WO2010021375A1 - Process for production of protease, protease solution, and solution of pro-form of protease - Google Patents

Process for production of protease, protease solution, and solution of pro-form of protease Download PDF

Info

Publication number
WO2010021375A1
WO2010021375A1 PCT/JP2009/064629 JP2009064629W WO2010021375A1 WO 2010021375 A1 WO2010021375 A1 WO 2010021375A1 JP 2009064629 W JP2009064629 W JP 2009064629W WO 2010021375 A1 WO2010021375 A1 WO 2010021375A1
Authority
WO
WIPO (PCT)
Prior art keywords
amino acid
acid sequence
protease
pro
seq
Prior art date
Application number
PCT/JP2009/064629
Other languages
French (fr)
Japanese (ja)
Inventor
茂則 金谷
俊一 田中
和文 高野
雄一 古賀
勇希 竹内
Original Assignee
国立大学法人大阪大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人大阪大学 filed Critical 国立大学法人大阪大学
Priority to JP2010525712A priority Critical patent/JPWO2010021375A1/en
Publication of WO2010021375A1 publication Critical patent/WO2010021375A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/48Hydrolases (3) acting on peptide bonds (3.4)
    • C12N9/50Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
    • C12N9/52Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from bacteria or Archaea

Definitions

  • the present invention relates to a method for producing protease, a protease solution produced by the production method, and a pro-body solution of protease.
  • Protease is a general term for enzymes that catalyze the hydrolysis of peptide bonds, and is widely distributed in microorganisms, animals and plants.
  • Protease is a typical industrial enzyme widely used in detergents, leather processing, food processing, and functional peptide production.
  • the most important aspect of practical use as an industrial enzyme is the stability of the enzyme and its high activity under the conditions of use. In particular, there are many cases where physical and chemical high heat stability is required, and therefore, heat-resistant protease is widely used as industrial protease.
  • subtilisin family proteases such as Subtilisin Carlsberg and Proteinase K are known as thermostable proteases used in industry.
  • proteases used as enzyme cleaning agents for medical instruments require high detergency, and therefore require high stability and high activity in a high temperature range. It is desired that medical detergents used in machine washing can be sterilized at the same time as washing, and a protease that retains activity even at a sterilization temperature of 93 ° C. is required.
  • Prevention of secondary infection is an important problem in the cleaning of medical devices, and it is known that, in particular, infectious diseases called prion diseases, abnormal prion protein causes secondary infection instead of pathogenic bacteria. Abnormal prion protein cannot inactivate infectivity by normal medical cleaning. At present, medical devices contaminated with abnormal prion protein are treated with harsh physical conditions such as 3% SDS in the presence of 3% SDS at 100 ° C. for 5 minutes to inactivate infectivity. Is going.
  • Prizyme (Genencor, USA) has been developed as an enzyme cleaning agent capable of decomposing and removing abnormal prion protein, although infectivity cannot be guaranteed.
  • Tk-subtilisin a protease belonging to the subtilisin family (hereinafter referred to as “Tk-subtilisin”) derived from Thermococcus kodakaraensis KOD1 strain, which is one of the hyperthermophilic bacteria, and the Tk-subtilisin has a pH of 9.5 and a temperature of 80. It has been reported that it exhibits the highest activity at 100 ° C. to 100 ° C., has the highest thermal stability among known proteases, and has the highest proteolytic activity under alkaline conditions (Non-Patent Documents 1 and 2). reference). Therefore, Tk-subtilisin can be used under conditions of high temperature and high pH advantageous for industrial use, and the activity under the conditions is significantly higher than that of known proteases, so that conventional proteases can be used. It is expected to be applied to new uses.
  • Tk-subtilisin When mass-producing Tk-subtilisin, a general method is to use E. coli to express the pro-form as a recombinant protein by gene recombination technology, and to purify and recover through refolding and maturation (non-patented). Reference 2).
  • Tk-subtilisin is less active due to its high activity due to autolysis at the refolding and maturation stages, and only about 20% of the refolded pro form is Tk-subtilisin. could not be recovered.
  • a Tk-satilysin solution that can be stored in a state in which the stability of the structure is maintained without causing autolysis has not yet been realized.
  • Tk-subtilisin has various problems related to production and storage, and it has been necessary to solve these problems in order to use it as an industrial protease.
  • the present invention suppresses self-degradation in the production process, and provides a method for producing a protease capable of recovering a mature form produced from a pro form with high efficiency, and can be stably stored at a high concentration without causing self-degradation. It is an object of the present invention to provide a protease solution and a pro-body solution of protease. Furthermore, it aims at providing the novel industrial use of protease obtained by the said manufacturing method, especially Tk-subtilisin.
  • a pro-body expression step in which DNA encoding a pro-form of protease is introduced into a host cell and expressed as an inclusion body, a denaturation step to denature the pro-form in the inclusion body to obtain a denatured pro-form, and calcium ions
  • protease comprises the amino acid sequence according to any one of the following (a) to (d).
  • (A) amino acid sequence shown in SEQ ID NO: 1 (b) amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 (c) amino acid shown in SEQ ID NO: 2 Sequence (d) Amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 [6]
  • the pro-form of the protease is represented by the following (e) or (f): The production method according to any one of [1] to [5] above, which comprises the amino acid sequence described above.
  • A amino acid sequence shown in SEQ ID NO: 1
  • b amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1
  • c amino acid shown in SEQ ID NO: 2
  • Sequence (d) Amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2
  • the protease concentration is 0.1 mg / ml or more
  • a pro-form solution of a protease comprising a pro-form having the amino acid sequence described in (e) or (f) below and having a pH in the range of 2 to 6.
  • An abnormal prion proteolytic agent containing a protease comprising the amino acid sequence according to any one of (a) to (d) below: (A) amino acid sequence shown in SEQ ID NO: 1 (b) amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 (c) amino acid shown in SEQ ID NO: 2 Sequence (d) Amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 [14] A washing object to which an abnormal prion protein is attached; (D) The inactivation method of abnormal prion protein including the process which contacts the protease which consists of an amino acid sequence in any one of.
  • protease that can suppress autolysis in the production process and can recover a mature form produced from a pro form with significantly higher efficiency than the conventional one. Further, it is possible to provide a protease solution and a pro-prote solution of protease that can be stably stored at a high concentration without causing autolysis.
  • Protease produced by the production method of the present invention has high activity even under high temperature and high alkaline conditions, and is stable against surfactants and protein denaturing agents. Proteins can be decomposed and removed while being physically denatured (infectivity is inactivated), and are very useful as various industrial detergents. Furthermore, since the protease produced by the production method of the present invention can degrade abnormal prion protein, it is very useful as an abnormal prion protein degrading agent.
  • FIG. 4 shows the results of confirming the BSA degradation activity of Tk-subtilisin under reaction conditions of 100 ° C. and 10 minutes in the presence of various surfactants.
  • FIG. 6 is a view showing the results of confirming the BSA decomposition activity of Tk-subtilisin under reaction conditions of 65 ° C. and 10 minutes in the presence of various surfactants.
  • FIG. 4 is a view showing the results of confirming the BSA-decomposing activity of Tk-subtilisin under the reaction conditions of 37 ° C. and 10 minutes in the presence of various surfactants.
  • FIG. 3 is a graph showing the results of confirming the BSA-decomposing activity of Tk-subtilisin under reaction conditions of 25 ° C. and 10 minutes in the presence of various surfactants.
  • FIG. 4 is a view showing the results of confirming the BSA decomposition activity of Tk-subtilisin under reaction conditions of 100 ° C. and 5 minutes in the presence of various surfactants. It is a figure which shows the result of having confirmed the BSA decomposition activity of ProteinaseK on 100 degreeC and reaction conditions for 5 minutes in presence of various surfactant.
  • FIG. 4 is a view showing the results of confirming the residual activity of Tk-satilysin at 100 ° C. in the presence of 3% SDS.
  • FIG. 4 is a view showing the results of confirming the BSA-degrading activity of Tk-subtilisin under reaction conditions of 100 ° C. for 5 minutes in the presence of 1 to 7% SDS. It is a figure which shows the result of having investigated decomposition
  • the method for producing a protease of the present invention includes the following steps (1) to (4), and any method can be used as long as 50% or more of the pro form subjected to the maturation step is recovered as an active protease. .
  • a pro-body expression step in which DNA encoding the pro-form of protease is introduced into a host cell and expressed as an inclusion body
  • a denaturation step (3) in which the pro-form in the inclusion body state is denatured to obtain a denatured pro-form
  • the method for producing a protease of the present invention preferably further comprises (5) a protease solution preparation step for preparing a protease solution having a pH of 2 to 6 after the maturation step.
  • a protease solution preparation step for preparing a protease solution having a pH of 2 to 6 after the maturation step.
  • the method for producing a protease of the present invention comprises (6) a pro-form-containing solution for preparing a solution having a pH of 2 to 6 after the refolding process and before the maturation process.
  • a preparation step may be provided.
  • a pro-form-containing solution preparation step By providing a pro-form-containing solution preparation step, a pro-form having a correctly folded native structure, a complex having a structure in which a pro-sequence and a mature sequence generated by self-cleavage are combined, and a mature form are contained. Can be prepared in a stable manner.
  • the production method of the present invention comprises a thermophilic bacterium Thermococcus kodakaraensis KOD1 strain (Morikawa Met al. Appl Environ Microbiol, 1994 Dec; 60 (12): 4559-66, hereinafter referred to as “KOD1 strain”).
  • KOD1 strain thermophilic bacterium Thermococcus kodakaraensis KOD1 strain
  • KOD1 strain thermophilic bacterium Thermococcus kodakaraensis KOD1 strain
  • KOD1 strain thermophilic bacterium Thermococcus kodakaraensis KOD1 strain
  • KOD1 strain thermophilic bacterium Thermococcus kodakaraensis KOD1 strain
  • the protease produced by the present invention is not limited to Tk-subtilisin, and may be a protease having biochemical characteristics similar to those of T
  • Tk-subtilisin is a protease belonging to the subtilisin family found by the present inventors as described above (see Non-Patent Document 1), and is expressed as a precursor having a pre-sequence, a pro-sequence and a mature sequence, and is secreted and After maturation, it finally becomes a mature form (Tk-subtilisin having protease activity) having no pre-sequence and pro-sequence.
  • a pre-sequence also referred to as a signal sequence
  • a pro-sequence is a sequence necessary for forming an active three-dimensional structure of the enzyme.
  • the base sequence (SEQ ID NO: 6) and deduced amino acid sequence (SEQ ID NO: 5) of the gene encoding Tk-satilysin precursor are registered in DDBJ, and the accession number is AB056701.
  • the protease produced by the production method of the present invention is preferably composed of an amino acid sequence described in any of the following (a) to (d).
  • (A) amino acid sequence shown in SEQ ID NO: 1 (b) amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 (c) amino acid shown in SEQ ID NO: 2 Sequence (d) Amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2
  • the amino acid sequence shown in SEQ ID NO: 1 is the amino acid sequence of Tk-subtilisin (mature) And corresponds to positions 94 to 422 of the amino acid sequence of the Tk-subtilisin precursor (SEQ ID NO: 5).
  • the amino acid sequence shown in SEQ ID NO: 2 is a Tk-subtilisin (mature) amino acid sequence from which 13 amino acid residues have been deleted from the N-terminus, and the Tk-subtilisin precursor amino acid sequence (SEQ ID NO: 5 No. 107-422.
  • a protein having any one of 12 to 12 amino acid residues deleted from the N-terminus of the amino acid sequence (SEQ ID NO: 1) of Tk-subtilisin (mature) and having protease activity can also be obtained by the production method of the present invention. It can manufacture suitably.
  • the pro-form expressed as a recombinant protein by the production method of the present invention is preferably composed of the amino acid sequence described in (e) or (f) below.
  • the “pro form” means a protease precursor having no pre sequence and including a pro sequence and a mature sequence.
  • amino acid sequence shown in SEQ ID NO: 3 (f) amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 3
  • the amino acid sequence shown in SEQ ID NO: 3 is This is the amino acid sequence of the pro form of Tk-subtilisin (hereinafter referred to as “pro-Tk-subtilisin”) and corresponds to positions 25 to 422 of the amino acid sequence of the Tk-subtilisin precursor (SEQ ID NO: 5).
  • “One or several amino acids have been deleted, substituted or added” means that the number can be deleted, substituted or added by a known mutant peptide production method such as site-directed mutagenesis (preferably 10 Or less, more preferably 7 or less, and even more preferably 5 or less) amino acids are deleted, substituted or added.
  • a mutant protein is not limited to a protein having a mutation artificially introduced by a known mutant polypeptide production method, and may be a protein obtained by isolating and purifying a naturally occurring protein. It is well known in the art that some amino acids in a protein's amino acid sequence can be easily modified without significantly affecting the structure or function of the protein. Furthermore, it is also well known that there are variants that not only artificially modify, but also do not significantly alter the structure or function of the protein in the native protein.
  • Preferred variants have conservative or non-conservative amino acid substitutions, deletions, or additions. Silent substitution, addition, and deletion are preferred, and conservative substitution is particularly preferred. These do not alter the polypeptide activity according to the invention. Typically seen as conservative substitutions are substitutions of one amino acid for another in the aliphatic amino acids Ala, Val, Leu, and Ile, exchange of hydroxyl residues Ser and Thr, acidic residues Asp and Glu exchange, substitution between amide residues Asn and Gln, exchange of basic residues Lys and Arg, and substitution between aromatic residues Phe, Tyr.
  • the protease and protease precursor of the present invention may contain an additional peptide.
  • additional peptide include polyhistidine tag (His-tag), epitope-labeled peptides such as Myc, Flag and the like.
  • DNA encoding the pro-form of protease is introduced into a host cell and expressed as inclusion bodies.
  • the DNA encoding the pro-form of the protease may be any DNA that encodes the pro-form of the protease to be produced by the production method of the present invention, and can be easily obtained by using a general genetic engineering technique. Can do.
  • Tk-subtilisin the following DNA (A) or (B) can be preferably used as DNA encoding pro-Tk-subtilisin.
  • A DNA encoding pro-Tk-subtilisin comprising the amino acid sequence shown in SEQ ID NO: 3
  • B DNA encoding pro-Tk-subtilisin consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 3
  • DNA encoding pro-Tk-subtilisin the following DNA (C) or (D) is preferably used.
  • the base sequence shown in SEQ ID NO: 4 corresponds to the 134th to 1327th positions of the base sequence (SEQ ID NO: 6) of the gene encoding the Tk-subtilisin precursor.
  • Hybridization is described in Sambrook et al., Molecular Cloning, A Laboratory Manual, 3rd Ed. , Cold Spring Harbor Laboratory (2001). Usually, the higher the temperature and the lower the salt concentration, the higher the stringency (harder to hybridize) and the more homologous DNA can be obtained.
  • the appropriate hybridization temperature varies depending on the base sequence and the length of the base sequence. For example, when a DNA fragment consisting of 18 bases encoding 6 amino acids is used as a probe, a temperature of 50 ° C. or lower is preferable.
  • Hybridization under stringent conditions means hybridization solution (50% formamide, 5 ⁇ SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 ⁇ After overnight incubation at 42 ° C. in Denhardt's solution, 10% dextran sulfate, and 20 ⁇ g / ml denatured sheared salmon sperm DNA, wash the filter in 0.1 ⁇ SSC at about 65 ° C. Is intended.
  • the DNA encoding pro-Tk-subtilisin is at least 80% identical to the base sequence complementary to the base sequence shown in SEQ ID NO: 4, more preferably at least 85%, 90%, 92%, 95%, 96%, DNA consisting of a base sequence that is 97%, 98% or 99% identical, and that encodes pro-Tk-subtilisin is preferred. Any particular DNA is at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98%, or 99% identical to the base sequence shown in SEQ ID NO: 4 Whether it is a well-known computer program (for example, using the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix (registered trademark), Genetic Computer Research Group 75, University Research 75). Can be determined.
  • Examples of a method for obtaining DNA encoding pro-Tk-satilysin include a method using an amplification means such as PCR.
  • primers are designed based on the 5 ′ side and 3 ′ side sequences (or their complementary sequences) of the base sequence shown in SEQ ID NO: 4, and PCR is performed using these primers as a template for genomic DNA or cDNA. And amplifying the DNA region sandwiched between both primers, a large amount of DNA fragments containing DNA encoding pro-Tk-satilysin can be obtained.
  • the introduction of the obtained DNA into the host cell can be carried out, for example, by constructing an expression vector for expressing the DNA in the host cell and introducing it into the host cell to obtain a transformant.
  • the expression vector is not particularly limited, and a vector that can be expressed in the host cell can be appropriately selected. That is, according to the type of the host cell, an appropriate promoter sequence is selected appropriately for the expression of pro-Tk-subtilisin, and a vector in which this and a DNA encoding pro-Tk-subtilisin are incorporated into various plasmids is used as an expression vector. Use it.
  • the host cell is not particularly limited, and various conventionally known cells that can be used for expression of the recombinant protein can be suitably used.
  • Escherichia coli as a host cell from the viewpoint of low cost and high production efficiency, and industrial mass production is possible.
  • a method for introducing an expression vector into a host cell that is, a transformation method is not particularly limited, and a conventionally known method such as an electroporation method, a calcium phosphate method, a liposome method, or a DEAE dextran method can be suitably used.
  • the pro-Tk-subtilisin By culturing host cells such as Escherichia coli transformed with an expression vector in which a DNA encoding pro-Tk-subtilisin can be expressed, the pro-Tk-subtilisin can be expressed as inclusion bodies.
  • the inclusion body is an aggregate in which the recombinant protein is insolubilized by aggregation in the host cell, and is also referred to as an inclusion body.
  • the inclusion body can be collected in a precipitate fraction obtained by collecting the cells after culturing, disrupting the cells by ultrasonication or the like, and then centrifuging.
  • the denaturation step the pro-form in the inclusion body state is denatured to obtain a denatured pro-form.
  • the inclusion body-state pro-form recovered as a precipitate in the above-mentioned pro-form expression step is dissolved in a denaturation buffer, whereby the inclusion body-state pro-form can be denatured to obtain a solubilized modified pro-form.
  • a denaturation buffer for example, urea (for example, 2M to 8M), guanidine hydrochloride (for example, 2M to 6M) and the like can be preferably used.
  • a surfactant such as SDS can also be used.
  • a reducing agent in addition to the modifying agent.
  • the reducing agent for example, dithiothreitol (DTT, for example, 1 mM to 10 mM), ⁇ -mercaptoethanol ( ⁇ ME, for example, 1% to 2%) can be preferably used.
  • the buffer serving as the base of the denaturing buffer is not particularly limited.
  • the present inventors use 20 mM Tris-HCl (pH 9.0), 5 mM EDTA, 8M Urea.
  • this denaturing buffer is that it maintains a pH away from the isoelectric point and facilitates purification by ion exchange column chromatography. Further, EDTA is added for the purpose of preventing the solution from being altered by the action of a metal-requiring enzyme (protease).
  • the denaturation step it is preferable to purify the pro-form in a denatured state in order to remove various host-derived molecules (nucleic acid, lipid, protein, etc.) contained in the inclusion body.
  • the present inventors purify denatured pro-Tk-subtilisin using an anion exchange column.
  • the present invention is not limited to this and may be appropriately selected from known protein purification methods.
  • Refolding step In the refolding step, the modified pro-form is refolded in a solution containing calcium ions and having a pH of 5 or higher.
  • Refolding refers to rewinding an inclusion body solubilized with a denaturant or the like to a native structure. Refolding can be performed by diluting or dialyzing the denatured proform with a refolding buffer to remove the denaturing agent.
  • the refolding buffer contains calcium ions.
  • the refolding buffer contains a reducing agent (DTT, ⁇ ME, etc.) in order to prevent the formation of inappropriate disulfide bonds between different molecules.
  • DTT dihydroxy-6-methyl methacrylate
  • ⁇ ME reducing agent
  • an inactive intermediate containing a prosequence was once formed by refolding using a refolding buffer not containing calcium ions, and then matured. Autolysis occurred during the conversion process, and the amount of Tk-subtilisin (mature) that could be recovered was very small.
  • the calcium ion concentration in the refolding buffer is preferably 1 mM to 50 mM, more preferably 5 mM to 10 mM. In the range of 1 mM to 50 mM, pro-Tk-subtilisin having a correctly folded native structure can be formed.
  • a refolding buffer having a pH of 5 or more is used. This is based on the new discovery by the inventors that the refolding efficiency of pro-Tk-satilysin is much worse when the pH of the refolding buffer is lower than 5.
  • the buffer that is the base of the refolding buffer is not particularly limited. Suitable refolding buffer, e.g., 1 mM DTT, pH 5.2 or more buffer containing 10 mM Ca 2+ (solute does not matter) can be mentioned.
  • Maturation process the pro-form after refolding is matured to obtain an active protease.
  • Maturation means that the pro sequence is separated from the pro form by self-cleavage and is subsequently digested by autolysis to produce a mature form (protein having protease activity) comprising the mature sequence. Maturation can proceed by transferring the refolded pro form to a solution environment at a pH at which the mature form can express protease activity. Therefore, when maturating pro-Tk-satilysin, it is preferable to use a maturation buffer having a pH of 7 or higher.
  • a maturation buffer with a pH that allows the matured body to express higher protease activity pH 8 or higher for Tk-subtilisin
  • Maturation efficiency can be increased by diluting, heating the maturation buffer, and the like.
  • the buffer used as the base of the maturation buffer is not particularly limited.
  • Tris-HCl, CAPS-NaOH, Glycine-NaOH and the like can be preferably used.
  • the concentration of the pro-form used for maturation is preferably 300 nM or less at the final concentration. This is because if it exceeds 300 nM, self-decomposition occurs.
  • the present inventors performed maturation by diluting pro-Tk-subtilisin to about 300 nM with 50 mM CAPS-NaOH pH 9.5, 5 mM CaCl 2 and heat-treating at 80 ° C. for 15 minutes. ing.
  • the present inventors performed maturation by diluting pro-Tk-subtilisin to about 300 nM with 50 mM CAPS-NaOH pH 9.5, 5 mM CaCl 2 and heat-treating at 80 ° C. for 15 minutes. ing.
  • 50% or more of the pro form used in the maturation process is recovered as an active protease (mature form).
  • “50% or more of the pro form subjected to the maturation process is recovered as an active protease (mature form)” means that the number of moles of the pro form subjected to the maturation process and the recovered mature form It means that the ratio of the number of moles is 50% or more.
  • the ratio of the recovered mature form to the pro form subjected to the maturation step is at least 50% or more, preferably 60% or more, more preferably 70% or more, still more preferably 80% or more, Particularly preferably, it is 90% or more.
  • Protease solution preparation step In the production method of the present invention, it is preferable to provide a protease solution preparation step of preparing a protease solution having a pH of 2 to 6 after the maturation step.
  • the inventors of the present invention show that the activity of Tk-subtilisin is remarkably low below pH 6, and that the structure of Tk-subtilisin is stable in the range of pH 2 to 12, but the structure cannot be maintained when the pH is lower than 2. Based on this new finding, the inventors succeeded in stably storing Tk-subtilisin in a solution state of pH 2-6.
  • the Tk-subtilisin obtained in the maturation step is transferred to a pH 2-6 buffer.
  • the transfer method is not particularly limited. For example, a method of diluting Tk-subtilisin with a buffer of pH 2 to 6 or a method of dialysis can be used.
  • Tk-satilysin may be transferred to a pH 2-6 buffer and then concentrated. By concentration, a high-concentration Tk-satilysin solution can be prepared.
  • the concentration method is not particularly limited, and a known protein solution concentration method may be used. An example is ultrafiltration. Alternatively, the Tk-subtilisin solution may be lyophilized once and then redissolved in a small volume of buffer.
  • the obtained protease solution preferably has a Tk-subtilisin concentration of 0.1 mg / ml or more.
  • Tk-subtilisin produced by a conventional method was concentrated, an autolysis reaction occurred and a Tk-subtilisin solution of 0.1 mg / ml or more could not be prepared.
  • the Tk-subtilisin solution obtained by the production method of the present invention is a Tk-subtilisin solution having a pH of 2 to 6 that can suppress the expression of activity while maintaining the stability of the structure, the Tk-subtilisin concentration is 0.1 mg. / Ml or more, it does not cause autolysis and can be stored stably.
  • Pro-form-containing solution preparation step In the production method of the present invention, immediately after the refolding step, a pro-form-containing solution preparation step for preparing a pH 2-6 solution containing the refolded pro-form is provided. Also good. We have found that the modified pro-Tk-subtilisin can efficiently perform correct folding above pH 5, the activity of Tk-subtilisin is remarkably low below pH 6, and the Tk-subtilisin is in the range of pH 2-12. It was newly found that the structure is stable but the structure cannot be maintained when the pH is lower than 2. Based on this new knowledge, an attempt was made to prepare a solution that contains a pro-form having a correctly folded native structure and can be stably stored.
  • a complex containing a complex having a structure in which a pro sequence and a mature sequence are combined, and a Tk-subtilisin (mature) three types of protein are obtained, and the progress of maturation is suppressed to pH 2-6. Succeeded in stable storage in solution.
  • the mixture containing the pro-form having a native structure obtained in the refolding step is transferred to a pH 2-6 buffer. Further, the concentration may be continued.
  • the method described in the above-mentioned protease solution preparation step can be used for shifting to pH 2-6 buffer and concentration.
  • the protease solution of the present invention is a protease solution containing a protease having the amino acid sequence described in any of the following (a) to (d) and having a pH in the range of 2 to 6.
  • Sequence (d) An amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2, that is, the protease solution of the present invention is a protease solution preparation step of the production method of the present invention.
  • Tk-subtilisin solution obtained in This Tk-subtilisin solution can be stored stably for a long period of time without Tk-subtilisin self-degrading. Further, it is possible to provide a high concentration Tk-satilysin solution of 0.1 mg / ml or more that could not be realized conventionally.
  • the protease solution of the present invention can contain a high concentration of Tk-satilysin, it is possible to keep storage costs and transportation costs low, and improve the economics of distribution. Moreover, it can utilize as a solution for business preparation in the use which adds and uses protease at the time of use.
  • the pro-form solution of the present invention is a pro-form solution of a protease containing a pro-form having an amino acid sequence described in (e) or (f) below and having a pH in the range of 2-6.
  • E an amino acid sequence represented by SEQ ID NO: 3
  • f an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 3, that is, the above-mentioned production method of the present invention
  • This pro-Tk-subtilisin-containing solution contains a pro-form having a correctly folded native structure, a complex having a structure in which a pro-sequence generated by self-cleavage of the pro-form and a mature sequence are combined, and Tk-subtilisin (mature form). ) And a mixture solution containing three kinds of proteins, and can be stably stored while suppressing the progress of maturation.
  • the pro-form-containing solution of the present invention supplies an intermediate in the production of Tk-subtilisin. That is, since an intermediate for producing Tk-subtilisin can be distributed, it is possible to produce the target product Tk-subtilisin at the site where the final product containing Tk-subtilisin is produced. Further, the pro-form-containing solution of the present invention is a solution having high storage stability, but by checking the amount of the pro-form in the solution, it can be easily confirmed that self-decomposition has not progressed. That is, there is an advantage that quality control during distribution process and storage can be easily performed.
  • Tk-subtilisin [Usage of Tk-Sachilysin]
  • the use of Tk-subtilisin will be described as a representative example of the protease obtained by the production method of the present invention.
  • the protease obtained by the production method of the present invention is not limited to Tk-subtilisin.
  • Other proteases obtained by the method can also be used for similar applications.
  • Tk-subtilisin produced by a method other than the production method of the present invention can also be used for the same purpose.
  • Tk-subtilisin has a significantly higher activity in the high temperature range (70 ° C.
  • Tk-satilysin has very high activity at pH 8-12, has significantly higher thermal stability compared to Subtilisin Carlsberg and Proteinase K, and has been modified with surfactants and proteins. It was newly found that the stability to the agent is high.
  • Tk-subtilisin decomposes persistent industrial waste (including keratin such as feathers and animal hair), bioactive peptide production, fiber processing, wool processing, leather processing, food processing (fish oil processing, meat processing, etc.) ), Feed processing, nucleic acid purification, contact lens cleaning, piping cleaning, and the like.
  • Tk-sachilysin exhibits high activity in a wide range from room temperature to high temperature, and therefore can be used in accordance with the temperature conditions optimum for the material to be decomposed and the purpose of use. Furthermore, since the reactivity is high, an effect equivalent to that of existing products can be obtained with a small amount.
  • Tk-subtilisin is used under high temperature and high alkali conditions, and can be formulated into a detergent containing a surfactant to enhance the detergency.
  • a detergent for medical devices.
  • it can use suitably also for various detergents, such as a detergent for dishwashers and a laundry detergent.
  • the present invention provides a detergent (cleaning composition) containing Tk-sachilysin.
  • a detergent cleaning composition
  • the content of Tk-subtilisin in the detergent is not particularly limited, it has a high activity as compared with other proteases, so that a high detergency can be exhibited with a small addition.
  • a preferable content is, for example, 0.1 to 10% by weight. If the content is too small, a sufficient cleaning effect cannot be obtained. On the other hand, if the content is too large, an improvement in the cleaning effect relative to the content cannot be obtained, which is not preferable in terms of economy.
  • Tk-subtilisin can be formulated into any known detergent without any change in the composition of the detergent.
  • % Detergents comprising at least one compounding ingredient selected from the group consisting of anti-staining agents, enzymes, bleaches, fluorescent dyes, anti-caking agents and antioxidants.
  • the detergent containing Tk-subtilisin further contains a surfactant.
  • the surfactant contained in the detergent is not particularly limited, and is an anionic surfactant, a nonionic surfactant (for example, ether type nonionic surfactant, fatty acid ester type nonionic surfactant, ethylene oxide addition) Any of fatty amines, cationic surfactants, and amphoteric surfactants can be suitably used.
  • the present inventors have confirmed that Tk-subtilisin can maintain protease activity in the presence of at least 19 kinds of surfactants (see Example 5 and Table 1). It can be said that it is particularly suitable for blending and using the contained detergent.
  • the content of the surfactant is not particularly limited, but it is preferable that the surfactant is contained in such an amount that the protein present in the washing object is denatured. Therefore, it is preferable to select and use an appropriate content according to the surfactant to be used. For example, it is preferably about 1 to 50% by weight, more preferably about 1 to 30% by weight, and further preferably about 3 to 10% by weight.
  • Protease derived from Alkaline Filus transvallensis which is an existing alkaline protease (Patent Document 1), has characteristic properties such as high alkali activity, surfactant resistance, and calcium-independent heat resistance. Since the optimum temperature is 70 ° C., it is not suitable for higher temperature cleaning. Pyrococcus horikoshii-derived protease (Patent Document 2) is characterized by an optimum temperature of about 98 ° C. or more and an optimum pH of about 5 to about 6, but it is active under neutral and alkaline conditions. It is low and there is no description about resistance to surfactants.
  • a protease derived from Pyrococcus furiosus has resistance to acetonitrile, urea, and SDS.
  • As for resistance to SDS it has an activity of about 80% after treatment at 95 ° C. for 3 hours in the presence of SDS at a final concentration of 1%, but degradation at a concentration of SDS of 1% or more under high temperature conditions. There is no description of activity, and there is no description of resistance to surfactants other than SDS.
  • the detergent of the present invention has much higher detergency and proteolytic ability than existing detergents, it is highly useful as a medical instrument detergent as described above.
  • enzyme detergents can be washed in a state containing a surfactant at a high temperature that could not be used so far, so that washing and sterilization can be performed in a short time.
  • it has an activity of 80% or more at 100 ° C. for 3 minutes in the presence of 3% SDS, which is an inactivation condition of abnormal prion protein, and is capable of decomposing and removing abnormal prion protein in preventing secondary infection of prion disease.
  • a detergent that can be inactivated at the same time can be provided.
  • the detergent of the present invention is very useful in that existing equipment such as a watcher disinfector can be used as it is.
  • the amount of enzyme can be reduced, so that the protease can be easily removed after prion inactivation. Since it can be used neutrally, it is safer for workers than existing alkaline detergents, and it can also be used for products such as endoscopes that are vulnerable to alkaline cleaning.
  • this cleaning agent makes it possible.
  • it is highly useful as a detergent for cleaning contact lenses.
  • the present invention provides an abnormal prion proteolytic agent containing Tk-satilysin.
  • the abnormal prion proteolytic agent of the present invention is not particularly limited as long as it contains Tk-subtilisin. Preferably it contains a surfactant.
  • the abnormal prion proteolytic agent of the present invention can be produced according to the detergent of the present invention. Moreover, it can be used according to the “inactivation method of abnormal prion protein” described later.
  • the method for inactivating the abnormal prion protein of the present invention may be any method as long as it includes a step of bringing the object to be cleaned to which the abnormal prion protein is attached into contact with Tk-satilysin.
  • the “contact” is not particularly limited, and the article to be cleaned may be immersed in a solution containing Tk-satilysin, and a solution containing Tk-satilysin may be applied, sprayed, sprayed, or the like. Note that after the contacting step, it is preferable to perform a step of sufficiently rinsing the object to be cleaned with water or the like so that no Tk-satilysin remains on the object to be cleaned.
  • Tk-satilysin solution containing a surfactant it is possible to simultaneously inactivate abnormal prion protein in an object to be cleaned and to wash the object to be cleaned.
  • Tk-satilysin can effectively degrade abnormal prion protein under the condition of 5 minutes in the presence of 3% SDS surfactant at 100 ° C., so that the abnormal prion protein can be decomposed and removed at the same time.
  • the “priozyme (registered trademark)” which is a decontamination agent for abnormal prion protein on the market, immerse the object to be cleaned in a solution in which the preozyme is dissolved after the object is cleaned. In comparison, it is extremely convenient.
  • Tk-satilysin used in the present invention sufficiently inactivates (decomposes) abnormal prion protein even at a pH near neutral.
  • Tk-subtilisin has a high activity at 25 ° C. to 100 ° C., and therefore can be used as an abnormal prion proteolytic agent in a wide range from a low temperature range to a high temperature range. Therefore, use in a high temperature region increases decomposition activity, so that abnormal prion protein can be decomposed and removed in a short time.
  • Tk-subtilisin has a degrading activity under inactivation conditions (3% SDS, 100 ° C., 3 minutes) that can remove and infect abnormal prion protein, so that it is impossible to decompose and inactivate abnormal prion protein. Therefore, the method for inactivating abnormal prion protein of the present invention is extremely excellent.
  • abnormal prion protein is completely infectious when treated with 3% SDS solution at 100 ° C. for 3 minutes (Reference: Ministry of Health, Labor and Welfare, Ministry of Health, Labor and Welfare Late Virus Infection Research Team, Kreuzfeld-Jacob disease medical care manual revised edition ", pp. 48-49, 2002).
  • protein denaturation conditions that eliminate the infectivity of abnormal prion protein include, for example, 7M guanidine hydrochloride 2 hour treatment, 3M guanidine thiocyanate 2 hour treatment, 3M trichloroacetate 2 hour treatment, 50% or more phenol 2 hour treatment, etc. Can be mentioned.
  • Example 1 Biochemical characteristics of Tk-subtilisin
  • a primer pair for amplifying a partial sequence encoding pro-Tk-subtilisin based on the base sequence encoding the Tk-subtilisin precursor (ACCESSION: AB056701, SEQ ID NO: 6) Designed. That is, a forward primer (5′-AGTCCCTGCACATATGGGAGAGCAGAATACAATA-3 ′ (SEQ ID NO: 7)) containing an NdeI site and a reverse primer (5′-AGTGGATCCAATCAGCCCAGGGC-3 ′ (SEQ ID NO: 8)) containing a BamHI site.
  • the obtained strain was cultured at 37 ° C. using NZCYM medium containing 50 ⁇ g / ml ampicillin.
  • OD 660 reached 0.5
  • IPTG having a final concentration of 0.5 mM was added, and the culture was further continued for 4 hours, whereby pro-Tk-subtilisin was expressed in large amounts as inclusion bodies.
  • the cells were collected, suspended in 20 mM Tris-HCl (pH 9.0), subjected to ultrasonic disruption, and the precipitate fraction was collected by centrifugation (15,000 ⁇ g, 30 min).
  • This precipitate was dissolved in a denaturing buffer (20 mM Tris-HCl (pH 9.0), 5 mM EDTA, 8 M Urea), centrifuged (15,000 ⁇ g, 30 min) to obtain a supernatant, and an anion exchange column Hitrap Q ( GE Healthcare) was used to purify the denatured pro-Tk-subtilisin. The degree of purification was confirmed using SDS-PAGE and Coomassie staining.
  • pro-Tk-subtilisin is diluted with 987 ⁇ l of maturation buffer (50 mM CAPS-NaOH pH 9.5, 5 mM CaCl 2 ) to a final concentration of 300 nM (about 0.0124 mg / ml).
  • maturation buffer 50 mM CAPS-NaOH pH 9.5, 5 mM CaCl 2
  • final concentration 300 nM (about 0.0124 mg / ml).
  • subtilisin Carlsberg and proteinase K 50 mM CAPS-NaOH pH 8.0, 5 mM CaCl 2 , 2% azocasein was used as a reaction buffer.
  • FIG. 6 The results of Triton X-100 are shown in FIG. In FIG. 6, (a) is the result of Tk-subtilisin, (b) is the result of Subtilisin Carlsberg, and (c) is the result of ProteinaseK. As is clear from FIG. 6, no activity was observed for any of the enzymes even when treated with 10% Triton X-100 for 60 minutes.
  • the results of Tween-20 are shown in FIG. In FIG. 7, (a) is the result of Tk-subtilisin, (b) is the result of Subtilisin Carlsberg, and (c) is the result of ProteinaseK. As can be seen from FIG.
  • FIG. 9 The result of guanidine hydrochloride (Guanidine HCl) is shown in FIG.
  • (a) is the result of Tk-subtilisin
  • (b) is the result of Subtilisin Carlsberg
  • (c) is the result of ProteinaseK.
  • FIG. 9 no decrease in activity was observed for Tk-satilysin even when treated with 6M guanidine hydrochloride for 60 minutes.
  • Subtilisin Carlsberg and Proteinase K showed a decrease in activity.
  • the result of urea (Urea) is shown in FIG. In FIG.
  • Tk-satilysin (a) is the result of Tk-satilysin, (b) is the result of Subtilisin Carlsberg, and (c) is the result of ProteinaseK.
  • Tk-satilysin did not show a decrease in activity even after treatment with 8% urea for 60 minutes.
  • Subtilisin Carlsberg and Proteinase K showed a decrease in activity. From the above results, it was revealed that Tk-satilysin has high stability against various surfactants and protein denaturants.
  • Example 2 High-efficiency production method of Tk-subtilisin (mature)
  • the amount of Tk-subtilisin (mature) obtained by the method of preparing Tk-subtilisin (mature) by the method of Example 1 (1) and (2) (conventional method) is the amount of pro-Tk-subtilisin subjected to maturation. It was about 20% of the amount, and the recovery efficiency of matured bodies was very low. Therefore, an attempt was made to improve the recovery efficiency of matured bodies.
  • Pro-Tk-subtilisin modified with 8M Urea was purified in the same manner as in Example 1 (1) above.
  • the refolding buffer used was different from that in Example 1 and was used with the addition of DTT and calcium ions.
  • denatured pro-Tk-subtilisin 1.0 mg / ml, 10 ml
  • 1 L of refolding buffer (20 mM Tris-HCl pH 7.0, 1 mM DTT, 10 mM CaCl 2 ) (first time; 2 Time, second time; 12 hours)
  • refolding was performed by removing Urea.
  • pro-Tk-subtilisin 13 ⁇ l of the refolded pro-Tk-subtilisin is diluted with 987 ⁇ l of maturation buffer (50 mM CAPS-NaOH pH 9.5, 5 mM CaCl 2 ) to a final concentration of 300 nM (about 0.0124 mg / ml).
  • maturation buffer 50 mM CAPS-NaOH pH 9.5, 5 mM CaCl 2
  • Lane 1 is a sample before heating by the conventional method
  • Lane 2 is a sample after heating by the conventional method
  • Lane 3 is a sample before heating by the manufacturing method of the present invention
  • Lane 4 is a sample after heating by the manufacturing method of the present invention.
  • Example 3 Concentration and storage of Tk-subtilisin (mature)]
  • Tk-subtilisin (mature) prepared by the method of Examples 1 (1) and (2) above (conventional method) was concentrated using Centriplus (Millipore), 0.1 mg / ml
  • Centriplus Micronel
  • 0.1 mg / ml When the above concentration conditions were reached, an autolysis reaction occurred immediately. Therefore, it has not been possible to prepare a Tk-subtilisin (mature) solution with a high concentration until now. Therefore, the novel findings obtained by the above Examples 1 (5) and (6), that is, the activity of Tk-subtilisin is remarkably low at pH 6 or lower (see FIG. 2), and Tk-subtilisin is pH 2 or higher.
  • FIG. 3 the stable structure
  • the Tk-subtilisin (mature body) produced by the method of Example 2 was dialyzed with a buffer (50 mM sodium acetate (pH 4.6), 10 mM Ca (OAc) 2 ) to obtain sample A (concentration: 0.0115 mg). / ml).
  • Sample A was concentrated 10 times using Centriplus (Millipore) to prepare Sample B (0.115 mg / ml).
  • Sample A was concentrated 100 times to prepare sample C (1.15 mg / ml).
  • the obtained samples A, B and C were each left overnight at 4 ° C.
  • the results are shown in FIG. As can be seen from FIG. 12, it was revealed that there was no autolysis due to concentration and no change in protein amount.
  • the buffer used for concentration and storage is not limited to the above-mentioned sodium acetate as long as it can be adjusted to an acidic pH (2.0 to 6.0).
  • Glycine-HCl can be preferably used.
  • a centrifugal ultrafiltration unit represented by the above-mentioned Centriplus can be suitably used.
  • Tk-subtilisin since the isoelectric point of Tk-subtilisin (mature) is 4.42, it is bound to a cation exchange column Hitrap SP (GE Healthcare) or the like after dialysis with a buffer of pH 4.0 or lower, After dialysis with a buffer of pH 5.0 or higher, it can be bound to an anion exchange column Hitrap Q (GE Healthcare) or the like, and both can be concentrated by elution with sodium chloride.
  • Hitrap SP GE Healthcare
  • anion exchange column Hitrap Q GE Healthcare
  • Example 4 Production of pro-form-containing solution of Tk-subtilisin
  • the modified pro-Tk-satilysin can be correctly refolded in the range of pH 5.2 to 6.0 (see FIG. 4), but Tk-satilysin is in this pH range. Activity was remarkably low (see FIG. 2). From these results, if refolding is performed in the range of pH 5.2 to 6.0, the activity of Tk-subtilisin is suppressed and autolysis does not occur under the pH environment even when the obtained pro-form matures. It was considered a thing. In order to confirm this, the following experiment was conducted.
  • Pro-Tk-subtilisin (1.24 mg / ml) denatured in the presence of 4M guanidine hydrochloride was refolded by diluting 100-fold with a buffer (containing 10 mM CaCl 2 and 1 mM DTT) under various pH conditions.
  • a buffer containing 10 mM CaCl 2 and 1 mM DTT
  • the propeptide cleavage (autoprocessing) efficiency after standing at room temperature for 12 hours was analyzed by 15% SDS-PAGE.
  • the buffers used are as follows. pH 4.0 to 5.6: 50 mM sodium acetate pH 6.0: 50 mM MES-NaOH pH 7.0: 50 mM HEPES-NaOH pH 8.0: 50 mM Tris-HCl
  • the number at the top of each lane represents the pH of the buffer used
  • C represents a control using a buffer not containing calcium ions
  • LMW represents a molecular weight marker.
  • the pro-form having a native structure, and the composite having a structure in which the pro-sequence and the mature sequence generated by self-cleavage of the pro-form are combined.
  • the ratio of the pro form, the complex form, and the mature form did not change at any pH.
  • Tk-subtilisin (mature) solution produced and prepared by the methods of Examples 2 and 3 was used in this example. Moreover, 19 types shown in Table 1 were used for the surfactant. A 1% surfactant solution was prepared according to the content of the surfactant in each product. As the solvent, 100 mM Tris-HCl (pH 8.0) and 1 mM CaCl 2 solution were used. Neoperex GS was adjusted to a neutral pH by adding 1/50 amount of 6M NaOH.
  • Emanon 3299V and Acetamine 86 are not water soluble, they were prepared by changing the water to 50% ethanol. Emanon 3299V was prepared after melting the solid at 80 ° C. and suspending in ethanol.
  • FIG. 18 shows the results of Tk-subtilisin
  • FIG. 19 shows the results of Proteinase K
  • FIG. 20 shows the results of Subtilisin A. 18-20
  • Marker is the molecular weight marker
  • C1 is control 1 (no surfactant, with protease)
  • C2 is control 2 (with surfactant, no protease)
  • the numbers in each lane are the lanes in Table 1.
  • Each of the surfactants corresponding to the number is represented.
  • Tk-subtilisin almost completely decomposed BSA at 100 ° C. for 5 minutes except for lane 3 (dodecylbenzenesulfonic acid) and lane 4 (semi-cured beef tallow fatty acid potassium soap) (see FIG. 18).
  • BSA was decomposed only in Lane 5 (polyoxyethylene lauryl ether), but BSA was not decomposed in other cases (see FIG. 19).
  • Subtilisin A partially decomposes BSA in lane 8 (polyoxyethylene (20) sorbitan monooleate), lane 10 (polyoxyethylene (40) sorbitol tetraoleate) and lane 14 (cetyltrimethylammonium chloride).
  • BSA was not decomposed (see FIG. 20). From these results, it was revealed that Tk-satilysin is extremely high in activity at high temperature in the presence of a surfactant as compared with other proteases.
  • the 5 minute and 10 minute tubes of the preincubated group were preincubated for 2 minutes at 100 ° C.
  • the Tk-subtilisin solution was diluted with 200 mM Tris-HCl (pH 8.0) and 2 mM CaCl 2 to a final concentration of 0.5 mg / ml, and 1 ⁇ l was added to each tube.
  • the 0-minute tube was left as it was, and the 5-minute and 10-minute tubes were heated at 100 ° C. for 5 and 10 minutes, respectively, and then placed on ice for 30 seconds.
  • Tk-satilysin has a residual activity of about 35% to about 50% even under the harsh conditions of 100 ° C. and 10 minutes in the presence of 3% SDS, which is considered to cause protein denaturation. It has been shown.
  • Example 6 Degradation of abnormal prion protein by Tk-subtilisin
  • buffer A 10 mM Sodium Acetate (pH 5.0), 10 mM CaCl 2 .
  • Abnormal prion protein samples were prepared by collecting brains from mice infected with abnormal prion proteins (mouse adapto scrapie Handler strain) and diluting brain homogenates with PBS. The protein concentration was measured using a DC protein assay (Bio-Rad). In this example, only the results for the Chandler strain are shown, but the present inventors have obtained the same results for the Obihiro strain.
  • Western blotting was performed by the following method. Blotting: The voltage was set to 50 V and the current was 140 mA, and blotting was performed for 90 minutes. Blocking: Blocking was performed overnight at 4 ° C. with 5% skim milk (in PBS-T). Primary antibody treatment: SAF83 (IgG) was diluted 1000 times with 0.5% skim milk (total amount 4 ml) and treated at room temperature for 1 hour. Wash: Wash with PBS-T for 10 minutes 3 times. Secondary antibody treatment: ⁇ -mouse-HRP was diluted 10,000 times with 0.5% skim milk (total amount: 4 ml) and treated at room temperature for 1 hour. Wash: Wash with PBS-T for 10 minutes 3 times. Photosensitivity: An HRP enzyme reaction was performed using an ECL kit, and the film was exposed to light.
  • sample is dispensed in equal amounts and divided into “samples that are subjected to Proteinase K treatment” or “samples that are not subjected to Proteinase K treatment”.
  • a Proteinase K solution 200 ⁇ g / ml
  • SDS sample buffer was added to each sample, and boiling was performed at 100 ° C. for 5 minutes, followed by SDS-PAGE (using 15% acrylamide gel), electrophoresis, and Western blotting by the above method.
  • reaction conditions of this experiment 1 were compared with previous studies with reference to literature (Proteolytic inactivation of the bovine spongiform encephalopathy agent, Biochem Biophys Res Commun., 2004 May 14; 317 (4): 1165-70.) It is set to be easy to do.

