate 2.
  • the resin is filled between the ceramic multilayer substrate 2 and the copper foil 80 to form the third resin layer 130.
  • the resin layers 120 and 130 can be formed, for example, by pouring a liquid resin between the support 100 and the ceramic multilayer substrate 2 and between the ceramic multilayer substrate 2 and the copper foil 80.
  • a frame is formed around the support 100 and the ceramic multilayer substrate 2 to prevent the resin from flowing out.
  • a frame is also formed around the ceramic multilayer substrate 2 and the copper foil 80 to prevent the resin from flowing out.
  • the liquid resin is cured to form the resin layers 120 and 130.
  • an epoxy resin is used as the liquid resin.
  • the support body 100 is peeled off from the first resin layer 120 by the peeling step shown in FIG. At this time, the surface conductor 110 formed on the support 100 is transferred to the first resin layer 120.
  • the multilayer substrate 140 can be manufactured by forming the nanoparticle conductive posts 70 and 90 in place of the interlayer connection conductors 7, 17 and 27 of the first embodiment.
  • the multilayer substrates 1 and 11 can be manufactured by replacing all or part of the interlayer connection conductors 7, 17, and 27 of the multilayer substrates 1 and 11 of the first embodiment with conductive posts.
  • the conductive posts 90 are formed on the ceramic multilayer substrate 2 side (core substrate side) by the process of mounting the components on the core substrate and forming the conductive posts in FIG.
  • the sex post 90 may be formed on the support 100 side.
  • FIG. 11 shows a manufacturing method for forming the conductive posts 90 on the support 100 side
  • FIG. 11 (a) shows the same core substrate preparation process as FIG. 10 (a).
  • FIG. 11B is a component mounting process on the core substrate in place of the process of FIG. 10B.
  • the first mounting component 10 is placed on the surface conductor 15 at the component mounting position of the ceramic multilayer substrate 2.
  • the conductive post 90 is not formed.
  • FIG. 11 (c) is the same support body preparation step as FIG. 10 (c)
  • FIG. 11 (d) is a part mounting and conductive post formation step instead of the process of FIG. 10 (d).
  • the second mounting component 20 is mounted and each conductive post 90 is formed on the corresponding surface conductor 110.
  • FIG. 11 shows a manufacturing method for forming the conductive posts 90 on the support 100 side
  • FIG. 11 (a) shows the same core substrate preparation process as FIG. 10 (a).
  • FIG. 11B is a component mounting process on the core substrate in place of the process of FIG
  • FIGS. 11E shows a support placement process similar to FIG. 10E.
  • each conductive post 90 of the support 100 is connected to the predetermined surface conductor 15 and the first surface of the ceramic multilayer substrate 2.
  • FIGS. 11 (f) and 11 (g) are the same resin filling process and peeling process as FIGS. 10 (f) and 10 (g).
  • the resin layers 120 and 130 are formed, the support 100 is peeled off, and the multilayer substrate 140 is formed. Form.
  • the multilayer substrate 140 can be manufactured by forming the conductive posts 90 on the support 100 side by the process of FIG.
  • the present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit thereof, for example, the multilayer of the second embodiment.
  • the formation of the conductive posts 90 on the core substrate side and the formation on the support 100 side are used together, and some of the conductive posts 90 are formed on the ceramic multilayer substrate 2 side, and the rest
  • the conductive post 90 may be formed on the support 100 side.
  • the conductive post 90 on the core substrate side may be entirely formed on the surface conductor 15 or the electrode of the first mounting component 10, and the conductive post 90 on the support body 100 side is all or part of the conductive post 90. It may be formed on the electrodes of the second mounting component 20.
  • the present invention is a multilayer substrate composed of a core substrate and a resin layer, and in particular, can be applied to various multilayer substrates in which mounting components are built in the resin layer, and methods for manufacturing the same.

Abstract

Disclosed is a multilayer substrate having a lower height, an improved function, and a higher degree of freedom in design.  Also disclosed is a method for manufacturing the multilayer substrate.  Specifically disclosed are a multilayer substrate (11) comprising a core substrate (2) and a first resin layer (12) formed on one major surface (3) of the core substrate (2), and a method for manufacturing the multilayer substrate (11).  A first component (10) is mounted on a surface conductor (15) which is formed on a major surface (3) of the first resin layer (12), said major surface (3) being in contact with the core substrate (2).  A second component (20) is mounted on a surface conductor (35a) which is formed on a major surface (23) of the first resin layer (12), said major surface (23) being on the reverse side of the major surface (3) that is in contact with the core substrate (2).  Consequently, the mounted first component (10) and the mounted second component (20) are embedded in the first resin layer (12), thereby producing the multilayer substrate (11).

Description

多層基板およびその製造方法Multilayer substrate and manufacturing method thereof
 本発明は、コア基板と樹脂層からなる多層基板およびその製造方法に関し、特に、樹脂層に実装部品が内蔵された多層基板に関する。 The present invention relates to a multilayer substrate composed of a core substrate and a resin layer and a method for manufacturing the same, and more particularly to a multilayer substrate in which a mounting component is built in the resin layer.
 近年、電子機器の低背化、高機能化に伴い、電子機器に用いられる多層基板についても低背化、高機能化が求められ、これに対応する種々の多層基板が開発されている。 In recent years, as electronic devices have been reduced in height and functionality, multilayer substrates used in electronic devices have been required to be reduced in height and functionality, and various multilayer substrates corresponding to this have been developed.
 たとえば、特許文献1に記載の多層基板は、セラミック多層基板の一方主面に樹脂層を形成し、樹脂層の内部に実装部品を実装することによって基板の低背化を図っている。特許文献1によれば、熱や湿気に強く耐候性に優れているというセラミック多層基板の長所と、機械的強度が強く、かつ、誘電率が低く実装部品間の信号伝搬遅延が小さいという樹脂基板の長所との両方を兼ね備えた多層基板が実現できる。 For example, in the multilayer substrate described in Patent Document 1, a resin layer is formed on one main surface of the ceramic multilayer substrate, and a mounting component is mounted inside the resin layer to reduce the height of the substrate. According to Patent Document 1, the advantage of a ceramic multilayer substrate that is strong against heat and moisture and excellent weather resistance, and the resin substrate that has high mechanical strength and low dielectric constant and low signal propagation delay between mounted components A multilayer substrate having both of the advantages of the above can be realized.
特開2003-188538JP 2003-188538 A
 しかし、従来の多層基板は、セラミック多層基板のようなコア基板の主面上に実装部品が実装されている。そのため、実装部品が埋設されるようにコア基板の主面上に樹脂層を形成すると、樹脂層内部に実装部品を実装できないスペースが生じることがある。たとえば、コア基板の主面に複数の実装部品を実装した場合には、各実装部品の厚み差によって樹脂層内部にスペースが生じることがある。そのため、従来の多層基板では、さらに実装部品を実装したい場合、実装面積を大きくするか、特許文献1に記載のように、樹脂層を複数形成し、各層に実装部品を実装する必要があり、多層基板の小型化と低背化を実現することができなかった。 However, in the conventional multilayer board, mounting components are mounted on the main surface of a core board such as a ceramic multilayer board. For this reason, when the resin layer is formed on the main surface of the core substrate so that the mounted component is embedded, there may be a space where the mounted component cannot be mounted inside the resin layer. For example, when a plurality of mounting components are mounted on the main surface of the core substrate, a space may be generated inside the resin layer due to a thickness difference between the mounting components. Therefore, in the conventional multilayer substrate, if it is desired to further mount a mounting component, it is necessary to increase the mounting area or to form a plurality of resin layers as described in Patent Document 1, and to mount the mounting component on each layer, Miniaturization and low profile of the multilayer substrate could not be realized.
 そこで、本発明の目的は、低背化、高機能化するとともに、樹脂層内部のスペースを有効に利用し、より設計自由度が高い多層基板およびその製造方法を提供することにある。 Accordingly, an object of the present invention is to provide a multilayer substrate and a method for manufacturing the same that have a low profile and high functionality, and that make effective use of the space inside the resin layer and have a higher degree of design freedom.
 上記問題点を解決するために、本発明の多層基板は、コア基板と、コア基板の一方主面に形成された第1の樹脂層と、第1の樹脂層の両主面に形成された複数の表面導体と、第1の樹脂層のコア基板に接する主面に形成された表面導体に実装された第1の実装部品と、第1の樹脂層のコア基板に接する主面に対向する主面に形成された表面導体に実装された第2の実装部品と、を備え、第1の実装部品と第2の実装部品とは、第1の樹脂層に埋設されている。 In order to solve the above problems, the multilayer substrate of the present invention is formed on both main surfaces of the core substrate, the first resin layer formed on one main surface of the core substrate, and the first resin layer. A plurality of surface conductors, a first mounting component mounted on a surface conductor formed on a main surface of the first resin layer in contact with the core substrate, and a main surface of the first resin layer in contact with the core substrate. A second mounting component mounted on a surface conductor formed on the main surface, and the first mounting component and the second mounting component are embedded in the first resin layer.
 また、本発明の多層基板は、第1の実装部品と第2の実装部品との厚みが異なり、厚みの薄い第1の実装部品または第2の実装部品に対向する位置に設けられ、第1の樹脂層に埋設された第3の実装部品を備えることが好ましい。 In the multilayer board of the present invention, the first mounting component and the second mounting component have different thicknesses, and are provided at positions facing the first mounting component or the second mounting component with a small thickness. It is preferable to include a third mounting component embedded in the resin layer.
 また、本発明の多層基板は、第1の樹脂層の内部に形成され、第1の樹脂層の両主面に形成された表面導体を接続する層間接続導体を備えることが好ましい。 The multilayer substrate of the present invention preferably includes an interlayer connection conductor that is formed inside the first resin layer and connects the surface conductors formed on both main surfaces of the first resin layer.
 また、本発明の多層基板は、層間接続導体と第1の樹脂層のコア基板に接する主面に対向する主面に形成された表面導体とを接続する表面導体及び/又は層間接続導体を備えることが好ましい。 In addition, the multilayer substrate of the present invention includes a surface conductor and / or an interlayer connection conductor that connects the interlayer connection conductor and the surface conductor formed on the main surface facing the main surface contacting the core substrate of the first resin layer. It is preferable.
 また、本発明の多層基板は、第1の樹脂層のコア基板に接する主面に対向する主面に形成された第2の樹脂層を備えることが好ましい。 In addition, the multilayer substrate of the present invention preferably includes a second resin layer formed on a main surface facing the main surface of the first resin layer that contacts the core substrate.
 また、本発明の多層基板は、第2の樹脂層の内部に、第2の実装部品に接続する層間接続導体が形成されていることが好ましい。 In the multilayer substrate of the present invention, it is preferable that an interlayer connection conductor connected to the second mounting component is formed inside the second resin layer.
 また、本発明の多層基板は、第2の実装部品はベアチップであり、第2の樹脂層の内部に形成された層間接続導体が、ベアチップの端子電極を有する主面に対向する主面に接続された放熱体であることが好ましい。 In the multilayer substrate of the present invention, the second mounting component is a bare chip, and the interlayer connection conductor formed inside the second resin layer is connected to the main surface facing the main surface having the terminal electrode of the bare chip. It is preferable that the heat radiator is made.
 また、本発明の多層基板は、第2の樹脂層が第1の樹脂層よりも薄いことが好ましい。 In the multilayer substrate of the present invention, it is preferable that the second resin layer is thinner than the first resin layer.
 また、本発明の多層基板は、第2の樹脂層の第1の樹脂層に接する主面に対向する主面に形成された表面導体と、この表面導体と第1の樹脂層のコア基板に接する主面に形成された表面導体とを接続する表面導体及び/又は層間接続導体を第1の樹脂層と第2の樹脂層とに備えることが好ましい。 In addition, the multilayer substrate of the present invention includes a surface conductor formed on a main surface of the second resin layer that is opposed to the main surface in contact with the first resin layer, and a core substrate of the surface conductor and the first resin layer. It is preferable to provide the first resin layer and the second resin layer with surface conductors and / or interlayer connection conductors that connect the surface conductors formed on the main surfaces in contact therewith.
 また、本発明は、上述のような多層基板を製造する方法にも向けられる。 The present invention is also directed to a method for manufacturing a multilayer substrate as described above.
