WO2010064506A1 - Imaging device and endoscope - Google Patents

Imaging device and endoscope Download PDF

Info

Publication number
WO2010064506A1
WO2010064506A1 PCT/JP2009/068420 JP2009068420W WO2010064506A1 WO 2010064506 A1 WO2010064506 A1 WO 2010064506A1 JP 2009068420 W JP2009068420 W JP 2009068420W WO 2010064506 A1 WO2010064506 A1 WO 2010064506A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
imaging device
heat radiating
substrates
radiating member
Prior art date
Application number
PCT/JP2009/068420
Other languages
French (fr)
Japanese (ja)
Inventor
寛 雲財
裕之 永水
Original Assignee
オリンパスメディカルシステムズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパスメディカルシステムズ株式会社 filed Critical オリンパスメディカルシステムズ株式会社
Priority to JP2010541274A priority Critical patent/JPWO2010064506A1/en
Publication of WO2010064506A1 publication Critical patent/WO2010064506A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • A61B1/051Details of CCD assembly
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/12Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements
    • A61B1/128Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor with cooling or rinsing arrangements provided with means for regulating temperature
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2407Optical details
    • G02B23/2423Optical details of the distal end
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • G02B23/2476Non-optical details, e.g. housings, mountings, supports
    • G02B23/2484Arrangements in relation to a camera or imaging device
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/50Constructional details
    • H04N23/555Constructional details for picking-up images in sites, inaccessible due to their dimensions or hazardous conditions, e.g. endoscopes or borescopes

Definitions

  • an image pickup apparatus having a multi-plate structure that achieves high image quality by using a plurality of solid-state image sensors.
  • an imaging apparatus having a two-plate solid-state imaging element structure using two solid-state imaging elements in order to make the diameter of the tip portion equal to that when a single-plate imaging apparatus is used. (Hereinafter referred to as “two-plate imaging device”) is suitable.
  • a prism with a coating reflecting green and transmitting red and blue is installed, and red and blue colors are placed on one solid-state image pickup device arranged in a direction in which red and blue are transmitted.
  • a filter is provided.
  • black and white and green color filters are provided on the other solid-state imaging device arranged in the direction in which green is reflected.
  • Japanese Patent Application Laid-Open No. 2004-258497 and Japanese Patent Application Laid-Open No. 2007-135951 disclose disposing a two-plate imaging device in the distal end portion of the endoscope.
  • the two-plate imaging device 101 includes a prism unit 102 and two solid-state imaging elements 106 and 107.
  • the tip of the prism unit 102 on the incident light side is fitted and fixed to the holding holder 112.
  • a metal frame member 113 is provided on the outer peripheral surface of the base end of the holding holder 112 so as to enclose the two FPCs 108 and 109.
  • a heat shrinkable tube 114 is provided on the proximal end side of the holding holder 112. The heat-shrinkable tube 114 covers up to the outer peripheral portions of the two communication cables 118 and 119.
  • the heat shrinkable tube 114 is filled with a filler 115 that protects the imaging device 101.
  • the two-plate imaging device 101 has a configuration in which the electronic components 110 and 111 on the two FPCs 108 and 109 necessary to drive the two solid-state imaging devices 106 and 107 face each other. Therefore, it is excellent in terms of downsizing and assembly.
  • the second solid-state imaging device 107 and the electronic components 110 and 111 which are heat generating components, are densely packed, the heat generated is transferred to the solid-state imaging devices 106 and 107 via the filler 115, and the S / N is deteriorated. There was a risk.
  • an imaging apparatus disposed in an endoscope that is a medical device that is inserted into a body cavity and observes a living tissue for example, a rigid electronic endoscope provided with a rigid insertion portion will be described as an example.
  • a rigid electronic endoscope 1 (hereinafter simply referred to as “endoscope”) 1 shown in FIG. 2 has an imaging device 51 described later.
  • the endoscope 1 includes an insertion portion 2 having a distal end portion 11, an operation portion 3 connected to the proximal end of the insertion portion 2, a universal cord 4 extending from the operation portion 3, and a proximal end of the universal cord 4
  • the scope connector 5 is disposed on the side of the scope connector 5, and the electrical connector 6 is provided at the end of the cable extending from the side of the scope connector 5.
  • an observation lens 21 of the objective lens unit 20 and an illumination lens 22 that is an illumination optical component are disposed at the distal end of the distal end portion 11.
  • tip part 11 has the hard pipe
  • the hard tube 27 is fitted with the tip cover 25.
  • the observation lens 21 is held by a lens holding frame 24 together with an objective lens group 23 including a plurality of objective lenses. That is, the objective lens unit 20 includes an observation lens 21, an objective lens group 23, and a lens holding frame 24.
  • the objective lens unit 20 is fitted and fixed to a tip frame 26 that is a metallic tip hard member.
  • the illumination lens 22 is held by the tip cover 25.
  • the tip surface of the light guide bundle 29 is disposed so as to face.
  • the light guide bundle 29 is inserted into the insertion portion 2, the operation portion 3, and the universal cord 4 of the endoscope 1, is disposed up to the scope connector 5, and transmits illumination light from a light source device (not shown).
  • a holding holder 28 that is inserted into the distal end frame 26 and is fitted and fixed to the lens holding frame 24 is disposed on the outer peripheral portion of the base end of the lens holding frame 24 of the objective lens unit 20.
  • the distal end portion of the prism unit 30 of the imaging device 51 (the distal end portion where the incident light from the objective lens unit 20 is incident) is fitted and fixed to the proximal end portion of the holding holder 28.
  • the imaging device 51 includes a prism unit 30 having a prism portion 31 constituting an optical unit, two solid-state imaging devices 35 and 37, two FPCs 38 and 39, and two This is a two-plate type imaging device 51 having cables 43 and 45 and a heat radiating member 60.
  • the prism unit 30 is configured by joining a plurality of optical members, and divides the incident light that has passed through the objective lens unit 20 into two optical paths and emits them. That is, the prism unit 30 includes a prism portion 31 configured by bonding the first prism 32 and the second prism 33, a first cover glass 34 bonded to the emission surface side of the prism 32, and a prism And a second cover glass 36 joined to the light emitting surface 33 side.
  • the prism unit 31 has a green reflective coating layer (also referred to as a dichroic coating layer) 30 ⁇ / b> A on a joint boundary surface where the first prism 32 and the second prism 33 are overlapped.
  • the green reflective coating layer 30A is formed on the joining boundary surface where the first prism 32 and the second prism 33 are overlapped by applying a reflective film to the slope of the first prism 32, and the incident light green ( G) reflects light and transmits red (R) and blue (B) light.
  • a cover glass 34 and a first solid-state imaging device 35 for luminance signal or color signal (G signal) are provided on the exit surface side of the first prism 32 that is reflected substantially at right angles by the green reflective coating layer 30A. Arranged and fixed in order.
  • a cover glass 36 and two color signals (R, B) are provided behind the green prism coat layer 30A of the first prism 32 and the side that is transmitted through and emitted from the second prism 33 (outgoing surface side).
  • Signal) second solid-state imaging device 37 is arranged and fixed in that order.
  • the first solid-state imaging device 35, the second solid-state imaging device 37, the first prism 32, and the second prism 33 have the same optical path length.
  • the first solid-state imaging device 35 receives light emitted from the first prism 32 that is reflected by the green reflective coating layer 30 ⁇ / b> A and constitutes the prism portion 31.
  • the second solid-state imaging device 37 receives light emitted from the second prism 33 through the first prism 32 and the second prism 33.
  • the second solid-state imaging device 37 has red (R) and blue (B) color filters (not shown) arranged in stripes on the light receiving surface.
  • the solid-state imaging devices 35 and 37 are CCDs or CMOSs, and the configuration other than the color filter is substantially the same. That is, the two solid-state imaging devices 35 and 37 receive and photoelectrically convert the light in the two optical paths emitted from the prism unit 31 of the prism unit 30.
  • a first FPC (flexible printed circuit board) 38 on which electronic components 40 such as a capacitor and an IC are mounted is connected to the first solid-state imaging device 35.
  • a second FPC 39 on which an electronic component 41 such as a capacitor and an IC is mounted is connected to the second solid-state imaging element 37. That is, the imaging device 51 is provided in each of the solid-state imaging devices 35 and 37, and has FPCs 38 and 39 on which electronic components 40 and 41 necessary for driving the respective solid-state imaging devices are mounted.
  • the electronic components 40 and 41 are large-sized electronic components that generate the largest amount of heat among the plurality of electronic components mounted on the FPCs 38 and 39. Further, the FPCs 38 and 39 may have small electronic components mounted on the surface opposite to the surface on which the electronic components 40 and 41 are mounted.
  • the plurality of signal lines 42 of the first communication cable 43 are electrically connected to the first FPC 38.
  • a plurality of signal lines 44 of the second communication cable 45 are electrically connected to the second FPC 39.
  • the communication cables 43 and 45 are cables for supplying power to the electronic components 40 and 41 and transmitting and receiving signals to and from the solid-state imaging devices 35 and 37 via the FPCs 38 and 39. That is, the imaging device 51 is electrically connected to the FPCs 38 and 39, and the communication cables 43 and 45 that supply power to the electronic components 40 and 41 and transmit and receive signals to and from the solid-state imaging devices 35 and 37 through the FPCs 38 and 39. Have.
  • the FPCs 38 and 39 are arranged so that the arranged electronic components 40 and 41 face each other across the extension line Oa of the optical axis O of the objective lens unit 20, that is, toward the optical axis extension direction. It is arrange
  • the front end of the prism unit 30 (the front end where the incident light from the objective lens unit 20 enters) is fitted and fixed to the prism unit joint 28A of the holding holder 28.
  • a metal frame member 46 that includes two solid-state imaging devices 35 and 37 and two FPCs 35 and 38 is provided on the outer peripheral surface of the prism unit joint portion 28 ⁇ / b> A of the holding holder 28.
  • the heat shrinkable tube 47 is covered on the outer peripheral surface of the proximal end side of the holding holder 28.
  • the heat-shrinkable tube 47 encloses the imaging device 51 including the metal frame member 46 and covers up to the outer peripheral portions of the two communication cables 43 and 45.
  • the heat shrinkable tube 47 is filled with a filler 48 for protecting the imaging device 51 and for releasing heat.
  • a heat dissipating member 60 for dissipating heat generated by the electronic components 40 and 41 is provided.
  • the heat dissipation member 60 is arranged in the gap formed by disposing the substrate surface on which the electronic components 40 and 41 of the FPCs 38 and 39 are disposed facing the optical axis extending direction of the objective lens unit 20, the heat dissipation member 60 is arranged.
  • the heat radiating member 60 is a heat sink, and is made of a metal material such as copper or aluminum having high thermal conductivity, for example.
  • the heat radiating member 60 may be made of a material other than a metal material as long as it has a high thermal conductivity and a low heat storage property.
  • the shape of the heat radiating member 60 is matched to the shape of the gap (space) between the two FPCs 38 and 39 formed by disposing the electronic components 40 and 41 so as to face each other.
  • the heat radiating member 60 has a cross section perpendicular to the optical axis O of the incident light of the objective lens unit 20, strictly the extension line Oa of the optical axis O, in the extending direction of the FPCs 38 and 39. It is a trapezoidal shape that tapers towards.
  • the shape of the heat radiating member 60 may be, for example, an arc (cone) shape in which a cross section perpendicular to the optical axis of incident light of the objective lens unit 20 tapers in the extending direction of the FPCs 38 and 39. .
  • thermo conductivity filler 48 made of a resin containing silicon particles or the like which are high thermal conductivity particles.
  • a filler 48 is also filled between the periphery of the heat dissipating member 60 and the metal frame member 46 in the direction of the left and right side surfaces of the heat dissipating member 60.
  • the operation of the imaging device 51 will be described with reference to FIG.
  • the electronic components 40 and 41 and the solid-state imaging elements 35 and 37 generate heat.
  • the solid-state imaging devices 35 and 37 and the electronic components 40 and 41 are arranged in a region between the first FPC 38 and the second FPC 39 formed by arranging the electronic components 40 and 41 so as to face each other.
  • a heat dissipating member 60 is provided for dissipating the heat generated in step.
  • the heat generated by the electronic components 40 and 41 and the solid-state imaging devices 35 and 37 is transferred to the heat radiating member 60 through the filler 48 and radiated.
