WO2010058819A1 - Peptide capable of inhibiting interaction between human tumor protein mdm2 and human tumor suppression protein p53, and use thereof - Google Patents

Peptide capable of inhibiting interaction between human tumor protein mdm2 and human tumor suppression protein p53, and use thereof Download PDF

Info

Publication number
WO2010058819A1
WO2010058819A1 PCT/JP2009/069644 JP2009069644W WO2010058819A1 WO 2010058819 A1 WO2010058819 A1 WO 2010058819A1 JP 2009069644 W JP2009069644 W JP 2009069644W WO 2010058819 A1 WO2010058819 A1 WO 2010058819A1
Authority
WO
WIPO (PCT)
Prior art keywords
mdm2
leu
peptide
protein
amino acid
Prior art date
Application number
PCT/JP2009/069644
Other languages
French (fr)
Japanese (ja)
Inventor
弘志 柳川
弘和 始平堂
Original Assignee
学校法人 慶應義塾
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 学校法人 慶應義塾 filed Critical 学校法人 慶應義塾
Publication of WO2010058819A1 publication Critical patent/WO2010058819A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/10Peptides having 12 to 20 amino acids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P43/00Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00

Definitions

  • the present invention relates to peptides that inhibit the interaction between human cancer suppressor protein p53 and human cancer protein MDM2, and further to the use of such peptides in the treatment of human cancer.
  • P53 a human tumor suppressor protein
  • P53 a human tumor suppressor protein
  • the expressed p53 protein forms a tetramer, and then moves into the nucleus to activate transcription of its target.
  • p21 Waf1 / Cip1 is a protein involved in cell cycle regulation (Hideyuki Saya (1998) Cell Engineering Supplement: Molecular mechanism and clinical application of p53 cancer control; Nakayama Keiichi (2001) Understanding experimental medicine series: Understanding cell cycle, Yodosha; Gartel, AL, Radhakrishnan, SK (2005) Cancer Res., 65, 3980-3985; Chene, P., et al. (2002) FEBS Lett. , 529, 293-297).
  • the cell cycle shifts from the G1 phase to the S phase by the transcription factor E2F transcriptionally activating a gene encoding a protein important for DNA synthesis.
  • E2F The activity of E2F is suppressed by binding to RB, but when RB is phosphorylated by the cyclin / cyclin-dependent kinase 2 (CDK2) complex, it is dissociated from E2F, and the cell cycle proceeds by activated E2F (Hideyuki Saya (1998) Cell engineering separate volume: p53 Molecular mechanism and clinical application of cancer control, Shujunsha; Keiichi Nakayama (2001) Understanding experimental medicine series: Understanding cell cycle, Yodosha).
  • p21 is known as an inhibitor of CDK and mainly inhibits the cyclin / CDK2 complex, thus arresting the cell cycle in the G1 phase and repairing DNA during that time. However, depending on the degree of DNA damage, apoptosis is induced without DNA repair (Hideyuki Saya (1998) Cell Engineering Supplement: p53 Molecular Mechanism and Clinical Application of Cancer Control, Shujunsha).
  • p53 is known as a guardian of the genome because of its function of suppressing the growth of abnormal cells (Stiewe, T. (2007) Nature Rev. Cancer, 7, 165-168). That is, if this p53 loses its activity and cannot perform the cellular response as described above, it will grow cells with mutations in various genes, leading to canceration (Hideyuki Saya (1998) Cell engineering separate volume: Molecular mechanism and clinical application of p53 cancer control, Shujunsha). In fact, about 50% of human cancer cells are inactivated by mutation or deletion of p53 (Shangary, S., ⁇ (1997) Proc. Natl. Acad. Sci. USA., 105, 3933-3938 ).
  • inhibitors include those that directly act on p53 and those that inhibit apoptosis-promoting factors downstream of the p53 pathway, and it is thought that the p53 pathway is involved in almost all cancers (Shangary, S., ⁇ (1997) Proc. Natl. Acad. Sci. USA., 105, 3933-3938).
  • the oncoprotein MDM2 (mouse double minute) is one of the p53 targets that are transcriptionally activated by the expression-induced p53 protein (Shangary, S., et al. (1997) Proc. Natl. Acad. Sci. USA., 105 , 3933-3938; Hu, B., et al. (2007) Cancer Res., 67, 8810-8817; Chene, P., et al. (2000) J. Mol. Biol., 299, 245-253 (2000).
  • MDM2 then translocates into the nucleus and binds to the transcriptional activation region of p53, conversely inhibiting the activity of p53 as a transcription factor, and MDM2 also acts as a ubiquitin ligase, p53's proteasome-dependent activity By promoting degradation, they form negative feedback loops with each other (Kussie, PH, et al.
  • MDM2 interacts directly with p53, It inhibits the activity of p53 and its tumor suppressive effect, and from the crystal structure of the MDM2-p53 protein complex, the ⁇ helix and ⁇ A hydrophobic gap is formed by the peptide, and a peptide part having an ⁇ helix structure of 15 amino acid residues in the 15th to 29th regions of p53 (SQETFSDLWKLLPEN (SEQ ID NO: 1): single letter notation) binds to this region. (Kussie, PH, et al.
  • the motif FxxLW (SEQ ID NO: 2) consisting of 5 amino acid residues corresponding to the 19th to 23rd regions of p53 (where F, L, and W are one-letter codes for amino acids, meaning phenylalanine, leucine, and tryptophan, respectively).
  • Non-patent Document 1 Non-patent Document 1; Patent Document 1, Patent Document 2), p53 peptide fragment R1-XFX consisting of 10 amino acid residues corresponding to the 17th to 26th regions of p53 -R2-R3-WXX-R4 (SEQ ID NO: 3)
  • R1 is proline (P), leucine (L), glutamic acid (E), cysteine (C), or glutamine (Q)
  • X is any natural amino acid
  • R2 is arginine (R), histidine (H), glutamic acid (E), cysteine (C), serine (S), or aspartic acid (D)
  • R3 is histidine (H), phenylalanine (F), or Tyrosine (Y)
  • R4 is phenylalanine (F), glutamine (Q), or leucine (L);
  • Patent Document 3 p P53 peptide fragment pDI (LTFEHYWAQLTS
  • An object of the present invention is to provide a drug that inhibits the interaction between human cancer protein MDM2 and human cancer suppressor protein p53 and has a cancer cell growth inhibitory effect.
  • the inventors of the present invention have described the in-vitro virus (IVV) method (Nemoto, N., et al. (1997) FEBS Lett., 414, 405-408; Miyamoto-Sato, E. , ⁇ (2003) Nucleic Acids Res., 31, e78) successfully screened peptides that bind to MDM2 competitively with p53 from a random library and obtained peptides that inhibit the interaction between MDM2 and p53 The present invention has been completed.
  • IVV in-vitro virus
  • the present invention provides a human cancer protein MDM2-human cancer suppressor protein p53 interaction inhibitor or anticancer agent comprising a peptide containing the following amino acid sequence as an active ingredient.
  • Xaa1 Xaa2 Phe Xaa4 Xaa5 Xaa6 Xaa7 Xaa8 Xaa9 Leu Xaa11 Xaa12 (SEQ ID NO: 4)
  • Xaa1 is Lys, Pro, Arg, Ser, Leu, Ala or Met.
  • Xaa2 is Ser, Thr, Arg, Val, Gly, Tyr or Pro.
  • Xaa4 is Trp, Gln, Glu, Pro, Ala or Leu.
  • Xaa5 is Glu, Gln, Asp, Phe, Ala, Trp or Ser.
  • Xaa6 is Tyr, His, Leu or Glu.
  • Xaa7 is Trp or Leu.
  • Xaa8 is Leu, Gln, Glu, Val, Ser or Met.
  • Xaa9 is Glu, Arg, Met, Asp, Gln, Asn, or Lys.
  • Xaa11 is Met, Val, Leu, Ile or Tyr.
  • Xaa12 is Leu, Glu, Ser, Gly or Trp.
  • the peptide preferably comprises the amino acid sequence of any of SEQ ID NOs: 37 to 41, and more preferably comprises the amino acid sequence of SEQ ID NO: 37.
  • Bait DNA preparation The MDM27-300 gene was subcloned into the BamHI / XhoI site of pCMV-Fos-CBPzz. Based on this plasmid, the SP6 promoter and a part of the omega enhancer ( ⁇ 29) were added by PCR. Schematic of immobilization of bait protein to beads and protease elution.
  • the IgG binding region (ZZ) of protein A was fused to the C-terminus of MDM2 via the TEV protease cleavage site. This ZZ region allows the bait protein to be immobilized on IgG beads and eluted with TEV protease.
  • T7 tag-MDM2-ZZ protein was expressed in Wheat germ extract and incubated with IgG beads. After washing the beads 5 times, TEV protease was added to elute the bait. Each fraction was separated by 10% SDS-PAGE and then detected by Western blot using an anti-T7 tag antibody (top). I: input, F: pass through, W: fifth wash, B1: beads before elution, B2: beads after elution. (B) Each band intensity was quantified and the ratio to the input was shown.
  • A Plasmid for expressing GFP fusion peptide.
  • GFP and FLAG tags were fused to the N-terminus and C-terminus of the peptide obtained by IVV screening, respectively.
  • CMV and T7 promoters were added upstream of the ORF so that this peptide can be transcribed in cultured cells and in vitro, respectively.
  • B A GFP fusion peptide was synthesized by a cell-free transcription and translation system, and a binding assay was performed. I: Input, F: Through, B: Beads. Optimization of selection conditions (electrophoresis photograph).
  • a random IVV library consisting of 12 amino acid residues after 4 rounds of selection was translated using a cell-free translation system, and an in vitro binding assay was performed.
  • the bead fraction under three kinds of conditions was separated by 8 M urea 8% SDS-PAGE, and the fluorescence of fluorescein linked to the PEG-Puro spacer was detected.
  • the binding activity compared to the control was quantified from the band intensity.
  • Progress of selection experiment (electrophoresis photograph).
  • a random IVV library consisting of 12 amino acid residues after completion of each selection round was translated by a cell-free system, and a binding assay for MDM2 immobilized on beads was performed.
  • the binding activity compared to the initial library was quantified from the band intensity.
  • HCT116 cell ⁇ wild type p53 expressing cell
  • SW480 cell mutant p53 expressing cell
  • GFP-HL4-FLAG control
  • GFP-MIP GFP-MIP
  • the mRNA levels of p53, MDM2, and p21 were each quantified by quantitative reverse transcription PCR.
  • Cell survival inhibitory effect of Tat-MIP HCT116 cell (wild type p53-expressing cell) and Saos-2 cell (p53-deficient cell) were cultured for 24 hours in a medium containing Tat-MIP at the concentration shown in the graph. Cell viability was then assessed by WST-1 assay.
  • the active ingredient of the inhibitor and facilitator of the present invention is a peptide comprising the following amino acid sequence.
  • Xaa1 is Lys, Pro, Arg, Ser, Leu, Ala or Met, preferably Lys, Pro, Arg or Ser, and more preferably Lys or Pro.
  • Xaa2 is Ser, Thr, Arg, Val, Gly, Tyr or Pro, preferably Ser, Thr, Arg or Val, more preferably Ser, Thr or Arg.
  • Xaa4 is Trp, Gln, Glu, Ala, Pro or Leu, preferably Trp, Gln, Glu, Ala or Pro, and more preferably Trp.
  • Xaa5 is Glu, Gln, Asp, Ala, Phe, Trp or Ser, preferably Glu, Gln, Asp or Phe, and more preferably Glu.
  • Xaa6 is Tyr, His, Leu or Glu, preferably Tyr or His, and more preferably Tyr.
  • Xaa7 is Trp or Leu, preferably Trp.
  • Xaa8 is Leu, Gln, Glu, Val, Ser or Met, preferably Leu, Gln or Met, and more preferably Leu.
  • Xaa9 is Glu, Arg, Met, Asp, Gln, Asn or Lys, preferably Glu, Arg or Asp, more preferably Glu or Arg.
  • Xaa11 is Met, Val, Leu, Ile or Tyr, preferably Met, Val or Leu, more preferably Met.
  • Xaa12 is Leu, Glu, Ser, Gly or Trp, preferably Leu, Glu or Trp, more preferably Leu or Glu.
  • Xaa9-Leu-Xaa10 is preferably Arg-Leu-Met or Glu-Leu-Met.
  • Examples of the peptide include a peptide consisting of any one of the amino acid sequences of SEQ ID NOs: 37 to 41.
  • the active ingredient of the inhibitor and facilitator of the present invention is also preferably a peptide having the amino acid sequence of SEQ ID NO: 37.
  • the peptide is preferably soluble in biological fluids such as blood.
  • the active ingredient peptide can be made into a preparation (pharmaceutical composition) using a pharmaceutically acceptable carrier.
  • a pharmaceutically acceptable carrier include an excipient or a base.
  • the formulation may contain the additive used normally.
  • the dosage form is appropriately selected depending on the administration route.
  • Formulations include the active ingredient peptide and other anticancer agents that are separately packaged and integrated.
  • the dose of the active ingredient is appropriately selected depending on the intended anticancer drug treatment, the patient's condition, and the like. Inhibitors or facilitators of the invention can be administered to patients who are receiving or willing to receive anticancer drug treatment.
  • peptides Compared with low molecular weight compounds, peptides require high synthesis costs and in vivo administration by injection due to their large molecular weight, and are low in solubility and cell membrane permeability, are easily degraded in vivo and are unstable. There are many disadvantages as pharmaceuticals (Chemical & Engineering Engineering News, 83, 17-24, 2005). For this reason, natural or synthetic peptides have not been considered as realistic drugs so far (Borghouts, C., ⁇ (2005) J. Peptide Sci., 11, 713-726).
  • the peptides used in the present invention have higher specificity and affinity for the target than low molecular weight compounds, there are few bindings to proteins other than the target that cause side effects (Chemical & Engineering News, 83, 17-24 (2005 )),it is conceivable that. It is also suitable for inhibiting the interaction between large proteins, which is difficult with low molecular weight compounds (Sakurai, K., Tsuji et al. J. Am. Chem. Soc., 126, 16288-16289). . A peptide having such a more effective drug activity is expected to be useful as a pharmaceutical product.
  • the peptide used in the present invention is effective as an interaction inhibitor or anticancer agent of human cancer protein MDM2 and human cancer suppressor protein p53 for the following reasons, but the present invention is not limited thereby. Absent.
  • the cancer protein MDM2 which is overexpressed in some malignant tumors, is transcriptionally activated by the tumor suppressor protein p53.
  • the expressed MDM2 binds to the p53 protein and degrades the p53 protein through a ubiquitin / proteasome-dependent pathway, thereby promoting its canceration by inhibiting its cancer suppressive action.
  • a random peptide IVV library consisting of 16 amino acid residues was prepared, and peptides that bind to MDM2 immobilized on beads were screened.
  • three hydrophobic amino acid residues F19, W23, L26
  • these three hydrophobic amino acid residues F, W, L
  • the remaining 9 amino acid residues consisted of 12 amino acid residues that are random sequences.
  • a rally was prepared and screened for peptides that bind to MDM2.
  • a peptide having an amino acid sequence selected by this screening method is expected to highly inhibit the human cancer protein MDM2-human cancer suppressor protein p53 interaction.
  • GFP-MIP protein sequence in which GFP was fused to the N-terminus of the most frequently duplicated peptide sequence (MDM2 inhibitor sequence, MIP) was expressed in the human colon cancer cell line HCT116 cells.
  • MDM2 inhibitor sequence, MIP MDM2 inhibitor sequence
  • the active ingredient of the inhibitor and anticancer agent of the present invention is not limited by its production method.
  • a library of DNAs encoding peptides is prepared, and (2) a DNA library is prepared from the library. And a peptide library linked to the DNA is prepared, (3) a molecule containing a peptide that binds to MDM2 is selected, and (4) DNA is selected by PCR using the DNA of the selected molecule as a template. And (5) using the amplified DNA as a library in step (2) and obtaining a screening method comprising repeating steps (2) to (4).
  • a screening method based on the in vitro virus (IVV) method (for example, refer to WO 02/48347, JP 2002-176987 A) can be performed. Describe IVV and screening methods.
  • IVV is also called a mapping molecule, and a mapping molecule by the IVV method binds a phenotype molecule containing a protein to be subjected to functional analysis or functional modification and a genotype molecule containing a nucleic acid encoding the protein. Do it.
  • a genotype molecule is formed by binding a coding molecule having a region encoding a protein in such a form that the base sequence of the region can be translated, and a spacer part.
  • the part derived from the phenotype molecule, the part derived from the spacer molecule, and the part derived from the coding molecule in the mapping molecule are called a decoding part, a spacer part, and a coding part, respectively.
  • the part derived from the spacer molecule and the part derived from the coding molecule in the genotype molecule are referred to as a spacer part and a coding part, respectively.
  • the spacer molecule binds to the peptide by a peptide transfer reaction that binds to the donor region that can bind to the 3 ′ end of the nucleic acid, the PEG region mainly composed of polyethylene glycol bound to the donor region, and the PEG region. And a peptide acceptor region containing the resulting group. There may be no PEG area.
  • the donor region that can bind to the 3 ′ end of a nucleic acid usually consists of one or more nucleotides.
  • the number of nucleotides is usually 1 to 15, preferably 1 to 2.
  • the nucleotide may be ribonucleotide or deoxyribonucleotide.
  • the sequence at the 5 ′ end of the donor region affects ligation efficiency.
  • the residue dCdC (dideoxycytidylic acid) is preferred.
  • the base type is preferably C> U or T> G> A.
  • the PEG region is mainly composed of polyethylene glycol.
  • the main component means that the total number of nucleotides contained in the PEG region is 20 bases or less, or the average molecular weight of polyethylene glycol is 400 or more. Preferably, it means that the total number of nucleotides is 10 bases or less, or the average molecular weight of polyethylene glycol is 2000 or more.
  • the average molecular weight of polyethylene glycol in the PEG region is usually 400 to 30,000, preferably 1,000 to 10,000, more preferably 2,000 to 8,000.
  • a post-process of associated translation may be required ( Liu, R., Barrick, E., Szostak, JW, Roberts, RW (2000) Methods in Enzymology, vol. 318, 268-293), with a molecular weight of 1000 or more, more preferably 2000 or more. Since high-efficiency association can be performed only by translation, post-translation processing is not necessary.
  • the stability of genotype molecules tends to increase, especially when the molecular weight is 1000 or higher, and when the molecular weight is 400 or lower, the DNA spacer may not be so characteristic and unstable. .
  • the peptide acceptor region is not particularly limited as long as it can bind to the C-terminus of the peptide.
  • puromycin 3'-N-aminoacylpuromycin aminonucleoside (3'-N-aminoacylpuromycin aminonucleoside, PANS-amino acid)
  • PANS-Gly having an amino acid part of glycine, PANS-Val of valine, PANS-Ala of alanine, and other PANS-all amino acids corresponding to all amino acids can be used.
  • 3'-Aminoacyladenosineoaminonucleoside AANS-amino acid, 3'-Aminoacyladenosine aminonucleoside, formed by dehydration condensation of the amino group of 3'-aminoadenosine and the carboxyl group of the amino acid as a chemical bond.
  • AANS-Gly whose amino acid part is glycine, AANS-Val of valine, AANS-Ala of alanine, and other AANS-all amino acids corresponding to all amino acids can be used.
  • a nucleoside or a nucleoside and an amino acid ester-bonded one can be used.
  • nucleoside or a substance having a chemical structure skeleton similar to nucleoside and an amino acid or a substance having a chemical structure skeleton similar to amino acid can be used as long as they can be chemically bonded.
  • the peptide acceptor region is preferably composed of puromycin or a derivative thereof, or puromycin or a derivative thereof and one or two deoxyribonucleotides or ribonucleotides.
  • the derivative means a derivative capable of binding to the C-terminus of the peptide in the protein translation system.
  • the puromycin derivatives are not limited to those having a complete puromycin structure, but also include those lacking a part of the puromycin structure. Specific examples of the puromycin derivative include PANS-amino acid and AANS-amino acid.
  • the peptide acceptor region may be composed of puromycin alone, but preferably has a base sequence consisting of DNA and / or RNA of 1 residue or more on the 5 ′ end side.
  • the sequences are dC-puromycin, rC-puromycin, etc., more preferably dCdC-puromycin, rCrC-puromycin, rCdC-puromycin, dCrC-puromycin, etc., and the 3 ′ end of aminoacyl-tRNA is Simulated CCA sequences (Philipps, GR (1969) Nature 223, 374-377) are suitable.
  • the base type is preferably C> U or T> G> A.
  • the spacer molecule preferably includes at least one function-imparting unit between the donor region and the PEG region.
  • the function-imparting unit is preferably a functional modification of at least one residue of deoxyribonucleotide or ribonucleotide base.
  • a substance into which various separation tags such as a fluorescent substance, biotin, or His-tag are introduced as a function modifying substance can be used.
  • the coding molecule in this embodiment includes a 5 ′ untranslated region containing a transcription promoter and a translation enhancer, an ORF region encoding a protein bound to the 3 ′ end of the 5 ′ untranslated region, and the 3 ′ end of the ORF region. And a nucleic acid containing an affinity tag sequence 5 ′ upstream of the poly A sequence.
  • the coding molecule may be DNA or RNA. In the case of RNA, the 5 'end may or may not have a Cap structure. The coding molecule may be incorporated into any vector or plasmid.
  • the 3 ′ end region contains an affinity tag sequence and a poly A sequence downstream thereof.
  • the polyA sequence in the 3 ′ end region is important, and the polyA sequence may be a mixture of dA and / or rA having at least 2 residues or more.
  • the poly A continuous chain is preferably 3 or more residues, more preferably 6 or more, and even more preferably 8 residues or more.
  • Elements that affect the translation efficiency of the coding molecule include a 5 'UTR consisting of a transcription promoter and translation enhancer, and a 3' end region combination containing a poly A sequence.
  • the effect of the poly A sequence in the 3 ′ end region is usually exerted with 10 residues or less.
  • T7 / T3 or SP6 can be used as the 5 ′ UTR transcription promoter, and there is no particular limitation.
  • SP6 is preferable, and SP6 is particularly preferable when an omega sequence or a sequence containing a part of the omega sequence is used as an enhancer sequence for translation.
  • the translation enhancer is preferably part of the omega sequence, and part of the omega sequence includes part of the TMV omega sequence (O29; Gallie DR, Walbot V. (1992) Nucleic Acids Res., Vol. 20, 4631 -4638, and those including WO 02/48347 (see FIG. 3) are preferred.
  • the affinity tag sequence is not particularly limited as long as it is a sequence for using any means capable of detecting a protein such as an antigen-antibody reaction.
  • a Flag-tag sequence or a His-tag sequence which is a tag for affinity separation analysis by antigen-antibody reaction.
  • the ORF region may be any sequence consisting of DNA and / or RNA.
  • a gene sequence, exon sequence, intron sequence, random sequence, or any natural or artificial sequence is possible, and there is no sequence limitation.
  • each length is about 60 bp in 5′UTR
  • the length is about 32 bp at the 3 ′ end region and can be incorporated as an adapter region into a PCR primer.
  • a coding molecule having a 5 ′ UTR and a 3 ′ end region can be easily prepared by PCR from any vector, plasmid, or cDNA library.
  • translation may be done beyond the ORF region. That is, there may not be a stop codon at the end of the ORF region.
  • the coding molecule in this embodiment includes a 5 ′ untranslated region containing a transcription promoter and a translation enhancer, an ORF region encoding a protein bound to the 3 ′ end of the 5 ′ untranslated region, and a 3 ′ end of the ORF region.
  • a nucleic acid comprising a 3 ′ end region comprising a poly A sequence bound to
  • the genotype molecule is obtained by converting the above coding molecule into a form in which the base sequence of the protein coding region can be translated (for example, after transcription), if necessary, and the 3 ′ end of the coding molecule and the spacer molecule.
  • the donor region can be produced by binding by a normal ligase reaction.
  • the reaction conditions usually include conditions at 4 to 25 ° C. for 4 to 48 hours.
  • polyethylene glycol having the same molecular weight as the polyethylene glycol in the PEG region of the spacer molecule containing the PEG region is added to the reaction system, It can also be shortened to 0.5-4 hours at 15 ° C.
  • the combination of spacer molecule and coding molecule has an important effect on ligation efficiency.
  • the UTR translation enhancer is preferably a partial sequence (O29) of the omega sequence, and the donor region of the spacer part is at least one residue dC (deoxycytidylic acid) or two residues dCdC (dideoxycytidylic acid). ) Is preferred.
  • RNA ligase (a) a 5 ′ untranslated region containing a transcription promoter and a translation enhancer, an ORF region encoding a protein bound to the 3 ′ end of the 5 ′ untranslated region, and a 3 ′ end of the ORF region
  • the 3 'end of the coding molecule which is RNA containing the 3' end region containing the poly A sequence
  • the donor region of the spacer molecule consisting of RNA constitutes the PEG region in the spacer molecule It is preferable to bind with RNA ligase in the presence of free polyethylene glycol having the same molecular weight as polyethylene glycol.
  • the ligation efficiency is improved to 80 to 90% or more regardless of the molecular weight of the polyethylene glycol of the spacer part.
  • the separation step can also be omitted.
  • the mapping molecule in this embodiment is linked to a phenotype molecule that is a protein encoded by the ORF region in the genotype molecule by translating the genotype molecule in a cell-free translation system.
  • the cell-free translation system is preferably that of wheat germ or rabbit reticulocytes.
  • the conditions for translation may be those normally employed. For example, the conditions are 15 to 240 minutes at 25 to 37 ° C.
  • the nucleic acid portion of the mapping molecule of this embodiment can be a hybrid of RNA and DNA by reverse transcription after translation.
  • the screening method based on the IVV method is usually a method for screening a nucleic acid encoding a protein that interacts with a target substance from a nucleic acid library, which is associated with the nucleic acid library by the production method of the present invention.
  • a step of producing a library of molecules a step of mixing the library of mapping molecules and a target substance, a step of separating mapping molecules bound to the target substance, a linker of the separated mapping molecules, A step of releasing the nucleic acid by cleaving under conditions that do not change the base sequence, and a step of recovering the released nucleic acid.
  • the library of the mapping molecule and the target substance may be mixed under the condition that the target protein of the mapping molecule interacts with the target substance. This condition is appropriately selected according to the interaction to be detected and the type of target substance.
  • Separation of the mapping molecule bound to the target substance is a process of separating the mapping molecule bound to the target substance and the mapping molecule that does not bind to the target substance.
  • the target substance is immobilized on a solid phase.
  • separation can be performed by washing the solid phase on which the target molecule after mixing with the corresponding molecule is immobilized. Washing conditions are appropriately selected according to the interaction to be detected and the type of target substance.
  • immobilization on a solid phase means that the conjugate of the mapping molecule and the target substance can be separated from the non-bonded molecule.
  • the target substance is a membrane protein
  • the cell membrane of the cell Membrane proteins expressed in the above and proteins embedded in artificial membranes are also included in the target substance immobilized on the solid phase.
  • the separation of the linker of the associating molecule under the condition that the nucleotide sequence of the nucleic acid does not change to release the nucleic acid can be performed using a cleaving linker and under the conditions corresponding thereto.
  • releasing the nucleic acid is also called elution.
  • “free” is used to mean “elution”.
  • the nucleic acid to be released may be modified as long as the base sequence of the nucleic acid can be analyzed.
  • the free nucleic acid can be collected by a usual method. For example, a method for recovering by electrophoresis, a method for recovering a supernatant by precipitating components other than the released nucleic acid, and the like can be mentioned.
  • the recovered nucleic acid is subjected to amplification and sequence analysis according to purposes such as functional analysis and evolutionary engineering. Depending on the purpose, the collected DNA can be sequenced or amplified by PCR and the above steps can be repeated.
  • the DNA library used in the screening method of the present invention preferably comprises a DNA encoding an amino acid sequence in which three hydrophobic amino acids corresponding to F19, W23, and L26 of human tumor suppressor protein p53 are conserved, Examples of such an amino acid sequence include XXFXXXWXXLXX (SEQ ID NO: 5) (X is an arbitrary amino acid).
  • the peptide that becomes the active ingredient of the inhibitor or anticancer agent of the present invention is identified. can do. Whether or not there is competition can be measured by a method as described in Examples described later.
  • MDM2 inhibitory peptide MIP
  • MIP MDM2 inhibitory peptide
  • HCT116 cells which are wild-type p53-expressing cells
  • the expression level of p53 protein increased. This is presumably due to inhibition of the MDM2-p53 interaction of GFP-MIP.
  • the amount of protein and mRNA of p53 targets such as MDM2 and p21 increased, it was found that the p53 pathway was activated by the expression of GFP-MIP.
  • peptides that bind to MDM2 protein with high affinity can be screened by the IVV method. In addition, it was confirmed that the obtained peptide strongly inhibited the in vitro and in vivo interaction between MDM2 and p53, and had a cancer cell growth inhibitory activity. Details of the examples will be described below.
  • Example 1 Preparation of bait protein Using Ex Taq DNA polymerase (Takara) from cDNA library derived from A549 cells, MDM (1-294) -f and MDM (1-294) -r primers (Table 1) at 95 ° C for 60 ° C. PCR was performed with a program in which a cycle of 60 seconds at 60 ° C and 60 seconds at 72 ° C was repeated 30 times. The obtained PCR product was purified with a PCR purification kit (Qiagen), and this time was used as a template, and PCR was carried out in the same manner with 5′adaptorO29T7EcoR and Flag1A-lib primers (Table 1).
  • the PCR product was purified again with the PCR purification kit and TA-cloned into the pDrive cloning vector (Qiagen). Using this plasmid as a template, using Phusion DNA polymerase (Finnzymes), Bam-MDM-f and MDM-294-Xho-r primers were cycled at 98 ° C for 10 seconds, 62 ° C for 30 seconds, and 72 ° C for 30 seconds. PCR was performed with a program repeated 25 times. This incorporated BamHI and XhoI restriction enzyme sites on both sides of the PCR product, respectively.
  • the obtained PCR product was purified with a PCR purification kit, cleaved with BamHI and XhoI, and purified again with the PCR purification kit.
  • T4 DNA Ligase Promega
  • this fragment was transformed into a vector having a T7 tag on the N-terminal side and a TAP tag on the C-terminal side, pCMV-CBPzz (Vassilev., LY, et al. (2004) Science, 844-848). Subcloned into BamHI / XhoI site.
  • MDM2 protein used as a bait for screening was prepared.
  • MDM2 with TAP tag for immobilization / elution added to beads is expressed in a cell-free translation system.
  • This protein is immobilized on the beads with TAP tag and is eluted, and the binding activity to p53 is maintained. This was confirmed by examining the binding to the p53 full-length protein.
  • the binding assay of p53 (15-29) and full-length IVV molecules was performed on MDM2 immobilized on beads (FIG. 4).
  • the p53 (15-29) IV IVV did not bind to MDM2, whereas the full length showed binding in the protein portion.
  • the prepared bait protein MDM2 has p53-binding activity due to binding of the full-length p53 IVV.
  • the dissociation constant between p53 (15-29) 2 and MDM2 is about 600 nM (Kussie, PH, etc. (1996) Science, 274, 948-953). Therefore, it is highly possible that the peptide portion linked to the mRNA did not retain the three-dimensional structure.
  • p53 (15-29) ⁇ has an ⁇ -helical structure, and the p53 mutant (P27S) peptide fragment that easily adopts this helix structure binds to MDM2 with higher affinity than the wild type (Schon, O., et al. ( 2002) J. Mol. Biol., 323, 491-501), it is likely that the peptide will not be selected in subsequent IVV screening unless it is a peptide fragment that is easy to take a helix structure and has a high affinity for MDM2. Therefore, it is favorable conditions to obtain a peptide that competes with p53 and binds to MDM2. In addition, it is speculated that the full-length p53 may have a more retained three-dimensional structure than the peptide fragment.
  • Random library construction Single-stranded DNA, G4SG4S (NNS) 16FLAGA6r (Table 1) as a template, Ex Taq DNA polymerase, 95 ° C for 60 seconds, 60 ° C with priSP6OGf and priFLAGA6r primer (Table 1) PCR was carried out using a program in which a cycle of 60 seconds at 72 ° C. was repeated 25 times. The obtained PCR product was purified with a PCR purification kit to prepare a DNA encoding a random 16 amino acid residue.
  • Immutex-MAG (MAG2101) (JSR) 20 mg was washed 3 times with 0.01% Triton X-100, 0.25 mg / ml EDC was added, and the mixture was rotated and mixed at room temperature for 90 minutes. 0.57 mg of rabbit rabbit IgG (Jackson immunoresearch) was added thereto, and the mixture was rotated and mixed at room temperature for 16 hours. After removing the supernatant, washing buffer (PBS, 0.1% BSA, 0.01% Triton X-100) was added and incubated at room temperature for 1 hour.
  • washing buffer PBS, 0.1% BSA, 0.01% Triton X-100
  • the plate was washed 5 times with a washing buffer and suspended in a storage buffer (PBS, 0.1% BSA, 0.01% Triton X-100, 0.02% NaN 3 ) to prepare IgG-Immutex-MAG beads (2% slurry).
  • a storage buffer PBS, 0.1% BSA, 0.01% Triton X-100, 0.02% NaN 3
  • TEV protease (10 U / ⁇ l) (Invitrogen) 2 ⁇ l was mixed, and mixed by rotation at 16 ° C. for 2 hours. This supernatant was collected as an elution fraction.
  • RT-PCR kit Qiagen
  • 30 seconds at 94 ° C, 30 seconds at 60 ° C, 120 ° C at 72 ° C RT-PCR was performed with a program in which a second cycle was repeated 14-30 times. From this, a band pattern with a non-saturated amplification amount was selected, and a large amount of RT-PCR was performed under the same conditions to reconstruct the library, and a second round of screening was performed. The same operation was repeated, and screening was performed up to the fifth round.
  • the DNA library was cloned with PCR Cloning kit (Qiagen), and the sequence was analyzed with ABI3700 PRISM Genetic Analyzer (Applied Biosystems). Moreover, weblogo (http://weblogo.berkeley.edu/) was used for the analysis of the appearance frequency of amino acids in peptide sequences.
  • MDM2 inhibitory peptide The most frequently duplicated peptide sequences (PRFWEYWLRLME (SEQ ID NO: 37), hereinafter referred to as MDM2 inhibitory peptide, MIP) and p53 17-28 dissociation constants were measured (Table 4). MIP was p53 17- It was found that the affinity with MDM2 was about 100 times that of 28 . Moreover, from the appearance frequency of amino acids at each position of the peptide sequence obtained by screening (FIG. 8), Y6, E9, and M11 were well conserved except for the fixed three amino acid residues. Therefore, this time, the dissociation constant of MIP (M11A) was measured by substituting M11 in the MIP sequence with alanine.
  • the affinity with MDM2 was reduced by about 10 times compared to the original MIP.
  • This position is a proline in p53 17-28 , and it has been reported that substituting it with serine makes it easier to adopt an ⁇ -helical structure and improves the affinity for MDM2 by about 25-fold (Zondlo, SC, Et al. (2006) Biochemistry 45, 11945-11957). In this case as well, it is presumed that the helix structure is made easier by M11.
  • Y6 is well conserved in screening of random libraries using the phage display method, and is reported to be an important amino acid in terms of enhancing affinity with MDM2 (Bottger, V.,, etc. (1996) Oncogene, 13, 2141-2147).
  • GFP-MIP MIP IVV and GFP fused to the N-terminus
  • IPTG was added at a concentration of 1 mM and further cultured at 37 ° C. for 6 hours.
  • the culture was centrifuged at 6000 g for 20 minutes, and the supernatant was removed to collect the cells.
  • 20 ml of lysis buffer (TBS, pH 7.4, 1 mM ⁇ -ME), 40 ⁇ l of protease inhibitor cocktail (Sigma) and 8 ⁇ l of DNase I were added, suspended, and then sonicated twice for 15 minutes. g, The supernatant after centrifugation for 20 minutes was collected as a soluble fraction.
  • TALON Metal Affinity Resin was added to the soluble fraction and mixed by rotation at 4 ° C for 2 hours, and the entire amount was passed through the column. After washing with 80 ml of lysis buffer and 10 ml of washing buffer (TBS pH 7.4, 1 mM mM ⁇ -ME, 10 mM mMimidazole), elute with 5 ml of elution buffer (TBS, pH 7.4, 1 mM mM ⁇ -ME, 250 mM mMimidazole). did.
  • MDM2 binding peptide MIP (MDM2 inhibitory peptide, PR F WEY W LR L ME) obtained by screening by the in vitro virus (IVV) method is compared with the existing sequence pDI (LTFEHYWAQLTS (SEQ ID NO: 49)) (Hu , B., et al. (2007) Cancer Res., 67, 8810-8817), showing about 8 ⁇ 10 3 times the affinity (Table 4).
  • MIP is a sequence that differs from wild-type p53 peptide (17-ETFSDLWKLLPE-28 (SEQ ID NO: 42)) and pDI but is known to bind to the pocket of MDM2 (Phe19, Trp23, Leu26, underlined) were conserved.
  • MIP novel peptide sequence MIP that binds to human cancer protein MDM2 was identified by the IVV method.
  • MIP was found to have a much higher affinity than existing MDM2-binding peptides.
  • Arg9 and Met11 which had a high frequency of appearance in the screening, were replaced with Ala, the affinity with MDM2 was greatly reduced. Therefore, these two amino acid residues and their positions were determined as novel motifs.
  • Met11 has a very high frequency of occurrence, and since Affin substitution showed the same degree of affinity reduction as Trp7, it is highly likely that it is an amino acid important for binding to MDM2.
  • GFP fusion peptide Incubate the 5 'ends of single-stranded DNA, GFP-fus-MIPf and GFP-fus-MIPr (Table 1) using T4 polynucleotide kinase (Takara) for 30 minutes at 37 ° C, respectively. Phosphorylated with. After ethanol precipitation, the whole amount was mixed, denatured at 98 ° C. for 20 seconds, and annealed by slowly returning to room temperature.
  • Cell culture and transfection HCT116 cells are McCoy's 5A medium (Gibco) containing 10% (vol / vol) FBS (Gibco), 1% (vol / vol) penicillin / streptomycin (Gibco), and SW480 cells are 10%.
  • the cells were cultured in McCoy's 5A medium (Gibco) containing penicillin / streptomycin (Gibco).
  • SW480 cells which are p53 mutant expressing cells deficient in transcriptional activation ability, were subjected to the same operation, but activation of the p53 pathway could not be confirmed.
  • Immunoprecipitation HCT116 cells 24 hours after transfection were solubilized with 500 ⁇ l of TNE buffer (10 mM Tris-HCl, pH 7.8, 0.15 M NaCl, 1 mM EDTA, 1% NP-40), and 12,000 g Centrifugation was performed for 20 minutes, 20 ⁇ l of Agarose conjugated Anti-GFP (Medical & biological laboratories) was added to 400 ⁇ l of the supernatant, and the mixture was mixed by rotation at 4 ° C. for 2 hours. Thereafter, the cells were washed 5 times with TNE buffer, added with 1 ⁇ sample buffer, and heated at 95 ° C. for 5 minutes for elution.
  • TNE buffer 10 mM Tris-HCl, pH 7.8, 0.15 M NaCl, 1 mM EDTA, 1% NP-40
  • Centrifugation was performed for 20 minutes, 20 ⁇ l of Agarose conjugated Anti-GFP (Medical & biological laboratories) was added to 400 ⁇ l of the super
  • RNA levels of p53, MDM2, p21 and GAPDH were measured using QuantiTect SYBR Green RT-PCR kit (Qiagen).
  • the primers used were p53 F and p53 R, mdm2 F and mdm2 R, p21 F and p21 R (Table 1), and GAPDH was measured using the Light cycler primer set (Roche, sequence not disclosed). After normalization with the amount of GAPDH mRNA, the amount of mRNA of each gene was determined.
  • WST-1 assay HCT116 and Saos-2 cells (1 ⁇ 10 4 cells / well) were cultured in 96-well plates. These cells were cultured for 24 hours in a medium containing a peptide containing HIV-Tat added as a membrane permeation sequence, Tat-MIP ( YGRKKRRQRRR PRFWEYWLRLME (SEQ ID NO: 50), underlined HIV-Tat sequence) at different concentrations. Thereafter, Cell proliferation reagent WST-1 (Roche) was added at 10 ⁇ l / well and further incubated for 30 minutes. The absorbance at 440 nm (reference wavelength 600 nm) of each well was measured with a plate reader SAFIRE (Tecan).
  • Tat-MIP MIP peptide
  • IC 50 1.8 ⁇ M and 20 ⁇ M, respectively. About 10 times different (Shangary, S., et al. (2008) Proc. Natl. Acad. Sci. USA, 105, 3933-3938). In contrast, in the case of Tat-MIP, IC 50 was 13.2 ⁇ M in HCT116 cells and 19.3 ⁇ M in Saos-2 cells, which was about 1.5 times as high.
  • SJSA-1 cells have higher endogenous MDM2 expression levels than HCT116 cells, and are susceptible to apoptosis due to inhibition of MDM2-p53 interaction (Chene, P., et al. (2002) FEBS Lett ., 529, 293-297).
  • p53 15-29 2 Motif consisting of 5 amino acid residues corresponding to the 19-23th region of p53 3: Peptide consisting of 10 amino acid residues corresponding to the 17th to 26th region of p53 4: Amino acid sequence of the peptide used in the present invention 5: Amino acid sequence encoded by library DNA 6: Primer MDM (1-294) f 7: Primer MDM (1-294) r 8: Primer 5'adaptorO29T7EcoR 9: Primer Flag1A-lib 10: Primer Bam-MDM-f 11: Primer MDM294-Xho-r 12: Primer SP6-O'-T7 13: Primer 3'FosCBPzz 14: Template G4SG4S (NNS) 16FLAGA6r 15: Primer priSP6OGf 16: Primer priFLAGA6r 17: Template X12 (FWL) -r 18: Primer 5'O29-
  • the present invention it is possible to provide a drug that inhibits the interaction between human cancer protein MDM2 and human cancer suppressor protein p53 and has an effect of suppressing cancer cell growth.