 本発明の多層基板の製造方法は、コア基板を準備する工程と、コア基板の一方主面に表面導体を形成する工程と、表面導体に第1の実装部品を実装する工程と、第1の実装部品が埋設されるように、コア基板の主面に第1の樹脂層を形成する工程と、第1の樹脂層のコア基板に接する主面に対向する主面から第2の実装部品を埋設し、第2の実装部品に接続される表面導体を形成する工程と、を備える。 The multilayer substrate manufacturing method of the present invention includes a step of preparing a core substrate, a step of forming a surface conductor on one main surface of the core substrate, a step of mounting a first mounting component on the surface conductor, A step of forming a first resin layer on the main surface of the core substrate so that the mounting component is embedded; and a second mounting component from the main surface facing the main surface of the first resin layer contacting the core substrate. Burying and forming a surface conductor connected to the second mounting component.
 また、本発明の多層基板の製造方法は、第1の実装部品と第2の実装部品とを異なる方法によって実装することが好ましい。 Further, in the method for manufacturing a multilayer board according to the present invention, it is preferable to mount the first mounting component and the second mounting component by different methods.
 また、本発明の多層基板の製造方法は、第1の樹脂層の両主面に形成された表面導体を接続する層間接続導体を第1の樹脂層の内部に形成する工程を備えることが好ましい。 Moreover, it is preferable that the manufacturing method of the multilayer board | substrate of this invention includes the process of forming the interlayer connection conductor which connects the surface conductor formed in both the main surfaces of the 1st resin layer inside the 1st resin layer. .
 また、本発明の多層基板の製造方法は、第1の樹脂層の内部に層間接続導体を形成する工程が、第2の実装部品を第1の樹脂層に埋設し、第1の樹脂層を硬化させた後に行うことが好ましい。 In the multilayer substrate manufacturing method of the present invention, the step of forming the interlayer connection conductor inside the first resin layer includes embedding the second mounting component in the first resin layer, It is preferably performed after curing.
 また、本発明の多層基板の製造方法は、第1の樹脂層の内部に形成された層間接続導体と第2の実装部品が接続された表面導体とを接続する表面導体及び/又は層間接続導体を形成する工程を備えることが好ましい。 In addition, the method for manufacturing a multilayer board according to the present invention includes a surface conductor and / or an interlayer connection conductor that connects an interlayer connection conductor formed inside the first resin layer and a surface conductor to which the second mounting component is connected. It is preferable to provide the process of forming.
 また、本発明の多層基板の製造方法は、第1の樹脂層の内部に形成された層間接続導体と表面導体及び/又は層間接続導体とをめっきにより形成する工程を備えることが好ましい。 Moreover, it is preferable that the method for manufacturing a multilayer substrate of the present invention includes a step of forming an interlayer connection conductor and a surface conductor and / or an interlayer connection conductor formed in the first resin layer by plating.
 また、本発明の多層基板の製造方法は、第1の樹脂層のコア基板に接する主面に対向する主面に第2の樹脂層を形成する工程を備えることが好ましい。 Moreover, it is preferable that the manufacturing method of the multilayer substrate of the present invention includes a step of forming the second resin layer on the main surface of the first resin layer that faces the main surface in contact with the core substrate.
 また、本発明の多層基板の製造方法は、第2の樹脂層の内部に層間接続導体を形成する工程を備えることが好ましい。 Moreover, it is preferable that the method for manufacturing a multilayer board according to the present invention includes a step of forming an interlayer connection conductor inside the second resin layer.
 また、本発明の多層基板の製造方法は、第2の樹脂層の内部に層間接続導体を形成する工程において、第2の実装部品に接続されるように層間接続導体を形成することが好ましい。 In the method for manufacturing a multilayer board according to the present invention, it is preferable that the interlayer connection conductor is formed so as to be connected to the second mounting component in the step of forming the interlayer connection conductor inside the second resin layer.
 また、本発明の多層基板の製造方法は、第2の実装部品としてベアチップを準備する工程と、第2の樹脂層の内部に層間接続導体を形成する工程において、ベアチップの端子電極を有する主面に対向する主面に接続される位置に層間接続導体用孔を形成し、層間接続導体用孔に熱伝導性ペーストを充填することによって層間接続導体を形成することが好ましい。 The multilayer substrate manufacturing method of the present invention includes a main surface having a bare chip terminal electrode in a step of preparing a bare chip as a second mounting component and a step of forming an interlayer connection conductor inside the second resin layer. It is preferable to form an interlayer connection conductor by forming an interlayer connection conductor hole at a position connected to the main surface opposite to, and filling the interlayer connection conductor hole with a heat conductive paste.
 また、本発明の多層基板の製造方法は、第2の樹脂層の第1の樹脂層に接する主面に対向する主面に表面導体を形成する工程と、この表面導体と第1の樹脂層のコア基板に接する主面に形成された表面導体とを接続する表面導体及び/又は層間接続導体を第1の樹脂層と第2の樹脂層とに形成する工程とを備えることが好ましい。 In addition, the method for manufacturing a multilayer substrate according to the present invention includes a step of forming a surface conductor on a main surface of the second resin layer opposite to the main surface in contact with the first resin layer, and the surface conductor and the first resin layer. It is preferable to include a step of forming a surface conductor and / or an interlayer connection conductor for connecting the surface conductor formed on the main surface in contact with the core substrate on the first resin layer and the second resin layer.
 さらに、本発明の多層基板の製造方法は、少なくとも一方主面に表面導体を有するコア基板を準備する工程と、前記表面導体に第1の実装部品を実装するとともに、前記表面導体及び/又は前記第1の実装部品上に導電性ポストを形成する工程と、一方主面に表面導体を有する支持体を準備する工程と、前記支持体上に形成された表面導体に第2の実装部品を実装する工程と、前記支持体上に形成された表面導体及び/又は前記第2の実装部品と前記導電性ポストとが接続されるように、前記導電性ポスト上に前記支持体を載置する工程と、前記コア基板と前記支持体間に樹脂を充填して、第1の樹脂層を形成する工程と、前記支持体を前記第1の樹脂層から剥離する工程と、を備える。 Furthermore, the method for manufacturing a multilayer substrate according to the present invention includes a step of preparing a core substrate having a surface conductor on at least one main surface, mounting a first mounting component on the surface conductor, and the surface conductor and / or the Forming a conductive post on the first mounting component; preparing a support having a surface conductor on one main surface; and mounting the second mounting component on the surface conductor formed on the support And a step of placing the support on the conductive post so that the surface conductor and / or the second mounting component formed on the support and the conductive post are connected to each other. And a step of filling a resin between the core substrate and the support to form a first resin layer, and a step of peeling the support from the first resin layer.
 また、本発明の多層基板の製造方法は、少なくとも一方主面に表面導体を有するコア基板を準備する工程と、前記表面導体に第1の実装部品を実装する工程と、一方主面に表面導体を有する支持体を準備する工程と、前記支持体上に形成された表面導体に第2の実装部品を実装するとともに、前記支持体上に形成された表面導体及び/又は前記第2の実装部品上に導電性ポストを形成する工程と、前記コア基板上に形成された表面導体及び/又は前記第1の実装部品と前記導電性ポストとが接続されるように、前記導電性ポスト上に前記コア基板を載置する工程と、前記コア基板と前記支持体間に樹脂を充填して、第1の樹脂層を形成する工程と、前記支持体を前記第1の樹脂層から剥離する工程と、を備える。 The method for manufacturing a multilayer board according to the present invention includes a step of preparing a core substrate having a surface conductor on at least one main surface, a step of mounting a first mounting component on the surface conductor, and a surface conductor on one main surface. And a second mounting component mounted on the surface conductor formed on the support, and the surface conductor and / or the second mounting component formed on the support. Forming a conductive post on the conductive post, and connecting the conductive post to the surface conductor and / or the first mounting component formed on the core substrate. A step of placing a core substrate; a step of filling a resin between the core substrate and the support to form a first resin layer; and a step of peeling the support from the first resin layer. .
 本発明によれば、コア基板の一方主面に実装された第1の実装部品と、第1の樹脂層のコア基板に接する主面に対向する主面に実装された第2の実装部品とが、いずれも第1の樹脂層に埋設されているため、多層基板として低背化を図ることができる。また、第1の樹脂層という1層の中に異なる主面から実装部品を実装することができるため、樹脂層内部のスペースを有効に利用でき、より設計自由度を高めることができる。さらに、このスペースを利用してより多くの実装部品を配置することで、高機能化した多層基板が実現する。 According to the present invention, the first mounting component mounted on one main surface of the core substrate, and the second mounting component mounted on the main surface facing the main surface contacting the core substrate of the first resin layer, However, since both are embedded in the first resin layer, the height of the multilayer substrate can be reduced. In addition, since mounting components can be mounted from different main surfaces in one layer called the first resin layer, the space inside the resin layer can be used effectively, and the degree of design freedom can be further increased. Furthermore, by using this space to arrange more mounting parts, a highly functional multilayer board is realized.
本発明の第1の実施例に係る多層基板を示す概略断面図である。1 is a schematic cross-sectional view showing a multilayer substrate according to a first embodiment of the present invention. 本発明の第1の実施例に係る他の多層基板を示す概略断面図である。It is a schematic sectional drawing which shows the other multilayer substrate based on the 1st Example of this invention. 本発明の第1の実施例に係る多層基板の製造方法を示す概略工程図であり、コア基板の主面に第1の樹脂層を形成した後、第2の実装部品を埋設する工程を示す図である。It is a schematic process drawing which shows the manufacturing method of the multilayer board | substrate which concerns on 1st Example of this invention, and shows the process of embedding the 2nd mounting component after forming the 1st resin layer in the main surface of a core board | substrate. FIG. 本発明の第1の実施例に係る多層基板の製造方法を示す概略工程図であり、第1の樹脂層の内部に層間接続導体用孔を形成する工程を示す図である。It is a schematic process diagram which shows the manufacturing method of the multilayer board | substrate which concerns on the 1st Example of this invention, and is a figure which shows the process of forming the hole for interlayer connection conductors in the inside of the 1st resin layer. 本発明の第1の実施例に係る多層基板の製造方法を示す概略工程図であり、第1の樹脂層の内部に形成された層間接続導体と第2の実装部品が実装された表面導体とを接続する表面導体を形成する工程を示す図である。It is a schematic process drawing which shows the manufacturing method of the multilayer board | substrate which concerns on the 1st Example of this invention, The surface connection by which the interlayer connection conductor formed in the inside of the 1st resin layer and the 2nd mounting component were mounted, It is a figure which shows the process of forming the surface conductor which connects. 本発明の第1の実施例に係る多層基板の製造方法を示す概略工程図であり、第1の樹脂層の内部に層間接続導体を形成する他の方法を示す図である。It is a schematic process drawing which shows the manufacturing method of the multilayer board | substrate which concerns on the 1st Example of this invention, and is a figure which shows the other method of forming an interlayer connection conductor inside the 1st resin layer. 本発明の第1の実施例に係る多層基板の製造方法を示す概略工程図であり、第1の樹脂層の内部に層間接続導体を形成する他の方法を示す図である。It is a schematic process drawing which shows the manufacturing method of the multilayer board | substrate which concerns on the 1st Example of this invention, and is a figure which shows the other method of forming an interlayer connection conductor inside the 1st resin layer. 本発明の第1の実施例に係る多層基板の製造方法を示す概略工程図であり、第2の樹脂層を形成する工程を示す図である。It is a schematic process drawing which shows the manufacturing method of the multilayer board | substrate which concerns on the 1st Example of this invention, and is a figure which shows the process of forming a 2nd resin layer. 本発明の第1の実施例に係る多層基板の製造方法を示す概略工程図であり、第2の樹脂層の内部に層間接続導体を、第2の樹脂層の主面に表面導体を、形成する工程を示す図である。It is a schematic process drawing which shows the manufacturing method of the multilayer board | substrate which concerns on 1st Example of this invention, forms an interlayer connection conductor in the inside of a 2nd resin layer, and forms a surface conductor in the main surface of a 2nd resin layer It is a figure which shows the process to do. 本発明の第2の実施例に係る多層基板の製造方法を示す概略の工程図である。It is a schematic process drawing which shows the manufacturing method of the multilayer board | substrate which concerns on the 2nd Example of this invention. 本発明の第2の実施例に係る多層基板の他の製造方法を示す概略の工程図である。It is a schematic process drawing which shows the other manufacturing method of the multilayer board | substrate which concerns on the 2nd Example of this invention.
 以下、本発明の実施例について図1~図11を参照して説明する。 Hereinafter, embodiments of the present invention will be described with reference to FIGS.