  • the electronic components 40 and 41 and the second solid-state imaging element 37 are densely arranged by the structure in which the electronic components 40 and 41 face each other, but heat can be efficiently radiated by the heat radiating member 60. For this reason, the first solid-state imaging element 35 and the second solid-state imaging element 37 of the imaging device 51 are not easily affected by heat, and the operation is stable because the deterioration of S / N is prevented.
  • the imaging device 51 of the first embodiment is a small two-plate imaging device 51 having a structure in which the electronic components 40 and 41 face each other, the heat generated can be efficiently radiated. Therefore, the solid-state imaging elements 35 and 37 are not affected by heat. Note that in the imaging device 51, due to the heat dissipation effect of the heat dissipation member 60, the electronic components 40 and 41 other than the solid-state imaging elements 35 and 37 are not easily affected by heat. Further, the endoscope 1 having the imaging device 51 has the effect of the imaging device 51 and realizes the diameter reduction of the distal end portion 11 of the insertion portion 2 and the entire insertion portion.
  • the imaging device 51A and the endoscope 1A according to the second embodiment will be described with reference to FIGS. Since the imaging device 51A is similar to the imaging device 51, the same components are denoted by the same reference numerals and description thereof is omitted.
  • a part of the heat radiating member 60 includes a first solid-state image pickup device 35, a second solid-state image pickup device 37, a first FPC 38, and a second FPC 39. It is in contact with the member 46.
  • the metal frame member 46 is a thin metal tubular member.
  • the side surface portion of the heat radiating member 60 is in surface contact with the metal frame member 46 having high thermal conductivity, so that the heat of the heat radiating member 60 is transferred to the metal frame member 46, and the metal Heat is radiated from the frame member 46. Therefore, the imaging device 51A has a higher heat dissipation effect than the imaging device 51.
  • the heat radiating member 60 Even if a part of the heat radiating member 60 is disposed close to the metal frame member 46 or a part of the side surface portion of the metal frame member 46 is disposed so as to contact the metal frame member 46, the heat radiating member 60. If the heat is transferred to the metal frame member 46, a heat radiation effect higher than that of the imaging device 51 can be obtained.
  • a filler 48 is interposed between the heat radiating member 60 and the metal frame member 46.
  • the metal frame member 46 is increased in thickness so that the diameter of the imaging device 51A does not increase, thereby improving the heat dissipation effect.
  • the imaging apparatus 51A includes a metal frame in which at least a part of the heat dissipation member 60 includes the first solid-state imaging element 35, the second solid-state imaging element 37, the first FPC 38, and the second FPC 39. It is close to or in contact with the member 46. For this reason, in addition to the effect which imaging device 51 and endoscope 1 have, imaging device 51A and endoscope 1A have the heat dissipation effect improved more.
  • an imaging device 51B and an endoscope 1B according to the third embodiment will be described with reference to FIG. Since the imaging device 51B is similar to the imaging device 51 and the like, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the signal line 44 a that is a part of the signal lines 42, 44, 44 a included in the first and second communication cables 43, 45 ⁇ / b> A is connected and fixed to the heat radiating member 60.
  • the signal line is made of a conductive material such as copper, and the conductive material is a high thermal conductivity material.
  • the signal line 44a of the second communication cable 45A is connected to a part of the heat radiating member 60, the heat in the heat radiating member 60 is transferred to the signal line 44a, so that the heat radiating effect is effective. It is more improved.
  • the second communication cable 45A is configured in the same manner as the first communication cable 43, but has a heat radiating signal line 44a other than the signal line 44 necessary for power feeding and signal transmission / reception. Yes.
  • the signal line 44 a may be an excess signal line in the cable, or may be provided in the cable particularly for connecting the heat radiating member 60.
  • first communication cable 43 may be configured in the same manner as the second communication cable 45A, and the heat radiation signal line may be connected to the heat radiation member 60 together with the signal line 44a, or a plurality of heat radiation signal lines.
  • the first and second communication cables 43 and 45 ⁇ / b> A having 44 a may be prepared, and a plurality of heat radiating signal lines 44 a may be connected to the heat radiating member 60.
  • the two communication cables 43 and 45A may be coaxial cables, and an external conductor having a ground potential wound around the central conductor of at least one coaxial cable may be connected to the heat radiating member 60 as a heat radiating signal line.
  • connection location of the signal line 44a to the heat radiating member 60 is not limited to the tapered lower portion of the heat radiating member 60 as shown in FIG. 7, and may be connected to other locations.
  • the signal line 44a connected to the heat radiating member 60 has been described with respect to the configuration using the signal line 44a of the second communication cable 45A.
  • a heat dissipation cable having a dedicated signal line for heat dissipation may be provided.
  • the heat radiating cable has a diameter that does not increase the diameter of the imaging device 51A and has a signal line with high thermal conductivity.
  • the imaging device 51B of the present embodiment has a configuration in which part of the signal lines 42, 44, and 44a included in the first and second communication cables 43 and 45A are attached to the heat dissipation member 60. is there. For this reason, in addition to the effect which the imaging device 51 and the endoscope 1 have, the imaging device 51B and the endoscope 1B have a more improved heat dissipation effect.
  • an imaging device 51C and an endoscope 1C according to the fourth embodiment will be described with reference to FIG. Since the imaging device 51C is similar to the imaging device 51 and the like, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the heat dissipating member 60A of the image pickup apparatus 51C has cutouts 61 that are opened in the extending direction side and on both side surfaces of the two FPCs 38 and 39. For this reason, the surface area of 60 A of heat radiating members is larger than the surface area of the heat radiating member 60 of 1st Embodiment. Since the cutout 61 of the heat dissipation member 60A shown in FIG. 8 is provided so that the extending direction side and both side portions on the base end side of the FPCs 38 and 39 are opened, the heat dissipation member 60A does not have the cutout 61. The surface area is larger than that of the heat dissipation member 60.
  • the heat radiating member 60A may have two notches so that, for example, a part of both sides of the upper surface and the lower surface in the direction perpendicular to the optical axis O of the objective lens unit 20 is opened.
  • the shape or the like of the notch 61 is not limited to the shape shown in FIG. 8, and for example, the width and length of the opening may be appropriately changed.
  • the imaging device 51C of the present embodiment has a notch 61 in the heat radiating member 60A, and the surface area of the heat radiating member 60A is larger than that of the heat radiating member 60 of the imaging device 51 of the first embodiment. For this reason, in addition to the effect which the imaging device 51 and the endoscope 1 have, the imaging device 51C and the endoscope 1C have a further improved heat dissipation effect.
  • an imaging device 51D and an endoscope 1D according to the fifth embodiment will be described with reference to FIG. Since the imaging device 51D is similar to the imaging device 51 and the like, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the heat radiating member 60B of the imaging device 51D of the present embodiment includes a first heat radiating member 62 divided into two in the vertical direction on a surface perpendicular to the optical axis 0 of the objective lens unit 20. And a second heat radiating member 63.
  • the vertical direction is the vertical direction in FIG. 9, that is, the direction in which the FPC 38 and the FPC 39 are arranged to face each other.
  • the heat radiating member 60B is divided into two in the vertical direction on the surface perpendicular to the optical axis O of the objective lens unit 20, and thus has a large surface area.
  • the two divided heat dissipating members 62 and 63 are arranged at a predetermined interval.
  • the entire surface area of the heat radiating member 60B is the same as that of the fourth embodiment. It is larger than the heat dissipation member 60A of the imaging device 51C. Therefore, the heat dissipation effect of the heat dissipation member 60B is further improved.
  • the shapes of the heat dissipation members 62 and 63 of the heat dissipation member 60B may be the same size and shape, or may be different sizes and shapes.
  • the heat dissipating member 60B is only required to be divided into at least two in the vertical direction. For example, the heat dissipating member is formed so that part of both sides of the upper surface and the lower surface in the direction perpendicular to the optical axis O of the objective lens unit 20 are opened. 60B may be divided into four.
  • the imaging device 51D and the endoscope 1D have a further improved heat dissipation effect.
  • an imaging device 51E and an endoscope 1E according to the sixth embodiment will be described with reference to FIG. Since the imaging device 51E is similar to the imaging device 51 and the like, the same components are denoted by the same reference numerals and description thereof is omitted.
  • the imaging device 51 ⁇ / b> E includes a heat dissipation member 60 on at least a part of a portion of the electronic components 40 and 41 that are mounted on the first and second FPCs 38 and 39, respectively, in contact with the heat dissipation member 60.
  • Insulating member 64 is provided to prevent contact with and insulate.
  • the insulating member 64 is an insulating tape formed of, for example, an insulating material, and is attached to the entire region or a partial region of each of the electronic components 40 and 41 facing the heat radiating member 60.
  • the insulating member 64 is preferably formed of a material having high thermal conductivity.
  • the insulating member 64 is not limited to the insulating tape, and may be an insulating layer formed by applying an insulating material to the entire area of the electronic components 40 and 41 or a part of the area.
  • the imaging device 51E does not cause contact between the electronic components 40 and 41 and the heat dissipation member 60, that is, a short circuit, the operations of the electronic components 40 and 41 and the solid-state imaging elements 35 and 37 are stable.
  • the insulating member 64 may be provided in a region where the electronic components 40 and 41 and the heat radiating member 60 are in contact with each other, or even if the electronic components 40 and 41 and the heat radiating member 60 are not in contact with each other, You may provide in all the area
  • the insulating member 64 may be provided on one of the electronic components 40 and 41. That is, the heat radiating member 60 of the imaging device may be provided with the insulating member 64, or may be configured with at least a part of the insulating member 64, or at least part of the electronic components 40 and 41. An insulating member 64 may be provided to prevent contact with the heat radiating member 60 for insulation.
  • the imaging device 51E and the endoscope 1E have stable operations in addition to the effects of the imaging device 51 and the endoscope 1.
  • the heat dissipating members 60, 60A, 60B may themselves be constituted by insulating members, or may be constituted by conductive members, and the outer peripheral surface.
  • the insulating member may be attached or applied to all or at least a part.
  • the region between the metal frame member 46 and the heat dissipation member 60, the metal frame member 46 and the first and second FPCs 38 and 39 It is preferable to provide the fillers 48 in the regions between the layers in a substantially uniform thickness. Then, the heat dissipation effect of the heat radiating member 60 itself can be improved, and the heat radiating member 60 can be disposed near the center of the imaging device 51, so that the imaging device 51 is reduced in diameter.
  • the imaging apparatus 51 of the embodiment according to the present invention has been described by taking a two-plate imaging apparatus having two solid-state imaging elements 35 and 37 as an example, the imaging apparatus 51 is not limited to this, and for example, a three-plate imaging Needless to say, the present invention can also be applied to a configuration in which an apparatus is provided and the photographing light is divided into three optical paths and emitted by the prism unit.
  • the endoscope of the present invention is an endoscope having an imaging device at the distal end portion of the insertion portion, and the imaging device has an objective lens unit and an incident light that has passed through the objective lens unit.
  • An optical unit that divides light into two optical paths and emits the light; a first solid-state image sensor and a second solid-state image sensor that receive light in the two optical paths emitted from the optical unit;
  • the heat dissipating member having a notch disposed between and the first substrate or the second substrate are electrically connected to each other, and the first substrate or the second substrate passes through the first substrate or the second substrate.
  • Power supply to electronic components and Two cables having a signal line for transmitting and receiving signals to and from the first solid-state imaging device or the second solid-state imaging device, and a signal line connected to the heat dissipation member, and the first solid state
  • An image sensor, the second solid-state image sensor, the first substrate and the second substrate are included, a metal frame member having a contact surface with a part of the heat dissipation member, and at least a part of the electronic component
  • the insulating tape which prevents the contact with the said heat radiating member provided, and the filler with which the said metal frame member is filled are comprised.

