WO2010024654A2 - 배터리 누설전류 감지 장치 및 방법, 및 상기 장치를 포함하는 배터리 구동 장치 및 배터리 팩 - Google Patents

배터리 누설전류 감지 장치 및 방법, 및 상기 장치를 포함하는 배터리 구동 장치 및 배터리 팩 Download PDF

Info

Publication number
WO2010024654A2
WO2010024654A2 PCT/KR2009/004927 KR2009004927W WO2010024654A2 WO 2010024654 A2 WO2010024654 A2 WO 2010024654A2 KR 2009004927 W KR2009004927 W KR 2009004927W WO 2010024654 A2 WO2010024654 A2 WO 2010024654A2
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
battery
leakage current
floating capacitor
terminal
Prior art date
Application number
PCT/KR2009/004927
Other languages
English (en)
French (fr)
Other versions
WO2010024654A3 (ko
Inventor
강주현
김지호
이상훈
권동근
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN2009801392125A priority Critical patent/CN102171578B/zh
Priority to EP09810259.3A priority patent/EP2336794B1/en
Priority to JP2011524916A priority patent/JP5674662B2/ja
Publication of WO2010024654A2 publication Critical patent/WO2010024654A2/ko
Priority to US12/792,253 priority patent/US8421466B2/en
Publication of WO2010024654A3 publication Critical patent/WO2010024654A3/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/16Measuring impedance of element or network through which a current is passing from another source, e.g. cable, power line
    • G01R27/18Measuring resistance to earth, i.e. line to ground
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R27/00Arrangements for measuring resistance, reactance, impedance, or electric characteristics derived therefrom
    • G01R27/02Measuring real or complex resistance, reactance, impedance, or other two-pole characteristics derived therefrom, e.g. time constant
    • G01R27/08Measuring resistance by measuring both voltage and current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/482Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for several batteries or cells simultaneously or sequentially
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0069Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to the isolation, e.g. ground fault or leak current
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3835Arrangements for monitoring battery or accumulator variables, e.g. SoC involving only voltage measurements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an apparatus and method for detecting a leakage current of a battery, and more particularly, to a leakage current of a battery capable of detecting a leakage current of a battery employed in a battery power supply system requiring a high voltage, such as an electric vehicle or a hybrid vehicle.
  • a sensing device and method are disclosed.
  • electric driving vehicles that can be driven using batteries without using fossil energy has been increasing.
  • Batteries used in electric powered cars are the mainstream secondary battery. Secondary batteries are classified into lithium-based batteries and nickel-hydride batteries. Lithium-based batteries are mainly applied to small products such as digital cameras, P-DVDs, MP3Ps, mobile phones, PDAs, portable game devices, power tools, and e-bikes. Mainly applied.
  • the present invention has been made to solve the above problems, and a device and method for detecting leakage current of a battery that can easily and accurately detect the presence or absence of leakage current of a battery through a simple leakage current sensing circuit configuration, and the device.
  • An object of the present invention is to provide a battery pack and a battery driving device including the same.
  • the floating capacitor for charging a voltage detected from the positive terminal or the negative terminal of the battery;
  • a DC voltage applying unit configured to apply a DC voltage to the negative terminal when the detection voltage of the battery negative terminal is measured;
  • a terminal selection switching unit for selecting a voltage detection path on the positive or negative terminal side;
  • a charge switching unit configured to charge the floating capacitor with a detected voltage on the positive or negative terminal side detected from the selected voltage detection path and separate the floating capacitor from the voltage detection path;
  • a voltage sensing unit configured to sense a detection voltage of a battery positive terminal or negative terminal charged in the separated floating capacitor;
  • a leakage current determination unit configured to calculate a leakage resistance by using detection voltages of the battery positive and negative terminals sensed by the voltage sensing unit and to determine whether leakage current is generated in comparison with a reference insulation resistance.
  • the leakage current sensing device further includes a first voltage distribution node provided on a first line between a positive electrode and a negative electrode terminal of the battery, and the terminal selection switching unit includes the positive voltage of the first voltage distribution node and the battery. It may include a first switch and a second switch provided between the terminal and the negative terminal, respectively.
  • the leakage current sensing device further includes a second voltage distribution node disposed on a second line connecting the first voltage distribution node and ground, and the floating capacitor extends from the second voltage distribution node. It can be installed on the fourth line branched from the third line.
  • the voltage applying unit for applying the detection voltage of the battery positive terminal or negative terminal charged in the floating capacitor may further include a voltage sensing unit.
  • the DC voltage applying unit includes: a first switch provided between the second voltage distribution node and ground; A second switch provided on a conductive line branched between the second voltage distribution node and the first switch; And a DC power supply for applying a DC voltage to the second voltage distribution node when the second switch is turned on.
  • the leakage current determination unit the switch controller for controlling the operation of the terminal selection switching unit and the charge switching unit;
  • An A / D converter for converting an analog voltage signal output from the voltage sensing unit into a digital voltage signal;
  • a central processing processor that receives the digital voltage signal from the A / D converter, calculates a leakage resistance, and then determines whether a leakage current is generated in comparison with a reference insulation resistance.
  • the voltage sensing unit may include a differential amplifier for sensing a voltage output from the floating capacitor.
  • the leakage current determiner electrically controls the charge switching unit to detect the voltage charged in the floating capacitor to electrically separate the floating capacitor from the selected voltage detection path.
  • the leakage current determining unit may calculate the leakage resistance by the following equation.
  • the leakage current determining unit further includes a leakage current alarm for visually or audibly outputting the fact that leakage current is generated, and when the leakage current is generated, the leakage current alarm visually indicates that leakage current is generated. Or acoustically alarm.
  • the leakage current determination unit determines that a leakage current is generated when the calculated leakage resistance is smaller than a reference insulation resistance.
  • the technical problem may also be achieved by a battery pack and a battery driving device including the battery leakage current sensing device described above.
  • Battery leakage current detection method for achieving the above technical problem, by selecting the voltage detection path of the battery positive terminal side to charge the detection voltage of the battery positive terminal to the floating capacitor, the voltage detection path and the floating capacitor electrical Sensing the detection voltage of the charged positive terminal in a separated state; After selecting the voltage detection path of the battery negative terminal side, a DC voltage is applied to the battery negative terminal side to charge the detection voltage of the battery negative terminal to the floating capacitor, and the charged negative electrode in the state of electrically separating the voltage detection path and the floating capacitor. Inverting and detecting the detection voltage of the terminal; Calculating a leakage resistance using the sensed voltage of the positive terminal and the detected voltage of the negative terminal; And determining whether the leakage current is generated by comparing the leakage resistance with a reference insulation resistance.
  • the accuracy of the leakage current determination is reduced by noise flowing from the battery pack or load. You can prevent it.
  • the leakage current of the battery when the leakage current of the battery occurs, it can be detected early to prevent the discharge of the battery.
  • it is possible to prevent malfunction and failure of the vehicle internal equipment due to leakage current, and to prevent human injury due to leakage current of the battery.
  • the floating capacitor since the floating capacitor is electrically disconnected from the battery before sensing the voltage charged in the floating capacitor, noise from the battery can be reduced to more accurately detect leakage current.
  • FIG. 1 is a circuit diagram illustrating an apparatus for detecting a leakage current of a battery according to a preferred embodiment of the present invention.
  • FIG. 2 is a block diagram showing the configuration of a leakage current determining unit according to a preferred embodiment of the present invention.
  • FIG. 3 is a flowchart illustrating a method of detecting a leakage current of a battery according to an exemplary embodiment of the present invention.
  • FIG. 1 is a circuit diagram illustrating an apparatus for detecting a leakage current of a battery according to a preferred embodiment of the present invention.
  • the leakage current sensing device 300 of a battery according to the present invention is connected to both terminals of a battery 200 in which a plurality of cells for supplying power to a load system 100 are assembled. The leakage current of 200 is sensed.
  • the load system 100 is a system that requires a high voltage, such as an electric vehicle or a hybrid vehicle by means of using the electrical energy output from the battery 200.
  • the load L that consumes electric energy in the load system 100 is a drive motor that transfers power to an electric vehicle or a hybrid vehicle, or a DC to DC converter that converts a voltage output from the battery 200.
  • the present invention is not limited by the type of the load system 100 or the load L included therein.
  • the capacitor component C1 is a filter for filtering noise generated in the load system 100
  • the capacitor components C2 and C3 are the battery 200 and the load when the battery 200 is connected to the load L. It is a capacitor component which exists between (L).
  • the battery 200 includes a plurality of unit cells electrically connected as electrical energy storage means and capable of repeatedly charging and discharging.
  • the unit cell is an electric double layer capacitor including an ultra capacitor, or a known secondary battery such as a lithium ion battery, a lithium polymer battery, a nickel cadmium battery, a nickel hydrogen battery, a nickel zinc battery, or the like.
  • Battery leakage current detecting device 300 for charging the voltage detected from the positive terminal (A) or negative terminal (B) of the battery 200, and the battery negative terminal (B) DC voltage applying unit 350 for applying a DC voltage to the negative terminal (B) side when measuring the detected voltage of the terminal and a terminal selection switching unit (SW1) for selecting a voltage detection path on the positive or negative terminal (A, B) side , SW2, charge switching units SW3 and SW4 for charging the floating capacitor C5 with the detected voltage at the positive or negative terminal A and B sides detected from the selected voltage detection path, and the floating capacitor
  • the voltage sensing unit 330 for sensing the detected voltage of the battery positive terminal A or the negative terminal B charged in the C5), and the battery positive terminal A and the negative terminal sensed by the voltage sensing unit 330. Calculate the leakage resistance using the detected voltage in (B) and compare the Comparison include the leakage current determining unit 340 that determines the occurrence of leak current.
  • the first line 1 is installed between the positive terminal A and the negative terminal B of the battery 200. Then, the second line 2 is branched from the first voltage distribution node n1 on the first line 1. The second line 2 is connected to ground, and a second voltage distribution node n2 is positioned on the second line 2. The third line 3 branches and extends from the second voltage distribution node n2, and the fourth line 4 branches from the third line 3.
  • the terminal selection switching unit includes a first switch SW1 and a second switch SW2 provided on the first line 1.
  • the first switch SW1 is installed between the voltage distribution node n1 and the positive terminal A of the battery 200, and the second switch SW2 is connected to the voltage distribution node n1 and the battery 200. It is provided between the negative terminal (B) of the).
  • a first resistor R1 is provided between the first switch SW1 and the positive terminal A, and a second resistor R2 is provided between the second switch SW2 and the negative terminal B.
  • the terminal selection switching units SW1 and SW2 select a voltage detection path.
  • the voltage detection path includes a voltage detection path on the positive terminal A side and a voltage detection path on the negative terminal B side.
  • the voltage detection path on the positive terminal A side is selected when the first switch SW1 of the terminal selection switching unit is turned on.
  • the voltage detection path on the negative terminal A side is selected when the second switch SW2 of the terminal selection switching unit is turned on.
  • a third resistor R3 is interposed between the second voltage distribution node n2 and the first voltage distribution node n1.
  • a capacitor C4 is provided between the second voltage distribution node n2 and the ground. The capacitor C4 is primarily charged with a detection voltage at the positive terminal A or the negative terminal B side of the battery 200 according to the selective turn-on of the terminal selection switching units SW1 and SW2.
  • the charging switching unit includes a third switch SW3 and a fourth switch SW4 connected to both terminals of the floating capacitor C5.
  • the charging switching unit When the charging switching unit is turned on, the detection voltage of the positive terminal A side or the negative terminal B side charged to the capacitor C4 is charged to the floating capacitor C5 side.
  • a voltage application switching unit including a fifth switch SW5 and a sixth switch SW6 is interposed between the voltage sensing unit 330 and the floating capacitor C5.