 (第1の実施例)
 図1は、本発明の第1の実施例に係る多層基板を示す概略断面図である。
(First embodiment)
FIG. 1 is a schematic sectional view showing a multilayer substrate according to a first embodiment of the present invention.
 多層基板1は、コア基板としてのセラミック多層基板2と、このセラミック多層基板2の一方主面3に形成された第1の樹脂層12とで構成されている。コア基板としては、セラミック基板の他に、樹脂基板を用いてもよい。 The multilayer substrate 1 includes a ceramic multilayer substrate 2 as a core substrate and a first resin layer 12 formed on one main surface 3 of the ceramic multilayer substrate 2. In addition to the ceramic substrate, a resin substrate may be used as the core substrate.
 セラミック多層基板2は、複数のセラミック層2a~2cを積層してなる。各セラミック層2a~2cには、各層の表面に設けられた表面導体5や各層を厚み方向に貫通する層間接続導体7が形成されている。これらの表面導体5と層間接続導体7との配線によって、セラミック多層基板2の内部においてコンデンサやインダクタなどの回路素子を形成することができる。 The ceramic multilayer substrate 2 is formed by laminating a plurality of ceramic layers 2a to 2c. In each of the ceramic layers 2a to 2c, a surface conductor 5 provided on the surface of each layer and an interlayer connection conductor 7 penetrating each layer in the thickness direction are formed. Circuit elements such as capacitors and inductors can be formed inside the ceramic multilayer substrate 2 by wiring between the surface conductors 5 and the interlayer connection conductors 7.
 また、セラミック多層基板2の一方主面3には複数の表面導体15が形成されており、反対主面13にも複数の表面導体25が形成されている。セラミック多層基板2の一方主面3に形成された表面導体15には、第1の実装部品10が実装されている。第1の実装部品10としては、ICなどの半導体デバイスのような能動素子やチップ型抵抗体のような受動素子を用いることができる。第1の実装部品10の実装方法としては、はんだや導電性接着剤を用いて実装してもよいし、ワイヤボンディングで実装してもよい。本実施例においては、第1の実装部品10として積層セラミックコンデンサを用い、これをはんだリフローによって表面導体15に実装した。 Further, a plurality of surface conductors 15 are formed on one main surface 3 of the ceramic multilayer substrate 2, and a plurality of surface conductors 25 are also formed on the opposite main surface 13. A first mounting component 10 is mounted on the surface conductor 15 formed on the one main surface 3 of the ceramic multilayer substrate 2. As the first mounting component 10, an active element such as a semiconductor device such as an IC or a passive element such as a chip resistor can be used. As a mounting method of the first mounting component 10, it may be mounted using solder or a conductive adhesive, or may be mounted by wire bonding. In this example, a multilayer ceramic capacitor was used as the first mounting component 10 and was mounted on the surface conductor 15 by solder reflow.
 また、セラミック多層基板2の反対主面13に形成された表面導体25は、図示しないプリント基板などのマザーボードに接続するために用いてもよいし、実装部品を実装するために用いてもよい。 Further, the surface conductor 25 formed on the opposite main surface 13 of the ceramic multilayer substrate 2 may be used for connection to a mother board such as a printed circuit board (not shown) or may be used for mounting a mounting component.
 セラミック多層基板2の一方主面3には第1の樹脂層12が形成されている。第1の樹脂層12は、第1の実装部品10が埋設されるように形成されている。このとき、第1の実装部品10の一部を露出させるように第1の樹脂層12を形成してもよい。 A first resin layer 12 is formed on one main surface 3 of the ceramic multilayer substrate 2. The first resin layer 12 is formed so that the first mounting component 10 is embedded. At this time, the first resin layer 12 may be formed so that a part of the first mounting component 10 is exposed.
 第1の樹脂層12のセラミック多層基板2に接する主面3に対向する主面23には、表面導体35aが形成されている。この表面導体35aには、第2の実装部品20が実装されている。第2の実装部品20としては、第1の実装部品10と同様に種々の実装部品を用いることが可能である。また、第2の実装部品20は、第1の実装部品10と同様に種々の方法により実装することができる。本実施例においては、第2の実装部品20として、ベアチップを用い、これを表面導体35aにワイヤボンディングによって実装した。また、ベアチップの端子電極を有する主面20aに対向する主面20bには、放熱のための表面導体35bを形成している。なお、表面導体35a、35bは、第1の樹脂層12に埋設されている。 A surface conductor 35a is formed on the main surface 23 of the first resin layer 12 facing the main surface 3 in contact with the ceramic multilayer substrate 2. The second mounting component 20 is mounted on the surface conductor 35a. As the second mounting component 20, various mounting components can be used similarly to the first mounting component 10. Further, the second mounting component 20 can be mounted by various methods in the same manner as the first mounting component 10. In this example, a bare chip was used as the second mounting component 20, and this was mounted on the surface conductor 35a by wire bonding. Further, a surface conductor 35b for heat dissipation is formed on the main surface 20b opposite to the main surface 20a having the bare-chip terminal electrodes. The surface conductors 35a and 35b are embedded in the first resin layer 12.
 このように、多層基板1は、第1の樹脂層12のセラミック多層基板2に接する主面3に形成された表面導体15に実装された第1の実装部品10と、第1の樹脂層12のセラミック多層基板2に接する主面3に対向する主面23に形成された表面導体35aに実装された第2の実装部品20との複数の実装部品10、20が、第1の樹脂層12の異なる主面3、23にそれぞれ実装され、かつ、第1の樹脂層12に埋設されている。これにより、第2の実装部品20を実装するために複数の樹脂層を形成する必要がなくなるため、多層基板1の低背化を図ることができる。 Thus, the multilayer substrate 1 includes the first mounting component 10 mounted on the surface conductor 15 formed on the main surface 3 in contact with the ceramic multilayer substrate 2 of the first resin layer 12, and the first resin layer 12. A plurality of mounting components 10, 20 with the second mounting component 20 mounted on the surface conductor 35 a formed on the main surface 23 facing the main surface 3 in contact with the ceramic multilayer substrate 2 are the first resin layer 12. Are respectively mounted on the principal surfaces 3 and 23 and embedded in the first resin layer 12. As a result, it is not necessary to form a plurality of resin layers in order to mount the second mounting component 20, so that the multilayer substrate 1 can be reduced in height.
 このように、第1の樹脂層12の両主面から実装部品10、20を実装することができるため、第1の樹脂層12の内部のスペースを有効利用でき、従来よりも多くの実装部品10、20を実装することができ、多層基板1の高機能化が図られる。また、第1の樹脂層12の内部のスペースを有効利用できるため、設計の自由度を高めることができる。 Thus, since the mounting components 10 and 20 can be mounted from both main surfaces of the first resin layer 12, the space inside the first resin layer 12 can be used effectively, and more mounting components than in the past can be used. 10 and 20 can be mounted, and the multi-layer substrate 1 can be highly functionalized. Moreover, since the space inside the 1st resin layer 12 can be used effectively, the freedom degree of design can be raised.
 また、図1に示すように、第1の実装部品10が第2の実装部品20よりも厚い場合、厚みの薄い第2の実装部品20に対向する位置に第3の実装部品30を実装してもよい。この場合、第3の実装部品30はセラミック多層基板2の一方主面3に形成された表面導体15に実装され、第1の樹脂層12に埋設される。また、第2の実装部品20が第1の実装部品10よりも厚い場合には、厚みの薄い第1の実装部品10に対向する位置に第3の実装部品30を実装してもよい。この場合、第3の実装部品30は第1の樹脂層12のセラミック多層基板2に接する主面3に対向する主面23に形成された表面導体35aに実装され、第1の樹脂層12に埋設される。これにより、実装部品10、20の厚みが異なる場合にも、第1の樹脂層12の内部のスペースを有効に利用することができる。 In addition, as shown in FIG. 1, when the first mounting component 10 is thicker than the second mounting component 20, the third mounting component 30 is mounted at a position facing the thin second mounting component 20. May be. In this case, the third mounting component 30 is mounted on the surface conductor 15 formed on the one main surface 3 of the ceramic multilayer substrate 2 and embedded in the first resin layer 12. When the second mounting component 20 is thicker than the first mounting component 10, the third mounting component 30 may be mounted at a position facing the thin first mounting component 10. In this case, the third mounting component 30 is mounted on the surface conductor 35 a formed on the main surface 23 of the first resin layer 12 that faces the main surface 3 that contacts the ceramic multilayer substrate 2, and is mounted on the first resin layer 12. Buried. Thereby, even when the thicknesses of the mounting components 10 and 20 are different, the space inside the first resin layer 12 can be used effectively.
 また、図1に示すように、第1の樹脂層12の内部には、第1の樹脂層12の両主面に形成された表面導体15、35を接続する層間接続導体17が形成されている。これにより、たとえば、第1の樹脂層12の主面23に形成された表面導体35aとセラミック多層基板2の主面3に形成された表面導体15とを接続させることができる。このように、第2の実装部品20が実装された表面導体35aとセラミック多層基板2の主面3に形成された表面導体15とが接続されているため、第2の実装部品20の信号処理をセラミック多層基板2によって行うことができる。セラミック多層基板2は微細配線に適しているため、第1の樹脂層12の内部の配線を複雑にすることなく、セラミック多層基板2に配線を集中させることができる。このことは、より低背化、高機能化された多層基板および多層モジュールを実現する上で有効である。 Further, as shown in FIG. 1, an interlayer connection conductor 17 that connects the surface conductors 15 and 35 formed on both main surfaces of the first resin layer 12 is formed inside the first resin layer 12. Yes. Thereby, for example, the surface conductor 35 a formed on the main surface 23 of the first resin layer 12 and the surface conductor 15 formed on the main surface 3 of the ceramic multilayer substrate 2 can be connected. Thus, since the surface conductor 35a on which the second mounting component 20 is mounted and the surface conductor 15 formed on the main surface 3 of the ceramic multilayer substrate 2 are connected, signal processing of the second mounting component 20 is performed. Can be performed by the ceramic multilayer substrate 2. Since the ceramic multilayer substrate 2 is suitable for fine wiring, the wiring can be concentrated on the ceramic multilayer substrate 2 without complicating the wiring inside the first resin layer 12. This is effective in realizing a multi-layer board and a multi-layer module with a lower profile and higher function.
 なお、第2の実装部品20が実装された表面導体35aは層間接続導体17の側面部分でのみ接している。そのため、表面導体35aと層間接続導体17とを接続する表面導体35cを備えていると、表面導体35aと層間接続導体17との接続信頼性を高めることができるため望ましい。ここで、表面導体35cは、第1の樹脂層の主面23上にさらに層間接続導体を備える樹脂層を形成し、この層間接続導体で層間接続導体17と表面導体35aとの接続を補強してもよい。 Note that the surface conductor 35 a on which the second mounting component 20 is mounted is in contact only with the side surface portion of the interlayer connection conductor 17. Therefore, it is desirable to provide the surface conductor 35c that connects the surface conductor 35a and the interlayer connection conductor 17 because the connection reliability between the surface conductor 35a and the interlayer connection conductor 17 can be improved. Here, the surface conductor 35c further forms a resin layer having an interlayer connection conductor on the main surface 23 of the first resin layer, and this interlayer connection conductor reinforces the connection between the interlayer connection conductor 17 and the surface conductor 35a. May be.
 また、図2に示すように、第1の樹脂層12の主面23には、第2の樹脂層22を形成してもよい。これにより、第2の樹脂層22に配線を形成することができ、より高機能化させた多層基板11が実現できる。また、図2に示すように、セラミック多層基板2の主面13に形成された表面導体25ではなく、第2の樹脂層22の主面33に形成された表面導体45をマザーボードに接続する場合には、第2の樹脂層22を第2の実装部品20とマザーボードとの間の絶縁層として機能させることができる。この場合、セラミック多層基板2の主面13に形成された表面導体25には、第4の実装部品40を実装してもよい。これにより、さらに多層基板11を高機能化させることができる。 Further, as shown in FIG. 2, the second resin layer 22 may be formed on the main surface 23 of the first resin layer 12. Thereby, wiring can be formed in the 2nd resin layer 22, and the multilayer substrate 11 made highly functional is realizable. In addition, as shown in FIG. 2, not the surface conductor 25 formed on the main surface 13 of the ceramic multilayer substrate 2 but the surface conductor 45 formed on the main surface 33 of the second resin layer 22 is connected to the motherboard. In this case, the second resin layer 22 can function as an insulating layer between the second mounting component 20 and the motherboard. In this case, the fourth mounting component 40 may be mounted on the surface conductor 25 formed on the main surface 13 of the ceramic multilayer substrate 2. Thereby, the multilayer substrate 11 can be further enhanced in function.
