WO2010018734A1 - Transparent electrode, organic electroluminescent element, and method for producing transparent electrode - Google Patents

Transparent electrode, organic electroluminescent element, and method for producing transparent electrode Download PDF

Info

Publication number
WO2010018734A1
WO2010018734A1 PCT/JP2009/062876 JP2009062876W WO2010018734A1 WO 2010018734 A1 WO2010018734 A1 WO 2010018734A1 JP 2009062876 W JP2009062876 W JP 2009062876W WO 2010018734 A1 WO2010018734 A1 WO 2010018734A1
Authority
WO
WIPO (PCT)
Prior art keywords
transparent electrode
conductive
metal
patterned
support
Prior art date
Application number
PCT/JP2009/062876
Other languages
French (fr)
Japanese (ja)
Inventor
昌紀 後藤
博和 小山
Original Assignee
コニカミノルタホールディングス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタホールディングス株式会社 filed Critical コニカミノルタホールディングス株式会社
Priority to JP2010524697A priority Critical patent/JP5397377B2/en
Publication of WO2010018734A1 publication Critical patent/WO2010018734A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • H10K50/81Anodes
    • H10K50/814Anodes combined with auxiliary electrodes, e.g. ITO layer combined with metal lines

Definitions

  • the present invention relates to a transparent electrode having excellent conductivity and transparency and high smoothness, a method for producing the same, and an organic electroluminescence device using the transparent electrode.
  • the transparent electrode is an essential constituent technology.
  • transparent electrodes are an indispensable technical element in touch panels, mobile phones, electronic paper, various solar cells, and various electroluminescence light control elements.
  • various metal thin films such as Au, Ag, Pt, Cu, indium oxide doped with tin or zinc (ITO, IZO), zinc oxide doped with aluminum or gallium (AZO, GZO), fluorine, Metal oxide thin films such as tin oxide (FTO, ATO) doped with antimony, conductive nitride thin films such as TiN, ZrN, and HfN, and conductive boride thin films such as LaB 6 are known and combinations thereof.
  • Various electrodes such as Bi 2 O 3 / Au / Bi 2 O 3 and TiO 2 / Ag / TiO 2 are also known.
  • transparent electrodes using CNTs (carbon nanotubes) and conductive polymers have also been proposed (see, for example, Non-Patent Document 1).
  • the metal thin film, nitride thin film, boron thin film and conductive polymer thin film described above cannot have both light transmission properties and conductive properties, special technical fields such as electromagnetic shielding and the like are relatively high. It was used only in the touch panel field where resistance values are allowed.
  • ITO is widely used as a transparent electrode for various optoelectronics because it has a good balance between light transmittance and conductivity and it is easy to form an electrode fine pattern by wet etching using an acid solution.
  • the above oxide conductor represented by ITO or the like forms a transparent conductive film on the surface of the substrate by a vacuum process such as sputtering or a liquid phase method such as sol-gel.
  • a vacuum process such as sputtering
  • a liquid phase method such as sol-gel.
  • expensive equipment is required.
  • high temperature treatment at 500 ° C. or higher is necessary to obtain high conductivity.
  • transparent electrodes include transparent electrodes in which a mesh structure is formed by a metal pattern typified by an electromagnetic wave shielding film of a plasma display (see, for example, Patent Documents 1 and 2), and a fine mesh using metal nanowires
  • the transparent electrode which consists of is disclosed (for example, refer patent document 3).
  • a metal mesh using silver both good conductivity and transparency can be achieved due to the inherent high conductivity of silver.
  • the metal mesh portion has high conductivity, there is a defect that the portion that transmits light does not have conductivity because of the mesh structure.
  • a transparent electrode with a smooth surface is required for an electrode for an organic electroluminescence element.
  • an ultra-thin film of an organic compound is formed on the electrode, so that an excellent surface smoothness is required for the transparent electrode.
  • the organic electroluminescence element when the surface height difference (surface unevenness) of the anode is large, the electric field concentrates on the protrusion (protrusion) and the EL element is destroyed, or the protrusion is short-circuited with the cathode, Non-light emitting points (points that do not emit light on the surface of the electroluminescence element) may occur.
  • the film thickness of the organic compound at the electrode pattern edge portion becomes thin, and current leakage is likely to occur therefrom.
  • the durability of the organic electroluminescence element is remarkably lowered. Therefore, excellent smoothness is required for the transparent electrode as the anode.
  • Patent Document 4 describes an inorganic electroluminescent element using a transparent conductive sheet in which ITO is coated on a metal fine wire mesh pattern.
  • organic matter that requires higher smoothness than an inorganic electroluminescent element is described. No mention is made of electroluminescence elements.
  • Patent Document 5 describes a method for producing a flexible resin film with an electrode layer comprising a step of peeling both an ultraviolet curable resin layer and an electrode layer from a temporary support plate.
  • the arithmetic average roughness Ra serving as an index is not mentioned at all, and the formation of the electrode layer is limited to the vacuum deposition method or the sputtering method, which has the disadvantage that the manufacturing cost and equipment are expensive.
  • the object of the present invention has been made in view of the above circumstances, and simply provides a transparent electrode having excellent conductivity and transparency and high smoothness, a method for producing the same, and an organic electroluminescence device using the transparent electrode. There is to do.
  • a transparent electrode having a patterned conductive portion and a non-pattern portion on a transparent support, wherein the conductive portion contains a metal nanowire and a conductive polymer, or a metal nanowire and a metal oxide, and the non-pattern
  • the portion contains a resin, the arithmetic average roughness Ra of the surface of the conductive portion is 5 nm or less, the maximum height Rz is 50 nm or less, and the maximum height difference between the conductive portion and the non-patterned portion is 50 nm or less.
  • a transparent electrode characterized by that.
  • An organic electroluminescence device comprising the transparent electrode as described in 1 above.
  • a method for producing a transparent electrode having a patterned conductive portion and a non-patterned portion on a transparent support wherein the conductive portion contains a metal nanowire and a conductive polymer, or a metal nanowire and a metal oxide,
  • the non-patterned portion contains a resin
  • the first support is formed after the conductive portion previously formed on the first support is bonded to the resin-containing layer formed on the second support in advance.
  • a method for producing a transparent electrode comprising peeling off the body.
  • a transparent electrode having excellent conductivity and transparency and high smoothness, a method for producing the same, and an organic electroluminescence device using the transparent electrode can be easily provided.
  • FIG. 1 shows a conductive part 2 made of a patterned metal nanowire and a conductive polymer and a conductive part 3 made of a patterned metal nanowire and a metal oxide on a first support 1. It is sectional drawing before transcribe
  • FIG. 2 shows a conductive part 2 made of a patterned metal nanowire and a conductive polymer and a conductive part 3 made of a patterned metal nanowire and a metal oxide on the first support 1. It is sectional drawing of the transparent electrode 20 produced by peeling the 1st support body 1 after adhere
  • FIG. 3 shows a transparent part having a conductive part 2 made of a patterned metal nanowire and a conductive polymer, a conductive part 3 made of a patterned metal nanowire and a metal oxide, and a non-conductive non-pattern part 4. It is the figure which looked at the electrode 20 from the transparent electrode surface side.
  • a plastic film, a plastic plate, glass or the like can be used as the transparent support.
  • polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate
  • polyolefins such as polyethylene (PE), polypropylene (PP), polystyrene and EVA
  • polyvinyl chloride and polychlorinated chloride.
  • vinyl resins such as vinylidene, polyether ether ketone (PEEK), polysulfone (PSF), polyether sulfone (PES), polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), etc. Can do.
  • a material having excellent surface smoothness is used for the first support in order to smooth the peeled surface of the peeled patterned conductive part and the adhesive layer.
  • the smoothness (unevenness) of the surface of the first support is preferably such that the arithmetic average roughness Ra is 5 nm or less, the maximum height Rz is 50 nm or less, Ra is 2 nm or less, and Rz is 30 nm or less. More preferably, Ra is 1 nm or less, and Rz is 20 nm or less.
  • the surface of the first support may be smoothed by applying an undercoat layer such as a thermosetting resin, an ultraviolet curable resin, an electron beam curable resin, or a radiation curable resin, or by machining such as polishing. It can be smooth.
  • a release layer may be formed to facilitate peeling, and as a release layer forming material, a polymer or wax that forms a known release layer can be appropriately selected and used. For example, paraffin wax, acrylic , Urethane, silicon, melamine, urea, urea-melamine, cellulose, benzoguanamine, and other resins and surfactants were dissolved in an organic solvent or water mainly composed of these or a mixture thereof.
  • the paint is applied onto the support by ordinary printing methods such as gravure printing, screen printing, offset printing, etc., and dried (thermosetting resin, ultraviolet curable resin, electron beam curable resin, radiation curable resin, etc.)
  • the curable coating film include those formed by curing.
  • the thickness of the release layer is not particularly limited, and is suitably selected from the range of about 0.1 to 3 ⁇ m.
  • Ra and Rz representing the smoothness (unevenness) of the surface of the first support means
  • Ra and Rz can be measured by using a commercially available atomic force microscope (AFM), for example, by the following method.
  • AFM atomic force microscope
  • an SPI 3800N probe station and SPA400 multifunctional unit manufactured by Seiko Instruments Inc. as the AFM set the sample cut to a size of about 1 cm square on a horizontal sample stage on the piezo scanner, and place the cantilever on the sample surface.
  • scanning is performed in the XY direction, and the unevenness of the sample at that time is captured by the displacement of the piezo in the Z direction.
  • a piezo scanner that can scan XY 150 ⁇ m and Z 5 ⁇ m is used.
  • the cantilever is a silicon cantilever SI-DF20 manufactured by Seiko Instruments Inc., which has a resonance frequency of 120 to 150 kHz and a spring constant of 12 to 20 N / m, and is measured in a DFM mode (Dynamic Force Mode). A measurement area of 80 ⁇ 80 ⁇ m is measured at a scanning frequency of 0.1 Hz.
  • the second support is preferably provided with a gas barrier layer for the purpose of blocking oxygen and moisture in the atmosphere.
  • a gas barrier layer for the purpose of blocking oxygen and moisture in the atmosphere.
  • metal oxides such as silicon oxide, silicon nitride, silicon oxynitride, aluminum nitride, and aluminum oxide, and metal nitrides can be used. These materials have an oxygen barrier function in addition to a water vapor barrier function.
  • silicon nitride and silicon oxynitride having favorable barrier properties, solvent resistance, and transparency are preferable.
  • the barrier layer may have a multilayer structure as necessary.
  • a resistance heating vapor deposition method As a method for forming the gas barrier layer, a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, or a sputtering method can be used depending on the material.
  • each inorganic layer constituting the gas barrier layer is not particularly limited, but typically it is preferably in the range of 5 nm to 500 nm per layer, more preferably 10 nm to 200 nm per layer.
  • the gas barrier layer is provided on at least one surface of the second support, and is preferably provided on the adhesive layer adhesion side, and more preferably on both surfaces.
  • a metal nanowire refers to a linear structure having a diameter from the atomic scale to the nm size, which contains a metal element as a main component.
  • the metal nanowire used in the present invention preferably has an average length of 3 ⁇ m or more, more preferably 3 to 500 ⁇ m, particularly 3 to 300 ⁇ m in order to form a long conductive path with one metal nanowire. It is preferable.
  • the relative standard deviation of the length is preferably 40% or less.
  • an average diameter is small from a transparency viewpoint, On the other hand, the larger one is preferable from an electroconductive viewpoint.
  • the average diameter of the metal nanowire is preferably 10 to 300 nm, and more preferably 30 to 200 nm.
  • the relative standard deviation of the diameter is preferably 20% or less.
  • a metal composition of the metal nanowire which concerns on this invention, although it can comprise from the 1 type or several metal of a noble metal element and a base metal element, noble metals (for example, gold, platinum, silver, palladium, rhodium, (Iridium, ruthenium, osmium, etc.) and at least one metal belonging to the group consisting of iron, cobalt, copper, and tin is preferable, and at least silver is more preferable from the viewpoint of conductivity. In order to achieve both conductivity and stability (sulfurization and oxidation resistance of metal nanowires and migration resistance), it is also preferable to include silver and at least one metal belonging to a noble metal other than silver. When the metal nanowire according to the present invention includes two or more kinds of metal elements, for example, the metal composition may be different between the inside and the surface of the metal nanowire, or the entire metal nanowire has the same metal composition. May be.
  • the means for producing the metal nanowire there are no particular limitations on the means for producing the metal nanowire, and for example, known means such as a liquid phase method and a gas phase method can be used. Moreover, there is no restriction
  • the conductive polymer used in the present invention is not particularly limited, and polypyrrole, polyindole, polycarbazole, polythiophene (including basic polythiophene, the same shall apply hereinafter), polyaniline, polyacetylene, polyfuran, and polyparaphenylene.
  • Chain conductive polymers such as vinylene, polyazulene, polyparaphenylene, polyparaphenylene sulfide, polyisothianaphthene, and polythiazyl, and polyacene conductive polymers can also be used.
  • PEDOT polyethylene dioxythiophene
  • polyaniline are preferable from the viewpoints of conductivity and transparency.
  • the long-chain sulfonic acid is preferable.
  • Examples of the long chain sulfonic acid include dinonyl naphthalene disulfonic acid, dinonyl naphthalene sulfonic acid, and dodecylbenzene sulfonic acid.
  • Examples of the halogen include Cl 2 , Br 2 , I 2 , ICl 3 , IBr, IF 5 and the like.
  • Examples of the Lewis acid include PF 5 , AsF 5 , SbF 5 , BF 3 , BCl 3 , BBr 3 , SO 3 , GaCl 3 and the like.
  • Examples of the protonic acid include HF, HCl, HNO 3 , H 2 SO 4 , HBF 4 , HClO 4 , FSO 3 H, ClSO 3 H, CF 3 SO 3 H, and the like.
  • the transition metal halide NbF 5, TaF 5, MoF 5, WF 5, RuF 5, BiF 5, TiCl 4, ZrCl 4, MoCl 5, MoCl 3, WCl 5, FeCl 3, TeCl 4, SnCl 4, SeCl 4 , FeBr 3 , SnI 5 and the like.
  • the transition metal compound AgClO 4, AgBF 4, La (NO 3) 3, Sm (NO 3) 3 and the like.
  • Examples of the alkali metal include Li, Na, K, Rb, and Cs.
  • Examples of the alkaline earth metal include Be, Mg, Ca, Sc, and Ba.
  • the dopant for the conductive polymer may be introduced into fullerenes such as hydrogenated fullerene, hydroxylated fullerene, and sulfonated fullerene. It is preferable that 0.001 mass part or more of the said dopant is contained with respect to 100 mass parts of conductive polymers. Furthermore, it is more preferable that 0.5 mass part or more is contained.
  • the transparent conductive composition of the present embodiment includes a long-chain sulfonic acid, a polymer of long-chain sulfonic acid (for example, polystyrene sulfonic acid), halogen, Lewis acid, proton acid, transition metal halide, transition metal compound, Both at least one dopant selected from the group consisting of alkali metals, alkaline earth metals, MClO 4 , R 4 N + , and R 4 P + and fullerenes may be included.
  • a dopant selected from the group consisting of alkali metals, alkaline earth metals, MClO 4 , R 4 N + , and R 4 P + and fullerenes may be included.
  • the conductive polymer used in the present invention is 2nd.
  • a water-soluble organic compound may be contained as a dopant.
  • an oxygen containing compound is mentioned suitably.
  • the oxygen-containing compound is not particularly limited as long as it contains oxygen, and examples thereof include a hydroxyl group-containing compound, a carbonyl group-containing compound, an ether group-containing compound, and a sulfoxide group-containing compound.
  • the hydroxyl group-containing compound include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, glycerin and the like.
  • ethylene glycol and diethylene glycol are preferable.
  • the carbonyl group-containing compound include isophorone, propylene carbonate, cyclohexanone, ⁇ -butyrolactone, and the like.
  • the ether group-containing compound include diethylene glycol monoethyl ether.
  • the sulfoxide group-containing compound include dimethyl sulfoxide. These may be used alone or in combination of two or more, but it is particularly preferable to use at least one selected from dimethyl sulfoxide, ethylene glycol, and diethylene glycol.
  • the 2nd In the conductive polymer used in the present invention, the 2nd.
  • the content of the dopant is preferably 0.001 part by mass or more, more preferably 0.01 to 50 parts by mass, and particularly preferably 0.01 to 10 parts by mass.
  • the metal oxide used in the present invention is not particularly limited, but fine particles such as indium oxide, zinc oxide, cadmium oxide, gallium oxide, antimony oxide, aluminum oxide, or other metal elements are added to these oxides. Fine particles such as tin-added indium oxide (ITO), antimony-added tin oxide (ATO), zinc-added indium oxide (IZO), aluminum-added zinc oxide (AZO), and gallium-added zinc oxide (GZO) are preferably used.
  • ITO tin-added indium oxide
  • ATO antimony-added tin oxide
  • IZO zinc-added indium oxide
  • AZO aluminum-added zinc oxide
  • GZO gallium-added zinc oxide
  • those that constitute a transparent conductive film include tin-added indium oxide (ITO), antimony-added tin oxide (ATO), zinc-added indium oxide (IZO), and aluminum-added zinc oxide (AZO). Further, gallium-doped zinc oxide (GZO), indium oxide (In 2 O 3 ), zinc oxide (ZnO), and the like are preferable.
  • the average particle diameter of the metal oxide is preferably 1 to 100 nm, particularly preferably 3 to 50 nm.
  • the average particle size of the metal oxide was the BET particle size calculated by the following formula.
  • BET particle size (nm) 6 / ( ⁇ ⁇ specific surface area) ⁇ 10 9
  • is the true specific gravity of the transparent conductive fine particles.
  • the metal oxide is ITO (tin-containing indium oxide)
  • 7.13 ⁇ 10 9 (g / m 3 ).
  • the specific surface area can be determined by the BET method (one point method).
  • the patterned conductive part in the present invention is characterized by containing metal nanowires and a conductive polymer, or metal nanowires and a metal oxide. Either one or both of the conductive polymer and the metal oxide contained in the conductive part in the present invention may be used.
  • the metal nanowires of the conductive part are preferably in contact with each other, and more preferably in mesh form. Conductive portions in which metal nanowires are brought into contact with each other or meshed can be easily obtained by using the following liquid phase film forming method.
  • the method for forming a conductive part in the present invention is not particularly limited as long as it is a liquid phase film forming method in which a dispersion containing metal nanowires and a dispersion containing a conductive polymer or metal oxide are applied and dried to form a film.
  • a printing method such as a printing method, a letterpress (letterpress) printing method, a stencil (screen) printing method, a lithographic (offset) printing method, an intaglio (gravure) printing method, a spray printing method, and an ink jet printing method.
  • the dispersion containing the metal nanowires is applied to the first support and dried, and then the dispersion containing the conductive polymer or the metal oxide is applied and dried.
  • Molecules or metal nanowires and metal oxides are preferably present on the electrode surface and in the vicinity of the electrode surface in the conductive part.
  • the dispersion containing metal nanowires and the dispersion containing a conductive polymer or metal oxide used in the present invention may contain a transparent binder material or additive.
  • the transparent binder material can be selected from a wide range of natural polymer resins or synthetic polymer resins.
  • transparent thermoplastic resins eg, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorinated polypropylene, vinylidene fluoride), heat / light / electron beam
  • a transparent curable resin that is cured by radiation for example, melamine acrylate, urethane acrylate, epoxy resin, polyimide resin, silicon resin such as acrylic-modified silicate
  • the additive include plasticizers, stabilizers such as antioxidants and sulfurization inhibitors, surfactants, dissolution accelerators, polymerization inhibitors, and colorants such as dyes and pigments.
  • solvents for example, organic solvents such as water, alcohols, glycols, cellosolves, ketones, esters, ethers, amides, hydrocarbons, etc.
  • organic solvents such as water, alcohols, glycols, cellosolves, ketones, esters, ethers, amides, hydrocarbons, etc.
  • a photolithography method in which a conductive portion is formed on a support and then patterned by chemical etching using a photoresist can be used.
  • a portion to be a non-pattern portion may be peeled off using a lift-off resist to form a conductive portion pattern, or a desired pattern may be formed on the support using the printing method.
  • the conductive part pattern may be formed, and after the conductive part is formed on the support, the part that becomes the conductive part pattern part is masked and the part that becomes the non-pattern part is wiped off physically. Also good.
  • the non-pattern part in this invention contains resin.
  • the resin used is not particularly limited as long as it is transparent in the visible region (that is, has sufficient transmittance), but is preferably non-conductive having a surface specific resistance of 10 10 ⁇ / ⁇ or more.
  • the surface specific resistance can be measured based on, for example, JIS K6911, ASTM D257, etc., and can be easily measured using a commercially available surface resistivity meter.
  • the resin may be a curable resin or a thermoplastic resin. Examples of the curable resins include thermosetting resins, ultraviolet curable resins, and electron beam curable resins. Among these curable resins, the equipment for resin curing is simple and excellent in workability.
  • the non-pattern part is preferably an acrylic polymer or an epoxy polymer from the viewpoint of transparency.
  • the non-patterned part of the present invention may be provided on the patterned conductive part formed on the first support, or provided on the second support and the patterned conductive part is non-patterned. After being bonded and buried on the part side, a curing process may be performed.
  • the non-pattern part does not contain the metal nanowire, the conductive polymer, and the metal oxide contained in the conductive part and is made of only a resin.
  • the bonding method is not particularly limited and can be performed by a sheet press, a roll press, or the like, but is preferably performed using a roll press machine.
  • the roll press is a method in which a film to be bonded is sandwiched between the rolls, and the rolls are rotated.
  • the roll press is uniformly pressed and has better productivity than the sheet press.
  • the transparent electrode of the present invention can be obtained by peeling the first support after performing the adhesion and curing treatment by the above method.
  • the arithmetic average roughness Ra of the conductive portion in the transparent electrode of the present invention is 5 nm or less, the maximum height Rz is 50 nm or less, Ra is 2 nm or less, and Rz is preferably 30 nm or less, more preferably Ra is 1 nm or less and Rz is 20 nm or less.
  • the arithmetic average roughness Ra and the maximum height Rz of the conductive portion can be measured in the same manner as the arithmetic average roughness Ra and the maximum height Rz of the surface of the support described above.
  • the total light transmittance of the conductive part in the transparent electrode of the present invention is desirably 60% or more, preferably 70% or more, and particularly preferably 80% or more.
  • the total light transmittance can be measured according to a known method using a spectrophotometer or the like.
  • the electrical resistance value of the pattern portion in the transparent electrode of the present invention is preferably 10 3 ⁇ / ⁇ or less, more preferably 10 2 ⁇ / ⁇ or less, and more preferably 10 ⁇ / ⁇ or less as the surface specific resistance. It is particularly preferred.
  • the surface specific resistance can be measured based on, for example, JIS K6911, ASTM D257, etc., and can be easily measured using a commercially available surface resistivity meter.
  • the surface specific resistance only needs to satisfy the surface specific resistance in the state of the metal nanowire alone, and the metal nanowire functions as a bus electrode. Therefore, even if the surface specific resistance of the conductive polymer or metal oxide is high, the conductive portion Can be made uniform.
  • the surface specific resistance of the conductive polymer or metal oxide is preferably 10 9 ⁇ / ⁇ or less.
  • An anchor coat or a hard coat can be applied to the transparent electrode of the present invention. Moreover, you may install the electroconductive part containing a conductive polymer or a metal oxide as needed.
  • the transparent electrode of the present invention can be used for transparent electrodes such as LCDs, electroluminescent elements, plasma displays, electrochromic displays, solar cells, touch panels, electronic papers, electromagnetic shielding materials, etc., but has excellent conductivity and transparency. In addition, since it has high smoothness, it is preferably used for an organic electroluminescence element.
  • the organic electroluminescent element in the present invention has the transparent electrode of the present invention.
  • the organic electroluminescence device in the present invention uses the transparent electrode of the present invention as an anode, and the organic light emitting layer and the cathode may be any material or configuration generally used in organic electroluminescence devices. it can.
  • the element configuration of the organic electroluminescence element is anode / organic light emitting layer / cathode, anode / hole transport layer / organic light emitting layer / electron transport layer / cathode, anode / hole injection layer / hole transport layer / organic light emitting layer / electron transport.
  • Examples of various configurations such as layer / cathode, anode / hole injection layer / organic light emitting layer / electron transport layer / electron injection layer / cathode, anode / hole injection layer / organic light emitting layer / electron injection layer / cathode, etc. Can do.
  • the organic light emitting layer is produced by a known method using the above materials and the like, and examples thereof include vapor deposition, coating, and transfer.
  • the thickness of the organic light emitting layer is preferably 0.5 to 500 nm, particularly preferably 0.5 to 200 nm.
  • the organic electroluminescence element in the present invention can be used for a self-luminous display, a backlight for liquid crystal, illumination and the like. Since the organic electroluminescent element of the present invention can emit light uniformly and without unevenness, it is preferably used for illumination.
  • Example 1 Preparation of transparent electrode >> [Preparation of transparent electrode TCF-1; comparative example] An ITO film was deposited on a polyethylene terephthalate film support having a thickness of 100 ⁇ m with an average film thickness of 150 nm, then cut into 50 mm ⁇ 50 mm square, and a striped transparent pattern electrode TCF-1 having a conductive part pattern width of 10 mm was formed by photolithography. Produced.
  • the reaction solution containing the core particles after the ripening was kept at 170 ° C. while stirring, 1000 ml of an ethylene glycol solution of silver nitrate (silver nitrate concentration: 1.0 ⁇ 10 ⁇ 1 mol / L), and ethylene glycol of polyvinylpyrrolidone. 1000 ml of a solution (vinyl pyrrolidone concentration conversion: 5.0 ⁇ 10 ⁇ 1 mol / L) was added at a constant flow rate for 100 minutes using a double jet method.
  • the reaction solution was sampled every 20 minutes in the particle growth process and confirmed with an electron microscope, the silver nanoparticles formed in the nucleation process grew mainly in the long axis direction of the nanowires over time. No new core particles were observed in the grain growth process.
  • the reaction solution was cooled to room temperature, filtered using a filter, and the silver nanowires separated by filtration were redispersed in ethanol. Filtration of silver nanowires with a filter and redispersion in ethanol were repeated 5 times, and finally an ethanol dispersion of silver nanowires was prepared to produce silver nanowires.
  • a small amount of the obtained dispersion was collected and confirmed with an electron microscope, and it was confirmed that silver nanowires having an average diameter of 85 nm and an average length of 7.4 ⁇ m were formed.
  • transparent electrode TCF-3 (Preparation of transparent electrode TCF-3; comparative example]
  • a transparent electrode TCF-3 was prepared in the same manner as TCF-2 except that a solution obtained by adding 5% of dimethyl sulfoxide to the solution was applied so that the dry film thickness was 100 nm.
  • the resin layer of the produced adhesive film was pressure-bonded so that the electrode pattern side of the transparent electrode TCF-2 faced. Next, ultraviolet rays were irradiated from the adhesive film side to cure the ultraviolet curable resin, and the adhesive film and the transparent electrode TCF-2 were joined.
  • the joined adhesive film and the transparent electrode TCF-2 were peeled off from the polyethylene terephthalate film support on the transparent electrode TCF-2 side to produce a transparent electrode TCF-4.
  • a transparent electrode TCF-5 was produced in the same manner as TCF-4 except that the transparent electrode to be pressure-bonded to the resin layer of the adhesive film was changed to TCF-3.
  • Transparent Electrode TCF-6 Present Invention
  • the silver nanowire coating layer was calendered, and instead of the Baytron PH510 dimethyl sulfoxide 5% additive solution, an ITO dispersion (trade name; EI) manufactured by Gemco Co., Ltd. was used for the dry film thickness.
  • EI the coating was applied to a thickness of 100 nm.
  • the silver nanowire dispersion liquid whose viscosity was adjusted was subjected to gravure printing (K printing) using a plate in which a striped pattern with a width of 10 mm was formed on a 100 ⁇ m-thick smooth polyethylene terephthalate film support subjected to corona discharge treatment.
  • K printing gravure printing
  • Proofer Matsuo Sangyo Co., Ltd.
  • the number of printings was adjusted so that the amount of silver nanowires was 0.05 g / m 2 . Further, the silver nanowire layer was calendered.
  • gravure printing was performed in the same manner using a Baytron PH510 dimethyl sulfoxide 5% addition solution so as to overlap the previously formed silver nanowire pattern.
  • the number of printings was adjusted so that the dry film thickness was 100 nm.
  • the silver nanowire dispersion liquid whose viscosity was adjusted was mounted on an inkjet printer MJ-800C (manufactured by Seiko Epson Corporation), and was subjected to corona discharge treatment. A pattern was formed. The printing density and the number of printings were adjusted so that the basis weight of the silver nanowires was 0.05 g / m 2 . Further, the silver nanowire layer was calendered. Next, by using Baytron PH510 dimethyl sulfoxide 5% addition liquid, ink jet printing was performed on the previously formed silver nanowire pattern so that the dry film thickness was 100 nm.
  • the transmittance was determined by measuring the total light transmittance of the conductive pattern portion using an AUTOMATIC ZEMETER (MODEL TC-HIIIDP) manufactured by Tokyo Denshoku.
  • the surface specific resistance of the conductive pattern portion was measured by a four-terminal method using a resistivity meter Loresta GP manufactured by Dia Instruments.
  • the surface shape is determined by measuring the electrode surface with an atomic force microscope (AFM), the arithmetic average roughness Ra and the maximum height Rz of the conductive part pattern part surface, the maximum height difference between the conductive part pattern part and the non-pattern part of the transparent electrode Asked.
  • AFM atomic force microscope
  • the arithmetic average roughness Ra and the maximum height Rz of the conductive part pattern part surface are values according to the surface roughness specified in JIS B601 (2001).
  • Ra and Rz are measured using commercially available atoms. Using an atomic force microscope (AFM), the following method was used.
  • an SPI 3800N probe station and SPA400 multifunctional unit manufactured by Seiko Instruments Inc. as the AFM set the sample cut to a size of about 1 cm square on a horizontal sample stage on the piezo scanner, and place the cantilever on the sample surface.
  • scanning was performed in the XY direction, and the unevenness of the sample at that time was captured by the displacement of the piezo in the Z direction.
  • a piezo scanner that can scan XY 150 ⁇ m and Z 5 ⁇ m was used.
  • the cantilever was a silicon cantilever SI-DF20 manufactured by Seiko Instruments Inc., which had a resonance frequency of 132 kHz and a spring constant of 15 N / m, and was measured in the DFM mode (Dynamic Force Mode). A measurement area of 80 ⁇ 80 ⁇ m was measured at a scanning frequency of 0.1 Hz.
  • the arithmetic average roughness Ra and the maximum height Rz on the coated surface side of the support before applying the conductive portion are each 0.6 nm. 18 nm.
  • Table 1 shows the results of measurement and evaluation.
  • Table 1 shows that the transparent electrode of the present invention is excellent in conductivity (surface specific resistance) and transparency (transmittance) and high in smoothness (surface shape).
  • Example 2 Production of organic electroluminescence element >> Using the transparent electrodes TCF-1 to 8 produced in Example 1 as the first electrode (anode), organic EL elements OLED-1 to OLED-1 to 8 were produced respectively by the following procedure.
  • the host material polyvinylcarbazole (PVK) is 1% red dopant material Btp 2 Ir (acac), 2 % green dopant material Ir (ppy) 3 ,
  • LiF was deposited as an electron transport layer forming material under a vacuum of 5 ⁇ 10 ⁇ 4 Pa to form an electron transport layer having a thickness of 0.5 nm.
  • Al is formed as a second electrode (cathode) forming material under a vacuum of 5 ⁇ 10 ⁇ 4 Pa so as to be perpendicular to the conductive portion of the first electrode in a stripe shape having a width of 10 mm.
  • Mask evaporation was performed to form a second electrode having a thickness of 100 nm.
  • Rectification ratio current value when + 3V is applied / current value when -3V is applied Table 2 shows the evaluation results.
  • the transparent electrode of the present invention having excellent conductivity and transparency and high smoothness is used as the electrode of the organic electroluminescence element, the organic electroluminescence element has little emission luminance unevenness and current leakage. I understand that.

Abstract

Disclosed are a transparent electrode having excellent conductivity, excellent transparency and high smoothness, a method for producing the transparent electrode, and an organic electroluminescent element using the transparent electrode.  The transparent electrode has a patterned conductive part and a non-patterned part on a transparent support, and is characterized in that the conductive part contains a metal nanowire and a conductive polymer, or alternatively a metal nanowire and a metal oxide, that the non-patterned part contains a resin, that the surface of the conductive part has an arithmetic average roughness Ra of not more than 5 nm and a maximum height Rz of not more than 50 nm, and that the maximum difference in height between the conductive part and the non-patterned part is not more than 50 nm.