Abstract

Provided is a double board type imaging device (51) having two solid-state imaging elements (35, 37).  The imaging device is provided with: substrates (38, 39) on which electronic components (40, 41) required for driving the solid-state imaging elements (35, 37) are mounted, respectively; two cables (43, 45) electrically connected to the substrates (38, 39), respectively; and a heat dissipating member (60) arranged between the two substrates (38, 39).

Description

撮像装置および内視鏡Imaging apparatus and endoscope
 本発明は、複数の固体撮像素子を有する撮像装置および前記撮像装置を具備する内視鏡、特に放熱部材を有する撮像装置および前記撮像装置を具備する内視鏡に関する。 The present invention relates to an imaging apparatus having a plurality of solid-state imaging elements and an endoscope including the imaging apparatus, and more particularly to an imaging apparatus having a heat dissipation member and an endoscope including the imaging apparatus.
 対物光学系および固体撮像素子を有する撮像装置には、小型化および高画質化が望まれている。例えば、撮像装置を内視鏡の挿入部の先端部に設ける場合には、先端部の内部は撮像装置と照明光学系とがその多くを占めている。従って、撮像装置の小型化を図ることは、挿入部の先端部および挿入部全体の細径化を図るのに有効である。一方、高画質化の方法としては、固体撮像素子の画素数を増やす方法があるが、高画素数の固体撮像素子は大きさが大きい。 An imaging device having an objective optical system and a solid-state imaging device is desired to be downsized and to have high image quality. For example, when the imaging device is provided at the distal end portion of the insertion portion of the endoscope, the imaging device and the illumination optical system occupy most of the interior of the distal end portion. Therefore, reducing the size of the imaging device is effective for reducing the diameter of the distal end portion of the insertion portion and the entire insertion portion. On the other hand, as a method for improving the image quality, there is a method of increasing the number of pixels of the solid-state imaging device, but the size of the solid-state imaging device having a high number of pixels is large.
 小型化と高画質化とを同時に実現する方法としては、固体撮像素子を複数使用することで高画質化を図る多板式構造の撮像装置が知られている。撮像装置を内視鏡に適用する場合には、先端部の径を単板式撮像装置を用いた場合と同等にするために、固体撮像素子を2個使用した2板式固体撮像素子構造の撮像装置(以下、「2板式撮像装置」という。)が適している。 As a method for simultaneously realizing miniaturization and high image quality, there is known an image pickup apparatus having a multi-plate structure that achieves high image quality by using a plurality of solid-state image sensors. When the imaging apparatus is applied to an endoscope, an imaging apparatus having a two-plate solid-state imaging element structure using two solid-state imaging elements in order to make the diameter of the tip portion equal to that when a single-plate imaging apparatus is used. (Hereinafter referred to as “two-plate imaging device”) is suitable.
 単板式撮像装置では、固体撮像素子内に赤、緑および青の3色、またはシアン、マゼンタおよびイエローの3色のカラーフィルタが、それぞれの画素に設けられており、輝度信号画素と合わせて4つの画素により色を形成している。 In the single-plate imaging device, color filters of three colors of red, green, and blue, or three colors of cyan, magenta, and yellow are provided in each pixel in the solid-state imaging device. A color is formed by two pixels.
 一方、2板式撮像装置では、緑を反射させ、赤および青を透過させるコーティングが施されたプリズムを設置し、赤、青が透過する方向へ配置した一方の固体撮像素子に赤および青のカラーフィルタを設けている。そして、緑が反射する方向へ配置した他方の固体撮像素子に白黒および緑のカラーフィルタを設けている。このように2つの固体撮像素子を配置することで、それぞれの固体撮像素子の2画素を用いて、色を形成している。つまり、2板式撮像装置では、少ない画素の固体撮像素子、すなわち小さな固体撮像素子を用いて高画質化を図ることが可能である。 On the other hand, in a two-plate image pickup device, a prism with a coating reflecting green and transmitting red and blue is installed, and red and blue colors are placed on one solid-state image pickup device arranged in a direction in which red and blue are transmitted. A filter is provided. Then, black and white and green color filters are provided on the other solid-state imaging device arranged in the direction in which green is reflected. By arranging two solid-state image sensors in this way, colors are formed using two pixels of each solid-state image sensor. That is, in the two-plate image pickup apparatus, it is possible to improve the image quality by using a solid-state image pickup device having a small number of pixels, that is, a small solid-state image pickup device.
 ここで、特開2004-258497号公報および特開2007-135951号公報には、内視鏡の先端部内に2板式撮像装置を配置することが開示されている。 Here, Japanese Patent Application Laid-Open No. 2004-258497 and Japanese Patent Application Laid-Open No. 2007-135951 disclose disposing a two-plate imaging device in the distal end portion of the endoscope.
 図1を参照して内視鏡用に用いられる従来の2板式撮像装置の構成例を説明する。2板式撮像装置101は、プリズムユニット102と、2つの固体撮像素子106、107とを有している。 An example of the configuration of a conventional two-plate imaging device used for an endoscope will be described with reference to FIG. The two-plate imaging device 101 includes a prism unit 102 and two solid- state imaging elements 106 and 107.
 プリズムユニット102は、第1プリズム104と第2プリズム105とを備えたプリズム部103を有し、第1プリズム104側には第1の固体撮像素子106が設けられ、第2プリズム105側には第2の固体撮像素子107が設けられている。 The prism unit 102 includes a prism unit 103 including a first prism 104 and a second prism 105, a first solid-state image sensor 106 is provided on the first prism 104 side, and a second prism 105 side is provided. A second solid-state image sensor 107 is provided.
 第1の固体撮像素子106には、電子部品110が実装された第1のFPC(フレキシブルプリント基板)108が接続され、第1のFPC108には、通信ケーブル118の複数の信号線116が電気的に接続されている。一方、第2の固体撮像素子107には、電子部品111が実装された第2のFPC109が接続され、第2のFPC109には、通信ケーブル119の複数の信号線117が電気的に接続されている。 A first FPC (flexible printed circuit board) 108 on which an electronic component 110 is mounted is connected to the first solid-state imaging device 106, and a plurality of signal lines 116 of a communication cable 118 are electrically connected to the first FPC 108. It is connected to the. On the other hand, the second solid-state imaging device 107 is connected to the second FPC 109 on which the electronic component 111 is mounted, and the plurality of signal lines 117 of the communication cable 119 are electrically connected to the second FPC 109. Yes.
 プリズムユニット102の入射光側の先端部は、保持ホルダ112に嵌合固定されている。保持ホルダ112の基端外周面には、2つのFPC108、109を内包するように金属枠部材113が設けられている。また、保持ホルダ112の基端側には、熱収縮チューブ114が設けられている。熱収縮チューブ114は、2つの通信ケーブル118、119の先端外周部分までを被覆している。そして、熱収縮チューブ114内には、撮像装置101を保護する充填剤115が充填されている。 The tip of the prism unit 102 on the incident light side is fitted and fixed to the holding holder 112. A metal frame member 113 is provided on the outer peripheral surface of the base end of the holding holder 112 so as to enclose the two FPCs 108 and 109. A heat shrinkable tube 114 is provided on the proximal end side of the holding holder 112. The heat-shrinkable tube 114 covers up to the outer peripheral portions of the two communication cables 118 and 119. The heat shrinkable tube 114 is filled with a filler 115 that protects the imaging device 101.
 図1に示すように、2板式撮像装置101は、2つの固体撮像素子106、107を駆動させるのに必要な2つのFPC108、109上の電子部品110、111同士がお互い向かい合う構成となっているので、小型化および組立性の点で優れている。しかし、発熱部品である第2の固体撮像素子107、電子部品110、111が密集しているので、発熱した熱が充填剤115を介して固体撮像素子106、107に伝熱しS/Nが劣化するおそれがあった。 As shown in FIG. 1, the two-plate imaging device 101 has a configuration in which the electronic components 110 and 111 on the two FPCs 108 and 109 necessary to drive the two solid- state imaging devices 106 and 107 face each other. Therefore, it is excellent in terms of downsizing and assembly. However, since the second solid-state imaging device 107 and the electronic components 110 and 111, which are heat generating components, are densely packed, the heat generated is transferred to the solid- state imaging devices 106 and 107 via the filler 115, and the S / N is deteriorated. There was a risk.
 本発明は、前記問題点に鑑みてなされたものであり、小型化に適して、発熱する熱を効率良く放熱して固体撮像素子への熱による影響を防止した撮像装置を提供することを目的とする。 The present invention has been made in view of the above problems, and an object thereof is to provide an imaging device suitable for downsizing and efficiently dissipating heat generated to prevent the influence of heat on a solid-state imaging device. And
 本発明の実施の形態の撮像装置は、対物レンズユニットと、前記対物レンズユニットを通過した入射光を複数の光路に分割して出射する光学ユニットと、前記光学ユニットが出射する前記複数の光路のそれぞれの光を受光する複数の固体撮像素子と、前記複数の固体撮像素子のそれぞれに設けられ、それぞれの前記固体撮像素子の駆動に必要な電子部品が実装された複数の基板と、それぞれの前記複数の基板に電気的に接続され、前記基板を介して前記電子部品への給電および前記固体撮像素子との信号の送受信を行う複数のケーブルと、前記複数の基板間に配設された放熱部材と、を具備する。 An image pickup apparatus according to an embodiment of the present invention includes an objective lens unit, an optical unit that divides incident light that has passed through the objective lens unit into a plurality of optical paths, and outputs the optical unit, and the optical paths that the optical unit emits. A plurality of solid-state imaging devices that receive the respective light; a plurality of substrates that are provided in each of the plurality of solid-state imaging devices and on which electronic components necessary for driving the respective solid-state imaging devices are mounted; A plurality of cables that are electrically connected to a plurality of substrates and that supply power to the electronic components and transmit / receive signals to / from the solid-state imaging device via the substrates, and a heat dissipation member disposed between the plurality of substrates And.
 また本発明の別の実施の形態の内視鏡は、挿入部の先端部に撮像装置を有する内視鏡であって、前記撮像装置が、対物レンズユニットと、前記対物レンズユニットを通過した入射光を複数の光路に分割して出射する光学ユニットと、前記光学ユニットが出射する前記複数の光路のそれぞれの光を受光する複数の固体撮像素子と、前記複数の固体撮像素子のそれぞれに設けられ、それぞれの前記固体撮像素子の駆動に必要な電子部品が実装された複数の基板と、それぞれの前記複数の基板に電気的に接続され、前記基板を介して前記電子部品への給電および前記固体撮像素子との信号の送受信を行う複数のケーブルと、前記複数の基板の間に配設された放熱部材と、を具備する。 An endoscope according to another embodiment of the present invention is an endoscope having an imaging device at a distal end portion of an insertion portion, and the imaging device passes through an objective lens unit and the objective lens unit. An optical unit that divides light into a plurality of optical paths and emits the light, a plurality of solid-state imaging devices that receive the light of the plurality of optical paths emitted by the optical unit, and the plurality of solid-state imaging devices, respectively. A plurality of substrates on which electronic components necessary for driving each of the solid-state imaging devices are mounted, and electrically connected to each of the plurality of substrates, supplying power to the electronic components via the substrates, and the solid A plurality of cables for transmitting and receiving signals to and from the image sensor; and a heat dissipating member disposed between the plurality of substrates.
従来の撮像装置の構成を説明するための図である。It is a figure for demonstrating the structure of the conventional imaging device. 第1の実施の形態の内視鏡の全体構成を示す構成図である。It is a lineblock diagram showing the whole endoscope composition of a 1st embodiment. 第1の実施の形態の内視鏡の先端部の断面構造を説明するための図である。It is a figure for demonstrating the cross-section of the front-end | tip part of the endoscope of 1st Embodiment. 第1の実施の形態の撮像装置の構成を説明するための図である。It is a figure for demonstrating the structure of the imaging device of 1st Embodiment. 第2の実施の形態の撮像装置の構成を説明するための図である。It is a figure for demonstrating the structure of the imaging device of 2nd Embodiment. 第2の実施の形態の撮像装置の図5のVI-VI線に沿った構造を説明するための図である。It is a figure for demonstrating the structure along the VI-VI line of FIG. 5 of the imaging device of 2nd Embodiment. 第3の実施の形態の撮像装置の構成を説明するための図である。It is a figure for demonstrating the structure of the imaging device of 3rd Embodiment. 第4の実施の形態の撮像装置の構成を説明するための図である。It is a figure for demonstrating the structure of the imaging device of 4th Embodiment. 第5の実施の形態の撮像装置の構成を説明するための図である。It is a figure for demonstrating the structure of the imaging device of 5th Embodiment. 第6の実施の形態の撮像装置の構成を説明するための図である。It is a figure for demonstrating the structure of the imaging device of 6th Embodiment. 撮像装置内に充填剤が均一に設けられた状態の断面構造を説明するための図である。It is a figure for demonstrating the cross-sectional structure of the state by which the filler was uniformly provided in the imaging device.
 以下、体腔内に挿入して、生体組織を観察する医療機器である内視鏡、例えば、硬性の挿入部を備えた硬性電子内視鏡に配設する撮像装置を例に説明する。 Hereinafter, an imaging apparatus disposed in an endoscope that is a medical device that is inserted into a body cavity and observes a living tissue, for example, a rigid electronic endoscope provided with a rigid insertion portion will be described as an example.
(第1の実施の形態)
 図2に示す硬性電子内視鏡1(以下、単に「内視鏡」という。)1は、後述する撮像装置51を有している。内視鏡1は、先端部11を有する挿入部2と、挿入部2の基端に連設された操作部3と、操作部3から延出したユニバーサルコード4と、ユニバーサルコード4の基端に配されたスコープコネクタ5と、スコープコネクタ5の側部から延出するケーブルの端部に設けられた電気コネクタ6とを具備している。
(First embodiment)
A rigid electronic endoscope 1 (hereinafter simply referred to as “endoscope”) 1 shown in FIG. 2 has an imaging device 51 described later. The endoscope 1 includes an insertion portion 2 having a distal end portion 11, an operation portion 3 connected to the proximal end of the insertion portion 2, a universal cord 4 extending from the operation portion 3, and a proximal end of the universal cord 4 The scope connector 5 is disposed on the side of the scope connector 5, and the electrical connector 6 is provided at the end of the cable extending from the side of the scope connector 5.