 さらに、図2に示すように、第2の樹脂層22の内部には、第2の樹脂層22を厚み方向に貫通する層間接続導体27が形成されていてもよい。本実施例のように、第2の実装部品20がベアチップ、具体的にはベアICである場合、ベアチップの端子電極を有する主面20aに対向する主面20bに層間接続導体27を接続すると、層間接続導体27が放熱体として機能し、ベアチップから発生する熱をマザーボードに逃がすことができるため、放熱性に優れた多層基板および多層モジュールを実現することができる。このとき、ベアチップの主面20bには、層間接続導体27に接続するための放熱用の表面導体35bが形成される。 Furthermore, as shown in FIG. 2, an interlayer connection conductor 27 penetrating the second resin layer 22 in the thickness direction may be formed inside the second resin layer 22. When the second mounting component 20 is a bare chip, specifically, a bare IC as in this embodiment, when the interlayer connection conductor 27 is connected to the main surface 20b facing the main surface 20a having the terminal electrode of the bare chip, Since the interlayer connection conductor 27 functions as a heat radiator and the heat generated from the bare chip can be released to the mother board, a multilayer board and a multilayer module having excellent heat dissipation can be realized. At this time, a heat radiating surface conductor 35b for connection to the interlayer connection conductor 27 is formed on the main surface 20b of the bare chip.
 また、第2の樹脂層22は第1の樹脂層12よりも薄いことが望ましい。多層基板11の低背化が図れるとともに、放熱体としての層間接続導体27は短い方が放熱性を向上させることができるからである。 The second resin layer 22 is preferably thinner than the first resin layer 12. This is because the multilayer substrate 11 can be reduced in height, and the shorter the interlayer connection conductor 27 serving as a heat radiator, the better the heat dissipation.
 また、図2に示すように、第2の樹脂層22の主面33に表面導体45が形成され、表面導体45とセラミック多層基板2の主面3に形成された表面導体15とを接続する層間接続導体37が形成されていてもよい。多層基板11とマザーボードとを接続する際に、マザーボードとの接続に用いる表面導体45とセラミック多層基板2の主面3に形成された表面導体15とを接続させるためである。この層間接続導体37は、表面導体45と表面導体15とを接続するものであればよく、第1の樹脂層12と第2の樹脂層22とを厚み方向に貫通する1つの層間接続導体37によって形成してもよいし、第1の樹脂層12の層間接続導体と第2の樹脂層22の層間接続導体を表面導体によって接続してもよい。 Further, as shown in FIG. 2, a surface conductor 45 is formed on the main surface 33 of the second resin layer 22, and the surface conductor 45 and the surface conductor 15 formed on the main surface 3 of the ceramic multilayer substrate 2 are connected. An interlayer connection conductor 37 may be formed. This is for connecting the surface conductor 45 used for connection to the mother board and the surface conductor 15 formed on the main surface 3 of the ceramic multilayer board 2 when connecting the multilayer board 11 and the mother board. The interlayer connection conductor 37 only needs to connect the surface conductor 45 and the surface conductor 15, and one interlayer connection conductor 37 that penetrates the first resin layer 12 and the second resin layer 22 in the thickness direction. Alternatively, the interlayer connection conductor of the first resin layer 12 and the interlayer connection conductor of the second resin layer 22 may be connected by a surface conductor.
 次に、本実施例に係る多層基板の製造方法を図3~図9を参照して説明する。 Next, a method for manufacturing a multilayer substrate according to the present embodiment will be described with reference to FIGS.
 図3~図9は、図2に係る多層基板の製造方法を示す概略工程図である。 3 to 9 are schematic process diagrams showing a method for manufacturing the multilayer substrate according to FIG.
 まず、図3に示すような、コア基板としてのセラミック多層基板2を準備する。セラミック多層基板2は、次のようにして作製される。 First, a ceramic multilayer substrate 2 as a core substrate as shown in FIG. 3 is prepared. The ceramic multilayer substrate 2 is produced as follows.
 キャリアフィルム上にドクターブレード法などによりセラミックスラリーを塗布し、セラミックグリーンシートを成形する。セラミックスラリーは、Alなどのセラミック粉末と、バインダー、分散剤、溶剤などを適宜混合してなる。このセラミックグリーンシートが焼成後にセラミック層2a~2cとなる。 A ceramic slurry is applied onto the carrier film by a doctor blade method or the like to form a ceramic green sheet. The ceramic slurry is obtained by appropriately mixing ceramic powder such as Al 2 O 3 and a binder, a dispersant, a solvent, and the like. This ceramic green sheet becomes the ceramic layers 2a to 2c after firing.
 セラミックグリーンシートには、レーザーや金型などで、セラミックグリーンシートを厚み方向に貫通する層間接続導体用孔が設けられる。この層間接続導体用孔に、AgまたはCuを主成分とする金属粉と、樹脂、溶剤などを混合した導電性ペーストを充填する。この層間接続導体用孔に充填された導電性ペーストが焼成後に層間接続導体7となる。また、導電性ペーストは、所望の回路パターンを形成するように、セラミックグリーンシート上にも塗布される。このセラミックグリーンシート上に塗布された導電性ペーストが焼成後に表面導体5、15、25となる。この導電性ペーストの充填・塗布方法としては、スクリーン印刷、電子写真法、インクジェット法など、種々の方法を用いることができる。 The ceramic green sheet is provided with a hole for an interlayer connection conductor that penetrates the ceramic green sheet in the thickness direction with a laser or a mold. The interlayer connection conductor hole is filled with a conductive paste in which a metal powder mainly composed of Ag or Cu, a resin, a solvent, or the like is mixed. The conductive paste filled in the hole for the interlayer connection conductor becomes the interlayer connection conductor 7 after firing. The conductive paste is also applied on the ceramic green sheet so as to form a desired circuit pattern. The conductive paste applied on the ceramic green sheet becomes the surface conductors 5, 15 and 25 after firing. As a method for filling and applying the conductive paste, various methods such as screen printing, electrophotography, and ink jet method can be used.
 このセラミックグリーンシートを必要に応じて複数枚積層・圧着し、800~1000℃前後の所定の雰囲気で焼成して、層間接続導体7および表面導体5、15、25を備えるセラミック多層基板2を得る。セラミック多層基板2の両主面3、13に形成された表面導体15、25には、必要に応じてNi、Auなどのめっき処理をする。 A plurality of ceramic green sheets are laminated and pressure-bonded as necessary, and fired in a predetermined atmosphere of about 800 to 1000 ° C. to obtain a ceramic multilayer substrate 2 having an interlayer connection conductor 7 and surface conductors 5, 15, 25. . The surface conductors 15 and 25 formed on both main surfaces 3 and 13 of the ceramic multilayer substrate 2 are plated with Ni, Au or the like as necessary.
 次に、セラミック多層基板2の主面3に形成された表面導体15に、第1の実装部品10および第3の実装部品30を実装する。本実施例においては、表面導体15の上にはんだを印刷し、第1の実装部品10および第3の実装部品30を搭載した後、リフロー炉ではんだを溶融させて第1の実装部品10および第3の実装部品30と表面導体15とを固着した。第1の実装部品10および第3の実装部品30はワイヤボンディングによって表面導体15に実装してもよい。ただし、第1の実装部品10と第3の実装部品30とは、同じ実装方法で実装するのが望ましい。同一主面上に実装方法の異なる実装部品を実装すると、実装工程が複雑になるとともに、先に実装した実装部品が後の実装工程によって接続不良を起こすなど、実装不良などの不良率が高くなるからである。なお、セラミック多層基板2の反対主面13に形成された表面導体25に第4の実装部品40を実装してもよい。 Next, the first mounting component 10 and the third mounting component 30 are mounted on the surface conductor 15 formed on the main surface 3 of the ceramic multilayer substrate 2. In the present embodiment, solder is printed on the surface conductor 15, and after mounting the first mounting component 10 and the third mounting component 30, the solder is melted in a reflow furnace, and the first mounting component 10 and The third mounting component 30 and the surface conductor 15 were fixed. The first mounting component 10 and the third mounting component 30 may be mounted on the surface conductor 15 by wire bonding. However, it is desirable to mount the first mounting component 10 and the third mounting component 30 by the same mounting method. When mounting parts with different mounting methods on the same main surface, the mounting process becomes complicated, and the mounting ratio of the mounting parts that have been mounted earlier will cause a connection failure in the subsequent mounting process, resulting in a higher failure rate such as mounting defects. Because. The fourth mounting component 40 may be mounted on the surface conductor 25 formed on the opposite main surface 13 of the ceramic multilayer substrate 2.
 次に、セラミック多層基板2の主面3に半硬化状態の第1の樹脂層12を形成する。このとき、第1の樹脂層12は、第1の実装部品10および第3の実装部品30が埋設される程度の厚みに形成する。なお、第4の実装部品40を実装する場合には、第4の実装部品40を覆うようにセラミック多層基板2の主面13上に樹脂層を形成してもよい。なお、半硬化状態の樹脂層とは、Bステージ状態またはプリプレグを指す。 Next, a semi-cured first resin layer 12 is formed on the main surface 3 of the ceramic multilayer substrate 2. At this time, the first resin layer 12 is formed to a thickness such that the first mounting component 10 and the third mounting component 30 are embedded. When mounting the fourth mounting component 40, a resin layer may be formed on the main surface 13 of the ceramic multilayer substrate 2 so as to cover the fourth mounting component 40. The semi-cured resin layer refers to a B stage state or a prepreg.
 第1の樹脂層12としては、エポキシ、フェノール、シアネートなどの熱硬化性樹脂とAl、SiO、TiOなどの無機フィラーとを混合したものを用いることができる。これらの混合物を半硬化状態の樹脂シートとして成形し、セラミック多層基板2の主面3に積層する。 The first resin layer 12, it is possible to use epoxy, phenol, a mixture of an inorganic filler such as cyanate thermosetting resin and Al 2 O 3, such as, SiO 2, TiO 2. These mixtures are formed as a semi-cured resin sheet and laminated on the main surface 3 of the ceramic multilayer substrate 2.
 次に、第1の樹脂層12のセラミック多層基板2の主面13に対向する主面23に、第2の実装部品20を埋設し、第2の実装部品が実装される表面導体35aを形成する。 Next, the second mounting component 20 is embedded in the main surface 23 of the first resin layer 12 facing the main surface 13 of the ceramic multilayer substrate 2 to form a surface conductor 35a on which the second mounting component is mounted. To do.
 本実施例においては、まず、図3に示すように、PETフィルムなどのキャリアフィルム8の上に、表面導体35a、35bとなるようにパターン形成された銅箔を貼り付けなどの方法により形成する。そして、表面導体35aとなる銅箔上に第2の実装部品20であるベアチップをワイヤボンディングにより実装する。なお、ベアチップの端子電極を有する主面20aに対向する主面20bには、放熱用の表面導体35bとなる銅箔を形成している。 In this embodiment, first, as shown in FIG. 3, a copper foil patterned to form surface conductors 35a and 35b is formed on a carrier film 8 such as a PET film by a method such as pasting. . And the bare chip which is the 2nd mounting components 20 is mounted on the copper foil used as the surface conductor 35a by wire bonding. Note that a copper foil serving as a heat dissipating surface conductor 35b is formed on the main surface 20b opposite to the main surface 20a having the bare-chip terminal electrodes.
 次に、キャリアフィルム8を半硬化状態である第1の樹脂層12の主面23に積層・圧着した後、キャリアフィルムを剥離する。これにより、第2の実装部品20を第1の樹脂層12に埋設するとともに、パターン形成された銅箔を第1の樹脂層12の主面23に転写して表面導体35aを形成する。 Next, after the carrier film 8 is laminated and pressure-bonded to the main surface 23 of the first resin layer 12 in a semi-cured state, the carrier film is peeled off. As a result, the second mounting component 20 is embedded in the first resin layer 12, and the patterned copper foil is transferred to the main surface 23 of the first resin layer 12 to form the surface conductor 35a.
