WO2010056077A2 - High-hardness coating powder, and preparation method thereof - Google Patents

High-hardness coating powder, and preparation method thereof Download PDF

Info

Publication number
WO2010056077A2
WO2010056077A2 PCT/KR2009/006719 KR2009006719W WO2010056077A2 WO 2010056077 A2 WO2010056077 A2 WO 2010056077A2 KR 2009006719 W KR2009006719 W KR 2009006719W WO 2010056077 A2 WO2010056077 A2 WO 2010056077A2
Authority
WO
WIPO (PCT)
Prior art keywords
powder
salt
high hardness
base material
producing
Prior art date
Application number
PCT/KR2009/006719
Other languages
French (fr)
Korean (ko)
Other versions
WO2010056077A9 (en
WO2010056077A3 (en
Inventor
박희섭
류민호
엠 다우쉬왈리드
홍순형
Original Assignee
일진다이아몬드(주)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 일진다이아몬드(주) filed Critical 일진다이아몬드(주)
Publication of WO2010056077A2 publication Critical patent/WO2010056077A2/en
Publication of WO2010056077A3 publication Critical patent/WO2010056077A3/en
Publication of WO2010056077A9 publication Critical patent/WO2010056077A9/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D127/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • C09C1/36Compounds of titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82BNANOSTRUCTURES FORMED BY MANIPULATION OF INDIVIDUAL ATOMS, MOLECULES, OR LIMITED COLLECTIONS OF ATOMS OR MOLECULES AS DISCRETE UNITS; MANUFACTURE OR TREATMENT THEREOF
    • B82B3/00Manufacture or treatment of nanostructures by manipulation of individual atoms or molecules, or limited collections of atoms or molecules as discrete units
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/60Optical properties, e.g. expressed in CIELAB-values