 次に、図3を参照しながら本実施の形態の撮像装置51を有する内視鏡1の先端部11の構造について、説明する。図3に示すように、先端部11の先端には対物レンズユニット20の観察レンズ21、および照明光学部品である照明レンズ22が配置されている。なお先端部11は、その略全周を被覆するように外形を形成する硬質管27を有している。硬質管27は、先端カバー25と嵌合している。観察レンズ21は、複数の対物レンズからなる対物レンズ群23と共に、レンズ保持枠24に保持されている。すなわち対物レンズユニット20は、観察レンズ21と、対物レンズ群23と、レンズ保持枠24とを有する。対物レンズユニット20は、金属性の先端硬質部材である先端枠26に嵌装して固定されている。 Next, the structure of the distal end portion 11 of the endoscope 1 having the imaging device 51 of the present embodiment will be described with reference to FIG. As shown in FIG. 3, an observation lens 21 of the objective lens unit 20 and an illumination lens 22 that is an illumination optical component are disposed at the distal end of the distal end portion 11. In addition, the front-end | tip part 11 has the hard pipe | tube 27 which forms an external shape so that the substantially perimeter may be coat | covered. The hard tube 27 is fitted with the tip cover 25. The observation lens 21 is held by a lens holding frame 24 together with an objective lens group 23 including a plurality of objective lenses. That is, the objective lens unit 20 includes an observation lens 21, an objective lens group 23, and a lens holding frame 24. The objective lens unit 20 is fitted and fixed to a tip frame 26 that is a metallic tip hard member.
 一方、照明レンズ22は、先端カバー25に保持されている。照明レンズ22の背面側には、ライトガイドバンドル29の先端面が対向するように配置されている。ライトガイドバンドル29は、内視鏡1の挿入部2、操作部3、およびユニバーサルコード4の内部に挿通し、スコープコネクタ5まで配設され、図示しない光源装置からの照明光を伝送する。対物レンズユニット20のレンズ保持枠24の基端外周部分には、先端枠26内に挿通され、レンズ保持枠24に外嵌固定された保持ホルダ28が配設されている。 On the other hand, the illumination lens 22 is held by the tip cover 25. On the back side of the illumination lens 22, the tip surface of the light guide bundle 29 is disposed so as to face. The light guide bundle 29 is inserted into the insertion portion 2, the operation portion 3, and the universal cord 4 of the endoscope 1, is disposed up to the scope connector 5, and transmits illumination light from a light source device (not shown). A holding holder 28 that is inserted into the distal end frame 26 and is fitted and fixed to the lens holding frame 24 is disposed on the outer peripheral portion of the base end of the lens holding frame 24 of the objective lens unit 20.
 保持ホルダ28の基端部には、撮像装置51のプリズムユニット30の先端部(対物レンズユニット20からの入射光が入射される先端部)が嵌合固定されている。 The distal end portion of the prism unit 30 of the imaging device 51 (the distal end portion where the incident light from the objective lens unit 20 is incident) is fitted and fixed to the proximal end portion of the holding holder 28.
 次に、図3および図4を参照しながら本実施の形態の撮像装置51について、説明する。図3および図4に示すように、撮像装置51は、光学ユニットを構成するプリズム部31を有するプリズムユニット30と、2つの固体撮像素子35、37と、2つのFPC38、39と、2本のケーブル43、45と、放熱部材60とを有している2板式撮像装置51である。 Next, the imaging device 51 of the present embodiment will be described with reference to FIGS. As shown in FIGS. 3 and 4, the imaging device 51 includes a prism unit 30 having a prism portion 31 constituting an optical unit, two solid- state imaging devices 35 and 37, two FPCs 38 and 39, and two This is a two-plate type imaging device 51 having cables 43 and 45 and a heat radiating member 60.
 プリズムユニット30は、複数の光学部材を接合して構成されており、対物レンズユニット20を通過した入射光を2つの光路に分割して出射する。すなわち、プリズムユニット30は、第1のプリズム32と第2のプリズム33とを接合して構成されるプリズム部31と、プリズム32の出射面側に接合される第1のカバーガラス34と、プリズム33の出射面側に接合される第2のカバーガラス36とを有している。また、プリズム部31は、第1のプリズム32と第2のプリズム33とを重ね合わせた接合境界面にグリーン反射コート層(ダイクロイックコート層ともいう)30Aを有する。グリーン反射コート層30Aは、第1のプリズム32の斜面に反射膜を施すことによって、第1のプリズム32と第2のプリズム33とを重ね合わせた接合境界面に形成され、入射光のグリーン(G)の光を反射し、レッド(R)およびブルー(B)の光を透過させる特性を有している。 The prism unit 30 is configured by joining a plurality of optical members, and divides the incident light that has passed through the objective lens unit 20 into two optical paths and emits them. That is, the prism unit 30 includes a prism portion 31 configured by bonding the first prism 32 and the second prism 33, a first cover glass 34 bonded to the emission surface side of the prism 32, and a prism And a second cover glass 36 joined to the light emitting surface 33 side. The prism unit 31 has a green reflective coating layer (also referred to as a dichroic coating layer) 30 </ b> A on a joint boundary surface where the first prism 32 and the second prism 33 are overlapped. The green reflective coating layer 30A is formed on the joining boundary surface where the first prism 32 and the second prism 33 are overlapped by applying a reflective film to the slope of the first prism 32, and the incident light green ( G) reflects light and transmits red (R) and blue (B) light.
 第1のプリズム32のグリーン反射コート層30Aにより略直角反射される側の出射面側には、カバーガラス34、輝度信号用または色信号(G信号)用の第1の固体撮像素子35がその順序で配置されて接着固定されている。 A cover glass 34 and a first solid-state imaging device 35 for luminance signal or color signal (G signal) are provided on the exit surface side of the first prism 32 that is reflected substantially at right angles by the green reflective coating layer 30A. Arranged and fixed in order.
 また、第1のプリズム32のグリーン反射コート層30A、および第2のプリズム33を透過して出射される側(出射面側)の後方には、カバーガラス36、2つの色信号(R、B信号)用の第2の固体撮像素子37がその順序で配置されて接着固定されている。なお、第1の固体撮像素子35と第2の固体撮像素子37と、第1のプリズム32と第2のプリズム33とは光路長が同じである。 A cover glass 36 and two color signals (R, B) are provided behind the green prism coat layer 30A of the first prism 32 and the side that is transmitted through and emitted from the second prism 33 (outgoing surface side). Signal) second solid-state imaging device 37 is arranged and fixed in that order. The first solid-state imaging device 35, the second solid-state imaging device 37, the first prism 32, and the second prism 33 have the same optical path length.
 第1の固体撮像素子35は、グリーン反射コート層30Aにより反射されてプリズム部31を構成する第1のプレズム32から出射された光を受光する。第2の固体撮像素子37は、第1のプリズム32、第2のプリズム33を透過して第2のプリズム33から出射された光を受光する。 The first solid-state imaging device 35 receives light emitted from the first prism 32 that is reflected by the green reflective coating layer 30 </ b> A and constitutes the prism portion 31. The second solid-state imaging device 37 receives light emitted from the second prism 33 through the first prism 32 and the second prism 33.
 第2の固体撮像素子37は受光面にストライプ状に併設されたレッド(R)およびブルー(B)のカラーフィルタ(不図示)を有する。固体撮像素子35、37は、CCDまたはCMOSなどであり、カラーフィルタ以外の構成は略同様である。すなわち2つの固体撮像素子35、37は、プリズムユニット30のプリズム部31が出射する2つの光路のそれぞれの光を受光し光電変換する。 The second solid-state imaging device 37 has red (R) and blue (B) color filters (not shown) arranged in stripes on the light receiving surface. The solid- state imaging devices 35 and 37 are CCDs or CMOSs, and the configuration other than the color filter is substantially the same. That is, the two solid- state imaging devices 35 and 37 receive and photoelectrically convert the light in the two optical paths emitted from the prism unit 31 of the prism unit 30.
 第1の固体撮像素子35には、コンデンサおよびIC等の電子部品40が実装された第1のFPC(フレキシブルプリント基板)38が接続されている。第2の固体撮像素子37には、コンデンサおよびIC等の電子部品41が実装された第2のFPC39が接続されている。すなわち、撮像装置51は固体撮像素子35、37のそれぞれに設けられ、それぞれの固体撮像素子の駆動に必要な電子部品40、41が実装されたFPC38、39を有している。なお、電子部品40、41はFPC38、39に実装された複数の電子部品の中で最も発熱量の大きい大型の電子部品である。またFPC38、39は電子部品40、41が実装されている面と反対面にも小型の電子部品が実装されていてもよい。 A first FPC (flexible printed circuit board) 38 on which electronic components 40 such as a capacitor and an IC are mounted is connected to the first solid-state imaging device 35. A second FPC 39 on which an electronic component 41 such as a capacitor and an IC is mounted is connected to the second solid-state imaging element 37. That is, the imaging device 51 is provided in each of the solid- state imaging devices 35 and 37, and has FPCs 38 and 39 on which electronic components 40 and 41 necessary for driving the respective solid-state imaging devices are mounted. The electronic components 40 and 41 are large-sized electronic components that generate the largest amount of heat among the plurality of electronic components mounted on the FPCs 38 and 39. Further, the FPCs 38 and 39 may have small electronic components mounted on the surface opposite to the surface on which the electronic components 40 and 41 are mounted.
 また、第1のFPC38には、第1の通信ケーブル43の複数の信号線42が電気的に接続されている。第2のFPC39には、第2の通信ケーブル45の複数の信号線44が電気的に接続されている。通信ケーブル43、45は、FPC38、39を介して電子部品40、41への給電および固体撮像素子35、37との信号の送受を行うためのケーブルである。すなわち、撮像装置51はFPC38、39と電気的に接続され、FPC38、39を介して電子部品40、41への給電および固体撮像素子35、37との信号の送受信を行う通信ケーブル43、45を有している。 Further, the plurality of signal lines 42 of the first communication cable 43 are electrically connected to the first FPC 38. A plurality of signal lines 44 of the second communication cable 45 are electrically connected to the second FPC 39. The communication cables 43 and 45 are cables for supplying power to the electronic components 40 and 41 and transmitting and receiving signals to and from the solid- state imaging devices 35 and 37 via the FPCs 38 and 39. That is, the imaging device 51 is electrically connected to the FPCs 38 and 39, and the communication cables 43 and 45 that supply power to the electronic components 40 and 41 and transmit and receive signals to and from the solid- state imaging devices 35 and 37 through the FPCs 38 and 39. Have.
 なお、FPC38、39は、配設された電子部品40、41が、対物レンズユニット20の光軸Oの延長線Oaをはさんで互い向かい合うように配設、すなわち光軸延線方向に向けて対向する位置に配設されている。このためFPC38とFPC39との間、言い換えれば電子部品40と電子部品41との間には空間(隙間)がある。 The FPCs 38 and 39 are arranged so that the arranged electronic components 40 and 41 face each other across the extension line Oa of the optical axis O of the objective lens unit 20, that is, toward the optical axis extension direction. It is arrange | positioned in the opposing position. For this reason, there is a space (gap) between the FPC 38 and the FPC 39, in other words, between the electronic component 40 and the electronic component 41.
 一方、プリズムユニット30の先端部(対物レンズユニット20からの入射光が入射する先端部)は、保持ホルダ28のプリズムユニット接合部28Aに嵌合固定されている。保持ホルダ28のプリズムユニット接合部28Aの外周面には、2つの固体撮像素子35、37および2つのFPC35、38を内包する金属枠部材46が設けられている。また、保持ホルダ28の基端側外周面には、熱収縮チューブ47が被覆されている。熱収縮チューブ47は、金属枠部材46を含む撮像装置51を内包して、2つの通信ケーブル43、45の先端外周部分までを被覆している。熱収縮チューブ47内には、撮像装置51を保護するとともに放熱のための充填剤48が充填されている。 On the other hand, the front end of the prism unit 30 (the front end where the incident light from the objective lens unit 20 enters) is fitted and fixed to the prism unit joint 28A of the holding holder 28. A metal frame member 46 that includes two solid- state imaging devices 35 and 37 and two FPCs 35 and 38 is provided on the outer peripheral surface of the prism unit joint portion 28 </ b> A of the holding holder 28. Further, the heat shrinkable tube 47 is covered on the outer peripheral surface of the proximal end side of the holding holder 28. The heat-shrinkable tube 47 encloses the imaging device 51 including the metal frame member 46 and covers up to the outer peripheral portions of the two communication cables 43 and 45. The heat shrinkable tube 47 is filled with a filler 48 for protecting the imaging device 51 and for releasing heat.
 本実施の形態の撮像装置51は、電子部品40、41を互いに向かい合うように配設することで形成される第1のFPC38と第2のFPC39と間の隙間に、固体撮像素子35、37および電子部品40、41が発熱した熱を放熱する放熱部材60を設けている。言い換えれば、FPC38、39の電子部品40、41が配設された基板面側を対物レンズユニット20の光軸延線方向に向けて対向して配設することで形成された隙間に、放熱部材60が配置されている。 In the imaging device 51 of the present embodiment, the solid- state imaging devices 35, 37 and the gap between the first FPC 38 and the second FPC 39 formed by disposing the electronic components 40, 41 so as to face each other. A heat dissipating member 60 for dissipating heat generated by the electronic components 40 and 41 is provided. In other words, in the gap formed by disposing the substrate surface on which the electronic components 40 and 41 of the FPCs 38 and 39 are disposed facing the optical axis extending direction of the objective lens unit 20, the heat dissipation member 60 is arranged.
 放熱部材60は、ヒートシンクであって、例えば熱伝導性の高い銅、アルミニウム等の金属材料からなる。なお、放熱部材60は熱伝導性が高く、かつ蓄熱性が低い特性を有していれば金属材料以外を用いてもよい。放熱部材60の形状は、電子部品40、41を互いに向かい合うように配設することで形成される2つのFPC38、39の間の隙間(空間)の形状に合わせている。 The heat radiating member 60 is a heat sink, and is made of a metal material such as copper or aluminum having high thermal conductivity, for example. The heat radiating member 60 may be made of a material other than a metal material as long as it has a high thermal conductivity and a low heat storage property. The shape of the heat radiating member 60 is matched to the shape of the gap (space) between the two FPCs 38 and 39 formed by disposing the electronic components 40 and 41 so as to face each other.
 例えば図4に示すように、放熱部材60は、対物レンズユニット20の入射光の光軸O、厳密には光軸Oの延長線Oaに対して垂直な断面がFPC38、39の延出方向に向けて先細りとなるような台形形状である。なお、放熱部材60の形状は例えば対物レンズユニット20の入射光の光軸に対して垂直な断面がFPC38、39の延出方向に向けて先細りとなる円弧(円錐)形状等であってもよい。 For example, as shown in FIG. 4, the heat radiating member 60 has a cross section perpendicular to the optical axis O of the incident light of the objective lens unit 20, strictly the extension line Oa of the optical axis O, in the extending direction of the FPCs 38 and 39. It is a trapezoidal shape that tapers towards. The shape of the heat radiating member 60 may be, for example, an arc (cone) shape in which a cross section perpendicular to the optical axis of incident light of the objective lens unit 20 tapers in the extending direction of the FPCs 38 and 39. .