 なお、第2の実装部品20を第1の樹脂層12に埋設する工程と、第2の実装部品20が実装される表面導体35aを形成する工程とは、必ずしも同時に行わなくてもよい。たとえば、第2の実装部品20を接着剤などによりキャリアフィルム8上に形成し、第1の樹脂層12に埋設し、キャリアフィルム8を剥離した後、表面導体35a、35bを形成してもよい。 Note that the step of embedding the second mounting component 20 in the first resin layer 12 and the step of forming the surface conductor 35a on which the second mounting component 20 is mounted are not necessarily performed simultaneously. For example, the surface conductors 35a and 35b may be formed after the second mounting component 20 is formed on the carrier film 8 with an adhesive or the like, embedded in the first resin layer 12, and the carrier film 8 is peeled off. .
 このように、本実施例では、はんだリフローによって実装する第1の実装部品10とワイヤボンディングによって実装する第2の実装部品20を第1の樹脂層12の異なる主面3、23から実装することができる。そのため、実装方法の異なる実装部品を同一主面上に実装する場合に比べて製造工程が容易になり、不良率を低下させることができる。また、このように第1の樹脂層の両主面から実装部品を実装すれば、実装方法の異なる実装部品を実装する場合に複数の樹脂層を形成する必要がなくなり、より多層基板11の低背化が実現できる。 As described above, in this embodiment, the first mounting component 10 to be mounted by solder reflow and the second mounting component 20 to be mounted by wire bonding are mounted from different main surfaces 3 and 23 of the first resin layer 12. Can do. Therefore, the manufacturing process becomes easier and the defect rate can be reduced as compared with the case where mounting components having different mounting methods are mounted on the same main surface. In addition, when mounting components are mounted from both main surfaces of the first resin layer in this way, it is not necessary to form a plurality of resin layers when mounting components having different mounting methods, and the multilayer substrate 11 can be further reduced. Can be turned upside down.
 次に、多層基板11を加熱処理し、樹脂シートに含まれる熱硬化性樹脂を硬化させ、半硬化状態であった第1の樹脂層12を硬化させる。 Next, the multilayer substrate 11 is heat-treated, the thermosetting resin contained in the resin sheet is cured, and the first resin layer 12 that has been in a semi-cured state is cured.
 その後、図4に示すように、レーザーなどで層間接続導体用孔17aを形成する。層間接続導体用孔17aは、第1の樹脂層12が半硬化状態のときに形成してもよいが、第1の樹脂層12を硬化させた後で形成するのが望ましい。半硬化状態の場合は、層間接続導体用孔17aを形成する際に孔の径が所望のサイズよりも大きくなることがあり、また、硬化時に孔が変形するおそれがあるからである。ここで、層間接続導体用孔17aは、セラミック多層基板2の主面3に形成された表面導体15と、第1の樹脂層12の主面23に形成され、第2の実装部品20に接続された表面導体35aとを接続できるように形成する。 Thereafter, as shown in FIG. 4, an interlayer connection hole 17a is formed by a laser or the like. The interlayer connection conductor hole 17a may be formed when the first resin layer 12 is in a semi-cured state, but is preferably formed after the first resin layer 12 is cured. In the case of the semi-cured state, the diameter of the hole may be larger than a desired size when forming the interlayer connection conductor hole 17a, and the hole may be deformed at the time of curing. Here, the interlayer connection conductor hole 17 a is formed on the surface conductor 15 formed on the main surface 3 of the ceramic multilayer substrate 2 and the main surface 23 of the first resin layer 12, and is connected to the second mounting component 20. It is formed so that it can be connected to the surface conductor 35a.
 次いで、層間接続導体用孔17aに導電性ペーストをスクリーン印刷などにより充填することで層間接続導体を形成する。導電性ペーストとしては、Ag、Cuなどの金属粒子とエポキシ、フェノール、シアネートなどの熱硬化性樹脂との混合物を用いることができる。 Next, the interlayer connection conductor is formed by filling the interlayer connection conductor hole 17a with a conductive paste by screen printing or the like. As the conductive paste, a mixture of metal particles such as Ag and Cu and a thermosetting resin such as epoxy, phenol and cyanate can be used.
 そして、多層基板11を加熱処理することで、層間接続導体に含まれている熱硬化性樹脂を硬化させる。 Then, the multilayer substrate 11 is heated to cure the thermosetting resin contained in the interlayer connection conductor.
 なお、第1の樹脂層12の主面23に表面導体35aを形成した後にレーザーなどで層間接続導体用孔17aを形成する場合、表面導体35aと第1の樹脂層に形成される層間接続導体とは、側面でのみ接することになり、接続信頼性が弱いおそれがある。そのため、図5に示すように、表面導体35aと層間接続導体17とを接続する表面導体35cを第1の樹脂層12の主面23上にさらに形成するのが好ましい。ここで、層間接続導体17と表面導体35cとをめっきにより形成すると、これらを同時に形成できるため、製造工程が容易にすることができる。また、第1の樹脂層の主面23上にさらに層間接続導体を備える樹脂層を形成し、この層間接続導体により層間接続導体17と表面導体35aとの接続を補強してもよい。 When the surface conductor 35a is formed on the main surface 23 of the first resin layer 12 and the interlayer connection conductor hole 17a is formed by a laser or the like, the interlayer connection conductor formed in the surface conductor 35a and the first resin layer is formed. Means contact only on the side surface, and there is a risk that connection reliability is weak. Therefore, as shown in FIG. 5, it is preferable that a surface conductor 35 c for connecting the surface conductor 35 a and the interlayer connection conductor 17 is further formed on the main surface 23 of the first resin layer 12. Here, if the interlayer connection conductor 17 and the surface conductor 35c are formed by plating, they can be formed at the same time, so that the manufacturing process can be facilitated. Further, a resin layer having an interlayer connection conductor may be further formed on the main surface 23 of the first resin layer, and the connection between the interlayer connection conductor 17 and the surface conductor 35a may be reinforced by this interlayer connection conductor.
 このようにして、第1の樹脂層12の主面23に形成された表面導体35aに接続された第2の実装部品20の信号処理をセラミック多層基板2によって行う、多層基板11および多層モジュールを製造できる。 In this way, the multilayer substrate 11 and the multilayer module that perform the signal processing of the second mounting component 20 connected to the surface conductor 35a formed on the main surface 23 of the first resin layer 12 by the ceramic multilayer substrate 2 are provided. Can be manufactured.
 なお、図6に示すように、第2の実装部品20を第1の樹脂層12に埋設する前に、第1の樹脂層12に層間接続導体17を形成してもよい。この場合、表面導体35aと層間接続導体17とは、側面だけでなく主面でも接続される。そのため、これらの接続信頼性が弱いおそれはなく、接続を補強するために表面導体や層間接続導体を形成する必要がなくなる点で好ましい。このとき、層間接続導体17を形成するための層間接続導体用孔は、半硬化状態の第1の樹脂層12に形成することになる。硬化後では、第2の実装部品20を第1の樹脂層12に埋設することができないからである。 Note that, as shown in FIG. 6, an interlayer connection conductor 17 may be formed in the first resin layer 12 before the second mounting component 20 is embedded in the first resin layer 12. In this case, the surface conductor 35a and the interlayer connection conductor 17 are connected not only on the side surface but also on the main surface. Therefore, there is no fear that these connection reliability is weak, which is preferable in that it is not necessary to form a surface conductor or an interlayer connection conductor to reinforce the connection. At this time, an interlayer connection conductor hole for forming the interlayer connection conductor 17 is formed in the semi-cured first resin layer 12. This is because the second mounting component 20 cannot be embedded in the first resin layer 12 after curing.
 また、図7に示すように、積層前の樹脂シートの段階で層間接続導体17を形成しておいてもよい。また、第2の実装部品20についても、第2の実装部品20を樹脂シート12aに埋設した後に、樹脂シート12aをセラミック多層基板2の主面3に積層してもよい。 Further, as shown in FIG. 7, the interlayer connection conductor 17 may be formed at the stage of the resin sheet before lamination. In addition, for the second mounting component 20, the resin sheet 12 a may be laminated on the main surface 3 of the ceramic multilayer substrate 2 after the second mounting component 20 is embedded in the resin sheet 12 a.
 なお、第1の樹脂層12は、上述した熱硬化性樹脂と無機フィラーの混合物をペースト状にし、セラミック多層基板2の主面3上に滴下することで成形してもよい。 The first resin layer 12 may be formed by making the mixture of the thermosetting resin and the inorganic filler described above into a paste and dropping it on the main surface 3 of the ceramic multilayer substrate 2.
 次に、図8に示すように、第1の樹脂層12のセラミック多層基板2に接する主面3に対向する主面23に第2の樹脂層22を形成する。 Next, as shown in FIG. 8, the second resin layer 22 is formed on the main surface 23 of the first resin layer 12 facing the main surface 3 in contact with the ceramic multilayer substrate 2.
 第2の樹脂層22としては、第1の樹脂層12と同じように半硬化状態の樹脂シートを用いることができる。具体的には、第1の樹脂層12と同様に、第1の樹脂層12の主面23上に半硬化状態の樹脂シートを積層し、後にこれを硬化することで第2の樹脂層22を形成する。 As the second resin layer 22, a semi-cured resin sheet can be used in the same manner as the first resin layer 12. Specifically, similarly to the first resin layer 12, a second resin layer 22 is obtained by laminating a semi-cured resin sheet on the main surface 23 of the first resin layer 12, and then curing the resin sheet. Form.
 ここで、第2の樹脂層22は、第1の樹脂層12よりも薄く形成するのが、多層基板11の低背化および後述する第2の実装部品20の放熱性のために好ましい。 Here, it is preferable to form the second resin layer 22 thinner than the first resin layer 12 in order to reduce the height of the multilayer substrate 11 and to dissipate heat from the second mounting component 20 described later.
 次に、図9に示すように、半硬化状態の第2の樹脂層22の内部にも、層間接続導体27、37を形成する。 Next, as shown in FIG. 9, interlayer connection conductors 27 and 37 are also formed inside the semi-cured second resin layer 22.
 ここで、層間接続導体27は、第2の実装部品20であるベアチップの端子電極を有する主面20aに対向する主面20bに形成された表面導体35bに接続できる位置に、第2の樹脂層22を厚み方向に貫通するように形成する。 Here, the interlayer connection conductor 27 is located at a position where it can be connected to the surface conductor 35b formed on the main surface 20b opposite to the main surface 20a having the terminal electrode of the bare chip that is the second mounting component 20. 22 is formed so as to penetrate in the thickness direction.
 一方、層間接続導体37は、セラミック多層基板2の主面3に形成された表面導体15に接続される位置に、第2の樹脂層22と第1の樹脂層12とを厚み方向に貫通するように形成する。 On the other hand, the interlayer connection conductor 37 penetrates the second resin layer 22 and the first resin layer 12 in the thickness direction at a position connected to the surface conductor 15 formed on the main surface 3 of the ceramic multilayer substrate 2. To form.
 具体的には、まず、第1の樹脂層12の主面23上に半硬化状態の第2の樹脂層22を形成する。その後、層間接続導体27については、半硬化状態の第2の樹脂層22を厚み方向に貫通するように、また、層間接続導体37については、半硬化状態の第2の樹脂層22と硬化状態の第1の樹脂層12とを厚み方向に貫通するように、レーザーなどにより層間接続導体用孔を形成する。 Specifically, first, the semi-cured second resin layer 22 is formed on the main surface 23 of the first resin layer 12. Thereafter, the interlayer connecting conductor 27 penetrates the semi-cured second resin layer 22 in the thickness direction, and the interlayer connecting conductor 37 is cured with the semi-cured second resin layer 22. A hole for an interlayer connection conductor is formed by a laser or the like so as to penetrate through the first resin layer 12 in the thickness direction.
 次いで、層間接続導体27となる層間接続導体用孔には熱伝導性ペーストを、層間接続導体37となる層間接続導体用孔には導電性ペーストをそれぞれスクリーン印刷などの方法により充填する。ここで、熱伝導性ペーストは、導電性ペーストと同じものを用いることができる。 Next, the interlayer connection conductor hole to be the interlayer connection conductor 27 is filled with a heat conductive paste, and the interlayer connection conductor hole to be the interlayer connection conductor 37 is filled with a conductive paste by a method such as screen printing. Here, the same thing as a conductive paste can be used for a heat conductive paste.
 次に、表面導体45となるようにパターン形成された銅箔をキャリアフィルム8上に形成し、これを第2の樹脂層22の主面33に積層・圧着し、キャリアフィルムを剥離することによって、第2の樹脂層22の主面33に表面導体45を形成する。 Next, a copper foil patterned to form the surface conductor 45 is formed on the carrier film 8, and this is laminated and pressure-bonded to the main surface 33 of the second resin layer 22, and the carrier film is peeled off. The surface conductor 45 is formed on the main surface 33 of the second resin layer 22.