Definitions

  • the present invention relates to a high hardness coating powder and a method for producing the same, and more particularly, to a method for easily coating a coating material on the surface of a base material and a powder produced by the method.
  • the cutting tool wears as the cutting process continues.
  • the cutting tool is therefore formed using a hard material.
  • a cutting tool is formed by mixing and sintering a base metal such as diamond and a metal.
  • the bonding force between the base metal and the metal is important for the durability of the cutting tool.
  • the sintering temperature is a high temperature, high temperature safety of the base material and prevention of oxidation of the base material surface are important.
  • the surface of the base material can be coated to prevent oxidation, to improve the bonding strength with the metal, and to improve the high temperature safety.
  • the base material agglomerates during the process of coating the coating material on the surface of the base material, and the coating material is unevenly coated on the surface of the base material, thereby coating the high hardness coating powder. There was a limit to getting.
  • This invention can provide the high hardness coating powder which can coat
  • the present invention comprises the steps of (a) dissolving the first salt of chlorine (Cl) series, the second salt of fluorine (F) series in a solvent to form a solution, (b) a coating material containing a base material and titanium in the solution Mixing and drying, (c) placing the mixture obtained in step (b) into a reactor and (d) maintaining the reactor after heating to a predetermined temperature to melt the first salt and the second salt.
  • a method for preparing a high hardness coating powder comprising the step of causing a molten salt reaction to occur.
  • the first salt may include at least two selected from the group consisting of KCl, NaCl, and BaCl 2.
  • the second salt may include at least one selected from the group consisting of NaF, K 2 TiF 6 and NaK 2 TiF 6 .
  • the solvent may include ethanol.
  • the step (d) may proceed at 800 °C to 1000 °C.
  • the step (d) may proceed with the reaction while stirring the inside of the reactor in an Ar gas atmosphere.
  • the step (d) may be followed by the step of sonicating the powder obtained after the molten salt reaction in the reactor in distilled water and reacting with a hydrochloric acid solution.
  • step (d) may further comprise the step of removing the remaining coating material by a wet filling method.
  • step (d) may include the step of proceeding the crystallization by heat treatment in a hydrogen atmosphere.
  • the base material powder may include one selected from the group consisting of diamond, cubic boron nitride, and carbon nanotubes.
  • the high hardness coating powder and the manufacturing method thereof according to the present invention can uniformly coat the coating material on the surface of the base material including the fine particles to obtain a high hardness coating powder having improved strength, improved surface properties and excellent high temperature safety.
  • FIG. 1 is a flowchart sequentially illustrating a method for producing a high hardness coated powder of the present invention.
  • FIG. 2 is a diagram schematically illustrating an apparatus for describing the manufacturing method of FIG. 1 of FIG. 1.
  • FIG. 3 is an enlarged view of a portion A of FIG. 1.
  • FIG. 4 is a photograph obtained by measuring an electron microscope of a powder formed according to a method of preparing a high hardness coating powder according to an embodiment of the present invention.
  • FIG. 5 is a diagram illustrating an X-ray diffraction pattern of the powder of FIG. 4.
  • FIG. 6 is a diagram of a powder formed according to a method for preparing high hardness coated powder according to another embodiment of the present invention, measured by an electron microscope.
  • FIG. 6 is a diagram of a powder formed according to a method for preparing high hardness coated powder according to another embodiment of the present invention, measured by an electron microscope.
  • FIG. 7 is a diagram illustrating an X-ray diffraction pattern of the powder of FIG. 6.
  • FIG. 8 is a cross-sectional view of the powder of FIG. 6 using a focused ion beam (FIB).
  • FIB focused ion beam
  • FIG. 9 is a cross-sectional view of the powder of FIG. 6 using a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • FIG. 10 is a diagram illustrating a measured component of part B of FIG. 9.
  • FIG. 11 is a cross-sectional view of the powder of FIG. 6 after heat treatment using a transmission electron microscope.
  • FIG. 12 illustrates the limited field of view diffraction pattern of FIG. 11.
  • FIG. 14 is a view of a powder formed by a transmission electron microscope of a powder formed according to a method for producing a high hardness coated powder according to another embodiment of the present invention.
  • FIG. 15 is an enlarged view of C of FIG. 14.
  • FIG. 16 is a diagram illustrating a limited field of view diffraction pattern of the powder of FIG. 14.
  • stirrer 205 gas inlet
  • FIG. 1 is a flow chart sequentially showing a method for producing a high hardness coating powder of the present invention and FIG. 2 is a view schematically showing an apparatus for explaining the manufacturing method of FIG. 1 of FIG.
  • the first salt and the second salt are dissolved in a solvent to form a solution (101), and the base material and the coating material are mixed in a solution (102). ), Drying (103), placing the dried mixture into the reactor (104), heating and maintaining the reactor (105), removing residual salt (106), removing the residual coating material 107 and heat treating step 108.
  • the first salt is a chlorine-based salt and includes at least two selected from the group consisting of KCl, NaCl and BaCl 2.
  • two or more salts are selected to lower the melting temperature and ensure uniform distribution of the molten salt and high temperature safety.
  • the first salt may comprise two or more salts. That is, the first salt may be KCl and NaCl, NaCl and BaCl 2, and KCl and BaCl 2.
  • the first salt may also be KCL and NaCl and BaCl 2.
  • the second salt comprises at least one selected from the group consisting of NaF, K 2 TiF 6 and NaK 2 TiF 6 .
  • the base material has particles of several micrometers or less and can be formed by using various materials.
  • the base material includes any one selected from the group consisting of diamond, cubic boron nitride, and carbon nanotubes having excellent hardness.
  • the coating includes titanium. Titanium is coated on the surface of the base material particles containing diamond to prevent oxidation of the surface of the base material particles, to ensure safety at high temperatures, and to improve the bonding force between the base powder and the metal powder in forming a cutting tool later.
  • the coating can be prepared in various forms. That is, the coating material may be in the form of powder, foil, pellets. However, the coating material is preferably in the form of a powder so that uniform melting occurs easily in the reactor.
  • the second salt is dissolved in a solvent to form a solution.
  • the solvent may be ethanol.
  • the base metal powder containing diamond is then added to the solution and the coating material containing titanium is added to the solution.
  • This mixed solution is then stirred to make it homogeneous and dried to form a mixed powder.
  • the particle size of the base metal powder containing diamond is several micrometers or less. Preferably they are 5 nanometers or more and 5 micrometers or less.
  • the particle size of the base metal powder containing diamond is preferably 5 nanometers or more.
  • the particle size of the base metal powder containing diamond exceeds 5 micrometers, the toughness of the cutting tool is reduced when forming the cutting tool using the base material. Therefore, the particle size of the base metal powder containing diamond is preferably 5 micrometers or less.
  • the base material particles agglomerate with each other by van der Waals' force in the process of coating the surface of the base material particles with a coating material.
  • the second salt, the base material and the coating material are dissolved by using ethanol to form a solution.
  • a uniform dispersion of each particle occurs during the process of forming the solution and then stirring it evenly.
  • FIG. 2 schematically illustrates a reactor in which mixed powder is added and a process is performed.
  • the reactor 200 includes an electric furnace 201, a crucible 202, a thermocouple 203, an agitator 204, a gas inlet 204, and a gas outlet 205.
  • the mixed powder described above is placed in the crucible 202.
  • the mixed powder in the crucible 202 may be melted by supplying heat from the electric furnace 201 surrounding the crucible 202.
  • the electric furnace 201 is a method of supplying heat using electric energy.
  • the present invention is not limited thereto, and various types of heat sources may be used as long as the heat necessary for melting the mixed powder of the crucible 202 can be supplied.
  • the thermocouple 203 may be used to measure the temperature in the process of melting and stirring the mixed powder and to adjust the heat supply amount of the electric furnace 201 for supplying heat to the crucible 202.
  • the mixed powder is melted so that the reaction of melting the first salt and the second salt occurs at 800 ° C to 1000 ° C.
  • the melting temperature of a 1st salt, a 2nd salt is about 600 degreeC or more.
  • the reaction rate due to diffusion of titanium atoms when the coating material containing titanium is melted is proportional to the temperature.
  • the reaction rate due to diffusion of titanium atoms is reduced, and the uniformity of the coating layer formed after the coating material is coated on the base material is reduced. Therefore, the reaction in which the mixed powder is melted to melt the first salt and the second salt is controlled to occur at 800 ° C. or higher.
  • the stirrer 204 allows the first salt, the second salt, the base material and the coating material to be evenly stirred when the mixed powder is melted.
  • the stirrer 204 preferably has the form of an impeller.
  • Argon (Ar) gas is introduced and discharged through the gas inlet 205 and the gas outlet 206. Through this, the melting reaction of the mixed powder in the crucible may proceed in an inert atmosphere.
  • FIG. 3 is an enlarged view of A of FIG. 2. Referring to FIG. 3, the base material 320 and the coating material 330 are evenly distributed in the molten salt 310 in which the first salt and the second salt are melted.
  • the mixed powder is melted and maintained for a period of time, and the coating material is oxidized and reduced in a molten salt to coat the coating material on the surface of the base material. Specifically, the following reactions occur sequentially.
  • the coating material is melted in the molten salt in which the first salt and the second salt are molten to cause a reaction in the above reaction (1).
  • the reaction of Ti + Ti 4+ -> 2Ti 2 occurs in the molten salt because the second salt forms tetravalent titanium ions.
  • reaction of (3) occurs on the surface of the base material. That is, diamond and titanium react at a high temperature on the surface of the particles of the base metal including diamond to form titanium carbide. That is, the coating powder which coat
  • the coated powder recovered from the crucible 202 is in a lump state immediately after the high temperature melting process is finished. In addition, since the remaining salts and coating materials aggregate together with the coating powder without reacting with the base metal in the melting process, a process of separating these is necessary.
  • the coating powder, the remaining salt and the powder containing the remaining coating material are put in distilled water and stirred. Ultrasonication is then performed to remove any remaining salt. At this time, after the sonication, a hydrochloric acid solution may be added to proceed the process quickly and easily.
  • the remaining coating material powder can be easily removed through the wet coloring.
  • the remaining titanium powder and the coating powder are agglomerated in a liquid such as distilled water to fill the liquid powder to remove the remaining titanium powder.
  • the coated powder is then recovered by vacuum filtering. That is, the diamond powder coated with titanium is recovered.
  • the recovered coating powder is heat-treated after drying in a vacuum atmosphere.
  • the heat treatment is performed in a hydrogen atmosphere at a temperature of 800 ° C. or higher. Through this, titanium carbide formed on the surface of the base material is crystallized, and adhesion between the base material and the coating material is improved and durability is improved.
  • FIG. 4 is a photograph obtained by measuring an electron microscope of a powder formed according to a method of preparing a high hardness coated powder according to an embodiment of the present invention
  • FIG. 5 is an X-ray diffraction pattern of the powder of FIG. 4. Drawing.
  • KCl, NaCl and BaCl 2 were used as the first salt, and NaF and NaK 2 TiF 6 were used as the second salt.
  • KCl, NaCl and BaCl 2 were each prepared with 10 g, and 10 g of NaF and 5 g of NaK 2 TiF 6 were prepared.
  • the base material contains diamond, and the diamond particles have a size of 1.5 micrometers or less.
  • the coating material was prepared 2g of titanium in powder form and the titanium powder was to have a particle size of 100mesh.
  • FIG. 4 (a) is a diamond powder before using the manufacturing method according to the present embodiment
  • Figure 4 (b) is a diamond powder coated with a coating material by the manufacturing method according to the present embodiment
  • Figure 4 (c) Is a scanning electron microscope (SEM) photograph which shows enlarged FIG. 4 (b).
  • Fig. 5 (a) shows the diamond powder before coating by the manufacturing method according to the present embodiment
  • Fig. 5 (b) shows the diamond powder after coating with the manufacturing method according to the present embodiment.
  • the peaks indicated by the inverted triangle are present in both (a) and (b) of FIG. 5, indicating the diamond component.
  • the peaks indicated by circles are present only in Fig. 5 (b), which indicates titanium carbide.
  • FIG. 6 is a diagram illustrating a powder formed according to a method of preparing a high hardness coated powder according to another embodiment of the present invention with an electron microscope
  • FIG. 7 is a diagram illustrating an X-ray diffraction pattern of the powder of FIG. 6.
  • This embodiment has a difference in that the base material using cubic boron nitride rather than diamond as compared with the above-described embodiment.
  • first and second salts are dissolved in a solvent to form a solution.
  • the solvent may be ethanol.
  • the base metal powder containing cubic boron nitride is put into the solution, and the coating material containing titanium is put into the solution.
  • This mixed solution is then stirred to make it homogeneous and dried to form a mixed powder.
  • the particle size of the base metal powder containing cubic boron nitride is several micrometers or less. Preferably they are 50 nanometers or more and 5 micrometers or less.
  • the particle size of the base metal powder containing cubic boron nitride is preferably 50 nanometers or more.
  • the particle size of the base metal powder containing cubic boron nitride is preferably 5 micrometers or less.
  • the mixed powder is melted and maintained for a period of time, so that the coating material is oxidized and reduced in the molten salt so that the coating material is coated on the surface of the base material. Specifically, the following reactions occur.
  • the coating material is melted in the molten salt in which the first salt and the second salt are molten to cause a reaction in the above reaction (1).
  • the reaction of Ti + Ti 4+ -> 2Ti 2 occurs in the molten salt because the second salt forms tetravalent titanium ions.
  • reaction occurs in the above reaction on the surface of the base metal powder. That is, titanium divalent ions formed in the molten salt are reduced on the surface of the base material.
  • reaction of (3) occurs on the surface of the base material. That is, boron and titanium, nitrogen and titanium react at a high temperature on the surface of the base material particles containing cubic boron nitride to form titanium boride and titanium nitride.
  • FIG. 6 (a) is a cubic boron nitride powder before using the manufacturing method according to the present embodiment
  • Figure 6 (b) is a cubic boron nitride powder coated with a coating material in the manufacturing method according to the present embodiment
  • Fig. 6 (c) is a scanning electron microscope (SEM) photograph showing an enlarged view of FIG. 6 (b).
  • FIG. 7 shows a cubic boron nitride powder before coating by the manufacturing method which concerns on a present Example
  • FIG. 7 (b) shows the cubic boron nitride powder after coating by a manufacturing method which concerns on a present Example.
  • the peaks indicated by the inverted triangle are present in both (a) and (b) of FIG. 7, indicating a cubic boron nitride component.
  • the peaks indicated by circles are present only in FIG. 7B, which indicates titanium nitride.
  • FIG. 8 is a cross-sectional view of the powder of FIG. 6 using a focused ion beam (FIB).
  • FIB focused ion beam
  • a coating layer containing titanium formed on the surface of the cubic boron nitride is uniformly formed.
  • a part indicated by a) is a layer for protecting the surface of the sample from the focused ion beam FIB with a protective layer formed of platinum Pt for experiment.
  • Figure 8 b) is the coating layer and in Figure 8 c) is the base material.
  • the coating layer has a thickness of 200 nm.
  • FIG. 9 is a diagram illustrating a cross section of the powder of FIG. 6 using a transmission electron microscope (TEM), and FIG. 10 is a diagram illustrating a component of part B of FIG. 9.
  • TEM transmission electron microscope
  • FIG. 9 shows a base material part, (c) shows a covering layer part, and (b) shows the boundary of a base material and a covering layer. It is a graph which shows the component analysis result of each part.
  • (a) is boron, (b) is nitrogen, (c) is oxygen, and (d) is titanium.
  • the base material includes a cubic boron nitride, nitrogen, boron is the main component.
  • titanium as a coating material increases, and titanium is most present at the coating layer (c).
  • FIG. 11 is a cross-sectional view of the powder of FIG. 6 after heat treatment using a transmission electron microscope
  • FIG. 12 is a view illustrating the limited field diffraction pattern of FIG. 11.
  • a) indicates the base material
  • b) indicates the coating layer.
  • the titanium containing coating layer has a polycrystalline structure composed of crystals having a size of several tens of nanometers or less.
  • the left Y-axis coordinate of FIG. 13 indicates that the heat flux is measured by differential scanning calorimetry (DSC), and shows that the heat flux decreases as the temperature increases, and the right Y-axis of FIG.
  • the coordinates are values obtained by differentiating the heat flow rate value of the left Y coordinate, and change in value according to a minute temperature change.
  • the glass transition temperature is about 950 °C. This means that the coating layer containing titanium on the cubic boron nitride surface was crystallized at around 950 ° C in an amorphous state.
  • the present invention can easily form a coating layer crystallized as described above by heat-treating the coated base material powder in a hydrogen atmosphere.
  • FIG. 14 is a view of a powder formed according to a method of preparing a high hardness coated powder according to another embodiment of the present invention with a transmission electron microscope
  • FIG. 15 is an enlarged view of C of FIG. 14.
  • FIG. 16 is a diagram illustrating a limited field of view diffraction pattern of the powder of FIG. 14.
  • This embodiment has a difference in that the base material using carbon nanotubes other than diamond or cubic boron nitride as compared with the above-described embodiment.
  • first and second salts are dissolved in a solvent to form a solution.
  • the solvent may be ethanol.
  • the base material containing the carbon nanotubes is then added to the solution and the coating material containing titanium is added to the solution.
  • This mixed solution is then stirred to make it homogeneous and dried to form a mixed powder.
  • the particle size of the base metal powder containing the carbon nanotubes is several micrometers or less. Preferably they are 5 nanometers or more and 50 nanometers or less.
  • the particle size of the base metal powder containing carbon nanotubes is less than 5 nanometers, the base metal powder particles are not dispersed well due to van der Waals' forces between the respective base metal powder particles, and aggregation occurs between the particles. There is a limit to coating the coating material. Therefore, the particle size of the base metal powder containing diamond is preferably 5 nanometers or more.
  • the particle size of the base metal powder containing the carbon nanotubes is preferably 5 micrometers or less.
  • the mixed powder is melted and maintained for a period of time so that the coating material undergoes oxidation and reduction reactions in the molten salt so that the coating material is coated on the surface of the base material. Specifically, the following reactions occur.
  • the coating material is melted in the molten salt in which the first salt and the second salt are molten to cause a reaction in the above reaction (1).
  • the reaction of Ti + Ti 4+ -> 2Ti 2 occurs in the molten salt because the second salt forms tetravalent titanium ions.
  • reaction occurs in the above reaction on the surface of the base metal powder. That is, titanium divalent ions formed in the molten salt are reduced on the surface of the base material.
  • reaction of (3) occurs on the surface of the base material. That is, carbon and titanium react at a high temperature on the surface of the particles of the base metal including the carbon nanotubes to form titanium carbide.
  • a coating layer is formed on the surface of the carbon nanotube as the base material.
  • the titanium-containing coating material is coated on the surface of the carbon nanotube to form titanium carbide in the coating layer.
  • titanium was evenly coated on the surface of the fine cubic boron nitride particles by the manufacturing method according to the present embodiment.
  • Carbon nanotubes have been studied for use in cutting tools as materials having high strength, high modulus of elasticity, high conductivity, and high thermal conductivity. However, when carbon nanotubes are used as the base material, evenly dispersed and bonding strength at the interface with the coating material is a problem.
  • the coating material containing titanium can be uniformly coat

Abstract

The present invention provides a method for preparing of high-hardness coating powder to easily coat the surface of a base with a coating material, said method comprising the steps of (a) dissolving a first chlorine (Cl)-based salt and a second fluorine (F)-based salt into a solvent to obtain a solution, (b) mixing a base, and a coating material containing titanium, with the solution, and drying the mixture, (c) putting the mixture obtained in said step (b) into a reaction furnace, and (d) heating the reaction furnace at a predetermined temperature, and keeping the reaction furnace at said predetermined temperature to cause a molten salt reaction wherein said first salt and said second salt are molten. The present invention also provides a high-hardness coating powder prepared by said method.