  • the voltage applying switching unit is turned on, the voltage charged in the floating capacitor C5 is applied to the voltage sensing unit 330.
  • the voltage sensing unit 330 outputs the voltage at both ends of the floating capacitor C5 to the leakage current determination unit 340 as an analog voltage signal. That is, the voltage sensing unit 330 sequentially senses the detection voltage of the positive terminal A side and the negative voltage of the negative terminal B side charged in the floating capacitor C5 to output an analog voltage signal.
  • the analog voltage signal includes a first analog voltage signal corresponding to the detection voltage of the positive terminal (A) side and a second analog voltage signal corresponding to the polarity inverted detection voltage of the negative terminal (B) side.
  • the voltage sensing unit 330 may include a differential amplifier, but the present invention is not limited thereto.
  • the DC voltage applying unit 350 includes a fourth resistor R4 and a seventh switch SW7 sequentially installed between the second voltage distribution node n2 and the ground, and the fourth resistor R4 and the fourth resistor R4.
  • the DC voltage applying unit 350 allows a current flowing into the second line 2 from the battery positive terminal A side to the ground side in the voltage detection process of the battery positive terminal A.
  • FIG. the DC voltage applying unit 350 applies DC power to the battery negative terminal B side during the voltage detection process of the battery negative terminal B, and thus, from the second line 2, the battery negative terminal B is reversed. Let the current flow to the side.
  • the voltages charged in the capacitor C4 and the floating capacitor C5 have the same polarity.
  • the circuit configuration of the voltage sensing unit 330 can be simplified.
  • the positive leakage resistance (Rleakage +) and the negative leakage resistance (Rleakage-) respectively displayed at both terminals of the battery 200 describe a situation when a leakage current occurs. Equivalent representation of a value.
  • FIG. 2 is a block diagram showing the configuration of a leakage current determining unit according to a preferred embodiment of the present invention.
  • the leakage current determining unit 340 includes an A / D converter 341, a central processing processor 342, a switch controller 343, and a leakage current alarm 344.
  • the A / D converter 341 converts an analog voltage signal output from the voltage sensing unit 330 into a digital voltage signal.
  • the digital voltage signal includes a first digital voltage signal corresponding to the detection voltage at the positive terminal A side and a second digital voltage signal corresponding to the detection voltage at the negative terminal B side.
  • the central processor 342 calculates a leakage resistance by receiving a digital voltage signal from the A / D converter 341. That is, the central processing processor 342 divides the digitized voltage signal input from the A / D converter 341 by the positive and negative terminals, and has the digitized voltage signal divided by the positive and negative terminals, and the battery 200.
  • the leakage resistance of is calculated by the following Equation 1.
  • R i is in the internal resistance.
  • E is a both-end voltage
  • V A battery leakage current sensing apparatus is a detection voltage of the detection voltage
  • V B is the negative terminal of the positive electrode terminal.
  • the central processor 342 determines that a leakage current is generated when the leakage resistance calculated by comparing the leakage resistance calculated by Equation 1 with a preset reference insulation resistance is smaller than the reference insulation resistance.
  • the switch controller 343 applies terminal selection switching units SW1 and SW2, charging switching units SW3 and SW4, voltage applying switching units SW5 and SW6, and DC voltage under the control of the central processing processor 342.
  • the operation of the switches SW7 and SW8 located in the unit 350 is controlled.
  • the switch controller 343 sequentially stores the detection voltages of the positive and negative terminals A and B of the battery 200 in the capacitor C4 and the floating capacitor C5, and the detected voltages are stored in the Switches located in the terminal selection switching units SW1 and SW2, the charging switching units SW3 and SW4, the voltage applying switching units SW5 and SW6, and the DC voltage applying unit 350 to be applied to the voltage sensing unit 330.
  • the operation of (SW7, SW8) is controlled.
  • the switch controller 343 When the detection voltage of the positive terminal A is measured, the switch controller 343 turns on the first switch SW1 of the terminal selection switching unit and the seventh switch SW7 in the DC voltage applying unit 350 and the terminal. The second switch SW2 of the selective switching unit and the eighth switch SW8 in the DC voltage applying unit 350, and the charge switching unit 310 and the voltage applying switching unit 320 are turned off. Then, a current flows from the positive electrode terminal A of the battery to the capacitor C4 and the seventh switch SW7. As a result, a voltage corresponding to the detection voltage of the positive electrode terminal A is charged in the capacitor C4.
  • the first switch of the terminal selection switching unit and the seventh switch SW7 in the DC voltage applying unit 350 are turned off and the charge switching unit 310 is turned on to detect the positive terminal A charged in the capacitor C4.
  • the voltage is again charged to the floating capacitor C5. Since the voltage application switching unit 320 is turned off while the floating capacitor C5 is charged with the positive terminal A voltage, noise flowing from the battery 200 or the load system 100 is leaked. It may be prevented from flowing into the determination unit 340.
  • the voltage applying switching unit 320 is turned on while the charging switching unit 310 is turned off to apply the detection voltage of the positive terminal A charged in the floating capacitor C5 to the voltage sensing unit 330. .
  • the voltage sensing unit 330 outputs the first analog voltage signal corresponding to the detected voltage of the positive terminal A of the battery 200 to the A / D converter 341. Since the charge switching unit 310 is turned off when the voltage sensing unit 330 senses the detection voltage of the positive electrode terminal A, the leakage current determination unit 340 from the battery 200 or the load system 100. Noise can be prevented from entering the) side.
  • the switch controller 342 turns off the first switch SW1 of the terminal selection switching unit, turns on the second switch SW2, and applies a DC voltage.
  • the seventh switch SW7 of the unit 350 is turned off, the eighth switch SW8 is turned on, and the charge switching unit 310 and the voltage application switching unit 320 are turned off.
  • a current flows from the positive terminal of the DC power supply DC to the capacitor C4 and the negative terminal B side of the battery. In this process, a voltage corresponding to the detected voltage of the battery negative terminal B is applied to the capacitor C4. Is charged.
  • the second switch SW2 of the terminal selection switching unit and the eighth switch SW8 of the DC voltage applying unit 350 are turned off and the charge switching unit 310 is turned on.
  • the detection voltage of the negative electrode terminal B charged to the capacitor C4 is charged to the floating capacitor C5 again. Since the voltage application switching unit 320 is turned off while the detection capacitor of the negative terminal B is charged to the floating capacitor C5, noise flowing from the battery 200 or the load system 100 leaks. It can be prevented from flowing into the current determination unit 340.
  • the voltage applying switching unit 320 is turned on while the charging switching unit 310 is turned off to apply the detection voltage of the negative terminal B charged in the floating capacitor C5 to the voltage sensing unit 330. do.
  • the voltage sensing unit 330 outputs the second analog voltage signal corresponding to the detected voltage of the battery negative terminal B to the A / D converter 341. Since the charge switching unit 310 is turned off when the voltage sensing unit 330 senses the detection voltage of the negative terminal B, the leakage current determination unit 340 is determined from the battery 200 or the load system 100. Noise can be prevented from entering the) side.
  • the voltage sensing unit 330 can be implemented using a differential amplifier.
  • the voltage sensing unit 330 since the floating capacitor C5 is always charged with a positive voltage, the voltage sensing unit 330 may be implemented using only one differential amplifier without including the polarity inversion circuit in the voltage sensing unit 330.
  • the leakage current determination unit 340 may output a determination result on whether leakage current occurs, visually or audibly.
  • the leakage current determiner 340 preferably further includes a leakage current alarm 344.
  • the leakage current determination unit 340 when it is determined that the leakage current is generated, the leakage current determination unit 340 outputs a leakage current generation signal to the leakage current alarm 344.
  • the leakage current alarm 344 then visually or audibly alerts the occurrence of leakage current.
  • the leakage current alarm 344 may be implemented as an LED, an LCD, an alarm alarm, or a combination thereof. Accordingly, the leakage current alarm 344 may flash the LED, output a warning message on the LCD, or generate an alarm sound through the alarm alarm to alert the user of the leakage current.
  • various modified forms of visual or audio alarm devices may be employed as the leakage current alarm 325.
  • the above-described battery leakage current detecting device may be used in combination with a battery driving device which is powered from a battery.
  • the present invention may be included and used in various electronic products that receive a driving voltage from a battery such as a laptop, a mobile phone, and a personal portable multimedia player.
  • the present invention may be used in combination with various power units equipped with batteries such as fossil fuel vehicles, electric vehicles, hybrid vehicles, and electric bicycles.
  • the battery leakage current detecting device can be modularized into a PCB circuit or an application specific semiconductor circuit (ASIC) and mounted in a battery pack. .
  • ASIC application specific semiconductor circuit
  • FIG. 3 is a flowchart illustrating a method of detecting a leakage current of a battery according to an exemplary embodiment of the present invention.
  • the performing subject of each step described below is the central processor 342 unless otherwise noted, and it is found in advance that the operation of each switch involves the control of the switch controller 341 by the central processor 342. Put it.
  • step S100 in order to sense the detected voltage of the battery positive terminal A, the first switch SW1 of the terminal selection switching unit is turned on and the second switch SW2 is turned off, and the DC voltage applying unit ( The seventh switch SW7 of 350 is turned on, and the eighth switch SW8 is turned off, and the charge switching unit 310 and the voltage applying switching unit 320 are turned off. Then, the voltage corresponding to the detected voltage of the positive terminal A is first charged in the capacitor C4.
  • the voltage sensing unit detects the detected voltage of the positive terminal A charged in the floating capacitor C5 by turning on the voltage applying switch 320 while the charge switching unit 310 is turned off. 330 is applied. Then, the voltage sensing unit 330 senses the detected voltage of the positive terminal A and outputs the first analog voltage signal to the A / D converter 341. In response, the A / D converter 341 converts the first analog voltage signal into a digitized voltage signal and inputs the same to the central processing unit 342.
  • the first switch SW1 of the terminal selection switching unit is turned off and the second switch SW2 is turned on, and the DC voltage
  • the seventh switch SW7 of the applying unit is turned off
  • the eighth switch SW8 is turned on
  • the charge switching unit 310 and the voltage application switching unit 320 are turned off.
  • the DC power included in the DC voltage applying unit 350 is applied to the negative terminal B side of the battery 200, current flows to the negative terminal B and the capacitor C4 side of the battery 200, so that the negative terminal ( The voltage corresponding to the detection voltage of B) is first charged in the capacitor C4.
  • step S220 the voltage applying switch 320 is turned on while the charge switching unit 310 is turned off to detect the detected voltage of the negative terminal B charged in the floating capacitor C5 by the voltage sensing unit. 330 is applied. Then, the voltage sensing unit 330 senses the detected voltage of the negative terminal B and outputs a second analog voltage signal to the A / D converter 341. In response, the A / D converter 341 converts the second analog voltage signal into a digitized voltage signal and inputs it to the central processor 342.
  • step S300 the leakage resistance is calculated using the detected voltages of the positive and negative terminals A and B measured in steps S110 and S210.
  • the method of calculating the leakage resistance has already been described above.
  • step S400 it is determined whether the leakage resistance calculated by comparing the leakage resistance calculated in the step S300 and the reference insulation resistance is smaller than the reference insulation resistance.
  • Step S500 is a step that proceeds when the leakage resistance calculated in step S400 is greater than or equal to the reference insulation resistance, and determines that no leakage current has occurred in the battery.
  • operation S600 when the leakage resistance calculated in the operation S400 is smaller than the reference insulation resistance, the operation S600 determines whether a leakage current is generated in the battery.
  • Step S700 alarms this fact either visually or audibly as it is determined that a leakage current has occurred in step S600.
  • step S100 to step S700 if the leakage current detection is required while the battery power system is operating may proceed selectively or automatically repeated at a certain period.
  • the accuracy of the leakage current determination is reduced by the noise flowing from the battery pack or load. You can prevent it.
  • the leakage current of the battery when the leakage current of the battery occurs, it can be detected early to prevent the discharge of the battery.
  • it is possible to prevent malfunction and failure of the vehicle internal equipment due to leakage current, and to prevent human injury due to leakage current of the battery.
  • the floating capacitor is electrically disconnected from the battery before sensing the voltage charged in the floating capacitor, it is possible to detect the leakage current from the battery by reducing noise.