 そして、半硬化状態の第2の樹脂層22と層間接続導体用孔に充填された熱伝導性ペーストおよび導電性ペーストを加熱処理することでこれらを硬化させ、硬化状態の第2の樹脂層22および層間接続導体27、37を形成することで、多層基板11を作製する。なお、加熱処理は、表面導体45を形成する際に、加熱圧着すると、製造工程を簡素化できるため好ましい。 Then, the second resin layer 22 in a semi-cured state and the heat conductive paste and the conductive paste filled in the hole for the interlayer connection conductor are heated to cure them, and the second resin layer 22 in the cured state is cured. And the multilayer connection board 11 is produced by forming the interlayer connection conductors 27 and 37. Note that heat treatment is preferably performed by thermocompression when forming the surface conductor 45 because the manufacturing process can be simplified.
 このようにして作製される層間接続導体27は、ベアチップから発せられる熱をマザーボードに逃がすための放熱体として用いられる。第2の樹脂層22は、第1の樹脂層12よりも薄く形成するのが好ましい。層間接続導体27を短くして放熱性をさらに向上させることができるからである。 The interlayer connection conductor 27 manufactured in this way is used as a heat radiating body for releasing heat generated from the bare chip to the motherboard. The second resin layer 22 is preferably formed thinner than the first resin layer 12. This is because the interlayer connection conductor 27 can be shortened to further improve the heat dissipation.
 また、層間接続導体37は、多層基板11とマザーボードとを接続する際に、マザーボードとの接続に用いる表面導体45とセラミック多層基板2の主面3に形成された表面導体15とを接続させるために用いられる。そのため、層間接続導体37は、表面導体45と表面導体15とを接続するものであればよい。たとえば、表面導体15に接続できる位置に第1の樹脂層12の内部に層間接続導体を形成し、これとは異なる位置で、第2の樹脂層22の内部に形成した層間接続導体と第1の樹脂層12の主面23に形成した表面導体とによって表面導体45に接続してもよい。 The interlayer connection conductor 37 connects the surface conductor 45 used for connection with the motherboard and the surface conductor 15 formed on the main surface 3 of the ceramic multilayer substrate 2 when connecting the multilayer substrate 11 and the motherboard. Used for. Therefore, the interlayer connection conductor 37 only needs to connect the surface conductor 45 and the surface conductor 15. For example, an interlayer connection conductor is formed in the first resin layer 12 at a position where it can be connected to the surface conductor 15, and the interlayer connection conductor formed in the second resin layer 22 at a position different from this is connected to the first resin layer 12. The surface conductor 45 may be connected to the surface conductor formed on the main surface 23 of the resin layer 12.
 なお、第2の樹脂層22の内部に形成される層間接続導体用孔は、第1の樹脂層12の場合と同様に、積層前の樹脂シートの状態で形成してもよい。 The interlayer connection conductor hole formed inside the second resin layer 22 may be formed in the state of the resin sheet before lamination, as in the case of the first resin layer 12.
 また、第2の樹脂層22を硬化させた後で、層間接続導体用孔を形成してもよい。ただし、硬化後の第2の樹脂層22には表面導体45となる銅箔を接着することができないため、さらに半硬化状態の樹脂層を積層する必要がある。 Further, after the second resin layer 22 is cured, the hole for the interlayer connection conductor may be formed. However, since the copper foil used as the surface conductor 45 cannot be adhere | attached on the 2nd resin layer 22 after hardening, it is necessary to laminate | stack the resin layer of a semi-hardened state further.
 また、第2の樹脂層22は、第1の樹脂層12の場合と同様に、ペースト状の樹脂を第1の樹脂層12の主面23上に滴下し、硬化することにより形成してもよい。 Similarly to the case of the first resin layer 12, the second resin layer 22 may be formed by dropping a paste-like resin onto the main surface 23 of the first resin layer 12 and curing it. Good.
 なお、図3~図9においては、単一の多層基板について図示しているが、実際には、複数の多層基板を集合基板として作製し、これをチョコレートブレイク法やダイサーによるカット法によって分割することにより個々の多層基板を得ることができる。 3 to 9, a single multilayer substrate is illustrated, but actually, a plurality of multilayer substrates are produced as a collective substrate, and this is divided by a chocolate break method or a dicer cutting method. As a result, individual multilayer substrates can be obtained.
 (第2の実施例) 次に、本発明の第2の実施例の多層基板の製造方法の一例、他の例を図10、図11を参照して説明する。なお、それらの図面において、図1~図9と同一の符号は同一もしくは相当するものを示す。 (Second Example) Next, an example of a method for manufacturing a multilayer substrate according to a second example of the present invention and another example will be described with reference to FIGS. In these drawings, the same reference numerals as those in FIGS. 1 to 9 denote the same or corresponding elements.
 図10の製造方法について説明すると、まず、図10(a)のコア基板準備工程において、前記製造方法の一例の場合と同様に、コア基板としての例えばセラミック多層基板2を用意する。セラミック多層基板2は、少なくとも一方主面3の必要個所に前記した導電性ペーストの表面導体15が形成される。なお、セラミック多層基板2の反対主面13には別の表面実装部品等が実装されていてもよく、図10(a)では、反対主面13に第5、第6の実装部品50、60がバンプ実装されるとともに、複数の導電性ポスト70が後述するように形成されている。さらに、各導電性ポスト70を支柱として、反対主面13の上方(紙面では下方)に銅箔80が配設され、銅箔80はシールド電極として機能する。 The manufacturing method of FIG. 10 will be described. First, in the core substrate preparation step of FIG. 10A, for example, a ceramic multilayer substrate 2 as a core substrate is prepared as in the case of the example of the manufacturing method. In the ceramic multilayer substrate 2, the surface conductor 15 of the conductive paste described above is formed on at least a necessary portion of the main surface 3. It should be noted that another surface mounting component or the like may be mounted on the opposite main surface 13 of the ceramic multilayer substrate 2, and in FIG. 10A, the fifth and sixth mounting components 50, 60 are mounted on the opposite main surface 13. Are mounted as bumps, and a plurality of conductive posts 70 are formed as described later. Further, with each conductive post 70 as a support, a copper foil 80 is disposed above the opposite main surface 13 (downward on the paper surface), and the copper foil 80 functions as a shield electrode.
 つぎに、図10(b)の コア基板への部品実装と導電性ポスト形成の工程により、セラミック多層基板2の一方主面3の部品実装位置の表面導体15上に、第1の実装部品(例えばコンデンサ)10を実装する。また、導電性ポスト90を該当する表面導体15上及び第1の実装部品10の電極上面に形成する。 Next, the first mounting component (on the surface conductor 15 at the component mounting position on the one main surface 3 of the ceramic multilayer substrate 2 is mounted by the process of mounting the component on the saddle core substrate and forming the conductive post in FIG. For example, a capacitor) 10 is mounted. Further, the conductive posts 90 are formed on the corresponding surface conductor 15 and the upper surface of the electrode of the first mounting component 10.
 導電性ポスト70、90は、例えば、CuやAgのナノ粒子を含む導電性溶液を、周知のインクジェット法、ジェットディスペンサ法等によりノズル吐出口より吐出し、表面導体15等の上に前記ナノ粒子を堆積させて形成できる。また。表面導体15等の上に金属ブロック(小片)をはんだ実装することによっても形成できる。 For example, the conductive posts 70 and 90 discharge a conductive solution containing Cu or Ag nanoparticles from a nozzle discharge port by a known inkjet method, jet dispenser method, or the like, and the nanoparticles are placed on the surface conductor 15 or the like. Can be deposited. Also. It can also be formed by soldering a metal block (small piece) on the surface conductor 15 or the like.
 つぎに、図10(c)の支持体準備工程により、例えばPETフィルムまたはSUS等の転写板からなる薄板状の支持体100を用意し、支持体100の一方主面(上面)101上にはんだの印刷等によって複数の表面導体110を形成する。 Next, a thin plate-like support body 100 made of a transfer plate such as a PET film or SUS is prepared by the support body preparation step of FIG. 10C, and solder is formed on one main surface (upper surface) 101 of the support body 100. A plurality of surface conductors 110 are formed by printing or the like.
 つぎに、図10(d)の支持体の部品実装の工程により、支持体100の実装位置の表面導体110に一つまたは複数の第2の実装部品20を実装する。図10(d)では2個の第2の実装部品20を実装している。このとき、第2の実装部品20は、ワイヤボンディングではなく通常のはんだのバンプ実装等で表面導体110に実装することができる。 Next, one or a plurality of second mounting components 20 are mounted on the surface conductor 110 at the mounting position of the support 100 by the component mounting process of the support in FIG. In FIG. 10D, two second mounting components 20 are mounted. At this time, the second mounting component 20 can be mounted on the surface conductor 110 not by wire bonding but by normal solder bump mounting or the like.
 つぎに、図10(e)の支持体載置の工程により、セラミック多層基板2の各導電性ポスト90に支持体100の所要の表面導体110が接続されるように、セラミック多層基板2の上方に支持体100を設置し、例えば矢印線に示すように支持体100を押し下げてセラミック多層基板2の各導電性ポスト90の端面に支持体100の各表面導体110を当接する。その後、全体を加熱して各導電性ポスト90と各表面導体110をはんだ接続で固着する。導電性ポスト90が前記のナノ粒子の堆積からなる場合、導電性ポスト90の形成時には導電性ポスト90を完全には硬化させず、図10(e)の支持体載置の工程によりセラミック多層基板2の各導電性ポスト90に支持体100の所要の表面導体110が当接した後に、完全に硬化させることで導電性ポスト90と表面導体110とを固着して電気的に接続することができる。また、導電性ポスト90が金属ブロックからなる場合には、クリームはんだを用いて導電性ポスト90と表面導体110とを固着し、電気的に接続することができる。 Next, above the ceramic multilayer substrate 2, the required surface conductor 110 of the support 100 is connected to each conductive post 90 of the ceramic multilayer substrate 2 by the support placement step of FIG. For example, as shown by the arrow line, the support body 100 is pushed down to bring the surface conductors 110 of the support body 100 into contact with the end faces of the conductive posts 90 of the ceramic multilayer substrate 2. Then, the whole is heated and each conductive post 90 and each surface conductor 110 are fixed by soldering. When the conductive post 90 is formed by depositing the nanoparticles, the conductive post 90 is not completely cured when the conductive post 90 is formed, and the ceramic multilayer substrate is formed by the support mounting process of FIG. After the required surface conductor 110 of the support 100 comes into contact with each of the conductive posts 90, the conductive post 90 and the surface conductor 110 can be fixed and electrically connected by being completely cured. . Further, when the conductive post 90 is made of a metal block, the conductive post 90 and the surface conductor 110 can be fixed and electrically connected using cream solder.
 つぎに、図10(f)の樹脂充填工程により、支持体100とセラミック多層基板2との間に樹脂を充填して第1の実施例の樹脂層12に相当する第1の樹脂層120を形成し、併せて、セラミック多層基板2と銅箔80との間にも樹脂を充填して第3の樹脂層130を形成する。樹脂層120、130は、例えば、支持体100とセラミック多層基板2との間、セラミック多層基板2と銅箔80との間に液状樹脂を流し込むことによって形成できる。液状樹脂を流し込む際には、例えば、支持体100とセラミック多層基板2との間の周囲に枠を形成して樹脂の流出を防止する。同様に、セラミック多層基板2と銅箔80との間の周囲にも枠を形成して樹脂の流出を防止する。そして、充填後に液状樹脂を硬化して樹脂層120、130を形成する。前記液状樹脂には、例えばエポキシ樹脂が用いられる。 Next, in the resin filling step of FIG. 10 (f), the first resin layer 120 corresponding to the resin layer 12 of the first embodiment is filled by filling the resin between the support 100 and the ceramic multilayer substrate 2. At the same time, the resin is filled between the ceramic multilayer substrate 2 and the copper foil 80 to form the third resin layer 130. The resin layers 120 and 130 can be formed, for example, by pouring a liquid resin between the support 100 and the ceramic multilayer substrate 2 and between the ceramic multilayer substrate 2 and the copper foil 80. When the liquid resin is poured, for example, a frame is formed around the support 100 and the ceramic multilayer substrate 2 to prevent the resin from flowing out. Similarly, a frame is also formed around the ceramic multilayer substrate 2 and the copper foil 80 to prevent the resin from flowing out. Then, after filling, the liquid resin is cured to form the resin layers 120 and 130. For example, an epoxy resin is used as the liquid resin.