Description

고경도 피복 분말 및 그 제조 방법High hardness coating powder and its manufacturing method
본 발명은 고경도 피복 분말 및 그 제조 방법에 관한 것으로 더 자세하게는 모재의 표면에 피복재를 용이하게 피복하는 방법 및 그 방법에 의하여 제조된 분말에 관한 것이다. The present invention relates to a high hardness coating powder and a method for producing the same, and more particularly, to a method for easily coating a coating material on the surface of a base material and a powder produced by the method.
절삭 공구는 지속적인 절삭 공정을 진행함에 따라 마모가 일어난다. 그러므로 절삭 공구는 고경도 물질을 이용하여 형성한다. 통상적으로 다이아몬드와 같은 모재와 금속을 혼합 및 소결하여 절삭 공구를 형성한다.The cutting tool wears as the cutting process continues. The cutting tool is therefore formed using a hard material. Typically, a cutting tool is formed by mixing and sintering a base metal such as diamond and a metal.
절삭 공구의 내구성을 위하여 모재와 금속의 결합력은 중요하다. 또한 소결 온도는 고온이므로 모재의 고온 안전성 및 모재 표면의 산화 방지가 중요하다.The bonding force between the base metal and the metal is important for the durability of the cutting tool. In addition, since the sintering temperature is a high temperature, high temperature safety of the base material and prevention of oxidation of the base material surface are important.
이를 위하여 모재와 금속을 혼합하여 소결하기 전에 모재의 표면에 피복층을 형성하는 기술이 연구되어 왔다. 모재의 표면을 피복하여 산화를 방지하고 금속과의 결합력을 향상하고 고온 안전성을 향상할 수 있다.To this end, techniques for forming a coating layer on the surface of the base material before mixing and sintering the base metal and metal have been studied. The surface of the base material can be coated to prevent oxidation, to improve the bonding strength with the metal, and to improve the high temperature safety.
그러나 모재의 입자가 서브 마이크로미터 즉 수 나노미터 내지 수 마이크로 미터의 미세 입자인 경우 모재의 표면에 피복재를 피복하는 공정 중 모재가 응집하고, 모재의 표면에 불균일하게 피복재가 피복되어 고경도 피복 분말을 얻는데 한계가 있었다.However, when the particles of the base material are sub-micrometers, that is, fine particles of several nanometers to several micrometers, the base material agglomerates during the process of coating the coating material on the surface of the base material, and the coating material is unevenly coated on the surface of the base material, thereby coating the high hardness coating powder. There was a limit to getting.
본 발명은 모재의 표면에 용이하게 피복재를 피복할 수 있는 고경도 피복 분말 및 그 제조 방법을 제공할 수 있다.This invention can provide the high hardness coating powder which can coat | cover a coating material on the surface of a base material, and its manufacturing method.
본 발명은 (a)염소(Cl)계열의 제1 염, 불소(F)계열의 제2 염을 용매에 녹여 용액을 형성하는 단계, (b)상기 용액에 모재, 티타늄을 함유하는 피복재를 넣어서 혼합하고 건조하는 단계, (c)상기 (b)단계에서 얻은 혼합물을 반응로에 넣는 단계 및 (d)상기 반응로를 소정의 온도로 가열 후 유지하여 상기 제1 염 및 상기 제2염이 용융되는 용융염 반응이 일어나는 단계를 포함하는 고경도 피복 분말의 제조 방법을 개시한다.The present invention comprises the steps of (a) dissolving the first salt of chlorine (Cl) series, the second salt of fluorine (F) series in a solvent to form a solution, (b) a coating material containing a base material and titanium in the solution Mixing and drying, (c) placing the mixture obtained in step (b) into a reactor and (d) maintaining the reactor after heating to a predetermined temperature to melt the first salt and the second salt. Disclosed is a method for preparing a high hardness coating powder comprising the step of causing a molten salt reaction to occur.
본 발명에 있어서 상기 제1 염은 KCl, NaCl 및 BaCl2로 이루어지는 군으로부터 선택된 적어도 두 개를 포함할 수 있다.In the present invention, the first salt may include at least two selected from the group consisting of KCl, NaCl, and BaCl 2.
본 발명에 있어서 상기 제2 염은 NaF, K2TiF6 및 NaK2TiF6로 이루어지는 군으로부터 선택된 적어도 어느 하나를 포함할 수 있다.In the present invention, the second salt may include at least one selected from the group consisting of NaF, K 2 TiF 6 and NaK 2 TiF 6 .
본 발명에 있어서 상기 용매는 에탄올을 포함할 수 있다.In the present invention, the solvent may include ethanol.
본 발명에 있어서 상기 (d)단계는 800℃ 내지 1000℃에서 진행할 수 있다.In the present invention, the step (d) may proceed at 800 ℃ to 1000 ℃.
본 발명에 있어서 상기 (d)단계는 Ar 기체 분위기에서 상기 반응로 내부를 교반하면서 반응을 진행할 수 있다.In the present invention, the step (d) may proceed with the reaction while stirring the inside of the reactor in an Ar gas atmosphere.
본 발명에 있어서 상기 (d)단계를 진행하고 나서 상기 반응로에서 용융염 반응 후에 얻어진 분말을 증류수에 넣은 후 초음파 처리를 하는 단계 및 염산 용액과 반응하는 단계를 포함할 수 있다.In the present invention, the step (d) may be followed by the step of sonicating the powder obtained after the molten salt reaction in the reactor in distilled water and reacting with a hydrochloric acid solution.
본 발명에 있어서 상기 (d)단계를 진행하고 나서 습식 채질 방법으로 잔류하는 상기 피복재를 제거하는 단계를 더 포함할 수 있다.In the present invention, after the step (d) may further comprise the step of removing the remaining coating material by a wet filling method.
본 발명에 있어서 상기 (d)단계를 진행하고 나서 수소 분위기에서 열처리하여 결정화를 진행하는 단계를 포함할 수 있다.In the present invention, after the step (d) may include the step of proceeding the crystallization by heat treatment in a hydrogen atmosphere.
본 발명에 있어서 상기 모재 분말은 다이아몬드, 입방정 질화붕소 및 탄소나노튜브로 이루어지는 군으로부터 선택된 어는 하나를 포함할 수 있다.In the present invention, the base material powder may include one selected from the group consisting of diamond, cubic boron nitride, and carbon nanotubes.
본 발명의 다른 측면에 따르면 상기 방법 중 하나의 항의 제조 방법에 의하여 제조된 고경도 피복 분말을 개시한다.According to another aspect of the present invention there is disclosed a high hardness coating powder produced by the method of any one of the above methods.
본 발명에 관한 고경도 피복 분말 및 그 제조 방법은 미세 입자를 포함하는모재의 표면에 피복재를 균일하게 피복하여 강도가 향상되고 표면 특성이 향상되고 고온 안전성이 우수한 고경도 피복 분말을 얻을 수 있다. The high hardness coating powder and the manufacturing method thereof according to the present invention can uniformly coat the coating material on the surface of the base material including the fine particles to obtain a high hardness coating powder having improved strength, improved surface properties and excellent high temperature safety.
도 1은 본 발명의 고경도 피복 분말의 제조 방법을 순차적으로 도시한 흐름도이다.1 is a flowchart sequentially illustrating a method for producing a high hardness coated powder of the present invention.
도 2는 도 1의 도 1의 제조 방법을 설명하기 위한 장치를 개략적으로 도시한 도면이다.FIG. 2 is a diagram schematically illustrating an apparatus for describing the manufacturing method of FIG. 1 of FIG. 1.
도 3은 도 1의 A를 확대한 도면이다.3 is an enlarged view of a portion A of FIG. 1.
도 4는 본 발명의 일 실시예에 관한 고경도 피복 분말의 제조 방법에 따라 형성된 분말을 전자 현미경으로 측정한 사진이다.FIG. 4 is a photograph obtained by measuring an electron microscope of a powder formed according to a method of preparing a high hardness coating powder according to an embodiment of the present invention. FIG.
도 5는 도 4의 분말의 엑스선(X-ray) 회절 패턴을 도시한 도면이다.FIG. 5 is a diagram illustrating an X-ray diffraction pattern of the powder of FIG. 4.
도 6은 본 발명의 다른 실시예에 관한 고경도 피복 분말의 제조 방법에 따라 형성된 분말을 전자 현미경으로 측정한 도면이다.FIG. 6 is a diagram of a powder formed according to a method for preparing high hardness coated powder according to another embodiment of the present invention, measured by an electron microscope. FIG.
도 7은 도 6의 분말의 엑스선 회절 패턴을 도시한 도면이다.FIG. 7 is a diagram illustrating an X-ray diffraction pattern of the powder of FIG. 6.
도 8은 집속 이온 빔(FIB)을 이용하여 도 6의 분말의 단면을 측정한 도면이다.8 is a cross-sectional view of the powder of FIG. 6 using a focused ion beam (FIB).
도 9는 투과 전자 현미경(TEM)을 이용하여 도 6의 분말의 단면을 측정한 도면이다.9 is a cross-sectional view of the powder of FIG. 6 using a transmission electron microscope (TEM).
도 10은 도 9의 B부분의 성분을 측정하여 도시한 도면이다.FIG. 10 is a diagram illustrating a measured component of part B of FIG. 9.
도 11은 도 6의 분말을 열처리한 뒤에 투과 전자 현미경을 이용하여 단면을 측정한 도면이다.11 is a cross-sectional view of the powder of FIG. 6 after heat treatment using a transmission electron microscope.
도 12는 도 11의 제한 시야 회절 패턴을 도시한 도면이다.FIG. 12 illustrates the limited field of view diffraction pattern of FIG. 11.
도 13은 도 6의 분말의 유리 전이 온도를 설명하기 위한 도면이다.It is a figure for demonstrating the glass transition temperature of the powder of FIG.
도 14는 본 발명의 또 다른 실시예에 관한 고경도 피복 분말의 제조 방법에 따라 형성된 분말을 투과 전자 현미경으로 측정한 도면이다. 14 is a view of a powder formed by a transmission electron microscope of a powder formed according to a method for producing a high hardness coated powder according to another embodiment of the present invention.
도 15는 도 14의 C의 확대도이다.FIG. 15 is an enlarged view of C of FIG. 14.
도 16은 도 14의 분말의 제한 시야 회절 패턴을 도시하는 도면이다.FIG. 16 is a diagram illustrating a limited field of view diffraction pattern of the powder of FIG. 14.
<도면의 주요부분에 대한 부호의 간단한 설명><Brief description of symbols for the main parts of the drawings>
200: 반응로 210: 전기로 200: reactor 210: electric furnace
202: 도가니 203: 열전대 202: crucible 203: thermocouple
204: 교반기 205: 기체 투입구 204: stirrer 205: gas inlet
206: 기체 배출구 310: 용융염 206: gas outlet 310: molten salt
320: 모재 330: 피복재 320: base material 330: covering material
이하 첨부된 도면들에 도시된 본 발명에 관한 실시예를 참조하여 본 발명의 구성 및 작용을 상세히 설명한다.Hereinafter, with reference to the embodiments of the present invention shown in the accompanying drawings will be described in detail the configuration and operation of the present invention.
도 1은 본 발명의 고경도 피복 분말의 제조 방법을 순차적으로 도시한 흐름도이고 도 2는 도 1의 도 1의 제조 방법을 설명하기 위한 장치를 개략적으로 도시한 도면이다.1 is a flow chart sequentially showing a method for producing a high hardness coating powder of the present invention and FIG. 2 is a view schematically showing an apparatus for explaining the manufacturing method of FIG. 1 of FIG.
도 1을 참조하면 본 실시예에 관한 고경도 피복 분말의 제조 방법은 제1 염, 제2 염을 용매에 녹여 용액을 형성하는 단계(101), 용액에 모재, 피복재를 넣어서 혼합하는 단계(102), 건조하는 단계(103), 건조된 혼합물을 반응로에 넣는 단계(104), 반응로를 가열 및 유지하는 단계(105), 잔류염을 제거하는 단계(106), 잔류 피복재를 제거하는 단계(107) 및 열처리 하는 단계(108)를 포함한다.Referring to FIG. 1, in the method of preparing the high hardness coating powder according to the present embodiment, the first salt and the second salt are dissolved in a solvent to form a solution (101), and the base material and the coating material are mixed in a solution (102). ), Drying (103), placing the dried mixture into the reactor (104), heating and maintaining the reactor (105), removing residual salt (106), removing the residual coating material 107 and heat treating step 108.
공정을 진행하기 전 본 실시예에 관한 제조 방법에 필요한 부재들을 준비한다.Before the process proceeds, the members necessary for the manufacturing method according to the present embodiment are prepared.
제1 염은 염소계열의 염으로 KCl, NaCl 및 BaCl2로 이루어지는 군으로부터 선택된 적어도 두 개를 포함한다. 후술하는 대로 염을 용융하는 공정에서 용융 온도를 낮추고 용융염의 균일한 분포와 고온 안전성을 확보하기 위하여 두 개 이상의 염을 선택한다. 즉 제1 염은 2개 이상의 염을 포함할 수 있다. 즉 제1 염은 KCl과 NaCl일 수 있고, NaCl과 BaCl2일 수 있고, KCl과 BaCl2일 수 있다. 또한 제1 염은 KCL과 NaCl 및 BaCl2일 수 있다.The first salt is a chlorine-based salt and includes at least two selected from the group consisting of KCl, NaCl and BaCl 2. In the process of melting the salt as described below, two or more salts are selected to lower the melting temperature and ensure uniform distribution of the molten salt and high temperature safety. That is, the first salt may comprise two or more salts. That is, the first salt may be KCl and NaCl, NaCl and BaCl 2, and KCl and BaCl 2. The first salt may also be KCL and NaCl and BaCl 2.
제2 염은 NaF, K2TiF6 및 NaK2TiF6로 이루어지는 군으로부터 선택된 적어도 어느 하나를 포함한다. The second salt comprises at least one selected from the group consisting of NaF, K 2 TiF 6 and NaK 2 TiF 6 .