Abstract

본 발명은 배터리의 누설전류 감시 장치 및 방법과, 상기 장치를 포함하는 배터리 팩 및 배터리 구동 장치를 개시한다. 본 발명에 따른 배터리 누설전류 감지 장치는, 배터리의 양극 단자 또는 음극 단자로부터 검출되는 전압을 충전하는 부동 캐패시터; 상기 배터리 음극 단자의 검출전압 측정 시 음극 단자 측으로 DC 전압을 인가하는 DC 전압 인가부; 상기 양극 또는 음극 단자 측의 전압 검출 경로를 선택하는 단자 선택 스위칭부; 상기 선택된 전압 검출 경로로부터 검출되는 양극 또는 음극 단자 측의 검출 전압을 상기 부동 캐패시터에 충전시킨 후 상기 부동 캐패시터를 상기 전압 검출 경로와 분리시키는 충전 스위칭부; 상기 분리된 부동 캐패시터에 충전된 배터리 양극 단자 또는 음극 단자의 검출전압을 센싱하는 전압 센싱부; 및 상기 전압 센싱부에서 센싱된 배터리 양극 단자와 음극 단자의 검출전압을 이용하여 누설저항을 계산하고 기준 절연저항과 대비하여 누설전류의 발생 여부를 판별하는 누설전류 판별부를 포함한다.