Description

透明電極、有機エレクトロルミネッセンス素子及び透明電極の製造方法Transparent electrode, organic electroluminescence element, and method for producing transparent electrode
 本発明は、導電性、透明性に優れ、平滑性が高い透明電極、その製造方法及び該透明電極を用いた有機エレクトロルミネッセンス素子に関する。 The present invention relates to a transparent electrode having excellent conductivity and transparency and high smoothness, a method for producing the same, and an organic electroluminescence device using the transparent electrode.
 近年、薄型TV需要の高まりに伴い、液晶、プラズマ、有機エレクトロルミネッセンス、フィールドエミッション等、各種方式のディスプレイ技術が開発されている。これら表示方式の異なるいずれのディスプレイにおいても、透明電極は必須の構成技術となっている。また、テレビ以外でもタッチパネルや携帯電話、電子ペーパー、各種太陽電池、各種エレクトロルミネッセンス調光素子においても、透明電極は欠くことのできない技術要素となっている。 In recent years, various types of display technologies such as liquid crystal, plasma, organic electroluminescence, field emission, etc. have been developed in response to increasing demand for thin TVs. In any of these displays having different display methods, the transparent electrode is an essential constituent technology. In addition to televisions, transparent electrodes are an indispensable technical element in touch panels, mobile phones, electronic paper, various solar cells, and various electroluminescence light control elements.
 従来、透明電極として、Au、Ag、Pt、Cu等の各種金属薄膜や、錫や亜鉛をドープした酸化インジウム(ITO、IZO)、アルミニウムやガリウムをドープした酸化亜鉛(AZO、GZO)、フッ素やアンチモンをドープした酸化錫(FTO、ATO)等の金属酸化物薄膜、TiN、ZrN、HfN等の導電性窒化物薄膜、LaB等の導電性ホウ素化物薄膜が知られており、またこれらを組み合わせたBi/Au/Bi、TiO/Ag/TiO等の各種電極も知られている。無機物以外にも、CNT(カーボンナノチューブ)や導電性高分子を使用した透明電極も提案されている(例えば、非特許文献1参照)。 Conventionally, as transparent electrodes, various metal thin films such as Au, Ag, Pt, Cu, indium oxide doped with tin or zinc (ITO, IZO), zinc oxide doped with aluminum or gallium (AZO, GZO), fluorine, Metal oxide thin films such as tin oxide (FTO, ATO) doped with antimony, conductive nitride thin films such as TiN, ZrN, and HfN, and conductive boride thin films such as LaB 6 are known and combinations thereof. Various electrodes such as Bi 2 O 3 / Au / Bi 2 O 3 and TiO 2 / Ag / TiO 2 are also known. In addition to inorganic materials, transparent electrodes using CNTs (carbon nanotubes) and conductive polymers have also been proposed (see, for example, Non-Patent Document 1).
 しかしながら、上述した金属薄膜、窒化物薄膜、ホウ素物薄膜及び導電性高分子薄膜は、光透過性と導電性の特性が両立し得ないため、電磁波シールド等の特殊な技術分野や、比較的高い抵抗値でも許容されるようなタッチパネル分野においてのみ使用されていた。 However, since the metal thin film, nitride thin film, boron thin film and conductive polymer thin film described above cannot have both light transmission properties and conductive properties, special technical fields such as electromagnetic shielding and the like are relatively high. It was used only in the touch panel field where resistance values are allowed.
 一方、金属酸化物薄膜は光透過性と導電性との両立が可能で耐久性にも優れるため、透明電極の主流となりつつある。特にITOは光透過性と導電性とのバランスがよく、酸溶液を用いたウェットエッチングによる電極微細パターン形成が容易であることから、各種オプトエレクトロニクス用の透明電極として多用されている。しかしながら、上記のITO等に代表される酸化物導電体は、スパッタリング法等の真空プロセスやゾル-ゲル法等の液相法により基体表面に透明導電膜を形成する。スパッタリング法等の真空プロセスで透明導電膜を形成するには、高価な設備が必要である。一方、液相法では、高い導電性を得るためには500℃以上の高温処理が必要である。 On the other hand, metal oxide thin films are becoming mainstream of transparent electrodes because they can achieve both light transmittance and conductivity and are excellent in durability. In particular, ITO is widely used as a transparent electrode for various optoelectronics because it has a good balance between light transmittance and conductivity and it is easy to form an electrode fine pattern by wet etching using an acid solution. However, the above oxide conductor represented by ITO or the like forms a transparent conductive film on the surface of the substrate by a vacuum process such as sputtering or a liquid phase method such as sol-gel. In order to form a transparent conductive film by a vacuum process such as sputtering, expensive equipment is required. On the other hand, in the liquid phase method, high temperature treatment at 500 ° C. or higher is necessary to obtain high conductivity.
 それ以外の透明電極としては、プラズマディスプレイの電磁波シールド膜に代表される金属パターンによりメッシュ構造を形成した透明電極が挙げられ、(例えば、特許文献1、2参照)また金属ナノワイヤを用いた微細メッシュからなる透明電極が開示されている(例えば、特許文献3参照)。特に銀を用いた金属メッシュでは、銀本来の高い導電率により良好な導電性と透明性を両立することができる。 Other transparent electrodes include transparent electrodes in which a mesh structure is formed by a metal pattern typified by an electromagnetic wave shielding film of a plasma display (see, for example, Patent Documents 1 and 2), and a fine mesh using metal nanowires The transparent electrode which consists of is disclosed (for example, refer patent document 3). In particular, in a metal mesh using silver, both good conductivity and transparency can be achieved due to the inherent high conductivity of silver.
 しかし、金属メッシュ部には高い導電性を有しているが、メッシュ構造であるが故に光を透過する部分には導電性を有していないという欠点がある。 However, although the metal mesh portion has high conductivity, there is a defect that the portion that transmits light does not have conductivity because of the mesh structure.
 さらに有機エレクトロルミネッセンス素子用の電極には、表面が平滑な透明電極が必要とされている。特に、有機エレクトロルミネッセンス素子用の電極の場合、その上に有機化合物の超薄膜を形成するため、透明電極には優れた表面平滑性が要求される。有機エレクトロルミネッセンス素子では、陽極の表面高低差(表面凹凸)が大きいと、その凸部(突起)に電界が集中してEL素子が破壊されたり、該凸部が陰極と短絡したりして、非発光点(エレクトロルミネッセンス素子表面上で発光しない点)が発生することがある。またパターン化された電極においては、電極パターンエッジ部での有機化合物の膜厚が薄くなり、そこから電流リークが発生し易い。これらの現象が起こると、有機エレクトロルミネッセンス素子の耐久性が著しく低下するので、陽極である透明電極には優れた平滑性が求められている。 Furthermore, a transparent electrode with a smooth surface is required for an electrode for an organic electroluminescence element. In particular, in the case of an electrode for an organic electroluminescence element, an ultra-thin film of an organic compound is formed on the electrode, so that an excellent surface smoothness is required for the transparent electrode. In the organic electroluminescence element, when the surface height difference (surface unevenness) of the anode is large, the electric field concentrates on the protrusion (protrusion) and the EL element is destroyed, or the protrusion is short-circuited with the cathode, Non-light emitting points (points that do not emit light on the surface of the electroluminescence element) may occur. Further, in the patterned electrode, the film thickness of the organic compound at the electrode pattern edge portion becomes thin, and current leakage is likely to occur therefrom. When these phenomena occur, the durability of the organic electroluminescence element is remarkably lowered. Therefore, excellent smoothness is required for the transparent electrode as the anode.
 特許文献4には、金属細線メッシュパターンの上にITOを塗布した透明導電性シートを用いた無機エレクトロルミネッセンス素子について記載されているが、無機エレクトロルミネッセンス素子よりもさらに高い平滑性が要求される有機エレクトロルミネッセンス素子については、一切触れられていない。 Patent Document 4 describes an inorganic electroluminescent element using a transparent conductive sheet in which ITO is coated on a metal fine wire mesh pattern. However, organic matter that requires higher smoothness than an inorganic electroluminescent element is described. No mention is made of electroluminescence elements.
 特許文献5には、紫外線硬化性の樹脂層と電極層を共に仮支持板より引き剥がす工程からなる電極層付き可撓性樹脂フィルムの製造方法について記載されているが、面全体の平滑性の指標となる算術平均粗さRaには何ら触れられておらず、また電極層形成は真空蒸着法やスパッタ法に限定されており、製造コストや設備が高価になる欠点がある。 Patent Document 5 describes a method for producing a flexible resin film with an electrode layer comprising a step of peeling both an ultraviolet curable resin layer and an electrode layer from a temporary support plate. The arithmetic average roughness Ra serving as an index is not mentioned at all, and the formation of the electrode layer is limited to the vacuum deposition method or the sputtering method, which has the disadvantage that the manufacturing cost and equipment are expensive.
特開2003-46293号公報JP 2003-46293 A 特開2004-221564号公報JP 2004-221564 A 米国特許出願公開第2007/0074316A1号明細書US Patent Application Publication No. 2007 / 0074316A1 特開2006-352073号公報JP 2006-352073 A 特開2006-236626号公報JP 2006-236626 A
 本発明の目的は、前記事情に鑑みてなされたものであり、導電性、透明性に優れ、平滑性が高い透明電極、その製造方法及び該透明電極を用いた有機エレクトロルミネッセンス素子を簡便に提供することにある。 The object of the present invention has been made in view of the above circumstances, and simply provides a transparent electrode having excellent conductivity and transparency and high smoothness, a method for producing the same, and an organic electroluminescence device using the transparent electrode. There is to do.
 本発明の上記目的は、以下の構成により達成することができる。 The above object of the present invention can be achieved by the following configuration.
 1.透明支持体上に、パターン化された導電部及び非パターン部を有する透明電極であって、前記導電部は金属ナノワイヤと導電性高分子、または金属ナノワイヤと金属酸化物を含有し、前記非パターン部は樹脂を含有し、前記導電部の表面の算術平均粗さRaが5nm以下、かつ最大高さRzが50nm以下であり、前記導電部と前記非パターン部の最大高低差が50nm以下であることを特徴とする透明電極。 1. A transparent electrode having a patterned conductive portion and a non-pattern portion on a transparent support, wherein the conductive portion contains a metal nanowire and a conductive polymer, or a metal nanowire and a metal oxide, and the non-pattern The portion contains a resin, the arithmetic average roughness Ra of the surface of the conductive portion is 5 nm or less, the maximum height Rz is 50 nm or less, and the maximum height difference between the conductive portion and the non-patterned portion is 50 nm or less. A transparent electrode characterized by that.
 2.前記1に記載の透明電極を含むことを特徴とする有機エレクトロルミネッセンス素子。 2. 2. An organic electroluminescence device comprising the transparent electrode as described in 1 above.
 3.透明支持体上に、パターン化された導電部及び非パターン部を有する透明電極の製造方法であって、前記導電部は金属ナノワイヤと導電性高分子、または金属ナノワイヤと金属酸化物を含有し、前記非パターン部は樹脂を含有し、予め第一の支持体上に形成した前記導電部を、予め第二の支持体上に形成した上記樹脂を含有する層に接着した後に、第一の支持体を剥離することを特徴とする透明電極の製造方法。 3. A method for producing a transparent electrode having a patterned conductive portion and a non-patterned portion on a transparent support, wherein the conductive portion contains a metal nanowire and a conductive polymer, or a metal nanowire and a metal oxide, The non-patterned portion contains a resin, and the first support is formed after the conductive portion previously formed on the first support is bonded to the resin-containing layer formed on the second support in advance. A method for producing a transparent electrode, comprising peeling off the body.
 4.前記導電部が、液相成膜法により形成されることを特徴とする前記3に記載の透明電極の製造方法。 4. 4. The method for producing a transparent electrode as described in 3 above, wherein the conductive part is formed by a liquid phase film forming method.
 本発明によれば、導電性、透明性に優れ、平滑性が高い透明電極、その製造方法及び該透明電極を用いた有機エレクトロルミネッセンス素子を簡便に提供することができる。 According to the present invention, a transparent electrode having excellent conductivity and transparency and high smoothness, a method for producing the same, and an organic electroluminescence device using the transparent electrode can be easily provided.
第一の支持体上に形成した導電部を示す、転写する前の断面図である。It is sectional drawing before the transcription | transfer which shows the electroconductive part formed on the 1st support body. 第一の支持体上に形成した導電部を、第二の支持体上に形成した樹脂を含有する層に接着して埋没、転写した後、第一の支持体を剥離した後の透明電極の断面図である。The conductive part formed on the first support is bonded to the resin-containing layer formed on the second support, embedded, transferred, and then the transparent electrode after the first support is peeled off. It is sectional drawing. 導電部及び非パターン部を有する透明電極を透明電極表面側から見た図である。It is the figure which looked at the transparent electrode which has an electroconductive part and a non-pattern part from the transparent electrode surface side.
 以下、本発明について図により説明をする。 Hereinafter, the present invention will be described with reference to the drawings.
 図1は、第一の支持体1上の、パターン化された金属ナノワイヤと導電性高分子からなる導電部2、及びパターン化された金属ナノワイヤと金属酸化物からなる導電部3を、第二の支持体10上に形成した樹脂を含有する層(非表示)に転写する前の断面図である。 FIG. 1 shows a conductive part 2 made of a patterned metal nanowire and a conductive polymer and a conductive part 3 made of a patterned metal nanowire and a metal oxide on a first support 1. It is sectional drawing before transcribe | transferring to the layer (non-display) containing the resin formed on the support body.
 図2は、第一の支持体1上の、パターン化された金属ナノワイヤと導電性高分子からなる導電部2、及びパターン化された金属ナノワイヤと金属酸化物からなる導電部3を、第二の支持体10上に形成した樹脂を含有する層に接着して埋没、転写した後、第一の支持体1を剥離して作製した透明電極20の断面図である。 FIG. 2 shows a conductive part 2 made of a patterned metal nanowire and a conductive polymer and a conductive part 3 made of a patterned metal nanowire and a metal oxide on the first support 1. It is sectional drawing of the transparent electrode 20 produced by peeling the 1st support body 1 after adhere | attaching on the layer containing the resin formed on this support body 10, embedding, and transferring.
 図3は、パターン化された金属ナノワイヤと導電性高分子からなる導電部2、及びパターン化された金属ナノワイヤと金属酸化物からなる導電部3、及び非導電性の非パターン部4を有する透明電極20を透明電極表面側から見た図である。 FIG. 3 shows a transparent part having a conductive part 2 made of a patterned metal nanowire and a conductive polymer, a conductive part 3 made of a patterned metal nanowire and a metal oxide, and a non-conductive non-pattern part 4. It is the figure which looked at the electrode 20 from the transparent electrode surface side.
 以下、本発明とその構成要素等について詳細な説明をする。 Hereinafter, the present invention and its components will be described in detail.
 〔支持体〕
 本発明では、透明支持体として、プラスチックフィルム、プラスチック板、ガラス等を用いることができる。
[Support]
In the present invention, a plastic film, a plastic plate, glass or the like can be used as the transparent support.
 プラスチックフィルム及びプラスチック板の原料としては、例えば、ポリエチレンテレフタレート(PET)、ポリエチレンナフタレート等のポリエステル類、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン、EVA等のポリオレフィン類、ポリ塩化ビニル、ポリ塩化ビニリデン等のビニル系樹脂、ポリエーテルエーテルケトン(PEEK)、ポリサルホン(PSF)、ポリエーテルサルホン(PES)、ポリカーボネート(PC)、ポリアミド、ポリイミド、アクリル樹脂、トリアセチルセルロース(TAC)等を用いることができる。 Examples of raw materials for plastic films and plastic plates include polyesters such as polyethylene terephthalate (PET) and polyethylene naphthalate, polyolefins such as polyethylene (PE), polypropylene (PP), polystyrene and EVA, polyvinyl chloride, and polychlorinated chloride. Use vinyl resins such as vinylidene, polyether ether ketone (PEEK), polysulfone (PSF), polyether sulfone (PES), polycarbonate (PC), polyamide, polyimide, acrylic resin, triacetyl cellulose (TAC), etc. Can do.