Abstract

An agent which comprises a peptide composed of 12 specified amino acid residues as an active component, and which exhibits an anti-cancer activity by inhibiting the interaction between the human oncoprotein MDM2 and the human tumor suppression protein p53.

Description

ヒト癌タンパク質MDM2とヒト癌抑制タンパク質p53との相互作用阻害ペプチド及びその使用Peptide for inhibiting interaction between human cancer protein MDM2 and human tumor suppressor protein p53 and use thereof
 本発明は、ヒト癌抑制タンパク質p53とヒト癌タンパク質MDM2の相互作用を阻害するペプチド、更にはヒトの癌治療におけるこのようなペプチドの使用に関する。 The present invention relates to peptides that inhibit the interaction between human cancer suppressor protein p53 and human cancer protein MDM2, and further to the use of such peptides in the treatment of human cancer.
 ヒト癌抑制タンパク質であるp53は、通常、細胞内では低濃度で存在するが、DNA損傷、癌遺伝子の活性化、低酸素などの細胞ストレスに伴い発現誘導される(Chene,P., 等 (2003) Nature Rev. Cancer, 3, 102-109; Zondlo,S.C., 等 (2006) Biochemistry, 45, 11945-11957; Schon,O., 等 (2002) J. Mol. Biol., 323, 491-501; Zhang,R., Wang,H. (2000) Curr. Pharm. Des., 6, 393-416)。発現したp53タンパク質は四量体を形成後、核内へ移行し自身のターゲットを転写活性化する。この際発現されるp53ターゲットのうちの一つである、p21Waf1/Cip1は細胞周期の調節に関わるタンパク質である(佐谷秀行 (1998) 細胞工学別冊:p53 癌制御の分子メカニズムと臨床応用; 中山敬一 (2001) わかる実験医学シリーズ:細胞周期がわかる,羊土社; Gartel,A.L., Radhakrishnan,S.K. (2005) Cancer Res., 65, 3980-3985; Chene, P., 等 (2002) FEBS Lett., 529, 293-297)。細胞周期は、転写因子E2Fが、DNA合成に重要なタンパク質をコードする遺伝子を転写活性化することでG1期からS期へと移行する。E2Fの活性はRBとの結合によって抑制されているが、RBがサイクリン/サイクリン依存性キナーゼ2 (CDK2) 複合体によりリン酸化されるとE2Fから解離し、活性化されたE2Fにより細胞周期が進行する(佐谷秀行 (1998) 細胞工学別冊:p53 癌制御の分子メカニズムと臨床応用,秀潤社; 中山敬一 (2001) わかる実験医学シリーズ:細胞周期がわかる,羊土社)。p21はCDKの阻害因子として知られており、主にサイクリン/CDK2複合体を阻害することで、細胞周期をG1期で停止させ、その間にDNAを修復する。しかし、DNA損傷の程度によっては、DNA修復を行わずにアポトーシスを誘導する(佐谷秀行 (1998) 細胞工学別冊:p53 癌制御の分子メカニズムと臨床応用,秀潤社)。 P53, a human tumor suppressor protein, is usually present in cells at low concentrations, but is induced by cellular stress such as DNA damage, oncogene activation, and hypoxia (Chene, P., etc. 2003) Nature Rev. Cancer, 3, 102-109; Zondlo, SC, et al. (2006) Biochemistry, 45, 11945-11957; Schon, O., et al. (2002) J. Mol. Biol., 323, 491-501 Zhang, R., Wang, H. (2000) Curr. Pharm. Des., 6, 393-416). The expressed p53 protein forms a tetramer, and then moves into the nucleus to activate transcription of its target. One of the expressed p53 targets, p21 Waf1 / Cip1, is a protein involved in cell cycle regulation (Hideyuki Saya (1998) Cell Engineering Supplement: Molecular mechanism and clinical application of p53 cancer control; Nakayama Keiichi (2001) Understanding experimental medicine series: Understanding cell cycle, Yodosha; Gartel, AL, Radhakrishnan, SK (2005) Cancer Res., 65, 3980-3985; Chene, P., et al. (2002) FEBS Lett. , 529, 293-297). The cell cycle shifts from the G1 phase to the S phase by the transcription factor E2F transcriptionally activating a gene encoding a protein important for DNA synthesis. The activity of E2F is suppressed by binding to RB, but when RB is phosphorylated by the cyclin / cyclin-dependent kinase 2 (CDK2) complex, it is dissociated from E2F, and the cell cycle proceeds by activated E2F (Hideyuki Saya (1998) Cell engineering separate volume: p53 Molecular mechanism and clinical application of cancer control, Shujunsha; Keiichi Nakayama (2001) Understanding experimental medicine series: Understanding cell cycle, Yodosha). p21 is known as an inhibitor of CDK and mainly inhibits the cyclin / CDK2 complex, thus arresting the cell cycle in the G1 phase and repairing DNA during that time. However, depending on the degree of DNA damage, apoptosis is induced without DNA repair (Hideyuki Saya (1998) Cell Engineering Supplement: p53 Molecular Mechanism and Clinical Application of Cancer Control, Shujunsha).
 このように、異常のある細胞の増殖を抑制するような働きから、p53はゲノムの守護神として知られている(Stiewe,T. (2007) Nature Rev. Cancer, 7, 165-168)。すなわち、このp53が活性を失い、上述したような細胞応答を行えない場合、様々な遺伝子に変異が生じたままの細胞を増殖することになり、癌化に繋がると考えられている(佐谷秀行 (1998) 細胞工学別冊:p53 癌制御の分子メカニズムと臨床応用,秀潤社)。実際、ヒト癌細胞の約50%で、p53の変異あるいは欠失による不活性化が見られる(Shangary, S., 等 (1997) Proc. Natl. Acad. Sci. USA., 105, 3933-3938)。また、その他の癌細胞では、野生型のp53が発現しているにも関わらず、細胞内の阻害因子により、その癌抑制作用が阻害されている。これらの阻害因子には、p53に直接作用するものや、p53経路下流のアポトーシス促進因子を阻害するものがあり、ほぼ全ての癌において、p53経路が関与していると考えられている(Shangary, S., 等 (1997) Proc. Natl. Acad. Sci. USA., 105, 3933-3938)。 Thus, p53 is known as a guardian of the genome because of its function of suppressing the growth of abnormal cells (Stiewe, T. (2007) Nature Rev. Cancer, 7, 165-168). That is, if this p53 loses its activity and cannot perform the cellular response as described above, it will grow cells with mutations in various genes, leading to canceration (Hideyuki Saya (1998) Cell engineering separate volume: Molecular mechanism and clinical application of p53 cancer control, Shujunsha). In fact, about 50% of human cancer cells are inactivated by mutation or deletion of p53 (Shangary, S., 等 (1997) Proc. Natl. Acad. Sci. USA., 105, 3933-3938 ). In addition, in other cancer cells, despite the expression of wild-type p53, its cancer suppressive action is inhibited by intracellular inhibitors. These inhibitors include those that directly act on p53 and those that inhibit apoptosis-promoting factors downstream of the p53 pathway, and it is thought that the p53 pathway is involved in almost all cancers (Shangary, S., 等 (1997) Proc. Natl. Acad. Sci. USA., 105, 3933-3938).
 癌タンパク質MDM2 (mouse double minute) は、発現誘導されたp53タンパク質により転写活性化されるp53ターゲットのひとつである( Shangary, S., 等 (1997) Proc. Natl. Acad. Sci. USA., 105, 3933-3938; Hu,B., 等 (2007) Cancer Res., 67, 8810-8817; Chene, P., 等 (2000) J. Mol. Biol., 299, 245-253 (2000)。発現したMDM2は、核内へ移行し、p53の転写活性化領域に結合することで、逆にp53の転写因子としての活性を阻害する。さらにMDM2はユビキチンリガーゼとしても働き、p53のプロテアソーム依存性の分解を促進することで、互いに負のフィードバックループを形成している(Kussie,P. H., 等 (1996) Science, 274, 948-953)。このように、MDM2はp53と直接相互作用することで、p53の活性および、その癌抑制作用を阻害する。MDM2-p53タンパク質複合体の結晶構造から、MDM2の17-125番目の領域のαヘリックスおよびβシートにより疎水性の間隙が形成されており、この領域にp53の15-29番目の領域(SQETFSDLWKLLPEN(配列番号1):一文字表記)の15アミノ酸残基のαヘリックス構造をとったペプチド部分が結合することが知られている(Kussie,P. H., 等 (1996) Science, 274, 948-953)。癌タンパク質MDM2は癌抑制タンパク質p53と結合し、その癌抑制作用を阻害することから、抗癌剤デザインのターゲットとなっている(Kussie, P.H., 等 (1996) Science, 274, 948-953; Chene, P., 等 (2003) Nature Rev. Cancer, 3, 102-109; Zondlo,S.C., 等 (2006) Biochemistry, 45, 11945-11957; Schon, O., 等 (2002) J. Mol. Biol., 323, 491-501; Zhang, R., Wang, H. (2000) Curr. Pharm. Des., 6, 393-416)。現在までに、MDM2のこの領域に結合する抗体や、MDM2のアンチセンスオリゴヌクレオチドを細胞内に導入することで、p53の活性化を誘導できることが明らかにされた(Chene,P., 等 (2000) J. Mol. Biol., 299, 245-253; Blaydes, J.P., 等 (1997)  Oncogene, 14, 1859-1868)。この構造情報を元にした低分子化合物のライブラリーから、MDM2に結合し同様の効果を示す化合物として、Nutlin-3が同定された(Chen, L., 等 (1997)  Proc. Natl. Acad. Sci. USA., 95, 195-200)。また近年, p53の19-23番目の領域に対応する5アミノ酸残基からなるモチーフFxxLW(配列番号2) (ここでF,L,Wはアミノ酸の一文字表記でそれぞれフェニルアラニン,ロイシン,トリプトファンを意味し, xは任意のアミノ酸)を含むp53ペプチドフラグメント(非特許文献1; 特許文献1, 特許文献2), p53の17-26番目の領域に対応する10アミノ酸残基からなるp53ペプチドフラグメントR1-X-F-X-R2-R3-W-X-X-R4(配列番号3)(R1はプロリン(P),ロイシン(L),グルタミン酸(E),システィン(C),またはグルタミン(Q); Xは任意の天然アミノ酸; Fはフェニルアラニン; R2はアルギニン(R),ヒスチジン(H),グルタミン酸(E),システィン(C),セリン(S),またはアスパラギン酸(D); R3はヒスチジン(H),フェニルアラニン(F),またはチロシン(Y); R4はフェニルアラニン(F),グルタミン(Q),またはロイシン(L);特許文献3), p53の17-28番目の領域に対応する12アミノ酸残基からなるp53ペプチドフラグメント pDI(LTFEHYWAQLTS(配列番号49); 非特許文献2)が,p53とMDM2の相互作用の阻害に特に適していることが明らかにされている.しかしながら, 上に述べた種々のp53ペプチドフラグメントのMDM2への親和性はかなり弱く、一番強い親和性のpDIでもBiacoreで測定した解離定数(KD)は4×10-4M程度であり, 薬剤として利用するには親和性が弱い. それ故、MDM2に対する親和性が強く, MDM2-p53相互作用を強く阻害するペプチドフラグメントが求められている。 The oncoprotein MDM2 (mouse double minute) is one of the p53 targets that are transcriptionally activated by the expression-induced p53 protein (Shangary, S., et al. (1997) Proc. Natl. Acad. Sci. USA., 105 , 3933-3938; Hu, B., et al. (2007) Cancer Res., 67, 8810-8817; Chene, P., et al. (2000) J. Mol. Biol., 299, 245-253 (2000). MDM2 then translocates into the nucleus and binds to the transcriptional activation region of p53, conversely inhibiting the activity of p53 as a transcription factor, and MDM2 also acts as a ubiquitin ligase, p53's proteasome-dependent activity By promoting degradation, they form negative feedback loops with each other (Kussie, PH, et al. (1996) Science, 274, 948-953) Thus, MDM2 interacts directly with p53, It inhibits the activity of p53 and its tumor suppressive effect, and from the crystal structure of the MDM2-p53 protein complex, the α helix and β A hydrophobic gap is formed by the peptide, and a peptide part having an α helix structure of 15 amino acid residues in the 15th to 29th regions of p53 (SQETFSDLWKLLPEN (SEQ ID NO: 1): single letter notation) binds to this region. (Kussie, PH, et al. (1996) Science, 274, 948-953) Since the cancer protein MDM2 binds to the tumor suppressor protein p53 and inhibits its cancer suppressive action, anticancer drug design Targeted (Kussie, PH, et al. (1996) Science, 274, 948-953; Chene, P., et al. (2003) Nature Rev. Cancer, 3, 102-109; Zondlo, SC, et al. (2006) Biochemistry, 45, 11945-11957; Schon, O., et al. (2002) J. Mol. Biol., 323, 491-501; Zhang, R., Wang, H. (2000) Curr. Pharm. Des., 6 393-416). To date, it has been shown that p53 activation can be induced by introducing an antibody that binds to this region of MDM2 or an antisense oligonucleotide of MDM2 into cells (Chene, P., et al. (2000). ) J. Mol. Biol., 299, 245-253; Blaydes, JP, et al. (1997) Oncogene, 14, 1859-1868). From a library of low molecular weight compounds based on this structural information, Nutlin-3 was identified as a compound that binds to MDM2 and shows similar effects (Chen, L., et al. (1997) Proc. Natl. Acad. Sci. USA., 95, 195-200). In recent years, the motif FxxLW (SEQ ID NO: 2) consisting of 5 amino acid residues corresponding to the 19th to 23rd regions of p53 (where F, L, and W are one-letter codes for amino acids, meaning phenylalanine, leucine, and tryptophan, respectively). , x is any amino acid) p53 peptide fragment (Non-patent Document 1; Patent Document 1, Patent Document 2), p53 peptide fragment R1-XFX consisting of 10 amino acid residues corresponding to the 17th to 26th regions of p53 -R2-R3-WXX-R4 (SEQ ID NO: 3) (R1 is proline (P), leucine (L), glutamic acid (E), cysteine (C), or glutamine (Q); X is any natural amino acid; F Is phenylalanine; R2 is arginine (R), histidine (H), glutamic acid (E), cysteine (C), serine (S), or aspartic acid (D); R3 is histidine (H), phenylalanine (F), or Tyrosine (Y); R4 is phenylalanine (F), glutamine (Q), or leucine (L); Patent Document 3), p P53 peptide fragment pDI (LTFEHYWAQLTS (SEQ ID NO: 49); Non-Patent Document 2) consisting of 12 amino acid residues corresponding to the 17th to 28th region of 53 is particularly suitable for inhibiting the interaction between p53 and MDM2 However, the affinity of the various p53 peptide fragments mentioned above for MDM2 is rather weak, and even with the strongest affinity pDI, the dissociation constant (K D ) measured by Biacore is 4 × 10 -4 is about M, to be used as a drug is weak affinity. Thus, strong affinity for MDM2, peptide fragments strongly inhibit MDM2-p53 interaction is required.
特表平10-506525Special table flat 10-506525 特開2007-222170JP2007-222170 特表2001-500365Special table 2001-500365
 本発明は、ヒト癌タンパク質MDM2とヒト癌抑制タンパク質p53の相互作用を阻害し、癌細胞増殖抑制効果をもつ薬剤を提供することを目的とする。 An object of the present invention is to provide a drug that inhibits the interaction between human cancer protein MDM2 and human cancer suppressor protein p53 and has a cancer cell growth inhibitory effect.
 本発明者らは、遺伝子型と表現型の対応付け技術であるin vitro virus (IVV) 法(Nemoto, N., 等(1997) FEBS Lett., 414, 405-408; Miyamoto-Sato, E., 等 (2003) Nucleic Acids Res., 31, e78)により、p53と競合的にMDM2に結合するペプチドをランダムライブラリーからスクリーニングし、MDM2とp53の相互作用を阻害するペプチドを取得することに成功し、本発明を完成した。 The inventors of the present invention have described the in-vitro virus (IVV) method (Nemoto, N., et al. (1997) FEBS Lett., 414, 405-408; Miyamoto-Sato, E. , 等 (2003) Nucleic Acids Res., 31, e78) successfully screened peptides that bind to MDM2 competitively with p53 from a random library and obtained peptides that inhibit the interaction between MDM2 and p53 The present invention has been completed.
 本発明は、下記のアミノ酸配列を含むペプチドを有効成分とするヒト癌タンパク質MDM2-ヒト癌抑制タンパク質p53相互作用阻害剤又は抗癌剤を提供する。
Xaa1 Xaa2 Phe Xaa4 Xaa5 Xaa6 Xaa7 Xaa8 Xaa9 Leu Xaa11 Xaa12 (配列番号4)
Xaa1は、Lys、Pro、Arg、Ser、Leu、Ala又はMetである。
Xaa2は、Ser、Thr、Arg、Val、Gly、Tyr又はProである。
Xaa4は、Trp、Gln、Glu、Pro、Ala又はLeuである。
Xaa5は、Glu、Gln、Asp、Phe、Ala、Trp又はSerである。
Xaa6は、Tyr、His、Leu又はGluである。
Xaa7は、Trp又はLeuである。
Xaa8は、Leu、Gln、Glu、Val、Ser又はMetである。
Xaa9は、Glu、Arg、Met、Asp、Gln、Asn又はLysである。
Xaa11は、Met、Val、Leu、Ile又はTyrである。
Xaa12は、Leu、Glu、Ser、Gly又はTrpである。
The present invention provides a human cancer protein MDM2-human cancer suppressor protein p53 interaction inhibitor or anticancer agent comprising a peptide containing the following amino acid sequence as an active ingredient.
Xaa1 Xaa2 Phe Xaa4 Xaa5 Xaa6 Xaa7 Xaa8 Xaa9 Leu Xaa11 Xaa12 (SEQ ID NO: 4)
Xaa1 is Lys, Pro, Arg, Ser, Leu, Ala or Met.
Xaa2 is Ser, Thr, Arg, Val, Gly, Tyr or Pro.
Xaa4 is Trp, Gln, Glu, Pro, Ala or Leu.
Xaa5 is Glu, Gln, Asp, Phe, Ala, Trp or Ser.
Xaa6 is Tyr, His, Leu or Glu.
Xaa7 is Trp or Leu.
Xaa8 is Leu, Gln, Glu, Val, Ser or Met.
Xaa9 is Glu, Arg, Met, Asp, Gln, Asn, or Lys.
Xaa11 is Met, Val, Leu, Ile or Tyr.
Xaa12 is Leu, Glu, Ser, Gly or Trp.
 前記ペプチドは、配列番号37~41のいずれかのアミノ酸配列からなることが好ましく、また、配列番号37のアミノ酸配列からなることがさらに好ましい。 The peptide preferably comprises the amino acid sequence of any of SEQ ID NOs: 37 to 41, and more preferably comprises the amino acid sequence of SEQ ID NO: 37.
ベイトDNA調製。MDM27-300遺伝子をpCMV-Fos-CBPzzのBamHI/XhoIサイトにサブクローニングした。このプラスミドを元に、SP6プロモーターとオメガエンハンサーの一部 (Ω29) をPCRにより付加した。Bait DNA preparation. The MDM27-300 gene was subcloned into the BamHI / XhoI site of pCMV-Fos-CBPzz. Based on this plasmid, the SP6 promoter and a part of the omega enhancer (Ω29) were added by PCR. ベイトタンパク質のビーズへの固定およびプロテアーゼ溶出の略図。プロテインAのIgG結合領域 (ZZ) を、TEVプロテアーゼ切断サイトを介してMDM2のC末端に融合した。このZZ領域によりベイトタンパク質をIgGビーズに固定でき、TEVプロテアーゼにより溶出することができる。Schematic of immobilization of bait protein to beads and protease elution. The IgG binding region (ZZ) of protein A was fused to the C-terminus of MDM2 via the TEV protease cleavage site. This ZZ region allows the bait protein to be immobilized on IgG beads and eluted with TEV protease. ベイトタンパク質のビーズ固定およびプロテアーゼ溶出の確認(電気泳動写真)。(A) T7タグ-MDM2-ZZタンパク質をWheat germ extractで発現させ、IgGビーズと共にインキュベートした。このビーズを5回洗浄後、ベイトを溶出するためにTEVプロテアーゼを加えた。それぞれの画分を10%SDS-PAGEにより分離後、抗T7タグ抗体を用いたウェスタンブロットにより検出した (上)。I:インプット、F:素通り、W:5回目の洗浄、B1:溶出前のビーズ、B2:溶出後のビーズ。(B)それぞれのバンド強度を定量し、インプットに対する割合を示した。Confirmation of bait protein bead fixation and protease elution (electrophoresis photo). (A) T7 tag-MDM2-ZZ protein was expressed in Wheat germ extract and incubated with IgG beads. After washing the beads 5 times, TEV protease was added to elute the bait. Each fraction was separated by 10% SDS-PAGE and then detected by Western blot using an anti-T7 tag antibody (top). I: input, F: pass through, W: fifth wash, B1: beads before elution, B2: beads after elution. (B) Each band intensity was quantified and the ratio to the input was shown. ビーズに固定したMDM2とp5315-29および全長p53 IVVとの試験管内結合アッセイ(電気泳動写真)。IVVを無細胞系により作製し、結合アッセイを行った。それぞれの画分を8 M urea 8% SDS-PAGEにより分離し、PEG-Puroスペーサーに連結されたフルオレセインの蛍光を検出した。それぞれの泳動図の上方と下方のバンドはそれぞれ、IVVおよびタンパク質と連結していないmRNA-PEG-Puroスペーサーに相当する。I:インプット、F:素通り、B:ビーズ。In vitro binding assay of MDM2 immobilized on beads with p53 15-29 and full-length p53 IVV (electrophoresis photograph). IVV was produced in a cell-free system and a binding assay was performed. Each fraction was separated by 8 M urea 8% SDS-PAGE, and the fluorescence of fluorescein linked to a PEG-Puro spacer was detected. The upper and lower bands in each electropherogram correspond to mRNA-PEG-Puro spacers that are not linked to IVV and protein, respectively. I: Input, F: Through, B: Beads. GFP融合ペプチドとビーズに固定したMDM2との試験管内結合アッセイ(電気泳動写真)。(A) GFP融合ペプチド発現用プラスミド。GFPとFLAGタグをIVVスクリーニングで得られたペプチドのN末端とC末端にそれぞれ融合した。CMVプロモーターとT7プロモーターを、このペプチドを培養細胞内および試験管内でそれぞれ転写できるようにORFの上流に付加した。(B) GFP融合ペプチドを無細胞転写翻訳系により合成し、結合アッセイを行った。I:インプット、F:素通り、B:ビーズ。In vitro binding assay of GFP fusion peptide and MDM2 immobilized on beads (electrophoresis photograph). (A) Plasmid for expressing GFP fusion peptide. GFP and FLAG tags were fused to the N-terminus and C-terminus of the peptide obtained by IVV screening, respectively. CMV and T7 promoters were added upstream of the ORF so that this peptide can be transcribed in cultured cells and in vitro, respectively. (B) A GFP fusion peptide was synthesized by a cell-free transcription and translation system, and a binding assay was performed. I: Input, F: Through, B: Beads. セレクション条件の最適化(電気泳動写真)。4ラウンドのセレクション後の12アミノ酸残基からなるランダムIVVライブラリーを無細胞翻訳系により翻訳し、試験管内結合アッセイを行った。3種類の条件下でのビーズ画分を8 M urea 8%SDS-PAGEにより分離し、PEG-Puroスペーサーに連結されたフルオレセインの蛍光を検出した。(1) 結合時間を1時間から10分に短縮。(2) 洗浄回数を3回から10回に増加。(3) 2倍の塩濃度。コントロールと比較した結合活性をバンド強度から定量した。Optimization of selection conditions (electrophoresis photograph). A random IVV library consisting of 12 amino acid residues after 4 rounds of selection was translated using a cell-free translation system, and an in vitro binding assay was performed. The bead fraction under three kinds of conditions was separated by 8 M urea 8% SDS-PAGE, and the fluorescence of fluorescein linked to the PEG-Puro spacer was detected. (1) Reduced binding time from 1 hour to 10 minutes. (2) Increased number of washings from 3 to 10 times. (3) Double salt concentration. The binding activity compared to the control was quantified from the band intensity. セレクション実験の経過状況(電気泳動写真)。各セレクションラウンド終了後における12アミノ酸残基からなるランダムIVVライブラリーを無細胞系により翻訳し、ビーズに固定したMDM2に対する結合アッセイを行った。初期ライブラリーと比較した結合活性をバンド強度から定量した。Progress of selection experiment (electrophoresis photograph). A random IVV library consisting of 12 amino acid residues after completion of each selection round was translated by a cell-free system, and a binding assay for MDM2 immobilized on beads was performed. The binding activity compared to the initial library was quantified from the band intensity. 5ラウンドのセレクション後のランダムIVVライブラリーから得られたペプチドの各ポジションにおけるアミノ酸出現頻度。配列のロゴをWebLogo version 2.8.2 (http://weblogo.berkeley.edu/) で作製した。それぞれの文字の高さは出現頻度の高さを反映している。Amino acid appearance frequency at each position of peptides obtained from random IVV library after 5 rounds of selection. The logo for the sequence was created at WebLogo version 2.8.2 (http://weblogo.berkeley.edu/). The height of each character reflects the frequency of appearance. GFP-MIPとMDM2の結合アッセイ(電気泳動写真)。(A) GFP-MIPを無細胞系により翻訳し、ビーズに固定したMDM2に対する試験管内結合アッセイを行った。(B) HCT116細胞にGFP-HL4-FLAG (コントロール) あるいはGFP-MIPを形質移入した。24時間後、抗GFP抗体により免疫沈降し抗MDM2抗体を用いたウェスタンブロットにより検出した。Binding assay of GFP-MIP and MDM2 (electrophoresis photo). (A) GFP-MIP was translated by a cell-free system, and an in vitro binding assay for MDM2 immobilized on beads was performed. (B) HCT116 cells were transfected with GFP-HL4-FLAG (control) or GFP-MIP. After 24 hours, immunoprecipitation was performed using an anti-GFP antibody, and detection was performed by Western blot using an anti-MDM2 antibody. GFP-MIPによるp53経路の活性化(電気泳動写真)。HCT116細胞 (野生型p53発現細胞) およびSW480細胞 (変異型p53発現細胞) にGFP-FLAG (コントロール) あるいはGFP-MIPを形質移入した。24時間後、細胞可溶化液をp53、MDM2、p21およびβアクチンに対する抗体でそれぞれウェスタンブロットを行った。Activation of p53 pathway by GFP-MIP (electrophoresis photograph). HCT116 cell 野生 (wild type p53 expressing cell) and SW480 cell (mutant p53 expressing cell) were transfected with GFP-FLAG (control) or GFP-MIP. 24 hours later, the cell lysate was subjected to Western blotting with antibodies against p53, MDM2, p21 and β-actin, respectively. GFP-MIPによるp53経路の活性化。HCT116細胞 (野生型p53発現細胞) およびSW480細胞 (変異型p53発現細胞) にGFP-HL4-FLAG (コントロール) あるいはGFP-MIPを形質移入した。24時間後、p53、MDM2、p21のmRNA量を定量逆転写PCRにより、それぞれ定量した。Activation of the p53 pathway by GFP-MIP. HCT116 cell 野生 (wild type p53 expressing cell) and SW480 cell (mutant p53 expressing cell) were transfected with GFP-HL4-FLAG (control) or GFP-MIP. After 24 hours, the mRNA levels of p53, MDM2, and p21 were each quantified by quantitative reverse transcription PCR. Tat-MIPの細胞生存阻害効果。HCT116細胞 (野生型p53発現細胞) およびSaos-2細胞 (p53欠損細胞) をグラフ中に示した濃度のTat-MIPを含んだ培地で24時間培養した。その後、細胞生存率をWST-1アッセイにより評価した。Cell survival inhibitory effect of Tat-MIP. HCT116 cell (wild type p53-expressing cell) and Saos-2 cell (p53-deficient cell) were cultured for 24 hours in a medium containing Tat-MIP at the concentration shown in the graph. Cell viability was then assessed by WST-1 assay.