Description

배터리 누설전류 감지 장치 및 방법, 및 상기 장치를 포함하는 배터리 구동 장치 및 배터리 팩
본 발명은 배터리의 누설전류 감지 장치 및 방법에 관한 것으로서, 더욱 상세하게는 전기 자동차나 하이브리드 자동차와 같이 고전압을 요구하는 배터리 전원 공급 시스템에 채용된 배터리의 누설전류를 감지할 수 있는 배터리의 누설전류 감지 장치 및 방법에 관한 것이다.
최근 들어, 화석 에너지의 고갈과 환경오염으로 인해 화석 에너지를 사용하지 않고 배터리를 이용하여 구동할 수 있는 전기 자동차나 하이브리드 자동차(이하, 전기 구동 자동차로 통칭함)에 대한 관심이 높아지고 있다.
전기 구동 자동차에 사용되는 배터리는 이차 전지가 주류를 이룬다. 이차 전지는 크게 리튬 계열 전지와 니켈 수소 계열의 전지로 분류된다. 리튬 계열 전지는 디지털 카메라, P-DVD, MP3P, 휴대폰, PDA, Portable Game Device, Power Tool 및 E-bike 등의 소형 제품에 주로 적용되며, 니켈 수소 계열 전지는 자동차와 같은 고출력이 요구되는 제품에 주로 적용된다.
배터리를 사용하는 장치에서는 배터리와 장치 간의 절연 상태가 잘 유지될 필요가 있다. 배터리의 절연상태가 유지되지 않으면 누설전류가 발생하여 여러 가지 문제를 야기하기 때문이다. 참고로, 배터리 누설전류는 예상치 못한 배터리의 방전이나 장치에 구비된 전자 기기들의 오작동을 일으킨다. 또한 전기 구동 자동차와 같이 고전압 배터리를 사용하는 장치에서는 사람에게 치명적인 감전피해를 줄 수 있다. 이에 따라 본 발명이 속한 기술분야에서는 배터리의 누설전류를 정확하고 철저하게 감지할 수 있는 방안이 요구되고 있다.
본 발명은 상기와 같은 문제점을 해결하기 위해 창안된 것으로서, 간단한 누설전류 감지 회로 구성을 통해 배터리의 누설전류 발생 유무를 용이하고 정확하게 감지할 수 있는 배터리의 누설전류 감지 장치 및 방법과, 상기 장치를 포함하는 배터리 팩 및 배터리 구동 장치를 제공하는데 그 목적이 있다.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 배터리 누설전류 감지 장치는, 배터리의 양극 단자 또는 음극 단자로부터 검출되는 전압을 충전하는 부동 캐패시터; 상기 배터리 음극 단자의 검출전압 측정 시 음극 단자 측으로 DC 전압을 인가하는 DC 전압 인가부; 상기 양극 또는 음극 단자 측의 전압 검출 경로를 선택하는 단자 선택 스위칭부; 상기 선택된 전압 검출 경로로부터 검출되는 양극 또는 음극 단자 측의 검출 전압을 상기 부동 캐패시터에 충전시킨 후 상기 부동 캐패시터를 상기 전압 검출 경로와 분리시키는 충전 스위칭부; 상기 분리된 부동 캐패시터에 충전된 배터리 양극 단자 또는 음극 단자의 검출전압을 센싱하는 전압 센싱부; 및 상기 전압 센싱부에서 센싱된 배터리 양극 단자와 음극 단자의 검출전압을 이용하여 누설저항을 계산하고 기준 절연저항과 대비하여 누설전류의 발생 여부를 판별하는 누설전류 판별부를 포함한다.
본 발명에 따른 누설전류 감지 장치는, 배터리의 양극 및 음극 단자 사이의 제1선로 상에 설치된 제1전압 배분 노드를 더 포함하고, 상기 단자 선택 스위칭부는, 상기 제1전압 배분 노드와 배터리의 양극 단자 및 음극 단자 사이에 각각 설치된 제1 및 제2스위치를 포함할 수 있다.
본 발명에 따른 누설전류 감지 장치는, 상기 제1전압 배분 노드와 접지를 연결한 제2선로 상에 설치된 제2전압 배분 노드를 더 포함하고, 상기 부동 캐패시터는, 상기 제2전압 배분 노드로부터 연장된 제3선로부터 분기된 제4선로 상에 설치될 수 있다.
본 발명에 따르면, 상기 부동 캐패시터에 충전된 배터리 양극 단자 또는 음극 단자의 검출전압을 상기 전압 센싱부에 인가하는 전압 인가 스위칭부를 더 포함할 수 있다.
본 발명에 따르면, 상기 DC 전압 인가부는, 상기 제2전압 배분 노드와 접지 사이에 설치된 제1스위치; 상기 제2전압 배분 노드와 상기 제1스위치 사이에서 분기된 도전 라인 상에 설치된 제2스위치; 및 상기 제2스위치의 턴온시 제2전압 배분 노드에 DC전압을 인가하는 DC 전원;을 포함할 수 있다.
바람직하게, 상기 누설전류 판별부는, 상기 단자 선택 스위칭부와 상기 충전 스위칭부의 동작을 제어하는 스위치 제어기; 상기 전압 센싱부로부터 출력되는 아날로그 전압 신호를 디지털 전압 신호로 변환하는 A/D 변환기; 및 상기 A/D 변환기로부터 디지털 전압 신호를 입력 받아 누설저항을 계산한 후 기준 절연저항과 대비하여 누설전류 발생 여부를 판별하는 중앙연산처리기;를 포함한다.
바람직하게, 상기 전압 센싱부는 상기 부동 캐패시터에서 출력되는 전압을 센싱하는 차동 증폭기를 포함할 수 있다.
바람직하게, 상기 누설전류 판별부는, 상기 부동 캐패시터에 충전된 전압을 검출하기에 앞서 상기 충전 스위칭부를 제어하여 상기 부동 캐패시터를 상기 선택된 전압 검출 경로와 전기적으로 분리시킨다.
본 발명에 따르면, 상기 누설전류 판별부는 하기 수학식에 의해 누설저항을 계산할 수 있다.
<수학식>
Figure PCTKR2009004927-appb-I000001
(여기서, Ri는 누설 전류 감지 장치의 내부 저항, E는 배터리 양단 전압, VA는 부동 캐패시터에 충전된 양극 단자의 검출전압, VB는 부동 캐패시터에 충전된 음극 단자의 검출전압이다.)
본 발명에 따르면, 상기 누설전류 판별부는, 누설전류 발생 사실을 시각적 또는 청각적으로 출력하는 누설전류 경보기;를 더 포함하고, 누설전류가 발생된 경우 상기 누설전류 경보기를 통해 누설전류 발생 사실을 시각적 또는 청각적으로 경보할 수 있다.
바람직하게, 상기 누설전류 판별부는, 상기 계산된 누설저항이 기준 절연저항보다 작으면 누설전류가 발생된 것으로 판별한다.
상기 기술적 과제는 상술한 배터리 누설전류 감지 장치를 포함하는 배터리 팩과 배터리 구동 장치에 의해서도 달성될 수 있다.
상기 기술적 과제를 달성하기 위한 본 발명에 따른 배터리 누설전류 감지 방법은, 배터리 양극 단자 측의 전압 검출 경로를 선택하여 배터리 양극 단자의 검출 전압을 부동 캐패시터에 충전시키고, 전압 검출 경로와 부동 캐패시터를 전기적으로 분리시킨 상태에서 충전된 양극 단자의 검출 전압을 센싱하는 단계; 배터리 음극 단자 측의 전압 검출 경로를 선택한 후 DC 전압을 배터리 음극 단자 측으로 인가하여 배터리 음극 단자의 검출 전압을 상기 부동 캐패시터에 충전시키고, 전압 검출 경로와 부동 캐패시터를 전기적으로 분리시킨 상태에서 충전된 음극 단자의 검출 전압을 반전시켜 센싱하는 단계; 센싱된 상기 양극 단자의 검출전압과 음극 단자의 검출전압을 이용하여 누설저항을 계산하는 단계; 및 상기 누설저항을 기준 절연저항과 대비하여 누설전류 발생 여부를 판별하는 단계;를 포함한다.
본 발명에 따르면, 부동 캐패시터를 이용하여 누설전류로 인한 배터리 양쪽 단자의 전압 변화를 감지하여 누설전류 발생 여부를 판별함으로써, 배터리 팩이나 부하로부터 유입되는 노이즈에 의해 누설전류 판별의 정확성이 저하되는 것을 방지할 수 있다. 또한, 배터리의 누설전류 발생 시 이를 조기에 감지하여 배터리의 방전을 방지할 수 있다. 아울러, 누설전류로 인한 차량 내부 기기의 오작동 및 고장을 예방하고, 배터리의 누설전류로 인한 인명 피해를 예방할 수 있다. 또한, 부동 캐패시터에 충전된 전압을 센싱하기 전에 부동 캐패시터를 배터리로부터 전기적으로 분리시키므로 배터리로부터 유입되는 노이즈를 저감시켜 좀 더 정확한 누설전류 감지가 가능하다.
본 명세서에 첨부되는 다음의 도면들은 본 발명의 바람직한 실시예를 예시하는 것이며, 전술된 발명의 상세한 설명과 함께 본 발명의 기술사상을 더욱 이해시키는 역할을 하는 것이므로, 본 발명은 그러한 도면에 기재된 사항에만 한정되어 해석되지 않아야 한다.
도 1은 본 발명의 바람직한 실시예에 따른 배터리의 누설전류 감지 장치에 대한 회로 구성도이다.
도 2는 본 발명의 바람직한 실시예에 따른 누설전류 판별부의 구성을 도시한 블록도이다.
도 3은 본 발명의 바람직한 실시예에 따른 배터리의 누설전류 감지 방법을 설명하기 위해 도시한 흐름도이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다. 따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.
도 1은 본 발명의 바람직한 실시예에 따른 배터리의 누설전류 감지 장치에 대한 회로 구성도이다.
도 1에 도시된 바와 같이, 본 발명에 따른 배터리의 누설전류 감지 장치(300)는, 부하 시스템(100)에 전원을 공급하는 다수의 셀이 집합된 배터리(200)의 양쪽 단자에 연결되어 배터리(200)의 누설전류를 감지한다.
본 발명의 실시예에서, 상기 부하 시스템(100)은 배터리(200)에서 출력되는 전기에너지를 이용하는 수단으로 전기 자동차나 하이브리드 자동차와 같이 고전압을 요구하는 시스템이다. 상기 부하 시스템(100)에서 전기에너지를 소모하는 부하(L)는 전기 자동차나 하이브리드 자동차에 동력을 전달하는 구동 모터나, 배터리(200)로부터 출력되는 전압을 변환하여 주는 DC to DC 컨버터 등이다. 하지만, 본 발명은 부하 시스템(100)이나 여기에 포함된 부하(L)의 종류에 의해 한정되지 않는다. 도면에서, 캐패시터 성분 C1은 부하 시스템(100)에서 발생되는 노이즈(Noise)를 필터링하는 필터이고, 캐패시터 성분 C2 및 C3는 배터리(200)가 부하(L)에 접속될 때 배터리(200)와 부하(L) 사이에 존재하게 되는 캐패시터 성분이다.