 最後に、図10(g)の剥離工程により、支持体100を第1の樹脂層120から剥離して多層基板140を形成する。このとき、支持体100上に形成されていた表面導体110は、第1の樹脂層120に転写される。 Finally, the support body 100 is peeled off from the first resin layer 120 by the peeling step shown in FIG. At this time, the surface conductor 110 formed on the support 100 is transferred to the first resin layer 120.
 このように、多層基板140は、第1の実施例の層間接続導体7、17、27に代えて前記ナノ粒子の導電性ポスト70、90を形成して製造することができる。なお、第1の実施例の多層基板1、11の層間接続導体7、17、27の全部または一部を導電性ポストに置き換えて多層基板1、11を製造できるのも勿論である。 As described above, the multilayer substrate 140 can be manufactured by forming the nanoparticle conductive posts 70 and 90 in place of the interlayer connection conductors 7, 17 and 27 of the first embodiment. Of course, the multilayer substrates 1 and 11 can be manufactured by replacing all or part of the interlayer connection conductors 7, 17, and 27 of the multilayer substrates 1 and 11 of the first embodiment with conductive posts.
 ところで、図10の製造方法では同図(b)のコア基板への部品実装と導電性ポスト形成の工程により、導電性ポスト90をセラミック多層基板2側(コア基板側)に形成したが、導電性ポスト90は支持体100側に形成してもよい。 By the way, in the manufacturing method of FIG. 10, the conductive posts 90 are formed on the ceramic multilayer substrate 2 side (core substrate side) by the process of mounting the components on the core substrate and forming the conductive posts in FIG. The sex post 90 may be formed on the support 100 side.
 図11は導電性ポスト90を支持体100側に形成する製造方法を示し、図11(a)は図10(a)と同じコア基板準備工程である。図11(b)は図10(b)の工程に代わるコア基板への部品実装の工程であり、この工程ではセラミック多層基板2の部品実装位置の表面導体15上に第1の実装部品10は実装するが、導電性ポスト90の形成は行なわない。図11(c)は図10(c)と同じ支持体準備工程、図11(d)は図10(d)の工程に代わる支持体の部品実装と導電性ポスト形成の工程であり、この工程により第2の実装部品20を実装するとともに各導電性ポスト90を該当する表面導体110上に形成する。図11(e)は図10(e)と同様の支持体載置の工程であり、この工程により支持体100の各導電性ポスト90をセラミック多層基板2の所定の表面導体15および第1の実装部品10の電極に接続する。図11(f)、(g)は図10(f)、(g)と同じ樹脂充填工程、剥離工程であり、樹脂層120、130を形成し、支持体100を剥離して多層基板140を形成する。 FIG. 11 shows a manufacturing method for forming the conductive posts 90 on the support 100 side, and FIG. 11 (a) shows the same core substrate preparation process as FIG. 10 (a). FIG. 11B is a component mounting process on the core substrate in place of the process of FIG. 10B. In this process, the first mounting component 10 is placed on the surface conductor 15 at the component mounting position of the ceramic multilayer substrate 2. Although it is mounted, the conductive post 90 is not formed. FIG. 11 (c) is the same support body preparation step as FIG. 10 (c), and FIG. 11 (d) is a part mounting and conductive post formation step instead of the process of FIG. 10 (d). Then, the second mounting component 20 is mounted and each conductive post 90 is formed on the corresponding surface conductor 110. FIG. 11E shows a support placement process similar to FIG. 10E. By this process, each conductive post 90 of the support 100 is connected to the predetermined surface conductor 15 and the first surface of the ceramic multilayer substrate 2. Connect to the electrode of the mounting component 10. FIGS. 11 (f) and 11 (g) are the same resin filling process and peeling process as FIGS. 10 (f) and 10 (g). The resin layers 120 and 130 are formed, the support 100 is peeled off, and the multilayer substrate 140 is formed. Form.
 すなわち、図11の製造方法の場合は、図11(d)の工程により導電性ポスト90を支持体100側に形成して多層基板140を製造できる。 That is, in the case of the manufacturing method of FIG. 11, the multilayer substrate 140 can be manufactured by forming the conductive posts 90 on the support 100 side by the process of FIG.
 そして、本発明は上記した実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて、上記したもの以外に種々の変更を行なうことが可能であり、例えば、第2の実施例の多層基板140を製造する際に、導電性ポスト90のコア基板側への形成と、支持体100側への形成を併用し、一部の導電性ポスト90はセラミック多層基板2側に形成し、残りの導電性ポスト90は支持体100側に形成するようにしてもよい。また、コア基板側の導電性ポスト90は全部が表面導体15または第1の実装部品10の電極上に形成されていてもよく、支持体100側の導電性ポスト90は全部または一部が第2の実装部品20の電極上に形成されていてもよい。 The present invention is not limited to the above-described embodiment, and various modifications other than those described above can be made without departing from the spirit thereof, for example, the multilayer of the second embodiment. When the substrate 140 is manufactured, the formation of the conductive posts 90 on the core substrate side and the formation on the support 100 side are used together, and some of the conductive posts 90 are formed on the ceramic multilayer substrate 2 side, and the rest The conductive post 90 may be formed on the support 100 side. The conductive post 90 on the core substrate side may be entirely formed on the surface conductor 15 or the electrode of the first mounting component 10, and the conductive post 90 on the support body 100 side is all or part of the conductive post 90. It may be formed on the electrodes of the second mounting component 20.
 本発明は、コア基板と樹脂層からなる多層基板であって、特に、樹脂層に実装部品が内蔵された種々の多層基板および、その製造方法に適用できる。 The present invention is a multilayer substrate composed of a core substrate and a resin layer, and in particular, can be applied to various multilayer substrates in which mounting components are built in the resin layer, and methods for manufacturing the same.
  1、11、140  多層基板  2  セラミック多層基板(コア基板)  3、13、23、33  主面  5、15、25、35、45、110  表面導体  7、17、27  層間接続導体  10 第1の実装部品  12、120 第1の樹脂層  20 第2の実装部品  22 第2の樹脂層  30 第3の実装部品  37 表面導体及び/又は層間接続導体 1, 11, 140 Multilayer substrate 2, Ceramic multilayer substrate (core substrate) 3, 13, 23, 33 Main surface 5, 15, 25, 35, 45, 110 Surface conductor 7, 17, 27 Interlayer connection conductor 10 First mounting Parts 12, 120, first resin layer 20, second mounted component 22, second resin layer 30, third mounted component 37 surface conductor and / or interlayer connection conductor

Claims (22)

  1. コア基板と、 前記コア基板の一方主面に形成された第1の樹脂層と、 前記第1の樹脂層の両主面に形成された複数の表面導体と、 前記第1の樹脂層の前記コア基板に接する主面に形成された前記表面導体に実装された第1の実装部品と、 前記第1の樹脂層の前記コア基板に接する主面に対向する主面に形成された前記表面導体に実装された第2の実装部品と、を備え、 前記第1の実装部品と前記第2の実装部品とは、前記第1の樹脂層に埋設されていることを特徴とする多層基板。 A core substrate, a first resin layer formed on one main surface of the core substrate, a plurality of surface conductors formed on both main surfaces of the first resin layer, and the first resin layer A first mounting component mounted on the surface conductor formed on the main surface in contact with the core substrate; and the surface conductor formed on the main surface of the first resin layer facing the main surface in contact with the core substrate. And a second mounting component mounted on the first and second mounting components, wherein the first mounting component and the second mounting component are embedded in the first resin layer.
  2.  前記第1の実装部品と前記第2の実装部品とは厚みが異なり、
     厚みの薄い前記第1の実装部品または前記第2の実装部品に対向する位置に設けられ、前記第1の樹脂層に埋設された第3の実装部品を備えることを特徴とする請求項1に記載の多層基板。
    The first mounting component and the second mounting component have different thicknesses,
    The third mounting component is provided at a position facing the first mounting component or the second mounting component having a small thickness, and is embedded in the first resin layer. The multilayer substrate described.
  3.  前記第1の樹脂層の内部に形成され、前記第1の樹脂層の両主面に形成された前記表面導体を接続する層間接続導体を備えることを特徴とする請求項1または2に記載の多層基板。 3. The interlayer connection conductor according to claim 1, further comprising an interlayer connection conductor that is formed inside the first resin layer and connects the surface conductors formed on both main surfaces of the first resin layer. Multilayer board.
  4.  前記層間接続導体と前記第1の樹脂層の前記コア基板に接する主面に対向する主面に形成された前記表面導体とを接続する表面導体及び/又は層間接続導体を備えることを特徴とする請求項3に記載の多層基板。 A surface conductor and / or an interlayer connection conductor for connecting the interlayer connection conductor and the surface conductor formed on the main surface of the first resin layer facing the main surface in contact with the core substrate are provided. The multilayer substrate according to claim 3.
  5.  前記第1の樹脂層の前記コア基板に接する主面に対向する主面に形成された第2の樹脂層を備えることを特徴とする請求項1ないし4のいずれかに記載の多層基板。 The multilayer substrate according to any one of claims 1 to 4, further comprising a second resin layer formed on a main surface of the first resin layer facing a main surface in contact with the core substrate.
  6.  前記第2の樹脂層の内部には、前記第2の実装部品に接続する層間接続導体が形成されていることを特徴とする請求項5に記載の多層基板。 6. The multilayer board according to claim 5, wherein an interlayer connection conductor connected to the second mounting component is formed inside the second resin layer.
  7.  前記第2の実装部品はベアチップであり、
     前記第2の樹脂層の内部に形成された前記層間接続導体は、前記ベアチップの端子電極を有する主面に対向する主面に接続された放熱体であることを特徴とする請求項6に記載の多層基板。
    The second mounting component is a bare chip;
    The said interlayer connection conductor formed in the inside of the said 2nd resin layer is a heat radiator connected to the main surface facing the main surface which has the terminal electrode of the said bare chip, It is characterized by the above-mentioned. Multilayer board.
  8.  前記第2の樹脂層は前記第1の樹脂層よりも薄いことを特徴とする請求項5ないし7のいずれかに記載の多層基板。 The multilayer substrate according to any one of claims 5 to 7, wherein the second resin layer is thinner than the first resin layer.
  9.  前記第2の樹脂層の前記第1の樹脂層に接する主面に対向する主面に形成された表面導体と、
     該表面導体と前記第1の樹脂層の前記コア基板に接する主面に形成された前記表面導体とを接続する表面導体及び/又は層間接続導体を前記第1の樹脂層と前記第2の樹脂層と
    に備えることを特徴とする請求項5ないし8のいずれかに記載の多層基板。
    A surface conductor formed on a main surface of the second resin layer facing a main surface in contact with the first resin layer;
    A surface conductor and / or an interlayer connection conductor for connecting the surface conductor and the surface conductor formed on the main surface of the first resin layer in contact with the core substrate is used as the first resin layer and the second resin. The multilayer substrate according to claim 5, further comprising a layer.
  10.  コア基板を準備する工程と、
     前記コア基板の一方主面に表面導体を形成する工程と、
     前記表面導体に第1の実装部品を実装する工程と、
     前記第1の実装部品が埋設されるように、前記コア基板の前記主面に第1の樹脂層を形成する工程と、
     前記第1の樹脂層の前記コア基板に接する主面に対向する主面から第2の実装部品を埋設し、前記第2の実装部品に接続される表面導体を形成する工程と、
    を備える多層基板の製造方法。
    Preparing a core substrate; and
    Forming a surface conductor on one main surface of the core substrate;
    Mounting a first mounting component on the surface conductor;
    Forming a first resin layer on the main surface of the core substrate so that the first mounting component is embedded;
    Embedding a second mounting component from a main surface facing the main surface of the first resin layer in contact with the core substrate, and forming a surface conductor connected to the second mounting component;
    A method for manufacturing a multilayer substrate comprising:
  11.  前記第1の実装部品と前記第2の実装部品とを異なる方法によって実装することを特徴とする請求項10に記載の多層基板の製造方法。 The method for manufacturing a multilayer board according to claim 10, wherein the first mounting component and the second mounting component are mounted by different methods.
  12.  前記第1の樹脂層の両主面に形成された前記表面導体を接続する層間接続導体を前記第1の樹脂層の内部に形成する工程を備えることを特徴とする請求項10または11に記載の多層基板の製造方法。 12. The method according to claim 10, further comprising forming an interlayer connection conductor that connects the surface conductors formed on both main surfaces of the first resin layer inside the first resin layer. A method for manufacturing a multilayer substrate.