 放熱部材60と第1のFPC38上の電子部品40との間、放熱部材60と第2のFPC39上の電子部品41との間、さらに、放熱部材60と第2の固体撮像素子37との間には高熱伝導率粒子であるシリコン粒子等を含有した樹脂等からなる熱伝導率の高い充填剤48が充填されている。放熱部材60の周囲、および放熱部材60の左右両側側面部方向の金属枠部材46との間にも、充填剤48が充填されている。 Between the heat dissipation member 60 and the electronic component 40 on the first FPC 38, between the heat dissipation member 60 and the electronic component 41 on the second FPC 39, and between the heat dissipation member 60 and the second solid-state imaging device 37. Is filled with a high thermal conductivity filler 48 made of a resin containing silicon particles or the like which are high thermal conductivity particles. A filler 48 is also filled between the periphery of the heat dissipating member 60 and the metal frame member 46 in the direction of the left and right side surfaces of the heat dissipating member 60.
 次に、図4を参照しながら撮像装置51の作用について説明する。術者が撮像装置51を駆動すると、電子部品40、41と固体撮像素子35、37とが発熱する。撮像装置51では、電子部品40、41を互いに向かい合うように配設することで形成された第1のFPC38と第2のFPC39の間の領域に、固体撮像素子35、37および電子部品40、41で発熱した熱を放熱するための放熱部材60が設けられている。 Next, the operation of the imaging device 51 will be described with reference to FIG. When the surgeon drives the imaging device 51, the electronic components 40 and 41 and the solid- state imaging elements 35 and 37 generate heat. In the imaging device 51, the solid- state imaging devices 35 and 37 and the electronic components 40 and 41 are arranged in a region between the first FPC 38 and the second FPC 39 formed by arranging the electronic components 40 and 41 so as to face each other. A heat dissipating member 60 is provided for dissipating the heat generated in step.
 そのため、電子部品40、41および固体撮像素子35、37が発熱した熱は、充填剤48を介して放熱部材60に伝熱されて放熱される。 Therefore, the heat generated by the electronic components 40 and 41 and the solid- state imaging devices 35 and 37 is transferred to the heat radiating member 60 through the filler 48 and radiated.
 すなわち撮像装置51においては、電子部品40、41が互いに向かい合う構造により電子部品40、41および第2の固体撮像素子37が密集配置されているが、放熱部材60により熱を効率良く放熱できる。このため、撮像装置51の第1の固体撮像素子35および第2の固体撮像素子37は熱による影響を受けにくく、S/Nの劣化が防止されるため動作が安定している。 That is, in the imaging device 51, the electronic components 40 and 41 and the second solid-state imaging element 37 are densely arranged by the structure in which the electronic components 40 and 41 face each other, but heat can be efficiently radiated by the heat radiating member 60. For this reason, the first solid-state imaging element 35 and the second solid-state imaging element 37 of the imaging device 51 are not easily affected by heat, and the operation is stable because the deterioration of S / N is prevented.
 以上の説明のように、第1の実施の形態の撮像装置51は、電子部品40、41が互いに向かい合う構造の小型の2板式の撮像装置51であっても、発熱する熱を効率良く放熱できるため固体撮像素子35、37が熱の影響を受けることがない。なお、撮像装置51は、放熱部材60による放熱効果により、固体撮像素子35、37以外の電子部品40、41も熱による悪影響を受けにくい。また撮像装置51を有する内視鏡1は、撮像装置51の効果を有し、挿入部2の先端部11および挿入部全体の細径化を実現している。 As described above, even if the imaging device 51 of the first embodiment is a small two-plate imaging device 51 having a structure in which the electronic components 40 and 41 face each other, the heat generated can be efficiently radiated. Therefore, the solid- state imaging elements 35 and 37 are not affected by heat. Note that in the imaging device 51, due to the heat dissipation effect of the heat dissipation member 60, the electronic components 40 and 41 other than the solid- state imaging elements 35 and 37 are not easily affected by heat. Further, the endoscope 1 having the imaging device 51 has the effect of the imaging device 51 and realizes the diameter reduction of the distal end portion 11 of the insertion portion 2 and the entire insertion portion.
(第2の実施の形態) 
 次に、図5および図6を用いて、第2の実施の形態の撮像装置51Aおよび内視鏡1Aについて説明する。撮像装置51Aは、撮像装置51に類似しているため同じ構成要素には同じ符号を付し説明は省略する。
(Second Embodiment)
Next, the imaging device 51A and the endoscope 1A according to the second embodiment will be described with reference to FIGS. Since the imaging device 51A is similar to the imaging device 51, the same components are denoted by the same reference numerals and description thereof is omitted.
 図5に示すように、撮像装置51Aでは、放熱部材60の一部が、第1の固体撮像素子35、第2の固体撮像素子37、第1のFPC38および第2のFPC39を内包する金属枠部材46と接触している。金属枠部材46は、肉厚の薄い金属製の管状部材である。 As shown in FIG. 5, in the image pickup apparatus 51 </ b> A, a part of the heat radiating member 60 includes a first solid-state image pickup device 35, a second solid-state image pickup device 37, a first FPC 38, and a second FPC 39. It is in contact with the member 46. The metal frame member 46 is a thin metal tubular member.
 すなわち、図5および図6に示すように、放熱部材60の一部である、第1のFPC38および第2のFPC39の延出方向(対物レンズユニット20の入射光の光軸方向)に沿った左右側面部の一方側の側面部全領域が、金属枠部材46と面接触している。 That is, as shown in FIGS. 5 and 6, along the extending direction of the first FPC 38 and the second FPC 39 (the optical axis direction of the incident light of the objective lens unit 20), which is a part of the heat radiating member 60. The entire side region on one side of the left and right side portions is in surface contact with the metal frame member 46.
 本実施の形態の撮像装置51Aでは、放熱部材60の側面部が熱伝導率の高い金属枠部材46に面接触しているので、放熱部材60の熱が金属枠部材46に伝熱され、金属枠部材46から放熱される。そのため撮像装置51Aは撮像装置51よりも放熱効果が高い。 In the imaging device 51A of the present embodiment, the side surface portion of the heat radiating member 60 is in surface contact with the metal frame member 46 having high thermal conductivity, so that the heat of the heat radiating member 60 is transferred to the metal frame member 46, and the metal Heat is radiated from the frame member 46. Therefore, the imaging device 51A has a higher heat dissipation effect than the imaging device 51.
 なお、放熱部材60の一部が金属枠部材46と近接配置されていても、または金属枠部材46の側面部の一部が金属枠部材46と接触するよう配置されていても、放熱部材60の熱が金属枠部材46に伝熱される構造であれば撮像装置51よりも高い放熱効果を得ることができる。なお放熱部材60が金属枠部材46と近接するように配置されている場合には、放熱部材60と金属枠部材46との間には充填剤48が介在する。 Even if a part of the heat radiating member 60 is disposed close to the metal frame member 46 or a part of the side surface portion of the metal frame member 46 is disposed so as to contact the metal frame member 46, the heat radiating member 60. If the heat is transferred to the metal frame member 46, a heat radiation effect higher than that of the imaging device 51 can be obtained. When the heat radiating member 60 is arranged so as to be close to the metal frame member 46, a filler 48 is interposed between the heat radiating member 60 and the metal frame member 46.
 なお、金属枠部材46は撮像装置51Aの径が大きくならない程度に肉厚を厚くすることにより、放熱効果を向上することが好ましい。 In addition, it is preferable that the metal frame member 46 is increased in thickness so that the diameter of the imaging device 51A does not increase, thereby improving the heat dissipation effect.
 以上の説明のように、撮像装置51Aは、放熱部材60の少なくとも一部が第1の固体撮像素子35、第2の固体撮像素子37、第1のFPC38および第2のFPC39を内包する金属枠部材46に近接、または接触している。このため撮像装置51Aおよび内視鏡1Aは、撮像装置51および内視鏡1が有する効果に加えて放熱効果がより向上している。 As described above, the imaging apparatus 51A includes a metal frame in which at least a part of the heat dissipation member 60 includes the first solid-state imaging element 35, the second solid-state imaging element 37, the first FPC 38, and the second FPC 39. It is close to or in contact with the member 46. For this reason, in addition to the effect which imaging device 51 and endoscope 1 have, imaging device 51A and endoscope 1A have the heat dissipation effect improved more.
(第3の実施の形態) 
 次に、図7を用いて、第3の実施の形態の撮像装置51Bおよび内視鏡1Bについて説明する。撮像装置51Bは、撮像装置51等に類似しているため同じ構成要素には同じ符号を付し説明は省略する。
(Third embodiment)
Next, an imaging device 51B and an endoscope 1B according to the third embodiment will be described with reference to FIG. Since the imaging device 51B is similar to the imaging device 51 and the like, the same components are denoted by the same reference numerals and description thereof is omitted.
 図7に示すように、撮像装置51Bでは、第1および第2の通信ケーブル43、45Aが備える信号線42、44、44aの一部である信号線44aが放熱部材60に接続固定されている。信号線は導電材料である銅等により形成されており、導電材料は高熱伝導率材料である。 As shown in FIG. 7, in the imaging device 51 </ b> B, the signal line 44 a that is a part of the signal lines 42, 44, 44 a included in the first and second communication cables 43, 45 </ b> A is connected and fixed to the heat radiating member 60. . The signal line is made of a conductive material such as copper, and the conductive material is a high thermal conductivity material.
 撮像装置51Bでは放熱部材60の一部に第2の通信ケーブル45Aの信号線44aが接続されているので、放熱部材60内の熱が信号線44aに伝熱されるため放熱効果が撮像装置51等より向上している。 In the imaging device 51B, since the signal line 44a of the second communication cable 45A is connected to a part of the heat radiating member 60, the heat in the heat radiating member 60 is transferred to the signal line 44a, so that the heat radiating effect is effective. It is more improved.
 すなわち、第2の通信ケーブル45Aは、第1の通信ケーブル43と同様に構成されたものであるが、給電および信号の送受に必要な信号線44以外の放熱用の信号線44aを有している。なお、信号線44aは、ケーブル中の余剰の信号線を用いてもよいし、放熱部材60の接続のために特にケーブル中に設けてもよい。 That is, the second communication cable 45A is configured in the same manner as the first communication cable 43, but has a heat radiating signal line 44a other than the signal line 44 necessary for power feeding and signal transmission / reception. Yes. The signal line 44 a may be an excess signal line in the cable, or may be provided in the cable particularly for connecting the heat radiating member 60.
 また、第1の通信ケーブル43を第2の通信ケーブル45Aと同じように構成し、放熱用の信号線を信号線44aと共に放熱部材60に接続しても良く、または複数の放熱用の信号線44aを有する第1および第2の通信ケーブル43、45Aを用意して、複数の放熱用の信号線44aを放熱部材60に接続してもよい。 Further, the first communication cable 43 may be configured in the same manner as the second communication cable 45A, and the heat radiation signal line may be connected to the heat radiation member 60 together with the signal line 44a, or a plurality of heat radiation signal lines. The first and second communication cables 43 and 45 </ b> A having 44 a may be prepared, and a plurality of heat radiating signal lines 44 a may be connected to the heat radiating member 60.
 なお、2つの通信ケーブル43、45Aを同軸ケーブルとし少なくとも一方の同軸ケーブルの中心導体に巻回される接地電位の外部導電体を放熱用の信号線として放熱部材60に接続してもよい。 The two communication cables 43 and 45A may be coaxial cables, and an external conductor having a ground potential wound around the central conductor of at least one coaxial cable may be connected to the heat radiating member 60 as a heat radiating signal line.
 また、信号線44aの放熱部材60への接続箇所は、図7に示すように放熱部材60の先細り形状の下部に限定されるものではなく、それ以外の箇所に接続してもよい。 Further, the connection location of the signal line 44a to the heat radiating member 60 is not limited to the tapered lower portion of the heat radiating member 60 as shown in FIG. 7, and may be connected to other locations.
 なお、放熱部材60に接続する信号線44aは、第2の通信ケーブル45Aの信号線44aを用いた構成について説明したが、例えば、2つの通信ケーブル43、45A以外に、放熱部材60に接続して放熱する放熱専用の信号線を有する放熱用ケーブルを設けてもよい。ただし放熱用ケーブルは、撮像装置51Aの径が大きくならないような径であり、かつ、熱伝導率の高い信号線を備えていることが望ましい。 The signal line 44a connected to the heat radiating member 60 has been described with respect to the configuration using the signal line 44a of the second communication cable 45A. A heat dissipation cable having a dedicated signal line for heat dissipation may be provided. However, it is desirable that the heat radiating cable has a diameter that does not increase the diameter of the imaging device 51A and has a signal line with high thermal conductivity.
 以上の説明のように、本実施の形態の撮像装置51Bは、第1および第2の通信ケーブル43、45Aが有する信号線42、44、44aの一部が、放熱部材60に取り付けた構成である。このため、撮像装置51Bおよび内視鏡1Bは、撮像装置51および内視鏡1が有する効果に加えて、放熱効果がより向上している。 As described above, the imaging device 51B of the present embodiment has a configuration in which part of the signal lines 42, 44, and 44a included in the first and second communication cables 43 and 45A are attached to the heat dissipation member 60. is there. For this reason, in addition to the effect which the imaging device 51 and the endoscope 1 have, the imaging device 51B and the endoscope 1B have a more improved heat dissipation effect.
(第4の実施の形態) 
 次に、図8を用いて、第4の実施の形態の撮像装置51Cおよび内視鏡1Cについて説明する。撮像装置51Cは、撮像装置51等に類似しているため同じ構成要素には同じ符号を付し説明は省略する。
(Fourth embodiment)
Next, an imaging device 51C and an endoscope 1C according to the fourth embodiment will be described with reference to FIG. Since the imaging device 51C is similar to the imaging device 51 and the like, the same components are denoted by the same reference numerals and description thereof is omitted.
 図8に示すように、撮像装置51Cの放熱部材60Aは、2つのFPC38、39の延出方向側および両側側面部に開口する切り欠き61を有する。このため放熱部材60Aの表面積は第1の実施の形態の放熱部材60の表面積よりも大きい。図8に示す放熱部材60Aの切り欠き61は、FPC38、39の基端部側の延出方向側および両側側面部が開口するように設けられているため、放熱部材60Aは切り欠き61がない放熱部材60に比べて表面積が大きい。 As shown in FIG. 8, the heat dissipating member 60A of the image pickup apparatus 51C has cutouts 61 that are opened in the extending direction side and on both side surfaces of the two FPCs 38 and 39. For this reason, the surface area of 60 A of heat radiating members is larger than the surface area of the heat radiating member 60 of 1st Embodiment. Since the cutout 61 of the heat dissipation member 60A shown in FIG. 8 is provided so that the extending direction side and both side portions on the base end side of the FPCs 38 and 39 are opened, the heat dissipation member 60A does not have the cutout 61. The surface area is larger than that of the heat dissipation member 60.