 本明細書における、塩基およびアミノ酸の一文字並びにアミノ酸の三文字の記号は、WIPO Standard ST.25によるものである。 In this specification, the one-letter symbols for base and amino acids and the three-letter symbols for amino acids are based on WIPO Standard ST.25.
 本発明の阻害剤および助長剤の有効成分は、下記のアミノ酸配列を含むペプチドである。
Xaa1 Xaa2 PheXaa4 Xaa5 Xaa6 Xaa7 Xaa8 Xaa9 Leu Xaa11 Xaa12 (配列番号4)
Xaa1は、Lys、Pro、Arg、Ser、Leu、Ala又はMetであり、好ましくは、Lys、Pro、Arg又はSerであり、さらに好ましくはLys又はProである。
Xaa2は、Ser、Thr、Arg、Val、Gly、Tyr又はProであり、好ましくは、Ser、Thr、Arg又はValであり、さらに好ましくはSer、Thr又はArgである。
Xaa4は、Trp、Gln、Glu、Ala、Pro又はLeuであり、好ましくは、Trp、Gln、Glu、Ala又はProであり、さらに好ましくはTrpである。
Xaa5は、Glu、Gln、Asp、Ala、Phe、Trp又はSerであり、好ましくは、Glu、Gln、Asp又はPheであり、さらに好ましくはGluである。
Xaa6は、Tyr、His、Leu又はGluであり、好ましくは、Tyr又はHisであり、さらに好ましくはTyrである。
Xaa7は、Trp又はLeuであり、好ましくはTrpである。
Xaa8は、Leu、Gln、Glu、Val、Ser又はMetであり、好ましくは、Leu、Gln又はMetであり、さらに好ましくはLeuである。
Xaa9は、Glu、Arg、Met、Asp、Gln、Asn又はLysであり、好ましくは、Glu、Arg又はAspであり、さらに好ましくはGlu又はArgである。
Xaa11は、Met、Val、Leu、Ile又はTyrであり、好ましくは、Met、Val又はLeuであり、さらに好ましくはMetである。
Xaa12は、Leu、Glu、Ser、Gly又はTrpであり、好ましくは、Leu、Glu又はTrpであり、さらに好ましくはLeu又はGluである。
The active ingredient of the inhibitor and facilitator of the present invention is a peptide comprising the following amino acid sequence.
Xaa1 Xaa2 PheXaa4 Xaa5 Xaa6 Xaa7 Xaa8 Xaa9 Leu Xaa11 Xaa12 (SEQ ID NO: 4)
Xaa1 is Lys, Pro, Arg, Ser, Leu, Ala or Met, preferably Lys, Pro, Arg or Ser, and more preferably Lys or Pro.
Xaa2 is Ser, Thr, Arg, Val, Gly, Tyr or Pro, preferably Ser, Thr, Arg or Val, more preferably Ser, Thr or Arg.
Xaa4 is Trp, Gln, Glu, Ala, Pro or Leu, preferably Trp, Gln, Glu, Ala or Pro, and more preferably Trp.
Xaa5 is Glu, Gln, Asp, Ala, Phe, Trp or Ser, preferably Glu, Gln, Asp or Phe, and more preferably Glu.
Xaa6 is Tyr, His, Leu or Glu, preferably Tyr or His, and more preferably Tyr.
Xaa7 is Trp or Leu, preferably Trp.
Xaa8 is Leu, Gln, Glu, Val, Ser or Met, preferably Leu, Gln or Met, and more preferably Leu.
Xaa9 is Glu, Arg, Met, Asp, Gln, Asn or Lys, preferably Glu, Arg or Asp, more preferably Glu or Arg.
Xaa11 is Met, Val, Leu, Ile or Tyr, preferably Met, Val or Leu, more preferably Met.
Xaa12 is Leu, Glu, Ser, Gly or Trp, preferably Leu, Glu or Trp, more preferably Leu or Glu.
 Xaa9-Leu-Xaa10は、Arg-Leu-Met又はGlu-Leu-Metであることが好ましい。 Xaa9-Leu-Xaa10 is preferably Arg-Leu-Met or Glu-Leu-Met.
 上記ペプチドの例としては、配列番号37~41のいずれかのアミノ酸配列からなるペプチドが挙げられる。本発明の阻害剤および助長剤の有効成分は、また、配列番号37のアミノ酸配列を有するペプチドであることが好ましい。 Examples of the peptide include a peptide consisting of any one of the amino acid sequences of SEQ ID NOs: 37 to 41. The active ingredient of the inhibitor and facilitator of the present invention is also preferably a peptide having the amino acid sequence of SEQ ID NO: 37.
  上記ペプチドは、血液等の生物学的液体に可溶のものが好ましい。 The peptide is preferably soluble in biological fluids such as blood.
 有効成分のペプチドは、医薬的に許容可能な担体を用いて製剤(医薬組成物)にすることができる。医薬的に許容可能な担体としては、賦形剤または基剤などが挙げられる。また、製剤は、通常に用いられる添加剤を含んでいてもよい。剤形は、投与経路に応じて適宜選択される。製剤には、有効成分のペプチドと、他の抗癌剤と別個に包装して一体としたものも包含される。また、有効成分の投与量は、対象とする抗癌剤治療、患者の状態などにより適宜選択される。本発明の阻害剤または助長剤は、抗癌剤治療を受けているまたは受ける予定の患者に投与することができる。 The active ingredient peptide can be made into a preparation (pharmaceutical composition) using a pharmaceutically acceptable carrier. Examples of the pharmaceutically acceptable carrier include an excipient or a base. Moreover, the formulation may contain the additive used normally. The dosage form is appropriately selected depending on the administration route. Formulations include the active ingredient peptide and other anticancer agents that are separately packaged and integrated. The dose of the active ingredient is appropriately selected depending on the intended anticancer drug treatment, the patient's condition, and the like. Inhibitors or facilitators of the invention can be administered to patients who are receiving or willing to receive anticancer drug treatment.
 ペプチドは、その大きい分子量から、高い合成コストおよび注射による体内投与を必要とし、また、溶解度や細胞膜透過性が低く、生体内で分解されやすく不安定であることなど、低分子化合物と比較して、医薬品としては不利な点が多い(Chemical & Engineering News, 83, 17-24, 2005)。そのため、天然または合成されたペプチドは、これまで現実的な医薬品としては考えられていなかった(Borghouts,C., 等 (2005) J. Peptide Sci., 11, 713-726)。しかし近年、天然に存在するL-アミノ酸ではなく、非天然のD-アミノ酸に変換することで、元々のペプチドと同様の生理活性をもちながら、生体内のプロテアーゼにより分解されないペプチドの合成や(Borghouts,C., 等 (2005) J. Peptide Sci., 11, 713-726; Sakurai,K., J.,等 (2004) J. Am. Chem. Soc., 126, 16288-16289)、細胞膜透過配列を融合することで膜透過能を向上させる(Borghouts,C., 等 (2005) J. Peptide Sci., 11, 713-726; Sakurai,K., J.,等 (2004) J. Am. Chem. Soc., 126, 16288-16289; Prive,G.G., 等 (2006) Curr. Opin. Genet. Dev., 16, 71-77)といった工夫によりペプチドの生体内での安定性や細胞膜透過性が改善され、ペプチド医薬としての展望が開けてきた(Borghouts,C., 等 (2005) J. Peptide Sci., 11, 713-726)。これらの手法は、本発明で用いるペプチドに適用できる。 Compared with low molecular weight compounds, peptides require high synthesis costs and in vivo administration by injection due to their large molecular weight, and are low in solubility and cell membrane permeability, are easily degraded in vivo and are unstable. There are many disadvantages as pharmaceuticals (Chemical & Engineering Engineering News, 83, 17-24, 2005). For this reason, natural or synthetic peptides have not been considered as realistic drugs so far (Borghouts, C., 等 (2005) J. Peptide Sci., 11, 713-726). However, in recent years, by converting to non-natural D-amino acids instead of naturally occurring L-amino acids, synthesis of peptides that have the same physiological activity as the original peptides but are not degraded by proteases in vivo (Borghouts , C., 等 (2005) J. Peptide Sci., 11, 713-726; Sakurai, K., J., etc. (2004) J. Am. Chem. Soc., 126, 16288-16289), cell membrane permeation Membrane permeability is improved by fusing sequences (Borghouts, C., 等 (2005) J. Peptide Sci., 11, 713-726; Sakurai, K., J., et al. (2004) J. Am. Chem. Soc., 126, 16288-16289; Prive, GG, Etc. (2006) Curr. Opin. Genet. Dev., 16, 71-77) improve the in vivo stability and cell membrane permeability of peptides. It has been improved, and the prospect as a peptide drug has been opened (Borghouts, C., 等 (2005) J. Peptide Sci., 11, 713-726). These techniques can be applied to the peptides used in the present invention.
 本発明で用いるペプチドは、低分子化合物よりもターゲットに対する特異性や親和性が高いため、副作用の原因となるターゲット以外のタンパク質への結合も少ない(Chemical & Engineering News, 83, 17-24 (2005))、と考えられる。さらに低分子化合物では困難な、巨大なタンパク質同士の相互作用を阻害することにも適している(Sakurai,K., 等J. Am. Chem. Soc., 126,16288-16289)、と考えられる。このようにより効果的な薬剤活性を持つペプチドは、医薬品として有用であると期待される。 Since the peptides used in the present invention have higher specificity and affinity for the target than low molecular weight compounds, there are few bindings to proteins other than the target that cause side effects (Chemical & Engineering News, 83, 17-24 (2005 )),it is conceivable that. It is also suitable for inhibiting the interaction between large proteins, which is difficult with low molecular weight compounds (Sakurai, K., Tsuji et al. J. Am. Chem. Soc., 126, 16288-16289). . A peptide having such a more effective drug activity is expected to be useful as a pharmaceutical product.
 本発明で用いるペプチドが、ヒト癌タンパク質MDM2とヒト癌抑制タンパク質p53の相互作用阻害剤又は抗癌剤として有効であることは、以下の理由によると考えられるが、本発明はこれにより限定されるものではない。
 いくつかの悪性腫瘍で過剰発現が見られる癌タンパク質MDM2は、癌抑制タンパク質p53によって転写活性化される。発現したMDM2はp53タンパク質に結合し、ユビキチン/プロテアソーム依存性経路によりp53タンパク質を分解することにより、その癌抑制作用を阻害することで細胞の癌化を促進する。この結合にはp53タンパク質の15~29番目の15アミノ酸残基が関与していることが知られており、MDM2-p53相互作用を阻害できる新規ペプチドが抗癌剤の候補として期待される。そこで、in vitro virus (IVV) 法(Nemoto, N., 等 (1997) FEBS Lett., 414, 405-408; Miyamoto-Sato,E., 等 (2003) Nucleic Acids Res., 31, e78)により、 MDM2に結合し、癌細胞の増殖を抑制するペプチドのスクリーニングを行った。まず16アミノ酸残基からなるランダムペプチドIVVライブラリーを作製し、ビーズに固定したMDM2に結合するペプチドをスクリーニングした。得られたペプチド配列では、3つの疎水性アミノ酸残基 (F19,W23,L26) がよく保存されていた。次に、この配列を最適化するために、これら3つの疎水性アミノ酸残基 (F,W,L) を固定し、残りの9アミノ酸残基がランダム配列である12アミノ酸残基からなるIVVライブラリーを作製し、MDM2に結合するペプチドのスクリーニングを行った。このスクリーニング方法によって選択されるアミノ酸配列を有するペプチドは、ヒト癌タンパク質MDM2-ヒト癌抑制タンパク質p53相互作用を高度に阻害できると期待される。
It is considered that the peptide used in the present invention is effective as an interaction inhibitor or anticancer agent of human cancer protein MDM2 and human cancer suppressor protein p53 for the following reasons, but the present invention is not limited thereby. Absent.
The cancer protein MDM2, which is overexpressed in some malignant tumors, is transcriptionally activated by the tumor suppressor protein p53. The expressed MDM2 binds to the p53 protein and degrades the p53 protein through a ubiquitin / proteasome-dependent pathway, thereby promoting its canceration by inhibiting its cancer suppressive action. This binding is known to involve the 15th to 29th amino acid residues of the p53 protein, and a novel peptide capable of inhibiting the MDM2-p53 interaction is expected as a candidate for an anticancer agent. Therefore, in vitro virus (IVV) method (Nemoto, N., et al. (1997) FEBS Lett., 414, 405-408; Miyamoto-Sato, E., et al. (2003) Nucleic Acids Res., 31, e78) A peptide that binds to MDM2 and suppresses the growth of cancer cells was screened. First, a random peptide IVV library consisting of 16 amino acid residues was prepared, and peptides that bind to MDM2 immobilized on beads were screened. In the obtained peptide sequence, three hydrophobic amino acid residues (F19, W23, L26) were well conserved. Next, in order to optimize this sequence, these three hydrophobic amino acid residues (F, W, L) were fixed, and the remaining 9 amino acid residues consisted of 12 amino acid residues that are random sequences. A rally was prepared and screened for peptides that bind to MDM2. A peptide having an amino acid sequence selected by this screening method is expected to highly inhibit the human cancer protein MDM2-human cancer suppressor protein p53 interaction.
 実際に、このうち最も多く重複して得られたペプチド配列 (MDM2 inhibitory peptide, MIP) のN末端にGFPを融合させたタンパク質 (GFP-MIP) をヒト大腸癌細胞株HCT116細胞内で発現させたところ、細胞内におけるGFP-MIPとMDM2の結合、p53タンパク質の発現量増加、それに伴うp53の下流遺伝子(MDM2およびp21)のmRNAおよびタンパク質発現量の増加が確認された。さらに、HIV-Tatの細胞膜透過配列をN末端に融合したペプチド (Tat-MIP) により、HCT116細胞の生存率が低下したことから、MIPが細胞死を誘導することが示唆された。 Actually, a protein sequence (GFP-MIP) in which GFP was fused to the N-terminus of the most frequently duplicated peptide sequence (MDM2 inhibitor sequence, MIP) was expressed in the human colon cancer cell line HCT116 cells. However, binding of GFP-MIP and MDM2 in the cell, increased expression of p53 protein, and accompanying increase in mRNA and protein expression of p53 downstream genes (MDM2 and p21) were confirmed. Furthermore, the survival rate of HCT116 cells was reduced by peptide し た (Tat-MIP) し た fused with N-terminal of cell membrane permeation sequence of HIV-Tat, suggesting that MIP induces cell death.
 本発明の阻害剤及び抗癌剤の有効成分は、その製造法により限定されるものではないが、例えば、(1)ペプチドをコードするDNAのライブラリーを準備し、(2)そのライブラリーから、DNAとそのDNAによりコードされるペプチドとが結合した分子のライブラリーを調製し、(3)MDM2に結合するペプチドを含む分子を選択し、(4)選択された分子のDNAをテンプレートとしてPCRによりDNAを増幅し、(5)増幅されたDNAを工程(2)のライブラリーとして用いて、(2)から(4)の工程を繰り返すことを含むスクリーニング方法により得ることができる。 The active ingredient of the inhibitor and anticancer agent of the present invention is not limited by its production method.For example, (1) a library of DNAs encoding peptides is prepared, and (2) a DNA library is prepared from the library. And a peptide library linked to the DNA is prepared, (3) a molecule containing a peptide that binds to MDM2 is selected, and (4) DNA is selected by PCR using the DNA of the selected molecule as a template. And (5) using the amplified DNA as a library in step (2) and obtaining a screening method comprising repeating steps (2) to (4).
 この方法においては、標的物質として、MDM2を用いる他は、in vitro virus(IVV)法に基づくスクリーニング法(例えば、WO 02/48347、特開2002-176987参照)に従って行うことができる。IVVおよびスクリーニング法について説明する。 In this method, except that MDM2 is used as a target substance, a screening method based on the in vitro virus (IVV) method (for example, refer to WO 02/48347, JP 2002-176987 A) can be performed. Describe IVV and screening methods.
 IVVは、対応付け分子とも呼ばれ、IVV法による対応付け分子は、機能解析、機能改変等の対象となるタンパク質を含む表現型分子と、該タンパク質をコードする核酸を含む遺伝子型分子とが結合してなる。遺伝子型分子は、タンパク質をコードする領域を、その領域の塩基配列が翻訳され得るような形態で有するコード分子と、スペーサー部とが結合してなる。説明の便宜のため、対応付け分子における、表現形分子に由来する部分、スペーサー分子に由来する部分、および、コード分子に由来する部分をそれぞれ、デコード部、スペーサー部およびコード部と呼ぶ。また、遺伝子型分子における、スペーサー分子に由来する部分、および、コード分子に由来する部分をそれぞれ、スペーサー部およびコード部と呼ぶ。 IVV is also called a mapping molecule, and a mapping molecule by the IVV method binds a phenotype molecule containing a protein to be subjected to functional analysis or functional modification and a genotype molecule containing a nucleic acid encoding the protein. Do it. A genotype molecule is formed by binding a coding molecule having a region encoding a protein in such a form that the base sequence of the region can be translated, and a spacer part. For convenience of explanation, the part derived from the phenotype molecule, the part derived from the spacer molecule, and the part derived from the coding molecule in the mapping molecule are called a decoding part, a spacer part, and a coding part, respectively. Moreover, the part derived from the spacer molecule and the part derived from the coding molecule in the genotype molecule are referred to as a spacer part and a coding part, respectively.
 この態様におけるスペーサー分子は、核酸の3'末端に結合できるドナー領域と、ドナー領域に結合した、ポリエチレングリコールを主成分としたPEG領域と、PEG領域に結合した、ペプチド転移反応によってペプチドと結合し得る基を含むペプチドアクセプター領域とを含む。PEG領域はなくてもよい。 In this embodiment, the spacer molecule binds to the peptide by a peptide transfer reaction that binds to the donor region that can bind to the 3 ′ end of the nucleic acid, the PEG region mainly composed of polyethylene glycol bound to the donor region, and the PEG region. And a peptide acceptor region containing the resulting group. There may be no PEG area.
 核酸の3'末端に結合できるドナー領域は、通常、1以上のヌクレオチドからなる。ヌクレオチドの数は、通常には1~15、好ましくは1~2である。ヌクレオチドはリボヌクレオチドでもデオキシリボヌクレオチドでもよい。 The donor region that can bind to the 3 ′ end of a nucleic acid usually consists of one or more nucleotides. The number of nucleotides is usually 1 to 15, preferably 1 to 2. The nucleotide may be ribonucleotide or deoxyribonucleotide.
 ドナー領域の5'末端の配列は、ライゲーション効率を左右する。コード部とスペーサー部をライゲーションさせるためには、少なくとも1残基以上を含むことが必要であり、ポリA配列をもつアクセプターに対しては、少なくとも1残基のdC(デオキシシチジル酸)または2残基のdCdC(ジデオキシシチジル酸)が好ましい。塩基の種類としては、C>U又はT>G>Aの順で好ましい。 The sequence at the 5 ′ end of the donor region affects ligation efficiency. In order to ligate the coding part and the spacer part, it is necessary to contain at least one residue. For an acceptor having a poly A sequence, at least one residue of dC (deoxycytidylic acid) or 2 The residue dCdC (dideoxycytidylic acid) is preferred. The base type is preferably C> U or T> G> A.
 PEG領域はポリエチレングリコールを主成分とするものである。ここで、主成分とするとは、PEG領域に含まれるヌクレオチドの数の合計が20塩基以下、又は、ポリエチレングリコールの平均分子量が400以上であることを意味する。好ましくは、ヌクレオチドの合計の数が10塩基以下、又は、ポリエチレングリコールの平均分子量が2000以上であることを意味する。 PEG region is mainly composed of polyethylene glycol. Here, the main component means that the total number of nucleotides contained in the PEG region is 20 bases or less, or the average molecular weight of polyethylene glycol is 400 or more. Preferably, it means that the total number of nucleotides is 10 bases or less, or the average molecular weight of polyethylene glycol is 2000 or more.
 PEG領域のポリエチレングリコールの平均分子量は、通常には、400~30,000、好ましくは1,000~10,000、より好ましくは2,000~8,000である。ここで、ポリエチレングリコールの分子量が約400より低いと、このスペーサー分子に由来するスペーサー部を含む遺伝子型分子を対応付け翻訳したときに、対応付け翻訳の後処理が必要となることがあるが(Liu, R., Barrick, E., Szostak, J.W., Roberts, R.W. (2000) Methods in Enzymology, vol. 318, 268-293)、分子量1000以上、より好ましくは2000以上のPEGを用いると、対応付け翻訳のみで高効率の対応付けができるため、翻訳の後処理が必要なくなる。また、ポリエチレングリコールの分子量が増えると、遺伝子型分子の安定性が増す傾向があり、特に分子量1000以上で良好であり、分子量400以下ではDNAスペーサーと性質がそれほどかわらず不安定となることがある。 The average molecular weight of polyethylene glycol in the PEG region is usually 400 to 30,000, preferably 1,000 to 10,000, more preferably 2,000 to 8,000. Here, when the molecular weight of polyethylene glycol is lower than about 400, when a genotype molecule containing a spacer part derived from this spacer molecule is associated and translated, a post-process of associated translation may be required ( Liu, R., Barrick, E., Szostak, JW, Roberts, RW (2000) Methods in Enzymology, vol. 318, 268-293), with a molecular weight of 1000 or more, more preferably 2000 or more. Since high-efficiency association can be performed only by translation, post-translation processing is not necessary. In addition, when the molecular weight of polyethylene glycol increases, the stability of genotype molecules tends to increase, especially when the molecular weight is 1000 or higher, and when the molecular weight is 400 or lower, the DNA spacer may not be so characteristic and unstable. .
 ペプチドアクセプター領域は、ペプチドのC末端に結合できるものであれば特に限定されないが、例えば、ピューロマイシン、3'-N-アミノアシルピューロマイシンアミノヌクレオシド(3'-N-Aminoacylpuromycin aminonucleoside, PANS-アミノ酸)、例えばアミノ酸部がグリシンのPANS-Gly、バリンのPANS-Val、アラニンのPANS-Ala、その他、全アミノ酸に対応するPANS-全アミノ酸が利用できる。また、化学結合として3'-アミノアデノシンのアミノ基とアミノ酸のカルボキシル基が脱水縮合した結果形成されたアミド結合でつながった3'-N-アミノアシルアデノシンアミノヌクレオシド(3'-Aminoacyladenosine aminonucleoside, AANS-アミノ酸)、例えばアミノ酸部がグリシンのAANS-Gly、バリンのAANS-Val、アラニンのAANS-Ala、その他、全アミノ酸に対応するAANS-全アミノ酸が利用できる。また、ヌクレオシドまたはヌクレオシドとアミノ酸のエステル結合したものなども利用できる。その他、ヌクレオシドまたはヌクレオシドに類似した化学構造骨格を有する物質と、アミノ酸またはアミノ酸に類似した化学構造骨格を有する物質を化学的に結合可能な結合様式のものなら全て利用することができる。 The peptide acceptor region is not particularly limited as long as it can bind to the C-terminus of the peptide. For example, puromycin, 3'-N-aminoacylpuromycin aminonucleoside (3'-N-aminoacylpuromycin aminonucleoside, PANS-amino acid) For example, PANS-Gly having an amino acid part of glycine, PANS-Val of valine, PANS-Ala of alanine, and other PANS-all amino acids corresponding to all amino acids can be used. In addition, 3'-Aminoacyladenosineoaminonucleoside (AANS-amino acid, 3'-Aminoacyladenosine aminonucleoside, formed by dehydration condensation of the amino group of 3'-aminoadenosine and the carboxyl group of the amino acid as a chemical bond. ) For example, AANS-Gly whose amino acid part is glycine, AANS-Val of valine, AANS-Ala of alanine, and other AANS-all amino acids corresponding to all amino acids can be used. Further, a nucleoside or a nucleoside and an amino acid ester-bonded one can be used. In addition, nucleoside or a substance having a chemical structure skeleton similar to nucleoside and an amino acid or a substance having a chemical structure skeleton similar to amino acid can be used as long as they can be chemically bonded.
 ペプチドアクセプター領域は、好ましくは、ピューロマイシンもしくはその誘導体、又は、ピューロマイシンもしくはその誘導体と1残基もしくは2残基のデオキシリボヌクレオチドもしくはリボヌクレオチドからなることが好ましい。ここで、誘導体とはタンパク質翻訳系においてペプチドのC末端に結合できる誘導体を意味する。ピューロマイシン誘導体は、ピューロマイシン構造を完全に有しているものに限られず、ピューロマイシン構造の一部が欠落しているものも包含する。ピューロマイシン誘導体の具体例としては、PANS-アミノ酸、AANS-アミノ酸などが挙げられる。 The peptide acceptor region is preferably composed of puromycin or a derivative thereof, or puromycin or a derivative thereof and one or two deoxyribonucleotides or ribonucleotides. Here, the derivative means a derivative capable of binding to the C-terminus of the peptide in the protein translation system. The puromycin derivatives are not limited to those having a complete puromycin structure, but also include those lacking a part of the puromycin structure. Specific examples of the puromycin derivative include PANS-amino acid and AANS-amino acid.