 本発明の透明電極の製造方法において、第一の支持体には、剥離したパターン化された導電部及び接着層の剥離面を平滑にするため、表面の平滑性に優れているものが用いられる。第一の支持体の表面の平滑性(凹凸)は算術平均粗さRaが5nm以下、かつ最大高さRzが50nm以下であることが好ましく、Raが2nm以下、かつRzが30nm以下であることがより好ましく、さらに好ましくはRaが1nm以下、かつRzが20nm以下である。 In the method for producing a transparent electrode of the present invention, a material having excellent surface smoothness is used for the first support in order to smooth the peeled surface of the peeled patterned conductive part and the adhesive layer. . The smoothness (unevenness) of the surface of the first support is preferably such that the arithmetic average roughness Ra is 5 nm or less, the maximum height Rz is 50 nm or less, Ra is 2 nm or less, and Rz is 30 nm or less. More preferably, Ra is 1 nm or less, and Rz is 20 nm or less.
 第一の支持体の表面は、熱硬化性樹脂、紫外線硬化性樹脂、電子線硬化性樹脂、放射線硬化性樹脂等の下塗り層を付与して平滑化してもよいし、研磨等の機械加工によって平滑にすることもできる。また剥離を容易にするために離型層を形成してもよく、離型層の形成材は、公知の離型層を形成するポリマーやワックス等を適宜選択使用でき、例えばパラフィンワックス、アクリル系、ウレタン系、シリコン系、メラミン系、尿素系、尿素-メラミン系、セルロース系、ベンゾグアナミン系等の樹脂及び界面活性剤を、単独またはこれらの混合物を主成分とした有機溶剤もしくは水に溶解させた塗料をグラビア印刷法、スクリーン印刷法、オフセット印刷法等の通常の印刷法で前記支持体上に塗布、乾燥(熱硬化性樹脂、紫外線硬化性樹脂、電子線硬化性樹脂、放射線硬化性樹脂等硬化性塗膜には硬化)させて形成したものが挙げられる。離型層の厚さとしては特に制限はなく、0.1~3μm程度の範囲から適宜採用される。 The surface of the first support may be smoothed by applying an undercoat layer such as a thermosetting resin, an ultraviolet curable resin, an electron beam curable resin, or a radiation curable resin, or by machining such as polishing. It can be smooth. Further, a release layer may be formed to facilitate peeling, and as a release layer forming material, a polymer or wax that forms a known release layer can be appropriately selected and used. For example, paraffin wax, acrylic , Urethane, silicon, melamine, urea, urea-melamine, cellulose, benzoguanamine, and other resins and surfactants were dissolved in an organic solvent or water mainly composed of these or a mixture thereof. The paint is applied onto the support by ordinary printing methods such as gravure printing, screen printing, offset printing, etc., and dried (thermosetting resin, ultraviolet curable resin, electron beam curable resin, radiation curable resin, etc.) Examples of the curable coating film include those formed by curing. The thickness of the release layer is not particularly limited, and is suitably selected from the range of about 0.1 to 3 μm.
 ここで、第一の支持体の表面の平滑性(凹凸)を表すRaとRzとは、Ra=算術平均粗さとRz=最大高さ(表面の山頂部と谷底部との高低差)を意味し、JIS B601(2001)に規定される表面粗さに準ずる値である。本発明においてRaとRzの測定には、市販の原子間力顕微鏡(Atomic Force Microscopy:AFM)を用いることができ、例えば、以下の方法で測定できる。 Here, Ra and Rz representing the smoothness (unevenness) of the surface of the first support means Ra = arithmetic mean roughness and Rz = maximum height (height difference between the top and bottom of the surface). And it is a value according to the surface roughness prescribed | regulated to JISB601 (2001). In the present invention, Ra and Rz can be measured by using a commercially available atomic force microscope (AFM), for example, by the following method.
 AFMとして、セイコーインスツルメンツ社製SPI3800Nプローブステーション及びSPA400多機能型ユニットを使用し、約1cm角の大きさに切り取った試料を、ピエゾスキャナー上の水平な試料台上にセットし、カンチレバーを試料表面にアプローチし、原子間力が働く領域に達したところで、XY方向にスキャンし、その際の試料の凹凸をZ方向のピエゾの変位で捉える。ピエゾスキャナーは、XY150μm、Z5μmが走査可能なものを使用する。カンチレバーは、セイコーインスツルメンツ社製シリコンカンチレバーSI-DF20で、共振周波数120~150kHz、バネ定数12~20N/mのものを用い、DFMモード(Dynamic Force Mode)で測定する。測定領域80×80μmを、走査周波数0.1Hzで測定する。 Using an SPI 3800N probe station and SPA400 multifunctional unit manufactured by Seiko Instruments Inc. as the AFM, set the sample cut to a size of about 1 cm square on a horizontal sample stage on the piezo scanner, and place the cantilever on the sample surface. When approaching and reaching the region where the atomic force works, scanning is performed in the XY direction, and the unevenness of the sample at that time is captured by the displacement of the piezo in the Z direction. A piezo scanner that can scan XY 150 μm and Z 5 μm is used. The cantilever is a silicon cantilever SI-DF20 manufactured by Seiko Instruments Inc., which has a resonance frequency of 120 to 150 kHz and a spring constant of 12 to 20 N / m, and is measured in a DFM mode (Dynamic Force Mode). A measurement area of 80 × 80 μm is measured at a scanning frequency of 0.1 Hz.
 本発明の透明電極の製造方法において、第二の支持体は、大気中の酸素、水分を遮断する目的でガスバリア層を設けるのが好ましい。ガスバリア層の形成材料としては、酸化シリコン、窒化シリコン、酸化窒化シリコン、窒化アルミニウム、酸化アルミニウム等の金属酸化物、金属窒化物が使用できる。これらの材料は、水蒸気バリア機能のほかに酸素バリア機能も有する。特にバリア性、耐溶剤性、透明性が良好な窒化シリコン、酸化窒化シリコンが好ましい。また、バリア層は必要に応じて多層構成とすることも可能である。ガスバリア層の形成方法は、材料に応じて、抵抗加熱蒸着法、電子ビーム蒸着法、反応性蒸着法、イオンプレーティング法、スパッタリング法を用いることができる。 In the method for producing a transparent electrode of the present invention, the second support is preferably provided with a gas barrier layer for the purpose of blocking oxygen and moisture in the atmosphere. As a material for forming the gas barrier layer, metal oxides such as silicon oxide, silicon nitride, silicon oxynitride, aluminum nitride, and aluminum oxide, and metal nitrides can be used. These materials have an oxygen barrier function in addition to a water vapor barrier function. In particular, silicon nitride and silicon oxynitride having favorable barrier properties, solvent resistance, and transparency are preferable. In addition, the barrier layer may have a multilayer structure as necessary. As a method for forming the gas barrier layer, a resistance heating vapor deposition method, an electron beam vapor deposition method, a reactive vapor deposition method, an ion plating method, or a sputtering method can be used depending on the material.
 前記ガスバリア層を構成する各無機層の厚みに関しては特に限定されないが、典型的には1層当たり5nm~500nmの範囲内であることが好ましく、さらに好ましくは1層当たり10nm~200nmである。 The thickness of each inorganic layer constituting the gas barrier layer is not particularly limited, but typically it is preferably in the range of 5 nm to 500 nm per layer, more preferably 10 nm to 200 nm per layer.
 ガスバリア層は第二の支持体の少なくとも一方の面に設けられ、接着層接着側に設けられるのが好ましく、両面に設けられるのがより好ましい。 The gas barrier layer is provided on at least one surface of the second support, and is preferably provided on the adhesive layer adhesion side, and more preferably on both surfaces.
 〔金属ナノワイヤ〕
 一般に、金属ナノワイヤとは、金属元素を主要な構成要素とする、原子スケールからnmサイズの直径を有する線状構造体のことをいう。
[Metal nanowires]
In general, a metal nanowire refers to a linear structure having a diameter from the atomic scale to the nm size, which contains a metal element as a main component.
 本発明に用いられる金属ナノワイヤとしては、1つの金属ナノワイヤで長い導電パスを形成するために、平均長さが3μm以上であることが好ましく、さらには3~500μmが好ましく、特に3~300μmであることが好ましい。併せて、長さの相対標準偏差は40%以下であることが好ましい。また、平均直径は、透明性の観点からは小さいことが好ましく、一方で、導電性の観点からは大きい方が好ましい。本発明においては、金属ナノワイヤの平均直径として10~300nmが好ましく、30~200nmであることがより好ましい。併せて、直径の相対標準偏差は20%以下であることが好ましい。 The metal nanowire used in the present invention preferably has an average length of 3 μm or more, more preferably 3 to 500 μm, particularly 3 to 300 μm in order to form a long conductive path with one metal nanowire. It is preferable. In addition, the relative standard deviation of the length is preferably 40% or less. Moreover, it is preferable that an average diameter is small from a transparency viewpoint, On the other hand, the larger one is preferable from an electroconductive viewpoint. In the present invention, the average diameter of the metal nanowire is preferably 10 to 300 nm, and more preferably 30 to 200 nm. In addition, the relative standard deviation of the diameter is preferably 20% or less.
 本発明に係る金属ナノワイヤの金属組成としては特に制限はなく、貴金属元素や卑金属元素の1種または複数の金属から構成することができるが、貴金属(例えば、金、白金、銀、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム等)及び鉄、コバルト、銅、錫からなる群に属する少なくとも1種の金属を含むことが好ましく、導電性の観点から少なくとも銀を含むことがより好ましい。また、導電性と安定性(金属ナノワイヤの硫化や酸化耐性、及びマイグレーション耐性)を両立するために、銀と、銀を除く貴金属に属する少なくとも1種の金属を含むことも好ましい。本発明に係る金属ナノワイヤが2種類以上の金属元素を含む場合には、例えば、金属ナノワイヤの表面と内部で金属組成が異なっていてもよいし、金属ナノワイヤ全体が同一の金属組成を有していてもよい。 There is no restriction | limiting in particular as a metal composition of the metal nanowire which concerns on this invention, Although it can comprise from the 1 type or several metal of a noble metal element and a base metal element, noble metals (for example, gold, platinum, silver, palladium, rhodium, (Iridium, ruthenium, osmium, etc.) and at least one metal belonging to the group consisting of iron, cobalt, copper, and tin is preferable, and at least silver is more preferable from the viewpoint of conductivity. In order to achieve both conductivity and stability (sulfurization and oxidation resistance of metal nanowires and migration resistance), it is also preferable to include silver and at least one metal belonging to a noble metal other than silver. When the metal nanowire according to the present invention includes two or more kinds of metal elements, for example, the metal composition may be different between the inside and the surface of the metal nanowire, or the entire metal nanowire has the same metal composition. May be.
 本発明において金属ナノワイヤの製造手段には特に制限はなく、例えば、液相法や気相法等の公知の手段を用いることができる。また、具体的な製造方法にも特に制限はなく、公知の製造方法を用いることができる。例えば、Agナノワイヤの製造方法としては、Adv.Mater.,2002,14,833~837;Chem.Mater.,2002,14,4736~4745等、Auナノワイヤの製造方法としては特開2006-233252号公報等、Cuナノワイヤの製造方法としては特開2002-266007号公報等、Coナノワイヤの製造方法としては特開2004-149871号公報等を参考にすることができる。特に、上述した、Adv.Mater.及びChem.Mater.で報告されたAgナノワイヤの製造方法は、水系で簡便にAgナノワイヤを製造することができ、また銀の導電率は金属中で最大であることから、本発明に係る金属ナノワイヤの製造方法として好ましく適用することができる。 In the present invention, there are no particular limitations on the means for producing the metal nanowire, and for example, known means such as a liquid phase method and a gas phase method can be used. Moreover, there is no restriction | limiting in particular in a specific manufacturing method, A well-known manufacturing method can be used. For example, as a method for producing Ag nanowires, Adv. Mater. , 2002, 14, 833-837; Chem. Mater. 2002, 14, 4736-4745, etc., as a method for producing Co nanowires, such as JP 2006-233252, etc. as a method for producing Au nanowires, and JP 2002-266007, etc., as a method for producing Cu nanowires. Reference can be made to Japanese Unexamined Patent Publication No. 2004-149871. In particular, Adv. Mater. And Chem. Mater. The method for producing Ag nanowires reported in (1) can be easily produced in an aqueous system, and since the conductivity of silver is the highest among metals, it is preferable as the method for producing metal nanowires according to the present invention. Can be applied.
 〔導電性高分子〕
 本発明に用いられる導電性高分子としては、特に限定されず、ポリピロール、ポリインドール、ポリカルバゾール、ポリチオフェン(基本のポリチオフェンを含む、以下同様)系、ポリアニリン系、ポリアセチレン系、ポリフラン系、ポリパラフェニレンビニレン系、ポリアズレン系、ポリパラフェニレン系、ポリパラフェニレンサルファイド系、ポリイソチアナフテン系、ポリチアジル等の鎖状導電性ポリマーや、ポリアセン系導電性ポリマーも利用することができる。中でも、導電性、透明性等の観点からポリエチレンジオキシチオフェン(PEDOT)やポリアニリン系が好ましい。
[Conductive polymer]
The conductive polymer used in the present invention is not particularly limited, and polypyrrole, polyindole, polycarbazole, polythiophene (including basic polythiophene, the same shall apply hereinafter), polyaniline, polyacetylene, polyfuran, and polyparaphenylene. Chain conductive polymers such as vinylene, polyazulene, polyparaphenylene, polyparaphenylene sulfide, polyisothianaphthene, and polythiazyl, and polyacene conductive polymers can also be used. Of these, polyethylene dioxythiophene (PEDOT) and polyaniline are preferable from the viewpoints of conductivity and transparency.
 また、本発明においては、上記導電性高分子の導電性をより高めるために、ドーピング処理を施すことが好ましい。導電性高分子に対するドーパントとしては、例えば、炭素数が6~30の炭化水素基を有するスルホン酸(以下「長鎖スルホン酸」ともいう。)あるいはその重合体(例えば、ポリスチレンスルホン酸)、ハロゲン、ルイス酸、プロトン酸、遷移金属ハロゲン化物、遷移金属化合物、アルカリ金属、アルカリ土類金属、MClO(M=Li、Na)、R(R=CH、C、C)、またはR(R=CH、C、C)からなる群から選ばれる少なくとも1種が挙げられる。中でも、上記長鎖スルホン酸が好ましい。 Moreover, in this invention, in order to raise the electroconductivity of the said conductive polymer more, it is preferable to perform a doping process. Examples of the dopant for the conductive polymer include a sulfonic acid having a hydrocarbon group having 6 to 30 carbon atoms (hereinafter also referred to as “long-chain sulfonic acid”) or a polymer thereof (for example, polystyrene sulfonic acid), halogen , Lewis acid, proton acid, transition metal halide, transition metal compound, alkali metal, alkaline earth metal, MClO 4 (M = Li + , Na + ), R 4 N + (R═CH 3 , C 4 H 9 , C 6 H 5 ), or R 4 P + (R═CH 3 , C 4 H 9 , C 6 H 5 ). Of these, the long-chain sulfonic acid is preferable.
 長鎖スルホン酸としては、ジノニルナフタレンジスルホン酸、ジノニルナフタレンスルホン酸、ドデシルベンゼンスルホン酸等が挙げられる。ハロゲンとしては、Cl、Br、I、ICl、IBr、IF等が挙げられる。ルイス酸としては、PF、AsF、SbF、BF、BCl、BBr、SO、GaCl等が挙げられる。プロトン酸としては、HF、HCl、HNO、HSO、HBF、HClO、FSOH、ClSOH、CFSOH等が挙げられる。遷移金属ハロゲン化物としては、NbF、TaF、MoF、WF、RuF、BiF、TiCl、ZrCl、MoCl、MoCl、WCl、FeCl、TeCl、SnCl、SeCl、FeBr、SnI等が挙げられる。遷移金属化合物としては、AgClO、AgBF、La(NO、Sm(NO等が挙げられる。アルカリ金属としては、Li、Na、K、Rb、Cs等が挙げられる。アルカリ土類金属としては、Be、Mg、Ca、Sc、Ba等が挙げられる。 Examples of the long chain sulfonic acid include dinonyl naphthalene disulfonic acid, dinonyl naphthalene sulfonic acid, and dodecylbenzene sulfonic acid. Examples of the halogen include Cl 2 , Br 2 , I 2 , ICl 3 , IBr, IF 5 and the like. Examples of the Lewis acid include PF 5 , AsF 5 , SbF 5 , BF 3 , BCl 3 , BBr 3 , SO 3 , GaCl 3 and the like. Examples of the protonic acid include HF, HCl, HNO 3 , H 2 SO 4 , HBF 4 , HClO 4 , FSO 3 H, ClSO 3 H, CF 3 SO 3 H, and the like. The transition metal halide, NbF 5, TaF 5, MoF 5, WF 5, RuF 5, BiF 5, TiCl 4, ZrCl 4, MoCl 5, MoCl 3, WCl 5, FeCl 3, TeCl 4, SnCl 4, SeCl 4 , FeBr 3 , SnI 5 and the like. The transition metal compound, AgClO 4, AgBF 4, La (NO 3) 3, Sm (NO 3) 3 and the like. Examples of the alkali metal include Li, Na, K, Rb, and Cs. Examples of the alkaline earth metal include Be, Mg, Ca, Sc, and Ba.