상기 배터리(200)는 전기에너지 저장수단으로서 전기적으로 연결되어 반복 충방전이 가능한 다수의 단위 셀을 포함한다. 상기 단위 셀은 울트라 캐패시터를 포함하는 전기 이중층 캐패시터, 또는 리튬 이온 전지, 리튬 폴리머 전지, 니켈 카드늄 전지, 니켈 수소 전지, 니켈 아연 전지 등과 같은 공지의 2차 전지이다.
본 발명에 따른 배터리 누설전류 감지 장치(300)는, 배터리(200)의 양극 단자(A) 또는 음극 단자(B)로부터 검출되는 전압을 충전하는 부동 캐패시터(C5)와, 상기 배터리 음극 단자(B)의 검출전압 측정 시 음극 단자(B) 측으로 DC 전압을 인가하는 DC 전압 인가부(350)와, 상기 양극 또는 음극 단자(A, B) 측의 전압 검출 경로를 선택하는 단자 선택 스위칭부(SW1, SW2)와, 상기 선택된 전압 검출 경로로부터 검출되는 양극 또는 음극 단자(A, B) 측의 검출 전압을 상기 부동 캐패시터(C5)에 충전시키는 충전 스위칭부(SW3, SW4)와, 상기 부동 캐패시터(C5)에 충전된 배터리 양극 단자(A) 또는 음극 단자(B)의 검출전압을 센싱하는 전압 센싱부(330)와, 상기 전압 센싱부(330)에서 센싱된 배터리 양극 단자(A)와 음극 단자(B)의 검출전압을 이용하여 누설저항을 계산하고 기준 절연저항과 대비하여 누설전류의 발생 여부를 판별하는 누설전류 판별부(340)를 포함한다.
본 발명에 따르면, 배터리(200)의 양극 단자(A)와 음극 단자(B) 사이에는 제1선로(1)가 설치된다. 그리고, 상기 제1선로(1) 상의 제1전압 배분 노드(n1)로부터 제2선로(2)가 분기된다. 상기 제2선로(2)는 접지와 연결되며, 상기 제2선로(2) 상에는 제2전압 배분 노드(n2)가 위치한다. 상기 제2전압 배분 노드(n2)로부터는 제3선로(3)가 분기되어 연장되고, 상기 제3선로(3)로부터 제4선로(4)가 분기된다.
상기 단자 선택 스위칭부는, 제1선로(1) 상에 설치된 제1스위치(SW1) 및 제2스위치(SW2)를 포함한다. 상기 제1스위치(SW1)는 상기 전압 배분 노드(n1)와 배터리(200)의 양극 단자(A) 사이에 설치되고, 상기 제2스위치(SW2)는 상기 전압 배분 노드(n1)와 배터리(200)의 음극 단자(B) 사이에 설치된다. 또한 상기 제1스위치(SW1)와 양극 단자(A) 사이에는 제1저항(R1)이, 상기 제2스위치(SW2)와 음극 단자(B) 사이에는 제2저항(R2)이 설치된다.
상기 단자 선택 스위칭부(SW1, SW2)는 전압 검출 경로를 선택한다. 상기 전압 검출 경로는 양극 단자(A) 측의 전압 검출 경로와 음극 단자(B) 측의 전압 검출 경로를 포함한다. 양극 단자(A) 측의 전압 검출 경로는 상기 단자 선택 스위칭부의 제1스위치(SW1)가 턴온되었을 때 선택된다. 반대로, 음극 단자(A) 측의 전압 검출 경로는, 상기 단자 선택 스위칭부의 제2스위치(SW2)가 턴온되었을 때 선택된다.
상기 제2전압 배분 노드(n2)와 제1전압 배분 노드(n1) 사이에는 제3저항(R3)이 개재된다. 그리고, 제2전압 배분 노드(n2)와 접지 사이에는 캐패시터(C4)가 설치된다. 상기 캐패시터(C4)에는, 상기 단자 선택 스위칭부(SW1, SW2)의 선택적인 턴온에 따라 배터리(200)의 양극 단자(A) 또는 음극 단자(B) 측의 검출 전압이 1차로 충전된다.
상기 충전 스위칭부는, 부동 캐패시터(C5)의 양 단자와 연결된 제3스위치(SW3) 및 제4스위치(SW4)를 포함한다. 상기 충전 스위칭부가 턴온되면, 캐패시터(C4)에 1차 충전된 양극 단자(A) 측 또는 음극 단자(B) 측 검출 전압이 부동 캐패시터(C5) 측으로 2차 충전된다.
상기 전압 센싱부(330)과 부동 캐패시터(C5) 사이에는 제5스위치(SW5) 및 제6스위치(SW6)로 구성된 전압 인가 스위칭부가 개재된다. 상기 전압 인가 스위칭부가 턴온되면 부동 캐패시터(C5)에 충전된 전압이 전압 센싱부(330) 측으로 인가된다.
상기 전압 센싱부(330)는 부동 캐패시터(C5)의 양단 전압을 아날로그 전압 신호로 누설전류 판별부(340) 측에 출력시킨다. 즉, 상기 전압 센싱부(330)는 부동 캐패시터(C5)에 충전된 양극 단자(A) 측 검출 전압과 음극 단자(B) 측 검출 전압을 순차적으로 센싱하여 아날로그 전압 신호를 출력한다. 상기 아날로그 전압 신호는 양극 단자(A) 측 검출 전압에 대응하는 제1아날로그 전압 신호와 음극 단자(B) 측의 극성 반전된 검출 전압에 대응하는 제2아날로그 전압 신호를 포함한다. 바람직하게, 상기 전압 센싱부(330)는 차동 증폭기(Differential Amplifier)를 포함할 수 있는데, 본 발명이 이에 한하는 것은 아니다.
상기 DC 전압 인가부(350)는 상기 제2전압 배분 노드(n2)와 접지 사이에 순차적으로 설치되는 제4저항(R4) 및 제7스위치(SW7)와, 상기 제4저항(R4)과 제7스위치(SW7) 사이에서 분기된 도전 라인 상에 설치된 제8스위치(SW8)와, 제8스위치(SW8)의 턴온시 제2전압 배분노드(n2)에 양의 DC전압을 인가하는 DC 전원(DC)을 포함한다.
상기 DC 전압 인가부(350)는 배터리 양극 단자(A)의 전압 검출 과정에서 배터리 양극 단자(A) 측으로부터 제2선로(2) 측으로 유입되는 전류가 접지 측으로 흐르도록 한다. 또한 상기 DC 전압 인가부(350)는 배터리 음극 단자(B)의 전압 검출 과정에서 배터리 음극 단자(B) 측에 DC 전원을 인가하여 상기와는 반대로 제2선로(2)로부터 배터리 음극 단자(B) 측으로 전류가 흐르게 한다. 그 결과, 캐패시터(C4)와 부동 캐패시터(C5)에 충전되는 전압은 동일한 극성을 가지게 된다. 이처럼, 부동 캐패시터(C5)에 충전되는 전압이 동일한 극성을 가지면 전압 센싱부(330)의 회로 구성을 간단하게 할 수 있다.
상기 배터리(200)의 양쪽 단자에 각각 표시된 양의 누설저항(Rleakage+)과 음의 누설저항(Rleakage-)은 누설전류가 발생했을 때의 상황을 묘사한 것으로 누설전류가 발생하게 되면 나타나는 가상의 저항값을 등가로 표현한 것이다.
도 2는 본 발명의 바람직한 실시예에 따른 누설전류 판별부의 구성을 도시한 블록도이다.
도 2를 참조하면, 상기 누설전류 판별부(340)는 A/D 변환기(341), 중앙연산처리기(342), 스위치 제어기(343) 및 누설전류 경보기(344)를 포함한다.
상기 A/D 변환기(341)는, 상기 전압 센싱부(330)로부터 출력되는 아날로그 전압 신호를 디지털 전압 신호로 변환한다. 상기 디지털 전압 신호는 양극 단자(A) 측의 검출 전압에 대응하는 제1디지털 전압 신호와 음극 단자(B) 측의 검출 전압에 대응하는 제2디지털 전압 신호를 포함한다.
상기 중앙연산처리기(342)는, 상기 A/D 변환기(341)로부터 디지털 전압 신호를 입력 받아 누설저항을 계산한다. 즉, 상기 중앙연산처리기(342)는 A/D 변환기(341)로부터 입력되는 디지털화된 전압 신호를 양극 및 음극 단자별로 구분하고, 양극 및 음극 단자별로 구분된 디지털화된 전압 신호를 가지고 배터리(200)의 누설저항을 하기 수학식 1을 통해서 계산한다.
수학식 1
Figure PCTKR2009004927-appb-M000001
(여기서, Ri는 누설 전류 감지 장치의 내부 저항. E는 배터리 양단 전압, VA는 양극 단자의 검출전압, VB는 음극 단자의 검출전압이다. 도 1에서, R1=R2이면, Ri는 R1+R3+R4이다.)
그리고, 상기 중앙연산처리기(342)는 상기 수학식1에 의해 계산된 누설저항을 미리 설정된 기준 절연저항과 대비하여 계산된 누설저항이 기준 절연저항보다 작으면 누설전류가 발생하고 있는 것으로 판별한다.
상기 스위치 제어기(343)는 상기 중앙연산처리기(342)의 통제에 따라 단자 선택 스위칭부(SW1, SW2), 충전 스위칭부(SW3, SW4), 전압 인가 스위칭부(SW5, SW6) 및 DC 전압 인가부(350) 내에 위치한 스위치(SW7, SW8)의 동작을 제어한다.
즉, 상기 스위치 제어기(343)는 배터리(200)의 양극 및 음극 단자(A, B)의 검출전압을 상기 캐패시터(C4)와 부동 캐패시터(C5)에 순차적으로 저장하고, 이렇게 저장된 검출전압이 상기 전압 센싱부(330)로 인가될 수 있도록 단자 선택 스위칭부(SW1, SW2), 충전 스위칭부(SW3, SW4), 전압 인가 스위칭부(SW5, SW6) 및 DC 전압 인가부(350) 내에 위치한 스위치(SW7, SW8)의 동작을 제어하는 것이다.
양극 단자(A)의 검출전압을 측정할 경우, 상기 스위치 제어기(343)는 단자 선택 스위칭부의 제1스위치(SW1)와 DC 전압 인가부(350) 내의 제7스위치(SW7)를 턴온시키고, 단자 선택 스위칭부의 제2스위치(SW2)와 DC 전압 인가부(350) 내의 제8스위치(SW8), 그리고 충전 스위칭부(310)와 전압 인가 스위칭부(320)를 턴오프시킨다. 그러면 배터리의 양극 단자(A)로부터 캐패시터(C4) 및 제7스위치(SW7) 측으로 전류가 흐르게 되며, 그 결과 양극 단자(A)의 검출전압에 대응하는 전압이 캐패시터(C4)에 충전된다. 이어서, 단자 선택 스위칭부의 제1스위치와 DC 전압 인가부(350) 내의 제7스위치(SW7)를 턴오프시키고 충전 스위칭부(310)를 턴온시켜 캐패시터(C4)에 충전된 양극 단자(A) 검출전압을 다시 상기 부동 캐패시터(C5)에 충전한다. 상기 부동 캐패시터(C5)에 양극 단자(A) 전압이 충전되는 과정에서 전압 인가 스위칭부(320)가 턴오프된 상태를 유지하므로 배터리(200) 또는 부하 시스템(100)으로부터 유입되는 잡음이 누설전류 판별부(340)로 유입되는 것을 방지할 수 있다. 그런 다음, 충전 스위칭부(310)를 턴오프시킨 상태에서 전압 인가 스위칭부(320)를 턴온시켜 부동 캐패시터(C5)에 충전된 양극 단자(A) 검출전압을 전압 센싱부(330)로 인가한다. 그러면, 전압 센싱부(330)는 배터리(200) 양극 단자(A)의 검출전압에 해당하는 제1아날로그 전압 신호를 A/D 변환기(341)로 출력한다. 상기 전압 센싱부(330)가 양극 단자(A)의 검출전압을 센싱할 때 충전 스위칭부(310)가 턴오프된 상태에 있으므로 배터리(200) 또는 부하 시스템(100)으로부터 누설전류 판별부(340) 측으로 잡음이 유입되는 것을 방지할 수 있다.