 ペプチドアクセプター領域は、ピューロマイシンのみの構成でもかまわないが、5'末端側に1残基以上のDNAおよび/またはRNAからなる塩基配列を持つことが好ましい。配列としては、dC-ピューロマイシン, rC-ピューロマイシンなど、より好ましくはdCdC-ピューロマイシン, rCrC-ピューロマイシン, rCdC-ピューロマイシン, dCrC-ピューロマイシンなどの配列で、アミノアシル-tRNAの3'末端を模倣したCCA配列(Philipps, G.R. (1969) Nature 223, 374-377)が適当である。塩基の種類としては、C>U又はT>G>Aの順で好ましい。 The peptide acceptor region may be composed of puromycin alone, but preferably has a base sequence consisting of DNA and / or RNA of 1 residue or more on the 5 ′ end side. The sequences are dC-puromycin, rC-puromycin, etc., more preferably dCdC-puromycin, rCrC-puromycin, rCdC-puromycin, dCrC-puromycin, etc., and the 3 ′ end of aminoacyl-tRNA is Simulated CCA sequences (Philipps, GR (1969) Nature 223, 374-377) are suitable. The base type is preferably C> U or T> G> A.
 スペーサー分子は、ドナー領域とPEG領域との間に、少なくとも1つの機能付与ユニットを含むことが好ましい。機能付与ユニットは、好ましくは、少なくとも1残基のデオキシリボヌクレオチド又はリボヌクレオチドの塩基に機能修飾を施したものである。例えば、機能修飾物質として、蛍光物質、ビオチン、またはHis-tagなど各種分離タグなどを導入したものが可能である。 The spacer molecule preferably includes at least one function-imparting unit between the donor region and the PEG region. The function-imparting unit is preferably a functional modification of at least one residue of deoxyribonucleotide or ribonucleotide base. For example, a substance into which various separation tags such as a fluorescent substance, biotin, or His-tag are introduced as a function modifying substance can be used.
 この態様におけるコード分子は、転写プロモーターおよび翻訳エンハンサーを含む5'非翻訳領域と、5'非翻訳領域の3'末端側に結合した、タンパク質をコードするORF領域と、ORF領域の3'末端側に結合したポリA配列を持ち、かつポリA配列の5'上流に親和性タグ配列を含む核酸である。 The coding molecule in this embodiment includes a 5 ′ untranslated region containing a transcription promoter and a translation enhancer, an ORF region encoding a protein bound to the 3 ′ end of the 5 ′ untranslated region, and the 3 ′ end of the ORF region. And a nucleic acid containing an affinity tag sequence 5 ′ upstream of the poly A sequence.
 コード分子は、DNAでもRNAでもよく、RNAの場合、5'末端にCap構造があってもなくても良い。また、コード分子は任意のベクターやプラスミドに組み込まれたものとしてもよい。 The coding molecule may be DNA or RNA. In the case of RNA, the 5 'end may or may not have a Cap structure. The coding molecule may be incorporated into any vector or plasmid.
 3'末端領域は、親和性タグ配列とその下流にポリA配列を含む。スペーサー分子とコード分子とのライゲーション効率に影響を与える要素としては3'末端領域のポリA配列が重要であり、ポリA配列は、少なくとも2残基以上のdAおよび/またはrAの混合または単一のポリA連続鎖であり、好ましくは、3残基以上、より好ましくは6以上、さらに好ましくは8残基以上のポリA連続鎖である。 The 3 ′ end region contains an affinity tag sequence and a poly A sequence downstream thereof. As a factor affecting the ligation efficiency between the spacer molecule and the coding molecule, the polyA sequence in the 3 ′ end region is important, and the polyA sequence may be a mixture of dA and / or rA having at least 2 residues or more. The poly A continuous chain is preferably 3 or more residues, more preferably 6 or more, and even more preferably 8 residues or more.
 コード分子の翻訳効率に影響する要素としては、転写プロモーターと翻訳エンハンサーからなる5'UTR、および、ポリA配列を含む3'末端領域の組み合わせがある。3'末端領域のポリA配列の効果は通常には10残基以下で発揮される。5'UTRの転写プロモーターはT7/T3またはSP6などが利用でき、特に制限はない。好ましくはSP6であり、特に、翻訳のエンハンサー配列としてオメガ配列やオメガ配列の一部を含む配列を利用する場合はSP6を用いることが特に好ましい。翻訳エンハンサーは好ましくはオメガ配列の一部であり、オメガ配列の一部としては、TMVのオメガ配列の一部(O29; Gallie D.R., Walbot V. (1992) Nucleic Acids Res., vol. 20, 4631-4638、及び、WO 02/48347の図3参照)を含んだものが好ましい。 ∙ Elements that affect the translation efficiency of the coding molecule include a 5 'UTR consisting of a transcription promoter and translation enhancer, and a 3' end region combination containing a poly A sequence. The effect of the poly A sequence in the 3 ′ end region is usually exerted with 10 residues or less. T7 / T3 or SP6 can be used as the 5 ′ UTR transcription promoter, and there is no particular limitation. SP6 is preferable, and SP6 is particularly preferable when an omega sequence or a sequence containing a part of the omega sequence is used as an enhancer sequence for translation. The translation enhancer is preferably part of the omega sequence, and part of the omega sequence includes part of the TMV omega sequence (O29; Gallie DR, Walbot V. (1992) Nucleic Acids Res., Vol. 20, 4631 -4638, and those including WO 02/48347 (see FIG. 3) are preferred.
 親和性タグ配列としては、抗原抗体反応など、タンパク質を検出できるいかなる手段を用いるための配列であればよく、制限はない。好ましくは、抗原抗体反応によるアフィニティー分離分析用タグであるFlag-tag配列やHis-tag配列である。 The affinity tag sequence is not particularly limited as long as it is a sequence for using any means capable of detecting a protein such as an antigen-antibody reaction. Preferably, a Flag-tag sequence or a His-tag sequence, which is a tag for affinity separation analysis by antigen-antibody reaction.
 ORF領域については、DNAおよび/またはRNAからなるいかなる配列でもよい。遺伝子配列、エキソン配列、イントロン配列、ランダム配列、または、いかなる自然界の配列、人為的配列が可能であり、配列の制限はない。また、コード分子の5'UTRをSP6+O29とし、3'末端領域を、たとえば、Flag+XhoI+An(n=8)とすることで、各長さは、5'UTRで約60bp、3'末端領域で約32bpであり、PCRのプライマーにアダプター領域として組み込める長さである。このため、あらゆるベクターやプラスミドやcDNAライブラリーからPCRによって、5'UTRと3'末端領域をもったコード分子を簡単に作成できる。コード分子において、翻訳はORF領域を超えてされてもよい。すなわち、ORF領域の末端に終止コドンがなくてもよい。 The ORF region may be any sequence consisting of DNA and / or RNA. A gene sequence, exon sequence, intron sequence, random sequence, or any natural or artificial sequence is possible, and there is no sequence limitation. Further, by setting the 5′UTR of the coding molecule as SP6 + O29 and the 3 ′ terminal region as, for example, Flag + XhoI + A n (n = 8), each length is about 60 bp in 5′UTR, The length is about 32 bp at the 3 ′ end region and can be incorporated as an adapter region into a PCR primer. For this reason, a coding molecule having a 5 ′ UTR and a 3 ′ end region can be easily prepared by PCR from any vector, plasmid, or cDNA library. In the coding molecule, translation may be done beyond the ORF region. That is, there may not be a stop codon at the end of the ORF region.
 この態様におけるコード分子は、転写プロモーターおよび翻訳エンハンサーを含む5'非翻訳領域と、5'非翻訳領域の3'末端側に結合した、タンパク質をコードするORF領域と、ORF領域の3'末端側に結合した、ポリA配列を含む3'末端領域を含む核酸である。 The coding molecule in this embodiment includes a 5 ′ untranslated region containing a transcription promoter and a translation enhancer, an ORF region encoding a protein bound to the 3 ′ end of the 5 ′ untranslated region, and a 3 ′ end of the ORF region. Is a nucleic acid comprising a 3 ′ end region comprising a poly A sequence bound to
 遺伝子型分子は、上記コード分子を、必要により、タンパク質をコードする領域の塩基配列が翻訳され得るような形態に変換した後(例えば転写した後)、コード分子の3'末端と、スペーサー分子のドナー領域を、通常のリガーゼ反応により結合させることにより製造できる。反応条件としては、通常、4~25℃で4~48時間の条件が挙げられ、PEG領域を含むスペーサー分子のPEG領域内のポリエチレングリコールと同じ分子量のポリエチレングリコールを反応系に添加する場合には、15℃で0.5~4時間に短縮することも可能である。 The genotype molecule is obtained by converting the above coding molecule into a form in which the base sequence of the protein coding region can be translated (for example, after transcription), if necessary, and the 3 ′ end of the coding molecule and the spacer molecule. The donor region can be produced by binding by a normal ligase reaction. The reaction conditions usually include conditions at 4 to 25 ° C. for 4 to 48 hours. When polyethylene glycol having the same molecular weight as the polyethylene glycol in the PEG region of the spacer molecule containing the PEG region is added to the reaction system, It can also be shortened to 0.5-4 hours at 15 ° C.
 スペーサー分子とコード分子の組み合わせはライゲーション効率に重要な効果をもたらす。アクセプターにあたるコード部の3'末端領域において、少なくとも2残基以上、好ましくは3残基以上、さらに好ましくは6~8残基以上のDNAおよび/またはRNAのポリA配列があること、さらに、5'UTRの翻訳エンハンサーとしては、オメガ配列の部分配列(O29)が好ましく、スペーサー部のドナー領域としては、少なくとも1残基のdC(デオキシシチジル酸)または2残基のdCdC(ジデオキシシチジル酸)が好ましい。このことによって、RNAリガーゼを用いることでDNAリガーゼのもつ問題点を回避し、かつ効率を60~80%に保つことができる。 The combination of spacer molecule and coding molecule has an important effect on ligation efficiency. In the 3 ′ terminal region of the coding part corresponding to the acceptor, there should be a poly A sequence of DNA and / or RNA of at least 2 residues, preferably 3 residues, more preferably 6-8 residues, The UTR translation enhancer is preferably a partial sequence (O29) of the omega sequence, and the donor region of the spacer part is at least one residue dC (deoxycytidylic acid) or two residues dCdC (dideoxycytidylic acid). ) Is preferred. By using RNA ligase, the problems of DNA ligase can be avoided and the efficiency can be maintained at 60 to 80%.
 (a)転写プロモーターおよび翻訳エンハンサーを含む5'非翻訳領域と、5'非翻訳領域の3'末端側に結合した、タンパク質をコードするORF領域と、ORF領域の3'末端側に結合した、ポリA配列を含む3'末端領域を含むRNAであるコード分子の3'末端と、(b)上記スペーサー分子のドナー領域であってRNAからなるものとを、スペーサー分子内のPEG領域を構成するポリエチレングリコールと同じ分子量をもつ遊離のポリエチレングリコールの存在下で、RNAリガーゼにより結合させることが好ましい。 (a) a 5 ′ untranslated region containing a transcription promoter and a translation enhancer, an ORF region encoding a protein bound to the 3 ′ end of the 5 ′ untranslated region, and a 3 ′ end of the ORF region The 3 'end of the coding molecule, which is RNA containing the 3' end region containing the poly A sequence, and (b) the donor region of the spacer molecule consisting of RNA constitutes the PEG region in the spacer molecule It is preferable to bind with RNA ligase in the presence of free polyethylene glycol having the same molecular weight as polyethylene glycol.
 ライゲーション反応時に、PEG領域を含むスペーサー部のPEG領域と同じ分子量のポリエチレングリコールを添加することによって、スペーサー部のポリエチレングリコールの分子量によらずライゲーション効率が80~90%以上に向上し、反応後の分離工程も省略することができる。 During the ligation reaction, by adding polyethylene glycol having the same molecular weight as the PEG region of the spacer part including the PEG region, the ligation efficiency is improved to 80 to 90% or more regardless of the molecular weight of the polyethylene glycol of the spacer part. The separation step can also be omitted.
 この態様の対応付け分子は、上記の遺伝子型分子を無細胞翻訳系で翻訳することにより、ペプチド転移反応で、遺伝子型分子内のORF領域によりコードされたタンパク質である表現型分子と連結することができる。無細胞翻訳系は、好ましくは、小麦胚芽又はウサギ網状赤血球のものである。翻訳の条件は通常に採用される条件でよい。例えば、25~37℃で15~240分の条件が挙げられる。また、この態様の対応付け分子の核酸部分は、翻訳後に逆転写によりRNAとDNAとのハイブリッドとすることができる。 The mapping molecule in this embodiment is linked to a phenotype molecule that is a protein encoded by the ORF region in the genotype molecule by translating the genotype molecule in a cell-free translation system. Can do. The cell-free translation system is preferably that of wheat germ or rabbit reticulocytes. The conditions for translation may be those normally employed. For example, the conditions are 15 to 240 minutes at 25 to 37 ° C. In addition, the nucleic acid portion of the mapping molecule of this embodiment can be a hybrid of RNA and DNA by reverse transcription after translation.
 IVV法に基づくスクリーニング方法は、通常には、核酸ライブラリーから、標的物質と相互作用するタンパク質をコードする核酸をスクリーニングする方法であって、前記核酸ライブラリーから、本発明の製造方法により対応付け分子のライブラリーを製造する工程、前記対応付け分子のライブラリーと標的物質とを混合する工程、標的物質に結合した対応付け分子を分離する工程、分離した対応付け分子のリンカーを、前記核酸の塩基配列が変化しない条件で切断して前記核酸を遊離させる工程、および、遊離した核酸を回収する工程を含む。 The screening method based on the IVV method is usually a method for screening a nucleic acid encoding a protein that interacts with a target substance from a nucleic acid library, which is associated with the nucleic acid library by the production method of the present invention. A step of producing a library of molecules, a step of mixing the library of mapping molecules and a target substance, a step of separating mapping molecules bound to the target substance, a linker of the separated mapping molecules, A step of releasing the nucleic acid by cleaving under conditions that do not change the base sequence, and a step of recovering the released nucleic acid.
 対応付け分子のライブラリーと標的物質との混合は、対応付け分子の被標的タンパク質が標的物質と相互作用する条件で混合すればよい。この条件は、検出しようとする相互作用および標的物質の種類に応じて適宜選択される。 The library of the mapping molecule and the target substance may be mixed under the condition that the target protein of the mapping molecule interacts with the target substance. This condition is appropriately selected according to the interaction to be detected and the type of target substance.
 標的物質に結合した対応付け分子の分離は、標的物質に結合した対応付け分子と、標的物質に結合しない対応付け分子を分離する工程であり、通常には、標的物質を固相に固定化しておくことによって、対応付け分子と混合後の標的分子を固定化した固相を洗浄することにより分離を行うことができる。洗浄の条件は、検出しようとする相互作用および標的物質の種類に応じて適宜選択される。ここで固相に固定化するとは、対応付け分子と標的物質との結合体が非結合の分子から分離可能になっていることを意味し、例えば、標的物質が膜タンパク質の場合、細胞の細胞膜等に発現した膜タンパク質や人工膜中に埋め込まれたタンパク質も、固相に固定化された標的物質に包含される。 Separation of the mapping molecule bound to the target substance is a process of separating the mapping molecule bound to the target substance and the mapping molecule that does not bind to the target substance. Usually, the target substance is immobilized on a solid phase. Thus, separation can be performed by washing the solid phase on which the target molecule after mixing with the corresponding molecule is immobilized. Washing conditions are appropriately selected according to the interaction to be detected and the type of target substance. Here, immobilization on a solid phase means that the conjugate of the mapping molecule and the target substance can be separated from the non-bonded molecule. For example, when the target substance is a membrane protein, the cell membrane of the cell Membrane proteins expressed in the above and proteins embedded in artificial membranes are also included in the target substance immobilized on the solid phase.
 分離した対応付け分子のリンカーを、前記核酸の塩基配列が変化しない条件で切断して前記核酸を遊離させることは、開裂型リンカーを用い、それに応じた条件で行うことができる。標的物質が固相に固定化されている場合、核酸を遊離させることは、溶出とも呼ばれる。本発明において「遊離」とは「溶出」も包含する意味で用いる。また、遊離される核酸は、核酸の塩基配列が解析可能な限り、改変されたものであってよい。 The separation of the linker of the associating molecule under the condition that the nucleotide sequence of the nucleic acid does not change to release the nucleic acid can be performed using a cleaving linker and under the conditions corresponding thereto. When the target substance is immobilized on a solid phase, releasing the nucleic acid is also called elution. In the present invention, “free” is used to mean “elution”. Moreover, the nucleic acid to be released may be modified as long as the base sequence of the nucleic acid can be analyzed.
 遊離した核酸の回収は、通常の方法によって行うことができる。例えば、電気泳動により回収する方法、遊離した核酸以外の成分を沈殿させて上清を回収する方法などが挙げられる。回収された核酸は、機能解析、進化工学などの目的に応じて増幅や配列の解析が行われる。目的に応じて、回収されたDNAの配列解析を行ったり、PCRにより増幅して、上記の工程を繰り返したりすることができる。 回収 The free nucleic acid can be collected by a usual method. For example, a method for recovering by electrophoresis, a method for recovering a supernatant by precipitating components other than the released nucleic acid, and the like can be mentioned. The recovered nucleic acid is subjected to amplification and sequence analysis according to purposes such as functional analysis and evolutionary engineering. Depending on the purpose, the collected DNA can be sequenced or amplified by PCR and the above steps can be repeated.
 本発明のスクリーニング方法で用いられるDNAのライブラリーは、ヒト癌抑制タンパク質p53のF19,W23,L26に対応する三つの疎水性アミノ酸が保存されているアミノ酸配列をコードするDNAからなることが好ましく、このようなアミノ酸配列としてXXFXXXWXXLXX(配列番号5)(Xは任意のアミノ酸)が挙げられる。 The DNA library used in the screening method of the present invention preferably comprises a DNA encoding an amino acid sequence in which three hydrophobic amino acids corresponding to F19, W23, and L26 of human tumor suppressor protein p53 are conserved, Examples of such an amino acid sequence include XXFXXXWXXLXX (SEQ ID NO: 5) (X is an arbitrary amino acid).
 上記の方法でスクリーニングされたヒト癌タンパク質MDM2に結合するペプチドに対して、p53タンパク質に対して競合するか否かを測定することにより、本発明の阻害剤または抗癌剤の有効成分となるペプチドを同定することができる。競合するか否かは、後述の実施例に記載したような方法によって測定することができる。 By identifying whether or not the peptide that binds to human cancer protein MDM2 screened by the above method competes with p53 protein, the peptide that becomes the active ingredient of the inhibitor or anticancer agent of the present invention is identified. can do. Whether or not there is competition can be measured by a method as described in Examples described later.
 以下、具体的に本発明の実施例を記述するが、下記の実施例は本発明についての具体的認識を得る一助とみなすべきものであり、本発明の範囲は下記の実施例により何ら限定されるものでない。 Hereinafter, examples of the present invention will be specifically described. However, the following examples should be regarded as an aid for obtaining specific recognition of the present invention, and the scope of the present invention is limited by the following examples. It is not something.
 IVV法(Nemoto, N., 等 (1997) FEBS Lett., 414, 405-408; Miyamoto-Sato,E., 等 (2003) Nucleic Acids Res., 31, e78)により、ランダムライブラリーからMDM2に強く結合するペプチドをスクリーニングした。まず16アミノ残基からなるランダムペプチドIVVライブラリーのスクリーニングを行った。4ラウンドのスクリーニングで得られたほとんどの配列でp53のF19,W23,L26に対応する3つの疎水性アミノ酸が保存されていた。そこで、これらの配列を最適化するため、上述した3つのアミノ酸を固定した12アミノ酸残基からなるランダムペプチドIVVライブラリーを新たにデザインし、より厳しい選択圧で、5ラウンドのスクリーニングを行った。この結果、最も重複して得られたペプチド配列PRFWEYWLRLME (配列番号37、以下MDM2 inhibitory peptide, MIP) のN末端にGFPを融合させたタンパク質 (GFP-MIP) が、野生型p53ペプチド断片よりも高い親和性でMDM2と結合すること、また細胞内においてもMDM2と結合することを確認した。 From random library to MDM2 by IVV method (Nemoto, N., 等 (1997) 1997FEBS Lett., 414, 405-408; Miyamoto-Sato, E., 等 (2003) Nucleic Acids Res., 31, e78) Peptides that bind strongly were screened. First, a random peptide IVV library consisting of 16 amino residues was screened. Most of the sequences obtained in the four rounds of screening conserved three hydrophobic amino acids corresponding to F19, W23, and L26 of p53. Therefore, in order to optimize these sequences, a random peptide IVV library consisting of 12 amino acid residues with the above-mentioned 3 amino acids fixed was newly designed and screened for 5 rounds with more stringent selection pressure. As a result, the most overlapping peptide sequence PRFWEYWLRLME (SEQ ID NO: 37, hereinafter referred to as MDM2 inhibitory peptide, MIP) had a higher protein (GFP-MIP) than the wild-type p53 peptide fragment. It was confirmed that it binds to MDM2 with affinity and also binds to MDM2 in cells.
 野生型p53発現細胞であるHCT116細胞内でGFP-MIPを発現させたところ、p53タンパク質の発現量が増加した。これはGFP-MIPのMDM2-p53相互作用阻害によるものであると推測される。また、MDM2、p21などのp53ターゲットのタンパク質量、mRNA量が増加したことから、GFP-MIPの発現により、p53経路が活性化されることがわかった。さらに、細胞膜透過配列であるHIV-TatをN末端に融合したTat-MIPにより、HCT116細胞の生存率が低下した (IC50 = 13.2 μM)。p53欠損細胞であるSaos-2では、IC50 = 19.2 μMであり、約1.5倍程度の野生型p53発現細胞特異性が見られた。この結果から、Tat-MIPは、p53経路依存性の細胞死を誘導することがわかった。
 本発明により、IVV法によりMDM2タンパク質に高い親和性で結合するペプチドをスクリーニングできた。また、得られたペプチドがMDM2とp53のin vitro およびin vivoでの相互作用を強く阻害し、癌細胞の増殖抑制活性を持つことを確認した。
 以下、実施例の詳細を説明する。
When GFP-MIP was expressed in HCT116 cells, which are wild-type p53-expressing cells, the expression level of p53 protein increased. This is presumably due to inhibition of the MDM2-p53 interaction of GFP-MIP. Moreover, since the amount of protein and mRNA of p53 targets such as MDM2 and p21 increased, it was found that the p53 pathway was activated by the expression of GFP-MIP. Furthermore, the viability of HCT116 cells was reduced by Tat-MIP in which HIV-Tat, a cell membrane permeation sequence, was fused to the N-terminus (IC 50 = 13.2 μM). Saos-2, which is a p53-deficient cell, had an IC 50 = 19.2 μM and a wild-type p53-expressing cell specificity of about 1.5 times was observed. From this result, it was found that Tat-MIP induces p53 pathway-dependent cell death.
According to the present invention, peptides that bind to MDM2 protein with high affinity can be screened by the IVV method. In addition, it was confirmed that the obtained peptide strongly inhibited the in vitro and in vivo interaction between MDM2 and p53, and had a cancer cell growth inhibitory activity.
Details of the examples will be described below.
[実施例1]
1. ベイトタンパク質調製
 A549細胞由来のcDNAライブラリーからEx Taq DNA polymerase (Takara) を用い、MDM(1-294)-fおよびMDM(1-294)-rプライマー (表1) で95℃で60秒、60℃で60秒、72℃で60秒のサイクルを30回繰り返すプログラムでPCRを行った。得られたPCR産物をPCR purification kit (Qiagen) で精製後、今度はこれをテンプレートとし、5'adaptorO29T7EcoRおよびFlag1A-libプライマー (表1) で同様にPCRを行った。PCR産物を再びPCR purification kitで精製後、pDrive cloning vector (Qiagen) にTAクローニングした。このプラスミドをテンプレートとし、Phusion DNA polymerase (Finnzymes) を用い、Bam-MDM-fおよびMDM-294-Xho-rプライマーで98℃で10秒、62℃で30秒、72℃で30秒のサイクルを25回繰り返すプログラムでPCRを行った。これによりPCR産物の両側にそれぞれBamHIおよびXhoIの制限酵素部位を組み込んだ。得られたPCR産物をPCR purification kitで精製後、BamHIおよびXhoIにより切断し再びPCR purification kitで精製した。この断片をT4 DNA Ligase (Promega) を用いて、N末端側にT7タグ、C末端側にTAPタグを有するベクター、pCMV-CBPzz(Vassilev., L. Y., 等 (2004) Science, 844-848)のBamHI/XhoIサイトにサブクローニングした。これをテンプレートとし、Ex Taq DNA polymeraseを用い、SP6-O'-T7および3'FosCBPzzプライマー (表1) で95℃で60秒、60℃で60秒、72℃で120秒のサイクルを20回繰り返すプログラムでPCRを行い、SP6プロモーターおよびΩ配列の一部を付加した。このPCR産物を、PCR purification kitで精製した。
[Example 1]