 また、導電性高分子に対するドーパントは、水素化フラーレン、水酸化フラーレン、スルホン酸化フラーレン等のフラーレン類に導入されていてもよい。上記ドーパントは、導電性高分子100質量部に対して、0.001質量部以上含まれていることが好ましい。さらには、0.5質量部以上含まれていることがより好ましい。なお、本実施形態の透明導電性組成物は、長鎖スルホン酸、長鎖スルホン酸の重合体(例えば、ポリスチレンスルホン酸)、ハロゲン、ルイス酸、プロトン酸、遷移金属ハロゲン化物、遷移金属化合物、アルカリ金属、アルカリ土類金属、MClO、R、及びRからなる群から選ばれる少なくとも1種のドーパントと、フラーレン類との双方を含んでいてもよい。 The dopant for the conductive polymer may be introduced into fullerenes such as hydrogenated fullerene, hydroxylated fullerene, and sulfonated fullerene. It is preferable that 0.001 mass part or more of the said dopant is contained with respect to 100 mass parts of conductive polymers. Furthermore, it is more preferable that 0.5 mass part or more is contained. The transparent conductive composition of the present embodiment includes a long-chain sulfonic acid, a polymer of long-chain sulfonic acid (for example, polystyrene sulfonic acid), halogen, Lewis acid, proton acid, transition metal halide, transition metal compound, Both at least one dopant selected from the group consisting of alkali metals, alkaline earth metals, MClO 4 , R 4 N + , and R 4 P + and fullerenes may be included.
 本発明に用いられる導電性高分子は、2nd.ドーパントとして水溶性有機化合物を含有してもよい。本発明で用いることができる水溶性有機化合物には特に制限はなく、公知のものの中から適宜選択することができ、例えば、酸素含有化合物が好適に挙げられる。
前記酸素含有化合物としては、酸素を含有する限り特に制限はなく、例えば、水酸基含有化合物、カルボニル基含有化合物、エーテル基含有化合物、スルホキシド基含有化合物等が挙げられる。前記水酸基含有化合物としては、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、トリメチレングリコール、1,4-ブタンジオール、グリセリン等が挙げられ、これらの中でも、エチレングリコール、ジエチレングリコールが好ましい。前記カルボニル基含有化合物としては、例えば、イソホロン、プロピレンカーボネート、シクロヘキサノン、γ-ブチロラクトン等が挙げられる。前記エーテル基含有化合物としては、例えば、ジエチレングリコールモノエチルエーテル等が挙げられる。前記スルホキシド基含有化合物としては、例えば、ジメチルスルホキシド等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよいが、ジメチルスルホキシド、エチレングリコール、ジエチレングリコールから選ばれる少なくとも1種を用いることが特に好ましい。
The conductive polymer used in the present invention is 2nd. A water-soluble organic compound may be contained as a dopant. There is no restriction | limiting in particular in the water-soluble organic compound which can be used by this invention, It can select suitably from well-known things, For example, an oxygen containing compound is mentioned suitably.
The oxygen-containing compound is not particularly limited as long as it contains oxygen, and examples thereof include a hydroxyl group-containing compound, a carbonyl group-containing compound, an ether group-containing compound, and a sulfoxide group-containing compound. Examples of the hydroxyl group-containing compound include ethylene glycol, diethylene glycol, propylene glycol, trimethylene glycol, 1,4-butanediol, glycerin and the like. Among these, ethylene glycol and diethylene glycol are preferable. Examples of the carbonyl group-containing compound include isophorone, propylene carbonate, cyclohexanone, γ-butyrolactone, and the like. Examples of the ether group-containing compound include diethylene glycol monoethyl ether. Examples of the sulfoxide group-containing compound include dimethyl sulfoxide. These may be used alone or in combination of two or more, but it is particularly preferable to use at least one selected from dimethyl sulfoxide, ethylene glycol, and diethylene glycol.
 本発明に用いられる導電性高分子において、導電性高分子100質量部に対する上記2nd.ドーパントの含有量は0.001質量部以上が好ましく、0.01~50質量がより好ましく、0.01~10質量部が特に好ましい。 In the conductive polymer used in the present invention, the 2nd. The content of the dopant is preferably 0.001 part by mass or more, more preferably 0.01 to 50 parts by mass, and particularly preferably 0.01 to 10 parts by mass.
 〔金属酸化物〕
 本発明に用いられる金属酸化物としては、特に限定されないが、酸化インジウム、酸化亜鉛、酸化カドミウム、酸化ガリウム、酸化アンチモン、酸化アルミニウム等の微粒子、あるいは、これら酸化物に他の金属元素を添加したスズ添加酸化インジウム(ITO)、アンチモン添加酸化スズ(ATO)、亜鉛添加酸化インジウム(IZO)、アルミニウム添加酸化亜鉛(AZO)、ガリウム添加酸化亜鉛(GZO)等の微粒子が好適に用いられる。
[Metal oxide]
The metal oxide used in the present invention is not particularly limited, but fine particles such as indium oxide, zinc oxide, cadmium oxide, gallium oxide, antimony oxide, aluminum oxide, or other metal elements are added to these oxides. Fine particles such as tin-added indium oxide (ITO), antimony-added tin oxide (ATO), zinc-added indium oxide (IZO), aluminum-added zinc oxide (AZO), and gallium-added zinc oxide (GZO) are preferably used.
 これらの金属酸化物のうち、特に透明導電膜を構成するものとしては、スズ添加酸化インジウム(ITO)、アンチモン添加酸化スズ(ATO)、亜鉛添加酸化インジウム(IZO)、アルミニウム添加酸化亜鉛(AZO)、ガリウム添加酸化亜鉛(GZO)、酸化インジウム(In)、酸化亜鉛(ZnO)等が好適である。 Among these metal oxides, those that constitute a transparent conductive film include tin-added indium oxide (ITO), antimony-added tin oxide (ATO), zinc-added indium oxide (IZO), and aluminum-added zinc oxide (AZO). Further, gallium-doped zinc oxide (GZO), indium oxide (In 2 O 3 ), zinc oxide (ZnO), and the like are preferable.
 金属酸化物の平均粒径として1~100nmであることが好ましく、3~50nmであることが特に好ましい。金属酸化物の平均粒径は、下記式により計算したBET粒径を用いた。 The average particle diameter of the metal oxide is preferably 1 to 100 nm, particularly preferably 3 to 50 nm. The average particle size of the metal oxide was the BET particle size calculated by the following formula.
 BET粒径(nm)=6/(ρ×比表面積)×10
 但し、ρは透明導電性微粒子の真比重であり、例えば、金属酸化物がITO(錫含有酸化インジウム)である場合には、ρ=7.13×10(g/m)となる。また、比表面積は、BET法(一点法)により求めることができる。
BET particle size (nm) = 6 / (ρ × specific surface area) × 10 9
However, ρ is the true specific gravity of the transparent conductive fine particles. For example, when the metal oxide is ITO (tin-containing indium oxide), ρ = 7.13 × 10 9 (g / m 3 ). The specific surface area can be determined by the BET method (one point method).
 〔導電部〕
 本発明におけるパターン化された導電部は、金属ナノワイヤと導電性高分子、または金属ナノワイヤと金属酸化物を含有することを特徴とする。本発明における導電部に含有される導電性高分子または金属酸化物は、どちらか一方だけでもよいし、両方であってもよい。導電部の金属ナノワイヤは相互に接触していることが好ましく、さらにメッシュ状に接触していることが好ましい。金属ナノワイヤを相互に接触、またはメッシュ状に接触させた導電部は、下記の液相成膜法を用いれば容易に得ることができる。
[Conductive part]
The patterned conductive part in the present invention is characterized by containing metal nanowires and a conductive polymer, or metal nanowires and a metal oxide. Either one or both of the conductive polymer and the metal oxide contained in the conductive part in the present invention may be used. The metal nanowires of the conductive part are preferably in contact with each other, and more preferably in mesh form. Conductive portions in which metal nanowires are brought into contact with each other or meshed can be easily obtained by using the following liquid phase film forming method.
 本発明における導電部の形成方法は、金属ナノワイヤを含む分散液と、導電性高分子または金属酸化物を含む分散液を塗布、乾燥して膜形成する液相成膜法であれば特に制限はなく、ロールコート法、バーコート法、ディップコーティング法、スピンコーティング法、キャスティング法、ダイコート法、ブレードコート法、バーコート法、グラビアコート法、カーテンコート法、スプレーコート法、ドクターコート法等の塗布法や、凸版(活版)印刷法、孔版(スクリーン)印刷法、平版(オフセット)印刷法、凹版(グラビア)印刷法、スプレー印刷法、インクジェット印刷法等の印刷法を用いることが好ましい。 The method for forming a conductive part in the present invention is not particularly limited as long as it is a liquid phase film forming method in which a dispersion containing metal nanowires and a dispersion containing a conductive polymer or metal oxide are applied and dried to form a film. Roll coating method, bar coating method, dip coating method, spin coating method, casting method, die coating method, blade coating method, bar coating method, gravure coating method, curtain coating method, spray coating method, doctor coating method, etc. It is preferable to use a printing method such as a printing method, a letterpress (letterpress) printing method, a stencil (screen) printing method, a lithographic (offset) printing method, an intaglio (gravure) printing method, a spray printing method, and an ink jet printing method.
 本発明においては、第一の支持体上に金属ナノワイヤを含む分散液を塗布、乾燥した後に、導電性高分子または金属酸化物を含む分散液を塗布、乾燥して、金属ナノワイヤと導電性高分子、または金属ナノワイヤと金属酸化物を、該導電部中の電極表面及び電極表面近傍に存在させるのが好ましい。これにより、金属ナノワイヤ同士の接触点数が増大して導電性が向上し、さらにメッシュ状に形成された金属ナノワイヤの隙間に導電性高分子または金属酸化物が入り込むことで、金属ナノワイヤ及び金属ナノワイヤ間隙部の導電性を均一化することができる。 In the present invention, the dispersion containing the metal nanowires is applied to the first support and dried, and then the dispersion containing the conductive polymer or the metal oxide is applied and dried. Molecules or metal nanowires and metal oxides are preferably present on the electrode surface and in the vicinity of the electrode surface in the conductive part. As a result, the number of contact points between the metal nanowires increases and the conductivity is improved, and further, the conductive polymer or the metal oxide enters the gaps between the metal nanowires formed in a mesh shape. The conductivity of the part can be made uniform.
 本発明に用いられる金属ナノワイヤを含む分散液と、導電性高分子または金属酸化物を含む分散液には、透明なバインダー材料や添加剤を含んでいてもよい。透明なバインダー材料としては、天然高分子樹脂または合成高分子樹脂から広く選択して使用することができる。例えば、透明な熱可塑性樹脂(例えば、ポリ塩化ビニル、塩化ビニル-酢酸ビニル共重合体、ポリメチルメタクリレート、ニトロセルロース、塩素化ポリエチレン、塩素化ポリプロピレン、フッ化ビニリデン)や、熱・光・電子線・放射線で硬化する透明硬化性樹脂(例えば、メラミンアクリレート、ウレタンアクリレート、エポキシ樹脂、ポリイミド樹脂、アクリル変性シリケート等のシリコン樹脂)を使用することができる。添加剤としては、可塑剤、酸化防止剤や硫化防止剤等の安定剤、界面活性剤、溶解促進剤、重合禁止剤、染料や顔料等の着色剤等が挙げられる。さらに、塗布性等の作業性を高める観点から、溶媒(例えば、水や、アルコール類、グリコール類、セロソルブ類、ケトン類、エステル類、エーテル類、アミド類、炭化水素類等の有機溶媒)を含んでいてもよい。 The dispersion containing metal nanowires and the dispersion containing a conductive polymer or metal oxide used in the present invention may contain a transparent binder material or additive. The transparent binder material can be selected from a wide range of natural polymer resins or synthetic polymer resins. For example, transparent thermoplastic resins (eg, polyvinyl chloride, vinyl chloride-vinyl acetate copolymer, polymethyl methacrylate, nitrocellulose, chlorinated polyethylene, chlorinated polypropylene, vinylidene fluoride), heat / light / electron beam A transparent curable resin that is cured by radiation (for example, melamine acrylate, urethane acrylate, epoxy resin, polyimide resin, silicon resin such as acrylic-modified silicate) can be used. Examples of the additive include plasticizers, stabilizers such as antioxidants and sulfurization inhibitors, surfactants, dissolution accelerators, polymerization inhibitors, and colorants such as dyes and pigments. Furthermore, from the viewpoint of improving workability such as coating properties, solvents (for example, organic solvents such as water, alcohols, glycols, cellosolves, ketones, esters, ethers, amides, hydrocarbons, etc.) are used. May be included.
 〔パターン化〕
 本発明における導電部をパターン化する方法としては、支持体上に導電部を形成した後、フォトレジストを用いて、ケミカルエッチングによりパターニングを施すフォトリソグラフィー方式を用いることができる。他に導電部をパターン化する方法としては、リフトオフ用レジストを用いて非パターン部となる部分を剥離して導電部パターンを形成してもよいし、前記印刷法を用いて支持体上に所望の導電部パターンを形成してもよく、支持体上に導電部を形成した後に、導電部パターン部となる部分にマスキングを施し非パターン部となる部分を拭き取る等して物理的に除去してもよい。
[Patterning]
As a method for patterning a conductive portion in the present invention, a photolithography method in which a conductive portion is formed on a support and then patterned by chemical etching using a photoresist can be used. As another method of patterning the conductive portion, a portion to be a non-pattern portion may be peeled off using a lift-off resist to form a conductive portion pattern, or a desired pattern may be formed on the support using the printing method. The conductive part pattern may be formed, and after the conductive part is formed on the support, the part that becomes the conductive part pattern part is masked and the part that becomes the non-pattern part is wiped off physically. Also good.
 〔非パターン部〕
 本発明における非パターン部は、樹脂を含有することを特徴とする。用いられる樹脂としては、可視領域で透明であれば(すなわち、十分な透過率を有すれば)特に限定されないが、表面比抵抗が1010Ω/□以上の非導電性であることが好ましい。表面比抵抗は、例えば、JIS K6911、ASTM D257、等に準拠して測定することができ、また市販の表面抵抗率計を用いて簡便に測定することができる。樹脂としては、硬化型樹脂でもよいし、熱可塑性樹脂でもよい。硬化型樹脂としては、熱硬化型樹脂、紫外線硬化型樹脂、電子線硬化型樹脂等が挙げられるが、これらの硬化型樹脂のうちでは、樹脂硬化のための設備が簡易で作業性に優れることから、紫外線硬化型樹脂が好ましい。非パターン部は、透明性の観点からは、アクリル系重合体またはエポキシ系重合体が好ましい。本発明の非パターン部は、第一の支持体に形成されたパターン化された導電部上に設けてもよいし、第二の支持体上に設けて、パターン化された導電部を非パターン部側に接着して埋没させた後、硬化処理を行ってもよい。
[Non-pattern part]
The non-pattern part in this invention contains resin. The resin used is not particularly limited as long as it is transparent in the visible region (that is, has sufficient transmittance), but is preferably non-conductive having a surface specific resistance of 10 10 Ω / □ or more. The surface specific resistance can be measured based on, for example, JIS K6911, ASTM D257, etc., and can be easily measured using a commercially available surface resistivity meter. The resin may be a curable resin or a thermoplastic resin. Examples of the curable resins include thermosetting resins, ultraviolet curable resins, and electron beam curable resins. Among these curable resins, the equipment for resin curing is simple and excellent in workability. Therefore, an ultraviolet curable resin is preferable. The non-pattern part is preferably an acrylic polymer or an epoxy polymer from the viewpoint of transparency. The non-patterned part of the present invention may be provided on the patterned conductive part formed on the first support, or provided on the second support and the patterned conductive part is non-patterned. After being bonded and buried on the part side, a curing process may be performed.
 非パターン部は、前記導電部に含有される金属ナノワイヤ、導電性高分子、金属酸化物は含有せず、樹脂のみからなることが好ましい。 It is preferable that the non-pattern part does not contain the metal nanowire, the conductive polymer, and the metal oxide contained in the conductive part and is made of only a resin.
 接着方法は特に限定されることなく、シートプレス、ロールプレス等により行うことができるが、ロールプレス機を用いて行うことが好ましい。ロールプレスは、ロールとロールの間に接着すべきフィルムを挟んで圧着し、ロールを回転させる方法である。ロールプレスは均一に圧力がかけられ、シートプレスよりも生産性がよく好適である。 The bonding method is not particularly limited and can be performed by a sheet press, a roll press, or the like, but is preferably performed using a roll press machine. The roll press is a method in which a film to be bonded is sandwiched between the rolls, and the rolls are rotated. The roll press is uniformly pressed and has better productivity than the sheet press.
 上記方法で接着、硬化処理を行った後、第一の支持体を剥離することにより、本発明の透明電極が得られる。 The transparent electrode of the present invention can be obtained by peeling the first support after performing the adhesion and curing treatment by the above method.
 〔透明電極〕
 本発明の透明電極における導電部の算術平均粗さRaは5nm以下、かつ最大高さRzが50nm以下であり、Raが2nm以下、かつRzが30nm以下であることが好ましく、より好ましくはRaが1nm以下、かつRzが20nm以下である。なお、導電部の算術平均粗さRaと最大高さRzは、先述の支持体の表面の算術平均粗さRaと最大高さRzと同様にして測定することができる。
[Transparent electrode]
The arithmetic average roughness Ra of the conductive portion in the transparent electrode of the present invention is 5 nm or less, the maximum height Rz is 50 nm or less, Ra is 2 nm or less, and Rz is preferably 30 nm or less, more preferably Ra is 1 nm or less and Rz is 20 nm or less. The arithmetic average roughness Ra and the maximum height Rz of the conductive portion can be measured in the same manner as the arithmetic average roughness Ra and the maximum height Rz of the surface of the support described above.
 本発明の透明電極における導電部の全光線透過率は、60%以上、好ましくは70%以上、特に好ましくは80%以上であることが望ましい。全光透過率は、分光光度計等を用いた公知の方法に従って測定することができる。 The total light transmittance of the conductive part in the transparent electrode of the present invention is desirably 60% or more, preferably 70% or more, and particularly preferably 80% or more. The total light transmittance can be measured according to a known method using a spectrophotometer or the like.
 本発明の透明電極におけるパターン部の電気抵抗値としては、表面比抵抗として10Ω/□以下であることが好ましく、10Ω/□以下であることがより好ましく、10Ω/□以下であることが特に好ましい。表面比抵抗は、例えば、JIS K6911、ASTM D257、等に準拠して測定することができ、また市販の表面抵抗率計を用いて簡便に測定することができる。表面比抵抗は、金属ナノワイヤ単独の状態で前記表面比抵抗を満たしていればよく、金属ナノワイヤがバス電極として機能するため、導電性高分子または金属酸化物の表面比抵抗が高くても導電部の導電性を均一化することができる。導電性高分子または金属酸化物の表面比抵抗としては、10Ω/□以下であることが好ましい。 The electrical resistance value of the pattern portion in the transparent electrode of the present invention is preferably 10 3 Ω / □ or less, more preferably 10 2 Ω / □ or less, and more preferably 10 Ω / □ or less as the surface specific resistance. It is particularly preferred. The surface specific resistance can be measured based on, for example, JIS K6911, ASTM D257, etc., and can be easily measured using a commercially available surface resistivity meter. The surface specific resistance only needs to satisfy the surface specific resistance in the state of the metal nanowire alone, and the metal nanowire functions as a bus electrode. Therefore, even if the surface specific resistance of the conductive polymer or metal oxide is high, the conductive portion Can be made uniform. The surface specific resistance of the conductive polymer or metal oxide is preferably 10 9 Ω / □ or less.
 本発明の透明電極には、アンカーコートやハードコート等を付与することもできる。また必要に応じて、さらに導電性高分子または金属酸化物を含有する導電部を設置してもよい。 An anchor coat or a hard coat can be applied to the transparent electrode of the present invention. Moreover, you may install the electroconductive part containing a conductive polymer or a metal oxide as needed.
 本発明の透明電極は、LCD、エレクトロルミネッセンス素子、プラズマディスプレイ、エレクトロクロミックディスプレイ、太陽電池、タッチパネル等の透明電極、電子ペーパーならびに電磁波遮蔽材等に用いることができるが、導電性、透明性に優れ、また平滑性も高いため、有機エレクトロルミネッセンス素子に用いるのが好ましい。 The transparent electrode of the present invention can be used for transparent electrodes such as LCDs, electroluminescent elements, plasma displays, electrochromic displays, solar cells, touch panels, electronic papers, electromagnetic shielding materials, etc., but has excellent conductivity and transparency. In addition, since it has high smoothness, it is preferably used for an organic electroluminescence element.
 〔有機エレクトロルミネッセンス素子〕
 本発明における有機エレクトロルミネッセンス素子は、本発明の透明電極を有することを特徴とする。本発明における有機エレクトロルミネッセンス素子は、本発明の透明電極を陽極として用い、有機発光層、陰極については有機エレクトロルミネッセンス素子に一般的に使われている材料、構成等の任意のものを用いることができる。
[Organic electroluminescence device]
The organic electroluminescent element in the present invention has the transparent electrode of the present invention. The organic electroluminescence device in the present invention uses the transparent electrode of the present invention as an anode, and the organic light emitting layer and the cathode may be any material or configuration generally used in organic electroluminescence devices. it can.
 有機エレクトロルミネッセンス素子の素子構成としては、陽極/有機発光層/陰極、陽極/ホール輸送層/有機発光層/電子輸送層/陰極、陽極/ホール注入層/ホール輸送層/有機発光層/電子輸送層/陰極、陽極/ホール注入層/有機発光層/電子輸送層/電子注入層/陰極、陽極/ホール注入層/有機発光層/電子注入層/陰極、等の各種の構成のものを挙げることができる。 The element configuration of the organic electroluminescence element is anode / organic light emitting layer / cathode, anode / hole transport layer / organic light emitting layer / electron transport layer / cathode, anode / hole injection layer / hole transport layer / organic light emitting layer / electron transport. Examples of various configurations such as layer / cathode, anode / hole injection layer / organic light emitting layer / electron transport layer / electron injection layer / cathode, anode / hole injection layer / organic light emitting layer / electron injection layer / cathode, etc. Can do.
 また、本発明において有機発光層に使用できる発光材料またはドーピング材料としては、アントラセン、ナフタレン、ピレン、テトラセン、コロネン、ペリレン、フタロペリレン、ナフタロペリレン、ジフェニルブタジエン、テトラフェニルブタジエン、クマリン、オキサジアゾール、ビスベンゾキサゾリン、ビススチリル、シクロペンタジエン、キノリン金属錯体、トリス(8-ヒドロキシキノリナート)アルミニウム錯体、トリス(4-メチル-8-キノリナート)アルミニウム錯体、トリス(5-フェニル-8-キノリナート)アルミニウム錯体、アミノキノリン金属錯体、ベンゾキノリン金属錯体、トリ-(p-ターフェニル-4-イル)アミン、1-アリール-2,5-ジ(2-チエニル)ピロール誘導体、ピラン、キナクリドン、ルブレン、ジスチルベンゼン誘導体、ジスチルアリーレン誘導体、及び各種蛍光色素及び希土類金属錯体、燐光発光材料等があるが、これらに限定されるものではない。またこれらの化合物のうちから選択される発光材料を90~99.5質量部、ドーピング材料を0.5~10質量部含むようにすることも好ましい。有機発光層は上記の材料等を用いて公知の方法によって作製されるものであり、蒸着、塗布、転写等の方法が挙げられる。この有機発光層の厚みは0.5~500nmが好ましく、特に、0.5~200nmが好ましい。 In addition, as the light emitting material or doping material that can be used in the organic light emitting layer in the present invention, anthracene, naphthalene, pyrene, tetracene, coronene, perylene, phthaloperylene, naphthaloperylene, diphenylbutadiene, tetraphenylbutadiene, coumarin, oxadiazole, bisbenzo Xazoline, bisstyryl, cyclopentadiene, quinoline metal complex, tris (8-hydroxyquinolinato) aluminum complex, tris (4-methyl-8-quinolinato) aluminum complex, tris (5-phenyl-8-quinolinato) aluminum complex, Aminoquinoline metal complex, benzoquinoline metal complex, tri- (p-terphenyl-4-yl) amine, 1-aryl-2,5-di (2-thienyl) pyrrole derivative, pyran, quinaclide , Rubrene, distyrylbenzene derivatives, di still arylene derivatives, and various fluorescent dyes and rare earth metal complex, there are phosphorescent materials, but is not limited thereto. It is also preferable to include 90 to 99.5 parts by mass of a light emitting material selected from these compounds and 0.5 to 10 parts by mass of a doping material. The organic light emitting layer is produced by a known method using the above materials and the like, and examples thereof include vapor deposition, coating, and transfer. The thickness of the organic light emitting layer is preferably 0.5 to 500 nm, particularly preferably 0.5 to 200 nm.
 本発明における有機エレクトロルミネッセンス素子は、自発光型ディスプレイ、液晶用バックライト、照明等に用いることが出来る。本発明の有機エレクトロルミネッセンス素子は、均一にムラなく発光させることが出来るため、照明用途で用いることが好ましい。 The organic electroluminescence element in the present invention can be used for a self-luminous display, a backlight for liquid crystal, illumination and the like. Since the organic electroluminescent element of the present invention can emit light uniformly and without unevenness, it is preferably used for illumination.
 以下、実施例により本発明を具体的に説明するが、本発明はこれにより限定されるものではない。なお、実施例において「%」の表示を用いるが、特に断りがない限り「質量%」を表す。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto. In addition, although the display of "%" is used in an Example, unless otherwise indicated, "mass%" is represented.
 実施例1
 《透明電極の作製》
 〔透明電極TCF-1の作製;比較例〕
 厚さ100μmのポリエチレンテレフタレートフィルム支持体上に、ITOを平均膜厚150nmで蒸着した後、50mm×50mm角に裁断し、フォトリソグラフィー法により導電部パターン幅10mmのストライプ状透明パターン電極TCF-1を作製した。
Example 1
<< Preparation of transparent electrode >>
[Preparation of transparent electrode TCF-1; comparative example]
An ITO film was deposited on a polyethylene terephthalate film support having a thickness of 100 μm with an average film thickness of 150 nm, then cut into 50 mm × 50 mm square, and a striped transparent pattern electrode TCF-1 having a conductive part pattern width of 10 mm was formed by photolithography. Produced.
 〔透明電極TCF-2の作製;比較例〕
 非特許文献4(Adv.Mater.,2002,14,833~837)に記載の方法を参考に、下記の方法で銀ナノワイヤを作製した。
[Preparation of transparent electrode TCF-2; comparative example]
With reference to the method described in Non-Patent Document 4 (Adv. Mater., 2002, 14, 833-837), silver nanowires were produced by the following method.
 (核形成工程)
 反応容器内で170℃に保持したEG液1000mlを攪拌しながら、硝酸銀のエチレングリコール溶液(硝酸銀濃度:1.5×10-4モル/L)100mlを一定の流量で、10秒間で添加した。その後、170℃で10分間熟成を施し、銀の核粒子を形成した。熟成終了後の反応液は、銀ナノ粒子の表面プラズモン吸収に由来した黄色を呈しており、銀イオンが還元されて、銀ナノ粒子が形成されたことが確認された。
(Nucleation process)
While stirring 1000 ml of the EG solution maintained at 170 ° C. in the reaction vessel, 100 ml of an ethylene glycol solution of silver nitrate (silver nitrate concentration: 1.5 × 10 −4 mol / L) was added at a constant flow rate for 10 seconds. Thereafter, aging was carried out at 170 ° C. for 10 minutes to form silver core particles. The reaction solution after completion of ripening exhibited a yellow color derived from surface plasmon absorption of silver nanoparticles, and it was confirmed that silver ions were reduced and silver nanoparticles were formed.
 (粒子成長工程)
 上記の熟成を終了した核粒子を含む反応液を攪拌しながら170℃に保持し、硝酸銀のエチレングリコール溶液(硝酸銀濃度:1.0×10-1モル/L)1000mlと、ポリビニルピロリドンのエチレングリコール溶液(ビニルピロリドン濃度換算:5.0×10-1モル/L)1000mlを、ダブルジェット法を用いて一定の流量で100分間で添加した。粒子成長工程において20分毎に反応液を採取して電子顕微鏡で確認したところ、核形成工程で形成された銀ナノ粒子が時間経過に伴って、主にナノワイヤの長軸方向に成長しており、粒子成長工程における新たな核粒子の生成は認められなかった。
(Particle growth process)
The reaction solution containing the core particles after the ripening was kept at 170 ° C. while stirring, 1000 ml of an ethylene glycol solution of silver nitrate (silver nitrate concentration: 1.0 × 10 −1 mol / L), and ethylene glycol of polyvinylpyrrolidone. 1000 ml of a solution (vinyl pyrrolidone concentration conversion: 5.0 × 10 −1 mol / L) was added at a constant flow rate for 100 minutes using a double jet method. When the reaction solution was sampled every 20 minutes in the particle growth process and confirmed with an electron microscope, the silver nanoparticles formed in the nucleation process grew mainly in the long axis direction of the nanowires over time. No new core particles were observed in the grain growth process.
 (水洗工程)
 粒子成長工程終了後、反応液を室温まで冷却した後、フィルターを用いて濾過し、濾別された銀ナノワイヤをエタノール中に再分散した。フィルターによる銀ナノワイヤの濾過とエタノール中への再分散を5回繰り返し、最終的に銀ナノワイヤのエタノール分散液を調製して、銀ナノワイヤを作製した。
(Washing process)
After completion of the particle growth step, the reaction solution was cooled to room temperature, filtered using a filter, and the silver nanowires separated by filtration were redispersed in ethanol. Filtration of silver nanowires with a filter and redispersion in ethanol were repeated 5 times, and finally an ethanol dispersion of silver nanowires was prepared to produce silver nanowires.
 得られた分散液を微量採取し、電子顕微鏡で確認したところ、平均直径85nm、平均長さ7.4μmの銀ナノワイヤが形成されたことが確認できた。 A small amount of the obtained dispersion was collected and confirmed with an electron microscope, and it was confirmed that silver nanowires having an average diameter of 85 nm and an average length of 7.4 μm were formed.
 作製した銀ナノワイヤの分散液を、平滑加工を施した厚さ100μmのポリエチレンテレフタレートフィルム支持体上に、銀ナノワイヤの目付け量が0.05g/mとなるように、銀ナノワイヤの分散液をスピンコーターを用いて塗布し乾燥した。続いて、銀ナノワイヤの塗布層にカレンダー処理を施した後、50mm×50mm角に裁断し、フォトリソグラフィー法により電極パターン幅10mmのストライプ状透明パターン電極TCF-2を作製した。 Spin the prepared silver nanowire dispersion on a 100 μm thick polyethylene terephthalate film support that has been smoothed so that the weight per unit area of the silver nanowire is 0.05 g / m 2. It was applied and dried using a coater. Subsequently, the silver nanowire coating layer was calendered and then cut into 50 mm × 50 mm square, and a striped transparent pattern electrode TCF-2 having an electrode pattern width of 10 mm was produced by photolithography.
 〔透明電極TCF-3の作製;比較例〕
 透明電極TCF-2において、銀ナノワイヤの塗布層にカレンダー処理を施した後、PEDOT:PSS(ポリスチレンスルホン酸)=1:2.5の分散液であるBaytron PH510(H.C.Starck社製)にジメチルスルホキシドを5%添加した液を、乾燥膜厚が100nmとなるように塗布する以外はTCF-2と同様にして、透明電極TCF-3を作製した。
[Preparation of transparent electrode TCF-3; comparative example]
In the transparent electrode TCF-2, the silver nanowire coating layer was calendered and then Baytron PH510 (manufactured by HC Starck) which was a dispersion of PEDOT: PSS (polystyrene sulfonic acid) = 1: 2.5 A transparent electrode TCF-3 was prepared in the same manner as TCF-2 except that a solution obtained by adding 5% of dimethyl sulfoxide to the solution was applied so that the dry film thickness was 100 nm.
 〔透明電極TCF-4の作製;比較例〕
 (接着フィルムの作製)
 厚さ100μmのポリエチレンテレフタレートフィルム支持体の片面側に易接着加工を施し、易接着面上に樹脂層として紫外線硬化性樹脂(UVPOTミディアム0、帝国インキ(株)製)を3μmの厚みに塗布して、接着フィルムを作製した。
[Preparation of transparent electrode TCF-4; comparative example]
(Preparation of adhesive film)
An easy-adhesion process is applied to one side of a 100 μm-thick polyethylene terephthalate film support, and an ultraviolet curable resin (UVPOT Medium 0, manufactured by Teikoku Ink Co., Ltd.) is applied as a resin layer on the easy-adhesive surface to a thickness of 3 μm. Thus, an adhesive film was produced.
 作製した接着フィルムの樹脂層と、透明電極TCF-2の電極パターン側とが対面するように圧着した。次いで接着フィルムの側から紫外線を照射して紫外線硬化性樹脂を硬化させ、接着フィルムと透明電極TCF-2とを接合した。 The resin layer of the produced adhesive film was pressure-bonded so that the electrode pattern side of the transparent electrode TCF-2 faced. Next, ultraviolet rays were irradiated from the adhesive film side to cure the ultraviolet curable resin, and the adhesive film and the transparent electrode TCF-2 were joined.
 接合した接着フィルムと透明電極TCF-2を、透明電極TCF-2側のポリエチレンテレフタレートフィルム支持体を剥離して、透明電極TCF-4を作製した。 The joined adhesive film and the transparent electrode TCF-2 were peeled off from the polyethylene terephthalate film support on the transparent electrode TCF-2 side to produce a transparent electrode TCF-4.
 〔透明電極TCF-5の作製;本発明〕
 接着フィルムの樹脂層に圧着する透明電極を、TCF-3に変更する以外はTCF-4と同様にして、透明電極TCF-5を作製した。
[Preparation of transparent electrode TCF-5; the present invention]
A transparent electrode TCF-5 was produced in the same manner as TCF-4 except that the transparent electrode to be pressure-bonded to the resin layer of the adhesive film was changed to TCF-3.
 〔透明電極TCF-6の作製;本発明〕
 透明電極TCF-5において、銀ナノワイヤの塗布層にカレンダー処理を施した後、Baytron PH510ジメチルスルホキシド5%添加液の代わりに、株式会社ジェムコ製ITO分散液(商品名;EI)を乾燥膜厚が100nmとなるように塗布する以外はTCF-4と同様にして、透明電極TCF-6を作製した。
[Production of Transparent Electrode TCF-6; Present Invention]
In the transparent electrode TCF-5, the silver nanowire coating layer was calendered, and instead of the Baytron PH510 dimethyl sulfoxide 5% additive solution, an ITO dispersion (trade name; EI) manufactured by Gemco Co., Ltd. was used for the dry film thickness. A transparent electrode TCF-6 was produced in the same manner as TCF-4 except that the coating was applied to a thickness of 100 nm.
 〔透明電極TCF-7の作製;本発明〕
 透明電極TCF-2の銀ナノワイヤの作製において、水洗工程でエタノールへの再分散を水に代えた以外は同様の操作を行った。さらに、カルボキシメチルセルロースを添加し、粘度が30cP(30mPa・s)となるように調整し、銀ナノワイヤ分散液を作製した。同様に、透明電極TCF-3で用いたBaytron PH510ジメチルスルホキシド5%添加液の粘度を30cP(30mPa・s)に調整した。
[Preparation of Transparent Electrode TCF-7; Present Invention]
In the production of the silver nanowire of the transparent electrode TCF-2, the same operation was performed except that the redispersion in ethanol was replaced with water in the water washing step. Furthermore, carboxymethylcellulose was added, and it adjusted so that a viscosity might be set to 30 cP (30 mPa * s), and produced the silver nanowire dispersion liquid. Similarly, the viscosity of the Baytron PH510 dimethyl sulfoxide 5% additive solution used in the transparent electrode TCF-3 was adjusted to 30 cP (30 mPa · s).
 次いで、粘度調整した銀ナノワイヤ分散液を、コロナ放電処理を施した厚さ100μmの平滑加工済みポリエチレンテレフタレートフィルム支持体上に、10mm幅のストライプ状パターンを形成した版を用い、グラビア印刷(Kプリンティングプルーファー:松尾産業株式会社製)を行った。なお、銀ナノワイヤの目付け量が0.05g/mとなるように印刷回数を調整した。さらに、銀ナノワイヤ層にカレンダー処理を施した。 Next, the silver nanowire dispersion liquid whose viscosity was adjusted was subjected to gravure printing (K printing) using a plate in which a striped pattern with a width of 10 mm was formed on a 100 μm-thick smooth polyethylene terephthalate film support subjected to corona discharge treatment. Proofer: Matsuo Sangyo Co., Ltd.). The number of printings was adjusted so that the amount of silver nanowires was 0.05 g / m 2 . Further, the silver nanowire layer was calendered.
 次いで、Baytron PH510ジメチルスルホキシド5%添加液を用い、先に形成した銀ナノワイヤのパターンと重なるように、同様にグラビア印刷を行った。なお、乾燥膜厚が100nmとなるように、印刷回数を調整した。 Then, gravure printing was performed in the same manner using a Baytron PH510 dimethyl sulfoxide 5% addition solution so as to overlap the previously formed silver nanowire pattern. The number of printings was adjusted so that the dry film thickness was 100 nm.
 これを用いて、透明電極TCF-4と同様の操作を行い、透明電極TCF-7を作製した。 Using this, the same operation as that of the transparent electrode TCF-4 was performed to produce a transparent electrode TCF-7.
 〔透明電極TCF-8の作製;本発明〕
 透明電極TCF-7で用いた銀ナノワイヤ分散液及びBaytron PH510ジメチルスルホキシド5%添加液において、カルボキシメチルセルロースをグリセリンに代え、粘度を15cP(15mPa・s)に調整した。
[Preparation of Transparent Electrode TCF-8; Present Invention]
In the silver nanowire dispersion liquid and Baytron PH510 dimethyl sulfoxide 5% addition liquid used in the transparent electrode TCF-7, carboxymethylcellulose was replaced with glycerin, and the viscosity was adjusted to 15 cP (15 mPa · s).
 次いで、粘度調整した銀ナノワイヤ分散液をインクジェットプリンターMJ-800C(セイコーエプソン社製)に装着し、コロナ放電処理を施した厚さ100μmの平滑加工済みポリエチレンテレフタレートフィルム支持体上に10mm幅のストライプ状パターンを形成した。なお、銀ナノワイヤの目付け量が0.05g/mとなるように印刷濃度、印刷回数を調整した。さらに、銀ナノワイヤ層にカレンダー処理を施した。次いで、Baytron PH510ジメチルスルホキシド5%添加液を用い、先に形成した銀ナノワイヤのパターン上に、乾燥膜厚が100nmとなるようにインクジェット印刷を行った。 Next, the silver nanowire dispersion liquid whose viscosity was adjusted was mounted on an inkjet printer MJ-800C (manufactured by Seiko Epson Corporation), and was subjected to corona discharge treatment. A pattern was formed. The printing density and the number of printings were adjusted so that the basis weight of the silver nanowires was 0.05 g / m 2 . Further, the silver nanowire layer was calendered. Next, by using Baytron PH510 dimethyl sulfoxide 5% addition liquid, ink jet printing was performed on the previously formed silver nanowire pattern so that the dry film thickness was 100 nm.
 これを用いて、透明電極TCF-4と同様の操作を行い、透明電極TCF-8を作製した。 Using this, the same operation as that of the transparent electrode TCF-4 was performed to produce a transparent electrode TCF-8.
 《透明電極の測定及び評価》
 下記方法で、透明電極TCF-1~8の透過率、表面比抵抗測定及び表面形状について評価した。
<< Measurement and evaluation of transparent electrodes >>
The transmittance, surface resistivity measurement, and surface shape of the transparent electrodes TCF-1 to 8 were evaluated by the following methods.
 (透過率)
 透過率は、東京電色社製AUTOMATICHAZEMETER(MODEL TC-HIIIDP)を用いて、導電部パターン部の全光線透過率を測定した。
(Transmittance)
The transmittance was determined by measuring the total light transmittance of the conductive pattern portion using an AUTOMATIC ZEMETER (MODEL TC-HIIIDP) manufactured by Tokyo Denshoku.
 (表面比抵抗)
 表面比抵抗は、ダイアインスツルメンツ製抵抗率計ロレスタGPを用いて導電部パターン部の表面比抵抗を四端子法で測定した。
(Surface resistivity)
For the surface specific resistance, the surface specific resistance of the conductive pattern portion was measured by a four-terminal method using a resistivity meter Loresta GP manufactured by Dia Instruments.
 (表面形状)
 表面形状は、電極表面を原子間力顕微鏡(AFM)で測定し、導電部パターン部表面の算術平均粗さRa及び最大高さRz、透明電極の導電部パターン部と非パターン部の最大高低差を求めた。
(Surface shape)
The surface shape is determined by measuring the electrode surface with an atomic force microscope (AFM), the arithmetic average roughness Ra and the maximum height Rz of the conductive part pattern part surface, the maximum height difference between the conductive part pattern part and the non-pattern part of the transparent electrode Asked.
 導電部パターン部表面の算術平均粗さRa及び最大高さRzは、JIS B601(2001)に規定される表面粗さに準ずる値であり、本発明においてRaとRzの測定には、市販の原子間力顕微鏡(Atomic Force Microscopy:AFM)を用い、以下の方法で測定した。 The arithmetic average roughness Ra and the maximum height Rz of the conductive part pattern part surface are values according to the surface roughness specified in JIS B601 (2001). In the present invention, Ra and Rz are measured using commercially available atoms. Using an atomic force microscope (AFM), the following method was used.
 AFMとして、セイコーインスツルメンツ社製SPI3800Nプローブステーション及びSPA400多機能型ユニットを使用し、約1cm角の大きさに切り取った試料を、ピエゾスキャナー上の水平な試料台上にセットし、カンチレバーを試料表面にアプローチし、原子間力が働く領域に達したところで、XY方向にスキャンし、その際の試料の凹凸をZ方向のピエゾの変位で捉えた。ピエゾスキャナーは、XY150μm、Z5μmが走査可能なものを使用した。カンチレバーは、セイコーインスツルメンツ社製シリコンカンチレバーSI-DF20で、共振周波数132kHz、バネ定数15N/mのものを用い、DFMモード(Dynamic Force Mode)で測定した。測定領域80×80μmを、走査周波数0.1Hzで測定した。 Using an SPI 3800N probe station and SPA400 multifunctional unit manufactured by Seiko Instruments Inc. as the AFM, set the sample cut to a size of about 1 cm square on a horizontal sample stage on the piezo scanner, and place the cantilever on the sample surface. When approaching and reaching the region where the atomic force works, scanning was performed in the XY direction, and the unevenness of the sample at that time was captured by the displacement of the piezo in the Z direction. A piezo scanner that can scan XY 150 μm and Z 5 μm was used. The cantilever was a silicon cantilever SI-DF20 manufactured by Seiko Instruments Inc., which had a resonance frequency of 132 kHz and a spring constant of 15 N / m, and was measured in the DFM mode (Dynamic Force Mode). A measurement area of 80 × 80 μm was measured at a scanning frequency of 0.1 Hz.
 なお、透明電極TCF-4~6で導電部塗布に用いたフィルム支持体において、導電部を塗布する前の支持体の塗布面側の算術平均粗さRa及び最大高さRzはそれぞれ0.6nm、18nmであった。 In addition, in the film support used for applying the conductive portion with the transparent electrodes TCF-4 to 6, the arithmetic average roughness Ra and the maximum height Rz on the coated surface side of the support before applying the conductive portion are each 0.6 nm. 18 nm.
 測定及び評価の結果を表1に示す。 Table 1 shows the results of measurement and evaluation.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1より、本発明の透明電極は、導電性(表面比抵抗)、透明性(透過率)に優れ、平滑性(表面形状)が高いことが分かる。 Table 1 shows that the transparent electrode of the present invention is excellent in conductivity (surface specific resistance) and transparency (transmittance) and high in smoothness (surface shape).
 実施例2
 《有機エレクトロルミネッセンス素子の作製》
 実施例1で作製した透明電極TCF-1~8を第1電極(陽極)に用いて、以下の手順でそれぞれ有機EL素子OLED-1~8を作製した。
Example 2
<< Production of organic electroluminescence element >>
Using the transparent electrodes TCF-1 to 8 produced in Example 1 as the first electrode (anode), organic EL elements OLED-1 to OLED-1 to 8 were produced respectively by the following procedure.
 〈正孔輸送層の形成〉
 第1電極上に、1,2-ジクロロエタン中に1質量%となるように正孔輸送材料の4,4′-ビス〔N-(1-ナフチル)-N-フェニルアミノ〕ビフェニル(NPD)を溶解させた正孔輸送層形成用塗布液をスピンコート装置で塗布した後、80℃、60分間乾燥して、厚さ40nmの正孔輸送層を形成した。
<Formation of hole transport layer>
On the first electrode, 4,4′-bis [N- (1-naphthyl) -N-phenylamino] biphenyl (NPD), which is a hole transport material, is added to 1% by mass in 1,2-dichloroethane. The dissolved coating solution for forming a hole transport layer was applied by a spin coater and then dried at 80 ° C. for 60 minutes to form a hole transport layer having a thickness of 40 nm.
 〈発光層の形成〉
 正孔輸送層が形成された各フィルム上に、ホスト材のポリビニルカルバゾール(PVK)に対して、赤ドーパント材BtpIr(acac)が1%、緑ドーパント材Ir(ppy)が2%、青ドーパント材FIr(pic)が3%になるように混合し、PVKと3種ドーパントの全固形分濃度が1%となるように1,2-ジクロロエタン中に溶解させた発光層形成用塗布液をスピンコート装置で塗布した後、100℃、10分間乾燥して、厚さ60nmの発光層を形成した。
<Formation of light emitting layer>
On each film in which the hole transport layer is formed, the host material polyvinylcarbazole (PVK) is 1% red dopant material Btp 2 Ir (acac), 2 % green dopant material Ir (ppy) 3 , A coating solution for forming a light emitting layer in which blue dopant material FIr (pic) is mixed to 3% and dissolved in 1,2-dichloroethane so that the total solid concentration of PVK and the three dopants is 1%. Was applied with a spin coater and then dried at 100 ° C. for 10 minutes to form a light emitting layer having a thickness of 60 nm.
 〈電子輸送層の形成〉
 形成した発光層上に、電子輸送層形成用材料としてLiFを5×10-4Paの真空下にて蒸着し、厚さ0.5nmの電子輸送層を形成した。
<Formation of electron transport layer>
On the formed light emitting layer, LiF was deposited as an electron transport layer forming material under a vacuum of 5 × 10 −4 Pa to form an electron transport layer having a thickness of 0.5 nm.
 〈第2電極の形成〉
 形成した電子輸送層の上に、第2電極(陰極)形成用材料としてAlを5×10-4Paの真空下にて、幅10mmのストライプ状に第1電極の導電部と直交するようにマスク蒸着し、厚さ100nmの第2電極を形成した。
<Formation of second electrode>
On the formed electron transport layer, Al is formed as a second electrode (cathode) forming material under a vacuum of 5 × 10 −4 Pa so as to be perpendicular to the conductive portion of the first electrode in a stripe shape having a width of 10 mm. Mask evaporation was performed to form a second electrode having a thickness of 100 nm.
 〈封止膜の形成〉
 形成した電子輸送層の上に、ポリエチレンテレフタレートを基材とし、Alを厚さ300nmで蒸着した可撓性封止部材を使用した。第1電極及び第2電極の外部取り出し端子が形成できるように端部を除き、第2電極の周囲に接着剤を塗り、可撓性封止部材を貼合した後、熱処理で接着剤を硬化させた。
<Formation of sealing film>
On the formed electron transport layer, a polyethylene terephthalate as a substrate, using a flexible sealing member which is deposited to a thickness 300nm of Al 2 O 3. Except for the edges so that external lead terminals of the first electrode and the second electrode can be formed, after applying an adhesive around the second electrode and pasting a flexible sealing member, the adhesive is cured by heat treatment. I let you.
 《有機エレクトロルミネッセンス素子の評価》
 下記方法で、有機エレクトロルミネッセンス素子OLED-1~8の発光輝度ムラ及び整流比について評価した。
<< Evaluation of organic electroluminescence element >>
The following methods were used to evaluate the emission luminance unevenness and the rectification ratio of the organic electroluminescence elements OLED-1 to OLED-8.
 (発光輝度ムラ)
 KEITHLEY製ソースメジャーユニット2400型を用いて、作製した有機エレクトロルミネッセンス素子OLED-1~6に直流電圧を印加し発光させた。200cd/mで発光させた各有機エレクトロルミネッセンス素子について、点灯時の発光面全体の発光ムラを、目視観察により下記基準で評価した。
(Light emission brightness unevenness)
Using a source measure unit type 2400 manufactured by KEITHLEY, a direct current voltage was applied to the produced organic electroluminescence elements OLED-1 to OLED-6 to emit light. About each organic electroluminescent element made to light-emit at 200 cd / m < 2 >, the light emission nonuniformity of the whole light emission surface at the time of lighting was evaluated by the following reference | standard by visual observation.
 ◎:90%以上が均一に発光している
 ○:80%以上が均一に発光している
 △:70%以上が均一に発光している
 ×:70%未満しか発光していない
 ××:全く発光せず
 (整流比)
 作製した有機エレクトロルミネッセンス素子OLED-1~8に、+3V/-3Vの電圧を印加した時の電流値を測定し、下記の計算式により整流比を求めた。
◎: 90% or more emits uniformly ○: 80% or more emits uniformly △: 70% or more emits uniformly ×: Less than 70% emits XX: no Does not emit light (rectification ratio)
A current value when a voltage of +3 V / −3 V was applied to the produced organic electroluminescence elements OLED-1 to OLED-1 to 8 was measured, and a rectification ratio was obtained by the following formula.
 整流比=+3V印加時の電流値/-3V印加時の電流値
 上記評価結果を表2に示す。
Rectification ratio = current value when + 3V is applied / current value when -3V is applied Table 2 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表2より明らかなように、導電性、透明性に優れ、平滑性が高い本発明の透明電極を有機エレクトロルミネッセンス素子の電極として使用した場合、有機エレクトロルミネッセンス素子は発光輝度ムラや電流リークが少ないことが分かる。 As is apparent from Table 2, when the transparent electrode of the present invention having excellent conductivity and transparency and high smoothness is used as the electrode of the organic electroluminescence element, the organic electroluminescence element has little emission luminance unevenness and current leakage. I understand that.
 1 第一の支持体
 2 金属ナノワイヤと導電性高分子からなる導電部
 3 金属ナノワイヤと金属酸化物からなる導電部
 4 非パターン部
 10 第二の支持体
 20 透明電極
DESCRIPTION OF SYMBOLS 1 1st support body 2 Conductive part which consists of metal nanowire and conductive polymer 3 Conductive part which consists of metal nanowire and metal oxide 4 Non-pattern part 10 2nd support body 20 Transparent electrode

Claims (4)

  1.  透明支持体上に、パターン化された導電部及び非パターン部を有する透明電極であって、前記導電部は金属ナノワイヤと導電性高分子、または金属ナノワイヤと金属酸化物を含有し、前記非パターン部は樹脂を含有し、前記導電部の表面の算術平均粗さRaが5nm以下、かつ最大高さRzが50nm以下であり、前記導電部と前記非パターン部の最大高低差が50nm以下であることを特徴とする透明電極。 A transparent electrode having a patterned conductive portion and a non-pattern portion on a transparent support, wherein the conductive portion contains a metal nanowire and a conductive polymer, or a metal nanowire and a metal oxide, and the non-pattern The portion contains a resin, the arithmetic average roughness Ra of the surface of the conductive portion is 5 nm or less, the maximum height Rz is 50 nm or less, and the maximum height difference between the conductive portion and the non-patterned portion is 50 nm or less. A transparent electrode characterized by that.
  2.  請求項1に記載の透明電極を含むことを特徴とする有機エレクトロルミネッセンス素子。 An organic electroluminescence device comprising the transparent electrode according to claim 1.
  3.  透明支持体上に、パターン化された導電部及び非パターン部を有する透明電極の製造方法であって、前記導電部は金属ナノワイヤと導電性高分子、または金属ナノワイヤと金属酸化物を含有し、前記非パターン部は樹脂を含有し、予め第一の支持体上に形成した前記導電部を、予め第二の支持体上に形成した上記樹脂を含有する層に接着した後に、第一の支持体を剥離することを特徴とする透明電極の製造方法。 A method for producing a transparent electrode having a patterned conductive portion and a non-patterned portion on a transparent support, wherein the conductive portion contains a metal nanowire and a conductive polymer, or a metal nanowire and a metal oxide, The non-patterned portion contains a resin, and the first support is formed after the conductive portion previously formed on the first support is bonded to the resin-containing layer formed on the second support in advance. A method for producing a transparent electrode, comprising peeling off the body.
  4.  前記導電部が、液相成膜法により形成されることを特徴とする請求項3に記載の透明電極の製造方法。 The method for producing a transparent electrode according to claim 3, wherein the conductive portion is formed by a liquid phase film forming method.
PCT/JP2009/062876 2008-08-11 2009-07-16 Transparent electrode, organic electroluminescent element, and method for producing transparent electrode WO2010018734A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010524697A JP5397377B2 (en) 2008-08-11 2009-07-16 Transparent electrode, organic electroluminescence element, and method for producing transparent electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008-206809 2008-08-11
JP2008206809 2008-08-11

Publications (1)

Publication Number Publication Date
WO2010018734A1 true WO2010018734A1 (en) 2010-02-18

Family

ID=41668880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/062876 WO2010018734A1 (en) 2008-08-11 2009-07-16 Transparent electrode, organic electroluminescent element, and method for producing transparent electrode

Country Status (2)

Country Link
JP (1) JP5397377B2 (en)
WO (1) WO2010018734A1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012027888A (en) * 2010-07-26 2012-02-09 Samsung Electro-Mechanics Co Ltd Transparent conductive film for touch panel and method for manufacturing the same
JP2012079257A (en) * 2010-10-06 2012-04-19 Dic Corp Transparent conductive film laminate using double-coated adhesive sheet and touch panel device
JP2012139674A (en) * 2010-12-31 2012-07-26 Samsung Electro-Mechanics Co Ltd Method for post-treatment of conductive film and conductive film using the method
JP2012247852A (en) * 2011-05-25 2012-12-13 Innovation & Infinity Global Corp Transparent conductive structure applicable to touch panel, and manufacturing method for the structure
JP2012247851A (en) * 2011-05-25 2012-12-13 Innovation & Infinity Global Corp Transparent conductive structure applicable to touch panel, and manufacturing method for the structure
JP2013521595A (en) * 2010-02-27 2013-06-10 イノバ ダイナミックス, インコーポレイテッド Structure with surface embedding additive and associated manufacturing method
JP2014094467A (en) * 2012-11-08 2014-05-22 Mitsubishi Plastics Inc Polyester film for transparent conductive film substrate and transparent conductive film
JP2015082425A (en) * 2013-10-23 2015-04-27 パイオニア株式会社 Light-emitting device and substrate
KR101549999B1 (en) 2013-10-08 2015-09-07 주식회사 고려이노테크 Transparent Electrode Substrate Using Metal Nanowire
US9185798B2 (en) 2010-08-07 2015-11-10 Innova Dynamics, Inc. Device components with surface-embedded additives and related manufacturing methods
JP2016096113A (en) * 2014-11-17 2016-05-26 王子ホールディングス株式会社 Conductive sheet and conductive base material
US9782955B2 (en) 2013-09-24 2017-10-10 3M Innovative Properties Company Transferable transparent conductive patterns and display stack materials
US10024840B2 (en) 2007-05-29 2018-07-17 Tpk Holding Co., Ltd. Surfaces having particles and related methods
US20180209859A1 (en) * 2017-01-25 2018-07-26 Winbond Electronics Corp. Transparent pressure sensor and manufacturing method thereof
US10105875B2 (en) 2008-08-21 2018-10-23 Cam Holding Corporation Enhanced surfaces, coatings, and related methods
KR20200032478A (en) * 2018-09-18 2020-03-26 한국전력공사 Manufacturing method for flexible transparent electrode and flexible transparent electrode thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101724336B1 (en) * 2014-12-23 2017-04-10 전자부품연구원 Transparent electrode and manufacturing method thereof
KR20170055239A (en) * 2015-11-11 2017-05-19 동우 화인켐 주식회사 Transparent electrode for oled and preparing method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075771A1 (en) * 2006-12-21 2008-06-26 Fujifilm Corporation Conductive film and method for manufacturing the same
WO2009054273A1 (en) * 2007-10-26 2009-04-30 Konica Minolta Holdings, Inc. Transparent conducive film and method for producing the same
WO2009060717A1 (en) * 2007-11-07 2009-05-14 Konica Minolta Holdings, Inc. Transparent electrode and method for producing transparent electrode
WO2009063744A1 (en) * 2007-11-16 2009-05-22 Konica Minolta Holdings, Inc. Method for producing metal nanowire, metal nanowire and transparent conductor
JP2009205924A (en) * 2008-02-27 2009-09-10 Kuraray Co Ltd Transparent conductive film, transparent conductive member, and silver nano wire dispersion solution and manufacturing method of transparent conductive film
JP2009231029A (en) * 2008-03-22 2009-10-08 Konica Minolta Holdings Inc Method of manufacturing transparent conductive film, and transparent conductive film

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2006279590A1 (en) * 2005-08-12 2007-02-22 Cambrios Technologies Corporation Nanowires-based transparent conductors
EP2068328B1 (en) * 2006-09-28 2014-10-22 FUJIFILM Corporation Spontaneous emission display and transparent conductive film

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008075771A1 (en) * 2006-12-21 2008-06-26 Fujifilm Corporation Conductive film and method for manufacturing the same
WO2009054273A1 (en) * 2007-10-26 2009-04-30 Konica Minolta Holdings, Inc. Transparent conducive film and method for producing the same
WO2009060717A1 (en) * 2007-11-07 2009-05-14 Konica Minolta Holdings, Inc. Transparent electrode and method for producing transparent electrode
WO2009063744A1 (en) * 2007-11-16 2009-05-22 Konica Minolta Holdings, Inc. Method for producing metal nanowire, metal nanowire and transparent conductor
JP2009205924A (en) * 2008-02-27 2009-09-10 Kuraray Co Ltd Transparent conductive film, transparent conductive member, and silver nano wire dispersion solution and manufacturing method of transparent conductive film
JP2009231029A (en) * 2008-03-22 2009-10-08 Konica Minolta Holdings Inc Method of manufacturing transparent conductive film, and transparent conductive film

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10024840B2 (en) 2007-05-29 2018-07-17 Tpk Holding Co., Ltd. Surfaces having particles and related methods
US10105875B2 (en) 2008-08-21 2018-10-23 Cam Holding Corporation Enhanced surfaces, coatings, and related methods
JP2013521595A (en) * 2010-02-27 2013-06-10 イノバ ダイナミックス, インコーポレイテッド Structure with surface embedding additive and associated manufacturing method
JP2012027888A (en) * 2010-07-26 2012-02-09 Samsung Electro-Mechanics Co Ltd Transparent conductive film for touch panel and method for manufacturing the same
US9185798B2 (en) 2010-08-07 2015-11-10 Innova Dynamics, Inc. Device components with surface-embedded additives and related manufacturing methods
US9713254B2 (en) 2010-08-07 2017-07-18 Tpk Holding Co., Ltd Device components with surface-embedded additives and related manufacturing methods
JP2012079257A (en) * 2010-10-06 2012-04-19 Dic Corp Transparent conductive film laminate using double-coated adhesive sheet and touch panel device
JP2012139674A (en) * 2010-12-31 2012-07-26 Samsung Electro-Mechanics Co Ltd Method for post-treatment of conductive film and conductive film using the method
JP2012247852A (en) * 2011-05-25 2012-12-13 Innovation & Infinity Global Corp Transparent conductive structure applicable to touch panel, and manufacturing method for the structure
JP2012247851A (en) * 2011-05-25 2012-12-13 Innovation & Infinity Global Corp Transparent conductive structure applicable to touch panel, and manufacturing method for the structure
JP2014094467A (en) * 2012-11-08 2014-05-22 Mitsubishi Plastics Inc Polyester film for transparent conductive film substrate and transparent conductive film
US9782955B2 (en) 2013-09-24 2017-10-10 3M Innovative Properties Company Transferable transparent conductive patterns and display stack materials
KR101549999B1 (en) 2013-10-08 2015-09-07 주식회사 고려이노테크 Transparent Electrode Substrate Using Metal Nanowire
JP2015082425A (en) * 2013-10-23 2015-04-27 パイオニア株式会社 Light-emitting device and substrate
JP2016096113A (en) * 2014-11-17 2016-05-26 王子ホールディングス株式会社 Conductive sheet and conductive base material
JP2018119947A (en) * 2017-01-25 2018-08-02 華邦電子股▲ふん▼有限公司Winbond Electronics Corp. Transparent pressure sensor and manufacturing method thereof
US20180209859A1 (en) * 2017-01-25 2018-07-26 Winbond Electronics Corp. Transparent pressure sensor and manufacturing method thereof
US10527504B2 (en) 2017-01-25 2020-01-07 Winbond Electronics Corp. Transparent pressure sensor and manufacturing method thereof
KR20200032478A (en) * 2018-09-18 2020-03-26 한국전력공사 Manufacturing method for flexible transparent electrode and flexible transparent electrode thereof
KR102582189B1 (en) * 2018-09-18 2023-09-26 한국전력공사 Manufacturing method for flexible transparent electrode and flexible transparent electrode thereof

Also Published As

Publication number Publication date
JPWO2010018734A1 (en) 2012-01-26
JP5397377B2 (en) 2014-01-22

Similar Documents

Publication Publication Date Title
JP5397376B2 (en) Transparent electrode, organic electroluminescence element, and method for producing transparent electrode
JP5397377B2 (en) Transparent electrode, organic electroluminescence element, and method for producing transparent electrode
JP5533669B2 (en) Transparent electrode, method for producing the same, and organic electroluminescence device
JP5332252B2 (en) Transparent conductive film, organic electroluminescence element, and method for producing transparent conductive film
JP5454476B2 (en) Transparent electrode and method for producing transparent electrode
JP5396916B2 (en) Method for producing transparent electrode, transparent electrode and organic electroluminescence element
US8795462B2 (en) Transparent conductive coating with filler material
JP5190758B2 (en) Film with transparent conductive layer, flexible functional element, flexible dispersive electroluminescent element, method for producing the same, and electronic device using the same
JP5212377B2 (en) Transparent electrode and method for producing transparent electrode
Liang et al. Highly flexible and bright electroluminescent devices based on ag nanowire electrodes and top‐emission structure
JP2010073322A (en) Transparent electrode, its manufacturing method, and organic electroluminescent element using it
KR102066075B1 (en) Substrate having transparent electrode for flexible display and method of fabricating the same
JP4983021B2 (en) Transparent conductive laminate, organic EL element using the same, and method for producing the same
US8304984B2 (en) Organic electroluminescent element
JP2009059666A (en) Film with transparent conductive layer, flexible functional elements, and manufacturing methods therefor
WO2011162080A1 (en) Organic electroluminescence element
KR102375891B1 (en) Transparent electrodes and electronic decives including the same
CN105489784B (en) Electrode and its application prepared by the preparation method and this method of compliant conductive electrode
JP2010244746A (en) Transparent electrode, method for manufacturing transparent electrode and organic electroluminescent element
TW201443927A (en) Transparent conductive film
JP2009252437A (en) Transparent conductive film
Ohsawa et al. Bending reliability of transparent electrode of printed invisible silver-grid/PEDOT: PSS on flexible epoxy film substrate for powder electroluminescent device
JPWO2013061967A1 (en) Transparent conductive film and organic electroluminescence device
WO2011065213A1 (en) Dispersion, transparent electrode, and organic electro- luminescent element
JP5333142B2 (en) Pattern electrode, organic electroluminescence element, and method of manufacturing pattern electrode

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806629

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010524697

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09806629

Country of ref document: EP

Kind code of ref document: A1