다음으로, 음극 단자(B)의 검출전압을 측정할 경우, 상기 스위치 제어기(342)는 단자 선택 스위칭부의 제1스위치(SW1)는 턴오프, 제2스위치(SW2)는 턴온시키고, DC 전압 인가부(350)의 제7스위치(SW7)는 턴오프, 제8스위치(SW8)는 턴온시키고, 충전 스위칭부(310)와 전압 인가 스위칭부(320)는 턴오프시킨다. 그러면 DC 전원(DC)의 양극 단자로부터 캐패시터(C4) 및 배터리의 음극 단자(B) 측으로 전류가 흐르게 되고, 이 과정에서 배터리 음극 단자(B)의 검출 전압에 해당하는 전압이 캐패시터(C4)에 충전된다. 이어서, 단자 선택 스위칭부의 제2스위치(SW2)와 DC 전압 인가부(350)의 제8스위치(SW8)를 턴오프시키고 충전 스위칭부(310)를 턴온시킨다. 그러면, 캐패시터(C4)에 충전된 음극 단자(B)의 검출전압이 다시 상기 부동 캐패시터(C5)에 충전된다. 부동 캐패시터(C5)에 음극 단자(B)의 검출전압이 충전되는 과정에서 전압 인가 스위칭부(320)가 턴오프된 상태를 유지하므로 배터리(200) 또는 부하 시스템(100)으로부터 유입되는 잡음이 누설전류 판별부(340)로 유입되는 것을 방지할 수 있다. 그런 다음, 충전 스위칭부(310)를 턴오프시킨 상태에서 전압 인가 스위칭부(320)를 턴온시켜 부동 캐패시터(C5)에 충전된 음극 단자(B)의 검출전압을 전압 센싱부(330)로 인가한다. 그러면, 전압 센싱부(330)는 배터리 음극 단자(B)의 검출전압에 해당하는 제2아날로그 전압 신호를 A/D 변환기(341)로 출력한다. 상기 전압 센싱부(330)가 음극 단자(B)의 검출전압을 센싱할 때 충전 스위칭부(310)가 턴오프된 상태에 있으므로 배터리(200) 또는 부하 시스템(100)으로부터 누설전류 판별부(340) 측으로 잡음이 유입되는 것을 방지할 수 있다.
한편, 본 발명에 따른 전압 센싱부(330)는 차동 증폭기를 이용하여 구현할 수 있다. 그런데, 부동 캐패시터(C5)에는 항상 양의 전압이 충전되므로 전압 센싱부(330) 내에 극성 반전 회로를 포함시키지 않고 하나의 차동 증폭기만으로 전압 센싱부(330)를 구현할 수 있다.
본 발명에 따르면, 상기 누설전류 판별부(340)는 누설전류 발생 여부에 대한 판정 결과를 시각적 또는 청각적으로 출력할 수 있다. 이를 위해, 상기 누설전류 판별부(340)는 누설전류 경보기(344)를 더 포함하는 것이 바람직하다.
이런 경우, 상기 누설전류 판별부(340)는 누설전류가 발생된 것으로 판별되면, 누설전류 발생 신호를 누설전류 경보기(344)로 출력한다. 그러면, 상기 누설전류 경보기(344)는 누설전류 발생 사실을 시각적 또는 청각적으로 경보한다. 상기 누설전류 경보기(344)는 LED, LCD, 알람 경보기 또는 이들의 조합으로 구현할 수 있다. 따라서, 상기 누설전류 경보기(344)는 LED를 점멸하거나 LCD에 경고 메시지를 출력하거나 알람 경보기를 통해 경보음을 발생시켜 사용자에게 누설전류 발생 사실을 경보할 수 있다. 하지만 본 발명이 이에 한하는 것은 아니므로 여러 가지 변형된 형태의 시각적 또는 청각적 알람 장치가 누설전류 경보기(325)로 채용될 수 있음은 자명하다.
상술한 본 발명에 따른 배터리 누설전류 감지 장치는 배터리로부터 전원을 공급받는 배터리 구동 장치에 결합되어 사용될 수 있다.
일 예로, 본 발명은 노트북, 휴대폰, 개인 휴대용 멀티미디어 재생기와 같이 배터리로부터 구동 전압을 공급받는 각종 전자 제품에 포함되어 사용될 수 있다.
다른 예로, 본 발명은 화석연료 자동차, 전기 자동차, 하이브리드 자동차, 전기 자전거와 같이 배터리가 탑재된 각종 동력 장치에 결합되어 사용될 수 있다.
나아가, 본 발명에 따른 배터리 누설전류 감지 장치는, PCB 회로 또는 주문형 반도체 회로(ASIC)로 모듈화하여 배터리 팩 내에 탑재할 수 있을 것임은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 자명하다.
도 3은 본 발명의 바람직한 실시예에 따른 배터리의 누설전류 감지 방법을 설명하기 위해 도시한 흐름도이다.
하기에서 설명되는 각 단계의 수행 주체는 특별한 언급이 없으면 중앙연산처리기(342)이고, 각 스위치의 동작 과정에서 중앙연산처리기(342)에 의한 스위치 제어기(341)의 제어가 수반된다는 점을 미리 밝혀둔다.
먼저, 단계(S100)에서 배터리 양극 단자(A)의 검출전압을 센싱하기 위해 상기 단자 선택 스위칭부의 제1스위치(SW1)는 턴온, 제2스위치(SW2)는 턴오프시키고, DC 전압 인가부(350)의 제7스위치(SW7)는 턴온, 제8스위치(SW8)는 턴오프시키고, 충전 스위칭부(310)과 전압 인가 스위칭부(320)는 턴오프시킨다. 그러면, 양극 단자(A)의 검출전압에 해당하는 전압이 캐패시터(C4)에 1차 충전된다.
이어서, 단계(S110)에서 단자 선택 스위칭부의 제1스위치(SW1)와 DC 전압 인가부(350)의 제7스위치(SW7)를 턴오프시키고 충전 스위칭부(310)를 턴온시켜 캐패시터(C4)에 충전된 양극 단자(A)의 검출전압을 다시 상기 부동 캐패시터(C5)에 2차 충전한다.
그런 다음, 단계(S120)에서 충전 스위칭부(310)를 턴오프시킨 상태에서 전압인가 스위칭부(320)를 턴온시켜 부동 캐패시터(C5)에 충전된 양극 단자(A)의 검출전압을 전압 센싱부(330)로 인가한다. 그러면, 상기 전압 센싱부(330)는 양극 단자(A)의 검출전압을 센싱하여 제1아날로그 전압 신호를 A/D 변환기(341)로 출력한다. 이에 응답하여 상기 A/D 변환기(341)는 제1아날로그 전압신호를 디지털화된 전압 신호로 변환하여 중앙연산처리기(342)로 입력한다.
다음으로, 단계(S200)에서 배터리(200)의 음극 단자(B) 검출전압을 센싱하기 위해 단자 선택 스위칭부의 제1스위치(SW1)는 턴오프, 제2스위치(SW2)는 턴온시키고, DC 전압 인가부의 제7스위치(SW7)는 턴오프, 제8스위치(SW8)는 턴온시키고, 충전 스위칭부(310)와 전압 인가 스위칭부(320)는 턴오프시킨다. 그러면, DC 전압 인가부(350)에 포함된 DC 전원이 배터리(200)의 음극 단자(B) 측으로 인가되면서 배터리(200)의 음극 단자(B)와 캐패시터(C4) 측으로 전류가 흘러 음극 단자(B)의 검출전압에 해당하는 전압이 캐패시터(C4)에 1차 충전된다.
이어서, 단계(S210)에서 단자 선택 스위칭부의 제2스위치(SW2)와 DC 전압 인가부(350)의 제8스위치(SW8)를 턴오프시키고 충전 스위칭부(310)를 턴온시켜 캐패시터(C4)에 충전된 음극 단자(B)의 검출전압을 다시 상기 부동 캐패시터(C5)에 2차 충전한다.
그런 다음, 단계(S220)에서 충전 스위칭부(310)를 턴오프시킨 상태에서 전압인가 스위칭부(320)를 턴온시켜 부동 캐패시터(C5)에 충전된 음극 단자(B)의 검출전압을 전압 센싱부(330)로 인가한다. 그러면, 상기 전압 센싱부(330)는 음극 단자(B)의 검출전압을 센싱하여 제2아날로그 전압 신호를 A/D 변환기(341)로 출력한다. 이에 응답하여 상기 A/D 변환기(341)는 제2아날로그 전압신호를 디지털화된 전압 신호로 변환하여 중앙연산처리기(342)로 입력한다.
단계(S300)에서는, 상기 S110 단계와 S210 단계에서 측정된 양극 및 음극 단자(A, B)의 검출전압을 이용하여 누설저항을 계산한다. 누설저항의 계산 방식은 이미 상술한 바 있다.
단계(S400)에서는, 상기 S300 단계에서 계산된 누설저항과 기준 절연저항을 대비하여 계산된 누설저항이 기준 절연저항보다 작은지 판단한다.
단계(S500)은, 상기 S400 단계에서 계산된 누설저항이 기준 절연저항보다 크거나 같은 경우 진행되는 단계로서, 배터리에서 누설전류가 발생하지 않은 것으로 판별한다.
단계(S600)은, 상기 S400 단계에서 계산된 누설저항이 기준 절연저항보다 작은 경우 진행되는 단계로서, 배터리에서 누설전류가 발생된 것으로 판별한다.
단계(S700)은, 상기 S600 단계에서 누설전류가 발생하였다고 판별됨에 따라 이 사실을 시각적 또는 청각적으로 경보한다.
상기 S100 단계에서 S700 단계는, 배터리 전원 시스템이 작동하고 있는 동안 누설전류 감지가 필요할 경우 선택적으로 진행되거나 일정한 주기를 가지고 자동적으로 반복 진행될 수 있다.
본 발명에 따르면, 부동 캐패시터를 이용하여 누설전류로 인한 배터리 양 단자의 전압 변화를 감지하여 누설전류 발생 여부를 판별함으로써, 배터리 팩이나 부하로부터 유입되는 노이즈에 의해 누설전류 판별의 정확성이 저하되는 것을 방지할 수 있다. 또한, 배터리의 누설전류 발생 시 이를 조기에 감지하여 배터리의 방전을 방지할 수 있다. 아울러, 누설전류로 인한 차량 내부 기기의 오작동 및 고장을 예방하고, 배터리의 누설전류로 인한 인명 피해를 예방할 수 있다.
본 발명의 다른 측면에 따르면, 부동 캐패시터에 충전된 전압을 센싱하기 전에 부동 캐패시터를 배터리로부터 전기적으로 분리시키므로 배터리로부터 유입되는 노이즈를 저감시켜 좀 더 정확한 누설전류 감지가 가능하다.
이상에서 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구범위의 균등범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.