 なお、放熱部材60Aは、例えば対物レンズユニット20の光軸Oと垂直方向の上面および下面の両側の一部が開口するように、2つの切り欠き部を有していてもよい。 The heat radiating member 60A may have two notches so that, for example, a part of both sides of the upper surface and the lower surface in the direction perpendicular to the optical axis O of the objective lens unit 20 is opened.
 さらに、切り欠き61の形状等は、図8に示す形状に限定されるものではなく、例えば開口の幅および長さを適宜変更してもよい。 Furthermore, the shape or the like of the notch 61 is not limited to the shape shown in FIG. 8, and for example, the width and length of the opening may be appropriately changed.
 本実施の形態の撮像装置51Cは、放熱部材60Aに切り欠き61を有し、放熱部材60Aの表面積が第1の実施の形態の撮像装置51の放熱部材60よりも大きい。このため、撮像装置51Cおよび内視鏡1Cは、撮像装置51および内視鏡1が有する効果に加えて、放熱効果がより向上している。 The imaging device 51C of the present embodiment has a notch 61 in the heat radiating member 60A, and the surface area of the heat radiating member 60A is larger than that of the heat radiating member 60 of the imaging device 51 of the first embodiment. For this reason, in addition to the effect which the imaging device 51 and the endoscope 1 have, the imaging device 51C and the endoscope 1C have a further improved heat dissipation effect.
(第5の実施の形態) 
 次に、図9を用いて、第5の実施の形態の撮像装置51Dおよび内視鏡1Dについて説明する。撮像装置51Dは、撮像装置51等に類似しているため同じ構成要素には同じ符号を付し説明は省略する。
(Fifth embodiment)
Next, an imaging device 51D and an endoscope 1D according to the fifth embodiment will be described with reference to FIG. Since the imaging device 51D is similar to the imaging device 51 and the like, the same components are denoted by the same reference numerals and description thereof is omitted.
 図9に示すように、本実施の形態の撮像装置51Dの放熱部材60Bは、対物レンズユニット20の光軸0に対して垂直な面において、上下方向に2分割した第1の放熱部材62と第2の放熱部材63とを有している。なお上下方向とは図9における上下方向、すなわちFPC38とFPC39とが対向配置されている方向である。言い換えれば、放熱部材60Bは対物レンズユニット20の光軸Oに対して垂直な面において上下方向に2分割されているため、表面積が大きくなっている。そして、分割した2つの放熱部材62、63を所定間隔で離間させて配置している。 As shown in FIG. 9, the heat radiating member 60B of the imaging device 51D of the present embodiment includes a first heat radiating member 62 divided into two in the vertical direction on a surface perpendicular to the optical axis 0 of the objective lens unit 20. And a second heat radiating member 63. The vertical direction is the vertical direction in FIG. 9, that is, the direction in which the FPC 38 and the FPC 39 are arranged to face each other. In other words, the heat radiating member 60B is divided into two in the vertical direction on the surface perpendicular to the optical axis O of the objective lens unit 20, and thus has a large surface area. The two divided heat dissipating members 62 and 63 are arranged at a predetermined interval.
 撮像装置51Dの放熱部材60Bは、放熱部材62、63として2分割に分割され、かつ所定間隔で離間するように配設されているので、放熱部材60B全体の表面積が第4の実施の形態の撮像装置51Cの放熱部材60Aよりも大きい。そのため放熱部材60Bの放熱効果がより向上している。 
 なお、放熱部材60Bの放熱部材62、63の形状は、それぞれ同じ大きさおよび形状であってもよいし、異なる大きさおよび形状であってもよい。また、放熱部材60Bは、少なくとも上下方向に2分割されていればよく、例えば対物レンズユニット20の光軸Oと垂直方向の上面および下面の両側の一部が開口するように、言い換えれば放熱部材60Bを4分割されていてもよい。
Since the heat radiating member 60B of the imaging device 51D is divided into two parts as the heat radiating members 62 and 63 and arranged so as to be separated at a predetermined interval, the entire surface area of the heat radiating member 60B is the same as that of the fourth embodiment. It is larger than the heat dissipation member 60A of the imaging device 51C. Therefore, the heat dissipation effect of the heat dissipation member 60B is further improved.
Note that the shapes of the heat dissipation members 62 and 63 of the heat dissipation member 60B may be the same size and shape, or may be different sizes and shapes. Further, the heat dissipating member 60B is only required to be divided into at least two in the vertical direction. For example, the heat dissipating member is formed so that part of both sides of the upper surface and the lower surface in the direction perpendicular to the optical axis O of the objective lens unit 20 are opened. 60B may be divided into four.
 撮像装置51Dおよび内視鏡1Dは、撮像装置51Cおよび内視鏡1Cが有する効果に加えて、放熱効果がより向上している。 In addition to the effects of the imaging device 51C and the endoscope 1C, the imaging device 51D and the endoscope 1D have a further improved heat dissipation effect.
(第6の実施の形態) 
 次に、図10を用いて、第6の実施の形態の撮像装置51Eおよび内視鏡1Eについて説明する。撮像装置51Eは、撮像装置51等に類似しているため同じ構成要素には同じ符号を付し説明は省略する。
(Sixth embodiment)
Next, an imaging device 51E and an endoscope 1E according to the sixth embodiment will be described with reference to FIG. Since the imaging device 51E is similar to the imaging device 51 and the like, the same components are denoted by the same reference numerals and description thereof is omitted.
 図10に示すように、撮像装置51Eは、第1および第2のFPC38、39上にそれぞれ実装される電子部品40、41の、放熱部材60と接触する部分の少なくとも一部に、放熱部材60との接触を防止して絶縁する絶縁部材64を有する。絶縁部材64は、例えば絶縁材料で形成される絶縁テープであって、放熱部材60に向かい合うそれぞれの電子部品40、41の全領域、または一部の領域に帖着されている。絶縁部材64は高熱伝導率を有する材料で形成されていることが好ましい。 As shown in FIG. 10, the imaging device 51 </ b> E includes a heat dissipation member 60 on at least a part of a portion of the electronic components 40 and 41 that are mounted on the first and second FPCs 38 and 39, respectively, in contact with the heat dissipation member 60. Insulating member 64 is provided to prevent contact with and insulate. The insulating member 64 is an insulating tape formed of, for example, an insulating material, and is attached to the entire region or a partial region of each of the electronic components 40 and 41 facing the heat radiating member 60. The insulating member 64 is preferably formed of a material having high thermal conductivity.
 なお、絶縁部材64は、絶縁テープに限定されるものではなく、例えば絶縁材料を電子部品40、41の全領域、または一部の領域に塗布して形成した絶縁層であってもよい。 The insulating member 64 is not limited to the insulating tape, and may be an insulating layer formed by applying an insulating material to the entire area of the electronic components 40 and 41 or a part of the area.
 撮像装置51Eは、電子部品40、41と放熱部材60との接触、すなわち短絡が発生することないため、電子部品40、41および固体撮像素子35、37の動作が安定している。 Since the imaging device 51E does not cause contact between the electronic components 40 and 41 and the heat dissipation member 60, that is, a short circuit, the operations of the electronic components 40 and 41 and the solid- state imaging elements 35 and 37 are stable.
 絶縁部材64は、電子部品40、41と放熱部材60とが接触する領域に設けてもよいし、電子部品40、41と放熱部材60とが接触しない構成であっても電子部品40、41の全ての領域、または一部の領域に設けてもよい。絶縁部材64は、電子部品40、41のどちらか一方の電子部品に設けてもよい。すなわち、撮像装置の放熱部材60に絶縁部材64を設けて構成してもよいし、または少なくとも一部に絶縁部材64を設けて構成してもよいし、電子部品40、41の少なくとも一部に放熱部材60との接触を防止して絶縁する絶縁部材64を設けてもよい。 The insulating member 64 may be provided in a region where the electronic components 40 and 41 and the heat radiating member 60 are in contact with each other, or even if the electronic components 40 and 41 and the heat radiating member 60 are not in contact with each other, You may provide in all the area | regions or a one part area | region. The insulating member 64 may be provided on one of the electronic components 40 and 41. That is, the heat radiating member 60 of the imaging device may be provided with the insulating member 64, or may be configured with at least a part of the insulating member 64, or at least part of the electronic components 40 and 41. An insulating member 64 may be provided to prevent contact with the heat radiating member 60 for insulation.
 撮像装置51Eおよび内視鏡1Eは、撮像装置51および内視鏡1が有する効果に加えて、動作が安定している。 The imaging device 51E and the endoscope 1E have stable operations in addition to the effects of the imaging device 51 and the endoscope 1.
(変形例)
 なお、第1~第6の実施の形態の撮像装置51等においては、放熱部材60、60A、60Bは、それ自体を絶縁部材で構成してもよいし、または導体部材で構成し外周面の全部または少なくとも一部に絶縁部材を帖着または塗布してもよい。このことにより、第6の実施の形態の撮像装置51Dと同様に電子部品40、41と放熱部材60との接触を防止できるため、撮像装置の動作が安定化する。
(Modification)
In the imaging devices 51 and the like of the first to sixth embodiments, the heat dissipating members 60, 60A, 60B may themselves be constituted by insulating members, or may be constituted by conductive members, and the outer peripheral surface. The insulating member may be attached or applied to all or at least a part. As a result, the contact between the electronic components 40 and 41 and the heat radiating member 60 can be prevented similarly to the imaging device 51D of the sixth embodiment, and the operation of the imaging device is stabilized.
 また、図11に示すように、金属枠部材46を有する撮像装置においては、金属枠部材46と放熱部材60との間の領域、および金属枠部材46と第1および第2のFPC38、39との間の領域における充填剤48を、それぞれ略均等の厚さに設けることが好ましい。すると、放熱部材60自体の放熱効果を向上させることができるとともに、放熱部材60を撮像装置51の中央近傍に配置できるので、撮像装置51が細径化する。 As shown in FIG. 11, in the imaging device having the metal frame member 46, the region between the metal frame member 46 and the heat dissipation member 60, the metal frame member 46 and the first and second FPCs 38 and 39, It is preferable to provide the fillers 48 in the regions between the layers in a substantially uniform thickness. Then, the heat dissipation effect of the heat radiating member 60 itself can be improved, and the heat radiating member 60 can be disposed near the center of the imaging device 51, so that the imaging device 51 is reduced in diameter.
 また、本発明の係る実施の形態の撮像装置51は、2つの固体撮像素子35、37を有する2板式撮像装置を例に説明したが、これに限定されることなく、例えば、3板式の撮像装置を有し、プリズムユニットにより撮影光を3つの光路に分割して出射する構成にも適用可能であることは言うまでもない。 Moreover, although the imaging apparatus 51 of the embodiment according to the present invention has been described by taking a two-plate imaging apparatus having two solid- state imaging elements 35 and 37 as an example, the imaging apparatus 51 is not limited to this, and for example, a three-plate imaging Needless to say, the present invention can also be applied to a configuration in which an apparatus is provided and the photographing light is divided into three optical paths and emitted by the prism unit.
 以上の説明のように、本発明の内視鏡は、挿入部の先端部に撮像装置を有する内視鏡であって、前記撮像装置が、対物レンズユニットと、前記対物レンズユニットを通過した入射光を2つの光路に分割して出射する光学ユニットと、前記光学ユニットから出射された前記2つの光路のそれぞれの光を受光する第1の固体撮像素子および第2の固体撮像素子と、前記第1の固体撮像素子および前記第2の固体撮像素子のそれぞれの駆動に必要な電子部品がそれぞれ実装された第1の基板および第2の基板と、前記第1の基板および前記第2の基板の間に配設された、切り欠き部を有する放熱部材と、前記第1の基板または前記第2の基板にそれぞれ電気的に接続され、前記第1の基板または前記第2の基板を介して前記電子部品への給電および前記第1の固体撮像素子または前記第2の固体撮像素子との信号の送受信を行う信号線と、前記放熱部材と接続された信号線と、を有する2本のケーブルと、前記第1の固体撮像素子、前記第2の固体撮像素子、前記第1の基板および前記第2の基板を内包し、前記放熱部材の一部と接触面を有する金属枠部材と、前記電子部品の少なくとも一部に設けられた、前記放熱部材との接触を防止する絶縁テープと、前記金属枠部材を充填する充填剤と、を具備する。 As described above, the endoscope of the present invention is an endoscope having an imaging device at the distal end portion of the insertion portion, and the imaging device has an objective lens unit and an incident light that has passed through the objective lens unit. An optical unit that divides light into two optical paths and emits the light; a first solid-state image sensor and a second solid-state image sensor that receive light in the two optical paths emitted from the optical unit; A first substrate and a second substrate on which electronic components necessary for driving each of the first solid-state imaging device and the second solid-state imaging device are mounted; and the first substrate and the second substrate. The heat dissipating member having a notch disposed between and the first substrate or the second substrate are electrically connected to each other, and the first substrate or the second substrate passes through the first substrate or the second substrate. Power supply to electronic components and Two cables having a signal line for transmitting and receiving signals to and from the first solid-state imaging device or the second solid-state imaging device, and a signal line connected to the heat dissipation member, and the first solid state An image sensor, the second solid-state image sensor, the first substrate and the second substrate are included, a metal frame member having a contact surface with a part of the heat dissipation member, and at least a part of the electronic component The insulating tape which prevents the contact with the said heat radiating member provided, and the filler with which the said metal frame member is filled are comprised.
 本発明は、上述した実施の形態および変形例に限定されるものではなく、本発明の要旨を変えない範囲において、種々の変更、改変等が可能である。 The present invention is not limited to the above-described embodiments and modifications, and various changes and modifications can be made without departing from the scope of the present invention.
 本出願は、2008年12月4日に日本国に出願された特願2008-310079号を優先権主張の基礎として出願するものであり、上記の開示内容は、本願明細書、請求の範囲、図面に引用されたものとする。 This application is filed on the basis of the priority claim of Japanese Patent Application No. 2008-310079 filed in Japan on Dec. 4, 2008, and the above disclosed contents are disclosed in the present specification, claims, It shall be cited in the drawing.