1. Preparation of bait protein Using Ex Taq DNA polymerase (Takara) from cDNA library derived from A549 cells, MDM (1-294) -f and MDM (1-294) -r primers (Table 1) at 95 ° C for 60 ° C. PCR was performed with a program in which a cycle of 60 seconds at 60 ° C and 60 seconds at 72 ° C was repeated 30 times. The obtained PCR product was purified with a PCR purification kit (Qiagen), and this time was used as a template, and PCR was carried out in the same manner with 5′adaptorO29T7EcoR and Flag1A-lib primers (Table 1). The PCR product was purified again with the PCR purification kit and TA-cloned into the pDrive cloning vector (Qiagen). Using this plasmid as a template, using Phusion DNA polymerase (Finnzymes), Bam-MDM-f and MDM-294-Xho-r primers were cycled at 98 ° C for 10 seconds, 62 ° C for 30 seconds, and 72 ° C for 30 seconds. PCR was performed with a program repeated 25 times. This incorporated BamHI and XhoI restriction enzyme sites on both sides of the PCR product, respectively. The obtained PCR product was purified with a PCR purification kit, cleaved with BamHI and XhoI, and purified again with the PCR purification kit. Using T4 DNA Ligase (Promega), this fragment was transformed into a vector having a T7 tag on the N-terminal side and a TAP tag on the C-terminal side, pCMV-CBPzz (Vassilev., LY, et al. (2004) Science, 844-848). Subcloned into BamHI / XhoI site. Using this as a template, using Ex Taq DNA polymerase, 20 cycles of SP6-O'-T7 and 3'FosCBPzz primer (Table 1) at 95 ° C for 60 seconds, 60 ° C for 60 seconds, 72 ° C for 120 seconds PCR was performed with a repetitive program, and the SP6 promoter and a part of the Ω sequence were added. This PCR product was purified with a PCR purification kit.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 このDNA 1 μgをRiboMAX large-scale RNA production systems-SP6 (Promega) を用い、37℃で2時間、その後DNase I (Promega) を加え、さらに37℃で15分インキュベートした。得られたmRNAをRNeasy mini kit (Qiagen) で精製後、小麦胚芽由来無細胞翻訳系Wheat Germ extract systems (Promega) を用い、25℃で2時間インキュベートしタンパク質を合成した。 1 μg of this DNA was added to RiboMAX large-scale RNA production systems-SP6 (Promega) at 37 ° C. for 2 hours, and then DNase I (Promega) was added and further incubated at 37 ° C. for 15 minutes. The obtained mRNA was purified by RNeasy mini kit (Qiagen), and then incubated for 2 hours at 25 ° C using a wheat germ-derived cell-free translation system Wheat germ extract systems (Promega) to synthesize proteins.
 まずスクリーニングのベイトとして用いる、MDM2タンパク質を調製した。ビーズに固定・溶出用のTAPタグを付加したMDM2を無細胞翻訳系で発現し、このタンパク質がTAPタグによりビーズに固定され、なおかつ溶出されること、またp53との結合活性を維持していることをp53全長タンパク質との結合を調べることにより確認した。 First, MDM2 protein used as a bait for screening was prepared. MDM2 with TAP tag for immobilization / elution added to beads is expressed in a cell-free translation system. This protein is immobilized on the beads with TAP tag and is eluted, and the binding activity to p53 is maintained. This was confirmed by examining the binding to the p53 full-length protein.
 p53ペプチド (15~29) とMDM2 (17~125) の複合体の結晶構造から、MDM2の25~109アミノ酸残基がp53結合ドメインであることが明らかにされている(Kussie,P.H.,等(1996) Science, 274, 948-953)。今回はこの領域を含むMDM2の7~300アミノ酸残基のC末端側に、カルモジュリン結合ペプチド (CBP)、TEVプロテアーゼ認識配列およびプロテインAのIgG結合ドメイン (ZZ) をタグとして融合させた (図1) タンパク質を小麦胚芽由来無細胞翻訳系により合成した。 The crystal structure of the complex of p53 peptide (15-29) and MDM2 (17-125) さ れ reveals that 25-109 amino acid residues of MDM2 are p53-binding domains (Kussie, PH, etc. 1996) Science, 274, 948-953). This time, MDM2 containing 7-300 amino acid residues containing this region was fused with a tag of calmodulin-binding peptide (CBP), TEV protease recognition sequence, and protein A IgG binding domain (ZZ) (Fig. 1). ) Koji protein was synthesized by cell-free translation system derived from wheat germ.
 このタンパク質が図2に示すように、IgG固定ビーズにIgG結合ドメインを介して結合し、TEVプロテアーゼにより切断され溶出されることを確認した (図3,A)。それぞれの画分のタンパク質量を泳動量から補正したところ、インプットの40%がビーズに固定されており (図3,B)、残りの60%のタンパク質は、ビーズに固定されなかったか、あるいは洗浄中に取り除かれたと推測される。TEVプロテアーゼで処理した後は、ビーズに固定されたタンパク質の45%が溶出され、残りは切断されていないか、切断された後もIgG結合ドメイン以外でビーズに非特異的に結合してしまっているために溶出されていないと推測される。 As shown in FIG. 2, it was confirmed that this protein bound to the IgG-immobilized beads via the IgG binding domain, and was cleaved and eluted by the TEV protease (FIG. 3, A). When the amount of protein in each fraction was corrected from the amount of electrophoresis, 40% of the input was immobilized on the beads (Fig. 3, B), and the remaining 60% of the protein was not immobilized on the beads or washed. Presumed to have been removed. After treatment with TEV protease, 45% of the protein immobilized on the bead is eluted, and the rest is not cleaved, or after cleaving, it binds nonspecifically to the bead outside the IgG binding domain. Therefore, it is estimated that it is not eluted.
 ビーズに固定したMDM2に対し、p53 (15~29) および全長のIVV分子の結合アッセイを行った (図4)。p53 (15~29) のIVVはMDM2に結合しなかったのに対し、全長ではタンパク質部分での結合が見られた。p53全長のIVVが結合したことにより、調製したベイトタンパク質MDM2がp53結合活性を有していることが示唆された。また、p53 (15~29) とMDM2の間の解離定数は600 nM程度(Kussie,P.H.,等 (1996) Science, 274, 948-953)であるにも関わらず、IVVでは結合しなかったことから、mRNAと連結したペプチド部分が立体構造を保持できていなかった可能性が高い。p53 (15~29) はαヘリックス構造をとり、このヘリックス構造をとりやすいp53変異体 (P27S) ペプチド断片が野生型のものよりも高い親和性でMDM2と結合する(Schon,O., 等(2002) J. Mol. Biol., 323, 491-501)ことからも、ヘリックス構造をとりやすく、MDM2との親和性が高いペプチド断片でないと、以後のIVVスクリーニングで選択されてこない可能性が高いため、p53と競合してMDM2に結合するペプチドを取得するには、好条件である。また、p53全長は、ペプチド断片と比べ立体構造が保持されやすかった可能性があると推測される。 The binding assay of p53 (15-29) and full-length IVV molecules was performed on MDM2 immobilized on beads (FIG. 4). The p53 (15-29) IV IVV did not bind to MDM2, whereas the full length showed binding in the protein portion. It was suggested that the prepared bait protein MDM2 has p53-binding activity due to binding of the full-length p53 IVV. In addition, the dissociation constant between p53 (15-29) 2 and MDM2 is about 600 nM (Kussie, PH, etc. (1996) Science, 274, 948-953). Therefore, it is highly possible that the peptide portion linked to the mRNA did not retain the three-dimensional structure. p53 (15-29) α has an α-helical structure, and the p53 mutant (P27S) peptide fragment that easily adopts this helix structure binds to MDM2 with higher affinity than the wild type (Schon, O., et al. ( 2002) J. Mol. Biol., 323, 491-501), it is likely that the peptide will not be selected in subsequent IVV screening unless it is a peptide fragment that is easy to take a helix structure and has a high affinity for MDM2. Therefore, it is favorable conditions to obtain a peptide that competes with p53 and binds to MDM2. In addition, it is speculated that the full-length p53 may have a more retained three-dimensional structure than the peptide fragment.
2. ランダムライブラリーの構築
 一本鎖DNA、G4SG4S (NNS) 16FLAGA6r (表1) をテンプレートとし、Ex Taq DNA polymeraseを用い、priSP6OGfおよびpriFLAGA6rプライマー (表1) で95℃を60秒、60℃を60秒、72℃を60秒のサイクルを25回繰り返すプログラムでPCRを行った。得られたPCR産物をPCR purification kitで精製し、ランダムな16アミノ酸残基をコードしたDNAを調製した。
2. Random library construction Single-stranded DNA, G4SG4S (NNS) 16FLAGA6r (Table 1) as a template, Ex Taq DNA polymerase, 95 ° C for 60 seconds, 60 ° C with priSP6OGf and priFLAGA6r primer (Table 1) PCR was carried out using a program in which a cycle of 60 seconds at 72 ° C. was repeated 25 times. The obtained PCR product was purified with a PCR purification kit to prepare a DNA encoding a random 16 amino acid residue.
 また、一本鎖DNA、X12(FWL)-r (表1) をテンプレートとし、Phusion DNA polymeraseを用い、5'O29-T7-EcoRIおよび3'Flag1A-libプライマー (表1) で98℃を10秒、62℃を30秒、72℃を30秒のサイクルを25回繰り返すプログラムでPCRを行った。得られたPCR産物をPCR purification kitで精製し、12アミノ酸残基のうち3アミノ酸を固定し、残りの9アミノ酸残基がランダムである配列をコードしたDNAを調製した。 In addition, using single-stranded DNA, X12 (FWL) -r (Table 1) テ ン プ レ ー ト as a template, Phusion DNA polymerase, 5'O29-T7-EcoRI and 3'Flag1A-lib primerA (Table 1) Second, 62 ° C. for 30 seconds, and 72 ° C. for 30 seconds. The obtained PCR product was purified by PCR purification kit, and DNA encoding a sequence in which 3 amino acids out of 12 amino acid residues were fixed and the remaining 9 amino acid residues were random was prepared.
 これらのDNA 1 μgをRiboMAX large-scale RNA production systems-SP6を用い、37℃で2時間、その後DNase Iを加え、さらに37℃で15分インキュベートした。得られたmRNAをRNeasy mini kitで精製後、T4 RNA Ligase (Takara) を用いて、16℃で14時間インキュベートすることで、PEG-Puroスペーサーを連結し、再びRNeasy mini kitで精製しIVVテンプレートを調製した。これを小麦胚芽由来無細胞翻訳系Wheat Germ extract systemsを用い、25℃で2時間インキュベートしIVVライブラリーとした。 1 μg of these DNAs were added using RiboMAX large-scale RNA production systems-SP6 at 37 ° C. for 2 hours, and then DNase I was added and further incubated at 37 ° C. for 15 minutes. The resulting mRNA is purified with RNeasy mini kit, and then incubated with T4 RNA Ligase (Takara) 14 for 14 hours at 16 ° C. Prepared. This was incubated at 25 ° C. for 2 hours using a wheat germ-derived cell-free translation system Wheat Germ extract systems to obtain an IVV library.
3. IgGビーズ調製
 Immutex-MAG (MAG2101) (JSR)  20 mgを0.01% Triton X-100で3回洗浄し、0.25 mg/ml EDCを加え、室温で90分回転混和した。これに0.57 mgのChempure rabbit IgG (Jackson immunoresearch) を加え室温で16時間回転混和した。上清を除去後、洗浄バッファー (PBS,0.1% BSA,0.01% Triton X-100) を加え室温で1時間インキュベートした。その後、洗浄バッファーで5回洗浄し、保存バッファー (PBS,0.1% BSA,0.01% Triton X-100,0.02% NaN3) に懸濁し、IgG-Immutex-MAGビーズ (2% slurry) を調製した。
3. Preparation of IgG beads Immutex-MAG (MAG2101) (JSR) 20 mg was washed 3 times with 0.01% Triton X-100, 0.25 mg / ml EDC was added, and the mixture was rotated and mixed at room temperature for 90 minutes. 0.57 mg of rabbit rabbit IgG (Jackson immunoresearch) was added thereto, and the mixture was rotated and mixed at room temperature for 16 hours. After removing the supernatant, washing buffer (PBS, 0.1% BSA, 0.01% Triton X-100) was added and incubated at room temperature for 1 hour. Thereafter, the plate was washed 5 times with a washing buffer and suspended in a storage buffer (PBS, 0.1% BSA, 0.01% Triton X-100, 0.02% NaN 3 ) to prepare IgG-Immutex-MAG beads (2% slurry).
4. IVVスクリーニング
 IgG-Immutex-MAGビーズ40 μlを結合バッファーIPP150 (1 M Tris-HCl pH 8.0,150 mM NaCl,0.1% NP-40) で3回洗浄し、ベイトであるMDM2 (7-300アミノ酸残基の領域)-CBPzz を加え、4℃で1時間回転混和することでビーズに固定した。その後再びIPP150で3回洗浄し、IVVライブラリーを加え4℃で10分回転混和した (3ラウンド目以降は5分)。IPP150で8回 (3ラウンド目以降は13回)、TEVバッファー (1 M Tris-HCl,pH 8.0,150 mM NaCl,0.1% NP-40,1 mM DTT,5 mM EDTA) で2回洗浄した後、TEV protease (10 U/μl) (Invitrogen) 2 μlを混ぜ、16℃で2時間回転混和した。この上清を溶出画分として回収した。
4. IVV screening Wash 40 μl of IgG-Immutex-MAG beads 3 times with binding buffer IPP150 (1 M Tris-HCl pH 8.0, 150 mM NaCl, 0.1% NP-40), and bait MDM2 (7-300 amino acids) Residue region) -CBPzz was added, and the mixture was fixed by rotation at 4 ° C. for 1 hour. Thereafter, the plate was again washed 3 times with IPP150, and the IVV library was added and mixed by rotating at 4 ° C. for 10 minutes (5 minutes after the third round). After washing with IPP150 8 times (13 times after the 3rd round) and TEV buffer (1 M Tris-HCl, pH 8.0, 150 mM NaCl, 0.1% NP-40, 1 mM DTT, 5 mM EDTA) twice , TEV protease (10 U / μl) (Invitrogen) 2 μl was mixed, and mixed by rotation at 16 ° C. for 2 hours. This supernatant was collected as an elution fraction.
 回収した溶出画分1 μlをテンプレートとし、Onestep RT-PCR kit (Qiagen) で5'O29-fおよび3'Flag1Aプライマーを用いて、94℃で30秒、60℃で30秒、72℃で120秒のサイクルを14~30回繰り返すプログラムでRT-PCRを行った。この中から増幅量が飽和していないバンドパターンのものを選択し、同じ条件で大量にRT-PCRすることにより、ライブラリーを再構築し、2ラウンド目のスクリーニングを行った。同様の操作を繰り返し、スクリーニングを5ラウンド目まで行った。5ラウンド終了後のDNAライブラリーをPCR Cloning kit (Qiagen) でクローニングし、ABI3700 PRISM Genetic Analyzer  (Applied Biosystems) により配列を解析した。また、ペプチド配列中のアミノ酸出現頻度解析にはweblogo (http://weblogo.berkeley.edu/) を用いた。 Using 1 溶出 μl of the collected elution fraction as a template, with 5′O29-f and 3′Flag1A primers in Onestep RT-PCR kit (Qiagen), 30 seconds at 94 ° C, 30 seconds at 60 ° C, 120 ° C at 72 ° C RT-PCR was performed with a program in which a second cycle was repeated 14-30 times. From this, a band pattern with a non-saturated amplification amount was selected, and a large amount of RT-PCR was performed under the same conditions to reconstruct the library, and a second round of screening was performed. The same operation was repeated, and screening was performed up to the fifth round. After completion of the 5th round, the DNA library was cloned with PCR Cloning kit (Qiagen), and the sequence was analyzed with ABI3700 PRISM Genetic Analyzer (Applied Biosystems). Moreover, weblogo (http://weblogo.berkeley.edu/) was used for the analysis of the appearance frequency of amino acids in peptide sequences.
5. 高親和性MDM2結合ペプチドの同定
 上記のスクリーニング法に従い, MDM2と強く結合するという点で最適なペプチド配列を同定するために2段階のスクリーニングを行った。まず、配列の種類の多いライブラリーでスクリーニングを行い、得られた配列中で多く保存されているアミノ酸残基のいくつかをMDM2との結合に重要である残基として決定した。続いてこれらのアミノ酸残基を固定したランダムライブラリーを設計し、二度目のスクリーニングを行うことで、より強くMDM2と結合するペプチド配列を同定した。
5. Identification of high-affinity MDM2-binding peptides In accordance with the above screening method, a two-step screening was performed to identify the optimal peptide sequence in terms of strong binding to MDM2. First, a library with many types of sequences was screened, and some of the amino acid residues that are highly conserved in the obtained sequences were determined as residues that are important for binding to MDM2. Subsequently, a random library in which these amino acid residues were fixed was designed, and a peptide sequence that binds to MDM2 more strongly was identified by performing a second screening.
 まず16アミノ酸残基からなるランダムペプチドIVVライブラリーのスクリーニングを行った。4ラウンドのスクリーニング終了後のDNAライブラリーをクローニング、配列解析したところ、3種類の配列が重複して得られた (表2)。これらのペプチドのIVVはMDM2に結合し、N末端にGFPを融合したもの (図5A) でも結合が見られた (図5,B)。GFPを融合した野生型p53ペプチド断片もMDM2には結合しなかったため、これよりもMDM2に対する親和性の高いペプチド配列を取得できるスクリーニング系を構築することができたと言える。このスクリーニングで得られた、ほとんどの16アミノ酸残基のペプチド配列で、p53のF19、W23、L26に対応する3つの疎水性アミノ酸が保存されていた。これらの疎水性アミノ酸は、p53がMDM2と結合する際に重要であることが知られており(Kussie,P.H.,等 (1996) Science, 274, 948-953; Fukuda,I.,等 (2006) Nucleic Acids Res., 34, e127; Blaydes,J.P., (1997)Oncogene, 等 14, 1859-1868)、今回の結果を踏まえても、他のアミノ酸に置換不可能なアミノ酸であることが示唆された。 First, a random peptide IVV library consisting of 16 amino acid residues was screened. Cloning and sequence analysis of the DNA library after 4 rounds of screening resulted in the duplication of 3 types of sequences (Table 2). IVV of these peptides bound to MDM2, and binding was observed even in the case where GFP was fused to the N-terminus (FIG. 5A) (FIG. 5, B). Since the wild-type p53 peptide fragment fused with GFP did not bind to MDM2, it can be said that a screening system capable of obtaining a peptide sequence with higher affinity for MDM2 could be constructed. In most of the 16 amino acid residue peptide sequences obtained by this screening, three hydrophobic amino acids corresponding to F19, W23, and L26 of p53 were conserved. These hydrophobic amino acids are known to be important when p53 binds to MDM2 (Kussie, PH, etc. (1996) Science, 274, 948-953; Fukuda, I., etc. (2006) Nucleic Acids Res., 34, e 127; Blaydes, JP, (1997) Oncogene, 等 14, 1859-1868), based on this result, it was suggested that the amino acid cannot be substituted for other amino acids. .
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 16アミノ酸残基のランダムペプチド配列の可能な組み合わせの数は、2016 = 6.6×1020であり、IVVライブラリーのライブラリーサイズ (~1013) では網羅できていなかった。そこで、これらの配列を最適化するため、上述した3つの疎水性アミノ酸 (F,W,L) を固定し、9アミノ酸残基がランダムである12アミノ酸残基のIVVライブラリーをスクリーニングした。このIVVライブラリーでは、209 = 5.1×1011種類の全ての配列を十分網羅できる。 The number of possible combinations of random peptide sequences of 16 amino acid residues was 20 16 = 6.6 × 10 20 , which was not covered by the library size (˜10 13 ) of the IVV library. Therefore, in order to optimize these sequences, the above-mentioned three hydrophobic amino acids (F, W, L) were fixed, and an IVV library of 12 amino acid residues in which 9 amino acid residues were random was screened. This IVV library can sufficiently cover all the sequences of 20 9 = 5.1 × 10 11 types.
 このライブラリーのスクリーニングを計4ラウンド行った後、配列を解析した結果、重複した配列は存在しなかった。得られた配列のうち、いくつかのIVVはMDM2と結合したことから、アミノ酸残基数が16から12に減少したために結合する分子が無くなったわけではないことがわかる。おそらく、3つの疎水性アミノ酸を固定したことで、初期ライブラリー中に、MDM2に高い親和性のある分子が多数存在しており、また用いた選択圧が適切でなかったために、特定の分子の濃縮が見られなかったためと推測される。 After screening this library for a total of 4 rounds, the sequence was analyzed. As a result, no duplicate sequence was present. Among the sequences obtained, some IVVs bound to MDM2, indicating that the number of amino acid residues was reduced from 16 to 12, so that the binding molecules were not lost. Probably, by fixing three hydrophobic amino acids, there were many molecules with high affinity for MDM2 in the initial library, and because the selection pressure used was not appropriate, It is presumed that no concentration was observed.
 そこで、MDM2に結合する分子が多く存在するであろう、4ラウンド終了後のライブラリーを用い、(1) ライブラリーとMDM2との結合時間を1~2時間から10分に短縮、(2) 結合後の洗浄回数を3回から10回に増加、(3) 結合バッファー中の塩濃度を2倍に増加、の3種類の条件下で結合アッセイを行い、より厳しい選択圧でのスクリーニング条件を検討した (図6)。ライブラリーのMDM2に対する結合量が減少した結合時間の短縮および洗浄回数の増加の条件を、より厳しい選択圧として採用した。 Therefore, using the library after the end of the 4th round, there will be many molecules that bind to MDM2, (1) The binding time between the library and MDM2 was reduced from 1-2 hours to 10 minutes, (2) The number of washings after binding was increased from 3 to 10 times, and (3) the salt concentration in the binding buffer was doubled, and the binding assay was performed under three types of conditions. Examined (Figure 6). Conditions for shortening the binding time and increasing the number of washings when the amount of binding of the library to MDM2 was reduced were adopted as stricter selection pressures.
 上記の選択圧で、再度12アミノ酸残基からなるランダムライブラリーのスクリーニングを行ったところ、3ラウンド終了後から結合分子の濃縮が見られた (図7)。5ラウンド終了時点で結合分子が十分濃縮されたと判断し、このライブラリー中のDNAをクローニングし配列解析を行った結果、7種類の配列が重複して得られた (表3)。 When a random library consisting of 12 amino acid residues was screened again at the above-mentioned selection pressure, concentration of binding molecules was observed after the completion of 3 rounds (FIG. 7). As a result of judging that the binding molecules were sufficiently concentrated at the end of the fifth round and cloning the DNA in this library and conducting sequence analysis, seven types of sequences were duplicated (Table 3).
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 この中で最も多く重複して得られたペプチド配列 (PRFWEYWLRLME(配列番号37)、以下MDM2 inhibitory peptide、MIP) およびp5317-28の解離定数を測定した結果 (表 4)、MIPはp5317-28の約100倍程度、MDM2との親和性が高いことがわかった。また、スクリーニングにより得られたペプチド配列の各ポジションにおけるアミノ酸の出現頻度 (図8) から、固定した3つのアミノ酸残基以外では、Y6、E9、M11がよく保存されていた。そこで、今回はMIPの配列中のM11をアラニンに置換した、MIP (M11A) の解離定数を測定した。その結果、元のMIPと比べ、MDM2との親和性が10倍程度低下していた。この位置は、p5317-28ではプロリンであり、これをセリンに置換すると、よりαヘリックス構造をとりやすくなり、MDM2に対する親和性が約25倍向上することが報告されている(Zondlo, S.C.,等 (2006) Biochemistry 45, 11945-11957)。今回の場合も、M11によりヘリックス構造をとりやすくなっていると推測される。 The most frequently duplicated peptide sequences (PRFWEYWLRLME (SEQ ID NO: 37), hereinafter referred to as MDM2 inhibitory peptide, MIP) and p53 17-28 dissociation constants were measured (Table 4). MIP was p53 17- It was found that the affinity with MDM2 was about 100 times that of 28 . Moreover, from the appearance frequency of amino acids at each position of the peptide sequence obtained by screening (FIG. 8), Y6, E9, and M11 were well conserved except for the fixed three amino acid residues. Therefore, this time, the dissociation constant of MIP (M11A) was measured by substituting M11 in the MIP sequence with alanine. As a result, the affinity with MDM2 was reduced by about 10 times compared to the original MIP. This position is a proline in p53 17-28 , and it has been reported that substituting it with serine makes it easier to adopt an α-helical structure and improves the affinity for MDM2 by about 25-fold (Zondlo, SC, Et al. (2006) Biochemistry 45, 11945-11957). In this case as well, it is presumed that the helix structure is made easier by M11.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 残るY6はファージディスプレイ法を用いたランダムライブラリーのスクリーニングでも、よく保存されており、MDM2との親和性を高めるという点で重要なアミノ酸であることが報告されている(Bottger, V., 等 (1996) Oncogene, 13, 2141-2147)。 The remaining Y6 is well conserved in screening of random libraries using the phage display method, and is reported to be an important amino acid in terms of enhancing affinity with MDM2 (Bottger, V.,, etc. (1996) Oncogene, 13, 2141-2147).