Abstract

Disclosed is a process for producing a protease.  The process comprises the following steps: a pro-form expression step of introducing DNA encoding a pro-form of the protease into a host cell to induce the expression of the pro-form in the form of an inclusion body; a modification step of modifying the pro-form in the form of an inclusion body to produce a modified pro-form; a refolding step of refolding the modified pro-form in a solution containing a calcium ion and having a pH value of 5 or higher; and a maturation step of maturing the refolded pro-form under alkaline conditions to produce the protease in an active form.  According to the process for producing the protease, the self-degradation of the protease during the production process can be prevented, and a matured form produced from the pro-form can be collected with high efficiency.

Description

プロテアーゼの製造方法、並びにプロテアーゼ溶液およびプロテアーゼのプロ体溶液Protease production method, protease solution and protease pro-solution
 本発明は、プロテアーゼの製造方法、並びに当該製造方法により製造されるプロテアーゼ溶液およびプロテアーゼのプロ体溶液に関するものである。 The present invention relates to a method for producing protease, a protease solution produced by the production method, and a pro-body solution of protease.
 プロテアーゼは、ペプチド結合の加水分解を触媒する酵素の総称であり、微生物、動物および植物に広く分布している。また、プロテアーゼは、洗剤、皮革加工、食品加工、機能性ペプチド生産において幅広く利用されている代表的な産業用酵素である。特に医療器具の二次感染予防の観点から、感染性タンパク質汚れのプロテアーゼによる分解は、代替の難しい技術となっている。産業用酵素としての実用面で一番重要視されるのは、酵素の安定性および利用条件下での活性の高さである。特に、物理的・化学的に高い熱安定性が要求される場合が多く、それゆえ、産業用プロテアーゼには耐熱性プロテアーゼが広く使用されている。現在、産業用に使用されている耐熱性プロテアーゼとして、Subtilisin CarlsbergやProteinaseKなどのサチライシンファミリープロテアーゼ(subtilisin family protease)が知られている。また、他にはアルカリフィルス・トランスバーレンシス由来のプロテアーゼ(特許文献1)、パイロコッカス・ホリコシ由来のプロテアーゼ(特許文献2)、ピロコッカス・フリオサス由来のプロテアーゼ(特許文献3)が知られている。 Protease is a general term for enzymes that catalyze the hydrolysis of peptide bonds, and is widely distributed in microorganisms, animals and plants. Protease is a typical industrial enzyme widely used in detergents, leather processing, food processing, and functional peptide production. In particular, from the viewpoint of preventing secondary infection of medical devices, degradation of infectious protein soil by protease is a difficult alternative technology. The most important aspect of practical use as an industrial enzyme is the stability of the enzyme and its high activity under the conditions of use. In particular, there are many cases where physical and chemical high heat stability is required, and therefore, heat-resistant protease is widely used as industrial protease. Currently, subtilisin family proteases such as Subtilisin Carlsberg and Proteinase K are known as thermostable proteases used in industry. In addition, proteases derived from Alkalifilus transvalensis (Patent Document 1), proteases derived from Pyrococcus horikoshi (Patent Document 2), and proteases derived from Pyrococcus furiosus (Patent Document 3) are known.
 特に医療器具の酵素洗浄剤として使用されるプロテアーゼは、強い洗浄力が求められるため高温域での安定性と活性の高さが必要となる。機械洗浄で使用される医療用洗浄剤は、洗浄と同時に滅菌できることが望まれており、滅菌処理温度の93℃においても活性を保持するプロテアーゼが求められている。医療機器の洗浄において二次感染の防止は重要な問題であり、なかでもプリオン病といわれる感染症は、病原菌ではなく異常プリオンタンパク質が二次感染を引き起こすことが知られている。異常プリオンタンパク質は通常の医療洗浄では、感染性を不活化することができない。現在では、異常プリオンタンパク質に汚染された医療機器は、廃棄や洗浄後、過酷な物理的条件として例えば3%SDS存在下、100℃、5分の条件で処理することで感染性の不活化を行っている。また感染性の不活化までは担保できないが、異常プリオンタンパク質を分解除去できる酵素洗浄剤としてPrionzyme(米国Genencor社)が開発されている。 In particular, proteases used as enzyme cleaning agents for medical instruments require high detergency, and therefore require high stability and high activity in a high temperature range. It is desired that medical detergents used in machine washing can be sterilized at the same time as washing, and a protease that retains activity even at a sterilization temperature of 93 ° C. is required. Prevention of secondary infection is an important problem in the cleaning of medical devices, and it is known that, in particular, infectious diseases called prion diseases, abnormal prion protein causes secondary infection instead of pathogenic bacteria. Abnormal prion protein cannot inactivate infectivity by normal medical cleaning. At present, medical devices contaminated with abnormal prion protein are treated with harsh physical conditions such as 3% SDS in the presence of 3% SDS at 100 ° C. for 5 minutes to inactivate infectivity. Is going. In addition, Prizyme (Genencor, USA) has been developed as an enzyme cleaning agent capable of decomposing and removing abnormal prion protein, although infectivity cannot be guaranteed.
 本発明者らは、超好熱菌の1つであるThermococcus kodakaraensis KOD1株由来のサチライシンファミリーに属するプロテアーゼ(以下「Tk-サチライシン」という)を見出し、当該Tk-サチライシンがpH9.5、温度80℃~100℃で最も高い活性を示すこと、公知のプロテアーゼのなかで最も高い熱安定性を有し、アルカリ条件下におけるタンパク質分解活性が最も高いことを報告している(非特許文献1および2参照)。したがって、Tk-サチライシンは、産業利用上有利な高い温度、高いpH条件下での利用が可能であり、しかも公知のプロテアーゼより当該条件下における活性が顕著に高いため、従来プロテアーゼを用いることができなかった用途への適用が期待されている。 The present inventors have found a protease belonging to the subtilisin family (hereinafter referred to as “Tk-subtilisin”) derived from Thermococcus kodakaraensis KOD1 strain, which is one of the hyperthermophilic bacteria, and the Tk-subtilisin has a pH of 9.5 and a temperature of 80. It has been reported that it exhibits the highest activity at 100 ° C. to 100 ° C., has the highest thermal stability among known proteases, and has the highest proteolytic activity under alkaline conditions (Non-Patent Documents 1 and 2). reference). Therefore, Tk-subtilisin can be used under conditions of high temperature and high pH advantageous for industrial use, and the activity under the conditions is significantly higher than that of known proteases, so that conventional proteases can be used. It is expected to be applied to new uses.
特開2006-141259号公報JP 2006-141259 A 特開2006-149307号公報JP 2006-149307 A 特許3516455号公報Japanese Patent No. 3516455
 Tk-サチライシンを大量生産する場合、遺伝子組換え技術により、大腸菌を用いてそのプロ体を組換えタンパク質として発現させ、リフォールディングおよび成熟化を経て精製および回収する方法が一般的である(非特許文献2参照)。しかしながら、Tk-サチライシンは、活性が高いことに起因して、リフォールディングおよび成熟化の段階で自己分解が生じるため成熟体の回収効率が低く、リフォールディングしたプロ体の約20%しかTk-サチライシンを回収することができなかった。また、自己分解が生じずに構造の安定性を維持した状態で保存可能なTk-サチライシン溶液は未だ実現できていなかった。さらに、Tk-サチライシンの濃縮を試みた場合、一定以上の濃度になると直ちに自己分解反応が生じ、高濃度のTk-サチライシン溶液を調製することができなかった。このように、Tk-サチライシンは製造および保存に関する種々の問題点を有しており、産業用プロテアーゼとして利用するためにはこれらの課題を解決する必要があった。 When mass-producing Tk-subtilisin, a general method is to use E. coli to express the pro-form as a recombinant protein by gene recombination technology, and to purify and recover through refolding and maturation (non-patented). Reference 2). However, Tk-subtilisin is less active due to its high activity due to autolysis at the refolding and maturation stages, and only about 20% of the refolded pro form is Tk-subtilisin. Could not be recovered. In addition, a Tk-satilysin solution that can be stored in a state in which the stability of the structure is maintained without causing autolysis has not yet been realized. Furthermore, when the concentration of Tk-subtilisin was attempted, an autolysis reaction occurred immediately when the concentration reached a certain level, and a high concentration Tk-subtilisin solution could not be prepared. Thus, Tk-subtilisin has various problems related to production and storage, and it has been necessary to solve these problems in order to use it as an industrial protease.
 そこで、本発明は、製造過程における自己分解を抑制し、プロ体から生成される成熟体を高効率で回収可能なプロテアーゼの製造方法、並びに、自己分解が生じることなく高濃度で安定に保存可能なプロテアーゼ溶液およびプロテアーゼのプロ体溶液を提供することを目的とする。さらに、当該製造方法で得られるプロテアーゼ、特にTk-サチライシンの新規な産業用途を提供することを目的とする。 Therefore, the present invention suppresses self-degradation in the production process, and provides a method for producing a protease capable of recovering a mature form produced from a pro form with high efficiency, and can be stably stored at a high concentration without causing self-degradation. It is an object of the present invention to provide a protease solution and a pro-body solution of protease. Furthermore, it aims at providing the novel industrial use of protease obtained by the said manufacturing method, especially Tk-subtilisin.
 本発明は、上記課題を解決するために、以下の発明を包含する。
[1]プロテアーゼのプロ体をコードするDNAを宿主細胞に導入し、封入体として発現させるプロ体発現工程と、封入体状態のプロ体を変性させ、変性プロ体を得る変性工程と、カルシウムイオンを含み、かつ、pH5以上の溶液中で、変性プロ体をリフォールディングさせるリフォールディング工程と、リフォールディング後のプロ体を成熟化させ、活性を有するプロテアーゼを得る成熟化工程とを包含し、前記成熟化工程に供したプロ体の50%以上が活性を有するプロテアーゼとして回収されることを特徴とするプロテアーゼの製造方法。
[2]前記成熟化工程の後に、さらにpH2~6のプロテアーゼ溶液を調製するプロテアーゼ溶液調製工程を包含することを特徴とする前記[1]に記載の製造方法。
[3]前記プロテアーゼ溶液が、0.1mg/ml以上のプロテアーゼ濃度を有する前記[2]に記載の製造方法。
[4]前記リフォールディング工程の直後に、リフォールディング後のプロ体を含有し、pH2~6の溶液を調製するプロ体含有溶液調製工程をさらに包含することを特徴とする前記[1]~[3]のいずれかに記載の製造方法。
[5]前記プロテアーゼが、以下の(a)~(d)のいずれかに記載のアミノ酸配列からなることを特徴とする前記[1]~[4]のいずれかに記載の製造方法。
(a)配列番号1に示されるアミノ酸配列
(b)配列番号1に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
(c)配列番号2に示されるアミノ酸配列
(d)配列番号2に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
[6]前記プロテアーゼのプロ体が、以下の(e)または(f)に記載のアミノ酸配列からなることを特徴とする前記[1]~[5]のいずれかに記載の製造方法。
(e)配列番号3に示されるアミノ酸配列
(f)配列番号3に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
[7]以下の(a)~(d)のいずれかに記載のアミノ酸配列からなるプロテアーゼを含有し、pHが2~6の範囲であることを特徴とするプロテアーゼ溶液。
(a)配列番号1に示されるアミノ酸配列
(b)配列番号1に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
(c)配列番号2に示されるアミノ酸配列
(d)配列番号2に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
[8]プロテアーゼ濃度が0.1mg/ml以上である前記[7]に記載のプロテアーゼ溶液。
[9]以下の(e)または(f)に記載のアミノ酸配列からなるプロ体を含有し、pHが2~6の範囲であることを特徴とするプロテアーゼのプロ体溶液。
(e)配列番号3に示されるアミノ酸配列
(f)配列番号3に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
[10]以下の(a)~(d)のいずれかに記載のアミノ酸配列からなるプロテアーゼを含有する洗剤。
(a)配列番号1に示されるアミノ酸配列
(b)配列番号1に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
(c)配列番号2に示されるアミノ酸配列
(d)配列番号2に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
[11]さらに、界面活性剤を含有する前記[10]に記載の洗剤。
[12]医療器具洗浄用である前記[10]または[11]に記載の洗剤。
[13]以下の(a)~(d)のいずれかに記載のアミノ酸配列からなるプロテアーゼを含有する異常プリオンタンパク質分解剤。
(a)配列番号1に示されるアミノ酸配列
(b)配列番号1に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
(c)配列番号2に示されるアミノ酸配列
(d)配列番号2に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
[14]異常プリオンタンパク質が付着した被洗浄物と、以下の(a)~(d)のいずれかに記載のアミノ酸配列からなるプロテアーゼとを接触させる工程を包含する異常プリオンタンパク質の不活化方法。
(a)配列番号1に示されるアミノ酸配列
(b)配列番号1に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
(c)配列番号2に示されるアミノ酸配列
(d)配列番号2に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
[15]前記被洗浄物と前記プロテアーゼとをタンパク質変性条件下で接触させる前記[14]に記載の異常プリオンタンパク質の不活化方法。
The present invention includes the following inventions in order to solve the above problems.
[1] A pro-body expression step in which DNA encoding a pro-form of protease is introduced into a host cell and expressed as an inclusion body, a denaturation step to denature the pro-form in the inclusion body to obtain a denatured pro-form, and calcium ions A refolding step of refolding the denatured pro-form in a solution having a pH of 5 or higher, and a maturation step of maturing the pro-form after refolding to obtain an active protease, A method for producing a protease, wherein 50% or more of the pro-form subjected to the maturation step is recovered as an active protease.
[2] The production method according to [1], further comprising a protease solution preparation step of preparing a protease solution having a pH of 2 to 6 after the maturation step.
[3] The production method according to [2], wherein the protease solution has a protease concentration of 0.1 mg / ml or more.
[4] The above-mentioned [1] to [1], further comprising a pro-form-containing solution preparation step for preparing a solution having a pH of 2 to 6 containing the pro-form after refolding immediately after the refolding step. 3].
[5] The production method according to any one of [1] to [4], wherein the protease comprises the amino acid sequence according to any one of the following (a) to (d).
(A) amino acid sequence shown in SEQ ID NO: 1 (b) amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 (c) amino acid shown in SEQ ID NO: 2 Sequence (d) Amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 [6] The pro-form of the protease is represented by the following (e) or (f): The production method according to any one of [1] to [5] above, which comprises the amino acid sequence described above.
(E) Amino acid sequence shown in SEQ ID NO: 3 (f) Amino acid sequence shown in SEQ ID NO: 3 wherein one or several amino acids are deleted, substituted or added [7] A protease solution comprising a protease comprising the amino acid sequence of any one of d) and having a pH in the range of 2-6.
(A) amino acid sequence shown in SEQ ID NO: 1 (b) amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 (c) amino acid shown in SEQ ID NO: 2 Sequence (d) Amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 [8] The protease concentration is 0.1 mg / ml or more [7] Protease solution.
[9] A pro-form solution of a protease comprising a pro-form having the amino acid sequence described in (e) or (f) below and having a pH in the range of 2 to 6.
(E) Amino acid sequence shown in SEQ ID NO: 3 (f) Amino acid sequence shown in SEQ ID NO: 3 wherein one or several amino acids are deleted, substituted or added [10] A detergent containing a protease comprising the amino acid sequence according to any one of d).
(A) amino acid sequence shown in SEQ ID NO: 1 (b) amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 (c) amino acid shown in SEQ ID NO: 2 Sequence (d) Amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 [11] The detergent according to [10] above, further comprising a surfactant.
[12] The detergent according to [10] or [11], which is used for cleaning medical equipment.
[13] An abnormal prion proteolytic agent containing a protease comprising the amino acid sequence according to any one of (a) to (d) below:
(A) amino acid sequence shown in SEQ ID NO: 1 (b) amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 (c) amino acid shown in SEQ ID NO: 2 Sequence (d) Amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 [14] A washing object to which an abnormal prion protein is attached; (D) The inactivation method of abnormal prion protein including the process which contacts the protease which consists of an amino acid sequence in any one of.
(A) amino acid sequence shown in SEQ ID NO: 1 (b) amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 (c) amino acid shown in SEQ ID NO: 2 Sequence (d) Amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 [15] The above-mentioned washing object and protease are brought into contact under protein denaturing conditions [14] The method for inactivating an abnormal prion protein according to [14].
 本発明によれば、製造過程において自己分解を抑え、プロ体から生成される成熟体を従来と比較して顕著に高い効率で回収可能なプロテアーゼの製造方法を提供することができる。また、自己分解が生じることなく高濃度で安定に保存可能なプロテアーゼ溶液およびプロテアーゼのプロ体溶液を提供することができる。本発明の製造方法により製造されるプロテアーゼは、高温かつ高アルカリ条件下でも高い活性を有し、界面活性剤やタンパク質変性剤に対しても安定であるので、異常プリオンをはじめとする難分解性タンパク質を物理的に変性(感染性を不活化)させながら分解し除去することが可能であり、各種産業用洗剤として非常に有用である。さらに、本発明の製造方法により製造されるプロテアーゼは、異常プリオンタンパク質を分解することができるので、異常プリオンタンパク質分解剤として非常に有用である。 According to the present invention, it is possible to provide a method for producing a protease that can suppress autolysis in the production process and can recover a mature form produced from a pro form with significantly higher efficiency than the conventional one. Further, it is possible to provide a protease solution and a pro-prote solution of protease that can be stably stored at a high concentration without causing autolysis. Protease produced by the production method of the present invention has high activity even under high temperature and high alkaline conditions, and is stable against surfactants and protein denaturing agents. Proteins can be decomposed and removed while being physically denatured (infectivity is inactivated), and are very useful as various industrial detergents. Furthermore, since the protease produced by the production method of the present invention can degrade abnormal prion protein, it is very useful as an abnormal prion protein degrading agent.
Tk-サチライシンの温度依存性を検討した結果を示すグラフである。It is a graph which shows the result of having examined the temperature dependence of Tk-subtilisin. Tk-サチライシンのpH依存性を検討した結果を示すグラフである。3 is a graph showing the results of examining the pH dependence of Tk-satilysin. Tk-サチライシンの構造安定性に及ぼすpHの影響を検討した結果を示すグラフである。It is a graph which shows the result of having examined the influence of pH on the structural stability of Tk-subtilisin. プロTk-サチライシンの各pH条件下でのリフォールディング効率を比較・検討した結果を示すグラフである。3 is a graph showing the results of comparing and examining the refolding efficiency of pro-Tk-satilysin under various pH conditions. Tk-サチライシンの熱安定性を検討した結果を示すグラフである。It is a graph which shows the result of having examined the thermal stability of Tk-sachilysin. Tk-サチライシンのTritonX-100に対する安定性を検討した結果を示すグラフである。It is a graph which shows the result of having examined the stability with respect to TritonX-100 of Tk-subtilisin. Tk-サチライシンのTween-20に対する安定性を検討した結果を示すグラフである。It is a graph which shows the result of having examined the stability with respect to Tween-20 of Tk-subtilisin. Tk-サチライシンのドデシル硫酸ナトリウム(SDS)に対する安定性を検討した結果を示すグラフである。It is a graph which shows the result of having examined the stability with respect to sodium dodecyl sulfate (SDS) of Tk-satilysin. Tk-サチライシンの塩酸グアニジン(Guanidine HCl)に対する安定性を検討した結果を示すグラフである。It is a graph which shows the result of having examined the stability with respect to guanidine hydrochloride (Guanidine HCl) of Tk-sachilysin. Tk-サチライシンの尿素(Urea)に対する安定性を検討した結果を示すグラフである。It is a graph which shows the result of having examined the stability with respect to urea (Urea) of Tk-subtilisin. 本発明の製造方法および従来法における成熟体の回収効率を比較した図である。It is the figure which compared the collection | recovery efficiency of the matured body in the manufacturing method of this invention, and a conventional method. Tk-サチライシン溶液の濃縮に伴う自己分解の有無を調べた結果を示す図である。It is a figure which shows the result of having investigated the presence or absence of the autolysis accompanying the concentration of a Tk-subtilisin solution. ネイティブ構造を有するプロTk-サチライシン含有溶液の調製を試みた結果を示す図である。It is a figure which shows the result of having tried preparation of the pro Tk- subtilisin containing solution which has a native structure. 各種界面活性剤存在下において、100℃、10分間の反応条件でTk-サチライシンのBSA分解活性を確認した結果を示す図である。FIG. 4 shows the results of confirming the BSA degradation activity of Tk-subtilisin under reaction conditions of 100 ° C. and 10 minutes in the presence of various surfactants. 各種界面活性剤存在下において、65℃、10分間の反応条件でTk-サチライシンのBSA分解活性を確認した結果を示す図である。FIG. 6 is a view showing the results of confirming the BSA decomposition activity of Tk-subtilisin under reaction conditions of 65 ° C. and 10 minutes in the presence of various surfactants. 各種界面活性剤存在下において、37℃、10分間の反応条件でTk-サチライシンのBSA分解活性を確認した結果を示す図である。FIG. 4 is a view showing the results of confirming the BSA-decomposing activity of Tk-subtilisin under the reaction conditions of 37 ° C. and 10 minutes in the presence of various surfactants. 各種界面活性剤存在下において、25℃、10分間の反応条件でTk-サチライシンのBSA分解活性を確認した結果を示す図である。FIG. 3 is a graph showing the results of confirming the BSA-decomposing activity of Tk-subtilisin under reaction conditions of 25 ° C. and 10 minutes in the presence of various surfactants. 各種界面活性剤存在下において、100℃、5分間の反応条件でTk-サチライシンのBSA分解活性を確認した結果を示す図である。FIG. 4 is a view showing the results of confirming the BSA decomposition activity of Tk-subtilisin under reaction conditions of 100 ° C. and 5 minutes in the presence of various surfactants. 各種界面活性剤存在下において、100℃、5分間の反応条件でProteinaseKのBSA分解活性を確認した結果を示す図である。It is a figure which shows the result of having confirmed the BSA decomposition activity of ProteinaseK on 100 degreeC and reaction conditions for 5 minutes in presence of various surfactant. 各種界面活性剤存在下において、100℃、5分間の反応条件でSubtilisinAの分解活性を確認した結果を示す図である。It is a figure which shows the result of having confirmed the decomposition activity of SubtilisinA on 100 degreeC and reaction conditions for 5 minutes in presence of various surfactant. 3%SDS存在下100℃におけるTk-サチライシンの残存活性を確認した結果を示す図である。FIG. 4 is a view showing the results of confirming the residual activity of Tk-satilysin at 100 ° C. in the presence of 3% SDS. 1~7%SDS存在下において、100℃、5分間の反応条件でTk-サチライシンのBSA分解活性を確認した結果を示す図である。FIG. 4 is a view showing the results of confirming the BSA-degrading activity of Tk-subtilisin under reaction conditions of 100 ° C. for 5 minutes in the presence of 1 to 7% SDS. アルカリ性条件においてTk-サチライシンによる異常プリオンタンパク質の分解を検討した結果を示す図である。It is a figure which shows the result of having investigated decomposition | disassembly of the abnormal prion protein by Tk-satilysin in alkaline condition. 中性付近の条件においてTk-サチライシンによる異常プリオンタンパク質の分解を検討した結果を示す図である。It is a figure which shows the result of having investigated decomposition | disassembly of the abnormal prion protein by Tk-sachilysin on conditions near neutrality. Tk-サチライシンによる異常プリオンタンパク質の分解において、反応後のTk-サチライシン不活化の影響を検討した結果を示す図である。It is a figure which shows the result of having examined the influence of the Tk-sachilysin inactivation after reaction in decomposition | disassembly of abnormal prion protein by Tk-satilysin.
 〔プロテアーゼの製造方法〕
 本発明のプロテアーゼの製造方法は、以下の(1)~(4)の工程を包含し、成熟化工程に供したプロ体の50%以上が活性を有するプロテアーゼとして回収されるものであればよい。
(1)プロテアーゼのプロ体をコードするDNAを宿主細胞に導入し、封入体として発現させるプロ体発現工程
(2)封入体状態のプロ体を変性させ、変性プロ体を得る変性工程
(3)カルシウムイオンを含み、かつ、pH5以上の溶液中で、変性プロ体をリフォールディングさせるリフォールディング工程
(4)リフォールディング後のプロ体をアルカリ条件下で成熟化させ、活性を有するプロテアーゼを得る成熟化工程
[Protease production method]
The method for producing a protease of the present invention includes the following steps (1) to (4), and any method can be used as long as 50% or more of the pro form subjected to the maturation step is recovered as an active protease. .
(1) A pro-body expression step in which DNA encoding the pro-form of protease is introduced into a host cell and expressed as an inclusion body (2) A denaturation step (3) in which the pro-form in the inclusion body state is denatured to obtain a denatured pro-form A refolding step of refolding a denatured pro-form in a solution containing calcium ions and having a pH of 5 or higher. (4) Maturation of the pro-form after refolding under alkaline conditions to obtain an active protease. Process
 本発明のプロテアーゼの製造方法は、成熟化工程の後に、さらに(5)pH2~6のプロテアーゼ溶液を調製するプロテアーゼ溶液調製工程、を設けることが好ましい。プロテアーゼ溶液調製工程を設けることにより、自己分解を起こすことなく安定に長期間保存できる高濃度のプロテアーゼ溶液を調製することができる。
 また、本発明のプロテアーゼの製造方法は、リフォールディング工程の後、成熟化工程の前に、さらに(6)リフォールディング後のプロ体を含有し、pH2~6の溶液を調製するプロ体含有溶液調製工程、を設けてもよい。プロ体含有溶液調製工程を設けることにより、正しくフォールディングしたネイティブ構造を有するプロ体と、自己切断により生じたプロ配列と成熟配列とが結合した構造を有する複合体と、成熟体を含有し、これらを安定に保存可能なプロ体含有溶液を調製することができる。
The method for producing a protease of the present invention preferably further comprises (5) a protease solution preparation step for preparing a protease solution having a pH of 2 to 6 after the maturation step. By providing the protease solution preparation step, it is possible to prepare a high-concentration protease solution that can be stably stored for a long time without causing autolysis.
In addition, the method for producing a protease of the present invention comprises (6) a pro-form-containing solution for preparing a solution having a pH of 2 to 6 after the refolding process and before the maturation process. A preparation step may be provided. By providing a pro-form-containing solution preparation step, a pro-form having a correctly folded native structure, a complex having a structure in which a pro-sequence and a mature sequence generated by self-cleavage are combined, and a mature form are contained. Can be prepared in a stable manner.
 本発明の製造方法は、超好熱菌Thermococcus kodakaraensis KOD1株(Morikawa M et al. Appl Environ Microbiol, 1994 Dec;60(12):4559-66、以下「KOD1株」という)由来のTk-サチライシンの製造に特に適した方法である。ただし、本発明により製造されるプロテアーゼはTk-サチライシンに限定されるものではなく、Tk-サチライシンと生化学的特性(特に、カルシウムイオン、温度、pHに関する生化学的特性)が類似したプロテアーゼであれば、本発明の製造方法により効率よく製造することができる。Tk-サチライシンは、上述のように本発明者らが見出したサチライシンファミリーに属するプロテアーゼであり(非特許文献1参照)、プレ配列、プロ配列および成熟配列を有する前駆体として発現され、分泌および成熟化を経て最終的にプレ配列およびプロ配列のない成熟体(プロテアーゼ活性を有するTk-サチライシン)となる。プレ配列(シグナル配列とも称する)は、酵素の菌体外への分泌に必要な配列であり、プロ配列は酵素の活性型立体構造を形成する際に必要な配列であるとされている。Tk-サチライシン前駆体をコードする遺伝子の塩基配列(配列番号6)および推定アミノ酸配列(配列番号5)はDDBJに登録されており、そのアクセッション番号はAB056701である。 The production method of the present invention comprises a thermophilic bacterium Thermococcus kodakaraensis KOD1 strain (Morikawa Met al. Appl Environ Microbiol, 1994 Dec; 60 (12): 4559-66, hereinafter referred to as “KOD1 strain”). This is a particularly suitable method for manufacturing. However, the protease produced by the present invention is not limited to Tk-subtilisin, and may be a protease having biochemical characteristics similar to those of Tk-subtilisin (especially, biochemical characteristics related to calcium ion, temperature, and pH). Thus, it can be efficiently produced by the production method of the present invention. Tk-subtilisin is a protease belonging to the subtilisin family found by the present inventors as described above (see Non-Patent Document 1), and is expressed as a precursor having a pre-sequence, a pro-sequence and a mature sequence, and is secreted and After maturation, it finally becomes a mature form (Tk-subtilisin having protease activity) having no pre-sequence and pro-sequence. A pre-sequence (also referred to as a signal sequence) is a sequence necessary for secretion of the enzyme out of the microbial cell, and a pro-sequence is a sequence necessary for forming an active three-dimensional structure of the enzyme. The base sequence (SEQ ID NO: 6) and deduced amino acid sequence (SEQ ID NO: 5) of the gene encoding Tk-satilysin precursor are registered in DDBJ, and the accession number is AB056701.