Claims (17)

  1. 배터리의 양극 단자 또는 음극 단자로부터 검출되는 전압을 충전하는 부동 캐패시터;
    상기 배터리 음극 단자의 검출전압 측정 시 음극 단자 측으로 DC 전압을 인가하는 DC 전압 인가부;
    상기 양극 또는 음극 단자 측의 전압 검출 경로를 선택하는 단자 선택 스위칭부;
    상기 선택된 전압 검출 경로로부터 검출되는 양극 또는 음극 단자 측의 검출 전압을 상기 부동 캐패시터에 충전시킨 후 상기 부동 캐패시터를 상기 전압 검출 경로와 분리시키는 충전 스위칭부;
    상기 분리된 부동 캐패시터에 충전된 배터리 양극 단자 또는 음극 단자의 검출전압을 센싱하는 전압 센싱부; 및
    상기 전압 센싱부에서 센싱된 배터리 양극 단자와 음극 단자의 검출전압을 이용하여 누설저항을 계산하고 기준 절연저항과 대비하여 누설전류의 발생 여부를 판별하는 누설전류 판별부를 포함하는 것을 특징으로 하는 배터리 누설전류 감지 장치.
  2. 제1항에 있어서,
    배터리의 양극 및 음극 단자 사이의 제1선로 상에 설치된 제1전압 배분 노드를 더 포함하고,
    상기 단자 선택 스위칭부는, 상기 제1전압 배분 노드와 배터리의 양극 단자 및 음극 단자 사이에 각각 설치된 제1 및 제2스위치를 포함하는 것을 특징으로 하는 배터리 누설전류 감지 장치.
  3. 제1항에 있어서,
    상기 제1전압 배분 노드와 접지를 연결한 제2선로 상에 설치된 제2전압 배분 노드를 더 포함하고,
    상기 부동 캐패시터는, 상기 제2전압 배분 노드로부터 연장된 제3선로부터 분기된 제4선로 상에 설치되는 것을 특징으로 하는 배터리 누설전류 감지 장치.
  4. 제1항에 있어서,
    상기 부동 캐패시터에 충전된 배터리 양극 단자 또는 음극 단자의 검출전압을 상기 전압 센싱부에 인가하는 전압 인가 스위칭부를 더 포함하는 것을 특징으로 하는 배터리 누설전류 감지 장치.
  5. 제1항에 있어서,
    상기 DC 전압 인가부는,
    상기 제2전압 배분 노드와 접지 사이에 설치된 제1스위치;
    상기 제2전압 배분 노드와 상기 제1스위치 사이에서 분기된 도전 라인 상에 설치된 제2스위치; 및
    상기 제2스위치의 턴온시 제2전압 배분 노드에 DC전압을 인가하는 DC 전원;을 포함하는 것을 특징으로 하는 배터리 누설전류 감지 장치.
  6. 제1항에 있어서,
    상기 누설전류 판별부는,
    상기 단자 선택 스위칭부와 상기 충전 스위칭부의 동작을 제어하는 스위치 제어기;
    상기 전압 센싱부로부터 출력되는 아날로그 전압 신호를 디지털 전압 신호로 변환하는 A/D 변환기; 및
    상기 A/D 변환기로부터 디지털 전압 신호를 입력 받아 누설저항을 계산한 후 기준 절연저항과 대비하여 누설전류 발생 여부를 판별하는 중앙연산처리기;를 포함하는 것을 특징으로 하는 배터리 누설전류 감지 장치.
  7. 제6항에 있어서,
    상기 전압 센싱부는 상기 부동 캐패시터에서 출력되는 전압을 센싱하는 차동 증폭기를 포함하는 것을 특징으로 하는 배터리 누설전류 감지 장치.
  8. 제1항에 있어서,
    상기 누설전류 판별부는, 상기 부동 캐패시터에 충전된 전압을 검출하기에 앞서 상기 충전 스위칭부를 제어하여 상기 부동 캐패시터를 상기 선택된 전압 검출 경로와 전기적으로 분리시키는 것을 특징으로 하는 배터리 누설전류 감지 장치.
  9. 제1항에 있어서,
    상기 누설전류 판별부는 하기 수학식에 의해 누설저항을 계산하는 것을 특징으로 하는 배터리 누설전류 감지 장치.
    <수학식>
    Figure PCTKR2009004927-appb-I000002
    (여기서, Ri는 누설 전류 감지 장치의 내부 저항, E는 배터리 양단 전압, VA는 부동 캐패시터에 충전된 양극 단자의 검출전압, VB는 부동 캐패시터에 충전된 음극 단자의 검출전압이다.)
  10. 제1항에 있어서, 상기 누설전류 판별부는,
    누설전류 발생 사실을 시각적 또는 청각적으로 출력하는 누설전류 경보기;를 더 포함하고, 누설전류가 발생된 경우 상기 누설전류 경보기를 통해 누설전류 발생 사실을 시각적 또는 청각적으로 경보하는 것을 특징으로 하는 배터리 누설전류 감지 장치.
  11. 제1항에 있어서,
    상기 누설전류 판별부는, 상기 계산된 누설저항이 기준 절연저항보다 작으면 누설전류가 발생된 것으로 판별하는 것을 특징으로 하는 배터리 누설전류 감지 장치.
  12. 제1항 내지 제11항 중 어느 한 항에 따른 배터리 누설전류 감지 장치를 포함하는 배터리 팩.
  13. 제1항 내지 제11항 중 어느 한 항에 따른 배터리 누설전류 감지 장치를 포함하는 배터리 구동 장치.
  14. (a) 배터리 양극 단자 측의 전압 검출 경로를 선택하여 배터리 양극 단자의 검출 전압을 부동 캐패시터에 충전시키고, 전압 검출 경로와 부동 캐패시터를 전기적으로 분리시킨 상태에서 충전된 양극 단자의 검출 전압을 센싱하는 단계;
    (b) 배터리 음극 단자 측의 전압 검출 경로를 선택한 후 DC 전압을 배터리 음극 단자 측으로 인가하여 배터리 음극 단자의 검출 전압을 상기 부동 캐패시터에 충전시키고, 전압 검출 경로와 부동 캐패시터를 전기적으로 분리시킨 상태에서 충전된 음극 단자의 검출 전압을 센싱하는 단계;
    (c) 센싱된 상기 양극 단자의 검출전압과 음극 단자의 검출전압을 이용하여 누설저항을 계산하는 단계; 및
    (d) 상기 누설저항을 기준 절연저항과 대비하여 누설전류 발생 여부를 판별하는 단계;를 포함하는 것을 특징으로 하는 배터리 누설전류 감지 방법.
  15. 제14항에 있어서,
    상기 (c) 단계에서, 상기 누설저항은 하기 수학식에 의해 계산하는 것을 특징으로 하는 배터리 누설절류 감지 방법.
    <수학식>
    Figure PCTKR2009004927-appb-I000003
    (여기서, Ri는 누설 전류 감지 장치의 내부 저항, E는 배터리 양단 전압, VA는 부동 캐패시터에 충전된 양극 단자의 검출전압, VB는 부동 캐패시터에 충전된 음극 단자의 검출전압이다.)
  16. 제14항에 있어서,
    누설전류가 발생된 것으로 판별되면, 누설전류 발생 사실을 시각적 또는 청각적으로 경보하는 단계를 더 포함하는 것을 특징으로 하는 배터리 누설전류 감지 방법.
  17. 제14항에 있어서,
    상기 계산된 누설저항이 기준 절연 저항보다 작은 경우 누설전류가 발생된 것으로 판별하는 것을 특징으로 하는 배터리 누설전류 감지 방법.
PCT/KR2009/004927 2008-09-01 2009-09-01 배터리 누설전류 감지 장치 및 방법, 및 상기 장치를 포함하는 배터리 구동 장치 및 배터리 팩 WO2010024654A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2009801392125A CN102171578B (zh) 2008-09-01 2009-09-01 用于感测电池的泄漏电流的设备和方法以及包括该设备的电池驱动设备和电池组
EP09810259.3A EP2336794B1 (en) 2008-09-01 2009-09-01 Apparatus and method for sensing a current leakage of a battery, and battery driving apparatus and battery pack including the apparatus
JP2011524916A JP5674662B2 (ja) 2008-09-01 2009-09-01 バッテリーのリーク電流感知装置及び方法、並びに前記装置を含むバッテリー駆動装置及びバッテリーパック
US12/792,253 US8421466B2 (en) 2008-09-01 2010-06-02 Apparatus and method for sensing leakage current of battery

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2008-0085756 2008-09-01
KR20080085756 2008-09-01
KR10-2009-0082231 2009-09-01
KR1020090082231A KR100958795B1 (ko) 2008-09-01 2009-09-01 배터리 누설전류 감지 장치 및 방법, 및 상기 장치를 포함하는 배터리 구동 장치 및 배터리 팩

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/792,253 Continuation-In-Part US8421466B2 (en) 2008-09-01 2010-06-02 Apparatus and method for sensing leakage current of battery

Publications (2)

Publication Number Publication Date
WO2010024654A2 true WO2010024654A2 (ko) 2010-03-04
WO2010024654A3 WO2010024654A3 (ko) 2010-06-17

Family

ID=42178230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2009/004927 WO2010024654A2 (ko) 2008-09-01 2009-09-01 배터리 누설전류 감지 장치 및 방법, 및 상기 장치를 포함하는 배터리 구동 장치 및 배터리 팩

Country Status (6)

Country Link
US (1) US8421466B2 (ko)
EP (1) EP2336794B1 (ko)
JP (2) JP5674662B2 (ko)
KR (1) KR100958795B1 (ko)
CN (1) CN102171578B (ko)
WO (1) WO2010024654A2 (ko)