 MIPのIVVおよびN末端にGFPを融合したもの (以下GFP-MIP) が試験管内でMDM2に結合することを確認した (図9,A)。さらに、GFP-MIPが、細胞内においてもMDM2と結合することを確認するため、ヒト大腸癌細胞であり、野生型p53が発現していることが知られているHCT116細胞内でGFP-MIPを発現させ、α-GFP抗体を用いた免疫沈降を行った結果、GFP-MIPはMDM2と結合することがわかった (図9,B)。MDM2のバンドが2本検出されたが、分子量が小さいほうのバンドは、MDM2のスプライスバリアントのうちの一つであると推測される(Bartel, F., 等 (2004) Mol. Cancer Res., 2, 29-35)。 It was confirmed that the MIP IVV and GFP fused to the N-terminus (hereinafter referred to as GFP-MIP) were bound to MDM2 in a test tube (FIG. 9, A). Furthermore, in order to confirm that GFP-MIP also binds to MDM2 in the cell, GFP-MIP is expressed in human colon cancer cells and HCT116 cells that are known to express wild-type p53. As a result of expression and immunoprecipitation using an α-GFP antibody, it was found that GFP-MIP binds to MDM2 (FIG. 9, B). Two bands of MDM2 were detected, but the smaller molecular weight band is assumed to be one of the splice variants of MDM2 (Bartel, F., 等 (2004) Mol. Cancer Res., 2, 29-35).
6. ビオチン化MDM2の大量発現および精製
 プラスミドDNA、MDM2-Bio-H10を用いてBL21 star(DE) を形質転換し、50 μg/mlアンピシリン含有LB寒天プレートに撒き37℃で16時間インキュベートした。形成されたコロニーを50 μg/mlカルベニシリン含有LB培地5 mlに植菌し、37℃で16時間培養した。培養した大腸菌を50 μg/mlカルベニシリン含有TB培地250 mlに全量加え、OD600 が 0.4~0.5になるまで培養した。その後、IPTGを1 mMの濃度で加え、さらに37℃で6時間培養した。この培養液を6000 g、20分遠心後、上清を除去することで集菌した。これに溶菌バッファー (TBS,pH 7.4,1 mM β-ME) 20 ml、Protease inhibitor cocktail (Sigma) 40 μl およびDNase I 8 μlを加え懸濁後、超音波破砕を15分×2回行い、6000 g、20分遠心後の上清を可溶性画分として回収した。
6. Mass expression and purification of biotinylated MDM2 BL21 star (DE) was transformed with plasmid DNA, MDM2-Bio-H10, plated on LB agar plate containing 50 μg / ml ampicillin and incubated at 37 ° C. for 16 hours. The formed colonies were inoculated into 5 ml of LB medium containing 50 μg / ml carbenicillin and cultured at 37 ° C. for 16 hours. The whole amount of the cultured E. coli was added to 250 ml of TB medium containing 50 μg / ml carbenicillin and cultured until OD 600 was 0.4 to 0.5. Thereafter, IPTG was added at a concentration of 1 mM and further cultured at 37 ° C. for 6 hours. The culture was centrifuged at 6000 g for 20 minutes, and the supernatant was removed to collect the cells. To this, 20 ml of lysis buffer (TBS, pH 7.4, 1 mM β-ME), 40 μl of protease inhibitor cocktail (Sigma) and 8 μl of DNase I were added, suspended, and then sonicated twice for 15 minutes. g, The supernatant after centrifugation for 20 minutes was collected as a soluble fraction.
 可溶性画分にTALON Metal Affinity Resin を加え、4℃で2時間回転混和し、全量をカラムに通した。溶菌バッファー80 mlおよび洗浄バッファー (TBS pH 7.4,1 mM β-ME,10 mMイミダゾール) 10 mlで洗浄後、溶出バッファー (TBS,pH 7.4,1 mM β-ME,250 mMイミダゾール) 5 mlで溶出した。 TALON Metal Affinity Resin was added to the soluble fraction and mixed by rotation at 4 ° C for 2 hours, and the entire amount was passed through the column. After washing with 80 ml of lysis buffer and 10 ml of washing buffer (TBS pH 7.4, 1 mM mM β-ME, 10 mM mMimidazole), elute with 5 ml of elution buffer (TBS, pH 7.4, 1 mM mM β-ME, 250 mM mMimidazole). did.
7. 表面プラズモン共鳴分光法によるペプチドの解離定数(KD)の測定
 合成ペプチドの解離定数(KD)の測定をBiacore3000 (Biacore) により、HBS-EPバッファーを用いて25℃で行った。まず精製したビオチン化MDM2をセンサーチップSA上に4300 RU固定した。このセンサーチップを用い、解離定数を決定するため、3種類の異なる濃度 (2-200 nM) の、合成したペプチドを注入した。インジェクションの流速は20 μl/min、結合と解離時間はそれぞれ3分で行った。その後、Glycine 2.0 (Biacore) 5 μlでセンサーチップ表面を再生した。結合データをBIAevaluationソフトウェア ver. 4.1 (Biacore) の‘Steady state affinty’モデルにより解析した。
7. By measuring the Biacore3000 (Biacore) dissociation constant measurements synthetic peptide dissociation constant of the peptide by surface plasmon resonance spectroscopy (K D) (K D) , was performed at 25 ° C. with HBS-EP buffer. First, purified biotinylated MDM2 was immobilized on sensor chip SA at 4300 RU. Using this sensor chip, three different concentrations (2-200 nM) of synthesized peptides were injected to determine the dissociation constant. The injection flow rate was 20 μl / min, and the binding and dissociation times were 3 minutes each. Thereafter, the surface of the sensor chip was regenerated with 5 μl of Glycine 2.0 (Biacore). The binding data was analyzed using the 'Steady state affinty' model of BIAevaluation software ver. 4.1 (Biacore).
 In vitro virus (IVV) 法によるスクリーニングにより得られたMDM2結合ペプチドMIP (MDM2 inhibitory peptide、PRFWEYWLRLME) は、既存の配列であるpDI (LTFEHYWAQLTS(配列番号49)) と比べ(Hu,B., 等 (2007) Cancer Res., 67, 8810-8817)、約8×103倍程度の親和性を示した (表4)。MIPは、野生型p53ペプチド (17-ETFSDLWKLLPE-28(配列番号42)) およびpDIとは異なる配列であるが、MDM2のポケットに結合することが知られている、3つの疎水性アミノ酸 (Phe19,Trp23,Leu26,下線部) は保存されていた。これら3つの疎水性アミノ酸を含む、MIPの配列中の6つのアミノ酸をAlaに置換した6種類のペプチドのMDM2に対する親和性も同時に測定した。その結果、スクリーニングにより得られたクローン間で出現頻度の高かった (図8) Arg9およびMet11をAla置換することにより、MDM2に対する解離定数の値が、それぞれMIPの約50倍、900倍に上昇した。また、既存のモチーフであるTyr6(Bottger,V., 等 (1996) Oncogene, 13, 2141-2147) や、上述した3つの疎水性アミノ酸に相当するPhe3、Trp7、Leu10をそれぞれAla置換したペプチドに関しても、大幅な解離定数の上昇が見られた。 The MDM2 binding peptide MIP (MDM2 inhibitory peptide, PR F WEY W LR L ME) obtained by screening by the in vitro virus (IVV) method is compared with the existing sequence pDI (LTFEHYWAQLTS (SEQ ID NO: 49)) (Hu , B., et al. (2007) Cancer Res., 67, 8810-8817), showing about 8 × 10 3 times the affinity (Table 4). MIP is a sequence that differs from wild-type p53 peptide (17-ETFSDLWKLLPE-28 (SEQ ID NO: 42)) and pDI but is known to bind to the pocket of MDM2 (Phe19, Trp23, Leu26, underlined) were conserved. At the same time, the affinity of 6 kinds of peptides including these 3 hydrophobic amino acids in which 6 amino acids in the MIP sequence were substituted with Ala to MDM2 was also measured. As a result, the frequency of appearance was high among the clones obtained by screening (Fig. 8) By disposing Arg9 and Met11 to Ala, the dissociation constant value for MDM2 increased to about 50 times and 900 times that of MIP, respectively. . In addition, regarding Tyr6 (Bottger, V., et al. (1996) Oncogene, 13, 2141-2147), which is an existing motif, and Pla3, Trp7, and Leu10 corresponding to the three hydrophobic amino acids described above, Ala-substituted peptides, respectively. However, a significant increase in the dissociation constant was observed.
 本発明では、IVV法によりヒト癌タンパク質MDM2に結合する新規ペプチド配列MIPを同定した。MIPは既存のMDM2結合ペプチドと比べ、親和性が非常に高いことがわかった。また、スクリーニングにおいて出現頻度の高かったArg9およびMet11をAlaに置換するとMDM2との親和性が大幅に低下したことから、これら2つのアミノ酸残基とそのポジションを、新規モチーフとして決定した。特にMet11に関しては、出現頻度も非常に高く、Ala置換することによりTrp7と同程度の親和性低下が見られたことから、MDM2との結合に重要であるアミノ酸である可能性が高い。 In the present invention, a novel peptide sequence MIP that binds to human cancer protein MDM2 was identified by the IVV method. MIP was found to have a much higher affinity than existing MDM2-binding peptides. In addition, when Arg9 and Met11, which had a high frequency of appearance in the screening, were replaced with Ala, the affinity with MDM2 was greatly reduced. Therefore, these two amino acid residues and their positions were determined as novel motifs. In particular, Met11 has a very high frequency of occurrence, and since Affin substitution showed the same degree of affinity reduction as Trp7, it is highly likely that it is an amino acid important for binding to MDM2.
8. GFP融合ペプチド調製
 一本鎖DNA、GFP-fus-MIPfおよびGFP-fus-MIPr (表1) の5'末端をそれぞれ、T4 polynucleotide kinase (Takara) を用いて37℃で30分インキュベートすることでリン酸化した。これらをエタノール沈殿後、全量を混合し、98℃で20秒変性させ、ゆっくり室温に戻すことでアニールさせた。得られたカセットをT4 DNA Ligaseを用い、pQBI25f発現ベクターのペプチドリンカーをHL4リンカーに置き換えた pQBI25-HL4のHindIII/EcoRIサイトにクローニングすることで、元のHindIIIおよびEcoRI部位を除去し、よりインサート側に、新たにEcoRIおよびHindIII部位を作製した。こうして得たプラスミドpQBI25-HL4-MIPを小麦胚芽由来無細胞転写翻訳系TNT Coupled Wheat Germ extract systems (Promega) によりGFP融合ペプチドを発現させた。
8. Preparation of GFP fusion peptide Incubate the 5 'ends of single-stranded DNA, GFP-fus-MIPf and GFP-fus-MIPr (Table 1) using T4 polynucleotide kinase (Takara) for 30 minutes at 37 ° C, respectively. Phosphorylated with. After ethanol precipitation, the whole amount was mixed, denatured at 98 ° C. for 20 seconds, and annealed by slowly returning to room temperature. By cloning the resulting cassette into the HindIII / EcoRI site of pQBI25-HL4, where the peptide linker of the pQBI25f expression vector was replaced with the HL4 linker using T4 DNA Ligase, the original HindIII and EcoRI sites were removed and the insert side further In addition, EcoRI and HindIII sites were newly created. The thus obtained plasmid pQBI25-HL4-MIP was expressed with a wheat germ-derived cell-free transcription translation system TNT Coupled Wheat Germ extract systems (Promega).
9. 細胞培養および形質移入
 HCT116細胞は10% (vol/vol) FBS (Gibco)、1% (vol/vol) ペニシリン/ストレプトマイシン (Gibco) を含んだMcCoy's 5A培地 (Gibco) で、SW480細胞は10% (vol/vol) FBS、1%ペニシリン/ストレプトマイシンを含んだDMEM培地 (Gibco) で培養し、またSaos-2細胞は15% (vol/vol) FBS (Gibco)、1% (vol/vol) ペニシリン/ストレプトマイシン (Gibco) を含んだMcCoy's 5A培地 (Gibco) で培養した。これらの細胞にLipofectamine 2000 (Invitrogen) を用いて、プラスミドpQBI25-HL4-MIPおよびGFPのC末端にFLAGタグを融合したタンパク質をコードしたプラスミドDNA、pQBI25-HL4-FLAGそれぞれの形質移入をプロトコル通りに行った。
9. Cell culture and transfection HCT116 cells are McCoy's 5A medium (Gibco) containing 10% (vol / vol) FBS (Gibco), 1% (vol / vol) penicillin / streptomycin (Gibco), and SW480 cells are 10%. Cultured in DMEM medium (Gibco) containing% (vol / vol) FBS and 1% penicillin / streptomycin, and Saos-2 cells were 15% (vol / vol) FBS (Gibco), 1% (vol / vol) The cells were cultured in McCoy's 5A medium (Gibco) containing penicillin / streptomycin (Gibco). Using Lipofectamine 2000 (Invitrogen) to these cells, transfection of plasmid pQBI25-HL4-MIP and plasmid DNA encoding a protein with a FLAG tag fused to the C-terminus of GFP, pQBI25-HL4-FLAG, respectively, as per the protocol. went.
 上記の方法に従い, MDM2結合ペプチドによるp53経路の活性化について調べた. MDM2-p53相互作用の阻害やMDM2の発現抑制が、p53の安定化およびp53経路の活性化に繋がることが示されている(Shangary, S.,等 (1997) Proc. Natl. Acad. Sci. USA., 105, 3933-3938 ; Hu,B., 等 (2007) Cancer Res., 67, 8810-8817; Chene,P., 等 (2000) J. Mol. Biol., 299, 245-253; Blaydes,J.P., 等(1997) Oncogene, 14, 1859-1868; Chen,L.,等(1997) Proc. Natl. Acad. Sci. USA., 95, 195-200; Vassilev,L.T., 等 (2004) Science, 303, 844-848)。GFP-MIPをHCT116細胞内で発現させると、期待通りp53タンパク質発現量の増加と下流遺伝子 (MDM2,p21) のmRNA量増加およびタンパク質発現誘導が見られた (図10、図11)。一方、コントロールであるGFPのみを発現させた場合には、同様の結果は得られなかった。それ故これらの結果は、GFP-MIPによるMDM2-p53相互作用阻害によりp53が活性化され核移行し、自身のターゲットであるMDM2、p21を転写活性化したことを示唆している。また、p53のmRNA量はコントロールと比べて変化が無かった。転写活性化能を欠損したp53変異体発現細胞であるSW480細胞においても、同様の操作を行ったが、p53経路の活性化は確認できなかった。 According to the above method, we investigated the activation of the p53 pathway by MDM2-binding peptides. It has been shown that inhibition of MDM2-p53 interaction and suppression of MDM2 expression lead to p53 stabilization and p53 pathway activation. (Shangary, S., etc. (1997) Proc. Natl. Acad. Sci. USA., 105, 3933-3938; Hu, B., 等 (2007) Cancer Res., 67, 8810-8817; Chene, P. (2000) J. Mol. Biol., 299, 245-253; Blaydes, JP, et al. (1997) Oncogene, 14, 1859-1868; Chen, L., et al. (1997) Proc. Natl. Acad. Sci. USA., 95, 195-200; Vassilev, LT, 等 (2004) Science, 303, ence844-848). When GFP-MIP was expressed in HCT116 cells, an increase in the expression level of p53 protein, an increase in the amount of mRNA in the downstream gene M (MDM2, p21) お よ び, and induction of protein expression were observed (FIGS. 10 and 11). On the other hand, when only GFP as a control was expressed, similar results were not obtained. Therefore, these results suggest that p53 was activated and translocated to the nucleus due to inhibition of the MDM2-p53 interaction by GFP-MIP and transcriptionally activated its own targets MDM2 and p21. In addition, the amount of p53 mRNA did not change compared to the control. SW480 cells, which are p53 mutant expressing cells deficient in transcriptional activation ability, were subjected to the same operation, but activation of the p53 pathway could not be confirmed.
10. 免疫沈降
 形質移入から24時間後のHCT116細胞をTNEバッファー (10 mM Tris-HCl,pH 7.8,0.15 M NaCl, 1 mM EDTA, 1% NP-40) 500 μlで可溶化後、12,000 gで20分遠心分離し、上清400 μlにAgarose conjugated Anti-GFP (Medical & biological laboratories) 20 μlを加え、4℃で2時間回転混和した。その後、TNEバッファーで5回洗浄し、1×サンプルバッファーを加え95℃で5分加熱することにより溶出した。
10. Immunoprecipitation HCT116 cells 24 hours after transfection were solubilized with 500 μl of TNE buffer (10 mM Tris-HCl, pH 7.8, 0.15 M NaCl, 1 mM EDTA, 1% NP-40), and 12,000 g Centrifugation was performed for 20 minutes, 20 μl of Agarose conjugated Anti-GFP (Medical & biological laboratories) was added to 400 μl of the supernatant, and the mixture was mixed by rotation at 4 ° C. for 2 hours. Thereafter, the cells were washed 5 times with TNE buffer, added with 1 × sample buffer, and heated at 95 ° C. for 5 minutes for elution.
11. ウェスタンブロッティング
 細胞を1×サンプルバッファーで回収し、10% SDS-PAGEにより分離後、ウェスタンブロッティングを行った。用いた抗体は、抗p53抗体 (Cell signaling)、抗MDM2抗体 (SMP14, Santa cruz)、抗p21抗体 (SX118, BD Pharmingen)、抗β-actin抗体 (AC-15, Sigma)。2次抗体にはHRP標識された抗体を用い、ECL chemi- luminescence reagents (Amersham) により検出した。また、ビーズに固定したベイトタンパク質MDM2の検出には、抗T7タグ抗体 (Novagen) を用いた。バンドからのタンパク質量定量はImage J (http://rsbweb.nih.gov/ij/) により行った。
11. Western blotting Cells were collected with 1 × sample buffer and separated by 10% SDS-PAGE, followed by Western blotting. The antibodies used were anti-p53 antibody (Cell signaling), anti-MDM2 antibody (SMP14, Santa cruz), anti-p21 antibody (SX118, BD Pharmingen), and anti-β-actin antibody (AC-15, Sigma). As the secondary antibody, an HRP-labeled antibody was used and detected by ECL chemi-luminescence reagents (Amersham). An anti-T7 tag antibody (Novagen) was used to detect the bait protein MDM2 immobilized on the beads. The protein amount quantification from the band was performed by Image J (http://rsbweb.nih.gov/ij/).
12. リアルタイムRT-PCR
 細胞からのRNA抽出はRNeasy mini kitのプロトコル通りに行った。このRNAをテンプレートとし、QuantiTect SYBR Green RT-PCR kit (Qiagen) を用いてp53、MDM2、p21およびGAPDHのmRNA量を測定した。プライマーにはそれぞれ、p53 Fとp53 R、mdm2 Fとmdm2 R、p21 Fとp21 Rを用い (表1)、GAPDHの測定にはLight cyclerプライマーセット (Roche、配列は非公表) を用いた。GAPDHのmRNA量で規格化後、それぞれの遺伝子のmRNA量を決定した。
12. Real-time RT-PCR
RNA extraction from the cells was performed according to the protocol of RNeasy mini kit. Using this RNA as a template, mRNA levels of p53, MDM2, p21 and GAPDH were measured using QuantiTect SYBR Green RT-PCR kit (Qiagen). The primers used were p53 F and p53 R, mdm2 F and mdm2 R, p21 F and p21 R (Table 1), and GAPDH was measured using the Light cycler primer set (Roche, sequence not disclosed). After normalization with the amount of GAPDH mRNA, the amount of mRNA of each gene was determined.
12. WST-1アッセイ
 HCT116およびSaos-2それぞれの細胞 (1×104 cells/well) を96ウェルプレートで培養した。これらの細胞を、膜透過配列としてHIV-Tatを付加したペプチド、Tat-MIP (YGRKKRRQRRRPRFWEYWLRLME(配列番号50)、下線はHIV-Tat配列) を異なる濃度で含んだ培地で24時間培養した。その後、Cell proliferation reagent WST-1 (Roche) を10 μl/well加え、さらに30分インキュベートした。各ウェルの440 nm (参照波長600 nm ) の吸光度をプレートリーダーSAFIRE (Tecan) により測定した。
12. WST-1 assay HCT116 and Saos-2 cells (1 × 10 4 cells / well) were cultured in 96-well plates. These cells were cultured for 24 hours in a medium containing a peptide containing HIV-Tat added as a membrane permeation sequence, Tat-MIP ( YGRKKRRQRRR PRFWEYWLRLME (SEQ ID NO: 50), underlined HIV-Tat sequence) at different concentrations. Thereafter, Cell proliferation reagent WST-1 (Roche) was added at 10 μl / well and further incubated for 30 minutes. The absorbance at 440 nm (reference wavelength 600 nm) of each well was measured with a plate reader SAFIRE (Tecan).
 細胞内でp53経路が活性化されると、その細胞は細胞周期停止やアポトーシスなどの細胞応答を引き起こすことが知られている。細胞膜透過配列として、HIV由来のTat配列をN末端に融合したMIPペプチド (Tat-MIP) により、野生型p53発現細胞HCT116はp53欠損細胞Saos-2と比べ、より低いTat-MIP濃度で細胞生存率が低下した (図12)。また、Tat配列を融合していないMIPペプチドではHCT116細胞の生存率が低下しなかった。これらのことから、Tat-MIPが細胞内に取り込まれ、p53経路依存的な細胞死を誘導することが示唆された。 It is known that when the p53 pathway is activated in a cell, the cell causes cell responses such as cell cycle arrest and apoptosis. MIP peptide (Tat-MIP) し た with HIV-derived Tat sequence fused to the N-terminus as a cell membrane permeation sequence, so that wild-type p53-expressing cell HCT116 survives at a lower Tat-MIP concentration than p53-deficient cell Saos-2 The wrinkles with reduced rates (Figure 12). Moreover, the survival rate of HCT116 cells did not decrease with the MIP peptide not fused with the Tat sequence. These results suggest that Tat-MIP is taken up into cells and induces p53 pathway-dependent cell death.
 HCT116細胞同様、野生型p53発現細胞であるSJSA-1細胞と、p53欠損細胞であるSaos-2細胞をNutlin-3で処理した場合、それぞれの細胞増殖におけるIC50が1.8 μMと20 μMであり、約10倍異なる(Shangary, S.,等(2008) Proc. Natl. Acad. Sci. USA, 105, 3933-3938)。これに対し、Tat-MIPの場合には、IC50がHCT116細胞では13.2 μM、Saos-2細胞では19.3 μMと、約1.5倍程度の差しか見られなかった。この結果は、SJSA-1細胞がHCT116細胞と比べ、内在性のMDM2の発現量が高く、MDM2-p53相互作用阻害により、アポトーシスを起こしやすいという結果(Chene,P., 等 (2002) FEBS Lett., 529, 293-297)から判断して妥当であると言える。 Like HCT116 cells, wild-type p53-expressing SJSA-1 cells and p53-deficient Saos-2 cells were treated with Nutlin-3, resulting in IC 50 of 1.8 μM and 20 μM, respectively. About 10 times different (Shangary, S., et al. (2008) Proc. Natl. Acad. Sci. USA, 105, 3933-3938). In contrast, in the case of Tat-MIP, IC 50 was 13.2 μM in HCT116 cells and 19.3 μM in Saos-2 cells, which was about 1.5 times as high. This result indicates that SJSA-1 cells have higher endogenous MDM2 expression levels than HCT116 cells, and are susceptible to apoptosis due to inhibition of MDM2-p53 interaction (Chene, P., et al. (2002) FEBS Lett ., 529, 293-297).
<配列の説明>
1: p5315-29
2: p53の19-23番目の領域に対応する5アミノ酸残基からなるモチーフ
3: p53の17-26番目の領域に対応する10アミノ酸残基からなるペプチド
4: 本発明で用いるペプチドのアミノ酸配列
5: ライブラリーのDNAがコードするアミノ酸配列
6: プライマーMDM(1-294)f
7: プライマーMDM(1-294)r
8: プライマー5'adaptorO29T7EcoR
9: プライマーFlag1A-lib
10: プライマーBam-MDM-f
11: プライマーMDM294-Xho-r
12: プライマーSP6-O'-T7
13: プライマー3'FosCBPzz
14: テンプレートG4SG4S(NNS)16FLAGA6r
15: プライマーpriSP6OGf
16: プライマーpriFLAGA6r
17: テンプレートX12(FWL)-r
18: プライマー5'O29-T7-EcoRI
19: プライマー5'O29-f
20: プライマー3'Flag1A
21: プライマーGFP-fus-MIPf
22: プライマーGFP-fus-MIPr
23: プライマーp53F
24: プライマーp53R
25: プライマーMdm2F
26: プライマーMdm2R
27: プライマーp21F
28: プライマーp21R
29: クローンX16-1
30: クローンX16-2
31: クローンX16-3
32: クローンX16-4
33: クローンX16-5
34: クローンX16-6
35: クローンX16-7
36: p5313-28
37: クローンX12-1, MIP
38: クローンX12-2
39: クローンX12-3
40: クローンX12-4
41: クローンX12-5
42: p5317-28
43: MIP改変体F3A
44: MIP改変体Y6A
45: MIP改変体W7A
46: MIP改変体R9A
47: MIP改変体L10A
48: MIP改変体M11A
49: pDI、p53の17-28番目の領域に対応する12アミノ酸残基からなるペプチド
50: Tat-MIP
<Description of sequence>
1: p53 15-29
2: Motif consisting of 5 amino acid residues corresponding to the 19-23th region of p53
3: Peptide consisting of 10 amino acid residues corresponding to the 17th to 26th region of p53
4: Amino acid sequence of the peptide used in the present invention
5: Amino acid sequence encoded by library DNA
6: Primer MDM (1-294) f
7: Primer MDM (1-294) r
8: Primer 5'adaptorO29T7EcoR
9: Primer Flag1A-lib
10: Primer Bam-MDM-f
11: Primer MDM294-Xho-r
12: Primer SP6-O'-T7
13: Primer 3'FosCBPzz
14: Template G4SG4S (NNS) 16FLAGA6r
15: Primer priSP6OGf
16: Primer priFLAGA6r
17: Template X12 (FWL) -r
18: Primer 5'O29-T7-EcoRI
19: Primer 5'O29-f
20: Primer 3'Flag1A
21: Primer GFP-fus-MIPf
22: Primer GFP-fus-MIPr
23: Primer p53F
24: Primer p53R
25: Primer Mdm2F
26: Primer Mdm2R
27: Primer p21F
28: Primer p21R
29: Clone X16-1
30: Clone X16-2
31: Clone X16-3
32: Clone X16-4
33: Clone X16-5
34: Clone X16-6
35: Clone X16-7
36: p53 13-28
37: Clone X12-1, MIP
38: Clone X12-2
39: Clone X12-3
40: Clone X12-4
41: Clone X12-5
42: p53 17-28
43: MIP variant F3A
44: MIP variant Y6A
45: MIP variant W7A
46: MIP variant R9A
47: MIP variant L10A
48: MIP variant M11A
49: PDI, a peptide consisting of 12 amino acid residues corresponding to the 17th to 28th region of p53
50: Tat-MIP
 本発明によれば、ヒト癌タンパク質MDM2とヒト癌抑制タンパク質p53の相互作用を阻害し、癌細胞増殖抑制効果をもつ薬剤を提供することができる。 According to the present invention, it is possible to provide a drug that inhibits the interaction between human cancer protein MDM2 and human cancer suppressor protein p53 and has an effect of suppressing cancer cell growth.