 本発明の製造方法により製造されるプロテアーゼは、以下の(a)~(d)のいずれかに記載のアミノ酸配列からなるものであることが好ましい。
(a)配列番号1に示されるアミノ酸配列
(b)配列番号1に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
(c)配列番号2に示されるアミノ酸配列
(d)配列番号2に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
 配列番号1に示されるアミノ酸配列は、Tk-サチライシン(成熟体)のアミノ酸配列であり、Tk-サチライシン前駆体のアミノ酸配列(配列番号5)の第94位~第422位に該当する。配列番号2に示されるアミノ酸配列は、Tk-サチライシン(成熟体)のアミノ酸配列のうち、N末端から13アミノ酸残基が欠失したものであり、Tk-サチライシン前駆体のアミノ酸配列(配列番号5)の第107位~第422位に該当する。なお、Tk-サチライシン(成熟体)のアミノ酸配列(配列番号1)のN末端から1~12アミノ酸残基のいずれかが欠失し、かつ、プロテアーゼ活性を有するタンパク質も、本発明の製造方法により好適に製造することができる。
The protease produced by the production method of the present invention is preferably composed of an amino acid sequence described in any of the following (a) to (d).
(A) amino acid sequence shown in SEQ ID NO: 1 (b) amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 (c) amino acid shown in SEQ ID NO: 2 Sequence (d) Amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2 The amino acid sequence shown in SEQ ID NO: 1 is the amino acid sequence of Tk-subtilisin (mature) And corresponds to positions 94 to 422 of the amino acid sequence of the Tk-subtilisin precursor (SEQ ID NO: 5). The amino acid sequence shown in SEQ ID NO: 2 is a Tk-subtilisin (mature) amino acid sequence from which 13 amino acid residues have been deleted from the N-terminus, and the Tk-subtilisin precursor amino acid sequence (SEQ ID NO: 5 No. 107-422. In addition, a protein having any one of 12 to 12 amino acid residues deleted from the N-terminus of the amino acid sequence (SEQ ID NO: 1) of Tk-subtilisin (mature) and having protease activity can also be obtained by the production method of the present invention. It can manufacture suitably.
 また、本発明の製造方法により、組換えタンパク質として発現されるプロ体は、以下の(e)または(f)に記載のアミノ酸配列からなるものであることが好ましい。なお、本明細書において「プロ体」とは、プレ配列がなくプロ配列および成熟配列を含むプロテアーゼ前駆体を意味する。
(e)配列番号3に示されるアミノ酸配列
(f)配列番号3に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
 配列番号3に示されるアミノ酸配列は、Tk-サチライシンのプロ体(以下、「プロTk-サチライシン」という)のアミノ酸配列であり、Tk-サチライシン前駆体のアミノ酸配列(配列番号5)の第25位~第422位に該当する。
In addition, the pro-form expressed as a recombinant protein by the production method of the present invention is preferably composed of the amino acid sequence described in (e) or (f) below. In the present specification, the “pro form” means a protease precursor having no pre sequence and including a pro sequence and a mature sequence.
(E) amino acid sequence shown in SEQ ID NO: 3 (f) amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 3 The amino acid sequence shown in SEQ ID NO: 3 is This is the amino acid sequence of the pro form of Tk-subtilisin (hereinafter referred to as “pro-Tk-subtilisin”) and corresponds to positions 25 to 422 of the amino acid sequence of the Tk-subtilisin precursor (SEQ ID NO: 5).
 「1または数個のアミノ酸が欠失、置換もしくは付加された」とは、部位特異的突然変異誘発法等の公知の変異ペプチド作製法により欠失、置換もしくは付加できる程度の数(好ましくは10個以下、より好ましくは7個以下、さらに好ましくは5個以下)のアミノ酸が欠失、置換もしくは付加されることを意味する。このような変異タンパク質は、公知の変異ポリペプチド作製法により人為的に導入された変異を有するタンパク質に限定されるものではなく、天然に存在するタンパク質を単離精製したものであってもよい。タンパク質のアミノ酸配列中のいくつかのアミノ酸が、このタンパク質の構造または機能に有意に影響することなく容易に改変され得ることは、当該分野において周知である。さらに、人為的に改変させるだけでなく、天然のタンパク質において、当該タンパク質の構造または機能を有意に変化させない変異体が存在することもまた周知である。 “One or several amino acids have been deleted, substituted or added” means that the number can be deleted, substituted or added by a known mutant peptide production method such as site-directed mutagenesis (preferably 10 Or less, more preferably 7 or less, and even more preferably 5 or less) amino acids are deleted, substituted or added. Such a mutant protein is not limited to a protein having a mutation artificially introduced by a known mutant polypeptide production method, and may be a protein obtained by isolating and purifying a naturally occurring protein. It is well known in the art that some amino acids in a protein's amino acid sequence can be easily modified without significantly affecting the structure or function of the protein. Furthermore, it is also well known that there are variants that not only artificially modify, but also do not significantly alter the structure or function of the protein in the native protein.
 好ましい変異体は、保存性もしくは非保存性アミノ酸置換、欠失、または添加を有する。好ましくは、サイレント置換、添加、および欠失であり、特に好ましくは、保存性置換である。これらは、本発明に係るポリペプチド活性を変化させない。代表的に保存性置換と見られるのは、脂肪族アミノ酸Ala、Val、Leu、およびIleの中での1つのアミノ酸の別のアミノ酸への置換、ヒドロキシル残基SerおよびThrの交換、酸性残基AspおよびGluの交換、アミド残基AsnおよびGlnの間の置換、塩基性残基LysおよびArgの交換、ならびに芳香族残基Phe、Tyrの間の置換である。 Preferred variants have conservative or non-conservative amino acid substitutions, deletions, or additions. Silent substitution, addition, and deletion are preferred, and conservative substitution is particularly preferred. These do not alter the polypeptide activity according to the invention. Typically seen as conservative substitutions are substitutions of one amino acid for another in the aliphatic amino acids Ala, Val, Leu, and Ile, exchange of hydroxyl residues Ser and Thr, acidic residues Asp and Glu exchange, substitution between amide residues Asn and Gln, exchange of basic residues Lys and Arg, and substitution between aromatic residues Phe, Tyr.
 本発明のプロテアーゼおよびプロテアーゼ前駆体は付加的なペプチドを含むものであってもよい。付加的なペプチドとしては、例えば、ポリヒスチジンタグ(His-tag)やMyc、Flag等のエピトープ標識ペプチドが挙げられる。 The protease and protease precursor of the present invention may contain an additional peptide. Examples of the additional peptide include polyhistidine tag (His-tag), epitope-labeled peptides such as Myc, Flag and the like.
 以下、本発明の製造方法によりTk-サチライシンを製造する場合を例に挙げて、各工程を詳細に説明するが、本発明により製造されるプロテアーゼはTk-サチライシンに限定されるものではなく、Tk-サチライシン以外のプロテアーゼについても以下の説明に準じて容易に製造することができる。 Hereinafter, each step will be described in detail by taking as an example the production of Tk-subtilisin by the production method of the present invention, but the protease produced by the present invention is not limited to Tk-subtilisin, and Tk -Proteases other than subtilisin can be easily produced according to the following explanation.
 (1)プロ体発現工程
 プロ体発現工程では、プロテアーゼのプロ体をコードするDNAを宿主細胞に導入し、封入体として発現させる。プロテアーゼのプロ体をコードするDNAは、本発明の製造方法により製造しようとするプロテアーゼのプロ体をコードするDNAであればよく、一般的な遺伝子工学的手法を用いることにより、容易に取得することができる。Tk-サチライシンを製造する場合、プロTk-サチライシンをコードするDNAとしては、以下の(A)または(B)のDNAを好適に用いることができる。
(A)配列番号3に示されるアミノ酸配列からなるプロTk-サチライシンをコードするDNA
(B)配列番号3に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列からなるプロTk-サチライシンをコードするDNA
(1) Pro-body expression step In the pro-body expression step, DNA encoding the pro-form of protease is introduced into a host cell and expressed as inclusion bodies. The DNA encoding the pro-form of the protease may be any DNA that encodes the pro-form of the protease to be produced by the production method of the present invention, and can be easily obtained by using a general genetic engineering technique. Can do. When producing Tk-subtilisin, the following DNA (A) or (B) can be preferably used as DNA encoding pro-Tk-subtilisin.
(A) DNA encoding pro-Tk-subtilisin comprising the amino acid sequence shown in SEQ ID NO: 3
(B) DNA encoding pro-Tk-subtilisin consisting of an amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 3
 また、プロTk-サチライシンをコードするDNAとしては、以下の(C)または(D)のDNAを用いることが好ましい。
(C)配列番号4に示される塩基配列からなるDNA
(D)配列番号4に示される塩基配列に相補的な塩基配列からなるDNAとストリンジェントな条件下でハイブリダイズし、かつ、プロTk-サチライシンをコードするDNA
 配列番号4に示される塩基配列はTk-サチライシン前駆体をコードする遺伝子の塩基配列(配列番号6)の第134位~第1327位に該当する。
In addition, as DNA encoding pro-Tk-subtilisin, the following DNA (C) or (D) is preferably used.
(C) DNA consisting of the base sequence shown in SEQ ID NO: 4
(D) DNA that hybridizes under stringent conditions with a DNA consisting of a base sequence complementary to the base sequence shown in SEQ ID NO: 4 and encodes pro-Tk-subtilisin
The base sequence shown in SEQ ID NO: 4 corresponds to the 134th to 1327th positions of the base sequence (SEQ ID NO: 6) of the gene encoding the Tk-subtilisin precursor.
 ハイブリダイゼーションは、Sambrookら、Molecular Cloning,A Laboratory Manual,3rd Ed.,Cold Spring Harbor Laboratory(2001)に記載されている方法のような周知の方法で行うことができる。通常、温度が高いほど、塩濃度が低いほどストリンジェンシーは高く(ハイブリダイズし難く)なり、より相同なDNAを取得することができる。適切なハイブリダイゼーション温度は、塩基配列やその塩基配列の長さによって異なり、例えば、アミノ酸6個をコードする18塩基からなるDNAフラグメントをプローブとして用いる場合、50℃以下の温度が好ましい。 Hybridization is described in Sambrook et al., Molecular Cloning, A Laboratory Manual, 3rd Ed. , Cold Spring Harbor Laboratory (2001). Usually, the higher the temperature and the lower the salt concentration, the higher the stringency (harder to hybridize) and the more homologous DNA can be obtained. The appropriate hybridization temperature varies depending on the base sequence and the length of the base sequence. For example, when a DNA fragment consisting of 18 bases encoding 6 amino acids is used as a probe, a temperature of 50 ° C. or lower is preferable.
 「ストリンジェントな条件下でハイブリダイズ」とは、ハイブリダイゼーション溶液(50%ホルムアミド、5×SSC(150mMのNaCl、15mMのクエン酸三ナトリウム)、50mMのリン酸ナトリウム(pH7.6)、5×デンハート液、10%硫酸デキストラン、および20μg/mlの変性剪断サケ精子DNAを含む)中にて42℃で一晩インキュベーションした後、約65℃にて0.1×SSC中でフィルターを洗浄することが意図される。 “Hybridization under stringent conditions” means hybridization solution (50% formamide, 5 × SSC (150 mM NaCl, 15 mM trisodium citrate), 50 mM sodium phosphate (pH 7.6), 5 × After overnight incubation at 42 ° C. in Denhardt's solution, 10% dextran sulfate, and 20 μg / ml denatured sheared salmon sperm DNA, wash the filter in 0.1 × SSC at about 65 ° C. Is intended.
 プロTk-サチライシンをコードするDNAとしては、配列番号4に示される塩基配列と相補的な塩基配列と少なくとも80%同一、より好ましくは少なくとも85%、90%、92%、95%、96%、97%、98%または99%同一である塩基配列からなるDNAであって、プロTk-サチライシンをコードするDNAが好ましい。
 任意の特定のDNAが、配列番号4に示される塩基配列に対して、少なくとも80%、85%、90%、92%、95%、96%、97%、98%、または99%同一であるか否かは、公知のコンピュータープログラム(例えば、Bestfit program(Wisconsin Sequence Analysis Package,Version 8 for Unix(登録商標),Genetics Computer Group,University Research Park,575 Science Drive,Madison,WI 53711)を使用して決定することができる。
The DNA encoding pro-Tk-subtilisin is at least 80% identical to the base sequence complementary to the base sequence shown in SEQ ID NO: 4, more preferably at least 85%, 90%, 92%, 95%, 96%, DNA consisting of a base sequence that is 97%, 98% or 99% identical, and that encodes pro-Tk-subtilisin is preferred.
Any particular DNA is at least 80%, 85%, 90%, 92%, 95%, 96%, 97%, 98%, or 99% identical to the base sequence shown in SEQ ID NO: 4 Whether it is a well-known computer program (for example, using the Bestfit program (Wisconsin Sequence Analysis Package, Version 8 for Unix (registered trademark), Genetic Computer Research Group 75, University Research 75). Can be determined.
 プロTk-サチライシンをコードするDNAを取得する方法としては、PCR等の増幅手段を用いる方法を挙げることができる。例えば、配列番号4に示される塩基配列の5’側および3’側の配列(またはその相補配列)に基づいてそれぞれプライマーを設計し、これらプライマーを用いてゲノムDNAまたはcDNA等を鋳型にしてPCR等を行い、両プライマー間に挟まれるDNA領域を増幅することで、プロTk-サチライシンをコードするDNAを含むDNA断片を大量に取得することができる。 Examples of a method for obtaining DNA encoding pro-Tk-satilysin include a method using an amplification means such as PCR. For example, primers are designed based on the 5 ′ side and 3 ′ side sequences (or their complementary sequences) of the base sequence shown in SEQ ID NO: 4, and PCR is performed using these primers as a template for genomic DNA or cDNA. And amplifying the DNA region sandwiched between both primers, a large amount of DNA fragments containing DNA encoding pro-Tk-satilysin can be obtained.
 得られたDNAの宿主細胞への導入は、例えば当該DNAを宿主細胞で発現させるための発現ベクターを構築し、これを宿主細胞に導入して形質転換体を得ることにより行うことができる。発現ベクターは特に限定されず、宿主細胞中で発現可能なベクターを適宜選択することができる。すなわち、宿主細胞の種類に応じて、確実にプロTk-サチライシンを発現させるために適宜プロモーター配列を選択し、これとプロTk-サチライシンをコードするDNAを各種プラスミド等に組み込んだベクターを発現ベクターとして用いればよい。 The introduction of the obtained DNA into the host cell can be carried out, for example, by constructing an expression vector for expressing the DNA in the host cell and introducing it into the host cell to obtain a transformant. The expression vector is not particularly limited, and a vector that can be expressed in the host cell can be appropriately selected. That is, according to the type of the host cell, an appropriate promoter sequence is selected appropriately for the expression of pro-Tk-subtilisin, and a vector in which this and a DNA encoding pro-Tk-subtilisin are incorporated into various plasmids is used as an expression vector. Use it.
 宿主細胞も特に限定されず、組換えタンパク質の発現に使用可能な従来公知の各種細胞を好適に用いることができる。中でも低コストかつ高生産効率であり、工業的な大量生産が可能である点から、大腸菌を宿主細胞とすることが好ましい。発現ベクターを宿主細胞に導入する方法、すなわち形質転換法も特に限定されるものではなく、電気穿孔法、リン酸カルシウム法、リポソーム法、DEAEデキストラン法等の従来公知の方法を好適に用いることができる。 The host cell is not particularly limited, and various conventionally known cells that can be used for expression of the recombinant protein can be suitably used. In particular, it is preferable to use Escherichia coli as a host cell from the viewpoint of low cost and high production efficiency, and industrial mass production is possible. A method for introducing an expression vector into a host cell, that is, a transformation method is not particularly limited, and a conventionally known method such as an electroporation method, a calcium phosphate method, a liposome method, or a DEAE dextran method can be suitably used.
 プロTk-サチライシンをコードするDNAを発現可能に組み込んだ発現ベクターで形質転換した大腸菌等の宿主細胞を培養することにより、プロTk-サチライシンを封入体として発現させることができる。ここで、封入体とは、組換えタンパク質が宿主細胞内で凝集により不溶化した凝集体のことであり、インクルージョンボディ(Inclusion Body)とも称される。
 宿主細胞として大腸菌を用いた場合、培養終了後集菌し、超音波処理等により細胞を破砕後、遠心分離して得られる沈殿画分に封入体を回収することができる。
By culturing host cells such as Escherichia coli transformed with an expression vector in which a DNA encoding pro-Tk-subtilisin can be expressed, the pro-Tk-subtilisin can be expressed as inclusion bodies. Here, the inclusion body is an aggregate in which the recombinant protein is insolubilized by aggregation in the host cell, and is also referred to as an inclusion body.
When Escherichia coli is used as a host cell, the inclusion body can be collected in a precipitate fraction obtained by collecting the cells after culturing, disrupting the cells by ultrasonication or the like, and then centrifuging.
 (2)変性工程
 変性工程では、封入体状態のプロ体を変性させ変性プロ体を得る。具体的には、上記プロ体発現工程で沈殿として回収した封入体状態のプロ体を変性バッファーで溶解することにより、封入体状態のプロ体を変性させ可溶化した変性プロ体を得ることができる。変性用バッファーに用いるタンパク質変性剤としては、例えば、尿素(例えば2M~8M)、塩酸グアニジン(例えば2M~6M)等を好適に用いることができる。また、SDS等の界面活性剤を用いることもできる。また、Tk-サチライシンのようにジスルフィド結合を有する場合には、変性剤以外に還元剤を添加することが好ましい。還元剤としては、例えば、ジチオスレイトール(DTT、例えば1mM~10mM)、β-メルカプトエタノール(βME例えば1%~2%)等を好適に用いることができる。
 変性バッファーのベースとなるバッファーは特に限定されない。例えば、本発明者らは、20mM Tris-HCl(pH9.0)、5mM EDTA、8M Ureaを用いている。この変性バッファーを選択した理由は、等電点から離れたpHを維持し、イオン交換カラムクロマトグラフィーでの精製が容易になるからである。また、金属要求性の酵素(プロテアーゼ)の作用で溶液が変質するのを防ぐ目的でEDTAを添加している。
(2) Denaturation step In the denaturation step, the pro-form in the inclusion body state is denatured to obtain a denatured pro-form. Specifically, the inclusion body-state pro-form recovered as a precipitate in the above-mentioned pro-form expression step is dissolved in a denaturation buffer, whereby the inclusion body-state pro-form can be denatured to obtain a solubilized modified pro-form. . As the protein denaturant used in the denaturing buffer, for example, urea (for example, 2M to 8M), guanidine hydrochloride (for example, 2M to 6M) and the like can be preferably used. Further, a surfactant such as SDS can also be used. In addition, in the case of having a disulfide bond like Tk-subtilisin, it is preferable to add a reducing agent in addition to the modifying agent. As the reducing agent, for example, dithiothreitol (DTT, for example, 1 mM to 10 mM), β-mercaptoethanol (βME, for example, 1% to 2%) can be preferably used.
The buffer serving as the base of the denaturing buffer is not particularly limited. For example, the present inventors use 20 mM Tris-HCl (pH 9.0), 5 mM EDTA, 8M Urea. The reason for selecting this denaturing buffer is that it maintains a pH away from the isoelectric point and facilitates purification by ion exchange column chromatography. Further, EDTA is added for the purpose of preventing the solution from being altered by the action of a metal-requiring enzyme (protease).
 変性工程において、封入体に含まれる宿主由来の種々の分子(核酸、脂質、タンパク質等)を除去するために、変性状態のプロ体を精製することが好ましい。本発明者らは、陰イオン交換カラムを用いて変性状態のプロTk-サチライシンを精製しているが、これに限定されず、公知のタンパク質精製方法から適宜選択して用いればよい。 In the denaturation step, it is preferable to purify the pro-form in a denatured state in order to remove various host-derived molecules (nucleic acid, lipid, protein, etc.) contained in the inclusion body. The present inventors purify denatured pro-Tk-subtilisin using an anion exchange column. However, the present invention is not limited to this and may be appropriately selected from known protein purification methods.
 (3)リフォールディング工程
 リフォールディング工程では、カルシウムイオンを含み、かつ、pH5以上の溶液中で、変性プロ体をリフォールディングさせる。リフォールディングとは、変性剤などにより可溶化した封入体をネイティブな構造へ巻き戻すことをいう。リフォールディングは、変性プロ体をリフォールディングバッファーで希釈または透析し、変性剤を除去することにより行うことができる。
(3) Refolding step In the refolding step, the modified pro-form is refolded in a solution containing calcium ions and having a pH of 5 or higher. Refolding refers to rewinding an inclusion body solubilized with a denaturant or the like to a native structure. Refolding can be performed by diluting or dialyzing the denatured proform with a refolding buffer to remove the denaturing agent.
 リフォールディングバッファーにはカルシウムイオンが含まれる。また、Tk-サチライシンはシステイン残基を2つ持つことから、異なる分子間での不適切なジスルフィド結合の形成を防ぐために、リフォールディングバッファーには還元剤(DTT、βME等)が含まれる。従来の製造方法では、カルシウムイオンを含まないリフォールディングバッファーを用いてリフォールディングさせることで、一旦プロ配列を含む不活性な中間体を形成させ、その後成熟化を行っていたが、この方法では成熟化の過程で自己分解が起こり、回収可能なTk-サチライシン(成熟体)量は非常に少なかった。そこで、本発明の製造方法では、リフォールディングバッファーにカルシウムイオンおよびDTTを含ませることで、不活性な中間体を形成させることなくネイティブ構造のプロTk-サチライシンを形成させ、これを成熟化に供することにより、成熟体の回収効率を顕著に向上させ、多量のTk-サチライシン(成熟体)を回収することが可能となった。
 リフォールディングバッファー中のカルシウムイオン濃度は、1mM~50mMが好ましく、5mM~10mMがより好ましい。1mM~50mMの範囲であれば、正しくフォールディングしたネイティブ構造を有するプロTk-サチライシンを形成することができる。
The refolding buffer contains calcium ions. In addition, since Tk-subtilisin has two cysteine residues, the refolding buffer contains a reducing agent (DTT, βME, etc.) in order to prevent the formation of inappropriate disulfide bonds between different molecules. In the conventional production method, an inactive intermediate containing a prosequence was once formed by refolding using a refolding buffer not containing calcium ions, and then matured. Autolysis occurred during the conversion process, and the amount of Tk-subtilisin (mature) that could be recovered was very small. Therefore, in the production method of the present invention, by including calcium ions and DTT in the refolding buffer, a native structure pro-Tk-subtilisin is formed without forming an inactive intermediate, and this is used for maturation. As a result, the recovery efficiency of the matured body was remarkably improved, and a large amount of Tk-satilysin (matured body) could be recovered.
The calcium ion concentration in the refolding buffer is preferably 1 mM to 50 mM, more preferably 5 mM to 10 mM. In the range of 1 mM to 50 mM, pro-Tk-subtilisin having a correctly folded native structure can be formed.
 また、リフォールディングバッファーはpH5以上のものを使用する。これは、本発明者らが、プロTk-サチライシンのリフォールディング効率は、リフォールディングバッファーのpHが5より低い場合に格段に悪くなることを新たに見出したことに基づく。
 リフォールディングバッファーのベースとなるバッファーは特に限定されない。好適なリフォールディングバッファーとしては、例えば、1mM DTT、10mM Ca2+を含むpH5.2以上のバッファー(溶質は問わない)が挙げられる。
A refolding buffer having a pH of 5 or more is used. This is based on the new discovery by the inventors that the refolding efficiency of pro-Tk-satilysin is much worse when the pH of the refolding buffer is lower than 5.
The buffer that is the base of the refolding buffer is not particularly limited. Suitable refolding buffer, e.g., 1 mM DTT, pH 5.2 or more buffer containing 10 mM Ca 2+ (solute does not matter) can be mentioned.
 (4)成熟化工程
 成熟化工程では、リフォールディング後のプロ体を成熟化させ、活性を有するプロテアーゼを得る。成熟化とは、プロ体からプロ配列が自己切断により離れ、引き続き自己分解により消化されて成熟配列からなる成熟体(プロテアーゼ活性を有するタンパク質)が生成することをいう。
 成熟化は、リフォールディング後のプロ体を、成熟体がプロテアーゼ活性を発現可能なpHの溶液環境に移すことにより進行させることができる。したがって、プロTk-サチライシンを成熟化させる場合は、pH7以上の成熟化バッファーを用いることが好ましい。また、成熟体がより高いプロテアーゼ活性を発現可能なpHの成熟化バッファーを用いること(Tk-サチライシンの場合はpH8以上)、リフォールディング後のプロ体ができるだけ低濃度になるように成熟化バッファーで希釈すること、成熟化バッファーを加熱すること、等により成熟化の効率を上げることができる。
(4) Maturation process In the maturation process, the pro-form after refolding is matured to obtain an active protease. Maturation means that the pro sequence is separated from the pro form by self-cleavage and is subsequently digested by autolysis to produce a mature form (protein having protease activity) comprising the mature sequence.
Maturation can proceed by transferring the refolded pro form to a solution environment at a pH at which the mature form can express protease activity. Therefore, when maturating pro-Tk-satilysin, it is preferable to use a maturation buffer having a pH of 7 or higher. In addition, use a maturation buffer with a pH that allows the matured body to express higher protease activity (pH 8 or higher for Tk-subtilisin), and use a maturation buffer so that the pro-form after refolding is as low as possible. Maturation efficiency can be increased by diluting, heating the maturation buffer, and the like.
 成熟化バッファーのベースとなるバッファーは特に限定されない。例えば、Tris-HCl、CAPS-NaOH、Glycine-NaOHなどを好適に用いることができる。また、Tk-サチライシンに結合しているカルシウムイオンを維持するために成熟化バッファーにカルシウムイオンを添加することが好ましい。成熟化に供するプロ体の濃度は終濃度で300nM以下であることが好ましい。300nMを超えると、自己分解が生じるからである。一例を挙げると、本発明者らは、50mM CAPS-NaOH pH9.5、5mM CaClを用いて、プロTk-サチライシンを約300nMに希釈し、80℃で15分間熱処理することで成熟化を行っている。ただし、これに限定されるものではない。 The buffer used as the base of the maturation buffer is not particularly limited. For example, Tris-HCl, CAPS-NaOH, Glycine-NaOH and the like can be preferably used. In addition, it is preferable to add calcium ions to the maturation buffer in order to maintain the calcium ions bound to Tk-subtilisin. The concentration of the pro-form used for maturation is preferably 300 nM or less at the final concentration. This is because if it exceeds 300 nM, self-decomposition occurs. For example, the present inventors performed maturation by diluting pro-Tk-subtilisin to about 300 nM with 50 mM CAPS-NaOH pH 9.5, 5 mM CaCl 2 and heat-treating at 80 ° C. for 15 minutes. ing. However, it is not limited to this.
 上記(1)~(4)の工程を包含する本発明の製造方法によれば、成熟化工程に供したプロ体の50%以上が活性を有するプロテアーゼ(成熟体)として回収される。ここで、「成熟化工程に供したプロ体の50%以上が活性を有するプロテアーゼ(成熟体)として回収される」とは、成熟化工程に供したプロ体のモル数と回収された成熟体のモル数の比が50%以上であることを意味する。成熟化工程に供したプロ体の50%以上が活性を有するプロテアーゼ(成熟体)として回収されたか否かは、簡便には、成熟化前後の成熟化バッファーの一定量をSDS-PEGEに供し、プロ体のバンドの濃さと成熟体のバンドの濃さをデンシトメーター等で比較することにより行うことができる。また、正確には、成熟化前後の成熟化バッファーを用いて、波長280nmの紫外光の吸光度を測定し、モル吸光係数を使って成熟化前後のタンパク質濃度を計算し、これを比較することにより確認することができる。
 本発明の製造方法において、成熟化工程に供したプロ体に対する回収された成熟体の比率は、少なくとも50%以上、好ましくは60%以上、より好ましくは70%以上、さらに好ましくは80%以上、特に好ましくは90%以上である。
According to the production method of the present invention including the steps (1) to (4) above, 50% or more of the pro form used in the maturation process is recovered as an active protease (mature form). Here, “50% or more of the pro form subjected to the maturation process is recovered as an active protease (mature form)” means that the number of moles of the pro form subjected to the maturation process and the recovered mature form It means that the ratio of the number of moles is 50% or more. Whether or not 50% or more of the pro form subjected to the maturation step was recovered as an active protease (mature form), simply, a certain amount of maturation buffer before and after maturation was subjected to SDS-PEGE, This can be done by comparing the density of the professional band with the density of the mature band using a densitometer or the like. To be precise, by measuring the absorbance of ultraviolet light at a wavelength of 280 nm using a maturation buffer before and after maturation, calculating the protein concentration before and after maturation using the molar extinction coefficient, and comparing this Can be confirmed.