모재는 수 마이크로 미터 이하의 크기의 입자를 갖고 다양한 소재를 이용하여 형성할 수 있다. 모재는 경도가 우수한 다이아몬드, 입방정 질화붕소 및 탄소 나노 튜브로 이루어지는 군으로부터 선택된 어느 하나를 포함한다.The base material has particles of several micrometers or less and can be formed by using various materials. The base material includes any one selected from the group consisting of diamond, cubic boron nitride, and carbon nanotubes having excellent hardness.
먼저 설명의 편의를 위하여 모재로 다이아몬드를 사용한 경우의 실시예를 설명하기로 한다.First, for convenience of description, an embodiment of using diamond as a base material will be described.
피복재는 티타늄을 포함한다. 티타늄은 다이아몬드를 포함하는 모재 입자의 표면에 피복되어 모재 입자 표면의 산화를 방지하고 고온에서의 안전성을 확보하게 하고 추후에 절삭 공구 형성 시 모재 분말과 금속 분말의 결합력을 향상한다. 피복재는 다양한 형태로 준비할 수 있다. 즉 피복재는 분말, 호일, 펠렛 형태일 수 있다. 그러나 반응로에서 용이하게 균일한 용융이 일어나도록 피복재는 분말 형태인 것이 바람직하다. The coating includes titanium. Titanium is coated on the surface of the base material particles containing diamond to prevent oxidation of the surface of the base material particles, to ensure safety at high temperatures, and to improve the bonding force between the base powder and the metal powder in forming a cutting tool later. The coating can be prepared in various forms. That is, the coating material may be in the form of powder, foil, pellets. However, the coating material is preferably in the form of a powder so that uniform melting occurs easily in the reactor.
각 소재를 준비하고 나서 먼저 제1 염, 제2 염을 용매에 녹여 용액을 형성한다. 이 때 용매는 에탄올일 수 있다. 그리고 나서 다이아몬드를 함유하는 모재 분말을 용액에 넣고 티타늄을 함유하는 피복재를 용액에 넣는다.After preparing each material, first, the second salt is dissolved in a solvent to form a solution. At this time, the solvent may be ethanol. The base metal powder containing diamond is then added to the solution and the coating material containing titanium is added to the solution.
그리고 나서 이 혼합 용액을 교반하여 균일하게 만들고 건조하여 혼합된 분말을 형성한다.This mixed solution is then stirred to make it homogeneous and dried to form a mixed powder.
다이아몬드를 함유하는 모재 분말의 입자 크기는 수 마이크로 미터 이하이다. 바람직하게는 5 나노미터 이상 5 마이크로 미터 이하이다.The particle size of the base metal powder containing diamond is several micrometers or less. Preferably they are 5 nanometers or more and 5 micrometers or less.
다이아몬드를 함유하는 모재 분말의 입자의 크기가 5 나노미터 미만이면 각모재 분말 입자들간의 반데르발스의 힘에 의하여 모재 분말 입자들간의 분산이 잘 안되고 응집이 일어나 각 모재 분말 입자에 피복재를 피복하는데 한계가 있다. 그래서 다이아몬드를 함유하는 모재 분말의 입자의 크기는 5 나노미터 이상인 것이 바람직하다.If the size of the particles of the base metal powder containing diamond is less than 5 nanometers, due to van der Waals' forces between the base material powder particles, dispersion between the base material powder particles is difficult and aggregation occurs, and the base material powder particles are coated with the coating material. There is a limit. Therefore, the particle size of the base metal powder containing diamond is preferably 5 nanometers or more.
또한 다이아몬드를 함유하는 모재 분말의 입자의 크기가 5 마이크로 미터를초과하면 모재를 이용한 절삭 공구를 형성하는 경우 절삭 공구의 인성이 감소한다. 그러므로 다이아몬드를 함유하는 모재 분말의 입자의 크기는 5 마이크로 미터 이하인 것이 바람직하다. In addition, when the particle size of the base metal powder containing diamond exceeds 5 micrometers, the toughness of the cutting tool is reduced when forming the cutting tool using the base material. Therefore, the particle size of the base metal powder containing diamond is preferably 5 micrometers or less.
모재 분말의 입자 크기가 작기 때문에 모재 입자의 표면에 피복재로 피복하는 과정에서 모재 입자가 서로 반데르발스의 힘 (van der Waals' force)에 의하여 서로 응집하게 된다. Since the particle size of the base material powder is small, the base material particles agglomerate with each other by van der Waals' force in the process of coating the surface of the base material particles with a coating material.
그러나 본 실시예에서는 에탄올을 이용하여 먼저 제1 염, 제2 염, 모재 및 피복재를 녹여 용액을 형성한다. 이를 통하여 각 입자들의 분산을 용이하게 한다. 특히 용액을 형성하고 나서 고르게 교반하는 과정 중에 각 입자의 균일한 분산이 이루어진다. 그리고 건조를 통하여 불필요한 용매 성분을 제거하고 균일한 상태의 제1 염, 제2 염, 모재 및 피복재의 혼합 분말을 형성할 수 있다.However, in this embodiment, first, the second salt, the base material and the coating material are dissolved by using ethanol to form a solution. This facilitates the dispersion of each particle. In particular, a uniform dispersion of each particle occurs during the process of forming the solution and then stirring it evenly. And it is possible to remove unnecessary solvent components through drying to form a mixed powder of the first salt, the second salt, the base material and the coating material in a uniform state.
그리고 나서 혼합 분말을 용융하는 공정을 수행한다. 도 2를 참조하면 혼합 분말을 넣고 공정을 진행하는 반응로를 개략적으로 도시하고 있다.Then, a process of melting the mixed powder is performed. 2 schematically illustrates a reactor in which mixed powder is added and a process is performed.
반응로(200)는 전기로(201), 도가니(202), 열전대(203), 교반기(204), 기체 투입구(204) 및 기체 배출구(205)를 포함한다. 상술한 혼합 분말은 도가니(202)에 넣어진다. 도가니(202)를 감싸는 전기로(201)에서 열을 공급하여 도가니(202)안의 혼합 분말이 용융될 수 있다. 전기로(201)는 전기에너지를 이용하여 열을 공급하는 방식이다. 그러나 본 발명은 이에 제한되지 않고 도가니(202)의 혼합 분말을 용융하는 데 필요한 열을 공급할 수 있으면 다양한 형태의 열원을 이용할 수 있다.The reactor 200 includes an electric furnace 201, a crucible 202, a thermocouple 203, an agitator 204, a gas inlet 204, and a gas outlet 205. The mixed powder described above is placed in the crucible 202. The mixed powder in the crucible 202 may be melted by supplying heat from the electric furnace 201 surrounding the crucible 202. The electric furnace 201 is a method of supplying heat using electric energy. However, the present invention is not limited thereto, and various types of heat sources may be used as long as the heat necessary for melting the mixed powder of the crucible 202 can be supplied.
열전대(203)를 이용하여 혼합 분말이 용융되는 과정 및 교반되는 과정에서 온도를 측정하고 도가니(202)에 열을 공급하는 전기로(201)의 열공급량을 조절할 수 있다. 혼합 분말이 용융되어 제1 염, 제2 염이 용융되는 반응은 800℃ 내지 1000℃에서 일어나도록 한다.The thermocouple 203 may be used to measure the temperature in the process of melting and stirring the mixed powder and to adjust the heat supply amount of the electric furnace 201 for supplying heat to the crucible 202. The mixed powder is melted so that the reaction of melting the first salt and the second salt occurs at 800 ° C to 1000 ° C.
제1 염, 제2 염의 용융 온도는 대략 600℃ 이상이다. 또한 티타늄을 함유하는 피복재가 용융 시 티타늄 원자의 확산에 의한 반응속도는 온도에 비례한다. 800℃ 미만의 용융 온도 분위기에서는 티타늄 원자의 확산에 의한 반응속도가 떨어져 피복재가 모재에 피복된 후 형성된 피복층의 균일성이 감소한다. 그러므로 혼합 분말이 용융되어 제1 염, 제2 염이 용융되는 반응은 800℃이상에서 일어나도록 조절한다.The melting temperature of a 1st salt, a 2nd salt is about 600 degreeC or more. In addition, the reaction rate due to diffusion of titanium atoms when the coating material containing titanium is melted is proportional to the temperature. In the melting temperature atmosphere below 800 ° C, the reaction rate due to diffusion of titanium atoms is reduced, and the uniformity of the coating layer formed after the coating material is coated on the base material is reduced. Therefore, the reaction in which the mixed powder is melted to melt the first salt and the second salt is controlled to occur at 800 ° C. or higher.
또한 1000℃를 초과하는 온도의 분위기에서는 모재의 취성으로 내구성이 약화된다. 그러므로 혼합 분말이 용융되어 제1 염, 제2 염이 용융되는 반응은 1000℃이하에서 일어나도록 조절한다.In addition, durability is weakened by brittleness of a base material in the atmosphere of temperature exceeding 1000 degreeC. Therefore, the reaction in which the mixed powder is melted to melt the first salt and the second salt is controlled to occur at 1000 ° C. or lower.
교반기(204)는 혼합 분말이 용융될 때 제1 염, 제2 염, 모재 및 피복재가 고르게 교반되도록 한다. 교반기(204)는 임펠러(impeller)의 형태를 갖는 것이 바람직하다.The stirrer 204 allows the first salt, the second salt, the base material and the coating material to be evenly stirred when the mixed powder is melted. The stirrer 204 preferably has the form of an impeller.
기체 출입구(205) 및 기체 배출구(206)를 통하여 아르곤(Ar)기체가 투입 및 배출된다. 이를 통하여 도가니 내부의 혼합 분말의 용융 반응이 불활성 분위기에서 진행될 수 있다.Argon (Ar) gas is introduced and discharged through the gas inlet 205 and the gas outlet 206. Through this, the melting reaction of the mixed powder in the crucible may proceed in an inert atmosphere.
도 3은 도 2의 A의 확대도이다. 도 3을 참조하면 제1 염 및 제2 염이 용융된 용융염(310)에 모재(320) 및 피복재(330)가 고르게 분포한 것이 도시되어 있다.3 is an enlarged view of A of FIG. 2. Referring to FIG. 3, the base material 320 and the coating material 330 are evenly distributed in the molten salt 310 in which the first salt and the second salt are melted.
도가니(202)에서 혼합 분말이 용융되고 일정기간 동안 유지되면서 피복재는 용융염 속에서 산화 및 환원 반응을 하여 피복재가 모재의 표면에 피복된다. 구체적으로 다음과 같은 반응들이 순차적으로 일어난다.In the crucible 202, the mixed powder is melted and maintained for a period of time, and the coating material is oxidized and reduced in a molten salt to coat the coating material on the surface of the base material. Specifically, the following reactions occur sequentially.
(1)Ti->2Ti2+ (1) Ti-> 2Ti 2+
(2)2Ti2+ ->Ti+Ti4+ (2) 2Ti 2+ -> Ti + Ti 4+
(3)C(다이아몬드)+Ti->TiC(3) C (diamond) + Ti-> TiC
먼저 제1 염과 제2 염이 용융된 용융염 속에서 피복재는 용융되어 위 반응 중(1)의 반응이 일어난다. 특히 제2 염으로 K2TiF6 또는 NaK2TiF6을 사용한 경우에는 제2 염이 용융되면서 4가의 티타늄 이온을 형성하므로 용융염 속에서 Ti+Ti4+->2Ti2의 반응이 일어난다.First, the coating material is melted in the molten salt in which the first salt and the second salt are molten to cause a reaction in the above reaction (1). Particularly, when K 2 TiF 6 or NaK 2 TiF 6 is used as the second salt, the reaction of Ti + Ti 4+ -> 2Ti 2 occurs in the molten salt because the second salt forms tetravalent titanium ions.
모재 분말의 표면에서는 위 반응 중 (2)반응이 일어난다. 즉 용융염 속에서 형성된 티타늄 2가 이온은 모재 표면에서 환원된다. 그리고 생성된 티타늄 4가 이온은 다시 용융염 속에서 티타늄의 산화 반응을 촉진한다.(2) reaction occurs in the above reaction on the surface of the base metal powder. That is, titanium divalent ions formed in the molten salt are reduced on the surface of the base material. The produced titanium tetravalent ions again promote the oxidation of titanium in the molten salt.
그리고 나서 모재 표면에서는 (3)의 반응이 일어난다. 즉 다이아몬드를 포함하는 모재의 입자의 표면에서 다이아몬드와 티타늄이 고온에서 반응하여 티타늄 탄화물을 형성한다. 즉 모재의 표면에 피복재가 피복된 피복 분말을 형성한다.Then, reaction of (3) occurs on the surface of the base material. That is, diamond and titanium react at a high temperature on the surface of the particles of the base metal including diamond to form titanium carbide. That is, the coating powder which coat | covered the coating material is formed on the surface of a base material.
도가니(202)에서 회수한 피복 분말은 고온의 용융과정이 끝난 직후이므로 덩어리 상태이다. 또한 용융 과정에서 모재와 반응하지 않고 잔존하는 염들과 피복재가 피복 분말과 함께 뭉쳐있으므로 이러한 것들을 분리하는 과정이 필요하다.The coated powder recovered from the crucible 202 is in a lump state immediately after the high temperature melting process is finished. In addition, since the remaining salts and coating materials aggregate together with the coating powder without reacting with the base metal in the melting process, a process of separating these is necessary.
먼저 잔존하는 염을 제거하기 위하여 피복 분말과 잔존 염 및 잔존피복재가 뭉쳐있는 분말을 증류수에 넣어 교반한다. 그리고 나서 초음파 처리를 하여 잔존하는 염을 제거한다. 이 때 초음파 처리를 한 후에 염산 용액을 첨가하여 공정을 신속하고 용이하게 진행할 수 있다.First, in order to remove the remaining salt, the coating powder, the remaining salt and the powder containing the remaining coating material are put in distilled water and stirred. Ultrasonication is then performed to remove any remaining salt. At this time, after the sonication, a hydrochloric acid solution may be added to proceed the process quickly and easily.