Claims (6)

  1. 下記のアミノ酸配列を含むペプチドを有効成分とするヒト癌タンパク質MDM2-ヒト癌抑制タンパク質p53相互作用阻害剤。
    Xaa1 Xaa2 Phe Xaa4 Xaa5 Xaa6 Xaa7 Xaa8 Xaa9 Leu Xaa11 Xaa12 (配列番号4)
    Xaa1は、Lys、Pro、Arg、Ser、Leu、Ala又はMetである。
    Xaa2は、Ser、Thr、Arg、Val、Gly、Tyr又はProである。
    Xaa4は、Trp、Gln、Glu、Pro、Ala又はLeuである。
    Xaa5は、Glu、Gln、Asp、Phe、Ala、Trp又はSerである。
    Xaa6は、Tyr、His、Leu又はGluである。
    Xaa7は、Trp又はLeuである。
    Xaa8は、Leu、Gln、Glu、Val、Ser又はMetである。
    Xaa9は、Glu、Arg、Met、Asp、Gln、Asn又はLysである。
    Xaa11は、Met、Val、Leu、Ile又はTyrである。
    Xaa12は、Leu、Glu、Ser、Gly又はTrpである。
    A human cancer protein MDM2-human cancer suppressor protein p53 interaction inhibitor comprising a peptide comprising the following amino acid sequence as an active ingredient.
    Xaa1 Xaa2 Phe Xaa4 Xaa5 Xaa6 Xaa7 Xaa8 Xaa9 Leu Xaa11 Xaa12 (SEQ ID NO: 4)
    Xaa1 is Lys, Pro, Arg, Ser, Leu, Ala or Met.
    Xaa2 is Ser, Thr, Arg, Val, Gly, Tyr or Pro.
    Xaa4 is Trp, Gln, Glu, Pro, Ala or Leu.
    Xaa5 is Glu, Gln, Asp, Phe, Ala, Trp or Ser.
    Xaa6 is Tyr, His, Leu or Glu.
    Xaa7 is Trp or Leu.
    Xaa8 is Leu, Gln, Glu, Val, Ser or Met.
    Xaa9 is Glu, Arg, Met, Asp, Gln, Asn, or Lys.
    Xaa11 is Met, Val, Leu, Ile or Tyr.
    Xaa12 is Leu, Glu, Ser, Gly or Trp.
  2. 前記ペプチドが配列番号37~41のいずれかのアミノ酸配列からなる請求項1記載の阻害剤。 The inhibitor according to claim 1, wherein the peptide consists of the amino acid sequence of any one of SEQ ID NOs: 37 to 41.
  3. 前記ペプチドが配列番号37のアミノ酸配列からなる請求項1記載の阻害剤。 The inhibitor according to claim 1, wherein the peptide consists of the amino acid sequence of SEQ ID NO: 37.
  4. 下記のアミノ酸配列を含むペプチドを有効成分とする抗癌剤。
    Xaa1 Xaa2 Phe Xaa4 Xaa5 Xaa6 Xaa7 Xaa8 Xaa9 Leu Xaa11 Xaa12 (配列番号4)
    Xaa1は、Lys、Pro、Arg、Ser、Leu、Ala又はMetである。
    Xaa2は、Ser、Thr、Arg、Val、Gly、Tyr又はProである。
    Xaa4は、Trp、Gln、Glu、Pro、Ala又はLeuである。
    Xaa5は、Glu、Gln、Asp、Phe、Ala、Trp又はSerである。
    Xaa6は、Tyr、His、Leu又はGluである。
    Xaa7は、Trp又はLeuである。
    Xaa8は、Leu、Gln、Glu、Val、Ser又はMetである。
    Xaa9は、Glu、Arg、Met、Asp、Gln、Asn又はLysである。
    Xaa11は、Met、Val、Leu、Ile又はTyrである。
    Xaa12は、Leu、Glu、Ser、Gly又はTrpである。
    The anticancer agent which uses the peptide containing the following amino acid sequences as an active ingredient.
    Xaa1 Xaa2 Phe Xaa4 Xaa5 Xaa6 Xaa7 Xaa8 Xaa9 Leu Xaa11 Xaa12 (SEQ ID NO: 4)
    Xaa1 is Lys, Pro, Arg, Ser, Leu, Ala or Met.
    Xaa2 is Ser, Thr, Arg, Val, Gly, Tyr or Pro.
    Xaa4 is Trp, Gln, Glu, Pro, Ala or Leu.
    Xaa5 is Glu, Gln, Asp, Phe, Ala, Trp or Ser.
    Xaa6 is Tyr, His, Leu or Glu.
    Xaa7 is Trp or Leu.
    Xaa8 is Leu, Gln, Glu, Val, Ser or Met.
    Xaa9 is Glu, Arg, Met, Asp, Gln, Asn, or Lys.
    Xaa11 is Met, Val, Leu, Ile or Tyr.
    Xaa12 is Leu, Glu, Ser, Gly or Trp.
  5. 前記ペプチドが配列番号37~41のいずれかのアミノ酸配列からなる請求項4記載の抗癌剤。 The anticancer agent according to claim 4, wherein the peptide consists of any one of the amino acid sequences of SEQ ID NOs: 37 to 41.
  6. 前記ペプチドが配列番37のアミノ酸配列からなる請求項4記載の抗癌剤。 The anticancer agent according to claim 4, wherein the peptide consists of the amino acid sequence of SEQ ID NO: 37.
PCT/JP2009/069644 2008-11-19 2009-11-19 Peptide capable of inhibiting interaction between human tumor protein mdm2 and human tumor suppression protein p53, and use thereof WO2010058819A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-296172 2008-11-19
JP2008296172A JP2010120881A (en) 2008-11-19 2008-11-19 PEPTIDE FOR INHIBITING INTERACTION BETWEEN HUMAN CANCER PROTEIN MDM2 AND HUMAN CANCER-INHIBITING PROTEIN p53, AND USE THEREOF