In the production method of the present invention, the ratio of the recovered mature form to the pro form subjected to the maturation step is at least 50% or more, preferably 60% or more, more preferably 70% or more, still more preferably 80% or more, Particularly preferably, it is 90% or more.
 (5)プロテアーゼ溶液調製工程
 本発明の製造方法において、成熟化工程の後にpH2~6のプロテアーゼ溶液を調製するプロテアーゼ溶液調製工程を設けることが好ましい。本発明者らは、pH6以下ではTk-サチライシンの活性が顕著に低いこと、および、Tk-サチライシンはpH2~12の範囲で構造が安定しているがpHが2より低いと構造を維持できないことを新たに見出し、この新規知見に基づいてpH2~6の溶液状態でTk-サチライシンを安定に保存することに成功した。
(5) Protease solution preparation step In the production method of the present invention, it is preferable to provide a protease solution preparation step of preparing a protease solution having a pH of 2 to 6 after the maturation step. The inventors of the present invention show that the activity of Tk-subtilisin is remarkably low below pH 6, and that the structure of Tk-subtilisin is stable in the range of pH 2 to 12, but the structure cannot be maintained when the pH is lower than 2. Based on this new finding, the inventors succeeded in stably storing Tk-subtilisin in a solution state of pH 2-6.
 プロテアーゼ溶液調製工程では、成熟化工程で得られたTk-サチライシンをpH2~6のバッファーに移行させる。移行方法は特に限定されないが、例えば、Tk-サチライシンをpH2~6のバッファーで希釈する方法や透析する方法を用いることができる。
 また、プロテアーゼ溶液調製工程では、Tk-サチライシンをpH2~6のバッファーに移行させた後、濃縮を行ってもよい。濃縮することにより、高濃度のTk-サチライシン溶液を調製することができる。濃縮の方法は特に限定されず、公知のタンパク質溶液の濃縮方法を用いればよい。例えば、限外ろ過が挙げられる。また、Tk-サチライシン溶液を一度凍結乾燥した後に、少容量のバッファーに再溶解してもよい。
In the protease solution preparation step, the Tk-subtilisin obtained in the maturation step is transferred to a pH 2-6 buffer. The transfer method is not particularly limited. For example, a method of diluting Tk-subtilisin with a buffer of pH 2 to 6 or a method of dialysis can be used.
In the protease solution preparation step, Tk-satilysin may be transferred to a pH 2-6 buffer and then concentrated. By concentration, a high-concentration Tk-satilysin solution can be prepared. The concentration method is not particularly limited, and a known protein solution concentration method may be used. An example is ultrafiltration. Alternatively, the Tk-subtilisin solution may be lyophilized once and then redissolved in a small volume of buffer.
 得られたプロテアーゼ溶液のTk-サチライシン濃度は0.1mg/ml以上であることが好ましい。従来の方法で製造したTk-サチライシンを濃縮した場合、自己分解反応を起こして0.1mg/ml以上のTk-サチライシン溶液を調製することができなかった。本発明の製造方法で得られるTk-サチライシン溶液は、構造の安定性を維持しながら活性の発現を抑えることができるpH2~6のTk-サチライシン溶液であるため、Tk-サチライシン濃度を0.1mg/ml以上としても自己分解を起こさず、安定に保存することが可能である。 The obtained protease solution preferably has a Tk-subtilisin concentration of 0.1 mg / ml or more. When Tk-subtilisin produced by a conventional method was concentrated, an autolysis reaction occurred and a Tk-subtilisin solution of 0.1 mg / ml or more could not be prepared. Since the Tk-subtilisin solution obtained by the production method of the present invention is a Tk-subtilisin solution having a pH of 2 to 6 that can suppress the expression of activity while maintaining the stability of the structure, the Tk-subtilisin concentration is 0.1 mg. / Ml or more, it does not cause autolysis and can be stored stably.
 (6)プロ体含有溶液調製工程
 本発明の製造方法において、リフォールディング工程の直後に、リフォールディング後のプロ体を含有し、pH2~6の溶液を調製するプロ体含有溶液調製工程を設けてもよい。本発明者らは、変性させたプロTk-サチライシンはpH5以上で正しいフォールディングを効率よくできること、pH6以下ではTk-サチライシンの活性が顕著に低いこと、および、Tk-サチライシンはpH2~12の範囲で構造が安定しているがpHが2より低いと構造を維持できないことを新たに見出した。そして、この新規知見に基づいて、正しくフォールディングしたネイティブ構造を有するプロ体を含有し、安定に保存可能な溶液の調製を試みたところ、ネイティブ構造を有するプロ体、当該プロ体の自己切断により生じたプロ配列と成熟配列とが結合した構造を有する複合体、およびTk-サチライシン(成熟体)の3種類のタンパク質を含有する混合物が得られ、これらの成熟化の進行を抑えてpH2~6の溶液中で安定に保存することに成功した。
(6) Pro-form-containing solution preparation step In the production method of the present invention, immediately after the refolding step, a pro-form-containing solution preparation step for preparing a pH 2-6 solution containing the refolded pro-form is provided. Also good. We have found that the modified pro-Tk-subtilisin can efficiently perform correct folding above pH 5, the activity of Tk-subtilisin is remarkably low below pH 6, and the Tk-subtilisin is in the range of pH 2-12. It was newly found that the structure is stable but the structure cannot be maintained when the pH is lower than 2. Based on this new knowledge, an attempt was made to prepare a solution that contains a pro-form having a correctly folded native structure and can be stably stored. A complex containing a complex having a structure in which a pro sequence and a mature sequence are combined, and a Tk-subtilisin (mature) three types of protein are obtained, and the progress of maturation is suppressed to pH 2-6. Succeeded in stable storage in solution.
 プロ体含有溶液調製工程では、リフォールディング工程で得られたネイティブ構造を有するプロ体を含有する混合物をpH2~6のバッファーに移行させる。さらに、引き続き濃縮を行ってもよい。pH2~6のバッファーへの移行および濃縮には、上記プロテアーゼ溶液調製工程に記載の方法を用いることができる。得られたプロ体含有溶液中のプロ体と複合体の混合物を成熟化工程に供すれば、プロテアーゼ活性を有する成熟体(Tk-サチライシン)を得ることができる。 In the pro-form-containing solution preparation step, the mixture containing the pro-form having a native structure obtained in the refolding step is transferred to a pH 2-6 buffer. Further, the concentration may be continued. The method described in the above-mentioned protease solution preparation step can be used for shifting to pH 2-6 buffer and concentration. When the mixture of the pro-form and the complex in the obtained pro-form-containing solution is subjected to a maturation step, a mature form (Tk-satilysin) having protease activity can be obtained.
 〔プロテアーゼ溶液〕
 本発明のプロテアーゼ溶液は、以下の(a)~(d)のいずれかに記載のアミノ酸配列からなるプロテアーゼを含有し、pHが2~6の範囲であるプロテアーゼ溶液である。
(a)配列番号1に示されるアミノ酸配列
(b)配列番号1に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
(c)配列番号2に示されるアミノ酸配列
(d)配列番号2に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
つまり、本発明のプロテアーゼ溶液は、上記本発明の製造方法のプロテアーゼ溶液調製工程で得られるTk-サチライシン溶液である。このTk-サチライシン溶液は、Tk-サチライシンが自己分解を起こすことなく、安定に長期間保存できる。また、従来実現できなかった0.1mg/ml以上の高濃度Tk-サチライシン溶液を提供することができる。
[Protease solution]
The protease solution of the present invention is a protease solution containing a protease having the amino acid sequence described in any of the following (a) to (d) and having a pH in the range of 2 to 6.
(A) amino acid sequence shown in SEQ ID NO: 1 (b) amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 (c) amino acid shown in SEQ ID NO: 2 Sequence (d) An amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2, that is, the protease solution of the present invention is a protease solution preparation step of the production method of the present invention. The Tk-subtilisin solution obtained in This Tk-subtilisin solution can be stored stably for a long period of time without Tk-subtilisin self-degrading. Further, it is possible to provide a high concentration Tk-satilysin solution of 0.1 mg / ml or more that could not be realized conventionally.
 本発明のプロテアーゼ溶液は、高濃度のTk-サチライシンを含有させることができるので、保存コストや輸送コストを低く抑えることが可能となり、流通の経済性を向上させることができる。また、使用時にプロテアーゼを添加して用いる用途において、用事調製用の溶液として利用できる。 Since the protease solution of the present invention can contain a high concentration of Tk-satilysin, it is possible to keep storage costs and transportation costs low, and improve the economics of distribution. Moreover, it can utilize as a solution for business preparation in the use which adds and uses protease at the time of use.
 〔プロ体含有溶液〕
 本発明のプロ体溶液は、以下の(e)または(f)に記載のアミノ酸配列からなるプロ体を含有し、pHが2~6の範囲であるプロテアーゼのプロ体溶液である。
(e)配列番号3に示されるアミノ酸配列
(f)配列番号3に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
つまり、上記本発明の製造方法のプロ体含有溶液調製工程において調製されるプロTk-サチライシン含有溶液である。このプロTk-サチライシン含有溶液は、正しくフォールディングしたネイティブ構造を有するプロ体、当該プロ体の自己切断により生じたプロ配列と成熟配列とが結合した構造を有する複合体、およびTk-サチライシン(成熟体)の3種類のタンパク質を含有する混合物溶液であり、これらの成熟化の進行を抑えて安定に保存することができきる。
[Pro-form-containing solution]
The pro-form solution of the present invention is a pro-form solution of a protease containing a pro-form having an amino acid sequence described in (e) or (f) below and having a pH in the range of 2-6.
(E) an amino acid sequence represented by SEQ ID NO: 3 (f) an amino acid sequence in which one or several amino acids have been deleted, substituted or added in the amino acid sequence represented by SEQ ID NO: 3, that is, the above-mentioned production method of the present invention A pro-Tk-subtilisin-containing solution prepared in the body-containing solution preparation step. This pro-Tk-subtilisin-containing solution contains a pro-form having a correctly folded native structure, a complex having a structure in which a pro-sequence generated by self-cleavage of the pro-form and a mature sequence are combined, and Tk-subtilisin (mature form). ) And a mixture solution containing three kinds of proteins, and can be stably stored while suppressing the progress of maturation.
 本発明のプロ体含有溶液は、Tk-サチライシン製造における中間体を供給するものである。すなわち、Tk-サチライシン製造の中間体を流通させることができるため、Tk-サチライシンを含有する最終製品を製造する現場で、目的物であるTk-サチライシンを製造することが可能となる。また、本発明のプロ体含有溶液は保存安定性が高い溶液であるが、溶液中のプロ体の量をチェックすることにより、自己分解が進んでいないことを容易に確認することができる。すなわち、流通過程や保存中の品質管理を容易に行うことができるという利点を有する。 The pro-form-containing solution of the present invention supplies an intermediate in the production of Tk-subtilisin. That is, since an intermediate for producing Tk-subtilisin can be distributed, it is possible to produce the target product Tk-subtilisin at the site where the final product containing Tk-subtilisin is produced. Further, the pro-form-containing solution of the present invention is a solution having high storage stability, but by checking the amount of the pro-form in the solution, it can be easily confirmed that self-decomposition has not progressed. That is, there is an advantage that quality control during distribution process and storage can be easily performed.
 〔Tk-サチライシンの用途〕
 以下、本発明の製造方法により得られるプロテアーゼの代表例としてTk-サチライシンの用途について説明するが、本発明の製造方法により得られるプロテアーゼはTk-サチライシンに限定されるものではなく、本発明の製造方法により得られる他のプロテアーゼも同様の用途に使用できる。また、本発明の製造方法以外の方法により製造されたTk-サチライシンも同様の用途に使用できることは言うまでもない。Tk-サチライシンは、既に実用化されているSubtilisin CarlsbergやProteinaseKと比較して、高温域(70℃~100℃)で顕著に高い活性を有し、それより低い温度域においても他のプロテアーゼより高い活性を有するプロテアーゼである。今回、本発明者らはTk-サチライシンはpH8~12で非常に高い活性を有すること、Subtilisin CarlsbergやProteinaseKと比較して、顕著に高い熱安定性を有すること、および、界面活性剤やタンパク質変性剤に対する安定性が高いことを新たに見出した。それゆえ、Tk-サチライシンは、難分解産業廃棄物(羽毛、獣毛などケラチンを含むもの)の分解、生理活性ペプチド生産、繊維加工、羊毛加工、皮革加工、食品加工(魚油加工、食肉加工等)、飼料加工、核酸精製、コンタクトレンズ洗浄、配管洗浄等の用途に好適に利用することができる。また、Tk-サチライシンは、常温から高温の広い範囲で高い活性を示すことから、分解対象の材料、利用目的に最適な温度条件に合わせて用いることができる。さらに、反応性が高いので少量で既存品と同程度の効果が得られる。特に、高アルカリかつ高温条件(例えばpH12、80℃など)を必要とするような、今まで酵素が利用できなかった分野での新しい活用(医療機器の洗浄、難分解物の高効率分解)に利用できる。したがって、Tk-サチライシンは、高温かつ高アルカリ条件で使用され、界面活性剤を含有する洗剤に配合して洗浄力の増強を図ることができる。特に、従来使用されている産業用プロテアーゼと比較して顕著に高い活性を有していることから、二次感染が問題となる医療器具の感染性タンパク質汚れを強力に分解・洗浄することが可能であり、医療器具用洗剤に高い有用性を有している。また、食器洗浄機用洗剤や洗濯用洗剤等の各種洗剤にも好適に用いることができる。
[Usage of Tk-Sachilysin]
Hereinafter, the use of Tk-subtilisin will be described as a representative example of the protease obtained by the production method of the present invention. However, the protease obtained by the production method of the present invention is not limited to Tk-subtilisin. Other proteases obtained by the method can also be used for similar applications. Needless to say, Tk-subtilisin produced by a method other than the production method of the present invention can also be used for the same purpose. Tk-subtilisin has a significantly higher activity in the high temperature range (70 ° C. to 100 ° C.) than Subtilisin Carlsberg and Proteinase K, which have already been put to practical use, and is higher than other proteases in the lower temperature range. It is a protease with activity. This time, the present inventors have shown that Tk-satilysin has very high activity at pH 8-12, has significantly higher thermal stability compared to Subtilisin Carlsberg and Proteinase K, and has been modified with surfactants and proteins. It was newly found that the stability to the agent is high. Therefore, Tk-subtilisin decomposes persistent industrial waste (including keratin such as feathers and animal hair), bioactive peptide production, fiber processing, wool processing, leather processing, food processing (fish oil processing, meat processing, etc.) ), Feed processing, nucleic acid purification, contact lens cleaning, piping cleaning, and the like. In addition, Tk-sachilysin exhibits high activity in a wide range from room temperature to high temperature, and therefore can be used in accordance with the temperature conditions optimum for the material to be decomposed and the purpose of use. Furthermore, since the reactivity is high, an effect equivalent to that of existing products can be obtained with a small amount. Especially for new applications (cleaning of medical equipment, high-efficiency decomposition of difficult-to-decompose products) in fields where enzymes were not available until now, requiring high alkalis and high-temperature conditions (for example, pH 12, 80 ° C., etc.) Available. Therefore, Tk-subtilisin is used under high temperature and high alkali conditions, and can be formulated into a detergent containing a surfactant to enhance the detergency. In particular, it has significantly higher activity compared to industrial proteases that have been used in the past, so it is possible to powerfully decompose and clean infectious protein stains on medical devices where secondary infection is a problem. And has high utility as a detergent for medical devices. Moreover, it can use suitably also for various detergents, such as a detergent for dishwashers and a laundry detergent.
 (1)洗剤
 本発明は、Tk-サチライシンを含有する洗剤(洗浄用組成物)を提供する。洗剤中のTk-サチライシンの含有量は特に限定されないが、他のプロテアーゼと比較して高い活性を有することから、少量の添加で高い洗浄力を発揮することができる。好ましい含有量として、例えば0.1~10重量%が挙げられる。含有量が少なすぎると十分な洗浄効果が得られず、また逆に多すぎる場合には含有量に比した洗浄効果の向上が得られないため、経済性の点で好ましくない。Tk-サチライシンは、公知の任意の洗剤に対して、その洗剤の組成を何ら変更することなく配合することができる。また、Tk-サチライシンを含有する洗剤の成分については特に限定はない。そのような洗剤の代表的例としては、洗剤重量当たり10~50重量%の界面活性剤、0~50重量%のビルダー、1~50重量%のアルカリ剤あるいは無機電解質、0.1~5重量%の再汚染防止剤、酵素、漂白剤、蛍光染料、ケーキング防止剤および酸化防止剤からなる群より選ばれる少なくとも1種以上の配合成分からなる洗剤が挙げられる。
(1) Detergent The present invention provides a detergent (cleaning composition) containing Tk-sachilysin. Although the content of Tk-subtilisin in the detergent is not particularly limited, it has a high activity as compared with other proteases, so that a high detergency can be exhibited with a small addition. A preferable content is, for example, 0.1 to 10% by weight. If the content is too small, a sufficient cleaning effect cannot be obtained. On the other hand, if the content is too large, an improvement in the cleaning effect relative to the content cannot be obtained, which is not preferable in terms of economy. Tk-subtilisin can be formulated into any known detergent without any change in the composition of the detergent. Further, there are no particular limitations on the components of the detergent containing Tk-subtilisin. Typical examples of such detergents are 10-50 wt% surfactant, 0-50 wt% builder, 1-50 wt% alkaline agent or inorganic electrolyte, 0.1-5 wt% per detergent weight. % Detergents comprising at least one compounding ingredient selected from the group consisting of anti-staining agents, enzymes, bleaches, fluorescent dyes, anti-caking agents and antioxidants.
 Tk-サチライシンを含有する洗剤は、さらに界面活性剤を含有することが好ましい。洗剤に含有される界面活性剤は特に限定されず、陰イオン界面活性剤、非イオン界面活性剤(例えば、エーテル型非イオン性界面活性剤、脂肪酸エステル型非イオン性界面活性剤、酸化エチレン付加脂肪アミンなど)、陽イオン界面活性剤、両性界面活性剤のいずれも好適に用いることができる。本発明者らは、少なくとも19種類の界面活性剤の存在下においてTk-サチライシンがプロテアーゼ活性を維持できることを確認しており(実施例5および表1参照)、Tk-サチライシンは、界面活性剤を含有する洗剤に配合して用いることに特に適していると言える。界面活性剤の含有量は特に限定されないが、被洗浄物に存在するタンパク質が変性する程度の量を含有することが好ましい。したがって、用いる界面活性剤に応じて、適切な含有量を選択して使用することが好ましい。例えば、約1~50重量%が好ましく、約1~30重量%がより好ましく、約3~10重量%がさらに好ましい。 It is preferable that the detergent containing Tk-subtilisin further contains a surfactant. The surfactant contained in the detergent is not particularly limited, and is an anionic surfactant, a nonionic surfactant (for example, ether type nonionic surfactant, fatty acid ester type nonionic surfactant, ethylene oxide addition) Any of fatty amines, cationic surfactants, and amphoteric surfactants can be suitably used. The present inventors have confirmed that Tk-subtilisin can maintain protease activity in the presence of at least 19 kinds of surfactants (see Example 5 and Table 1). It can be said that it is particularly suitable for blending and using the contained detergent. The content of the surfactant is not particularly limited, but it is preferable that the surfactant is contained in such an amount that the protein present in the washing object is denatured. Therefore, it is preferable to select and use an appropriate content according to the surfactant to be used. For example, it is preferably about 1 to 50% by weight, more preferably about 1 to 30% by weight, and further preferably about 3 to 10% by weight.
 既存のアルカリプロテアーゼであるアルカリフィルス・トランスバーレンシス由来のプロテアーゼ(特許文献1)は、高アルカリ活性、界面活性剤耐性、カルシウム非依存性の耐熱性などの特徴ある性質を有しているが、最適温度が70℃であるため、より高温の洗浄には適していない。またパイロコッカス・ホリコシ由来のプロテアーゼ(特許文献2)は、至適温度約98℃以上で、至適pH約5~約6である特徴を有しているが、中性、アルカリ条件では活性が低く、界面活性剤への耐性について記載がない。一方、ピロコッカス・フリオサス由来のプロテアーゼ(特許文献3)は、アセトニトリル、尿素、SDSに対して耐性を有している。SDSに対する耐性については、終濃度1%SDSの存在下、95℃、3時間の処理の後も処理前の約80%の活性を有しているが、高温条件でSDS1%以上の濃度における分解活性の記載はなく、またSDS以外の界面活性剤に対する耐性の記載はない。 Protease derived from Alkaline Filus transvallensis, which is an existing alkaline protease (Patent Document 1), has characteristic properties such as high alkali activity, surfactant resistance, and calcium-independent heat resistance. Since the optimum temperature is 70 ° C., it is not suitable for higher temperature cleaning. Pyrococcus horikoshii-derived protease (Patent Document 2) is characterized by an optimum temperature of about 98 ° C. or more and an optimum pH of about 5 to about 6, but it is active under neutral and alkaline conditions. It is low and there is no description about resistance to surfactants. On the other hand, a protease derived from Pyrococcus furiosus (Patent Document 3) has resistance to acetonitrile, urea, and SDS. As for resistance to SDS, it has an activity of about 80% after treatment at 95 ° C. for 3 hours in the presence of SDS at a final concentration of 1%, but degradation at a concentration of SDS of 1% or more under high temperature conditions. There is no description of activity, and there is no description of resistance to surfactants other than SDS.
 本発明の洗剤は、既存の洗剤と比較して洗浄力およびタンパク質分解力が格段に優れるので、上述のように、医療器具用洗剤として高い有用性がある。特に酵素洗浄剤では、これまで使用できなかった高温で界面活性剤を含有した状態で洗浄できるため、短時間で洗浄、滅菌の処理を行うことが可能となる。また異常プリオンタンパク質の不活化条件である、3%SDS存在下、100℃、3分においても80%以上の活性を有しており、プリオン病の二次感染防止において異常プリオンタンパク質の分解除去と不活化が同時に行える洗剤を提供できる。同様に、ウォッシャーディスインフェクターを用いた噴射・加熱式洗浄などの用途にも高い有用性を発揮する。つまり、本発明の洗剤は、ウォッチャーディスインフェクターなどの既存設備をそのまま使うことが可能である点で、非常に有用である。高温条件で使用する場合、酵素量を少なくできることからプリオン不活化後のプロテアーゼの除去が容易になる。中性で利用できるため、既存のアルカリ洗剤に比べ作業者の安全性が高いほか、アルカリ洗浄に弱い内視鏡などの製品に対しても利用できる。プリオン汚染の可能性が高く、使い捨ても難しい内視鏡に対する、効果的なプリオン不活化法はまだないが、本洗浄剤によりそれが可能となる。さらに、コンタクトレンズ洗浄用洗剤としても有用性が高い。 Since the detergent of the present invention has much higher detergency and proteolytic ability than existing detergents, it is highly useful as a medical instrument detergent as described above. In particular, enzyme detergents can be washed in a state containing a surfactant at a high temperature that could not be used so far, so that washing and sterilization can be performed in a short time. In addition, it has an activity of 80% or more at 100 ° C. for 3 minutes in the presence of 3% SDS, which is an inactivation condition of abnormal prion protein, and is capable of decomposing and removing abnormal prion protein in preventing secondary infection of prion disease. A detergent that can be inactivated at the same time can be provided. Similarly, it is highly useful for spraying and heating cleaning using a washer disinfector. That is, the detergent of the present invention is very useful in that existing equipment such as a watcher disinfector can be used as it is. When used under high temperature conditions, the amount of enzyme can be reduced, so that the protease can be easily removed after prion inactivation. Since it can be used neutrally, it is safer for workers than existing alkaline detergents, and it can also be used for products such as endoscopes that are vulnerable to alkaline cleaning. Although there is still no effective prion inactivation method for endoscopes that are highly likely to be contaminated with prions and difficult to dispose of, this cleaning agent makes it possible. Furthermore, it is highly useful as a detergent for cleaning contact lenses.
 (2)異常プリオンタンパク質分解剤
 本発明者らは、Tk-サチライシンが異常プリオンタンパク質を分解することができることを見出した。したがって、本発明は、Tk-サチライシンを含有する異常プリオンタンパク質分解剤を提供する。本発明の異常プリオンタンパク質分解剤は、Tk-サチライシンを含有するものであればよく、これ以外の組成は特に限定されない。好ましくは界面活性剤を含有する。本発明の異常プリオンタンパク質分解剤は、上記本発明の洗剤に準じて製造することができる。また、後述する「異常プリオンタンパク質の不活化方法」に従って、使用することができる。
(2) Abnormal Prion Proteolytic Agent The present inventors have found that Tk-satilysin can degrade abnormal prion protein. Therefore, the present invention provides an abnormal prion proteolytic agent containing Tk-satilysin. The abnormal prion proteolytic agent of the present invention is not particularly limited as long as it contains Tk-subtilisin. Preferably it contains a surfactant. The abnormal prion proteolytic agent of the present invention can be produced according to the detergent of the present invention. Moreover, it can be used according to the “inactivation method of abnormal prion protein” described later.
 (3)異常プリオンタンパク質の不活化方法
 本発明の異常プリオンタンパク質の不活化方法は、異常プリオンタンパク質が付着した被洗浄物と、Tk-サチライシンとを接触させる工程を包含するものであればよい。「接触」は特に限定されず、Tk-サチライシンを含有する溶液に被洗浄物を浸漬してもよく、被洗浄物にTk-サチライシンを含有する溶液を塗布、噴射、噴霧等してもよい。なお、上記接触させる工程の後に、水等で被洗浄物十分にすすぐ工程を行い、被洗浄物にTk-サチライシンが残留していない状態にすることが好ましい。また、界面活性剤を含有するTk-サチライシン溶液を用いることにより、被洗浄物の異常プリオンタンパク質の不活化と、被洗浄物の洗浄を同時に行うことができる。また、Tk-サチライシンは、100℃で3%SDS界面活性剤の存在下、5分の条件で異常プリオンタンパク質を効果的に分解できるため、異常プリオンタンパク質の分解除去と不活化が同時にできる。この点は、市販の異常プリオンタンパク質の汚染除去剤である「プリオザイム(登録商標)」が、被洗浄物の洗浄後、プリオザイムを溶解した溶液に被洗浄物を浸漬することが必須であることと比較して、極めて利便性が高い。
(3) Method for Inactivating Abnormal Prion Protein The method for inactivating the abnormal prion protein of the present invention may be any method as long as it includes a step of bringing the object to be cleaned to which the abnormal prion protein is attached into contact with Tk-satilysin. The “contact” is not particularly limited, and the article to be cleaned may be immersed in a solution containing Tk-satilysin, and a solution containing Tk-satilysin may be applied, sprayed, sprayed, or the like. Note that after the contacting step, it is preferable to perform a step of sufficiently rinsing the object to be cleaned with water or the like so that no Tk-satilysin remains on the object to be cleaned. In addition, by using a Tk-satilysin solution containing a surfactant, it is possible to simultaneously inactivate abnormal prion protein in an object to be cleaned and to wash the object to be cleaned. In addition, Tk-satilysin can effectively degrade abnormal prion protein under the condition of 5 minutes in the presence of 3% SDS surfactant at 100 ° C., so that the abnormal prion protein can be decomposed and removed at the same time. In this respect, it is essential that the “priozyme (registered trademark)”, which is a decontamination agent for abnormal prion protein on the market, immerse the object to be cleaned in a solution in which the preozyme is dissolved after the object is cleaned. In comparison, it is extremely convenient.
 また、プリオザイムはアルカリ性溶液に60℃で1時間、被洗浄物を浸漬する必要があるが、本発明に用いるTk-サチライシンは中性付近のpHでも十分異常プリオンタンパク質を不活化(分解)することができる。Tk-サチライシンは、25℃~100℃で高い活性を有することから、低温域から高温域の広い範囲で異常プリオンタンパク質分解剤として利用できる。従って高温域での使用は分解活性が高くなることから短時間で異常プリオンタンパク質を分解除去することが可能である。プリオザイムは、異常プリオンタンパク質の分解除去は可能であるが、感染性の除去すなわち不活化までは担保されていない。一方でTk-サチライシンは、異常プリオンタンパク質を感染除去できる不活化条件(3%SDS、100℃、3分)で分解活性を有するため、プリオザイムでは不可能な、異常プリオンタンパク質の分解除去および不活化が可能となる点で、本発明の異常プリオンタンパク質の不活化方法は極めて優れている。 In addition, it is necessary to immerse an object to be washed in an alkaline solution for 1 hour at 60 ° C., but Tk-satilysin used in the present invention sufficiently inactivates (decomposes) abnormal prion protein even at a pH near neutral. Can do. Tk-subtilisin has a high activity at 25 ° C. to 100 ° C., and therefore can be used as an abnormal prion proteolytic agent in a wide range from a low temperature range to a high temperature range. Therefore, use in a high temperature region increases decomposition activity, so that abnormal prion protein can be decomposed and removed in a short time. Although preozyme can decompose and remove abnormal prion protein, it is not guaranteed until infectious removal or inactivation. On the other hand, Tk-subtilisin has a degrading activity under inactivation conditions (3% SDS, 100 ° C., 3 minutes) that can remove and infect abnormal prion protein, so that it is impossible to decompose and inactivate abnormal prion protein. Therefore, the method for inactivating abnormal prion protein of the present invention is extremely excellent.