Claims (15)

  1.  対物レンズユニットと、
     前記対物レンズユニットを通過した入射光を複数の光路に分割して出射する光学ユニットと、
     前記光学ユニットが出射する前記複数の光路のそれぞれの光を受光する複数の固体撮像素子と、
     前記複数の固体撮像素子のそれぞれに設けられ、それぞれの前記固体撮像素子の駆動に必要な電子部品が実装された複数の基板と、
     それぞれの前記複数の基板に電気的に接続され、前記基板を介して前記電子部品への給電および前記固体撮像素子との信号の送受信を行う複数のケーブルと、
     前記複数の基板の間に配設された放熱部材と、を具備することを特徴とする撮像装置。
    An objective lens unit;
    An optical unit that divides and emits incident light that has passed through the objective lens unit into a plurality of optical paths;
    A plurality of solid-state imaging devices that receive light of each of the plurality of optical paths emitted by the optical unit;
    A plurality of substrates provided on each of the plurality of solid-state image sensors, on which electronic components necessary for driving the respective solid-state image sensors are mounted;
    A plurality of cables that are electrically connected to each of the plurality of substrates and that supply power to the electronic component and transmit / receive signals to / from the solid-state imaging device via the substrate;
    An image pickup apparatus comprising: a heat dissipating member disposed between the plurality of substrates.
  2.  前記複数の基板の前記電子部品が前記対物レンズユニットの光軸延線方向に向けて配設されており、
     前記放熱部材が、前記複数の基板の間に配設されていることを特徴とする請求項1に記載の撮像装置。
    The electronic components of the plurality of substrates are arranged in the direction of the optical axis extension of the objective lens unit;
    The imaging apparatus according to claim 1, wherein the heat radiating member is disposed between the plurality of substrates.
  3.  前記複数の撮像素子が第1の固体撮像素子と第2の固体撮像素子とからなり、
     前記複数の基板が第1の基板と第2の基板とからなり、
     前記放熱部材が、前記第1の基板と第2の基板との間に配設されている、
     2板式撮像装置であることを特徴とする請求項2に記載の撮像装置。
    The plurality of image sensors are composed of a first solid-state image sensor and a second solid-state image sensor,
    The plurality of substrates comprises a first substrate and a second substrate;
    The heat dissipating member is disposed between the first substrate and the second substrate;
    The imaging apparatus according to claim 2, wherein the imaging apparatus is a two-plate imaging apparatus.
  4.  前記複数の固体撮像素子および前記複数の基板を内包する金属枠部材をさらに具備し、
     前記放熱部材の一部が前記金属枠部材に近接している、または、前記放熱部材の一部が前記金属枠部材と接触していることを特徴とする請求項3に記載の撮像装置。
    A metal frame member enclosing the plurality of solid-state imaging devices and the plurality of substrates;
    The imaging apparatus according to claim 3, wherein a part of the heat radiating member is close to the metal frame member or a part of the heat radiating member is in contact with the metal frame member.
  5.  前記複数のケーブルが複数の信号線を有し、
     一部の前記信号線が前記放熱部材に取り付けられていることを特徴とする請求項4に記載の撮像装置。
    The plurality of cables have a plurality of signal lines;
    The imaging apparatus according to claim 4, wherein some of the signal lines are attached to the heat radiating member.
  6.  前記放熱部材は、切り欠きを有することを特徴とする請求項5に記載の撮像装置。 6. The imaging apparatus according to claim 5, wherein the heat radiating member has a notch.
  7.  前記放熱部材は、少なくとも2分割されていることを特徴とする請求項6に記載の撮像装置。 The imaging device according to claim 6, wherein the heat radiating member is divided into at least two parts.
  8.  前記電子部品の少なくとも一部に、前記放熱部材との接触を防止する絶縁部材を設けたことを特徴とする請求項7に記載の撮像装置。 8. The imaging apparatus according to claim 7, wherein an insulating member that prevents contact with the heat radiating member is provided on at least a part of the electronic component.
  9.  挿入部の先端部に撮像装置を有する内視鏡であって、
     前記撮像装置が、
     対物レンズユニットと、
     前記対物レンズユニットを通過した入射光を複数の光路に分割して出射する光学ユニットと、
     前記光学ユニットが出射する前記複数の光路のそれぞれの光を受光する複数の固体撮像素子と、
     前記複数の固体撮像素子のそれぞれに設けられ、それぞれの前記固体撮像素子の駆動に必要な電子部品が実装された複数の基板と、
     それぞれの前記複数の基板に電気的に接続され、前記基板を介して前記電子部品への給電および前記固体撮像素子との信号の送受信を行う複数のケーブルと、
     前記複数の基板の間に配設された放熱部材と、を具備することを特徴とする内視鏡。
    An endoscope having an imaging device at a distal end portion of an insertion portion,
    The imaging device is
    An objective lens unit;
    An optical unit that divides and emits incident light that has passed through the objective lens unit into a plurality of optical paths;
    A plurality of solid-state imaging devices that receive light of each of the plurality of optical paths emitted by the optical unit;
    A plurality of substrates provided on each of the plurality of solid-state image sensors, on which electronic components necessary for driving the respective solid-state image sensors are mounted;
    A plurality of cables that are electrically connected to each of the plurality of substrates and that supply power to the electronic component and transmit / receive signals to / from the solid-state imaging device via the substrate;
    An endoscope comprising: a heat dissipating member disposed between the plurality of substrates.
  10.  前記複数の基板の前記電子部品が前記対物レンズユニットの光軸延線方向に向けて配設されており、
     前記放熱部材が、前記複数の基板の間の隙間に配設されていることを特徴とする請求項9に記載の内視鏡。
    The electronic components of the plurality of substrates are arranged in the direction of the optical axis extension of the objective lens unit;
    The endoscope according to claim 9, wherein the heat radiating member is disposed in a gap between the plurality of substrates.
  11.  前記複数の撮像素子が第1の固体撮像素子と第2の固体撮像素子とからなり、
     前記複数の基板が第1の基板と第2の基板とからなり、
     前記放熱部材が、前記第1の基板と第2の基板との間に配設されている、
     2板式撮像装置であることを特徴とする請求項10に記載の内視鏡。
    The plurality of image sensors are composed of a first solid-state image sensor and a second solid-state image sensor,
    The plurality of substrates comprises a first substrate and a second substrate;
    The heat dissipating member is disposed between the first substrate and the second substrate;
    The endoscope according to claim 10, which is a two-plate imaging device.
  12.  前記複数の固体撮像素子および前記複数の基板を内包する金属枠部材をさらに具備し、
     前記放熱部材の一部が前記金属枠部材に近接している、または、前記放熱部材の一部が前記金属枠部材と接触していることを特徴とする請求項11に記載の内視鏡。
    A metal frame member enclosing the plurality of solid-state imaging devices and the plurality of substrates;
    The endoscope according to claim 11, wherein a part of the heat radiating member is close to the metal frame member, or a part of the heat radiating member is in contact with the metal frame member.
  13.  前記複数のケーブルが複数の信号線を有し、
     一部の前記信号線が前記放熱部材に取り付けられていることを特徴とする請求項12に記載の内視鏡。
    The plurality of cables have a plurality of signal lines;
    The endoscope according to claim 12, wherein some of the signal lines are attached to the heat dissipation member.
  14.  前記放熱部材は、切り欠きを有することを特徴とする請求項13に記載の内視鏡。 The endoscope according to claim 13, wherein the heat radiating member has a notch.
  15.  前記放熱部材は、前記対物レンズユニットの光軸に対して垂直な面において、少なくとも上下方向に2分割されており、表面積を大きくなっていることを特徴とする請求項14に記載の内視鏡。 The endoscope according to claim 14, wherein the heat radiating member is divided into at least two in the vertical direction on a surface perpendicular to the optical axis of the objective lens unit, and has a large surface area. .
PCT/JP2009/068420 2008-12-04 2009-10-27 Imaging device and endoscope WO2010064506A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010541274A JPWO2010064506A1 (en) 2008-12-04 2009-10-27 Imaging apparatus and endoscope

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008310079 2008-12-04
JP2008-310079 2008-12-04

Publications (1)

Publication Number Publication Date
WO2010064506A1 true WO2010064506A1 (en) 2010-06-10

Family

ID=42233160

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/068420 WO2010064506A1 (en) 2008-12-04 2009-10-27 Imaging device and endoscope

Country Status (2)