Publications (1)

Publication Number Publication Date
WO2010058819A1 true WO2010058819A1 (en) 2010-05-27

Family

ID=42198258

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/069644 WO2010058819A1 (en) 2008-11-19 2009-11-19 Peptide capable of inhibiting interaction between human tumor protein mdm2 and human tumor suppression protein p53, and use thereof

Country Status (2)

Country Link
JP (1) JP2010120881A (en)
WO (1) WO2010058819A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012008302A1 (en) * 2010-07-12 2012-01-19 国立大学法人鳥取大学 Method for preparing novel hipsc by means of mirna introduction
US8859723B2 (en) 2010-08-13 2014-10-14 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US8889632B2 (en) 2007-01-31 2014-11-18 Dana-Farber Cancer Institute, Inc. Stabilized p53 peptides and uses thereof
US8927500B2 (en) 2012-02-15 2015-01-06 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US8987414B2 (en) 2012-02-15 2015-03-24 Aileron Therapeutics, Inc. Triazole-crosslinked and thioether-crosslinked peptidomimetic macrocycles
US9096684B2 (en) 2011-10-18 2015-08-04 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9604919B2 (en) 2012-11-01 2017-03-28 Aileron Therapeutics, Inc. Disubstituted amino acids and methods of preparation and use thereof
WO2017201449A1 (en) 2016-05-20 2017-11-23 Genentech, Inc. Protac antibody conjugates and methods of use
US10023613B2 (en) 2015-09-10 2018-07-17 Aileron Therapeutics, Inc. Peptidomimetic macrocycles as modulators of MCL-1
US10253067B2 (en) 2015-03-20 2019-04-09 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
US10301351B2 (en) 2007-03-28 2019-05-28 President And Fellows Of Harvard College Stitched polypeptides
US10471120B2 (en) 2014-09-24 2019-11-12 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
US10905739B2 (en) 2014-09-24 2021-02-02 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and formulations thereof
US11091522B2 (en) 2018-07-23 2021-08-17 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
WO2023056069A1 (en) 2021-09-30 2023-04-06 Angiex, Inc. Degrader-antibody conjugates and methods of using same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CHENE, P.: "Inhibiting the p53-MDM2 interaction: an important target for cancer therapy", NAT. REV. CANCER, vol. 3, no. 2, 2003, pages 102 - 9 *
HIROKAZU SHIHEIDO ET AL.: "In vitro virus-ho o Mochiita MDM2 Ketsugo Peptide no Screening", DAI 30 KAI ANNUAL MEETING OF THE MOLECULAR BIOLOGY SOCIETY OF JAPAN - DAI 80 KAI THE JAPANESE BIOCHEMICAL SOCIETY TAIKAI GODO TAIKAI KOEN YOSHISHU, 2007, pages ABSTR. - 2P-1499 *

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8889632B2 (en) 2007-01-31 2014-11-18 Dana-Farber Cancer Institute, Inc. Stabilized p53 peptides and uses thereof
US9527896B2 (en) 2007-01-31 2016-12-27 Dana-Farber Cancer Institute, Inc. Stabilized p53 peptides and uses thereof
US10301351B2 (en) 2007-03-28 2019-05-28 President And Fellows Of Harvard College Stitched polypeptides
US9476041B2 (en) 2010-07-12 2016-10-25 National University Corporation Tottori University Method for producing novel hipsc by means of siRNA introduction
WO2012008302A1 (en) * 2010-07-12 2012-01-19 国立大学法人鳥取大学 Method for preparing novel hipsc by means of mirna introduction
JP2013046616A (en) * 2010-07-12 2013-03-07 Tottori Univ Method for producing new hipsc by means of sirna introduction
JP2014097059A (en) * 2010-07-12 2014-05-29 Tottori Univ METHOD FOR MAKING NEW hiPSC BY INTRODUCING miRNA
JP5099571B2 (en) * 2010-07-12 2012-12-19 国立大学法人鳥取大学 New hiPSC production method by miRNA introduction
JP5099570B2 (en) * 2010-07-12 2012-12-19 国立大学法人鳥取大学 New hiPSC production method by siRNA introduction
US9790491B2 (en) 2010-07-12 2017-10-17 National University Corporation Tottori University Method for producing novel hiPSC by means of miRNA introduction
JP2013034479A (en) * 2010-07-12 2013-02-21 Tottori Univ METHOD FOR PRODUCING NEW hiPSC BY INTRODUCING miRNA
WO2012008301A1 (en) * 2010-07-12 2012-01-19 国立大学法人鳥取大学 Method for producing novel hipsc by means of sirna introduction
US8859723B2 (en) 2010-08-13 2014-10-14 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9957299B2 (en) 2010-08-13 2018-05-01 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US10703780B2 (en) 2010-08-13 2020-07-07 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US11008366B2 (en) 2010-08-13 2021-05-18 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9522947B2 (en) 2011-10-18 2016-12-20 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9096684B2 (en) 2011-10-18 2015-08-04 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US10308699B2 (en) 2011-10-18 2019-06-04 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US9505804B2 (en) 2012-02-15 2016-11-29 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US8987414B2 (en) 2012-02-15 2015-03-24 Aileron Therapeutics, Inc. Triazole-crosslinked and thioether-crosslinked peptidomimetic macrocycles
US8927500B2 (en) 2012-02-15 2015-01-06 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US10213477B2 (en) 2012-02-15 2019-02-26 Aileron Therapeutics, Inc. Peptidomimetic macrocycles
US10227380B2 (en) 2012-02-15 2019-03-12 Aileron Therapeutics, Inc. Triazole-crosslinked and thioether-crosslinked peptidomimetic macrocycles
US9604919B2 (en) 2012-11-01 2017-03-28 Aileron Therapeutics, Inc. Disubstituted amino acids and methods of preparation and use thereof
US10669230B2 (en) 2012-11-01 2020-06-02 Aileron Therapeutics, Inc. Disubstituted amino acids and methods of preparation and use thereof
US9845287B2 (en) 2012-11-01 2017-12-19 Aileron Therapeutics, Inc. Disubstituted amino acids and methods of preparation and use thereof
US10471120B2 (en) 2014-09-24 2019-11-12 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
US10905739B2 (en) 2014-09-24 2021-02-02 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and formulations thereof
US10253067B2 (en) 2015-03-20 2019-04-09 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
US10023613B2 (en) 2015-09-10 2018-07-17 Aileron Therapeutics, Inc. Peptidomimetic macrocycles as modulators of MCL-1
WO2017201449A1 (en) 2016-05-20 2017-11-23 Genentech, Inc. Protac antibody conjugates and methods of use
US11091522B2 (en) 2018-07-23 2021-08-17 Aileron Therapeutics, Inc. Peptidomimetic macrocycles and uses thereof
WO2023056069A1 (en) 2021-09-30 2023-04-06 Angiex, Inc. Degrader-antibody conjugates and methods of using same

Also Published As

Publication number Publication date
JP2010120881A (en) 2010-06-03

Similar Documents

Publication Publication Date Title
WO2010058819A1 (en) Peptide capable of inhibiting interaction between human tumor protein mdm2 and human tumor suppression protein p53, and use thereof
JP6785932B2 (en) Modulation of the constructed polypeptide specificity
RU2693487C2 (en) Peptides capable of reactivating p53 mutants
Solomons et al. Structural basis for ESCRT-III CHMP3 recruitment of AMSH
AU2018241110A1 (en) Method of determining, identifying or isolating cell-penetrating peptides
US20180372750A1 (en) Antibody and antibody mimetic for visualization and ablation of endogenous proteins
Ash et al. Conserved β-hairpin recognition by the GYF domains of Smy2 and GIGYF2 in mRNA surveillance and vesicular transport complexes
WO2013036208A1 (en) P53 activating peptides
JP2008516210A (en) Protein complexes for use in therapy, diagnosis and chromatography
WO2009067191A2 (en) Methods and compositions for the treatment of hepatitis c virus (hcv) infection
US20230265126A1 (en) Ubiquitin high affinity cyclic peptides and methods of use thereof
JP2018064573A (en) Methods for preparing high throughput peptidomimetics, orally bioavailable drugs, and compositions containing the same
US20090247455A1 (en) Isolation of Inhibitors of IRES-Mediated Translation
EP4294913A1 (en) Fusion proteins comprising two ring domains
US20130022590A1 (en) Compositions Comprising Zinc Finger Domains and Uses Therefor
JP4953046B2 (en) A novel functional peptide creation system that combines a random peptide library or a peptide library that mimics an antibody hypervariable region and an in vitro peptide selection method using RNA-binding proteins
Franck et al. Discovery and characterization of cyclic peptides selective for the C-terminal bromodomains of BET family proteins
WO2012082069A1 (en) Protein aptamers based on unstructured scaffold proteins
JP5961380B2 (en) Peptide, fusion protein, nucleic acid, expression vector, transformant, pharmaceutical composition, antibody protein
WO2011097633A2 (en) Egf receptor mimicking peptides
CN112423779A (en) Peptides for the treatment of retinitis pigmentosa
US7879578B2 (en) Self-assembled proteins and related methods and protein structures
CN106319020B (en) Application of p97 gene in treating virus infection and related medicine
JPWO2006062173A1 (en) Bcl-xL heterodimer-inhibiting peptide that promotes anticancer drug action and screening method thereof
JPWO2012161227A1 (en) Nucleic acid construct, nucleic acid-protein complex, and use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09827600

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09827600

Country of ref document: EP

Kind code of ref document: A1