잔존하는 염을 제거한 뒤에 모재와 미 반응하여 잔존하는 피복재를 제거한다. 습식 채질을 통하여 잔존하는 피복재 분말을 용이하게 제거할 수 있다. 즉 잔존하는 티타늄과 피복 분말이 뭉쳐 있는 분말을 증류수와 같은 액체에 풀어 액상의 형태의 분말을 채질하여 잔존 티타늄 분말을 제거한다.After removing the remaining salt, it is not reacted with the base material to remove the remaining coating material. The remaining coating material powder can be easily removed through the wet coloring. In other words, the remaining titanium powder and the coating powder are agglomerated in a liquid such as distilled water to fill the liquid powder to remove the remaining titanium powder.
그리고 나서 원심분리기를 이용하여 습식 채질 시 이용한 용액을 제거한다. 그리고 증류수를 첨가하여 미량의 잔존 염을 용해하여 제거할 수 있다. Then use a centrifuge to remove the solution used for wet filling. Distilled water can then be added to dissolve and remove traces of the remaining salt.
그리고 나서 진공 필터링으로 피복 분말을 회수한다. 즉 티타늄이 피복된 다이아몬드 분말을 회수한다. The coated powder is then recovered by vacuum filtering. That is, the diamond powder coated with titanium is recovered.
회수된 피복 분말은 진공 분위기에서 건조한 뒤에 열처리한다. 열처리는 800℃이상의 온도에서 수소 분위기에서 진행한다. 이를 통하여 모재의 표면에 형성된 티타늄 탄화물은 결정화되고 모재와 피복재의 밀착성이 향상하고 내구성이 향상된다.The recovered coating powder is heat-treated after drying in a vacuum atmosphere. The heat treatment is performed in a hydrogen atmosphere at a temperature of 800 ° C. or higher. Through this, titanium carbide formed on the surface of the base material is crystallized, and adhesion between the base material and the coating material is improved and durability is improved.
도 4는 본 발명의 일 실시예에 관한 고경도 피복 분말의 제조 방법에 따라 형성된 분말을 전자 현미경으로 측정한 사진이고, 도 5는 도 4의 분말의 엑스선(X-ray) 회절 패턴을 도시한 도면이다.FIG. 4 is a photograph obtained by measuring an electron microscope of a powder formed according to a method of preparing a high hardness coated powder according to an embodiment of the present invention, and FIG. 5 is an X-ray diffraction pattern of the powder of FIG. 4. Drawing.
구체적으로 제1 염으로 KCl, NaCl 및 BaCl2를 사용하고, 제2 염으로 NaF 및 NaK2TiF6 를 사용하였다. KCl, NaCl 및 BaCl2는 각각 10g을 준비하고, 10g 의 NaF와 5g의 NaK2TiF6를 준비하였다. 모재는 다이아몬드를 함유하고, 다이아몬드 입자는 1.5 마이크로 미터 이하의 크기를 갖는다. 피복재는 분말 형태의 티타늄 2g을 준비했고 티타늄 분말은 100mesh의 입자 크기를 갖도록 하였다. Specifically, KCl, NaCl and BaCl 2 were used as the first salt, and NaF and NaK 2 TiF 6 were used as the second salt. KCl, NaCl and BaCl 2 were each prepared with 10 g, and 10 g of NaF and 5 g of NaK 2 TiF 6 were prepared. The base material contains diamond, and the diamond particles have a size of 1.5 micrometers or less. The coating material was prepared 2g of titanium in powder form and the titanium powder was to have a particle size of 100mesh.
도 4를 참조하면 도 4(a)는 본 실시예에 관한 제조 방법을 이용하기 전의 다이아몬드 분말, 도 4(b)는 본 실시예에 관한 제법으로 피복재가 피복된 다이아몬드 분말, 도 4(c)는 도 4(b)를 확대한 것을 나타내는 주사 전자 현미경(SEM) 사진이다.4 (a) is a diamond powder before using the manufacturing method according to the present embodiment, Figure 4 (b) is a diamond powder coated with a coating material by the manufacturing method according to the present embodiment, Figure 4 (c) Is a scanning electron microscope (SEM) photograph which shows enlarged FIG. 4 (b).
도 4(a)와 도 4(b) 및 도 4(c)를 비교하여 다이아몬드를 함유하는 모재 분말의 각 입자들의 표면에 피복재가 피복된 것을 알 수 있다. 도 5를 참조하면 이들의 성분을 용이하게 확인할 수 있다. 도 5의 (a)는 본 실시예에 관한 제조 방법으로 피복을 하기전의 다이아몬드 분말, 도 5의 (b)는 본 실시예에 관한 제조 방법으로 피복을 한 후의 다이아몬드 분말을 측정한 것이다. 역삼각형으로 표시된 피크는 도 5의 (a) 및 (b)에 모두 존재하는데 이것은 다이아몬드 성분을 가리킨다. 그러나 원으로 표시된 피크는 도 5의 (b)에만 존재하고 이는 티타늄 카바이드를 가리킨다. 이를 통하여 본 실시예에 관한 제조 방법에 의하여 미세한 다이아몬드 입자의 표면에 티타늄이 고르게 피복되었음을 알 수 있다. Comparing Fig. 4 (a) with Fig. 4 (b) and Fig. 4 (c) it can be seen that the coating material is coated on the surface of each particle of the base material powder containing diamond. 5, these components can be easily identified. Fig. 5 (a) shows the diamond powder before coating by the manufacturing method according to the present embodiment, and Fig. 5 (b) shows the diamond powder after coating with the manufacturing method according to the present embodiment. The peaks indicated by the inverted triangle are present in both (a) and (b) of FIG. 5, indicating the diamond component. However, the peaks indicated by circles are present only in Fig. 5 (b), which indicates titanium carbide. Through this, it can be seen that titanium was evenly coated on the surface of the fine diamond particles by the manufacturing method according to the present embodiment.
도 6은 본 발명의 다른 실시예에 관한 고경도 피복 분말의 제조 방법에 따라 형성된 분말을 전자 현미경으로 측정한 도면이고, 도 7은 도 6의 분말의 엑스선 회절 패턴을 도시한 도면이다. FIG. 6 is a diagram illustrating a powder formed according to a method of preparing a high hardness coated powder according to another embodiment of the present invention with an electron microscope, and FIG. 7 is a diagram illustrating an X-ray diffraction pattern of the powder of FIG. 6.
설명의 편의를 위하여 전술한 실시예와 상이한 점을 중심으로 설명하기로 한다. 본 실시예는 전술한 실시예와 비교할 때 모재를 다이아몬드가 아닌 입방정질화붕소를 사용한 것에 차이점이 있다.For convenience of explanation, the following description will focus on differences from the above-described embodiment. This embodiment has a difference in that the base material using cubic boron nitride rather than diamond as compared with the above-described embodiment.
전술한 실시예와 마찬가지로 먼저 제1 염, 제2 염을 용매에 녹여 용액을 형성한다. 이 때 용매는 에탄올일 수 있다. 그리고 나서 입방정 질화붕소를 함유하는 모재 분말을 용액에 넣고 티타늄을 함유하는 피복재를 용액에 넣는다. 그리고 나서 이 혼합 용액을 교반하여 균일하게 만들고 건조하여 혼합된 분말을 형성한다.As in the above embodiment, first and second salts are dissolved in a solvent to form a solution. At this time, the solvent may be ethanol. Then, the base metal powder containing cubic boron nitride is put into the solution, and the coating material containing titanium is put into the solution. This mixed solution is then stirred to make it homogeneous and dried to form a mixed powder.
입방정질화붕소를 함유하는 모재 분말의 입자 크기는 수 마이크로 미터 이하이다. 바람직하게는 50 나노미터 이상 5 마이크로 미터 이하이다.The particle size of the base metal powder containing cubic boron nitride is several micrometers or less. Preferably they are 50 nanometers or more and 5 micrometers or less.
입방정질화붕소를 함유하는 모재 분말의 입자의 크기가 50 나노미터 미만이면 각 입방정질화붕소 입자들간의 반데르발스의 힘에 의하여 분산이 잘 안되고 응집이 일어나 각 모재 분말 입자에 피복재를 피복하는데 한계가 있다. 그래서 입방정질화붕소를 함유하는 모재 분말의 입자의 크기는 50 나노미터 이상인 것이 바람직하다.If the size of the particles of the base material powder containing cubic boron nitride is less than 50 nanometers, it is difficult to disperse due to van der Waals' forces between the cubic boron nitride particles and aggregation occurs, so that there is a limit to coating the coating material on the base material powder particles. have. Therefore, the particle size of the base metal powder containing cubic boron nitride is preferably 50 nanometers or more.
또한 입방정질화붕소를 함유하는 모재 분말의 입자의 크기가 5 마이크로 미터를 초과하면 모재를 이용한 절삭 공구를 형성하는 경우 절삭 공구의 인성이 감소한다. 그러므로 입방정질화붕소를 함유하는 모재 분말의 입자의 크기는 5 마이크로 미터 이하인 것이 바람직하다. In addition, when the size of the particles of the base metal powder containing boron cubic boron exceeds 5 micrometers, the toughness of the cutting tool is reduced when forming the cutting tool using the base material. Therefore, the particle size of the base metal powder containing cubic boron nitride is preferably 5 micrometers or less.
도가니(202)에서 혼합 분말이 용융되고 일정기간 동안 유지되면서 피복재는 용융염 속에서 산화 및 환원 반응을 하게 되어 피복재가 모재의 표면에 피복된다. 구체적으로 다음과 같은 반응이 일어난다.In the crucible 202, the mixed powder is melted and maintained for a period of time, so that the coating material is oxidized and reduced in the molten salt so that the coating material is coated on the surface of the base material. Specifically, the following reactions occur.
(1)Ti->2Ti2+ (1) Ti-> 2Ti 2+
(2)2Ti2+ ->Ti+Ti4+ (2) 2Ti 2+ -> Ti + Ti 4+
(3)3Ti+2BN->TiB2+2TiN(3) 3Ti + 2BN-> TiB 2 + 2TiN
먼저 제1 염과 제2 염이 용융된 용융염 속에서 피복재는 용융되어 위 반응 중(1)의 반응이 일어난다. 특히 제2 염으로 K2TiF6 또는 NaK2TiF6을 사용한 경우에는 제2 염이 용융되면서 4가의 티타늄 이온을 형성하므로 용융염 속에서 Ti+Ti4+->2Ti2의 반응이 일어난다.First, the coating material is melted in the molten salt in which the first salt and the second salt are molten to cause a reaction in the above reaction (1). Particularly, when K 2 TiF 6 or NaK 2 TiF 6 is used as the second salt, the reaction of Ti + Ti 4+ -> 2Ti 2 occurs in the molten salt because the second salt forms tetravalent titanium ions.
모재 분말의 표면에서는 위 반응 중 (2)반응이 일어난다. 즉 용융염 속에서 형성된 티타늄 2가 이온은 모재 표면에서 환원된다. (2) reaction occurs in the above reaction on the surface of the base metal powder. That is, titanium divalent ions formed in the molten salt are reduced on the surface of the base material.
그리고 나서 모재 표면에서는 (3)의 반응이 일어난다. 즉 입방정 질화붕소를 포함하는 모재의 입자의 표면에서 붕소와 티타늄, 질소와 티타늄이 고온에서 반응하여 티타늄 붕화물 및 티타늄 질화물을 형성한다.Then, reaction of (3) occurs on the surface of the base material. That is, boron and titanium, nitrogen and titanium react at a high temperature on the surface of the base material particles containing cubic boron nitride to form titanium boride and titanium nitride.
그리고 나서 잔존 염 제거, 잔존 피복재 제거 및 열처리 등 후속 공정을 진행하여 모재의 표면에 피복재가 피복된 고경도 피복 분말을 얻는다. 후속 공정의 구체적인 내용은 전술한 실시예와 동일하므로 생략한다.Subsequently, subsequent steps such as residual salt removal, residual coating material removal, and heat treatment are performed to obtain a high hardness coating powder having a coating material coated on the surface of the base material. Details of subsequent processes are the same as in the above-described embodiment and thus will be omitted.
도 6을 참조하면 도 6(a)는 본 실시예에 관한 제조 방법을 이용하기 전의 입방정질화붕소 분말, 도 6(b)는 본 실시예에 관한 제법으로 피복재가 피복된 입방정질화붕소 분말, 도 6(c)는 도 6(b)를 확대한 것을 나타내는 주사 전자 현미경(SEM) 사진이다.6 (a) is a cubic boron nitride powder before using the manufacturing method according to the present embodiment, Figure 6 (b) is a cubic boron nitride powder coated with a coating material in the manufacturing method according to the present embodiment, Fig. 6 (c) is a scanning electron microscope (SEM) photograph showing an enlarged view of FIG. 6 (b).
도 6(a)와 도 6(b) 및 도 6(c)를 비교하여 입방정질화붕소를 함유하는 모재 분말의 각 입자들의 표면에 피복재가 피복된 것을 알 수 있다. 도 7을 참조하면 이들의 성분을 용이하게 확인할 수 있다. 도 7의 (a)는 본 실시예에 관한 제조 방법으로 피복을 하기전의 입방정질화붕소 분말, 도 7의 (b)는 본 실시예에 관한 제조 방법으로 피복을 한 후의 입방정질화붕소 분말을 측정한 것이다. 역삼각형으로 표시된 피크는 도 7의 (a) 및 (b)에 모두 존재하는데 이것은 입방정질화붕소 성분을 가리킨다. 그러나 원으로 표시된 피크는 도 7의 (b)에만 존재하고 이는 티타늄 나이트라이드를 가리킨다. 이를 통하여 본 실시예에 관한 제조 방법에 의하여 미세한 입방정질화붕소 입자의 표면에 티타늄이 고르게 피복되었음을 알 수 있다. Comparing FIG. 6 (a), FIG. 6 (b) and FIG. 6 (c), it can be seen that the coating material is coated on the surfaces of the particles of the base metal powder containing cubic boron nitride. Referring to FIG. 7, these components can be easily identified. (A) of FIG. 7 shows a cubic boron nitride powder before coating by the manufacturing method which concerns on a present Example, FIG. 7 (b) shows the cubic boron nitride powder after coating by a manufacturing method which concerns on a present Example. will be. The peaks indicated by the inverted triangle are present in both (a) and (b) of FIG. 7, indicating a cubic boron nitride component. However, the peaks indicated by circles are present only in FIG. 7B, which indicates titanium nitride. Through this, it can be seen that titanium was evenly coated on the surface of the fine cubic boron nitride particles by the manufacturing method according to the present embodiment.
도 8은 집속 이온 빔(FIB)을 이용하여 도 6의 분말의 단면을 측정한 도면이다. 8 is a cross-sectional view of the powder of FIG. 6 using a focused ion beam (FIB).
도 8을 참조하면 입방정 질화붕소의 표면에 형성된 티타늄을 함유하는 피복층이 균일하게 형성된 것을 알 수 있다. 도 8에서 a)가 가리키는 부분은 실험을 위하여 백금(Pt)으로 형성된 보호층으로 집속 이온 빔(FIB)으로부터 시료의 표면을 보호하기 위한 층이다. 도 8에서 b)는 피복층이고 도 8에서 c)는 모재 이다. 도 8을 참조하면 피복층의 두께가 200nm로 박막의 형태를 갖는다. Referring to FIG. 8, it can be seen that a coating layer containing titanium formed on the surface of the cubic boron nitride is uniformly formed. In FIG. 8, a part indicated by a) is a layer for protecting the surface of the sample from the focused ion beam FIB with a protective layer formed of platinum Pt for experiment. In Figure 8 b) is the coating layer and in Figure 8 c) is the base material. Referring to FIG. 8, the coating layer has a thickness of 200 nm.
도 9는 투과 전자 현미경(TEM)을 이용하여 도 6의 분말의 단면을 측정한 도면이고, 도 10은 도 9의 B부분의 성분을 측정하여 도시한 도면이다.FIG. 9 is a diagram illustrating a cross section of the powder of FIG. 6 using a transmission electron microscope (TEM), and FIG. 10 is a diagram illustrating a component of part B of FIG. 9.
도 9에서 (a)는 모재 부분, (c)는 피복층 부분 및 (b)는 모재와 피복층의 경계를 도시하고 있다. 도 10은 각각 부분의 성분 분석 결과를 나타내는 그래프이다. 도 10에서 (a)는 붕소, (b)는 질소, (c)는 산소, (d)는 티타늄을 가리킨다. In FIG. 9, (a) shows a base material part, (c) shows a covering layer part, and (b) shows the boundary of a base material and a covering layer. It is a graph which shows the component analysis result of each part. In FIG. 10, (a) is boron, (b) is nitrogen, (c) is oxygen, and (d) is titanium.
도 10을 참조하면 (a)모재 부분은 입방정질화붕소를 포함하므로 질소, 붕소가 주성분을 이루고 있다. 그리고 경계인 (b)부분에서 피복재인 티타늄이 증가하고 피복층인 (c)부분에서 티타늄이 가장 많이 존재한다. 이를 통하여 입방정 질화붕소를 포함하는 모재의 입자의 표면에 티타늄을 함유하는 피복재가 안정적으로 피복되었음을 알 수 있다. Referring to Figure 10 (a) since the base material includes a cubic boron nitride, nitrogen, boron is the main component. At the boundary (b), titanium as a coating material increases, and titanium is most present at the coating layer (c). Through this, it can be seen that the coating material containing titanium was stably coated on the surface of the particles of the base material containing cubic boron nitride.
도 11은 도 6의 분말을 열처리한 뒤에 투과 전자 현미경을 이용하여 단면을 측정한 도면이고 도 12는 도 11의 제한 시야 회절 패턴을 도시한 도면이다. 도 11에서 a)는 모재를 가리키고 b)는 피복층을 가리킨다. 도 11 및 도 12를 참조하면 티타늄을 함유하는 피복층은 수십 나노미터 이하의 크기를 갖는 결정들로 이루어진 다결정 구조를 갖는다.11 is a cross-sectional view of the powder of FIG. 6 after heat treatment using a transmission electron microscope, and FIG. 12 is a view illustrating the limited field diffraction pattern of FIG. 11. In Fig. 11, a) indicates the base material and b) indicates the coating layer. Referring to FIGS. 11 and 12, the titanium containing coating layer has a polycrystalline structure composed of crystals having a size of several tens of nanometers or less.
도 13은 도 6의 분말의 유리 전이 온도를 설명하기 위한 도면이다. 구체적으로 도 13의 좌측 Y축 좌표는 시차주사열량계법(differential scanning calorimetry;DSC)에 의하여 열유량을 측정한 것을 나타내고 온도가 높아질수록 열유량이 감소하는 것을 도시하고 있고, 도 13의 우측 Y축 좌표는 좌측 Y좌표의 열유량값을 미분한 값으로 미세한 온도 변화에 따라 값이 변하는 것을 나타낸다. 도 13을 참조하면 유리 전이 온도는 950℃내외이다. 이는 입방정질화붕소 표면의 티타늄을 함유하는 피복층이 비정질상태에서 950℃내외에서 결정화된 것을 의미한다. 본 발명은 피복된 모재 분말을 수소 분위기에서 열처리하여 위와 같이 결정화된 피복층을 용이하게 형성할 수 있다.It is a figure for demonstrating the glass transition temperature of the powder of FIG. Specifically, the left Y-axis coordinate of FIG. 13 indicates that the heat flux is measured by differential scanning calorimetry (DSC), and shows that the heat flux decreases as the temperature increases, and the right Y-axis of FIG. The coordinates are values obtained by differentiating the heat flow rate value of the left Y coordinate, and change in value according to a minute temperature change. Referring to Figure 13, the glass transition temperature is about 950 ℃. This means that the coating layer containing titanium on the cubic boron nitride surface was crystallized at around 950 ° C in an amorphous state. The present invention can easily form a coating layer crystallized as described above by heat-treating the coated base material powder in a hydrogen atmosphere.
도 14는 본 발명의 또 다른 실시예에 관한 고경도 피복 분말의 제조 방법에 따라 형성된 분말을 투과 전자 현미경으로 측정한 도면이고, 도 15는 도 14의 C의 확대도이다. 도 16은 도 14의 분말의 제한 시야 회절 패턴을 도시하는 도면이다.FIG. 14 is a view of a powder formed according to a method of preparing a high hardness coated powder according to another embodiment of the present invention with a transmission electron microscope, and FIG. 15 is an enlarged view of C of FIG. 14. FIG. 16 is a diagram illustrating a limited field of view diffraction pattern of the powder of FIG. 14.
설명의 편의를 위하여 전술한 실시예와 상이한 점을 중심으로 설명하기로 한다. 본 실시예는 전술한 실시예와 비교할 때 모재를 다이아몬드나 입방정질화붕소가 아닌 탄소 나노 튜브를 사용한 것에 차이점이 있다.For convenience of explanation, the following description will focus on differences from the above-described embodiment. This embodiment has a difference in that the base material using carbon nanotubes other than diamond or cubic boron nitride as compared with the above-described embodiment.
전술한 실시예와 마찬가지로 먼저 제1 염, 제2 염을 용매에 녹여 용액을 형성한다. 이 때 용매는 에탄올일 수 있다. 그리고 나서 탄소 나노 튜브를 함유하는 모재를 용액에 넣고 티타늄을 함유하는 피복재를 용액에 넣는다. 그리고 나서 이 혼합 용액을 교반하여 균일하게 만들고 건조하여 혼합된 분말을 형성한다.As in the above embodiment, first and second salts are dissolved in a solvent to form a solution. At this time, the solvent may be ethanol. The base material containing the carbon nanotubes is then added to the solution and the coating material containing titanium is added to the solution. This mixed solution is then stirred to make it homogeneous and dried to form a mixed powder.
탄소 나노 튜브를 함유하는 모재 분말의 입자 크기는 수 마이크로 미터 이하이다. 바람직하게는 5 나노미터 이상 50 나노미터 이하이다.The particle size of the base metal powder containing the carbon nanotubes is several micrometers or less. Preferably they are 5 nanometers or more and 50 nanometers or less.
탄소 나노 튜브를 함유하는 모재 분말의 입자의 크기가 5 나노미터 미만이면 각 모재 분말 입자들간의 반데르발스의 힘에 의하여 모재 분말 입자들의 분산이 잘 안되고 입자들간에 응집이 일어나 각 모재 분말 입자에 피복재를 피복하는데 한계가 있다. 그래서 다이아몬드를 함유하는 모재 분말의 입자의 크기는 5 나노미터 이상인 것이 바람직하다.If the particle size of the base metal powder containing carbon nanotubes is less than 5 nanometers, the base metal powder particles are not dispersed well due to van der Waals' forces between the respective base metal powder particles, and aggregation occurs between the particles. There is a limit to coating the coating material. Therefore, the particle size of the base metal powder containing diamond is preferably 5 nanometers or more.
또한 탄소 나노 튜브를 함유하는 모재 분말의 입자의 크기가 50 나노 미터를초과하면 모재를 이용한 절삭 공구를 형성하는 경우 절삭 공구의 인성이 감소한다. 그러므로 탄소 나노 튜브를 함유하는 모재 분말의 입자의 크기는 5 마이크로 미터 이하인 것이 바람직하다. In addition, when the size of the particles of the base metal powder containing the carbon nanotube exceeds 50 nanometers, the toughness of the cutting tool is reduced when forming the cutting tool using the base material. Therefore, the particle size of the base metal powder containing the carbon nanotubes is preferably 5 micrometers or less.
도가니(202)에서 혼합 분말이 용융되고 일정기간 동안 유지되면서 피복재는 용융염 속에서 산화 및 환원 반응을 하게되어 피복재가 모재의 표면에 피복된다. 구체적으로 다음과 같은 반응이 일어난다.In the crucible 202, the mixed powder is melted and maintained for a period of time so that the coating material undergoes oxidation and reduction reactions in the molten salt so that the coating material is coated on the surface of the base material. Specifically, the following reactions occur.
(1)Ti->2Ti2+ (1) Ti-> 2Ti 2+
(2)2Ti2+ ->Ti+Ti4+ (2) 2Ti 2+ -> Ti + Ti 4+
(3)Ti+C(탄소나노튜브)->TiC(3) Ti + C (carbon nanotube)-> TiC
먼저 제1 염과 제2 염이 용융된 용융염 속에서 피복재는 용융되어 위 반응 중(1)의 반응이 일어난다. 특히 제2 염으로 K2TiF6 또는 NaK2TiF6을 사용한 경우에는 제2 염이 용융되면서 4가의 티타늄 이온을 형성하므로 용융염 속에서 Ti+Ti4+->2Ti2의 반응이 일어난다.First, the coating material is melted in the molten salt in which the first salt and the second salt are molten to cause a reaction in the above reaction (1). Particularly, when K 2 TiF 6 or NaK 2 TiF 6 is used as the second salt, the reaction of Ti + Ti 4+ -> 2Ti 2 occurs in the molten salt because the second salt forms tetravalent titanium ions.
모재 분말의 표면에서는 위 반응 중 (2)반응이 일어난다. 즉 용융염 속에서 형성된 티타늄 2가 이온은 모재 표면에서 환원된다. (2) reaction occurs in the above reaction on the surface of the base metal powder. That is, titanium divalent ions formed in the molten salt are reduced on the surface of the base material.
그리고 나서 모재 표면에서는 (3)의 반응이 일어난다. 즉 탄소 나노 튜브를 포함하는 모재의 입자의 표면에서 탄소와 티타늄이 고온에서 반응하여 티타늄 탄화물을 형성한다.Then, reaction of (3) occurs on the surface of the base material. That is, carbon and titanium react at a high temperature on the surface of the particles of the base metal including the carbon nanotubes to form titanium carbide.
그리고 나서 잔존 염 제거, 잔존 피복재 제거 및 열처리 등 후속 공정을 진행하여 모재의 표면에 피복재가 피복된 고경도 피복 분말을 얻는다. 후속 공정의 구체적인 내용은 전술한 실시예와 동일하므로 생략한다.Subsequently, subsequent steps such as residual salt removal, residual coating material removal, and heat treatment are performed to obtain a high hardness coating powder having a coating material coated on the surface of the base material. Details of subsequent processes are the same as in the above-described embodiment and thus will be omitted.
도 14 및 도 15를 참조하면 모재인 탄소 나노 튜브의 표면에 피복층이 형성된 것을 알 수 있다. 또한 도 16을 통하여 탄소 나노 튜브의 표면에 티타늄을 함유하는 피복재가 피복되어 피복층에 티타늄 카바이드가 형성된 것을 알 수 있다.14 and 15, it can be seen that a coating layer is formed on the surface of the carbon nanotube as the base material. In addition, it can be seen from FIG. 16 that the titanium-containing coating material is coated on the surface of the carbon nanotube to form titanium carbide in the coating layer.
이를 통하여 본 실시예에 관한 제조 방법에 의하여 미세한 입방정질화붕소 입자의 표면에 티타늄이 고르게 피복되었음을 알 수 있다. Through this, it can be seen that titanium was evenly coated on the surface of the fine cubic boron nitride particles by the manufacturing method according to the present embodiment.
도면에 도시된 실시예를 참고로 설명되었으나 이는 예시적인 것에 불과하며, 본 기술 분야의 통상의 지식을 가진 자라면 이로부터 다양한 변형 및 균등한 다른 실시예가 가능하다는 점을 이해할 것이다. 따라서, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의하여 정해져야 할 것이다. Although described with reference to the embodiment shown in the drawings it is merely exemplary, those skilled in the art will understand that various modifications and equivalent other embodiments are possible from this. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.
탄소 나노 튜브는 고강도, 고탄성계수, 고전기전도도, 고열전도의 특성을 갖는 재료로 절삭 공구에 사용하는 것이 연구되고 있다. 그러나 탄소 나노 튜브를 모재로 사용할 경우 고르게 분산시키고 피복재와 계면에서 결합력이 문제된다. Carbon nanotubes have been studied for use in cutting tools as materials having high strength, high modulus of elasticity, high conductivity, and high thermal conductivity. However, when carbon nanotubes are used as the base material, evenly dispersed and bonding strength at the interface with the coating material is a problem.
본 실시예에서는 탄소 나노 튜브를 포함하는 모재의 표면에 티타늄을 함유하는 피복재를 균일하게 피복할 수 있다. 이를 통하여 경도가 향상되고 표면 특성이 향상된 고경도 피복 분말을 용이하게 형성할 수 있다.In this embodiment, the coating material containing titanium can be uniformly coat | covered on the surface of the base material containing a carbon nanotube. Through this, it is possible to easily form a high hardness coating powder with improved hardness and surface properties.