Country Link
JP (1) JPWO2010064506A1 (en)
WO (1) WO2010064506A1 (en)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012050703A (en) * 2010-09-01 2012-03-15 Fujifilm Corp Imaging device and electronic endoscope apparatus
EP2644084A1 (en) * 2012-03-26 2013-10-02 Fujifilm Corporation Endoscope
JP2013544617A (en) * 2010-12-09 2013-12-19 エンドチョイス イノベーション センター リミテッド Flexible electronic circuit board for multi-camera endoscope
JP2014117520A (en) * 2012-12-18 2014-06-30 Olympus Medical Systems Corp Electronic endoscope
WO2015045467A1 (en) 2013-09-25 2015-04-02 オリンパスメディカルシステムズ株式会社 Electrical unit and endoscope having same mounted thereto
DE102014209980A1 (en) * 2014-05-26 2015-11-26 Olympus Winter & Ibe Gmbh Videoscope
US9402533B2 (en) 2011-03-07 2016-08-02 Endochoice Innovation Center Ltd. Endoscope circuit board assembly
US9492063B2 (en) 2009-06-18 2016-11-15 Endochoice Innovation Center Ltd. Multi-viewing element endoscope
US9554692B2 (en) 2009-06-18 2017-01-31 EndoChoice Innovation Ctr. Ltd. Multi-camera endoscope
US9560954B2 (en) 2012-07-24 2017-02-07 Endochoice, Inc. Connector for use with endoscope
US9560953B2 (en) 2010-09-20 2017-02-07 Endochoice, Inc. Operational interface in a multi-viewing element endoscope
US9642513B2 (en) 2009-06-18 2017-05-09 Endochoice Inc. Compact multi-viewing element endoscope system
US9655502B2 (en) 2011-12-13 2017-05-23 EndoChoice Innovation Center, Ltd. Removable tip endoscope
US9706903B2 (en) 2009-06-18 2017-07-18 Endochoice, Inc. Multiple viewing elements endoscope system with modular imaging units
US9713417B2 (en) 2009-06-18 2017-07-25 Endochoice, Inc. Image capture assembly for use in a multi-viewing elements endoscope
US9872609B2 (en) 2009-06-18 2018-01-23 Endochoice Innovation Center Ltd. Multi-camera endoscope
US9901244B2 (en) 2009-06-18 2018-02-27 Endochoice, Inc. Circuit board assembly of a multiple viewing elements endoscope
US9986899B2 (en) 2013-03-28 2018-06-05 Endochoice, Inc. Manifold for a multiple viewing elements endoscope
US9993142B2 (en) 2013-03-28 2018-06-12 Endochoice, Inc. Fluid distribution device for a multiple viewing elements endoscope
US10070774B2 (en) 2011-02-07 2018-09-11 Endochoice Innovation Center Ltd. Multi-element cover for a multi-camera endoscope
US10080486B2 (en) 2010-09-20 2018-09-25 Endochoice Innovation Center Ltd. Multi-camera endoscope having fluid channels
US10165929B2 (en) 2009-06-18 2019-01-01 Endochoice, Inc. Compact multi-viewing element endoscope system
US10182707B2 (en) 2010-12-09 2019-01-22 Endochoice Innovation Center Ltd. Fluid channeling component of a multi-camera endoscope
US10203493B2 (en) 2010-10-28 2019-02-12 Endochoice Innovation Center Ltd. Optical systems for multi-sensor endoscopes
JP2019180712A (en) * 2018-04-09 2019-10-24 株式会社島津製作所 Medical treatment support device
US10499794B2 (en) 2013-05-09 2019-12-10 Endochoice, Inc. Operational interface in a multi-viewing element endoscope
US11278190B2 (en) 2009-06-18 2022-03-22 Endochoice, Inc. Multi-viewing element endoscope
US11547275B2 (en) 2009-06-18 2023-01-10 Endochoice, Inc. Compact multi-viewing element endoscope system
US11889986B2 (en) 2010-12-09 2024-02-06 Endochoice, Inc. Flexible electronic circuit board for a multi-camera endoscope

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257286A (en) * 1991-02-08 1992-09-11 Hitachi Cable Ltd Composite printed wiring board
JPH05145010A (en) * 1991-11-19 1993-06-11 Toshiba Corp Hybrid integrated circuit
JPH05211999A (en) * 1992-02-07 1993-08-24 Olympus Optical Co Ltd Endoscope and assembling method of the same
JPH05309069A (en) * 1992-05-12 1993-11-22 Olympus Optical Co Ltd Electronic endoscope
JPH10178571A (en) * 1996-12-19 1998-06-30 Olympus Optical Co Ltd Image pickup device
JP2002291693A (en) * 2001-03-29 2002-10-08 Olympus Optical Co Ltd Imaging unit
JP2006223475A (en) * 2005-02-16 2006-08-31 Olympus Medical Systems Corp Endoscope
JP2006288432A (en) * 2005-04-05 2006-10-26 Olympus Medical Systems Corp Electronic endoscope
JP2008118568A (en) * 2006-11-07 2008-05-22 Olympus Medical Systems Corp Imaging apparatus
US20080191124A1 (en) * 2007-02-09 2008-08-14 Miyoko Irikiin Heat radiating structure for solid-state image sensor, and solid-state image pickup device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04257286A (en) * 1991-02-08 1992-09-11 Hitachi Cable Ltd Composite printed wiring board
JPH05145010A (en) * 1991-11-19 1993-06-11 Toshiba Corp Hybrid integrated circuit
JPH05211999A (en) * 1992-02-07 1993-08-24 Olympus Optical Co Ltd Endoscope and assembling method of the same
JPH05309069A (en) * 1992-05-12 1993-11-22 Olympus Optical Co Ltd Electronic endoscope
JPH10178571A (en) * 1996-12-19 1998-06-30 Olympus Optical Co Ltd Image pickup device
JP2002291693A (en) * 2001-03-29 2002-10-08 Olympus Optical Co Ltd Imaging unit
JP2006223475A (en) * 2005-02-16 2006-08-31 Olympus Medical Systems Corp Endoscope
JP2006288432A (en) * 2005-04-05 2006-10-26 Olympus Medical Systems Corp Electronic endoscope
JP2008118568A (en) * 2006-11-07 2008-05-22 Olympus Medical Systems Corp Imaging apparatus
US20080191124A1 (en) * 2007-02-09 2008-08-14 Miyoko Irikiin Heat radiating structure for solid-state image sensor, and solid-state image pickup device

Cited By (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10791910B2 (en) 2009-06-18 2020-10-06 Endochoice, Inc. Multiple viewing elements endoscope system with modular imaging units
US11471028B2 (en) 2009-06-18 2022-10-18 Endochoice, Inc. Circuit board assembly of a multiple viewing elements endoscope
US9554692B2 (en) 2009-06-18 2017-01-31 EndoChoice Innovation Ctr. Ltd. Multi-camera endoscope
US10791909B2 (en) 2009-06-18 2020-10-06 Endochoice, Inc. Image capture assembly for use in a multi-viewing elements endoscope
US10912445B2 (en) 2009-06-18 2021-02-09 Endochoice, Inc. Compact multi-viewing element endoscope system
US10905320B2 (en) 2009-06-18 2021-02-02 Endochoice, Inc. Multi-camera endoscope
US10799095B2 (en) 2009-06-18 2020-10-13 Endochoice, Inc. Multi-viewing element endoscope
US9492063B2 (en) 2009-06-18 2016-11-15 Endochoice Innovation Center Ltd. Multi-viewing element endoscope
US9901244B2 (en) 2009-06-18 2018-02-27 Endochoice, Inc. Circuit board assembly of a multiple viewing elements endoscope
US11547275B2 (en) 2009-06-18 2023-01-10 Endochoice, Inc. Compact multi-viewing element endoscope system
US11278190B2 (en) 2009-06-18 2022-03-22 Endochoice, Inc. Multi-viewing element endoscope
US9872609B2 (en) 2009-06-18 2018-01-23 Endochoice Innovation Center Ltd. Multi-camera endoscope
US9642513B2 (en) 2009-06-18 2017-05-09 Endochoice Inc. Compact multi-viewing element endoscope system
US10165929B2 (en) 2009-06-18 2019-01-01 Endochoice, Inc. Compact multi-viewing element endoscope system
US10092167B2 (en) 2009-06-18 2018-10-09 Endochoice, Inc. Multiple viewing elements endoscope system with modular imaging units
US9706903B2 (en) 2009-06-18 2017-07-18 Endochoice, Inc. Multiple viewing elements endoscope system with modular imaging units
US9713417B2 (en) 2009-06-18 2017-07-25 Endochoice, Inc. Image capture assembly for use in a multi-viewing elements endoscope
JP2012050703A (en) * 2010-09-01 2012-03-15 Fujifilm Corp Imaging device and electronic endoscope apparatus
US9560953B2 (en) 2010-09-20 2017-02-07 Endochoice, Inc. Operational interface in a multi-viewing element endoscope
US9986892B2 (en) 2010-09-20 2018-06-05 Endochoice, Inc. Operational interface in a multi-viewing element endoscope
US10080486B2 (en) 2010-09-20 2018-09-25 Endochoice Innovation Center Ltd. Multi-camera endoscope having fluid channels
US10203493B2 (en) 2010-10-28 2019-02-12 Endochoice Innovation Center Ltd. Optical systems for multi-sensor endoscopes
US9814374B2 (en) 2010-12-09 2017-11-14 Endochoice Innovation Center Ltd. Flexible electronic circuit board for a multi-camera endoscope
US11889986B2 (en) 2010-12-09 2024-02-06 Endochoice, Inc. Flexible electronic circuit board for a multi-camera endoscope
US10898063B2 (en) 2010-12-09 2021-01-26 Endochoice, Inc. Flexible electronic circuit board for a multi camera endoscope
US11497388B2 (en) 2010-12-09 2022-11-15 Endochoice, Inc. Flexible electronic circuit board for a multi-camera endoscope
JP2017094098A (en) * 2010-12-09 2017-06-01 エンドチョイス イノベーション センター リミテッド Flexible electronic circuit board for multi-camera endoscope
US10182707B2 (en) 2010-12-09 2019-01-22 Endochoice Innovation Center Ltd. Fluid channeling component of a multi-camera endoscope
JP2013544617A (en) * 2010-12-09 2013-12-19 エンドチョイス イノベーション センター リミテッド Flexible electronic circuit board for multi-camera endoscope
US10070774B2 (en) 2011-02-07 2018-09-11 Endochoice Innovation Center Ltd. Multi-element cover for a multi-camera endoscope
US9402533B2 (en) 2011-03-07 2016-08-02 Endochoice Innovation Center Ltd. Endoscope circuit board assembly
US9655502B2 (en) 2011-12-13 2017-05-23 EndoChoice Innovation Center, Ltd. Removable tip endoscope
US10470649B2 (en) 2011-12-13 2019-11-12 Endochoice, Inc. Removable tip endoscope
EP2644084A1 (en) * 2012-03-26 2013-10-02 Fujifilm Corporation Endoscope
US9560954B2 (en) 2012-07-24 2017-02-07 Endochoice, Inc. Connector for use with endoscope
JP2014117520A (en) * 2012-12-18 2014-06-30 Olympus Medical Systems Corp Electronic endoscope
US9993142B2 (en) 2013-03-28 2018-06-12 Endochoice, Inc. Fluid distribution device for a multiple viewing elements endoscope
US11925323B2 (en) 2013-03-28 2024-03-12 Endochoice, Inc. Fluid distribution device for a multiple viewing elements endoscope
US11793393B2 (en) 2013-03-28 2023-10-24 Endochoice, Inc. Manifold for a multiple viewing elements endoscope
US10905315B2 (en) 2013-03-28 2021-02-02 Endochoice, Inc. Manifold for a multiple viewing elements endoscope
US10925471B2 (en) 2013-03-28 2021-02-23 Endochoice, Inc. Fluid distribution device for a multiple viewing elements endoscope
US9986899B2 (en) 2013-03-28 2018-06-05 Endochoice, Inc. Manifold for a multiple viewing elements endoscope
US10499794B2 (en) 2013-05-09 2019-12-10 Endochoice, Inc. Operational interface in a multi-viewing element endoscope
WO2015045467A1 (en) 2013-09-25 2015-04-02 オリンパスメディカルシステムズ株式会社 Electrical unit and endoscope having same mounted thereto
DE102014209980B4 (en) * 2014-05-26 2021-06-17 Olympus Winter & Ibe Gmbh Video endoscope
CN106233183A (en) * 2014-05-26 2016-12-14 奥林匹斯冬季和Ibe有限公司 Video-endoscope
DE102014209980A1 (en) * 2014-05-26 2015-11-26 Olympus Winter & Ibe Gmbh Videoscope
JP2017521119A (en) * 2014-05-26 2017-08-03 オリンパス ビンテル ウント イーベーエー ゲーエムベーハーOlympus Winter & Ibe Gesellschaft Mit Beschrankter Haftung Video endoscope
US10524649B2 (en) 2014-05-26 2020-01-07 Olympus Winter & Ibe Gmbh Video endoscope
JP2019180712A (en) * 2018-04-09 2019-10-24 株式会社島津製作所 Medical treatment support device
JP7043947B2 (en) 2018-04-09 2022-03-30 株式会社島津製作所 Treatment support device

Also Published As

Publication number Publication date
JPWO2010064506A1 (en) 2012-05-10

Similar Documents

Publication Publication Date Title
WO2010064506A1 (en) Imaging device and endoscope
JP4987790B2 (en) Imaging device
US4918521A (en) Solid state imaging apparatus
JP4841391B2 (en) Endoscope
JP3875505B2 (en) Imaging device
EP2194835B1 (en) Image pickup apparatus and endoscope having the same
WO2015019671A1 (en) Imaging unit for endoscope
JP5143634B2 (en) Imaging device
US20160037029A1 (en) Image pickup apparatus and electronic endoscope
JP2010069217A (en) Imaging apparatus for electronic endoscope and electronic endoscope
WO2011092903A1 (en) Image pickup unit for endoscope
US20140078276A1 (en) Image pickup unit for endoscope and endoscope
JP5722513B1 (en) Electric unit and endoscope equipped with the same
JP2008079823A (en) Imaging apparatus
JP2607542B2 (en) Solid-state imaging device
JP5377085B2 (en) Endoscope
JP2011050496A (en) Imaging device and electronic endoscope
JP2011065865A (en) Mounting structure and cable assembly
JP4709661B2 (en) Imaging device
CN209376016U (en) Substrate mounting body and electronic endoscope system
JP2008237916A (en) Solid-state imaging device and endoscope unit with it
JPH11253385A (en) Endoscope
WO2017072862A1 (en) Image pickup unit and endoscope
WO2021172002A1 (en) Endoscope imaging device
WO2023189579A1 (en) Imaging device and electronic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09830274

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010541274

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09830274

Country of ref document: EP

Kind code of ref document: A1