Families Citing this family (53)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100968350B1 (ko) * 2007-08-08 2010-07-08 주식회사 엘지화학 배터리의 누설전류 감지 장치 및 방법
CN103534135B (zh) * 2011-03-16 2016-10-19 约翰逊控制技术公司 用于组合能源系统中过充电保护和充电平衡的系统和方法
KR101948344B1 (ko) 2011-03-31 2019-02-14 르네사스 일렉트로닉스 가부시키가이샤 전압 감시 모듈 및 이를 이용한 전압 감시 시스템
EP2570289B1 (de) * 2011-09-16 2018-08-15 Samsung SDI Co., Ltd. Einrichtung zur Erfassung des Isolationswiderstandes eines Hochvoltbatteriesystems
CN102508039B (zh) * 2011-11-24 2015-07-15 深圳市英威腾电气股份有限公司 一种电池板对地阻抗检测电路及方法
KR101458128B1 (ko) * 2012-03-19 2014-11-12 주식회사 엘지화학 고장 진단 기능을 구비한 절연 저항 측정 장치 및 이를 이용한 고장 진단 방법
KR101475914B1 (ko) * 2012-04-04 2014-12-23 주식회사 엘지화학 고장 자가 진단 기능을 구비한 절연 저항 측정 장치 및 이를 이용한 고장 자가 진단 방법
AR090951A1 (es) * 2012-05-07 2014-12-17 Bristol Inc D B A Remote Automated Solutions Metodos y aparatos para detectar corriente de fuga en un detector de temperatura por resistencia
US9046559B2 (en) * 2012-05-09 2015-06-02 Curtis Instruments, Inc. Isolation monitor
FR2992429B1 (fr) * 2012-06-20 2014-07-18 Renault Sa Dispositif de mesure de resistance de prise de terre et chargeur pour vehicule embarque muni d'un tel dispositif
JP2014020914A (ja) * 2012-07-18 2014-02-03 Keihin Corp 漏電検出装置
KR101416816B1 (ko) * 2012-11-28 2014-08-06 에스케이씨앤씨 주식회사 절연 저항 측정 장치 및 그 방법
KR20140070148A (ko) * 2012-11-30 2014-06-10 에스케이이노베이션 주식회사 배터리 전류 측정 장치 및 그 방법
US9297860B2 (en) 2012-12-03 2016-03-29 Lg Chem, Ltd. High voltage service disconnect assembly and method for determining an isolation resistance fault of a battery pack
DE102012222920A1 (de) * 2012-12-12 2014-06-12 Robert Bosch Gmbh Batteriesystem mit einer Messeinrichtung zum Messen des Isolationswiderstands eines Hochvolt-Netzes gegenüber einem hiervon galvanisch getrennten Masseanschluss
KR102035031B1 (ko) * 2013-01-23 2019-10-23 에스케이이노베이션 주식회사 에너지 저장 장치의 문열림 방지 장치 및 방법
US9164151B2 (en) * 2013-08-07 2015-10-20 Lg Chem, Ltd. System and method for determining isolation resistances of a battery pack
KR101512395B1 (ko) * 2013-10-08 2015-04-16 현대오트론 주식회사 절연저항 측정 장치 및 방법
US9308826B2 (en) * 2013-12-19 2016-04-12 Continental Automotive Systems, Inc. Method and apparatus to detect leakage current between power sources
KR101675191B1 (ko) * 2014-01-14 2016-11-10 주식회사 엘지화학 절연 저항 측정 장치 및 방법
JP5928509B2 (ja) * 2014-03-12 2016-06-01 トヨタ自動車株式会社 電池監視装置
DE102014205918A1 (de) * 2014-03-31 2015-10-01 Robert Bosch Gmbh Verfahren zum Prüfen einer Isolationseinrichtung
KR101716886B1 (ko) * 2014-11-07 2017-03-15 주식회사 엘지화학 정확한 진단 전압의 측정이 가능한 전기 접촉기 진단 장치
KR101711706B1 (ko) * 2014-11-20 2017-03-02 주식회사 엘지화학 공통 모드 노이즈 시뮬레이터
KR101673250B1 (ko) * 2014-12-12 2016-11-07 현대오트론 주식회사 배터리 상태 진단 장치 및 방법
CN104614627A (zh) * 2014-12-21 2015-05-13 深圳市柏特瑞电子有限公司 一种移动式直流漏电检测定位设备和检测定位方法
DE102016005855A1 (de) 2015-05-29 2016-12-01 Daimler Ag Hochvolt-Netz für ein Kraftfahrzeug mit summenstromabhängigem Ladevorgangsabbruch
DE102015014181A1 (de) 2015-11-03 2016-07-21 Daimler Ag Hochvolt-Netz für ein Kraftfahrzeug und Verfahren zum Betreiben eines Hochvolt-Netzes
KR102025285B1 (ko) * 2015-11-06 2019-09-26 주식회사 엘지화학 배터리 팩 내부 커패시터 크랙 검출 방법 및 시스템
CN105242187A (zh) * 2015-11-09 2016-01-13 江苏省电力公司检修分公司 一种自触发式输电线路绝缘子污闪预警装置
KR102636361B1 (ko) * 2016-01-05 2024-02-14 삼성전자주식회사 배터리 제어 장치 및 배터리 제어 시스템
EP3220508B1 (en) 2016-03-16 2020-09-23 TTI (Macao Commercial Offshore) Limited Power tool battery pack with wireless communication
US9929580B2 (en) 2016-07-29 2018-03-27 Tti (Macao Commercial Offshore) Limited Power tool electronics
CN106501658B (zh) * 2016-11-04 2019-03-29 国网山西省电力公司大同供电公司 一种用于导线漏电检测的系统
KR101991910B1 (ko) * 2016-11-16 2019-06-21 주식회사 엘지화학 배터리의 절연 저항 산출 장치 및 방법
US10168372B2 (en) 2016-12-14 2019-01-01 General Electric Company System and method for leakage current and fault location detection in electric vehicle DC power circuits
DE102016225988A1 (de) 2016-12-22 2018-06-28 Robert Bosch Gmbh Verfahren und System zur Erkennung von Fehlströmen bei Speicherzellen
JP6625586B2 (ja) * 2017-02-07 2019-12-25 矢崎総業株式会社 地絡検出装置
KR102474362B1 (ko) * 2017-11-17 2022-12-05 현대자동차 주식회사 누설 전류 제거 장치 및 이를 포함하는 차량 시스템
KR102256094B1 (ko) * 2017-11-28 2021-05-25 주식회사 엘지에너지솔루션 배터리 팩
KR102259382B1 (ko) 2017-12-15 2021-06-01 주식회사 엘지에너지솔루션 배터리 누전을 검출하기 위한 방법 및 장치
FI127776B (en) 2018-02-08 2019-02-15 Akkurate Oy SYSTEM FOR DETERMINING THE INTERNAL BATTERY LEAKER FLOW INDICATOR
KR101955537B1 (ko) * 2018-06-07 2019-03-08 주식회사 휴네이트 에너지저장시스템의 지락 감지 장치 및 방법
CN110726907A (zh) 2018-07-17 2020-01-24 宁德时代新能源科技股份有限公司 储能系统的绝缘检测装置和方法
KR102256096B1 (ko) 2018-08-27 2021-05-27 주식회사 엘지에너지솔루션 배터리팩과 접지 간의 절연 상태를 진단하기 위한 장치 및 방법과, 상기 장치를 포함하는 배터리팩
JP7100554B2 (ja) * 2018-10-03 2022-07-13 株式会社Soken 漏電判定装置
US11018519B2 (en) * 2018-12-12 2021-05-25 Hyundai Motor Company Charging apparatus capable of reducing low frequency leakage current
JPWO2020170557A1 (ja) * 2019-02-19 2021-12-16 三洋電機株式会社 漏電検出装置、車両用電源システム
CN113874738A (zh) * 2019-10-29 2021-12-31 株式会社Lg新能源 漏电流检测设备、漏电流检测方法和电动车辆
CN110632524B (zh) * 2019-11-20 2020-02-18 新誉轨道交通科技有限公司 电池组绝缘检测系统、电池组系统及工作方法
US11175350B2 (en) * 2020-04-20 2021-11-16 Lear Corporation Leakage current monitoring system
US11479191B2 (en) 2021-01-22 2022-10-25 Ford Global Technologies, Llc Single-sided voltage leakage detection
CN114487914B (zh) * 2022-04-13 2022-08-19 荣耀终端有限公司 一种电子设备及漏电流测试方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06153301A (ja) * 1992-10-30 1994-05-31 Matsushita Electric Ind Co Ltd 漏電検出装置
JP2838462B2 (ja) * 1992-11-09 1998-12-16 松下電器産業株式会社 漏電検出装置
US5485090A (en) * 1993-02-11 1996-01-16 Hewlett-Packard Corporation Method and apparatus for differentiating battery types
JP3480019B2 (ja) * 1993-12-29 2003-12-15 松下電工株式会社 漏洩判別方法及びその装置
JP3224977B2 (ja) * 1994-12-12 2001-11-05 本田技研工業株式会社 非接地電源の絶縁検出方法及び装置
JP2003232825A (ja) * 2002-02-06 2003-08-22 Yazaki Corp 非接地電源の絶縁状態の検出方法、及びその検出方法を用いた絶縁検出装置
JP4287096B2 (ja) * 2002-06-02 2009-07-01 富士重工業株式会社 組電池システムおよび組電池システムの漏洩電流計測方法
JP4326415B2 (ja) * 2004-07-06 2009-09-09 三洋電機株式会社 車両用の電源装置
JP5295484B2 (ja) * 2006-01-26 2013-09-18 河村電器産業株式会社 漏電チェッカ
JP2007198995A (ja) * 2006-01-30 2007-08-09 Matsushita Electric Ind Co Ltd 地絡抵抗測定回路、及び地絡検出回路
JP4705495B2 (ja) * 2006-03-23 2011-06-22 株式会社ケーヒン 漏電検出回路およびバッテリ電子制御装置
JP2008064522A (ja) 2006-09-06 2008-03-21 Hitachi Vehicle Energy Ltd リーク検出装置
JP4241787B2 (ja) * 2006-09-06 2009-03-18 日立ビークルエナジー株式会社 組電池総電圧検出およびリーク検出装置
DE102006050529B4 (de) * 2006-10-26 2019-07-04 Conti Temic Microelectronic Gmbh Schaltungsanordnung zur Isolations- und Schützüberwachung der Stromversorgung eines Elektroantriebes
KR100968350B1 (ko) * 2007-08-08 2010-07-08 주식회사 엘지화학 배터리의 누설전류 감지 장치 및 방법
JP4881819B2 (ja) * 2007-09-07 2012-02-22 オンセミコンダクター・トレーディング・リミテッド 電池電圧検出回路

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2336794A4

Also Published As

Publication number Publication date
JP5674662B2 (ja) 2015-02-25
US8421466B2 (en) 2013-04-16
JP2014112086A (ja) 2014-06-19
JP2012501436A (ja) 2012-01-19
EP2336794A4 (en) 2013-10-30
CN102171578A (zh) 2011-08-31
KR100958795B1 (ko) 2010-05-18
EP2336794A2 (en) 2011-06-22
EP2336794B1 (en) 2014-11-26
WO2010024654A3 (ko) 2010-06-17
KR20100027085A (ko) 2010-03-10
US20100237872A1 (en) 2010-09-23
CN102171578B (zh) 2013-11-06

Similar Documents

Publication Publication Date Title
WO2010024654A2 (ko) 배터리 누설전류 감지 장치 및 방법, 및 상기 장치를 포함하는 배터리 구동 장치 및 배터리 팩
WO2010018959A2 (ko) 배터리 누설전류 감지 장치 및 방법, 및 상기 장치를 포함하는 배터리 구동 장치 및 배터리 팩
WO2013147494A1 (ko) 배터리의 절연 저항 측정 장치 및 방법
WO2020076127A1 (ko) 배터리 관리 장치 및 방법
KR101291724B1 (ko) 배터리의 누설전류 감지 장치 및 방법
WO2011102576A1 (ko) 셀 밸런싱 회로의 이상 진단 장치 및 방법
WO2018190508A1 (ko) 노이즈를 반영한 배터리 잔존 용량 산출 장치 및 방법
WO2011083993A2 (ko) 배터리 제어 장치 및 방법
WO2010032995A2 (ko) 배터리 팩의 셀 전압 측정 장치 및 방법
WO2014084628A1 (ko) 배터리 전류 측정 장치 및 그 방법
KR20090015330A (ko) 배터리의 누설전류 감지 장치 및 방법
WO2021006566A1 (ko) 배터리 셀 진단 장치 및 방법
WO2022080692A1 (ko) 배터리 장치, 배터리 관리 시스템 및 연결 상태 진단 방법
WO2020141938A2 (ko) 배터리 관리 방법, 배터리 장치, 및 배터리를 포함하는 자동차
WO2022145830A1 (ko) 배터리 진단 장치, 배터리 진단 방법, 배터리 팩 및 전기 차량
WO2022080709A1 (ko) 릴레이 진단 장치, 릴레이 진단 방법, 배터리 시스템, 및 전기 차량
WO2022065676A1 (ko) 배터리 저항 산출 장치 및 방법
WO2019245215A1 (ko) 전류 측정 장치, 전류 측정 방법 및 상기 전류 측정 장치를 포함하는 배터리 팩
WO2021049753A1 (ko) 배터리 진단 장치 및 방법
WO2023063625A1 (ko) 배터리 진단 장치, 배터리 팩, 전기 차량, 및 배터리 진단 방법
WO2019066358A1 (ko) 배터리 셀의 스웰링을 방지하는 방법 및 이를 이용한 배터리 팩
WO2022085962A1 (ko) 배터리 감시 장치, 배터리 감시 방법, 배터리 팩 및 전기 차량
WO2023075163A1 (ko) 배터리 장치, 배터리 관리 시스템 및 진단 방법
WO2023085777A1 (ko) 절연 저항 측정 장치
WO2024058523A1 (ko) 배터리 관리 장치 및 그것의 동작 방법

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200980139212.5

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09810259

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2011524916

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009810259

Country of ref document: EP