Claims (14)

  1. (a)염소(Cl)계열의 제1 염, 불소(F)계열의 제2 염을 용매에 녹여 용액을 형성하는 단계;(a) dissolving a first salt of chlorine (Cl) series and a second salt of fluorine (F) series in a solvent to form a solution;
    (b)상기 용액에 모재, 티타늄을 함유하는 피복재를 넣어서 혼합하고 건조하는 단계;(b) mixing and drying the base material and a coating material containing titanium in the solution;
    (c)상기 (b)단계에서 얻은 혼합물을 반응로에 넣는 단계; 및(c) placing the mixture obtained in step (b) into a reactor; And
    (d)상기 반응로를 소정의 온도로 가열 후 유지하여 상기 제1 염 및 상기 제2염이 용융되는 용융염 반응이 일어나는 단계를 포함하는 고경도 피복 분말의 제조 방법.(d) a method of producing a high hardness coating powder comprising heating and maintaining the reactor at a predetermined temperature to cause a molten salt reaction in which the first salt and the second salt are melted.
  2. 제1 항에 있어서,According to claim 1,
    상기 제1 염은 KCl, NaCl 및 BaCl2로 이루어지는 군으로부터 선택된 적어도 두 개를 포함하는 고경도 피복 분말의 제조 방법.Wherein said first salt comprises at least two selected from the group consisting of KCl, NaCl and BaCl 2.
  3. 제1 항에 있어서,According to claim 1,
    상기 제2 염은 NaF, K2TiF6 및 NaK2TiF6로 이루어지는 군으로부터 선택된 적어도 어느 하나를 포함하는 고경도 피복 분말의 제조 방법.Wherein said second salt comprises at least one selected from the group consisting of NaF, K 2 TiF 6 and NaK 2 TiF 6 .
  4. 제1 항에 있어서,According to claim 1,
    상기 용매는 에탄올을 포함하는 고경도 피복 분말의 제조 방법;The solvent is a method for producing a high hardness coating powder comprising ethanol;
  5. 제1 항에 있어서,According to claim 1,
    상기 (d)단계는 800℃ 내지 1000℃에서 진행하는 고경도 피복 분말의 제조 방법.Step (d) is a method for producing a high hardness coating powder proceeds from 800 ℃ to 1000 ℃.
  6. 제1 항에 있어서,According to claim 1,
    상기 (d)단계는 Ar 기체 분위기에서 상기 반응로 내부를 교반하면서 반응을진행하는 고경도 피복 분말의 제조 방법.Step (d) is a method for producing a high hardness coating powder to proceed with the reaction while stirring the inside of the reactor in an Ar gas atmosphere.
  7. 상기 제1 항에 있어서The method of claim 1
    상기 (d)단계를 진행하고 나서 상기 반응로에서 용융염 반응 후에 얻어진 분말을 증류수에 넣은 후 초음파 처리를 하는 단계; 및 Performing the step (d) and then putting the powder obtained after the molten salt reaction in the reactor into distilled water and performing ultrasonic treatment; And
    염산 용액과 반응하는 단계를 포함하는 고경도 피복 분말의 제조 방법.A method of producing a high hardness coating powder comprising the step of reacting with a hydrochloric acid solution.
  8. 상기 제1 항에 있어서The method of claim 1
    상기 (d)단계를 진행하고 나서 습식 채질 방법으로 잔류하는 상기 피복재를 제거하는 단계를 더 포함하는 고경도 피복 분말의 제조 방법.Removing the coating material remaining by the wet filling method after the step (d) further comprising the method of producing a hard coating powder.
  9. 상기 제1 항에 있어서The method of claim 1
    상기 (d)단계를 진행하고 나서 수소 분위기에서 열처리하여 결정화를 진행하는 단계를 포함하는 고경도 피복 분말의 제조 방법.After the step (d) and the heat treatment in a hydrogen atmosphere comprising the step of proceeding the crystallization method of producing a high hardness coating powder.
  10. 상기 제1 항에 있어서The method of claim 1
    상기 모재 분말은 다이아몬드, 입방정 질화붕소 및 탄소나노튜브로 이루어지는 군으로부터 선택된 어는 하나를 포함하는 고경도 피복 분말의 제조 방법.The base material powder is a method for producing a high hardness coating powder comprising a freezing one selected from the group consisting of diamond, cubic boron nitride and carbon nanotubes.
  11. 상기 제1 항에 있어서The method of claim 1
    상기 모재 분말은 5 나노미터 내지 5 마이크로 미터의 크기를 갖는 다이아몬드 입자를 포함하는 고경도 피복 분말의 제조 방법.The base material powder is a method for producing a high hardness coating powder comprising diamond particles having a size of 5 nanometers to 5 micrometers.
  12. 상기 제1 항에 있어서The method of claim 1
    상기 모재 분말은 50 나노미터 내지 5 마이크로 미터의 크기를 갖는 입방정 질화붕소 입자를 포함하는 고경도 피복 분말의 제조 방법.The base material powder is a method for producing a high hardness coating powder comprising cubic boron nitride particles having a size of 50 nanometers to 5 micrometers.
  13. 상기 제1 항에 있어서The method of claim 1
    상기 모재 분말은 5 나노미터 내지 50 나노 미터의 크기를 갖는 탄소 나노 튜브 입자를 포함하는 고경도 피복 분말의 제조 방법.The base material powder is a method of producing a high hardness coating powder comprising carbon nanotube particles having a size of 5 nanometers to 50 nanometers.
  14. 상기 제1 항 내지 제13 항 중 어느 하나의 항의 제조 방법에 의하여 제조된 고경도 피복 분말.The high hardness coating powder manufactured by the manufacturing method of any one of Claims 1-13.
PCT/KR2009/006719 2008-11-14 2009-11-16 High-hardness coating powder, and preparation method thereof WO2010056077A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2008-0113468 2008-11-14
KR20080113468A KR101492969B1 (en) 2008-11-14 2008-11-14 High hardness coated powder and method of manufacturing the same

Publications (3)

Publication Number Publication Date
WO2010056077A2 true WO2010056077A2 (en) 2010-05-20
WO2010056077A3 WO2010056077A3 (en) 2010-08-19
WO2010056077A9 WO2010056077A9 (en) 2010-10-07

Family

ID=42170548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/006719 WO2010056077A2 (en) 2008-11-14 2009-11-16 High-hardness coating powder, and preparation method thereof

Country Status (2)

Country Link
KR (1) KR101492969B1 (en)
WO (1) WO2010056077A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150364A (en) * 2021-12-03 2022-03-08 长安大学 Diamond surface modification method

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101701916B1 (en) 2014-01-06 2017-02-03 한국과학기술연구원 a method for preparing a carbide-coated diamond particle and a diamond prepared thereby
KR102318672B1 (en) 2019-10-29 2021-11-01 (주)에디코 Cubic boron nitride particle and manufacturing method thereof
EP3868732B1 (en) 2020-02-19 2023-06-28 Adico Coated cubic boron nitride particle and method of manufacturing same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399167A (en) * 1978-03-09 1983-08-16 Pipkin Noel J Metal coating of abrasive particles
JP2002317196A (en) * 2001-04-19 2002-10-31 Minebea Co Ltd Abrasive cleaning composition
KR20060134996A (en) * 2004-03-24 2006-12-28 캐보트 마이크로일렉트로닉스 코포레이션 Chemical-mechanical polishing composition and method for using the same

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5106392A (en) * 1991-03-14 1992-04-21 General Electric Company Multigrain abrasive particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4399167A (en) * 1978-03-09 1983-08-16 Pipkin Noel J Metal coating of abrasive particles
JP2002317196A (en) * 2001-04-19 2002-10-31 Minebea Co Ltd Abrasive cleaning composition
KR20060134996A (en) * 2004-03-24 2006-12-28 캐보트 마이크로일렉트로닉스 코포레이션 Chemical-mechanical polishing composition and method for using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114150364A (en) * 2021-12-03 2022-03-08 长安大学 Diamond surface modification method
CN114150364B (en) * 2021-12-03 2023-10-27 长安大学 Diamond surface modification method

Also Published As

Publication number Publication date
KR20100054511A (en) 2010-05-25
WO2010056077A9 (en) 2010-10-07
KR101492969B1 (en) 2015-02-16
WO2010056077A3 (en) 2010-08-19

Similar Documents

Publication Publication Date Title
WO2010056077A9 (en) High-hardness coating powder, and preparation method thereof
Chen et al. Synthesis of SiC nanowires by thermal evaporation method without catalyst assistant
Feng et al. Oxidation and ablation resistance of the ZrB2–CrSi2–Si/SiC coating for C/C composites at high temperature
Dai et al. Synthesis of high crystalline beta SiC nanowires on a large scale without catalyst
Fang et al. Effects of LaB6 on the microstructures and ablation properties of 3D C/C-SiC-ZrB2-LaB6 composites
Ding et al. Low-temperature synthesis of nanocrystalline ZrC coatings on flake graphite by molten salts
WO2012161484A2 (en) Magnesium-based alloy produced using a silicon compound and method for producing same
Huang et al. Effect of pack cementation temperatures on component, microstructure and anti-oxidation performance of Al-modified SiC coatings on C/C composites
WO2021075635A1 (en) Method for controlling polarity of mxene by controlling surface functional group
WO2013133467A1 (en) Method for producing planar carbon nanoparticles, and method for producing aluminum/carbon composite material using same
CN105523528A (en) Method for preparing boron nitride nanosheet by using eutectic salt to strip boron nitride powder at high temperature
Wu et al. Polymer precursor synthesis of novel ZrC–SiC ultrahigh-temperature ceramics and modulation of their molecular structure
Raman et al. Synthesis of silicon carbide nanofibers by sol-gel and polymer blend techniques
JP4552019B2 (en) Method for producing silicon carbide nanofiber
Shi et al. Improved oxidation protective ability of SHS powder-synthesized ZrB2-MoSi2-SiC-Si coating on carbon/carbon composites
Yilmaz et al. Carbothermic reduction synthesis of calcium hexaboride using PVA-calcium hexaborate mixed gels
Jianxin et al. A new method of fabrication of TiC by employing pyrolytic carbon black and titanium
Wang et al. Oxidation kinetics of supersonic atmospheric plasma spraying ytterbium oxide doped molybdenum silicide coating
WO2016208793A1 (en) Method for enhancing antioxidant properties of graphite contained in magnesia-carbon refractories by means of surface modifying and magnesia-carbon refractories prepared by means of same
Yang et al. In situ synthesis and characterization of pure SiC nanowires on silicon wafer
WO2015068976A1 (en) Silicon carbide powder and method for preparing silicon carbide
Hu et al. Synthesis of α-Si3N4 whiskers or equiaxed particles from amorphous Si3N4 powders
Fu et al. Accelerated oxidation and microstructure evolution of SiC in the presence of NaF
WO2018043815A1 (en) Method for recycling titanium scrap, and titanium carbonitride prepared thereby
KR102571434B1 (en) Method of coating silica crucibles with silicon nitride

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09826309

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09826309

Country of ref document: EP

Kind code of ref document: A2