 本発明の異常プリオンタンパク質の不活化方法において、被洗浄物とTk-サチライシンとをタンパク質変性条件下で接触させることが好ましい。例えば、異常プリオンタンパク質は3%SDS溶液で100℃、3分間処理すると完全に感染性が消滅することが知られている(参考文献:厚生労働省、厚生労働省遅発性ウイルス感染調査研究班、「クロイツフェルト・ヤコブ病診療マニュアル 改訂版」、48-49頁、2002年)。その他、異常プリオンタンパク質の感染性を消滅させるタンパク質変性条件としては、例えば、7M塩酸グアニジン2時間処理、3Mグアニジンチオシアネート2時間処理、3Mトリクロロアセテート2時間処理、50%以上のフェノール2時間処理などが挙げられる。 In the method for inactivating an abnormal prion protein of the present invention, it is preferable to contact a material to be washed with Tk-satilysin under protein denaturing conditions. For example, it is known that abnormal prion protein is completely infectious when treated with 3% SDS solution at 100 ° C. for 3 minutes (Reference: Ministry of Health, Labor and Welfare, Ministry of Health, Labor and Welfare Late Virus Infection Research Team, Kreuzfeld-Jacob disease medical care manual revised edition ", pp. 48-49, 2002). Other protein denaturation conditions that eliminate the infectivity of abnormal prion protein include, for example, 7M guanidine hydrochloride 2 hour treatment, 3M guanidine thiocyanate 2 hour treatment, 3M trichloroacetate 2 hour treatment, 50% or more phenol 2 hour treatment, etc. Can be mentioned.
 以下、実施例により本発明をさらに詳細に説明するが、本発明はこれらの実施例に何ら限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.
 〔実施例1:Tk-サチライシンの生化学的特性〕
 (1)プロTk-サチライシンの発現および精製
 Tk-サチライシン前駆体をコードする塩基配列(ACCESSION:AB056701、配列番号6)に基づいて、プロTk-サチライシンをコードする部分配列を増幅するためのプライマーペアを設計した。すなわち、NdeIサイトを含むフォワードプライマー(5'-AGTCCCTGCACATATGGGAGAGCAGAATACAATA-3'(配列番号7))と、BamHIサイトを含むリバースプライマー(5'-AGTGGATCCAATCAGCCCAGGGC-3'(配列番号8))である。Thermococcus kodakaraensis KOD1株のゲノムDNAを鋳型とし、上記プライマーペアを用いてPCRを行い、DNA断片を増幅した。得られたDNA断片をNdeIおよびBamHIで消化し、このDNA断片をpET25b(Novagen社製)のNdeI/BamHIサイトに挿入した。このプラスミドを用いて、大腸菌BL21(DE3)CodonPlusを形質転換した。
[Example 1: Biochemical characteristics of Tk-subtilisin]
(1) Expression and purification of pro-Tk-subtilisin A primer pair for amplifying a partial sequence encoding pro-Tk-subtilisin based on the base sequence encoding the Tk-subtilisin precursor (ACCESSION: AB056701, SEQ ID NO: 6) Designed. That is, a forward primer (5′-AGTCCCTGCACATATGGGAGAGCAGAATACAATA-3 ′ (SEQ ID NO: 7)) containing an NdeI site and a reverse primer (5′-AGTGGATCCAATCAGCCCAGGGC-3 ′ (SEQ ID NO: 8)) containing a BamHI site. Using the genomic DNA of Thermococcus kodakaraensis KOD1 strain as a template, PCR was performed using the above primer pairs to amplify the DNA fragment. The obtained DNA fragment was digested with NdeI and BamHI, and this DNA fragment was inserted into the NdeI / BamHI site of pET25b (Novagen). This plasmid was used to transform E. coli BL21 (DE3) CodonPlus.
 得られた菌株を50μg/mlのアンピシリンを含むNZCYM培地を用いて37℃で培養した。OD660が0.5に達した段階で、終濃度0.5mMのIPTGを添加し、さらに4時間培養を続けることで、プロTk-サチライシンを封入体として大量発現させた。集菌し、20mM Tris-HCl(pH9.0)に懸濁し、超音波破砕後、遠心分離(15,000×g、30min)により沈殿画分を回収した。この沈澱を変性バッファー(20mM Tris-HCl(pH9.0)、5mM EDTA、8M Urea)に溶解し、遠心分離(15,000×g、30min)を行って上清を得、陰イオン交換カラムHitrap Q(GE Healthcare社)にかけて変性状態のプロTk-サチライシンの精製を行った。精製度の確認はSDS-PAGEおよびクマシー染色を用いて行った。 The obtained strain was cultured at 37 ° C. using NZCYM medium containing 50 μg / ml ampicillin. When OD 660 reached 0.5, IPTG having a final concentration of 0.5 mM was added, and the culture was further continued for 4 hours, whereby pro-Tk-subtilisin was expressed in large amounts as inclusion bodies. The cells were collected, suspended in 20 mM Tris-HCl (pH 9.0), subjected to ultrasonic disruption, and the precipitate fraction was collected by centrifugation (15,000 × g, 30 min). This precipitate was dissolved in a denaturing buffer (20 mM Tris-HCl (pH 9.0), 5 mM EDTA, 8 M Urea), centrifuged (15,000 × g, 30 min) to obtain a supernatant, and an anion exchange column Hitrap Q ( GE Healthcare) was used to purify the denatured pro-Tk-subtilisin. The degree of purification was confirmed using SDS-PAGE and Coomassie staining.
 (2)プロTk-サチライシンのリフォールディングおよびTk-サチライシン(成熟体)の調製
 Hitrap Qによる精製後、変性状態のプロTk-サチライシン(1.0mg/ml、10ml)を1Lのリフォールディングバッファー(20mM Tris-HCl pH 9.0)で2回透析(1回目;2時間、2回目;12時間)し、Ureaを抜くことでリフォールディングを行った。その後、終濃度300nM(約0.0124mg/ml)となるように、13μlのリフォールディング後のプロTk-サチライシンを987μlの成熟化バッファー(50mM CAPS-NaOH pH9.5、5mM CaCl)で希釈し、80℃で15分間熱処理することにより、プロペプチドの自己切断(Autoprocessing)およびプロペプチドの分解(Degradation)を経てTk-サチライシン(成熟体)を得た。
(2) Refolding of pro-Tk-subtilisin and preparation of Tk-subtilisin (mature) After purification with Hitrap Q, denatured pro-Tk-subtilisin (1.0 mg / ml, 10 ml) was added to 1 L of refolding buffer (20 mM Tris -Refolding was performed by dialysis twice with HCl pH 9.0 (first time; 2 hours, second time; 12 hours) and removing Urea. Thereafter, 13 μl of refolded pro-Tk-subtilisin is diluted with 987 μl of maturation buffer (50 mM CAPS-NaOH pH 9.5, 5 mM CaCl 2 ) to a final concentration of 300 nM (about 0.0124 mg / ml). By heat treatment at 80 ° C. for 15 minutes, Tk-subtilisin (mature) was obtained through autoprocessing of propeptide (Autoprocessing) and degradation of propeptide (Degradation).
 (3)活性測定方法
 (3-1) アゾカゼインを基質とする場合
 30μlのTk-サチライシン(100nM)を270μlの反応バッファー(50mM CAPS-NaOH pH9.5、5mM CaCl、2% アゾカゼイン)に添加し、各温度条件下、20分間インキュベーションした。200μlの15%TCAを添加し、氷中15分間静置することで酵素反応を停止した。15,000×g、15分間遠心分離を行い、得られた80μlの上清液に20μlの2M NaOHを添加し、440nmの吸光度を測定した。このとき、0.3mlの反応液の440nmの吸光度を1分間に1上昇させるのに必要な酵素量を、「1単位」として定義した。また、比較対照のSubtilisin CarlsbergおよびProteinaseKについては、反応バッファーとして50mM CAPS-NaOH pH8.0、5mM CaCl、2%アゾカゼインを用いた。
(3) Activity measurement method (3-1) When azocasein is used as a substrate Add 30 μl of Tk-subtilisin (100 nM) to 270 μl of reaction buffer (50 mM CAPS-NaOH pH 9.5, 5 mM CaCl 2 , 2% azocasein). Incubated for 20 minutes under each temperature condition. The enzyme reaction was stopped by adding 200 μl of 15% TCA and allowing to stand for 15 minutes in ice. Centrifugation was performed at 15,000 × g for 15 minutes, 20 μl of 2M NaOH was added to the obtained 80 μl supernatant, and the absorbance at 440 nm was measured. At this time, the amount of enzyme required to increase the absorbance at 440 nm of 0.3 ml of the reaction solution by 1 per minute was defined as “1 unit”. For comparison subtilisin Carlsberg and proteinase K, 50 mM CAPS-NaOH pH 8.0, 5 mM CaCl 2 , 2% azocasein was used as a reaction buffer.
 (3-2) 合成基質Suc-AAPF-pNAを用いる場合
 300nMのTk-サチライシンを、終濃度6nMとなるように酵素活性測定用バッファー(20mM Tris-HCl(pH 8.0)、1mM CaCl2、1mM Suc-AAPF-pNA)で50倍希釈し、20℃で4分間インキュベーションした。10μlの100%酢酸を添加して酵素反応を停止させ、波長410nmでの吸光度変化を測定した。この測定系において、Suc-AAPF-pNAから生成されるパラニトロアニリン(p-nitroaniline)の量を8900M-1cm-1の吸光係数を用いて決定し、1分間に1μmolのパラニトロアニリンを生成する酵素量を、「1単位」として定義した。また、比較対照のSubtilisin CarlsbergおよびProteinaseKについても同じ反応バッファーを用いた。
(3-2) Synthesis substrates Tk- subtilisin when 300nM using Suc-AAPF-pNA, to a final concentration of 6nM enzyme activity assay buffer (20mM Tris-HCl (pH 8.0 ), 1mM CaCl 2, The solution was diluted 50-fold with 1 mM Suc-AAPF-pNA) and incubated at 20 ° C. for 4 minutes. The enzyme reaction was stopped by adding 10 μl of 100% acetic acid, and the change in absorbance at a wavelength of 410 nm was measured. In this measurement system, the amount of p-nitroaniline produced from Suc-AAPF-pNA is determined using an extinction coefficient of 8900 M −1 cm −1 to produce 1 μmol of paranitroaniline per minute. The amount of enzyme to perform was defined as “1 unit”. The same reaction buffer was also used for the comparison controls Subtilisin Carlsberg and ProteinaseK.
 (4)活性の温度依存性
 上記(3-1)の活性測定方法に従い、20℃から100℃までの各温度におけるTk-サチライシンの酵素活性を測定した。また、比較対照としてSubtilisin Carlsberg(Sigma)およびProteinaseK(Wako)を用いて同様の実験を行った。
 結果を図1に示した。図1から明らかなように、Tk-サチライシンは90℃で最も高い活性を示し、100℃においても顕著に高い活性を有していた。一方、比較対照のSubtilisin Carlsbergは60℃、ProteinaseKは65℃で最も活性が高かったが、これらの温度においてもTk-サチライシンのほうが2~3倍高い活性を示した。
(4) Temperature Dependence of Activity According to the activity measurement method described in (3-1) above, the enzyme activity of Tk-subtilisin at each temperature from 20 ° C. to 100 ° C. was measured. In addition, similar experiments were performed using Subtilisin Carlsberg (Sigma) and Proteinase K (Wako) as a comparative control.
The results are shown in FIG. As is clear from FIG. 1, Tk-satilysin showed the highest activity at 90 ° C., and also had significantly higher activity at 100 ° C. On the other hand, Subtilisin Carlsberg as a comparative control had the highest activity at 60 ° C. and Proteinase K at 65 ° C., but Tk-satilysin was 2 to 3 times higher at these temperatures.
 (5)活性のpH依存性
 上記(3-2)の活性測定方法に従い、各pH条件での酵素活性を測定した。用いたバッファーは以下のとおりである。
pH4.0~5.6:50mM Sodium Acetate
pH5.5~7.0:50mM MES-NaOH
pH7.0~7.5:50mM HEPES-NaOH
pH7.0~9.0:50mM Tris-HCl
pH8.5~10.0:50mM CAPS-NaOH
pH9.0~11.5:50mM Glycine-NaOH
 結果を図2に示した。図2からわかるように、Tk-サチライシンの至適pH範囲はpH8~12であり、高アルカリ環境での利用に適した酵素であることが明らかとなった。
(5) pH Dependency of Activity According to the activity measurement method described in (3-2) above, enzyme activity was measured under each pH condition. The buffers used are as follows.
pH 4.0 to 5.6: 50 mM sodium acetate
pH 5.5-7.0: 50 mM MES-NaOH
pH 7.0 to 7.5: 50 mM HEPES-NaOH
pH 7.0 to 9.0: 50 mM Tris-HCl
pH 8.5 to 10.0: 50 mM CAPS-NaOH
pH 9.0 to 11.5: 50 mM Glycine-NaOH
The results are shown in FIG. As can be seen from FIG. 2, the optimum pH range of Tk-satilysin is pH 8-12, which proves that the enzyme is suitable for use in a highly alkaline environment.
 (6)構造安定性に及ぼすpHの影響
 300nMのTk-サチライシンを、各pH条件のバッファー内にて30℃で一晩インキュベーションし、上記(3-2)の活性測定方法に従い残存活性を測定した。用いたバッファーは以下のとおりである。
pH1.0~1.5:50mM KCl-HCl
pH2.0~3.0:50mM Glycine-HCl
pH4.0~5.0:50mM Sodium Acetate
pH6.0    :50mM MES-NaOH
pH7.0    :50mM HEPES-NaOH
pH8.0~9.0:50mM Tris-HCl
pH10.0~11.0:50mM Glycine-NaOH
pH12.0~13.0:50mM KCl-NaOH
 結果を図3に示した。図3から明らかなように、TK-サチライシンはpH2~12の範囲で構造安定性を有していることが示された。
(6) Effect of pH on structural stability 300 nM Tk-subtilisin was incubated overnight at 30 ° C. in a buffer under each pH condition, and the residual activity was measured according to the activity measurement method described in (3-2) above. . The buffers used are as follows.
pH 1.0-1.5: 50 mM KCl-HCl
pH 2.0 to 3.0: 50 mM Glycine-HCl
pH 4.0 to 5.0: 50 mM sodium acetate
pH 6.0: 50 mM MES-NaOH
pH 7.0: 50 mM HEPES-NaOH
pH 8.0-9.0: 50 mM Tris-HCl
pH 10.0-11.0: 50 mM Glycine-NaOH
pH 12.0-13.0: 50 mM KCl—NaOH
The results are shown in FIG. As is apparent from FIG. 3, TK-satilysin was shown to have structural stability in the pH range of 2-12.
 (7)各pH条件下でのリフォールディング効率の比較
 4M塩酸グアニジン存在下で変性させたプロTk-サチライシン(2.0mg/ml)を、各pH条件のバッファー(10mM CaCl、1mM DTTを含む)で100倍希釈することでリフォールディングさせ、その効率を円偏光二色性(CD)スペクトル測定により解析した。用いたバッファーは以下のとおりである。
pH3.0    :50mM Glycine-HCl
pH4.0~5.6:50mM Sodium Acetate
pH5.5~6.0:50mM MES-NaOH
pH7.0    :50mM HEPES-NaOH
pH8.0~9.0:50mM Tris-HCl
 結果を図4に示した。図4から明らかなように、プロTk-サチライシンはpH5を超えるpH条件で効率よくリフォールディングを行うことが示された。
(7) Comparison of refolding efficiency under each pH condition Pro-Tk-satilysin (2.0 mg / ml) denatured in the presence of 4M guanidine hydrochloride contains a buffer (10 mM CaCl 2 , 1 mM DTT) at each pH condition. ) And refolded by 100-fold dilution, and the efficiency was analyzed by circular dichroism (CD) spectrum measurement. The buffers used are as follows.
pH 3.0: 50 mM Glycine-HCl
pH 4.0 to 5.6: 50 mM sodium acetate
pH 5.5-6.0: 50 mM MES-NaOH
pH 7.0: 50 mM HEPES-NaOH
pH 8.0-9.0: 50 mM Tris-HCl
The results are shown in FIG. As is clear from FIG. 4, it was shown that pro-Tk-subtilisin efficiently refolds under pH conditions exceeding pH 5.
 (8)熱安定性
 300nMのTk-サチライシンを、20mM Tris-HCl(pH 8.0)、1mM CaCl2、のバッファー条件下にて、20℃から110℃までの各温度で10分間熱処理を行い、上記(3-2)の活性測定方法に従い残存活性を測定した。また、比較対照としてSubtilisin Carlsberg(Sigma)およびProteinaseK(Wako)を用いて同様の実験を行った。
 結果を図5に示した。図5から明らかなように、Tk-サチライシンは110℃、10分間の熱処理によっても活性の低下が認められなかった。一方、比較対象のSubtilisin Carlsbergは70℃、ProteinaseKは80℃で失活した。この結果から、Tk-サチライシンは熱安定性が極めて高い酵素である事が明らかになった。
(8) Thermal stability 300 nM of Tk-satilysin is heat-treated at a temperature of 20 ° C. to 110 ° C. for 10 minutes under a buffer condition of 20 mM Tris-HCl (pH 8.0) and 1 mM CaCl 2 . Residual activity was measured according to the activity measurement method of (3-2) above. In addition, similar experiments were performed using Subtilisin Carlsberg (Sigma) and Proteinase K (Wako) as a comparative control.
The results are shown in FIG. As is apparent from FIG. 5, no decrease in activity of Tk-satilysin was observed even after heat treatment at 110 ° C. for 10 minutes. On the other hand, Subtilisin Carlsberg for comparison was inactivated at 70 ° C. and Proteinase K at 80 ° C. From this result, it was revealed that Tk-satilysin is an enzyme with extremely high thermostability.
 (9)界面活性剤およびタンパク質変性剤に対する安定性
 300nMのTk-サチライシンを、様々な濃度の界面活性剤(TritonX-100、Tween-20、ドデシル硫酸ナトリウム(SDS))およびタンパク質変性剤(塩酸グアニジン(Guanidine HCl)、尿素(Urea))存在下、55℃でインキュベーションし、上記(3-2)の活性測定方法に従い、時間間隔ごとに残存活性を測定した。また、比較対照としてSubtilisin Carlsberg(Sigma)およびProteinaseK(Wako)を用いて同様の実験を行った。
(9) Stability against surfactants and protein denaturants 300 nM Tk-satilysin was added to various concentrations of surfactant (Triton X-100, Tween-20, sodium dodecyl sulfate (SDS)) and protein denaturant (guanidine hydrochloride). Incubation was carried out at 55 ° C. in the presence of (Guanidine HCl) and urea (Urea), and the residual activity was measured at each time interval according to the activity measurement method of (3-2) above. In addition, similar experiments were performed using Subtilisin Carlsberg (Sigma) and Proteinase K (Wako) as a comparative control.
 TritonX-100の結果を図6に示した。図6中(a)はTk-サチライシン、(b)はSubtilisin Carlsberg、(c)はProteinaseKの結果である。図6から明らかなように、いずれの酵素も10%のTritonX-100で60分間処理しても活性の低下は認められなかった。
 Tween-20の結果を図7に示した。図7中(a)はTk-サチライシン、(b)はSubtilisin Carlsberg、(c)はProteinaseKの結果である。図7から明らかなように、Tk-サチライシンは10%のTween-20で60分間処理しても活性の低下は認められなかった。一方、Subtilisin CarlsbergおよびProteinaseKは活性の低下が認められた。
 ドデシル硫酸ナトリウム(SDS)の結果を図8に示した。図8中(a)はTk-サチライシン、(b)はSubtilisin Carlsberg、(c)はProteinaseKの結果である。図8から明らかなように、Tk-サチライシンは5%のSDSで60分間処理しても活性の低下は認められなかった。一方、Subtilisin CarlsbergおよびProteinaseKは活性の低下が認められた。
 塩酸グアニジン(Guanidine HCl)の結果を図9に示した。図9中(a)はTk-サチライシン、(b)はSubtilisin Carlsberg、(c)はProteinaseKの結果である。図9から明らかなように、Tk-サチライシンは6Mの塩酸グアニジンで60分間処理しても活性の低下は認められなかった。一方、Subtilisin CarlsbergおよびProteinaseKは活性の低下が認められた。
 尿素(Urea)の結果を図10に示した。図10中(a)はTk-サチライシン、(b)はSubtilisin Carlsberg、(c)はProteinaseKの結果である。図10から明らかなように、Tk-サチライシンは8%の尿素で60分間処理しても活性の低下は認められなかった。一方、Subtilisin CarlsbergおよびProteinaseKは活性の低下が認められた。
 以上の結果から、Tk-サチライシンは各種の界面活性剤およびタンパク質変性剤に対して高い安定性を有していることが明らかとなった。
The results of Triton X-100 are shown in FIG. In FIG. 6, (a) is the result of Tk-subtilisin, (b) is the result of Subtilisin Carlsberg, and (c) is the result of ProteinaseK. As is clear from FIG. 6, no activity was observed for any of the enzymes even when treated with 10% Triton X-100 for 60 minutes.
The results of Tween-20 are shown in FIG. In FIG. 7, (a) is the result of Tk-subtilisin, (b) is the result of Subtilisin Carlsberg, and (c) is the result of ProteinaseK. As can be seen from FIG. 7, no decrease in activity was observed for Tk-satilysin even after treatment with 10% Tween-20 for 60 minutes. On the other hand, Subtilisin Carlsberg and Proteinase K showed a decrease in activity.
The results for sodium dodecyl sulfate (SDS) are shown in FIG. In FIG. 8, (a) is the result of Tk-satilysin, (b) is the result of Subtilisin Carlsberg, and (c) is the result of ProteinaseK. As is apparent from FIG. 8, no decrease in activity was observed for Tk-satilysin even when treated with 5% SDS for 60 minutes. On the other hand, Subtilisin Carlsberg and Proteinase K showed a decrease in activity.
The result of guanidine hydrochloride (Guanidine HCl) is shown in FIG. In FIG. 9, (a) is the result of Tk-subtilisin, (b) is the result of Subtilisin Carlsberg, and (c) is the result of ProteinaseK. As is clear from FIG. 9, no decrease in activity was observed for Tk-satilysin even when treated with 6M guanidine hydrochloride for 60 minutes. On the other hand, Subtilisin Carlsberg and Proteinase K showed a decrease in activity.
The result of urea (Urea) is shown in FIG. In FIG. 10, (a) is the result of Tk-satilysin, (b) is the result of Subtilisin Carlsberg, and (c) is the result of ProteinaseK. As is clear from FIG. 10, Tk-satilysin did not show a decrease in activity even after treatment with 8% urea for 60 minutes. On the other hand, Subtilisin Carlsberg and Proteinase K showed a decrease in activity.
From the above results, it was revealed that Tk-satilysin has high stability against various surfactants and protein denaturants.
 〔実施例2:Tk-サチライシン(成熟体)の高効率製造方法〕
 実施例1(1)および(2)の方法によりTk-サチライシン(成熟体)を調製する方法(従来法)で得られるTk-サチライシン(成熟体)量は、成熟化に供したプロTk-サチライシン量の約20%であり、成熟体の回収効率が非常に低かった。そこで、成熟体の回収効率を向上させるための試みを行った。
[Example 2: High-efficiency production method of Tk-subtilisin (mature)]
The amount of Tk-subtilisin (mature) obtained by the method of preparing Tk-subtilisin (mature) by the method of Example 1 (1) and (2) (conventional method) is the amount of pro-Tk-subtilisin subjected to maturation. It was about 20% of the amount, and the recovery efficiency of matured bodies was very low. Therefore, an attempt was made to improve the recovery efficiency of matured bodies.
 上記実施例1の(1)と同様にして、8M Ureaにより変性させたプロTk-サチライシンを精製した。用いたリフォールディングバッファーは、実施例1と異なり、DTTおよびカルシウムイオンを添加したものを使用した。すなわち、変性状態のプロTk-サチライシン(1.0mg/ml、10ml)を、1Lのリフォールディングバッファー(20mM Tris-HCl pH 7.0、1mM DTT、10mM CaCl)で2回透析(1回目;2時間、2回目;12時間)し、Ureaを抜くことでリフォールディングを行った。その後、終濃度300nM(約0.0124mg/ml)となるように、13μlのリフォールディング後のプロTk-サチライシンを987μlの成熟化バッファー(50mM CAPS-NaOH pH9.5、5mM CaCl)で希釈し、80℃で15分間熱処理することにより、プロペプチドの自己切断(Autoprocessing)およびプロペプチドの分解(Degradation)を経てTk-サチライシン(成熟体)を得た。 Pro-Tk-subtilisin modified with 8M Urea was purified in the same manner as in Example 1 (1) above. The refolding buffer used was different from that in Example 1 and was used with the addition of DTT and calcium ions. Specifically, denatured pro-Tk-subtilisin (1.0 mg / ml, 10 ml) was dialyzed twice with 1 L of refolding buffer (20 mM Tris-HCl pH 7.0, 1 mM DTT, 10 mM CaCl 2 ) (first time; 2 Time, second time; 12 hours), and refolding was performed by removing Urea. Thereafter, 13 μl of the refolded pro-Tk-subtilisin is diluted with 987 μl of maturation buffer (50 mM CAPS-NaOH pH 9.5, 5 mM CaCl 2 ) to a final concentration of 300 nM (about 0.0124 mg / ml). By heat treatment at 80 ° C. for 15 minutes, Tk-subtilisin (mature) was obtained through autoprocessing of propeptide (Autoprocessing) and degradation of propeptide (Degradation).
 プロTk-サチライシンを含有する上記加熱前の成熟化バッファー、および加熱後(成熟化後)の成熟化バッファーからサンプルを採取し、SDS-PAGEに供した。また、比較対照として、実施例1の方法(従来法)で行った場合のサンプルも、同時にSDS-PAGEに供した。
 結果を図11に示した。レーン1は従来法による加熱前サンプル、レーン2は従来法による加熱後サンプル、レーン3は本発明の製造方法による加熱前サンプル、レーン4は本発明の製造方法による加熱後サンプルである。レーン3および4より明らかなように、本発明の製造方法によれば加熱前のプロTk-サチライシン量の約90%がTk-サチライシン(成熟体)として回収できた(成熟体回収効率約90%)。一方、レーン1および2より従来法では、成熟体回収効率は約20%であった。この結果から、本発明の方法によれば、成熟体の回収効率が格段に向上することが明らかとなった。
Samples were taken from the pre-heating maturation buffer containing pro-Tk-subtilisin and the post-heating (post-maturation) maturation buffer and subjected to SDS-PAGE. For comparison, a sample obtained by the method of Example 1 (conventional method) was also subjected to SDS-PAGE at the same time.
The results are shown in FIG. Lane 1 is a sample before heating by the conventional method, Lane 2 is a sample after heating by the conventional method, Lane 3 is a sample before heating by the manufacturing method of the present invention, and Lane 4 is a sample after heating by the manufacturing method of the present invention. As apparent from lanes 3 and 4, according to the production method of the present invention, about 90% of the amount of pro-Tk-subtilisin before heating could be recovered as Tk-subtilisin (mature) (mature recovery efficiency of about 90%). ). On the other hand, in the conventional method from lanes 1 and 2, the matured body recovery efficiency was about 20%. From this result, it became clear that according to the method of the present invention, the recovery efficiency of matured bodies was remarkably improved.
 〔実施例3:Tk-サチライシン(成熟体)の濃縮および保存〕
 上記実施例1(1)および(2)の方法(従来法)で調製したTk-サチライシン(成熟体)について、セントリプラス(Millipore社製)を用いて濃縮を試みた場合、0.1mg/ml以上の濃度条件になると直ちに自己分解反応を起こした。したがって、これまで高濃度のTk-サチライシン(成熟体)溶液を調製することができなかった。そこで、上記実施例1(5)および(6)により得られた新規知見、すなわち、pH6以下ではTk-サチライシンの活性が顕著に低いこと(図2参照)、および、Tk-サチライシンは、pH2以上で構造が安定していること(図3参照)を利用して、pH2~6の条件でTk-サチライシンを濃縮し、保存することを試みた。
[Example 3: Concentration and storage of Tk-subtilisin (mature)]
When Tk-subtilisin (mature) prepared by the method of Examples 1 (1) and (2) above (conventional method) was concentrated using Centriplus (Millipore), 0.1 mg / ml When the above concentration conditions were reached, an autolysis reaction occurred immediately. Therefore, it has not been possible to prepare a Tk-subtilisin (mature) solution with a high concentration until now. Therefore, the novel findings obtained by the above Examples 1 (5) and (6), that is, the activity of Tk-subtilisin is remarkably low at pH 6 or lower (see FIG. 2), and Tk-subtilisin is pH 2 or higher. Thus, using the stable structure (see FIG. 3), it was attempted to concentrate and store Tk-satilysin under pH 2-6 conditions.
 上記実施例2の方法で製造されたTk-サチライシン(成熟体)をバッファー(50mM Sodium Acetate(pH4.6)、10mM Ca(OAc))で透析し、サンプルAを得た(濃度:0.0115 mg/ml)。このサンプルAをセントリプラス(Millipore社製)を用いて10倍濃縮し、サンプルB(0.115 mg/ml)を調製した。同様にサンプルAを100倍濃縮し、サンプルC(1.15mg/ml)を調製した。得られたサンプルA,BおよびCを、それぞれ4℃で一夜放置した。サンプルBおよびサンプルCに上記バッファー(50mM Sodium Acetate(pH4.6)、10mM Ca(OAc))を加えて、それぞれ10倍および100倍に希釈し、サンプルA並びに、希釈後のサンプルBおよびCをそれぞれ1.0ml取り、112μlの100%TCAを添加してタンパク質を沈殿として回収し、得られた沈殿を20μlのSDSサンプルバッファーに溶解した。この10μlをSDS-PAGEに供し、Tk-サチライシンの濃縮に伴う自己分解の有無を調べた。 The Tk-subtilisin (mature body) produced by the method of Example 2 was dialyzed with a buffer (50 mM sodium acetate (pH 4.6), 10 mM Ca (OAc) 2 ) to obtain sample A (concentration: 0.0115 mg). / ml). Sample A was concentrated 10 times using Centriplus (Millipore) to prepare Sample B (0.115 mg / ml). Similarly, sample A was concentrated 100 times to prepare sample C (1.15 mg / ml). The obtained samples A, B and C were each left overnight at 4 ° C. Add the above buffer (50 mM Sodium Acetate (pH 4.6), 10 mM Ca (OAc) 2 ) to Sample B and Sample C, and dilute them 10 and 100 times, respectively. Sample A and Samples B and C after dilution 1.0 ml of each was taken, 112 μl of 100% TCA was added to recover the protein as a precipitate, and the resulting precipitate was dissolved in 20 μl of SDS sample buffer. 10 μl of this was subjected to SDS-PAGE, and the presence or absence of autolysis accompanying the concentration of Tk-subtilisin was examined.
 結果を図12に示した。図12からわかるように、濃縮に伴う自己分解は無く、タンパク質量の変化は無いことが明らかとなった。
 なお、濃縮・保存に用いるバッファーは、酸性pH(2.0~6.0)に調整可能なものであればよく、上記Sodium Acetateに限定されない。例えば、Glycine-HClなどを好適に用いることができる。濃縮には、上記セントリプラスに代表される遠心式限外ろ過ユニットを好適に用いることができる。またTk-サチライシン(成熟体)の等電点が4.42であることから、pH4.0以下のバッファーで透析した後であれば陽イオン交換カラムHitrap SP(GE Healthcare社)等に結合させ、pH5.0以上のバッファーで透析した後であれば陰イオン交換カラムHitrap Q(GE Healthcare社)等に結合させ、いずれも食塩による溶出により濃縮することが可能である。
The results are shown in FIG. As can be seen from FIG. 12, it was revealed that there was no autolysis due to concentration and no change in protein amount.
The buffer used for concentration and storage is not limited to the above-mentioned sodium acetate as long as it can be adjusted to an acidic pH (2.0 to 6.0). For example, Glycine-HCl can be preferably used. For the concentration, a centrifugal ultrafiltration unit represented by the above-mentioned Centriplus can be suitably used. Further, since the isoelectric point of Tk-subtilisin (mature) is 4.42, it is bound to a cation exchange column Hitrap SP (GE Healthcare) or the like after dialysis with a buffer of pH 4.0 or lower, After dialysis with a buffer of pH 5.0 or higher, it can be bound to an anion exchange column Hitrap Q (GE Healthcare) or the like, and both can be concentrated by elution with sodium chloride.
 〔実施例4:Tk-サチライシンのプロ体含有溶液の製造〕
 上記実施例1(5)および(7)により、変性させたプロTk-サチライシンは、pH5.2~6.0の範囲では正しくリフォールディングできるが(図4参照)、当該pH範囲ではTk-サチライシンの活性が顕著に低かった(図2参照)。これらの結果から、pH5.2~6.0の範囲でリフォールディングさせれば、得られたプロ体が成熟化しても当該pH環境下ではTk-サチライシンの活性が抑えられ、自己分解が起こらないものと考えられた。そこで、これを確認するために、以下の実験を行った。
[Example 4: Production of pro-form-containing solution of Tk-subtilisin]