  13.  前記第1の樹脂層の内部に前記層間接続導体を形成する工程は、前記第2の実装部品を前記第1の樹脂層に埋設し、前記第1の樹脂層を硬化させた後に行うことを特徴とする請求項12に記載の多層基板の製造方法。 The step of forming the interlayer connection conductor in the first resin layer is performed after the second mounting component is embedded in the first resin layer and the first resin layer is cured. The method for producing a multilayer substrate according to claim 12, wherein:
  14.  前記層間接続導体と前記第2の実装部品が接続された前記表面導体とを接続する表面導体及び/又は層間接続導体を形成する工程を備えることを特徴とする請求項12または13に記載の多層基板の製造方法。 14. The multilayer according to claim 12, comprising a step of forming a surface conductor and / or an interlayer connection conductor that connects the interlayer connection conductor and the surface conductor to which the second mounting component is connected. A method for manufacturing a substrate.
  15.  前記層間接続導体と前記表面導体及び/又は層間接続導体とをめっきにより形成することを特徴とする請求項14に記載の多層基板の製造方法。 The method for producing a multilayer substrate according to claim 14, wherein the interlayer connection conductor and the surface conductor and / or the interlayer connection conductor are formed by plating.
  16.  前記第1の樹脂層の前記コア基板に接する主面に対向する主面に第2の樹脂層を形成する工程を備える請求項10ないし15のいずれかに記載の多層基板の製造方法。 The method for producing a multilayer substrate according to any one of claims 10 to 15, further comprising a step of forming a second resin layer on a main surface of the first resin layer opposite to a main surface in contact with the core substrate.
  17.  前記第2の樹脂層の内部に層間接続導体を形成する工程を備えることを特徴とする請求項16に記載の多層基板の製造方法。 The method for producing a multilayer substrate according to claim 16, further comprising a step of forming an interlayer connection conductor inside the second resin layer.
  18.  前記第2の樹脂層の内部に層間接続導体を形成する工程において、前記第2の実装部品に接続されるように前記層間接続導体を形成することを特徴とする請求項17に記載の多層基板の製造方法。 The multilayer board according to claim 17, wherein in the step of forming an interlayer connection conductor inside the second resin layer, the interlayer connection conductor is formed so as to be connected to the second mounting component. Manufacturing method.
  19.  前記第2の実装部品としてベアチップを準備する工程と、
     前記第2の樹脂層の内部に層間接続導体を形成する工程において、前記ベアチップの端子電極を有する主面に対向する主面に接続される位置に層間接続導体用孔を形成し、前記層間接続導体用孔に熱伝導性ペーストを充填することによって前記層間接続導体を形成することを特徴とする請求項18に記載の多層基板の製造方法。
    Preparing a bare chip as the second mounting component;
    In the step of forming an interlayer connection conductor inside the second resin layer, an interlayer connection conductor hole is formed at a position connected to the main surface opposite to the main surface having the terminal electrode of the bare chip, and the interlayer connection 19. The method for manufacturing a multilayer board according to claim 18, wherein the interlayer connection conductor is formed by filling a conductor hole with a heat conductive paste.
  20.  前記第2の樹脂層の前記第1の樹脂層に接する主面に対向する主面に表面導体を形成する工程と、
     該表面導体と前記第1の樹脂層の前記コア基板に接する主面に形成された前記表面導体とを接続する表面導体及び/又は層間接続導体を前記第1の樹脂層と前記第2の樹脂層とに形成する工程とを備えることを特徴とする請求項16ないし19のいずれかに記載の多層基板の製造方法。
    Forming a surface conductor on a main surface of the second resin layer opposite to the main surface in contact with the first resin layer;
    A surface conductor and / or an interlayer connection conductor for connecting the surface conductor and the surface conductor formed on the main surface of the first resin layer in contact with the core substrate is used as the first resin layer and the second resin. The method for producing a multilayer substrate according to claim 16, further comprising a step of forming a layer.
  21.  少なくとも一方主面に表面導体を有するコア基板を準備する工程と、
     前記表面導体に第1の実装部品を実装するとともに、前記表面導体及び/又は前記第1の実装部品上に導電性ポストを形成する工程と、
     一方主面に表面導体を有する支持体を準備する工程と、
     前記支持体上に形成された表面導体に第2の実装部品を実装する工程と、
     前記支持体上に形成された表面導体及び/又は前記第2の実装部品と前記導電性ポストとが接続されるように、前記導電性ポスト上に前記支持体を載置する工程と、
     前記コア基板と前記支持体間に樹脂を充填して、第1の樹脂層を形成する工程と、
    前記支持体を前記第1の樹脂層から剥離する工程と、を備える多層基板の製造方法。
    Preparing a core substrate having a surface conductor on at least one main surface;
    Mounting a first mounting component on the surface conductor and forming a conductive post on the surface conductor and / or the first mounting component;
    On the other hand, preparing a support having a surface conductor on the main surface;
    Mounting a second mounting component on the surface conductor formed on the support;
    Placing the support on the conductive post so that the surface conductor and / or the second mounting component formed on the support and the conductive post are connected;
    Filling a resin between the core substrate and the support to form a first resin layer;
    And a step of peeling the support from the first resin layer.
  22.  少なくとも一方主面に表面導体を有するコア基板を準備する工程と、
     前記表面導体に第1の実装部品を実装する工程と、
     一方主面に表面導体を有する支持体を準備する工程と、
     前記支持体上に形成された表面導体に第2の実装部品を実装するとともに、前記支持体上に形成された表面導体及び/又は前記第2の実装部品上に導電性ポストを形成する工程と、
     前記コア基板上に形成された表面導体及び/又は前記第1の実装部品と前記導電性ポストとが接続されるように、前記導電性ポスト上に前記コア基板を載置する工程と、
     前記コア基板と前記支持体間に樹脂を充填して、第1の樹脂層を形成する工程と、
     前記支持体を前記第1の樹脂層から剥離する工程と、を備える多層基板の製造方法。
    Preparing a core substrate having a surface conductor on at least one main surface;
    Mounting a first mounting component on the surface conductor;
    On the other hand, preparing a support having a surface conductor on the main surface;
    Mounting a second mounting component on the surface conductor formed on the support, and forming a conductive post on the surface conductor and / or the second mounting component formed on the support; and ,
    Placing the core substrate on the conductive post so that the surface conductor and / or the first mounting component formed on the core substrate and the conductive post are connected;
    Filling a resin between the core substrate and the support to form a first resin layer;
    And a step of peeling the support from the first resin layer.
PCT/JP2009/005897 2008-12-12 2009-11-06 Multilayer substrate and method for manufacturing same WO2010067508A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-317127 2008-12-12
JP2008317127A JP2012064600A (en) 2008-12-12 2008-12-12 Multilayer substrate and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2010067508A1 true WO2010067508A1 (en) 2010-06-17

Family

ID=42242506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/005897 WO2010067508A1 (en) 2008-12-12 2009-11-06 Multilayer substrate and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2012064600A (en)
WO (1) WO2010067508A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035717A1 (en) * 2011-09-07 2013-03-14 株式会社村田製作所 Module, and manufacturing method for module
JP2014007227A (en) * 2012-06-22 2014-01-16 Murata Mfg Co Ltd Electronic component module and manufacturing method therefor
US11272618B2 (en) 2016-04-26 2022-03-08 Analog Devices International Unlimited Company Mechanically-compliant and electrically and thermally conductive leadframes for component-on-package circuits
US11410977B2 (en) 2018-11-13 2022-08-09 Analog Devices International Unlimited Company Electronic module for high power applications
US11749576B2 (en) 2018-03-27 2023-09-05 Analog Devices International Unlimited Company Stacked circuit package with molded base having laser drilled openings for upper package
US11844178B2 (en) 2020-06-02 2023-12-12 Analog Devices International Unlimited Company Electronic component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074858A (en) * 1996-08-30 1998-03-17 Kyocera Corp Wiring board and production thereof
JP2001237364A (en) * 2000-02-22 2001-08-31 Sanyo Electric Co Ltd Circuit device and mounting substrate
JP2003197849A (en) * 2001-10-18 2003-07-11 Matsushita Electric Ind Co Ltd Module with built-in component and method of manufacturing the same
JP2003289128A (en) * 2002-01-23 2003-10-10 Matsushita Electric Ind Co Ltd Circuit component built-in module and method for manufacturing the same
JP2004296562A (en) * 2003-03-26 2004-10-21 Sharp Corp Substrate with built-in electronic components, and its manufacturing method
WO2008065896A1 (en) * 2006-11-28 2008-06-05 Kyushu Institute Of Technology Method for manufacturing semiconductor device having dual-face electrode structure and semiconductor device manufactured by the method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1074858A (en) * 1996-08-30 1998-03-17 Kyocera Corp Wiring board and production thereof
JP2001237364A (en) * 2000-02-22 2001-08-31 Sanyo Electric Co Ltd Circuit device and mounting substrate
JP2003197849A (en) * 2001-10-18 2003-07-11 Matsushita Electric Ind Co Ltd Module with built-in component and method of manufacturing the same
JP2003289128A (en) * 2002-01-23 2003-10-10 Matsushita Electric Ind Co Ltd Circuit component built-in module and method for manufacturing the same
JP2004296562A (en) * 2003-03-26 2004-10-21 Sharp Corp Substrate with built-in electronic components, and its manufacturing method
WO2008065896A1 (en) * 2006-11-28 2008-06-05 Kyushu Institute Of Technology Method for manufacturing semiconductor device having dual-face electrode structure and semiconductor device manufactured by the method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013035717A1 (en) * 2011-09-07 2013-03-14 株式会社村田製作所 Module, and manufacturing method for module
JP2014007227A (en) * 2012-06-22 2014-01-16 Murata Mfg Co Ltd Electronic component module and manufacturing method therefor
US11272618B2 (en) 2016-04-26 2022-03-08 Analog Devices International Unlimited Company Mechanically-compliant and electrically and thermally conductive leadframes for component-on-package circuits
US11749576B2 (en) 2018-03-27 2023-09-05 Analog Devices International Unlimited Company Stacked circuit package with molded base having laser drilled openings for upper package
US11410977B2 (en) 2018-11-13 2022-08-09 Analog Devices International Unlimited Company Electronic module for high power applications
US11844178B2 (en) 2020-06-02 2023-12-12 Analog Devices International Unlimited Company Electronic component

Also Published As

Publication number Publication date
JP2012064600A (en) 2012-03-29

Similar Documents

Publication Publication Date Title
JP3709882B2 (en) Circuit module and manufacturing method thereof
US7569925B2 (en) Module with built-in component
US8546700B2 (en) Capacitor for incorporation in wiring board, wiring board, method of manufacturing wiring board, and ceramic chip for embedment
JP3910387B2 (en) Semiconductor package, manufacturing method thereof, and semiconductor device
WO2007126090A1 (en) Circuit board, electronic device and method for manufacturing circuit board
US20070178279A1 (en) Hybrid multilayer substrate and method for manufacturing the same
JP2003031719A (en) Semiconductor package, production method therefor and semiconductor device
WO2007077735A1 (en) Semiconductor mounting wiring board and method for manufacturing same, and semiconductor package
KR101204233B1 (en) A printed circuit board comprising embeded electronic component within and a method for manufacturing
KR20090130727A (en) Printed circuit board with electronic components embedded therein and method for fabricating the same
US6335076B1 (en) Multi-layer wiring board and method for manufacturing the same
KR101868680B1 (en) Circuit board, production method of circuit board, and electronic equipment
WO2010067508A1 (en) Multilayer substrate and method for manufacturing same
JP2002076637A (en) Substrate incorporating chip component, and manufacturing method of the substrate
US20130077262A1 (en) Module board and manufacturing method thereof
JP5192865B2 (en) Manufacturing method of wiring board with built-in components
JP2003124380A (en) Module with incorporated electronic component and production method therefor
JP2005026573A (en) Manufacturing method of module with built-in component
TW201205731A (en) Substrate with built-in electronic component, and composite module
JP2008182039A (en) Multilayer wiring board and its manufacturing method
JPH09293968A (en) Method of manufacturing multilayer wiring substrate
JP7131740B2 (en) Printed circuit boards and packages
JP2005045228A (en) Circuit board with built-in electronic component and its manufacturing method
JP2007317712A (en) Composite wiring board having built-in component and manufacturing method thereof
TWI811721B (en) Fabrication method of embedded structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09831616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09831616

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP