WO2010018291A1 - Multifrequency automatic rotational shutter for determining the velocity of moving luminous celestial sources such as meteors, fireballs, airships or space machines - Google Patents

Multifrequency automatic rotational shutter for determining the velocity of moving luminous celestial sources such as meteors, fireballs, airships or space machines Download PDF

Info

Publication number
WO2010018291A1
WO2010018291A1 PCT/ES2009/070329 ES2009070329W WO2010018291A1 WO 2010018291 A1 WO2010018291 A1 WO 2010018291A1 ES 2009070329 W ES2009070329 W ES 2009070329W WO 2010018291 A1 WO2010018291 A1 WO 2010018291A1
Authority
WO
WIPO (PCT)
Prior art keywords
shutter
speed
meteors
velocity
propeller
Prior art date
Application number
PCT/ES2009/070329
Other languages
Spanish (es)
French (fr)
Inventor
Josep M. Trigo Rodriguez
Original Assignee
Consejo Superior De Investigaciones Cientificas (Csic)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Consejo Superior De Investigaciones Cientificas (Csic) filed Critical Consejo Superior De Investigaciones Cientificas (Csic)
Publication of WO2010018291A1 publication Critical patent/WO2010018291A1/en

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B9/00Exposure-making shutters; Diaphragms
    • G03B9/08Shutters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • G01C11/04Interpretation of pictures
    • G01C11/06Interpretation of pictures by comparison of two or more pictures of the same area
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/781Details
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S3/00Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
    • G01S3/78Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received using electromagnetic waves other than radio waves
    • G01S3/782Systems for determining direction or deviation from predetermined direction
    • G01S3/783Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems
    • G01S3/784Systems for determining direction or deviation from predetermined direction using amplitude comparison of signals derived from static detectors or detector systems using a mosaic of detectors
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B15/00Special procedures for taking photographs; Apparatus therefor
    • G03B15/16Special procedures for taking photographs; Apparatus therefor for photographing the track of moving objects

Definitions

  • the present invention belongs to the sector of apparatus, methods, systems or technical devices capable of measuring, or estimating, physical variables (Metrology). More particularly, this patent describes an apparatus that serves to determine in real time, the speed and direction of an air body or object that is observable from any point of the celestial hemisphere of a particular geographical location, whether terrestrial or maritime.
  • the first instrument invented with the sole purpose of obtaining a panoramic image consisted of an objective optical lens that obtained non-extensive images of a landscape and then, by means of a computer treatment, assemble them and finally turn them into the graphic representation of a large sector of the visible field (Poelstra, TJ, "Method and device for producing panoramic image and a method and device for consulting panoramic devices, US Patent 5563650, 1996). It may well be said that this device was equivalent to a short-angle lens that took pictures successive during a complete rotation of 360.
  • another patent was registered for a method capable of correcting the understandable and insurmountable distortion introduced in any image or panoramic view of a landscape when it is projected on a flat surface (Mojaver M. et al., Panoramic imaging and display system with canonical magnifier "US Patent 6833843, 2004). The most novel of this work is the particular computer processing of the image.
  • CONCAM RJ. Nemiroff and JB Raffert, "Towards a continous record of the sky", PASP 111, page 886, 1999
  • Other devices or assemblies that follow the previous models have also appeared on the market, and are preferably designed to detect cloud masses (see for example, MJ Kosch, "The Skibotn a CCD All-Sky Imager and real time networking onto the WWW, MPAE-T-010-99-12, Max Plank Institute for Aeronomie, Lindau, Germany, 1999.)
  • MJ Kosch "The Skibotn a CCD All-Sky Imager and real time networking onto the WWW, MPAE-T-010-99-12, Max Plank Institute for Aeronomie, Lindau, Germany, 1999.
  • a complicated arrangement of mirrors produces an image, almost hemispherical, projected onto a small size detector.
  • a fisheye lens, or wide angle, high brightness completes the prototype which is capable of presenting an image of the light stroke left by the meteorite.
  • the assembly of this patent does not allow estimates of the physical parameters of the fall flight, it is only an instrument for sighting and automatic observation of moving objects in the night sky.
  • an academic paper was presented on the analysis of the chemical elements that constitute meteorites that, from outer space, produce bright fireballs before falling to the ground (JM Trigo Rodr ⁇ guez "Spectroscopic analysis of cometary and asteroid fragments at the entrance to the Earth's atmosphere". Doctoral thesis. Publications of the University of Valencia, 2002).
  • Microelectronics, optics and computing are the three technical specialties that allow us to face and solve the scientific problem outlined in the previous paragraph. Being able to know with sufficient precision and speed the place of fall of these remains requires determining the speed with which they cross the atmosphere, especially in the final section of their trajectory, in which they stop emitting visible light when they are decelerated. In this final phase that specialists call "dark flight", the meteorite or the different pieces into which it may have been divided during its flight, advance until it falls to the ground. It is not possible to estimate the point or area of fall without knowing the exact terminal velocity of the first luminous phase recorded by the observation device. To date, there are not numerous patents or scientific publications based on the determination of the speed of the registered objects.
  • the present invention consists of a mechanism basically composed of a rotating flat propeller that interrupts, with a certain periodicity, the light beam that comes from an optical objective.
  • the controlled movement of this shutter is achieved thanks to a motor of constant angular speed and adjustable at will, which is connected by a rotor shaft coupled to both internal faces of the protective case or cover.
  • a computer calculation on the digital image allows to know the instantaneous velocity of the meteor, from that sequence of "trajectory segments displayed during non-extinctions" and depending on the design parameters, and rotation, of the shutter chosen by your operator
  • Figures 1a (side section) and 1 b (straight section seen from above) generally show the invented multi-frequency shutter.
  • Figure 2 also describes in detail the flat rotating propeller (3) that periodically extinguishes the image projected by the lens, or the lenses, wide-angle lens (1).
  • a metal box (6), figures 1a and 1 b, quadrangular, hollow and flat, saves the most essential piece of the device that is a metal, flat and rotating propeller (3) ( Figure 2) that in its movement effects the extinctions of The image projected by the objective (1) in the CCD detector (7).
  • the shape and dimensions of the box (6), or protective cover, may vary according to the type of optical objective (1) and detector (7) to which the shutter is desired.
  • the flat propeller (3) is a metal sheet cut according to the shape specified in Figure 2.
  • the number of blades, and the angular speed of rotation, or what is coming to be the same, the number of extinctions of the image per unit of time, may vary, this time, depending on the degree of precision of the calculation to be carried out to determine the trajectory of the moving object.
  • the thickness of the metal sheet is 2 millimeters, to ensure the absence of deformations. Construction and subsequent calibration of the propeller (3) recommends that the number of blades be 6 or 12. Also, a precise angular adjustment of the blades is necessary.
  • the carving of the edges of the propeller (3) must be perfectly radial and symmetrical with respect to the axis of rotation (center of the figure) and, in the end, all of them are perfectly polished with the help, for example, of a spectroscopic method of surface checking.
  • blades are responsible for fractionating the image, its arrangement at equidistant angles from each other, must be very precise. This must be so, because defects, both in the finishing of the edges, and irregularities in the arrangement of the blades of the propeller (3) are the source of unwanted calculation errors.
  • the aforementioned rectangular metal box (6) has in its upper and lower parts two circular hollows where the corresponding threaded connection rings of the wide-angle objective lens (1) and CCD detector (7) have been electrically welded ( Figure 1a).
  • the propeller (3) is moved by an electric stepper motor (2) through a bearing shaft inserted in the upper and lower inner walls of the housing (6).
  • the stepper motor (2) integrated in the housing (6, Figures 1a and 1b), drives the flat propeller (3) by means of a cogwheel which, for simplicity, does not appear in the figures.
  • Figure 3 shows the appearance of the device invented before performing this assembly.
  • the angular rotation speed of the shutter can be controlled through an external electronic circuit. Depending on the objective of the study, we will select a greater or lesser angular rotation speed of the rotor system to obtain the desired number of seals / second.
  • a "step-by-step” engine has been used (2) that It works with a voltage of 12 Volts DC.
  • the angular motor speed (2) is in the range of 1 to 10 rpm.
  • Said number of revolutions is controlled with a rectifying diode provided with a piezoelectric crystal whose piezoelectricity keeps the speed of rotation constant.
  • the multifrequency shutter thus designed is able to provide the user with a wide range of turning speeds that can be applied to systematically and automatically observe aircraft, meteors and cars, or moving light sources that pass through the celestial field covered by Ia objective lens (1).
  • the angular velocity of the "step by step” motor (2) and the number of blades in the propeller (3) allow to analyze the movement of objects that move at speeds of very different numerical values.
  • the multifrequency shutter presented allows to systematically observe the movement of aircraft or other moving light sources that pass through the field covered by the CCD camera (7) both in full daylight, and at night.
  • the interposition of a neutral attenuator filter between shutter (1) and CCD detector (7) is not excluded.
  • the camera was used to see the whole sky of a place, patented by Dr. AJ Castro Tirado (cited in the State of the Prior Technique section).
  • the digital images obtained by application of this shutter were perfectly sharp and devoid of vignetting (see, for example, Figures 4 and 5).
  • this device can be useful in the context of continuously monitoring the movement and speed of aircraft or satellites.
  • the shutter described above was mounted in the hemispherical chamber patented by Alberto Javier Castro Tirado, in order to demonstrate its practical applicability in two real cases, the present invention is applicable to any type of camera, optical instrument or detector.
  • This example shows the application of the prototype of this patent to the particular case of the determination of the speed of an artificial satellite.
  • Station # 1 was in the province of Girona (specifically, at the coordinates, ⁇ : 357.48 ° ⁇ : + 41.72 ° AIt .: 300 m) and the # 2 station in Barcelona ( ⁇ : 357.68 ° ⁇ : + 41.94 ° AIt .: 567 m).
  • the position of the stars of the field and the path of the satellite is measured in Cartesian coordinates.
  • the coordinates of the object's trajectory in the celestial vault are determined from the two stations (Trigo-Rodr ⁇ guez, cited work, 2002). From there, the planes containing each station and the satellite path are determined. The intersection of both planes will allow to determine the trajectory and height on the terrestrial surface of the space ingenuity. Thus, the geographical coordinates and the satellite height were determined.
  • the segments in which the satellite path is divided (Fig. 4b) allow an average speed of 8.0 ⁇ 0.5 km / sec to be estimated. The data obtained are recorded in Table 1.
  • Satellite path of example # 1 measured from both stations. Note that the reason why the initial coordinates of the beginning and end of the satellite from both stations do not coincide since station # 2 registered a weaker section as it was the most sensitive system.
  • the astrometric reduction procedure is exactly the same as the previous case.
  • the position of the object is obtained based on the position in equatorial coordinates of the stars (Fig. 6c).
  • two planes containing the racing car seen from both stations are determined. The intersection of both planes will allow to define the real trajectory of the car in the atmosphere (Fig. 6d) and its orbit in the Solar System if the speed is determined (Fig. 6e).
  • the calculation method and the equations to be solved are detailed in (Trigo Rodr ⁇ guez, 2002).
  • the speed of the particle along the trajectory will be determined from the number of segments generated by the shutter (Fig. 6a).
  • Figures 1a and 1 b General scheme of the internal shutter. The dimensions may vary depending on the instrument and the optical system to which it is desired to attach.
  • FIG. 2 General scheme of the internal helix (3) that generates the seals. Note that in the model with 6 blades the angular amplitude ( ⁇ ) between blades is 30 °. The dimensions of the blades and the diameter of the propeller (3) are variable depending on the instrument. In the prototype shown in Fig. 3 the diameter d of the propeller (3) was 15 cm. and the length a of each blade of 6.5 cm.
  • FIG. 1 Aerial view of the shutter prototype built for this invention. Components detail:
  • Stepper motor 3.
  • Six-blade propeller located internally. The faces of the blades have been polished and measured with a strobe system to achieve an exact adjustment in the cutting interval between each blade. (in DD, above) 4.
  • Motor shaft 5. Thread of adaptation to the objective.
  • Figure 4 Satellite described in example # 1. a) Part of the image of the entire sky taken from station 1. b) Enlargement of the window shown in the box of a) where the light trail left by the satellite appears, c) Image taken from station # 2. d) Reconstruction of the trajectory seen from both stations where the parallax of the satellite seen from both stations is appreciated. Taking into account the particular geometry, the distance and height of the satellite on the earth's surface can be determined (Table 1).
  • FIG. 5 Part of an image of the entire sky in which the stroke of the International Space Station (ISS) can be seen flying over station # 1. To the observed next to the station its line is brighter and the shutter of the system is very visible. The ISS flew over station # 1 on November 7, 2007 shortly before sunrise. The bright spot in the lower left is the planet Venus.
  • ISS International Space Station
  • Figure 6 Images of the fireball described in the second example.
  • a small window indicates the position of the racing car in the CCD images.

Abstract

The present invention consists of an internal device which makes it possible to determine, at any time, the angular velocity of any object visible in the sky from a particular terrestrial location. If images of that very object are taken from two geographical locations which are at a sufficient distance, it will also be possible to determine the trajectory, actual velocity and place at which said object falls to the terrestrial surface. Knowing this last parameter with precision is of great help in finding the remains of meteorites. The main features of this patent are: easy assembly and adaptation to different types of cameras, operating capacity, transportability and reduced production price.

Description

OBTURADOR AUTOMÁTICO DE GIRO MULTIFRECUENCIA PARA DETERMINAR LA VELOCIDAD DE FUENTES CELESTES LUMINOSAS EN MOVIMIENTO, COMO METEOROS, BOLAS DE FUEGO, AERONAVES O INGENIOS ESPACIALES. AUTOMATIC MULTI-FREQUENCY SPRAY SHUTTER TO DETERMINE THE SPEED OF MOVING LIGHT SOURCES, AS METERS, FIRE BALLS, AIRCRAFT OR SPACES.
SECTOR DE LA TÉCNICASECTOR OF THE TECHNIQUE
La presente invención pertenece al sector de los aparatos, métodos, sistemas o dispositivos técnicos capaces de medir, o estimar, variables físicas (Metrología). Más en particular, esta patente describe un aparato que sirve para determinar en tiempo real, Ia velocidad y dirección de un cuerpo aéreo u objeto que sea observable desde cualquier punto del hemisferio celeste de un determinado lugar geográfico, ya sea terrestre o marítimo.The present invention belongs to the sector of apparatus, methods, systems or technical devices capable of measuring, or estimating, physical variables (Metrology). More particularly, this patent describes an apparatus that serves to determine in real time, the speed and direction of an air body or object that is observable from any point of the celestial hemisphere of a particular geographical location, whether terrestrial or maritime.
ESTADO DE LA TÉCNICA ANTERIORSTATE OF THE PREVIOUS TECHNIQUE
El primer instrumento inventado con el fin exclusivo de obtener una imagen panorámica consistió en una lente óptica objetivo que obtenía imágenes no extensas de un paisaje para luego, mediante un tratamiento informático, ensamblarlas y convertirlas finalmente en Ia representación gráfica de un amplio sector del campo visible (Poelstra, TJ, "Method and device for producing panoramic image and a method and device for consulting panoramic devices, US Patent 5563650, 1996). Bien se puede decir que este dispositivo era equivalente a un objetivo, de corto angular, que tomaba fotografías sucesivas durante un giro completo de 360°. Unos años después, se registro otra patente de un método capaz de corregir Ia distorsión entendible e insalvable introducida en cualquier imagen o vista panorámica de un paisaje cuando ésta se proyecta en una superficie plana (Mojaver M. et al., Panoramic imaging and display system with canonical magnifier" US Patent 6833843, 2004). Lo más novedoso de este trabajo es el particular tratamiento informático de Ia imagen.The first instrument invented with the sole purpose of obtaining a panoramic image consisted of an objective optical lens that obtained non-extensive images of a landscape and then, by means of a computer treatment, assemble them and finally turn them into the graphic representation of a large sector of the visible field (Poelstra, TJ, "Method and device for producing panoramic image and a method and device for consulting panoramic devices, US Patent 5563650, 1996). It may well be said that this device was equivalent to a short-angle lens that took pictures successive during a complete rotation of 360. A few years later, another patent was registered for a method capable of correcting the understandable and insurmountable distortion introduced in any image or panoramic view of a landscape when it is projected on a flat surface (Mojaver M. et al., Panoramic imaging and display system with canonical magnifier "US Patent 6833843, 2004). The most novel of this work is the particular computer processing of the image.
Históricamente, el primer sistema empleado en el registro y seguimiento del cielo nocturno es Ia cámara denominada CONCAM (RJ. Nemiroff y J. B. Raffert, "Towards a continous record of the sky", PASP 111 , página 886, 1999) que idearon los científicos de una universidad norteamericana. También han aparecido en el mercado, después, otros dispositivos o montajes que siguen los modelos anteriores y están pensados, preferentemente, para detectar masas nubosas (véase por ejemplo, M. J. Kosch, "The Skibotn a CCD All-Sky Imager and real time networking onto the WWW, MPAE-T-010-99-12, Max Plank Institute für Aeronomie, Lindau, Germany, 1999). En este modelo, una complicada disposición de espejos produce una imagen, casi hemisférica, proyectada sobre un detector de tamaño reducido. Recientemente, se ha presentado en Ia Oficina Española de Patentes y Marcas (OEPM) Ia patente registrada con el número 200501127 (Castro Tirado A. J., "Cámara digital nocturna y sus aplicaciones para Ia observación automática de todo el cielo") a Ia cual Ie han sido concedidos derechos de patente con fecha de 27 de Noviembre de 2007. Esta invención, que ya se utiliza en algunos observatorios astronómicos universitarios y profesionales, sirve para detectar, automáticamente, Ia aparición de meteoros y bólidos pues permite al técnico, obtener Ia panorámica del cielo de un lugar geográfico determinado, en una sola toma de imagen digital y en un tiempo corto. A tal fin dispone de un detector CCD (acrónimo en inglés de Charge Couple Device, o dispositivo de carga acoplada) refrigerado, en el rango óptico del espectro visible, de una relativamente alta superficie de exposición (4096 x 4096 píxeles o elementos de imagen) y eficiencia cuántica por encima del 50%. Una lente de ojo de pez, o gran angular, de alta luminosidad completa el prototipo el cuál es capaz de presentar una imagen del trazo luminoso dejado por el meteorito. El montaje de esta patente no permite hacer estimaciones de los parámetros físicos del vuelo de caída, es tan sólo un instrumento para avistamiento y observación automática de objetos móviles en el cielo nocturno. Al mismo tiempo y sobre un tema bien distinto al de los instrumentos ópticos captores de imagen, se presentó un trabajo académico sobre el análisis de los elementos químicos que constituyen los meteoritos que, procedentes del espacio exterior producen brillantes bolas de fuego antes de caer a tierra (J. M. Trigo Rodríguez "Análisis espectroscópico de fragmentos cometarios y asteroidales a Ia entrada a Ia atmósfera terrestre". Tesis doctoral. Publicaciones de Ia Universidad de Valencia, 2002). En esta publicación, el autor recomienda a los especialistas en el tema, determinar, a ser posible de inmediato, el lugar de caída de estos cuerpos, testigos de primera mano de los procesos físico-químicos acontecidos durante Ia formación de los planetas, para así evitar su contaminación o, Io que sería peor, su perdida.Historically, the first system used in the recording and monitoring of the night sky is the camera called CONCAM (RJ. Nemiroff and JB Raffert, "Towards a continous record of the sky", PASP 111, page 886, 1999) that the scientists of An American university. Other devices or assemblies that follow the previous models have also appeared on the market, and are preferably designed to detect cloud masses (see for example, MJ Kosch, "The Skibotn a CCD All-Sky Imager and real time networking onto the WWW, MPAE-T-010-99-12, Max Plank Institute for Aeronomie, Lindau, Germany, 1999.) In this model, a complicated arrangement of mirrors produces an image, almost hemispherical, projected onto a small size detector. Recently, the patent registered under number 200501127 (Castro Tirado AJ, "Night digital camera and its applications for automatic observation of the whole sky") to which they have been submitted to the Spanish Patent and Trademark Office (SPTO). Patent rights were granted dated November 27, 2007. This invention, which is already used in some university and professional astronomical observatories, serves to automatically detect the appearance of and meteors and cars because it allows the technician to obtain the panoramic view of the sky from a specific geographical location, in a single digital image and in a short time. To this end it has a CCD detector (acronym in English for Charge Couple Device, or docking device) cooled, in the optical range of the visible spectrum, a relatively high exposure surface (4096 x 4096 pixels or image elements) and quantum efficiency above 50%. A fisheye lens, or wide angle, high brightness completes the prototype which is capable of presenting an image of the light stroke left by the meteorite. The assembly of this patent does not allow estimates of the physical parameters of the fall flight, it is only an instrument for sighting and automatic observation of moving objects in the night sky. At the same time and on a subject very different from that of optical image capture instruments, an academic paper was presented on the analysis of the chemical elements that constitute meteorites that, from outer space, produce bright fireballs before falling to the ground (JM Trigo Rodríguez "Spectroscopic analysis of cometary and asteroid fragments at the entrance to the Earth's atmosphere". Doctoral thesis. Publications of the University of Valencia, 2002). In this publication, the author recommends to specialists in the field, determine, if possible immediately, the place of fall of these bodies, first-hand witnesses of the physical-chemical processes occurred during the formation of the planets, in order to avoid its contamination or, what would be worse, its loss.
La microelectrónica, Ia óptica y Ia informática son las tres especialidades técnicas que permiten hacer frente y resolver el problema científico reseñado en el párrafo anterior. El poder saber con precisión y rapidez suficientes el lugar de caída de estos restos requiere determinar Ia velocidad con Ia que surcan Ia atmósfera, sobre todo en el tramo final de su trayectoria, en el que dejan de emitir luz visible al ser decelerados. En esta fase final que los especialistas denominan "vuelo oscuro", el meteorito o los diferentes trozos en los que puede haberse dividido durante su vuelo, avanzan hasta caer al suelo. No es posible estimar el punto o área de caída sin conocer Ia velocidad terminal exacta de Ia primera fase luminosa registrada por el dispositivo de observación. Hasta Ia fecha, no son numerosas las patentes o publicaciones científicas basadas en Ia determinación de Ia velocidad de los objetos registrados. En esta Memoria de invención se presenta un dispositivo que instalado en cualquier sistema de avistamiento o seguimiento, en general, de objetos volantes, visibles permite determinar Ia velocidad de caída y que en tándem con un sistema igual, localizado a una cierta distancia, sirve para determinar Ia trayectoria. El prototipo empleado en Ia preparación de los ejemplos consignados aquí, fue montado, en un primer ensayo, en Ia "Cámara digital nocturna" patentada por el Dr. D. Alberto J. Castro-Tirado.Microelectronics, optics and computing are the three technical specialties that allow us to face and solve the scientific problem outlined in the previous paragraph. Being able to know with sufficient precision and speed the place of fall of these remains requires determining the speed with which they cross the atmosphere, especially in the final section of their trajectory, in which they stop emitting visible light when they are decelerated. In this final phase that specialists call "dark flight", the meteorite or the different pieces into which it may have been divided during its flight, advance until it falls to the ground. It is not possible to estimate the point or area of fall without knowing the exact terminal velocity of the first luminous phase recorded by the observation device. To date, there are not numerous patents or scientific publications based on the determination of the speed of the registered objects. In this Report of the invention a device is presented that installed in any sighting or tracking system, in general, of flying, visible objects allows to determine the speed of fall and that in tandem with an equal system, located at a certain distance, serves to determine the trajectory. The prototype used in the preparation of the examples given here, was mounted, in a first essay, in the "Night digital camera" patented by Dr. D. Alberto J. Castro-Tirado.
DESCRIPCIÓN DE LA INVENCIÓNDESCRIPTION OF THE INVENTION
BREVE DESCRIPCIÓN DE LA INVENCIÓNBRIEF DESCRIPTION OF THE INVENTION
La presente invención consiste en un mecanismo compuesto básicamente por una hélice plana giratoria que interrumpe, con una cierta periodicidad, el haz luminoso que proviene de un objetivo óptico. El movimiento controlado de este obturador se logra merced a un motor de velocidad angular constante y regulable a voluntad, al cual está unido por un eje rotor acoplado a ambas caras internas de Ia caja o cubierta protectora. El ajuste de Ia periodicidad de Ia extinción de Ia imagen del objeto a observar, y con ayuda de un cálculo inmediatamente posterior a Ia toma de datos, permite conocer Ia trayectoria y el lugar de caída del objeto, si es que finalmente cae a tierra.The present invention consists of a mechanism basically composed of a rotating flat propeller that interrupts, with a certain periodicity, the light beam that comes from an optical objective. The controlled movement of this shutter is achieved thanks to a motor of constant angular speed and adjustable at will, which is connected by a rotor shaft coupled to both internal faces of the protective case or cover. The adjustment of the periodicity of the extinction of the image of the object to be observed, and with the help of a calculation immediately after the data collection, allows to know the trajectory and the place of fall of the object, if it finally falls to the ground.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓNDETAILED DESCRIPTION OF THE INVENTION
La metodología seguida en esta patente de invención está basada en una concepción generalizada del efecto estroboscópico que permite visualizar, y analizar, cualquier objeto que se mueva, mediante el fraccionamiento del hecho físico (real) del movimiento en una serie de cortos acontecimientos en los cuales, el movimiento queda ausente. En efecto, visto a simple vista por un observador ocasional, si el paso de un meteoro es percibido por él como un punto luminoso, muy brillante, que atraviesa veloz el cielo del lugar, Io que esta técnica nos hace ver en una pantalla, finalmente, es una imagen, estática, en Ia cual el trazo dejado por el cuerpo aparece y desaparece periódicamente.The methodology followed in this patent of invention is based on a generalized conception of the strobe effect that allows to visualize, and analyze, any object that moves, by fractioning the physical (real) fact of the movement in a series of short events in which the movement is absent. Indeed, seen by the naked eye by an occasional observer, if the passage of a meteor is perceived by him as a bright, very bright spot, which quickly crosses the sky of the place, what this technique makes us see on a screen, finally , is an image, static, in which the stroke left by the body appears and disappears periodically.
Un cálculo informático sobre Ia imagen digital permite conocer Ia velocidad instantánea del meteoro, a partir de esa sucesión de "segmentos de trayectoria visualizados durante las no extinciones" y en función de cuáles sean los parámetros de diseño, y de giro, del obturador elegidos por su operador.A computer calculation on the digital image allows to know the instantaneous velocity of the meteor, from that sequence of "trajectory segments displayed during non-extinctions" and depending on the design parameters, and rotation, of the shutter chosen by your operator
Las figuras 1a (sección lateral) y 1 b (sección recta vista desde arriba) presentan, de manera general, el obturador multifrecuencia inventado. La figura 2, igualmente, describe con detalle Ia hélice plana giratoria (3) que extingue, periódicamente, Ia imagen proyectada por Ia lente, o las lentes, objetivo gran angular (1 ). Una caja metálica (6), figuras 1a y 1 b, cuadrangular, hueca y plana, guarda Ia pieza más esencial del dispositivo que es una hélice (3) metálica, plana y giratoria (Figura 2) que en su movimiento efectúa las extinciones de Ia imagen proyectada por el objetivo (1 ) en el detector CCD (7). La forma y dimensiones de Ia caja (6), o cubierta protectora, pueden variar según el tipo de objetivo óptico (1 ) y detector (7) al que se desea acoplar el obturador. La hélice plana (3) es una lámina metálica cortada de acuerdo con Ia forma especificada en Ia figura 2. Es importante hacer constar que en Ia hélice (3), el número de aspas, y Ia velocidad angular de giro, o Io que viene a ser Io mismo, el número de extinciones de Ia imagen por unidad de tiempo, pueden variar, esta vez, en función del grado de precisión del cálculo a llevar a cabo para determinar Ia trayectoria del objeto en movimiento. El espesor de Ia lámina metálica es de 2 milímetros, para asegurar Ia ausencia de deformaciones. La construcción y posterior calibración de Ia hélice (3) recomienda que el número de aspas sea 6 ó 12. También, es necesario un ajuste angular preciso de las aspas. El tallado de los bordes de Ia hélice (3) debe ser perfectamente radial y simétrico respecto del eje de giro (centro de Ia figura) y, al final, todos ellos queden perfectamente pulidos con Ia ayuda, por ejemplo, de un método espectroscópico de comprobación de superficies. Como tales aspas son las responsables de fraccionar Ia imagen, su disposición en ángulos equidistantes entre sí, ha de ser muy precisa. Esto ha de ser así, porque defectos, tanto en el acabado de los bordes, cómo irregularidades en Ia disposición de las aspas de Ia hélice (3) son el origen de errores de cálculo indeseados.Figures 1a (side section) and 1 b (straight section seen from above) generally show the invented multi-frequency shutter. Figure 2 also describes in detail the flat rotating propeller (3) that periodically extinguishes the image projected by the lens, or the lenses, wide-angle lens (1). A metal box (6), figures 1a and 1 b, quadrangular, hollow and flat, saves the most essential piece of the device that is a metal, flat and rotating propeller (3) (Figure 2) that in its movement effects the extinctions of The image projected by the objective (1) in the CCD detector (7). The shape and dimensions of the box (6), or protective cover, may vary according to the type of optical objective (1) and detector (7) to which the shutter is desired. The flat propeller (3) is a metal sheet cut according to the shape specified in Figure 2. It is important to state that in the propeller (3), the number of blades, and the angular speed of rotation, or what is coming to be the same, the number of extinctions of the image per unit of time, may vary, this time, depending on the degree of precision of the calculation to be carried out to determine the trajectory of the moving object. The thickness of the metal sheet is 2 millimeters, to ensure the absence of deformations. Construction and subsequent calibration of the propeller (3) recommends that the number of blades be 6 or 12. Also, a precise angular adjustment of the blades is necessary. The carving of the edges of the propeller (3) must be perfectly radial and symmetrical with respect to the axis of rotation (center of the figure) and, in the end, all of them are perfectly polished with the help, for example, of a spectroscopic method of surface checking. As such blades are responsible for fractionating the image, its arrangement at equidistant angles from each other, must be very precise. This must be so, because defects, both in the finishing of the edges, and irregularities in the arrangement of the blades of the propeller (3) are the source of unwanted calculation errors.
La antes mencionada caja metálica rectangular (6) tiene en sus partes superior e inferior dos vaciados circulares donde se han soldado eléctricamente los correspondientes anillos de unión roscada de Ia lente objetivo gran angular (1 ) y detector CCD (7) (Figura 1a). A su vez, Ia hélice (3) es movida por un motor eléctrico de pasos (2) a través de un eje a rodamientos insertado en las paredes internas superior e inferior de Ia caja (6). El motor de pasos (2), integrado en Ia caja (6, Figuras 1a y 1b), acciona Ia hélice plana (3) por medio de una rueda dentada que, por simplicidad, no aparece en las figuras.The aforementioned rectangular metal box (6) has in its upper and lower parts two circular hollows where the corresponding threaded connection rings of the wide-angle objective lens (1) and CCD detector (7) have been electrically welded (Figure 1a). In turn, the propeller (3) is moved by an electric stepper motor (2) through a bearing shaft inserted in the upper and lower inner walls of the housing (6). The stepper motor (2), integrated in the housing (6, Figures 1a and 1b), drives the flat propeller (3) by means of a cogwheel which, for simplicity, does not appear in the figures.
Finalmente, el obturador se ha de montar perfectamente alineado con el eje óptico de Ia lente o sistema óptico objetivo (1 ) (o sistema, o aparato óptico de observación, cualesquiera pueda ser este), y con el detector CCD (7) tal y como se muestra en Ia figura 1a. Precisamente, Ia figura 3 muestra el aspecto del dispositivo inventado antes de realizar este montaje. A través de un circuito electrónico externo se podrá controlar Ia velocidad angular de giro del obturador. Dependiendo del objetivo del estudio seleccionaremos una mayor o menor velocidad angular de giro del sistema rotor para obtener el número de obturaciones/segundo deseadas. En el prototipo construido se ha empleado un motor "paso a paso" (2) que funciona con un voltaje de 12 Voltios de corriente continua. La velocidad angular del motor (2), se encuentra en el rango de 1 a 10 rpm. Dicho número de revoluciones se controla con un diodo rectificador dotado de un cristal piezoeléctrico cuya piezoelectricidad mantiene constante Ia velocidad de giro. El obturación multifrecuencia así diseñado es capaz de proporcionar al usuario un amplio rango de velocidades de giro que pueden ser aplicadas para observar sistemáticamente y de modo automático, aeronaves, meteoros y bólidos, o fuentes luminosas en movimiento que pasen por el campo celeste abarcado por Ia lente objetivo (1 ). Nótese, también, que Ia velocidad angular del motor "paso a paso" (2) y el número de aspas en Ia hélice (3) permiten analizar el movimiento de objetos que se desplacen a velocidades de valores numéricos muy diferentes.Finally, the shutter must be mounted perfectly aligned with the optical axis of the objective lens or optical system (1) (or system, or optical observation apparatus, whatever this may be), and with the CCD detector (7) as and as shown in figure 1a. Precisely, Figure 3 shows the appearance of the device invented before performing this assembly. The angular rotation speed of the shutter can be controlled through an external electronic circuit. Depending on the objective of the study, we will select a greater or lesser angular rotation speed of the rotor system to obtain the desired number of seals / second. In the built-in prototype a "step-by-step" engine has been used (2) that It works with a voltage of 12 Volts DC. The angular motor speed (2) is in the range of 1 to 10 rpm. Said number of revolutions is controlled with a rectifying diode provided with a piezoelectric crystal whose piezoelectricity keeps the speed of rotation constant. The multifrequency shutter thus designed is able to provide the user with a wide range of turning speeds that can be applied to systematically and automatically observe aircraft, meteors and cars, or moving light sources that pass through the celestial field covered by Ia objective lens (1). Note, also, that the angular velocity of the "step by step" motor (2) and the number of blades in the propeller (3) allow to analyze the movement of objects that move at speeds of very different numerical values.
El obturador multifrecuencia presentado permite observar sistemáticamente el movimiento de aeronaves u otras fuentes luminosas en movimiento que pasen por el campo abarcado por Ia cámara CCD (7) tanto a pleno sol del día, cómo por Ia noche. No se excluye Ia interposición de un filtro neutro atenuador entre obturador (1 ) y detector CCD (7). Para las pruebas de campo que consistieron en Ia monitorización durante un tiempo largo, del movimiento de aeronaves, satélites artificiales o meteoros desde al menos dos estaciones terrestres se empleó Ia cámara que permite ver todo el cielo de un lugar, patentada por el Dr. A. J. Castro Tirado (citada en el apartado del Estado de Ia Técnica Anterior). Las imágenes digitales obtenidas por aplicación de este obturador resultaron perfectamente nítidas y carentes de viñeteo (véanse, por ejemplo, las figuras 4 y 5).The multifrequency shutter presented allows to systematically observe the movement of aircraft or other moving light sources that pass through the field covered by the CCD camera (7) both in full daylight, and at night. The interposition of a neutral attenuator filter between shutter (1) and CCD detector (7) is not excluded. For the field tests that consisted of monitoring for a long time, the movement of aircraft, artificial satellites or meteors from at least two ground stations, the camera was used to see the whole sky of a place, patented by Dr. AJ Castro Tirado (cited in the State of the Prior Technique section). The digital images obtained by application of this shutter were perfectly sharp and devoid of vignetting (see, for example, Figures 4 and 5).
Las principales aplicaciones de esta invención son:The main applications of this invention are:
1 ) En experimentos de laboratorio, para monitorizar el rápido movimiento de objetos en el campo cubierto por Ia cámara CCD a Ia que se aplique el obturador de giro multifrecuencia. 2) En el campo científico para determinar Ia velocidad de meteoros o bolas de fuego.1) In laboratory experiments, to monitor the rapid movement of objects in the field covered by the CCD camera to which the multifrequency turn shutter is applied. 2) In the scientific field to determine the speed of meteors or fireballs.
3) En el campo militar, este dispositivo puede ser útil en el contexto de monitorizar de manera continua el movimiento y Ia velocidad de aeronaves o satélites.3) In the military field, this device can be useful in the context of continuously monitoring the movement and speed of aircraft or satellites.
EJEMPLOS DE APLICACIÓN DE LA INVENCIÓNEXAMPLES OF APPLICATION OF THE INVENTION
Aunque el obturador descrito anteriormente se montó en Ia cámara hemisférica patentada por Alberto Javier Castro Tirado, con el fin de demostrar su aplicabilidad práctica en dos casos reales, Ia presente invención es aplicable a cualquier tipo de cámara, instrumento óptico o detector.Although the shutter described above was mounted in the hemispherical chamber patented by Alberto Javier Castro Tirado, in order to demonstrate its practical applicability in two real cases, the present invention is applicable to any type of camera, optical instrument or detector.
EJEMPLO 1. DETERMINACIÓN DE LA POSICIÓN Y VELOCIDAD DE UN SATÉLITE ARTIFICIALEXAMPLE 1. DETERMINATION OF THE POSITION AND SPEED OF AN ARTIFICIAL SATELLITE
Este ejemplo muestra Ia aplicación del prototipo de esta patente al caso particular de Ia determinación de Ia velocidad de un satélite artificial.This example shows the application of the prototype of this patent to the particular case of the determination of the speed of an artificial satellite.
Estos cuerpos son vistos a simple vista, al atardecer y al amanecer, cuando su cuerpo es iluminado por el Sol. En especial, este ejemplo se ha elegido por ser una muestra del funcionamiento del obturador multifrecuencia incluso en los casos extremos en que el objeto se encuentra a cientos de kilómetros de las estaciones de registro. Aquí se estudia el caso correspondiente a un satélite artificial situado a unos 1.000 kilómetros de altitud y observado por dos distintas estaciones dotadas ambas de cámarasThese bodies are seen with the naked eye, at dusk and dawn, when your body is illuminated by the Sun. In particular, this example has been chosen as a sample of the operation of the multifrequency shutter even in the extreme cases in which the object is It is hundreds of kilometers from the registration stations. Here we study the case corresponding to an artificial satellite located at an altitude of 1,000 kilometers and observed by two different stations both equipped with cameras
CCD (7) que Io registraron el 15 de julio de 2007 a las 3h12m22s TUCCCD (7) that registered it on July 15, 2007 at 3h12m22s TUC
(Tiempo Universal Coordinado)(véase Ia Figura 4). La estación #1 se encontraba en Ia provincia de Gerona (concretamente, en las coordenadas, λ: 357.48° φ: +41.72° AIt.: 300 m) y Ia estación #2 en Barcelona (λ: 357.68° φ: +41.94° AIt.: 567 m).(Coordinated Universal Time) (see Figure 4). Station # 1 was in the province of Girona (specifically, at the coordinates, λ: 357.48 ° φ: + 41.72 ° AIt .: 300 m) and the # 2 station in Barcelona (λ: 357.68 ° φ: + 41.94 ° AIt .: 567 m).
El procedimiento de reducción y cálculo se describe aquí de manera muy sucinta. Primero se mide en coordenadas cartesianas Ia posición de las estrellas del campo y de Ia trayectoria del satélite. Posteriormente, conocidas las coordenadas ecuatoriales de las estrellas se determina las coordenadas de Ia trayectoria del objeto en Ia bóveda celeste desde las dos estaciones (Trigo-Rodríguez, obra citada, 2002). A partir de ahí se determinan los planos que contienen cada estación y Ia trayectoria del satélite. La intersección de ambos planos permitirá determinar Ia trayectoria y altura sobre Ia superficie terrestre del ingenio espacial. De ese modo se determinaron las coordenadas geográficas y Ia altura del satélite. Al orbitar a una altura de unos 900 kilómetros podemos identificar que se trata de un satélite de órbita baja, conocidos generalmente por el acrónimo inglés LEOs. Además los segmentos en que aparece dividida Ia trayectoria del satélite (Fig. 4b) permiten estimar una velocidad media de 8.0±0.5 km/seg. Los datos obtenidos se consignan en Ia Tabla 1.The reduction and calculation procedure is described here very succinctly. First, the position of the stars of the field and the path of the satellite is measured in Cartesian coordinates. Subsequently, once the equatorial coordinates of the stars are known, the coordinates of the object's trajectory in the celestial vault are determined from the two stations (Trigo-Rodríguez, cited work, 2002). From there, the planes containing each station and the satellite path are determined. The intersection of both planes will allow to determine the trajectory and height on the terrestrial surface of the space ingenuity. Thus, the geographical coordinates and the satellite height were determined. When orbiting at a height of about 900 kilometers we can identify that it is a low-orbit satellite, generally known by the English acronym LEOs. In addition, the segments in which the satellite path is divided (Fig. 4b) allow an average speed of 8.0 ± 0.5 km / sec to be estimated. The data obtained are recorded in Table 1.
Tabla 1. Trayectoria del satélite del ejemplo #1 medida desde ambas estaciones. Nótese que Ia razón por Ia que las coordenadas iniciales de inicio y fin del satélite desde ambas estaciones no coinciden dado que Ia estación #2 registró un tramo más débil al ser el sistema más sensible. Table 1. Satellite path of example # 1 measured from both stations. Note that the reason why the initial coordinates of the beginning and end of the satellite from both stations do not coincide since station # 2 registered a weaker section as it was the most sensitive system.
Coordenadas geográficas Coordenadas ecuatorialesGeographic coordinates Equatorial coordinates
Estación λ (°) φ (°) Altura α (°) δ (°)Station λ (°) φ (°) Height α (°) δ (°)
#1 (km)# 1 (km)
Inicio 351.10+0.04 39.81±0.03 872 21.912 +21. 824Start 351.10 + 0.04 39.81 ± 0.03 872 21.912 +21. 824
NN
Fin 351.46+0.04 39.58±0.03 861 20.558 +19. 934End 351.46 + 0.04 39.58 ± 0.03 861 20.558 +19. 934
NN
Estación λ (°) φ (°) Altura α (°) δ (°)Station λ (°) φ (°) Height α (°) δ (°)
#2 (km)# 2 (km)
Inicio 350.55±0.04 40.15±0.03 905 23.954 +23. 076Start 350.55 ± 0.04 40.15 ± 0.03 905 23.954 +23. 076
NN
Fin 351.70±0.04 39.43±0.03 850 19.863 +17. 178End 351.70 ± 0.04 39.43 ± 0.03 850 19.863 +17. 178
NN
El ejemplo descrito muestra un caso en que el satélite artificial aparece en una geometría muy alejada y relativamente desfavorable. Aún así el sistema puede determinar Ia velocidad del objeto aunque con una imprecisión relativamente elevada dada Ia distancia a Ia que se contempla el objeto. En otras ocasiones las aeronaves pueden pasar a distancias mucho más próximas de Ia estación de registro de manera que Ia precisión de Ia trayectoria y velocidad estimadas aumenta significativamente. Una imagen de un satélite sobrevolando Ia estación en Ia que Ia obturación es mucho más nítida aparece en Ia Fig. 5. EJEMPLO 2. DETERMINACIÓN DE LA POSICIÓN Y VELOCIDAD DE UNA BOLA DE FUEGOThe described example shows a case in which the artificial satellite appears in a very remote and relatively unfavorable geometry. Even so, the system can determine the speed of the object although with a relatively high imprecision given the distance at which the object is contemplated. On other occasions the aircraft may pass much closer distances from the registration station so that the estimated trajectory accuracy and speed increases significantly. An image of a satellite flying over the station in which the shutter is much sharper appears in Fig. 5. EXAMPLE 2. DETERMINATION OF THE POSITION AND SPEED OF A FIRE BALL
Desde las mismas estaciones que en el ejemplo anterior y con idéntico montaje instrumental se registró el paso por el cielo de una bola de fuego tan luminosa como el planeta Venus el 14 de julio de 2007 a las 2h29m11s TUC (Figura 6). La altura estimada del fenómeno luminoso (Tabla 2) indica que Ia detección corresponde a Ia entrada de un meteoroide en Ia atmósfera de Ia Tierra. La razón es que los meteoros se producen a alturas mucho menores (típicamente entre 120 y 70 km) que las de los satélites artificiales. Para corroborar esta sospecha Ia velocidad media de Ia partícula fue de 50 km/s Io que indica claramente que se trata de un cuerpo interplanetario pues es una velocidad mucho mayor que Ia de escape del campo gravitatorio terrestre.From the same stations as in the previous example and with the same instrumental assembly, the passage through the sky of a ball of fire as bright as the planet Venus was recorded on July 14, 2007 at 2h29m11s TUC (Figure 6). The estimated height of the light phenomenon (Table 2) indicates that the detection corresponds to the entry of a meteor into the Earth's atmosphere. The reason is that meteors occur at much lower heights (typically between 120 and 70 km) than those of artificial satellites. To corroborate this suspicion, the average velocity of the particle was 50 km / s, which clearly indicates that it is an interplanetary body, since it is a much greater speed than the escape from the earth's gravitational field.
El procedimiento de reducción astrométrico es exactamente igual al caso anterior. Primero se obtiene Ia posición del objeto en base a Ia posición en coordenadas ecuatoriales de las estrellas (Fig. 6c). Conocida Ia posición y Ia distancia entre las estaciones se determinan dos planos que contienen al bólido visto desde ambas estaciones. La intersección de ambos planos permitirá definir Ia trayectoria real del bólido en Ia atmósfera (Fig. 6d) y su órbita en el Sistema Solar si Ia velocidad es determinada (Fig. 6e). El método de cálculo y las ecuaciones a resolver aparecen detalladas en (Trigo Rodríguez, 2002). Del número de segmentos generados por el obturador (Fig. 6a) se determinará Ia velocidad de Ia partícula a Io largo de Ia trayectoria. Conocida Ia velocidad de Ia partícula a su entrada en Ia atmósfera, el punto radiante de procedencia en Ia bóveda celeste (Fig. 6c) y Ia trayectoria seguida (Fig. 6d) podrá determinarse Ia órbita heliocéntrica que seguía en el Sistema Solar (Fig. 6e). Tabla 2. Trayectoria de Ia bola de fuego descrita en el ejemplo #2 medida desde ambas estaciones. Nótese que Ia razón por Ia que las coordenadas iniciales de inicio y fin no coinciden es debido a que Ia estación #2 registró un tramo más débil al poseer mayor sensibilidad.The astrometric reduction procedure is exactly the same as the previous case. First, the position of the object is obtained based on the position in equatorial coordinates of the stars (Fig. 6c). Once the position and the distance between the stations are known, two planes containing the racing car seen from both stations are determined. The intersection of both planes will allow to define the real trajectory of the car in the atmosphere (Fig. 6d) and its orbit in the Solar System if the speed is determined (Fig. 6e). The calculation method and the equations to be solved are detailed in (Trigo Rodríguez, 2002). The speed of the particle along the trajectory will be determined from the number of segments generated by the shutter (Fig. 6a). Once the particle velocity is known upon entering the atmosphere, the radiant point of origin in the celestial vault (Fig. 6c) and the path followed (Fig. 6d), the heliocentric orbit that followed in the Solar System can be determined (Fig. 6e). Table 2. Trajectory of the fireball described in example # 2 measured from both stations. Note that the reason why the initial start and end coordinates do not match is due to the fact that station # 2 registered a weaker section as it had greater sensitivity.
Coordenadas geográficas Coordenadas ecuatorialesGeographic coordinates Equatorial coordinates
Estación #1 λ (°) φ (°) Altura (km) α (°) δ (°)Station # 1 λ (°) φ (°) Height (km) α (°) δ (°)
Inicio 356.492+0.003 42.028+0.002 107.6+0.1 27.338 +44.075Start 356.492 + 0.003 42.028 + 0.002 107.6 + 0.1 27.338 +44.075
NN
Fin 356.682+0.003 42.036+0.002 86.0+0.1 30.604 +46.962End 356.682 + 0.003 42.036 + 0.002 86.0 + 0.1 30.604 +46.962
NN
Estación #2 λ (°) φ (°) Altura (km) α (°) δ (°)Station # 2 λ (°) φ (°) Height (km) α (°) δ (°)
Inicio 356.539+0.003 42.030+0.002 102.1+0.1 23.954 +23.076Start 356.539 + 0.003 42.030 + 0.002 102.1 + 0.1 23.954 +23.076
NN
Fin 356.729+0.002 42.038+0.002 80.6+0.1 19.863 + 17.178End 356,729 + 0.002 42,038 + 0.002 80.6 + 0.1 19,863 + 17,178
NN
DESCRIPCIÓN DETALLADA DE LAS FIGURAS Y FOTOGRAFÍASDETAILED DESCRIPTION OF THE FIGURES AND PHOTOGRAPHS
Figuras 1a y 1 b. Esquema general del obturador interno. Las dimensiones pueden ser variables en función del instrumento y del sistema óptico al que se desee acoplar. 1a) Vista lateral del montaje del obturador. 1 b) Vista cenital. Se distinguen las siguientes partes: 1 ) Objetivo, 2) Motor paso a paso, 3) aspa, 4) Eje rotor, 5) Rosca del objetivo, 6) Carcasa externa, 7) Detector CCDFigures 1a and 1 b. General scheme of the internal shutter. The dimensions may vary depending on the instrument and the optical system to which it is desired to attach. 1a) Side view of the shutter assembly. 1 b) Aerial view. The following parts are distinguished: 1) Objective, 2) Stepper motor, 3) Blade, 4) Rotor shaft, 5) Lens thread, 6) External housing, 7) CCD detector
Figura 2. Esquema general de Ia hélice interna (3) que genera las obturaciones. Nótese que en el modelo con 6 aspas Ia amplitud angular (β) entre aspas es de 30°. Las dimensiones de las aspas y el diámetro de Ia hélice (3) son variables en función del instrumento. En el prototipo mostrado en Ia Fig. 3 el diámetro d de Ia hélice (3) era de 15 cm. y Ia longitud a de cada aspa de 6.5 cm.Figure 2. General scheme of the internal helix (3) that generates the seals. Note that in the model with 6 blades the angular amplitude (β) between blades is 30 °. The dimensions of the blades and the diameter of the propeller (3) are variable depending on the instrument. In the prototype shown in Fig. 3 the diameter d of the propeller (3) was 15 cm. and the length a of each blade of 6.5 cm.
Figura 3. Vista cenital del prototipo de obturador construido para esta invención. Detalle de los componentes:Figure 3. Aerial view of the shutter prototype built for this invention. Components detail:
1. Objetivo1. Objective
2. Motor paso a paso. 3. Hélice de seis aspas ubicada internamente. Las caras de las aspas han sido pulidas y medidas con un sistema estroboscópico para conseguir un ajuste exacto en el intervalo de corte entre cada aspa. (en DD, arriba) 4. Eje motor 5. Rosca de adaptación al objetivo.2. Stepper motor. 3. Six-blade propeller located internally. The faces of the blades have been polished and measured with a strobe system to achieve an exact adjustment in the cutting interval between each blade. (in DD, above) 4. Motor shaft 5. Thread of adaptation to the objective.
6. Carcasa metálica contenedora.6. Metal housing container.
7. Detector CCD7. CCD detector
8. Cable de alimentación del motor paso a paso.8. Stepper motor power cable.
9. Cableado de control de Ia velocidad de giro.9. Wiring control of the speed of rotation.
Figura 4. Satélite descrito en el ejemplo #1. a) Parte de Ia imagen de todo el cielo tomada desde Ia estación 1. b) Ampliación de Ia ventana mostrada en el recuadro de a) donde aparece el rastro luminoso dejado por el satélite, c) Imagen tomada desde Ia estación #2. d) Reconstrucción de Ia trayectoria vista desde ambas estaciones en donde se aprecia Ia paralaje del satélite vista desde ambas estaciones. Teniendo en cuenta Ia geometría particular se puede determinar Ia distancia y altura del satélite sobre Ia superficie terrestre (Tabla 1 ).Figure 4. Satellite described in example # 1. a) Part of the image of the entire sky taken from station 1. b) Enlargement of the window shown in the box of a) where the light trail left by the satellite appears, c) Image taken from station # 2. d) Reconstruction of the trajectory seen from both stations where the parallax of the satellite seen from both stations is appreciated. Taking into account the particular geometry, the distance and height of the satellite on the earth's surface can be determined (Table 1).
Figura 5. Parte de una imagen de todo el cielo en Ia que se aprecia el trazo de Ia Estación Espacial Internacional (ISS) sobrevolando Ia estación #1. Al observarse próxima a Ia estación su trazo resulta más luminoso y Ia obturación del sistema es bien visible. La ISS sobrevoló Ia estación #1 el 7 de noviembre de 2007 poco antes de Ia salida del Sol. El punto luminoso en Ia parte inferior izquierda es el planeta Venus.Figure 5. Part of an image of the entire sky in which the stroke of the International Space Station (ISS) can be seen flying over station # 1. To the observed next to the station its line is brighter and the shutter of the system is very visible. The ISS flew over station # 1 on November 7, 2007 shortly before sunrise. The bright spot in the lower left is the planet Venus.
Figura 6. Imágenes de Ia bola de fuego descrita en el segundo ejemplo. Una pequeña ventana indica Ia posición del bólido en las imágenes CCD. a) Imagen del bólido visto desde Ia estación #1. b) Imagen desde Ia estación #2. c) Trayectoria del bólido desde ambas estaciones donde aparecen las principales constelaciones. Una vez realizada Ia astrometría de las imágenes Ia prolongación hacia atrás permite Ia determinación del punto radiante, d) Determinación de Ia trayectoria atmosférica y de su proyección en el suelo, e) Órbita heliocéntrica de Ia partícula. Se indican las órbitas de los planetas interiores y Ia posición de Ia Tierra en el momento de interceptar esta partícula interplanetaria. Figure 6. Images of the fireball described in the second example. A small window indicates the position of the racing car in the CCD images. a) Image of the racing car seen from station # 1. b) Image from station # 2. c) Trajectory of the racing car from both stations where the main constellations appear. Once the astrometry of the images has been carried out, the backward extension allows the determination of the radiant point, d) Determination of the atmospheric trajectory and its projection on the ground, e) Heliocentric orbit of the particle. The orbits of the inner planets and the position of the Earth at the moment of intercepting this interplanetary particle are indicated.

Claims

REIVINDICACIONES
1. Un obturador automático de giro multifrecuencia para determinar Ia velocidad de fuentes celestes luminosas en movimiento, como meteoros, bolas de fuego, aeronaves o ingenios espaciales, y que permite su identificación, caracterizado porque comprende:1. An automatic multifrequency turn shutter to determine the speed of celestial light sources in motion, such as meteors, fireballs, aircraft or spacecraft, and which allows their identification, characterized in that it comprises:
- un objetivo (1 ) que proyecta imágenes sobre un detector CCD (7);- a lens (1) that projects images on a CCD detector (7);
- una hélice metálica (3) giratoria que comprende una pluralidad de aspas, que está dispuesta entre el objetivo (1 ) y el detector CCD (7) de modo que las aspas bloquean periódicamente las imágenes proyectadas por el objetivo (1 ) sobre el detector CCD (7); y- a rotating metal propeller (3) comprising a plurality of blades, which is arranged between the target (1) and the CCD detector (7) so that the blades periodically block the images projected by the target (1) onto the detector CCD (7); Y
- una caja metálica (6) que aloja Ia hélice metálica (3), que comprende una superficie superior con un primer orificio al que está fijado el objetivo (1 ) y una superficie inferior con un segundo orificio, enfrentado al primero, al que está fijado el detector CCD (7).- a metal box (6) that houses the metal propeller (3), which comprises an upper surface with a first hole to which the objective (1) is fixed and a lower surface with a second hole, facing the first, to which it is Fixed the CCD detector (7).
2. El obturador automático de Ia reivindicación 1 , donde Ia hélice metálica (3) comprende 6 ó 12 aspas.2. The automatic shutter of claim 1, wherein the metal propeller (3) comprises 6 or 12 blades.
3. El obturador automático de cualquiera de las reivindicaciones anteriores, donde el espesor de Ia hélice metálica (3) es de 2 milímetros.3. The automatic shutter of any of the preceding claims, wherein the thickness of the metal propeller (3) is 2 millimeters.
4. El obturador automático de cualquiera de las reivindicaciones anteriores, donde Ia caja metálica (6) tiene forma cuadrangular plana.4. The automatic shutter of any of the preceding claims, wherein the metal box (6) has a flat quadrangular shape.
5. El obturador automático de cualquiera de las reivindicaciones anteriores, donde Ia hélice metálica (3) es movida por un motor eléctrico "paso a paso" (2).5. The automatic shutter of any of the preceding claims, wherein the metal propeller (3) is moved by an electric motor "step by step" (2).
6. El obturador automático de cualquiera de Ia reivindicación 5, donde Ia velocidad del motor eléctrico "paso a paso" (2) es de entre 1 y 10 rpm. 6. The automatic shutter of any of claim 5, wherein the speed of the electric motor "step by step" (2) is between 1 and 10 rpm.
PCT/ES2009/070329 2008-08-04 2009-07-31 Multifrequency automatic rotational shutter for determining the velocity of moving luminous celestial sources such as meteors, fireballs, airships or space machines WO2010018291A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES200802323A ES2345524B1 (en) 2008-08-04 2008-08-04 AUTOMATIC MULTI FREQUENCY TURNING SHUTTER TO DETERMINE THE SPEED OF MOVING LIGHT SOURCES, AS METERS, FIRE BAGS, AIRCRAFT OR SPACE INGENES.
ESP200802323 2008-08-04

Publications (1)

Publication Number Publication Date
WO2010018291A1 true WO2010018291A1 (en) 2010-02-18

Family

ID=41668744

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/070329 WO2010018291A1 (en) 2008-08-04 2009-07-31 Multifrequency automatic rotational shutter for determining the velocity of moving luminous celestial sources such as meteors, fireballs, airships or space machines

Country Status (2)

Country Link
ES (1) ES2345524B1 (en)
WO (1) WO2010018291A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB246845A (en) * 1925-01-31 1926-07-01 Jules Giguet Improvements in cinematographic apparatus
US4616911A (en) * 1984-06-14 1986-10-14 Jenoptik Jena G.M.B.H. Method for a non-retarded shutter release of rotary shutters in photogrammetric aerial cameras
ES2265273A1 (en) * 2005-05-11 2007-02-01 Consejo Superior Invet. Cientificas Night-time digital camera and use thereof for automatic all-sky observation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB246845A (en) * 1925-01-31 1926-07-01 Jules Giguet Improvements in cinematographic apparatus
US4616911A (en) * 1984-06-14 1986-10-14 Jenoptik Jena G.M.B.H. Method for a non-retarded shutter release of rotary shutters in photogrammetric aerial cameras
ES2265273A1 (en) * 2005-05-11 2007-02-01 Consejo Superior Invet. Cientificas Night-time digital camera and use thereof for automatic all-sky observation

Also Published As

Publication number Publication date
ES2345524B1 (en) 2011-07-11
ES2345524A1 (en) 2010-09-24

Similar Documents

Publication Publication Date Title
US8597025B2 (en) Celestial weapons orientation measuring system
US9544488B2 (en) Star tracker with steerable field-of-view baffle coupled to wide field-of-view camera
CN104462776B (en) A kind of low orbit earth observation satellite is to moon absolute radiation calibration method
US11125562B2 (en) Navigation system with monocentric lens and curved focal plane sensor
US9696161B2 (en) Celestial compass kit
Diner et al. The Airborne Multi-angle Imaging SpectroRadiometer (AirMISR): instrument description and first results
US20150042793A1 (en) Celestial Compass with sky polarization
US20210108922A1 (en) Star Tracker with Adjustable Light Shield
Spurný et al. Automation of the Czech part of the European fireball network: equipment, methods and first results
Fors et al. Telescope Fabra ROA Montsec: A New Robotic Wide Field Baker–Nunn Facility
US20180080772A1 (en) Systems and methods of navigation using a sextant and an electronic artificial horizon
JP3548998B2 (en) Method and apparatus for automatic monitoring and detection of flying objects
RU2014252C1 (en) Method of mapping the celestial sphere and spacecraft for its realization
ES2345524B1 (en) AUTOMATIC MULTI FREQUENCY TURNING SHUTTER TO DETERMINE THE SPEED OF MOVING LIGHT SOURCES, AS METERS, FIRE BAGS, AIRCRAFT OR SPACE INGENES.
ES2856897T3 (en) Elevation Angle Estimation Device and User Terminal Placement Method
ES2819100T3 (en) Earth surface observation procedure and device for its implementation
KR101885920B1 (en) An astronomical device and its driving method for calculating astronomical physical quantity and tracking sun position with automatic tracking function
Zander et al. Planning and Implementation of the Australian Airborne Observation of Hayabusa2
RU2399073C1 (en) Optical panoramic system
US3506218A (en) Resolution calibration satellite for tracking camera
Fenu The JEM-EUSO program
Lawrence et al. A robotic instrument for measuring high altitude atmospheric turbulence from Dome C, Antarctica
CN114299808B (en) Virtual astronomical platform and display method
CN115563437B (en) Three-dimensional sensing method for GEO space debris by sun synchronous orbit observation platform
Ashley The Solar System and Video Astronomy

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806480

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09806480

Country of ref document: EP

Kind code of ref document: A1