According to Examples 1 (5) and (7) above, the modified pro-Tk-satilysin can be correctly refolded in the range of pH 5.2 to 6.0 (see FIG. 4), but Tk-satilysin is in this pH range. Activity was remarkably low (see FIG. 2). From these results, if refolding is performed in the range of pH 5.2 to 6.0, the activity of Tk-subtilisin is suppressed and autolysis does not occur under the pH environment even when the obtained pro-form matures. It was considered a thing. In order to confirm this, the following experiment was conducted.
 4M塩酸グアニジン存在下で変性させたプロTk-サチライシン(1.24mg/ml)を、各pH条件のバッファー(10mM CaCl、1mM DTTを含む)で100倍希釈することでリフォールディングさせ、4℃または室温で12時間放置した後のプロペプチドの切断(オートプロセシング)効率を15% SDS-PAGEにより解析した。用いたバッファーは以下のとおりである。
pH4.0~5.6:50mM Sodium Acetate
pH6.0    :50mM MES-NaOH
pH7.0    :50mM HEPES-NaOH
pH8.0    :50mM Tris-HCl
Pro-Tk-subtilisin (1.24 mg / ml) denatured in the presence of 4M guanidine hydrochloride was refolded by diluting 100-fold with a buffer (containing 10 mM CaCl 2 and 1 mM DTT) under various pH conditions. Alternatively, the propeptide cleavage (autoprocessing) efficiency after standing at room temperature for 12 hours was analyzed by 15% SDS-PAGE. The buffers used are as follows.
pH 4.0 to 5.6: 50 mM sodium acetate
pH 6.0: 50 mM MES-NaOH
pH 7.0: 50 mM HEPES-NaOH
pH 8.0: 50 mM Tris-HCl
 結果を図13に示した。図13中、各レーンの上部の数字は用いたバッファーのpHを表し、Cはカルシウムイオンを含まないバッファーを用いたコントロールを表し、LMWは分子量マーカーを表す。図13から明らかなように、リフォールディングバッファー中で12時間放置後においては、ネイティブ構造を有するプロ体と、当該プロ体の自己切断により生じたプロ配列と成熟配列とが結合した構造を有する複合体と、Tk-サチライシン(成熟体)の3種類のタンパク質が存在していた。また、プロ体と複合体と成熟体の割合は、いずれのpHでも変化がなかった。この結果は、Tk-サチライシンの活性が顕著に低いpH6以下でも自己切断が進行することを示したものであり、大変予想外な結果であった。なお、上記のプロ体と複合体と成熟体との3種類のタンパク質が存在する溶液(プロ体含有溶液)のpHを2~6とすることにより、Tk-サチライシンの活性が抑えられ、成熟化がほとんど進まず、安定に保存可能であった。また、使用の際には、プロ体含有溶液中のタンパク質の終濃度が300nMとなるようにアルカリpH条件のバッファーで希釈し、80℃以上(ボイルでも可)で、10分間熱処理を行うことにより、約300nMのTk-サチライシン(成熟体)を調製することができる。 The results are shown in FIG. In FIG. 13, the number at the top of each lane represents the pH of the buffer used, C represents a control using a buffer not containing calcium ions, and LMW represents a molecular weight marker. As is clear from FIG. 13, after standing for 12 hours in the refolding buffer, the pro-form having a native structure, and the composite having a structure in which the pro-sequence and the mature sequence generated by self-cleavage of the pro-form are combined. And three types of proteins, Tk-satilysin (mature). Moreover, the ratio of the pro form, the complex form, and the mature form did not change at any pH. This result shows that self-cleavage proceeds even at a pH of 6 or less, where the activity of Tk-subtilisin is remarkably low, which is a very unexpected result. By setting the pH of the solution containing the three types of proteins, the pro-form, the complex, and the mature form (pro-form-containing solution) to 2 to 6, the activity of Tk-satilysin is suppressed and the maturation is achieved. However, it was almost unproblematic and could be stored stably. In use, dilute with a buffer under alkaline pH conditions so that the final concentration of the protein in the pro-form-containing solution is 300 nM, and heat-treat at 80 ° C. or higher (boiling is acceptable) for 10 minutes. About 300 nM of Tk-satilysin (mature) can be prepared.
 〔実施例5:界面活性剤存在下におけるTk-サチライシンのBSA分解活性〕
 上記実施例2および3の方法で製造および調製したTk-サチライシン(成熟体)溶液を本実施例に供した。また、界面活性剤は、表1に示す19種類を用いた。各製品中の界面活性剤の含有量に応じて、それぞれ1%界面活性剤溶液を調製した。溶媒には100mM Tris-HCl(pH8.0)、1mM CaCl2溶液を用いた。ネオぺレックスGSには6M NaOHを1/50量添加してpHを中性付近に調整した。レオドールSP-010V、エマノーン3299Vおよびアセタミン86は水溶性でないため、水を50%エタノールに変えて調製した。エマノーン3299Vは、固体を80℃で融解し、エタノールに懸濁した後、調製した。
[Example 5: Bk degradation activity of Tk-subtilisin in the presence of a surfactant]
Tk-subtilisin (mature) solution produced and prepared by the methods of Examples 2 and 3 was used in this example. Moreover, 19 types shown in Table 1 were used for the surfactant. A 1% surfactant solution was prepared according to the content of the surfactant in each product. As the solvent, 100 mM Tris-HCl (pH 8.0) and 1 mM CaCl 2 solution were used. Neoperex GS was adjusted to a neutral pH by adding 1/50 amount of 6M NaOH. Since Rheidol SP-010V, Emanon 3299V and Acetamine 86 are not water soluble, they were prepared by changing the water to 50% ethanol. Emanon 3299V was prepared after melting the solid at 80 ° C. and suspending in ethanol.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(1)反応温度によるBSA分解活性の確認
 1.5mlチューブに、1%界面活性剤溶液44μlと50mg/ml BSA溶液5μlとを加えた。コントロールとしてバッファーのみ44μlと50mg/ml BSA溶液5μlとを加えたチューブを2本用意した。コントロールの1本には水を1μl加え、これ以外のチューブにはTk-サチライシン溶液(25mg/ml)を1μl加えてふたをし、直ちに、100℃、65℃、37℃または25℃で10分間インキュベーションした。10分後、0.5M EDTAを1μl加えて反応を停止した。反応液に4×SDSサンプルバッファー16μlと1×SDSサンプルバッファー66μlを加えて5分間ボイリングし、SDS-PAGE(12%アクリルアミドゲルを使用)に供した。
(1) Confirmation of BSA decomposition activity by reaction temperature 44 μl of 1% surfactant solution and 5 μl of 50 mg / ml BSA solution were added to a 1.5 ml tube. As a control, two tubes containing 44 μl of buffer alone and 5 μl of 50 mg / ml BSA solution were prepared. Add 1 μl of water to one of the controls, add 1 μl of Tk-subtilisin solution (25 mg / ml) to the other tubes, cap, and immediately at 100 ° C., 65 ° C., 37 ° C. or 25 ° C. for 10 minutes. Incubated. Ten minutes later, 1 μl of 0.5 M EDTA was added to stop the reaction. To the reaction solution, 16 μl of 4 × SDS sample buffer and 66 μl of 1 × SDS sample buffer were added, boiling for 5 minutes, and subjected to SDS-PAGE (using 12% acrylamide gel).
 反応温度100℃の結果を図14に示した。反応温度65℃の結果を図15に示した。反応温度37℃の結果を図16に示した。反応温度25℃の結果を図17に示した。図14~17中Markerは分子量マーカーを、C1はコントロール1(界面活性剤なし、Tk-サチライシンあり)を、C2はコントロール2(界面活性剤あり、Tk-サチライシンなし)を、各レーンの数字は表1のレーン番号に対応する界面活性剤をそれぞれ表す。 The results at a reaction temperature of 100 ° C. are shown in FIG. The results at a reaction temperature of 65 ° C. are shown in FIG. The results at a reaction temperature of 37 ° C. are shown in FIG. The results at a reaction temperature of 25 ° C. are shown in FIG. In FIGS. 14-17, Marker is the molecular weight marker, C1 is control 1 (no surfactant, with Tk-subtilisin), C2 is control 2 (with surfactant, no Tk-subtilisin), and the numbers in each lane are The surfactants corresponding to the lane numbers in Table 1 are respectively represented.
 反応温度100℃では、レーン3(ドデシルベンゼンスルホン酸)を除き10分間でほぼ完全にBSAが分解された(図14参照)。反応温度65℃では、反応速度に差があるものの、用いたすべての界面活性剤はTk-サチライシンのBSA分解活性を阻害しないことが示された(図15参照)。反応温度37℃および25℃の場合も同様に、反応速度に差があるものの、用いたすべての界面活性剤はTk-サチライシンのBSA分解活性を阻害しないことが示された(図16および図17参照)。
 これらの結果から、Tk-サチライシンは界面活性剤の存在下においても室温から高温(100℃)に至るまで活性を維持できることが示された。また、高温の方が反応速度が速いことが明らかとなった。
At a reaction temperature of 100 ° C., BSA was almost completely decomposed in 10 minutes except for lane 3 (dodecylbenzenesulfonic acid) (see FIG. 14). At the reaction temperature of 65 ° C., although the reaction rate was different, it was shown that all the surfactants used did not inhibit the BSA degradation activity of Tk-subtilisin (see FIG. 15). Similarly, at the reaction temperatures of 37 ° C. and 25 ° C., although the reaction rate was different, all the surfactants used were shown not to inhibit the BSA degradation activity of Tk-subtilisin (FIGS. 16 and 17). reference).
From these results, it was shown that Tk-subtilisin can maintain activity from room temperature to high temperature (100 ° C.) even in the presence of a surfactant. It was also found that the reaction rate was faster at higher temperatures.
(2)100℃、5分間の反応条件におけるBSA分解活性(他のプロテアーゼとの比較)
 1.5mlチューブに、1%界面活性剤溶液88μlと50mg/ml BSA溶液10μlとを加えた。コントロールとしてバッファーのみ88μlと50mg/ml BSA溶液10μlとを加えたチューブを2本用意した。100℃のヒートブロックで5分間プレインキュベーションした。コントロールの1本には水を2μl加え、これ以外のチューブにはTk-サチライシン溶液(25mg/ml)を2μl加えてふたをし、直ちに、100℃で10分間インキュベーションした。10分後、0.5M EDTAを2μlと2×SDSサンプルバッファー98μlとの混和物100μlを加えて5分間ボイリングし、SDS-PAGE(12%アクリルアミドゲルを使用)に供した。
 Tk-サチライシンに変えて、ProteinaseK(Wako)またはSubtilisinA(Sigma)の25mg/ml水溶液を用いて同様の実験を行った。
(2) BSA degradation activity under reaction conditions at 100 ° C. for 5 minutes (comparison with other proteases)
To a 1.5 ml tube, 88 μl of 1% surfactant solution and 10 μl of 50 mg / ml BSA solution were added. As a control, two tubes containing 88 μl of buffer alone and 10 μl of 50 mg / ml BSA solution were prepared. Preincubation for 5 minutes in a 100 ° C. heat block. 2 μl of water was added to one of the controls, 2 μl of Tk-subtilisin solution (25 mg / ml) was added to the other tube, the lid was closed, and immediately incubated at 100 ° C. for 10 minutes. Ten minutes later, 100 μl of a mixture of 2 μl of 0.5 M EDTA and 98 μl of 2 × SDS sample buffer was added, and the mixture was boiling for 5 minutes and subjected to SDS-PAGE (using a 12% acrylamide gel).
A similar experiment was performed using a 25 mg / ml aqueous solution of Proteinase K (Wako) or Subtilisin A (Sigma) instead of Tk-subtilisin.
 Tk-サチライシンの結果を図18に、ProteinaseKの結果を図19に、SubtilisinAの結果を図20にそれぞれ示した。図18~20中Markerは分子量マーカーを、C1はコントロール1(界面活性剤なし、プロテアーゼあり)を、C2はコントロール2(界面活性剤あり、プロテアーゼなし)を、各レーンの数字は表1のレーン番号に対応する界面活性剤をそれぞれ表す。 FIG. 18 shows the results of Tk-subtilisin, FIG. 19 shows the results of Proteinase K, and FIG. 20 shows the results of Subtilisin A. 18-20, Marker is the molecular weight marker, C1 is control 1 (no surfactant, with protease), C2 is control 2 (with surfactant, no protease), and the numbers in each lane are the lanes in Table 1. Each of the surfactants corresponding to the number is represented.
 Tk-サチライシンはレーン3(ドデシルベンゼンスルホン酸)、レーン4(半硬化牛脂脂肪酸カリ石鹸)を除き100℃、5分間でほぼ完全にBSAを分解した(図18参照)。一方、ProteinaseKではレーン5(ポリオキシエチレンラウリルエーテル)のみBSAを分解したがこれ以外はBSAを分解しなかった(図19参照)。また、SubtilisinAではレーン8(ポリオキシエチレン(20)ソルビタンモノオレエート)、レーン10(ポリオキシエチレン(40)ソルビトールテトラオレエート)およびレーン14(塩化セチルトリメチルアンモニウム)において、多少BSAの部分的分解が認められたが、これら以外はBSAを分解しなかった(図20参照)。
 これらの結果から、Tk-サチライシンは他のプロテアーゼと比較して、界面活性剤存在下において高温での活性が極めて高いことが明らかとなった。
Tk-subtilisin almost completely decomposed BSA at 100 ° C. for 5 minutes except for lane 3 (dodecylbenzenesulfonic acid) and lane 4 (semi-cured beef tallow fatty acid potassium soap) (see FIG. 18). On the other hand, in Proteinase K, BSA was decomposed only in Lane 5 (polyoxyethylene lauryl ether), but BSA was not decomposed in other cases (see FIG. 19). Subtilisin A partially decomposes BSA in lane 8 (polyoxyethylene (20) sorbitan monooleate), lane 10 (polyoxyethylene (40) sorbitol tetraoleate) and lane 14 (cetyltrimethylammonium chloride). However, other than these, BSA was not decomposed (see FIG. 20).
From these results, it was revealed that Tk-satilysin is extremely high in activity at high temperature in the presence of a surfactant as compared with other proteases.
(3)3%SDS存在下100℃におけるTk-サチライシンの残存活性の確認
 バッファー(100mM Tris-HCl(pH8.0)、1mM CaCl2)を用いて3%SDSを調製した。これを1.5mlチューブ6本に49μlずつ分注した。別途、バッファーのみ(0%SDS)を1.5mlチューブ3本に49μlずつ分注した。3%SDS群には、さらにプレインキュベーションあり群(3本)とプレインキュベーションなし群(3本)を設けた。各群3本のチューブはそれぞれ反応時間0分用、5分用、10分用とした。プレインキュベーションあり群の5分用および10分用チューブは、100℃で2分間プレインキュベーションした。
 Tk-サチライシン溶液を、終濃度0.5mg/mlとなるように200mM Tris-HCl(pH8.0)、2mM CaCl2に希釈し、各チューブに1μl添加した。0分用のチューブはそのまま置き、5分用および10分用はそれぞれ5分間および10分間100℃で加熱した後、氷上に30秒間置いた。
 酵素活性測定用溶液(50mM Tris-HCl(pH8.0)、1mM Suc-AAPF-pNA)99μlに各反応液を1μl加え、30℃で20分間インキュベーションした。5μlの酢酸を加えて反応を止め、波長410nmで吸光度を測定した。ブランクとして酵素活性測定用溶液の吸光度を測定した。
(3) Confirmation of residual activity of Tk-subtilisin at 100 ° C. in the presence of 3% SDS 3% SDS was prepared using a buffer (100 mM Tris-HCl (pH 8.0), 1 mM CaCl 2 ). 49 μl of this was dispensed into six 1.5 ml tubes. Separately, 49 μl of buffer alone (0% SDS) was dispensed into three 1.5 ml tubes. The 3% SDS group was further provided with a group with preincubation (3) and a group without preincubation (3). Three tubes in each group were used for reaction times of 0 minutes, 5 minutes, and 10 minutes, respectively. The 5 minute and 10 minute tubes of the preincubated group were preincubated for 2 minutes at 100 ° C.
The Tk-subtilisin solution was diluted with 200 mM Tris-HCl (pH 8.0) and 2 mM CaCl 2 to a final concentration of 0.5 mg / ml, and 1 μl was added to each tube. The 0-minute tube was left as it was, and the 5-minute and 10-minute tubes were heated at 100 ° C. for 5 and 10 minutes, respectively, and then placed on ice for 30 seconds.
1 μl of each reaction solution was added to 99 μl of enzyme activity measurement solution (50 mM Tris-HCl (pH 8.0), 1 mM Suc-AAPF-pNA), and incubated at 30 ° C. for 20 minutes. The reaction was stopped by adding 5 μl of acetic acid, and the absorbance was measured at a wavelength of 410 nm. The absorbance of the enzyme activity measurement solution was measured as a blank.
 結果を図21に示した。図21から明らかなように、通常、タンパク質が変性すると考えられる3%SDS存在下100℃、10分間という過酷な条件においても、Tk-サチライシンは約35%~約50%の残存活性を有することが示された。 The results are shown in FIG. As is clear from FIG. 21, Tk-satilysin has a residual activity of about 35% to about 50% even under the harsh conditions of 100 ° C. and 10 minutes in the presence of 3% SDS, which is considered to cause protein denaturation. It has been shown.
(4)タンパク質変性条件下でのTk-サチライシンのBSA分解活性の確認
 1.5mlチューブにバッファー(125mM Tris-HCl(pH6.8)、5%2-メルカプトエタノール、1~7% SDS)と240μgのBSAを液量39μlとなるように加え、100℃で5分間加熱したのち、1.4mg/mlのプロテアーゼ溶液(Tk-サチライシン、Subtilisin Carlsberg、ProteinaseK、またはバッファーのみ)を1μl加えた。100℃で5分間加熱し、SDS-PAGE(12%アクリルアミドゲル使用)に供した。
(4) Confirmation of BSA degradation activity of Tk-subtilisin under protein denaturing conditions Buffer (125 mM Tris-HCl (pH 6.8), 5% 2-mercaptoethanol, 1-7% SDS) and 240 μg in a 1.5 ml tube Of BSA was added to a volume of 39 μl, heated at 100 ° C. for 5 minutes, and then 1 μl of a 1.4 mg / ml protease solution (Tk-subtilisin, Subtilisin Carlsberg, Proteinase K, or buffer only) was added. Heated at 100 ° C. for 5 minutes and subjected to SDS-PAGE (using 12% acrylamide gel).
 結果を図22に示した。図22から明らかなように、Tk-サチライシンは7%SDS存在下であっても、100℃5分間でBSAを分解できることが示された。この結果から、Tk-サチライシンは、タンパク質変性条件下でのタンパク質分解に有効であることが明らかとなった。 The results are shown in FIG. As is clear from FIG. 22, it was shown that Tk-satilysin can degrade BSA at 100 ° C. for 5 minutes even in the presence of 7% SDS. From this result, it was revealed that Tk-subtilisin is effective for proteolysis under protein denaturing conditions.
 〔実施例6:Tk-サチライシンによる異常プリオンタンパク質の分解〕
 上記実施例2および3の方法で製造および調製したTk-サチライシン(成熟体)溶液を本実施例に供し、バッファーA[10mM Sodium Acetate(pH5.0)、10mM CaCl]を用いて使用濃度に調製した。
 異常プリオンタンパク質試料は、異常プリオンタンパク質(マウスアダプトスクレイピーChandler株)を感染させたマウスから脳を採取し、脳のホモジネートをPBSで希釈して調製した。タンパク質濃度は、DCプロテインアッセイ(バイオラッド社製)を用いて測定した。なお、本実施例ではChandler株についての結果のみを示すが、本発明者らはObihiro株についても同様の結果を得ている。
[Example 6: Degradation of abnormal prion protein by Tk-subtilisin]
The Tk-subtilisin (mature body) solution produced and prepared by the methods of Examples 2 and 3 above was applied to this example, and the concentration was adjusted using buffer A [10 mM Sodium Acetate (pH 5.0), 10 mM CaCl 2 ]. Prepared.
Abnormal prion protein samples were prepared by collecting brains from mice infected with abnormal prion proteins (mouse adapto scrapie Handler strain) and diluting brain homogenates with PBS. The protein concentration was measured using a DC protein assay (Bio-Rad). In this example, only the results for the Chandler strain are shown, but the present inventors have obtained the same results for the Obihiro strain.
 ウエスタンブロッティングは以下の方法で実施した。
ブロッティング:電圧50V、電流140mAに設定し、90分間ブロッティングした。
ブロッキング:5%スキムミルク(in PBS-T)で4℃一晩ブロッキングした。
1次抗体処理:SAF83(IgG)を0.5%スキムミルクで1000倍希釈し(総量4ml)、室温で1時間処理した。
Wash:PBS-Tで10分間のWashを3回行った。
2次抗体処理:α-mouse-HRPを0.5%スキムミルクで10000倍希釈し(総量4ml)、室温で1時間処理した。
Wash:PBS-Tで10分間のWashを3回行った。
感光:ECLキットを用いてHRP酵素反応を行い、Filmに感光させた。
Western blotting was performed by the following method.
Blotting: The voltage was set to 50 V and the current was 140 mA, and blotting was performed for 90 minutes.
Blocking: Blocking was performed overnight at 4 ° C. with 5% skim milk (in PBS-T).
Primary antibody treatment: SAF83 (IgG) was diluted 1000 times with 0.5% skim milk (total amount 4 ml) and treated at room temperature for 1 hour.
Wash: Wash with PBS-T for 10 minutes 3 times.
Secondary antibody treatment: α-mouse-HRP was diluted 10,000 times with 0.5% skim milk (total amount: 4 ml) and treated at room temperature for 1 hour.
Wash: Wash with PBS-T for 10 minutes 3 times.
Photosensitivity: An HRP enzyme reaction was performed using an ECL kit, and the film was exposed to light.
(1)実験1
 チューブに0.5M KCl-NaOH(pH12.0)を20μl、マウス脳ホモジネート(8mg/ml)7.5μl、水17.5μlを加えて混合し、65℃で5分間加温した。これに水またはTk-サチライシン溶液(35.6mg/ml)を5μl添加し(終濃度3.56mg/ml)、65℃で30分間加温した。0.5M EDTAを5μL添加して反応を停止させ、氷中に移した。
 各サンプルを等量ずつ分注し、「ProteinaseK処理をするサンプル」または「ProteinaseK処理をしないサンプル」に分け、「ProteinaseK処理をするサンプル」に関しては、ProteinaseK溶液(200μg/ml)をサンプル量の10分の1量を加え、37℃で1時間加温した。各サンプルに4×SDSサンプルバッファーを加え、100℃で5分間ボイリングを行った後、SDS-PAGE(15%アクリルアミドゲルを使用)に供し、電気泳動後、上記の方法でウエスタンブロッティングを行った。
(1) Experiment 1
To the tube, 20 μl of 0.5 M KCl—NaOH (pH 12.0), 7.5 μl of mouse brain homogenate (8 mg / ml) and 17.5 μl of water were added and mixed, followed by heating at 65 ° C. for 5 minutes. To this was added 5 μl of water or Tk-subtilisin solution (35.6 mg / ml) (final concentration 3.56 mg / ml), and the mixture was heated at 65 ° C. for 30 minutes. The reaction was stopped by adding 5 μL of 0.5 M EDTA and transferred to ice.
Each sample is dispensed in equal amounts and divided into “samples that are subjected to Proteinase K treatment” or “samples that are not subjected to Proteinase K treatment”. For “Samples that are subject to Proteinase K treatment”, a Proteinase K solution (200 μg / ml) is used as a sample amount. One minute was added and heated at 37 ° C. for 1 hour. 4 × SDS sample buffer was added to each sample, and boiling was performed at 100 ° C. for 5 minutes, followed by SDS-PAGE (using 15% acrylamide gel), electrophoresis, and Western blotting by the above method.
 結果を図23に示した。ProteinaseKは異常プリオンタンパク質を分解することができないので、ProteinaseK処理のみを行ったサンプルのレーンには異常プリオンタンパク質のバンドが残っている。一方、Tk-サチライシン処理を行ったサンプルは、ProteinaseK処理の有無に関わらず、異常プリオンタンパク質を含む全てのタンパク質が分解されていた。すなわち、Tk-サチライシンは異常プリオンタンパク質を分解できることが明らかとなった。なお、本実験1の反応条件は、文献(Proteolytic inactivation of the bovine spongiform encephalopathy agent, Biochem Biophys Res Commun., 2004 May 14;317(4):1165-70.)を参考にして、先行研究と比較しやすいように設定したものである。 The results are shown in FIG. Since Proteinase K cannot degrade the abnormal prion protein, the band of the abnormal prion protein remains in the lane of the sample subjected to only the Proteinase K treatment. On the other hand, in the sample that had been treated with Tk-subtilisin, all proteins including abnormal prion protein were degraded regardless of the presence or absence of Proteinase K treatment. That is, it has been clarified that Tk-subtilisin can degrade abnormal prion protein. The reaction conditions of this experiment 1 were compared with previous studies with reference to literature (Proteolytic inactivation of the bovine spongiform encephalopathy agent, Biochem Biophys Res Commun., 2004 May 14; 317 (4): 1165-70.) It is set to be easy to do.
(2)実験2
 反応液のpHを8.0に変更して実験を行った。すなわち、4本のチューブに0.5M Tris-HCl(pH8.0)を20μl、マウス脳ホモジネート(8mg/ml)7.5μl、水17.5μlを加えて混合し、65℃で5分間加温した。これにバッファーAまたはTk-サチライシン溶液(20.0mg/ml)を5μlずつ各2本のチューブに添加し(終濃度2mg/ml)、65℃で30分間加温した。0.5M EDTAを5μL添加して反応を停止させ、氷中に移した。Tk-サチライシンを添加したサンプルおよび添加していないサンプルの各1本ずつにProteinaseK溶液(200μg/ml)をサンプル量の10分の1量を加え、残りの各1本ずつにはPBSを同量加え、37℃で1時間加温した。各サンプルに4×SDSサンプルバッファーを加え、100℃で5分間ボイリングを行った後、SDS-PAGE(15%アクリルアミドゲルを使用)に供し、電気泳動後、上記の方法でウエスタンブロッティングを行った。
(2) Experiment 2
The experiment was conducted by changing the pH of the reaction solution to 8.0. That is, 20 μl of 0.5 M Tris-HCl (pH 8.0), 7.5 μl of mouse brain homogenate (8 mg / ml), and 17.5 μl of water were mixed in 4 tubes, and heated at 65 ° C. for 5 minutes. did. To this, 5 μl of buffer A or Tk-subtilisin solution (20.0 mg / ml) was added to each of two tubes (final concentration 2 mg / ml) and heated at 65 ° C. for 30 minutes. The reaction was stopped by adding 5 μL of 0.5 M EDTA and transferred to ice. Add 1/10 of the amount of Proteinase K solution (200 μg / ml) to each sample with and without Tk-subtilisin, and add the same amount of PBS to each remaining sample. In addition, the mixture was heated at 37 ° C. for 1 hour. 4 × SDS sample buffer was added to each sample, and boiling was performed at 100 ° C. for 5 minutes, followed by SDS-PAGE (using 15% acrylamide gel), electrophoresis, and Western blotting by the above method.
 結果を図24に示した。実験1と同様に、ProteinaseK処理のみを行ったサンプルには異常プリオンタンパク質のバンドが残ったが(レーン2)、Tk-サチライシン処理を行ったサンプルは、ProteinaseK処理の有無に関わらず、異常プリオンタンパク質を含む全てのタンパク質が分解された(レーン3および4)。すなわち、Tk-サチライシンは、pHが中性付近でも十分に異常プリオンタンパク質を分解することができることが明らかとなった。したがって、Tk-サチライシンを含有する異常プリオン分解剤は、アルカリ性溶液中に浸漬することが必須であるプリオザイム(登録商標、異常プリオンタンパク質汚染除去剤)に比べて、取扱いや廃棄の点で利便性が高いことが示された。 The results are shown in FIG. As in Experiment 1, an abnormal prion protein band remained in the sample treated with only Proteinase K (lane 2), but the sample treated with Tk-satilysin was treated with the abnormal prion protein regardless of the presence of Proteinase K treatment. All proteins including were degraded (lanes 3 and 4). That is, it has been clarified that Tk-subtilisin can sufficiently degrade abnormal prion protein even at a pH near neutral. Therefore, the abnormal prion degrading agent containing Tk-satilysin is more convenient in terms of handling and disposal than the preozyme (registered trademark, abnormal prion protein decontamination agent), which must be immersed in an alkaline solution. It was shown to be expensive.
(3)実験3
 4本のチューブに0.5M Tris-HCl(pH8.0)を20μl、マウス脳ホモジネート(8mg/ml)7.5μl、水17.5μlを加えて混合し、65℃で5分間加温した。これにバッファーAまたはTk-サチライシン溶液(20.0mg/ml)を5μlずつ各2本のチューブに添加し(終濃度2mg/ml)、65℃で30分間加温した。0.5M EDTAを5μL添加して反応を停止させ、氷中に移した。Tk-サチライシンを添加したサンプルおよび添加していないサンプルの各1本ずつに0.5M DFP(ジイソプロピルフルオロリン酸)を5μl加え、室温で15分間処理した。残りの各1本ずつには、コントロールとして溶媒である2-プロパノールを5μl加えた。各サンプルに4×SDSサンプルバッファーを加え、100℃で5分間ボイリングを行った後、SDS-PAGE(15%アクリルアミドゲルを使用)に供し、電気泳動後、上記の方法でウエスタンブロッティングを行った。このとき、サンプル中のSDSの終濃度はプリオンが不活化しやすいといわれる3%になるように調整した。
(3) Experiment 3
Four tubes were mixed with 20 μl of 0.5 M Tris-HCl (pH 8.0), 7.5 μl of mouse brain homogenate (8 mg / ml) and 17.5 μl of water, and heated at 65 ° C. for 5 minutes. To this, 5 μl of buffer A or Tk-subtilisin solution (20.0 mg / ml) was added to each of two tubes (final concentration 2 mg / ml) and heated at 65 ° C. for 30 minutes. The reaction was stopped by adding 5 μL of 0.5 M EDTA and transferred to ice. 5 μl of 0.5 M DFP (diisopropyl fluorophosphate) was added to each of the sample to which Tk-satilysin had been added and the sample to which Tk-subtilisin had not been added, and treated at room temperature for 15 minutes. To each of the remaining ones, 5 μl of 2-propanol as a solvent was added as a control. 4 × SDS sample buffer was added to each sample, and boiling was performed at 100 ° C. for 5 minutes, followed by SDS-PAGE (using 15% acrylamide gel), electrophoresis, and Western blotting by the above method. At this time, the final concentration of SDS in the sample was adjusted to 3%, which is said to be easily inactivated by prions.
 結果を図25に示した。図24から明らかなように、レーン3(Tk-サチライシン、DFP処理なし)では異常プリオンタンパク質を含む全てのタンパク質が分解されたが、レーン4(Tk-サチライシン、DFP処理あり)では一部のタンパク質が分解されていなかった。この結果は、Tk-サチライシンの65℃、30分の処理ではすべてのタンパク質が完全に分解しておらず、その後SDSサンプルバッファーを加えて100℃で5分間処理することで、完全にタンパク質が分解されることを示すものである。すなわち、Tk-サチライシンは、3%SDS存在下、100℃というプリオンが変性する過酷な条件下でプロテアーゼ活性を示し、異常プリオンを完全に分解することができることが明らかになった。 The results are shown in FIG. As is clear from FIG. 24, all the proteins including abnormal prion protein were degraded in lane 3 (Tk-subtilisin, without DFP treatment), but some proteins were degraded in lane 4 (with Tk-subtilisin, DFP treatment). Was not decomposed. This result shows that not all proteins were completely degraded by treatment with Tk-satilysin at 65 ° C for 30 minutes, and then the sample was completely degraded by adding SDS sample buffer and treating at 100 ° C for 5 minutes. It is shown that it is done. That is, it was revealed that Tk-subtilisin exhibits protease activity under the severe conditions of prion denaturation at 100 ° C. in the presence of 3% SDS and can completely decompose abnormal prions.
 なお本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。 The present invention is not limited to the above-described embodiments and examples, and various modifications are possible within the scope shown in the claims, and technical means disclosed in different embodiments are appropriately combined. The obtained embodiment is also included in the technical scope of the present invention. Moreover, all the academic literatures and patent literatures described in this specification are incorporated herein by reference.

Claims (15)

  1.  プロテアーゼのプロ体をコードするDNAを宿主細胞に導入し、封入体として発現させるプロ体発現工程と、
     封入体状態のプロ体を変性させ、変性プロ体を得る変性工程と、
     カルシウムイオンを含み、かつ、pH5以上の溶液中で、変性プロ体をリフォールディングさせるリフォールディング工程と、
     リフォールディング後のプロ体を成熟化させ、活性を有するプロテアーゼを得る成熟化工程と
    を包含し、
     前記成熟化工程に供したプロ体の50%以上が活性を有するプロテアーゼとして回収されることを特徴とするプロテアーゼの製造方法。
    A pro-body expression step of introducing a DNA encoding a pro-form of protease into a host cell and expressing it as an inclusion body;
    A denaturing step to denature the pro-form in the inclusion body state to obtain a denatured pro-form,
    A refolding step of refolding the denatured pro-form in a solution containing calcium ions and having a pH of 5 or higher;
    A maturation step of maturing the pro-form after refolding to obtain an active protease,
    A method for producing a protease, wherein 50% or more of the pro form subjected to the maturation step is recovered as an active protease.
  2.  前記成熟化工程の後に、さらにpH2~6のプロテアーゼ溶液を調製するプロテアーゼ溶液調製工程を包含することを特徴とする請求項1に記載の製造方法。 The method according to claim 1, further comprising a protease solution preparation step of preparing a protease solution having a pH of 2 to 6 after the maturation step.
  3.  前記プロテアーゼ溶液が、0.1mg/ml以上のプロテアーゼ濃度を有する請求項2に記載の製造方法。 The production method according to claim 2, wherein the protease solution has a protease concentration of 0.1 mg / ml or more.
  4.  前記リフォールディング工程の直後に、リフォールディング後のプロ体を含有し、pH2~6の溶液を調製するプロ体含有溶液調製工程をさらに包含することを特徴とする請求項1~3のいずれかに記載の製造方法。 The pro-form-containing solution preparation step of preparing a solution having a pH of 2 to 6 and containing a pro-form after refolding immediately after the refolding step is further included. The manufacturing method as described.
  5.  前記プロテアーゼが、以下の(a)~(d)のいずれかに記載のアミノ酸配列からなることを特徴とする請求項1~4のいずれかに記載の製造方法。
    (a)配列番号1に示されるアミノ酸配列
    (b)配列番号1に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
    (c)配列番号2に示されるアミノ酸配列
    (d)配列番号2に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
    The production method according to any one of claims 1 to 4, wherein the protease comprises an amino acid sequence according to any one of the following (a) to (d).
    (A) amino acid sequence shown in SEQ ID NO: 1 (b) amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 (c) amino acid shown in SEQ ID NO: 2 Sequence (d) Amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2
  6.  前記プロテアーゼのプロ体が、以下の(e)または(f)に記載のアミノ酸配列からなることを特徴とする請求項1~5のいずれかに記載の製造方法。
    (e)配列番号3に示されるアミノ酸配列
    (f)配列番号3に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
    The production method according to any one of claims 1 to 5, wherein the pro-form of the protease comprises an amino acid sequence described in (e) or (f) below.
    (E) Amino acid sequence shown in SEQ ID NO: 3 (f) Amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 3
  7.  以下の(a)~(d)のいずれかに記載のアミノ酸配列からなるプロテアーゼを含有し、pHが2~6の範囲であることを特徴とするプロテアーゼ溶液。
    (a)配列番号1に示されるアミノ酸配列
    (b)配列番号1に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
    (c)配列番号2に示されるアミノ酸配列
    (d)配列番号2に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
    A protease solution comprising a protease comprising the amino acid sequence described in any of the following (a) to (d) and having a pH in the range of 2 to 6.
    (A) amino acid sequence shown in SEQ ID NO: 1 (b) amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 (c) amino acid shown in SEQ ID NO: 2 Sequence (d) Amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2
  8.  プロテアーゼ濃度が0.1mg/ml以上である請求項7に記載のプロテアーゼ溶液。 The protease solution according to claim 7, wherein the protease concentration is 0.1 mg / ml or more.
  9.  以下の(e)または(f)に記載のアミノ酸配列からなるプロ体を含有し、pHが2~6の範囲であることを特徴とするプロテアーゼのプロ体溶液。
    (e)配列番号3に示されるアミノ酸配列
    (f)配列番号3に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
    A pro-former solution of a protease comprising the pro-form comprising the amino acid sequence described in (e) or (f) below and having a pH in the range of 2 to 6.
    (E) Amino acid sequence shown in SEQ ID NO: 3 (f) Amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 3
  10.  以下の(a)~(d)のいずれかに記載のアミノ酸配列からなるプロテアーゼを含有する洗剤。
    (a)配列番号1に示されるアミノ酸配列
    (b)配列番号1に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
    (c)配列番号2に示されるアミノ酸配列
    (d)配列番号2に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
    A detergent containing a protease comprising the amino acid sequence described in any of (a) to (d) below.
    (A) amino acid sequence shown in SEQ ID NO: 1 (b) amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 (c) amino acid shown in SEQ ID NO: 2 Sequence (d) Amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2
  11.  さらに、界面活性剤を含有する請求項10に記載の洗剤。 Furthermore, the detergent of Claim 10 containing surfactant.
  12.  医療器具洗浄用である請求項10または11に記載の洗剤。 The detergent according to claim 10 or 11, which is used for cleaning medical equipment.
  13.  以下の(a)~(d)のいずれかに記載のアミノ酸配列からなるプロテアーゼを含有する異常プリオンタンパク質分解剤。
    (a)配列番号1に示されるアミノ酸配列
    (b)配列番号1に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
    (c)配列番号2に示されるアミノ酸配列
    (d)配列番号2に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
    An abnormal prion proteolytic agent comprising a protease comprising the amino acid sequence according to any of the following (a) to (d):
    (A) amino acid sequence shown in SEQ ID NO: 1 (b) amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 (c) amino acid shown in SEQ ID NO: 2 Sequence (d) Amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2
  14.  異常プリオンタンパク質が付着した被洗浄物と、以下の(a)~(d)のいずれかに記載のアミノ酸配列からなるプロテアーゼとを接触させる工程を包含する異常プリオンタンパク質の不活化方法。
    (a)配列番号1に示されるアミノ酸配列
    (b)配列番号1に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
    (c)配列番号2に示されるアミノ酸配列
    (d)配列番号2に示されるアミノ酸配列において1もしくは数個のアミノ酸が欠失、置換もしくは付加されたアミノ酸配列
    A method for inactivating an abnormal prion protein, comprising a step of contacting an object to be cleaned to which an abnormal prion protein is attached and a protease having an amino acid sequence described in any of the following (a) to (d):
    (A) amino acid sequence shown in SEQ ID NO: 1 (b) amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 1 (c) amino acid shown in SEQ ID NO: 2 Sequence (d) Amino acid sequence in which one or several amino acids are deleted, substituted or added in the amino acid sequence shown in SEQ ID NO: 2
  15.  前記被洗浄物と前記プロテアーゼとをタンパク質変性条件下で接触させる請求項14に記載の異常プリオンタンパク質の不活化方法。 The method for inactivating an abnormal prion protein according to claim 14, wherein the object to be cleaned and the protease are contacted under protein denaturing conditions.
PCT/JP2009/064629 2008-08-22 2009-08-21 Process for production of protease, protease solution, and solution of pro-form of protease WO2010021375A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010525712A JPWO2010021375A1 (en) 2008-08-22 2009-08-21 Protease production method, protease solution and protease pro-solution

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-213617 2008-08-22
JP2008213617 2008-08-22

Publications (1)

Publication Number Publication Date
WO2010021375A1 true WO2010021375A1 (en) 2010-02-25

Family

ID=41707249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/064629 WO2010021375A1 (en) 2008-08-22 2009-08-21 Process for production of protease, protease solution, and solution of pro-form of protease

Country Status (2)

Country Link
JP (1) JPWO2010021375A1 (en)
WO (1) WO2010021375A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108073A (en) * 2012-11-30 2014-06-12 Ochanomizu Univ Method for preparing recombinant human pancreatic lipase
US9536362B2 (en) 2010-09-27 2017-01-03 Apple Inc. Polarized images for security
WO2017081274A1 (en) * 2015-11-12 2017-05-18 Novozymes A/S Fermentation processes with reduced foaming
US10372191B2 (en) 2011-05-12 2019-08-06 Apple Inc. Presence sensing
US10402624B2 (en) 2011-05-12 2019-09-03 Apple Inc. Presence sensing
US10817594B2 (en) 2017-09-28 2020-10-27 Apple Inc. Wearable electronic device having a light field camera usable to perform bioauthentication from a dorsal side of a forearm near a wrist

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05260967A (en) * 1991-12-27 1993-10-12 Solvay Enzymes Inc Purified alkaline protease concentrate and its preparation
JP2004516845A (en) * 2001-01-08 2004-06-10 ヘルス プロテクション エージェンシー Reduction and detection of TSE infectivity

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05260967A (en) * 1991-12-27 1993-10-12 Solvay Enzymes Inc Purified alkaline protease concentrate and its preparation
JP2004516845A (en) * 2001-01-08 2004-06-10 ヘルス プロテクション エージェンシー Reduction and detection of TSE infectivity

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AKANNAN Y. ET AL.: "Active subtilisin-like protease from a hyperthermophilic archaeon in a form with a putative prosequence.", APPL. ENVIRON. MICROBIOL., vol. 67, no. 6, 2001, pages 2445 - 2452 *
PULIDO M. ET AL.: "Ca2+-dependent maturation of subtilisin from a hyperthermophilic archaeon, Thermococcus kodakaraensis: the propeptide is a potent inhibitor of the mature domain but is not required for its folding.", APPL. ENVIRON. MICROBIOL., vol. 72, no. 6, 2006, pages 4154 - 4162 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9536362B2 (en) 2010-09-27 2017-01-03 Apple Inc. Polarized images for security
US10372191B2 (en) 2011-05-12 2019-08-06 Apple Inc. Presence sensing
US10402624B2 (en) 2011-05-12 2019-09-03 Apple Inc. Presence sensing
JP2014108073A (en) * 2012-11-30 2014-06-12 Ochanomizu Univ Method for preparing recombinant human pancreatic lipase
WO2017081274A1 (en) * 2015-11-12 2017-05-18 Novozymes A/S Fermentation processes with reduced foaming
US10817594B2 (en) 2017-09-28 2020-10-27 Apple Inc. Wearable electronic device having a light field camera usable to perform bioauthentication from a dorsal side of a forearm near a wrist
US11036844B2 (en) 2017-09-28 2021-06-15 Apple Inc. Wearable electronic device having a light field camera

Also Published As

Publication number Publication date
JPWO2010021375A1 (en) 2012-01-26

Similar Documents

Publication Publication Date Title
US10975335B2 (en) Performance-enhanced and temperature-resistant protease variants
Savitha et al. Fungal protease: production, purification and compatibility with laundry detergents and their wash performance
WO2010021375A1 (en) Process for production of protease, protease solution, and solution of pro-form of protease
Rai et al. Ecological significance and some biotechnological application of an organic solvent stable alkaline serine protease from Bacillus subtilis strain DM-04
US9365844B2 (en) Performance-enhanced protease variant
BRPI9916347B1 (en) subtilase enzyme, composition, and, use of a subtilase or subtilase variant or enzyme composition
AU2014336474B2 (en) Protease variants with increased stability
Suberu et al. Cloning, expression, purification and characterisation of serine alkaline protease from Bacillus subtilis RD7
Rajput et al. Swapping of pro-sequences between keratinases of Bacillus licheniformis and Bacillus pumilus: altered substrate specificity and thermostability
Park et al. Crystal structure of a cold-active protease (Pro21717) from the psychrophilic bacterium, Pseudoalteromonas arctica PAMC 21717, at 1.4 Å resolution: Structural adaptations to cold and functional analysis of a laundry detergent enzyme
US9260706B2 (en) Performance-enhanced protease variants
Mechri et al. A Taguchi design approach for the enhancement of a detergent‐biocompatible alkaline thermostable protease production by Streptomyces mutabilis strain TN‐X30
JP5339543B2 (en) Novel protease and use thereof
ES2898699T3 (en) Lipases for use in detergents and cleaning products
US20060142171A1 (en) Novel alkaline protease
WO2004042049A1 (en) Method of degrading hardly degradable protein
KR102114929B1 (en) Novel Cold-active subtilase and Uses thereof
CN108103045B (en) Lipase and application thereof
Akande et al. Cloning, expression, purification and characterisation of serine alkaline protease from Bacillus subtilis RD7
BRPI9916353B1 (en) isolated subtilase enzyme, composition, and use of an isolated subtilase enzyme or enzyme composition
BRPI9916352B1 (en) subtilase enzyme isolated from subgroups i-s1 and i-s2, subtilase, isolated dna sequence, expression vector, microbial host cell, method for producing a subtilase or subtilase variant, composition, and use of a subtilase or a subtilase variant or an enzyme composition
BRPI9916349B1 (en) subtilase enzyme, composition, and, use of a subtilase or subtilase variant or enzyme composition
BRPI9916348B1 (en) isolated subtilase enzyme, composition, and, use of a subtilase or subtilase variant or enzyme composition
JP2004261141A (en) Cathepsin c-like enzyme and method for producing the same
US20160068826A1 (en) Peroxidases having activity for carotenoids

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09808311

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010525712

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09808311

Country of ref document: EP

Kind code of ref document: A1