WO2010018275A1 - Método y sistema de estimulación craneal multisitio - Google Patents

Método y sistema de estimulación craneal multisitio Download PDF

Info

Publication number
WO2010018275A1
WO2010018275A1 PCT/ES2009/000427 ES2009000427W WO2010018275A1 WO 2010018275 A1 WO2010018275 A1 WO 2010018275A1 ES 2009000427 W ES2009000427 W ES 2009000427W WO 2010018275 A1 WO2010018275 A1 WO 2010018275A1
Authority
WO
WIPO (PCT)
Prior art keywords
stimulation
brain
signals
stimulus signals
stimulus
Prior art date
Application number
PCT/ES2009/000427
Other languages
English (en)
French (fr)
Other versions
WO2010018275A8 (es
Inventor
Giulio Ruffini
Esteve Farres
Original Assignee
Starlab Barcelona, Sl
Grau, Carles
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Starlab Barcelona, Sl, Grau, Carles filed Critical Starlab Barcelona, Sl
Priority to EP09806467.8A priority Critical patent/EP2324882B1/en
Priority to ES09806467T priority patent/ES2791480T3/es
Priority to US13/058,886 priority patent/US8660649B2/en
Priority to JP2011522525A priority patent/JP2013507146A/ja
Publication of WO2010018275A1 publication Critical patent/WO2010018275A1/es
Publication of WO2010018275A8 publication Critical patent/WO2010018275A8/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36025External stimulators, e.g. with patch electrodes for treating a mental or cerebral condition
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N2/00Magnetotherapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/369Electroencephalography [EEG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M2021/0005Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
    • A61M2021/0055Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus with electric or electro-magnetic fields
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M21/00Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis
    • A61M2021/0005Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus
    • A61M2021/0072Other devices or methods to cause a change in the state of consciousness; Devices for producing or ending sleep by mechanical, optical, or acoustical means, e.g. for hypnosis by the use of a particular sense, or stimulus with application of electrical currents
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3546Range
    • A61M2205/3569Range sublocal, e.g. between console and disposable
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/35Communication
    • A61M2205/3576Communication with non implanted data transmission devices, e.g. using external transmitter or receiver
    • A61M2205/3592Communication with non implanted data transmission devices, e.g. using external transmitter or receiver using telemetric means, e.g. radio or optical transmission
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2205/00General characteristics of the apparatus
    • A61M2205/82Internal energy supply devices
    • A61M2205/8206Internal energy supply devices battery-operated
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M2230/00Measuring parameters of the user
    • A61M2230/08Other bio-electrical signals
    • A61M2230/10Electroencephalographic signals
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/02Details
    • A61N1/04Electrodes
    • A61N1/05Electrodes for implantation or insertion into the body, e.g. heart electrode
    • A61N1/0526Head electrodes
    • A61N1/0529Electrodes for brain stimulation
    • A61N1/0531Brain cortex electrodes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N1/00Electrotherapy; Circuits therefor
    • A61N1/18Applying electric currents by contact electrodes
    • A61N1/32Applying electric currents by contact electrodes alternating or intermittent currents
    • A61N1/36Applying electric currents by contact electrodes alternating or intermittent currents for stimulation
    • A61N1/36014External stimulators, e.g. with patch electrodes
    • A61N1/36017External stimulators, e.g. with patch electrodes with leads or electrodes penetrating the skin

Definitions

  • the present invention relates in general to a multi-site cranial stimulation method that comprises applying individual stimuli to different areas of a brain, and in particular to a method comprising determining the stimulus signals to be applied so that they are apt to excite one or more natural modes of vibration of the brain, or a sector thereof, seen as a nonlinear coupled oscillatory system.
  • the invention also concerns a multi-site cranial stimulation system capable of implementing the method proposed by the first aspect.
  • cranial stimulation both intracranial and transcranial type, either through the application of magnetic impulses in the vicinity of the areas to be stimulated, or TMS stimulation, or through the application of electrical signals, between which are the tDCS stimulation, the ENS or the TES.
  • Some of them use the "multisite” concept, that is to say the arrangement of a plurality of stimulation elements (electrodes or magnetic coils, depending on whether the stimulation is electrical or magnetic) in different neuronal zones to supply a plurality of stimuli.
  • Others also incorporate the concept of "feedback", that is, monitoring the brain activity to control the stimuli to be applied based on the monitored signals.
  • Patent US7257439 proposes a system and method based on the arrangement inside a blood flow close to a neuronal tissue, for example the brain, of a plurality of nanoelectrodes, independent or grouped in an ordered array or "array”, with in order to monitor the neuronal activity with some of the electrodes, apply electrical stimuli through other electrodes, and re-monitor the neuronal activity and compare it with the first monitored.
  • a neuronal tissue for example the brain
  • a plurality of nanoelectrodes independent or grouped in an ordered array or "array”
  • the main applications proposed are those related to developing a brain-machine interface or enabling the control of a prosthesis.
  • a series of algorithms are proposed to classify the monitored signals, coming from multiple neurons, in respective functional states according to spatio-temporal patterns.
  • neuronal stimulation no specific strategies, algorithms or programs are proposed in US7257439 to carry it out. It simply indicates that, depending on the algorithm used, the monitored signals are analyzed in one way or another, and therefore one or the other decisions are made.
  • EP1703940A1 patent document proposes a system and method to administer electrical stimulation (ENS) and magnetic stimulation (TMS) to different areas of a patient's body, either jointly or by selecting one of both types of stimulation. It is proposed to adapt the parameters of the stimulation according to the response to the stimulation, monitored for example by means of an electroencephalogram (EEG). Examples of the parameters to be varied in the case of TMS stimulation are indicated: pulse width, frequency, intensity and magnetic orientation.
  • patent US6488617 it is proposed to perform a closed loop feedback between, for example, the output of an EEG monitoring system and the control input of a TMS system, in order to modify a brain state until the desired one is achieved. It is proposed to control different parameters of the TMS stimulation (magnitude, movement, duration, etc.). The possibility of independent control of the magnets or coils is also indicated, so that each of them generates a single magnetic field at a single frequency. In US6488617 the application of said control is not taught or suggested to achieve a stimulation where each of the individual stimuli collaborates with the others to achieve a joint effect, based on which to previously determine the characteristics of each of the individual stimuli.
  • the brain can be studied as a pattern modeling tool, where the inputs of the environment are analyzed, once transformed by transduction by means of body sensors.
  • the ability to model environmental inputs is crucial for the survival of higher organisms.
  • the neural networks responsible for this task determine if the incoming information needs to profoundly alter the dynamics of the brain (robustness) or adjust (response), even dramatically, in order to respond effectively (Bar-Yam and Epstein 2004).
  • the present invention concerns, in a first aspect, a multisite cranial stimulation method that comprises applying individual stimuli to different areas of a brain, by applying certain stimulus signals to corresponding stimulation elements arranged adjacent to said areas of said brain.
  • the method proposed by the first aspect of the present invention comprises making at least a simplified model of the brain or a sector thereof considering it as a nonlinear coupled oscillatory system, and comprises determining said stimulus signals so that they are capable of exciting at least a natural mode of vibration of said nonlinear coupled oscillatory system.
  • the method comprises performing said application of said stimulus signals in a coordinated manner in space and time, and, for an exemplary embodiment, comprises applying part or all of said stimulus signals simultaneously, to produce the excitation of one or more natural modes of vibration of the brain or said section thereof, by means of the application of said stimulus signals.
  • the areas to be stimulated they depend on the intervention to be applied, extending, for an example of embodiment, along substantially the entire cerebral cortex of the brain.
  • the method proposed by the first aspect of the present invention comprises monitoring the brain activity of said brain before and / or during and / or after the application of said stimulus signals, for example by using electrophysiological sensors arranged adjacent to certain areas of the brain.
  • the aforementioned monitoring is carried out by means of the application of any technique known to one skilled in the art, such as electroencephalography or magnetoencephalography.
  • One of the purposes of said monitoring is to provide or more signals obtained as a result of the monitoring, or monitored signals, to control said stimulation by varying said stimulus signals according to the monitored signals, applying the proposed method.
  • the stimulation in real time to the changes observed in brain activity, which is really advantageous to avoid, to some extent, the possible problems and inaccuracies associated with the unreliable positioning of the elements of stimulation or with the ignorance of the geometry of the head of the patient or user who, as will be explained later, negatively influences the final distribution of the electric (or magnetic) field on the brain.
  • the method comprises controlling the phase, frequency and amplitude of each of said stimulus signals, independently, to vary accordingly the phase, frequency, and amplitude of the signals Induced electrical
  • this is a magnetic transcranial stimulation
  • said stimulation elements being coils or magnetic emitters adapted to generate magnetic fields based on the electrical stimulation signals that apply to them
  • the multi-site cranial stimulation is an electrical stimulation, said stimulation elements being corresponding electrodes, and said electrical stimulation, contrary to the conventional direct current, or tDCS, a generalized current stimulation, or TCS, that is to say, it is not limited to either the use of direct current or the alternating current, being able to use signals with frequencies ranging from 0 Hz to the desired maximum value, for example about 200 Hz.
  • the method proposed by the first aspect of the present invention comprises, for an exemplary embodiment, determining the stimulus signals so that they are capable of exciting several natural modes of vibration of said nonlinear coupled oscillatory system simultaneously or spaced in time , either directly and externally, that is, by means of the determination of the stimulus signals so that they directly excite each of these natural modes of vibration, or in part in a natural way, in which case the stimulus signals are determined to excite a first natural mode of vibration, and the rest are excited by self-excitation by harmonics or sub-harmonics of the stimulus signals determined to excite the first natural mode of vibration.
  • the proposed method comprises making a plurality of said simplified models for a corresponding plurality of sections of the brain, and comprises determining and controlling said stimulus signals so that they are capable of selectively exciting one or more natural modes of vibration of one. or more of the nonlinear coupled oscillatory systems corresponding to said simplified models of said sections of the brain.
  • the method proposed by the first aspect of the present invention is applicable both to stimulate the brain globally, or different sections thereof, depending on the intended intervention or application, being understood in any case that both the whole brain and the different sections thereof are seen as nonlinear coupled oscillatory systems, with certain resonance frequencies, and which are taken into consideration for the determination of the stimulus signals to be applied.
  • the aforementioned multi-site cranial stimulation is an intracranial stimulation, said stimulation elements being used as invasive.
  • the multisite cranial stimulation is a transcranial stimulation
  • the stimulation elements used being non-invasive, which, although the proposed method is not limited to the use of a specific type of stimulation elements, for an embodiment example Preferred are such as those constituted by the electrophysiological sensor based on conductive nanostructures proposed in patent application ES2289948, property of the present applicant, for said monitoring, or similar ones to carry out the application of stimulus signals, in the case of that the stimulation is electrical.
  • the proposed method comprises carrying out multisite transcranial monitoring and stimulation by electric current, which here will be referred to as MtCS, with a fine control of the current flows in the brain, for which the method comprises using One or more ordered sets, or arrays, of electrodes, with a fine and independent control of the phases, amplitudes and frequencies of the stimulus signals to be applied through them, in order to provide a spatio-temporal modulation of Current flows in different parts of the brain.
  • the method comprises controlling several subgroups of electrodes with a common control signal for each subgroup.
  • the method proposed by the first aspect of the invention takes into account the aforementioned requirements and to satisfy them includes some steps of guidance and calibration, responsible for implementing the functions of said calibration sub-system, and which are carried out thanks to the monitoring of the brain activity explained above.
  • the proposed method comprises carrying out a first stage, or guiding stage, in which to determine and control the stimulus signals to be applied to the stimulation elements according to the brain area (three-dimensional) with respect to which they are arranged adjacently.
  • the method comprises performing a second stage, or calibration or adjustment stage, in which to carry out said variation of the stimulus signals according to the monitored signals, that is to say based on the measurements of "what" is causing the stimulation (electrical or magnetic) that is being carried out, in order to adjust better.
  • these may include unwanted signals induced by the stimuli, either directly the stimulus signals or signals derived from their application. It is necessary to perform a correct filtering of the monitored signals in order to "clean" of said unwanted signals, or noise, of those really indicative of brain activity, either the natural activity or the result of the applied stimulus.
  • the method proposed by the first aspect of the invention comprises the use of one or more analysis techniques, applied to said monitored signals, obtained for example by means of an EEG, to distinguish between the electrical signals induced by the stimuli and the bio signals. -natural or response to these stimuli.
  • the method comprises using one or more of the following analysis techniques: frequency separation technique, temporal separation technique and tomographic technique, or a combination thereof.
  • the proposed method also comprises, for one embodiment, using spread spectrum techniques, applied to said monitored signals, to identify the activity associated with the stimulation in each stimulation element.
  • the method comprises associating a signal of mareaje to each one of the stimulus signals, for example by means of the superposition of the same one on the corresponding stimulus signal in each stimulation element, in order to improve the location of each signal induced by the application of a corresponding stimulus signal and to improve said distinction between the electrical signals induced by the stimuli and the signals indicative of the brain activity, either the natural activity or the result of the stimuli applied, when analyzing the monitored signals.
  • said signaling signal corresponds to the spread spectrum of direct sequence, or DSSS ("Direct Sequence Spread Spectrum"), of a pure sinusoidal signal that generates a signal with a power density below the noise level of the Ia monitored signal, for example EEG.
  • the process of recovering the dispersion of the signal in each tomographic voxel allows recovering the contribution made by each stimulation element in each voxel (using the principle of superposition) and is used, applying the method proposed by the first aspect of the invention , to improve the guidance by adjusting the intensities of the stimulus signals applied in the different stimulation elements.
  • the method comprises using the process of recovering the dispersion prior to the realization of the tomography, since the process is linear.
  • the signaling signal is the same in each stimulus supplier stimulation element, but its spectrum is widened using different codes of random pseudo noise, or PRN ("Pseudo Random Noise"), as is usual in systems of multiple access by code division, or CDMA ("Code Division Multiple Access”) systems such as those used in GPS systems, American mobile phones, etc.
  • PRN Random pseudo noise
  • CDMA Code Division Multiple Access
  • the present invention also concerns, in a second aspect, a multi-site cranial stimulation system, comprising:
  • a plurality of stimulation elements arranged adjacent to a corresponding plurality of different areas of a brain, and - an electronic system in connection with said plurality of stimulation elements and intended to apply corresponding stimulation signals in order to individually stimulate said plurality of zones of said brain, but not to achieve a local result in each zone as a result of each individual stimulus, but to obtain a global result caused by the synergy of said individual stimuli.
  • said electronic system of the proposed stimulation system comprises one or more processing units with access to one or more simplified models of the brain or one or more sectors thereof considering it as an oscillatory system non-linear coupled, said or said processing units being provided to determine said stimulus signals so that they are suitable to excite at least a natural mode of vibration of said non-linear coupled oscillatory system.
  • the system proposed by the second aspect of the invention comprises a series of electrophysiological sensors arranged adjacent to certain areas of the brain, and in connection with said processing unit of said electronic system to monitor the brain activity of said brain.
  • said electrophysiological sensors are arranged coincident, in space, with the stimulation elements, being, for a variant of said embodiment, each stimulation element and each electrophysiological sensor the same element capable of performing both functions, Ia to stimulate and Ia to monitor.
  • the placement system used can be any known standard system, such as the 10/30 electrode placement system.
  • the processing unit it is intended to control said stimulus signals based on said monitored brain activity.
  • the system proposed by the second aspect of the invention is intended to carry out said multisite cranial stimulation by applying the method proposed by the first aspect of the invention, for which the said processing unit complements a series of algorithms by which carry out the different stages of the method, specifically those related to access and analysis of the model or simplified models of the brain (and for an example of also to the generation of said models), to the determination of the stimulus signals based on said or said models, to the analysis of the monitored signals and their use to adapt the stimulus signals in real time during the period of operation of The cranial stimulation, as well as in an initial phase that includes the different stages of guidance and calibration described above.
  • the method comprises carrying out said determination of said stimulus signals from the calculation of bipolar currents generated between two of said stimulation elements, upon applying certain stimulus signals, and the use of techniques of superposition for the calculation of multisite generated currents, assuming said techniques that the effect of the stimulation applied through the whole set of stimulation elements will be the superposition of the effect of the stimulation applied in each pair of stimulation elements.
  • the method proposed by the first aspect of the invention comprises, for an exemplary embodiment, determining said stimulus signals to reduce or suppress a specific brain activity.
  • TMS stimulation is used clinically to measure the activity and function of specific brain circuits in humans.
  • - Therapy TMS stimulation is currently used to treat several neurological conditions, such as migraine, stroke, epilepsy, Parkinson's disease, dystonia or tinnitus, as well as psychiatric conditions, such as clinical depression or hallucinations. auditory
  • Fig. 1 is a schematic representation of the system proposed by the second aspect of the present invention for an exemplary embodiment.
  • Fig. 1 the system proposed by the second aspect of the invention has been illustrated for an exemplary embodiment, for which a patient H has arranged the previously described plurality of stimulation elements E1, E2 ... In (represented by schematic level by a small circle that represents an ordered array or "array" of electrodes) adjacent to a corresponding plurality of different areas of your brain.
  • the system proposed by the second aspect of the invention also comprises a series of electrophysiological sensors S1, S2 ... Sn arranged adjacent to certain areas of the brain, and in connection with said processing unit of said electronic system to monitor the brain activity of said brain.
  • Said electrophysiological sensors S1, S2 ... Sn are also illustrated in Fig. 1 adjacent to the brain of patient H (also represented schematically by a small circle representing an ordered grouping or "array" of sensors).
  • the proposed system comprises an electronic system in connection with said plurality of stimulation elements E1, E2 ... In and intended to apply corresponding stimulus signals in order to individually stimulate said plurality of areas of said brain, although, such and As described in a previous section, the true objective of the system proposed by the second aspect of the invention is not the individual result obtained in each stimulated area (as is the case of conventional proposals), but the synergy that occurs at stimulate each zone with certain stimulus signals, resulting in the excitation of a natural mode of vibration of the brain, or of a sector thereof, understanding this as a nonlinear coupled oscillatory system.
  • Said electronic system comprises a local SCM system that, for one embodiment, is supported by a support (not illustrated) that also supports said stimulation elements E1, E2 ...
  • the proposed system comprises display means, such as a display, intended to show, in real or almost real time, a map of the programmed stimulation, based on the determined stimulus signals, and a map of The monitored brain activity, preferably simultaneously.
  • display means such as a display, intended to show, in real or almost real time, a map of the programmed stimulation, based on the determined stimulus signals, and a map of The monitored brain activity, preferably simultaneously.
  • the stimulation carried out by the system proposed by the second aspect of the invention is of the transcranial type, using non-invasive stimulation elements.
  • the local electronic system SCM is capable of communicating wirelessly with a remote electronic system SR comprised of said electronic system, for which it comprises a communications module suitable for this purpose (not illustrated), that in Fig. 1 it is indicated that it works with the IEEE802.15.4 specifications, but that for other embodiments it can operate with other wireless communications technology and / or protocol.
  • the SCM local electronic system is capable of performing the functions described for the local system also referred to as SCM in said utility model ES1067908U, of conditioning biopotential signals (in the manner described in said utility model or otherwise), but also it is adapted to carry out, in part or in its entirety, the previously described steps of determining and adapting the stimulus signals, as well as their conditioning (D / A conversion, etc.) and supply to the stimulation elements E1, E2, ... In, reception and analysis of the monitored signals through the sensors S1, S2 ... Sn, access to the simplified model or models, guidance, calibration, etc.
  • Said local electronic system SCM comprises a battery, not illustrated, and, depending on the final requirements, is capable of providing signals with different frequencies, phases and amplitudes between different stimulation elements.
  • the SCM local electronic system controls the stimulation elements / monitoring sensors, and is wirelessly connected to a remote electronic SR system, constituting a wireless, portable and fully digital system.
  • the local electronic system SCM includes a memory for storing the data "on board", SCM being able to operate autonomously.
  • said remote system SR implements a stimulation / monitoring application that, for the variant illustrated by the FIg. 1, is bidirectionally accessible through the TCP / IP protocol, and is connected to a PDPU processing unit through a USB controller.
  • Said PDPU processing unit is for the illustrated exemplary embodiment a PDPU personal data processing unit incorporating a communications module (not illustrated) capable of communicating bi-directionally, wirelessly with the corresponding communication module of the local electronic system SCM, acting as an interface between the SCM system and the remote SR system.
  • the wireless communication between the local SCM system and the PDPU processing unit is based on the low-speed wireless personal area networks (LR-WPANs: "Low-Rate Wireless Personal
  • the monitoring is based on the circuit described in the utility model ES1067908U.
  • the previously described DSSS processing, as well as the synchronization of the signaling signals, the control of the stimulation elements that apply the stimulation signals, the sampling, the recovery process of the dispersion of the signaling signals, as well as the algorithms of the PLL phase hitch loop used to monitor the phase of the signaling signals, require intensive processing of digital signals that is carried out in real time in the local SCM system.
  • the digital processing is carried out, for an exemplary embodiment, by means of an on-site programmable door array, or FPGA, with an integrated processor in order to keep the power requirements to a minimum.

Abstract

El método comprende aplicar unos estímulos individuales a diferentes zonas de un cerebro, mediante la aplicación de unas señales de estímulo determinadas a unos correspondientes elementos de estimulación dispuestos adyacentes a dichas zonas de dicho cerebro. El método comprende realizar uno o más modelos simplificados del cerebro, o de uno o más sectores del mismo, considerando al cerebro, o al sector del mismo cuando es el caso, como un sistema oscilatorio acoplado no lineal, y comprende determinar dichas señales de estímulo para que sean aptas para excitar uno o más modos naturales de vibración de dicho sistema oscilatorio acoplado no lineal. El sistema comprende unos elementos de estimulación (E1, E2...En) dispuestos adyacentes a unas zonas de un cerebro, y un sistema electrónico en conexión con los elementos de estimulación (E1, E2...En) y previsto para aplicarles unas correspondientes señales de estímulo, y para determinarlas aplicando el método propuesto.

Description

Método y sistema de estimulación craneal multisitio
Sector de Ia técnica
La presente invención concierne en general a un método de estimulación craneal multisitio que comprende aplicar unos estímulos individuales a diferentes zonas de un cerebro, y en particular a un método que comprende determinar las señales de estímulo a aplicar para que sean aptas para excitar uno o más modos naturales de vibración del cerebro, o de un sector del mismo, visto como un sistema oscilatorio acoplado no lineal. La invención también concierne a un sistema de estimulación craneal multisitio apto para implementar el método propuesto por el primer aspecto.
Estado de Ia técnica anterior
Se conocen diversas propuestas enfocadas a Ia estimulación craneal, tanto de tipo intracraneal como de tipo transcraneal, ya sea mediante Ia aplicación de unos impulsos magnéticos en Ia proximidad de las zonas a estimular, o estimulación TMS, o mediante Ia aplicación de señales eléctricas, entre las cuales se encuentran Ia estimulación tDCS, Ia ENS ó Ia TES. Algunas de ellas utilizan el concepto "multisitio", es decir Ia disposición de una pluralidad de elementos de estimulación (electrodos o bobinas magnéticas, en función de que Ia estimulación sea eléctrica o magnética) en diferentes zonas neuronales para suministrar una pluralidad de estímulos. Otras incorporan también el concepto de "feedback", es decir el monitorizar Ia actividad cerebral para controlar los estímulos a aplicar en función de las señales monitorizadas.
A continuación se indican varias de dichas propuestas consideradas como representativas del estado de Ia técnica referido a Ia estimulación craneal, ya sea de tipo magnético o aplicando directamente señales eléctricas.
Por Ia solicitud US2006161219 se conoce un sistema y un método para estimular el tejido nervioso del cerebro de una persona mediante Ia aplicación de pulsos eléctricos en múltiples ubicaciones, con el fin de tratar múltiples afecciones. Se indica en dicho documento que los electrodos mediante los cuales aplicar los mencionados estímulos se implantan en el cráneo de Ia persona. Se propone aplicar unos estímulos magnéticos mediante TMS de manera previa a Ia implantación de los electrodos con el fin de averiguar si el paciente es un buen candidato para dicha implantación. La aplicación de electrodos en múltiples ubicaciones tiene como fin el tratar varias afecciones a Ia vez, cada una de ellas mediante Ia aplicación de un correspondiente programa de estimulación. En US2006161219 no se enseña ni se sugiere el tratamiento de una única afección mediante Ia aplicación de estímulos en las mencionadas múltiples ubicaciones para producir un efecto conjunto.
La patente US7257439 propone un sistema y un método basados en Ia disposición en el interior de un flujo sanguíneo próximo a un tejido neuronal, por ejemplo el cerebral, de una pluralidad de nanoelectrodos, independientes o agrupados en un conjunto ordenado o "array", con el fin de monitorizar Ia actividad neuronal con algunos de los electrodos, aplicar unos estímulos eléctricos a través de otros electrodos, y volver a monitorizar Ia actividad neuronal y compararla con Ia primeramente monitorizada. Entre las principales aplicaciones que se proponen se encuentran las relativas a elaborar una interfaz cerebro-máquina o posibilitar el control de una prótesis.
Se proponen una serie de algoritmos para clasificar las señales monitorizadas, provinentes de múltiples neuronas, en respectivos estados funcionales según unos patrones espaciotemporales. Por Io que se refiere a Ia estimulación neuronal, en US7257439 no se proponen estrategias, algoritmos o programas específicos para llevarla a cabo. Simplemente se indica que, en función del algoritmo utilizado, se analizan las señales monitorizadas de una u otra manera, y por ende se toman unas u otras decisiones.
Por otra parte, por el documento de patente EP1703940A1 se propone un sistema y un método para administrar estimulación eléctrica (ENS) y estimulación magnética (TMS) a diferentes zonas del cuerpo de un paciente, ya sea de manera conjunta o seleccionando uno de ambos tipos de estimulación. Se propone adaptar los parámetros de Ia estimulación en función de Ia respuesta a Ia estimulación, monitorizada por ejemplo mediante un electroencefalograma (EEG). Como ejemplos de los parámetros a variar en el caso de Ia estimulación TMS se indican: ancho del pulso, frecuencia, intensidad y orientación magnética.
En Ia solicitud de patente US2004138578A1 se propone un sistema y un método para estimular el cerebro de un paciente en función de unas señales bioeléctricas del mismo, tales como las representativas de un EEG. Se describe Ia adaptación en tiempo real de una estimulación TMS aplicada sobre varias zonas cerebrales mediante Ia utilización de una realimentación bidireccional de de dichas señales bioeléctricas, para en función de las mismas variar los parámetros de dicha estimulación, tales como Ia duración, el tiempo y Ia naturaleza pulsátil de las bobinas TMS. En su fase inicial Ia estimulación también se aplica en función de una monitorización previa de dichas señales bioeléctricas, las cuales determinan un perfil emocional-cognitivo del paciente. En dicho documento no se enseña ni se sugiere realizar dicha estimulación, ni en su inicio ni durante su aplicación, en función de otras variables o premisas más que las referentes al mencionado perfil emotivo-cognitivo del paciente.
En Ia patente US6488617 se propone realizar una realimentación en lazo cerrado entre, por ejemplo, Ia salida de un sistema de monitorización EEG y Ia entrada de control de un sistema TMS, con el fin de modificar un estado cerebral hasta conseguir alcanzar el deseado. Se propone controlar diferentes parámetros de Ia estimulación TMS (magnitud, movimiento, duración, etc.). Se indica asimismo Ia posibilidad de realizar un control independiente de los imanes o bobinas, con el fin de que cada uno de ellos genere un único campo magnético a una frecuencia única. En US6488617 no se enseña ni se sugiere Ia aplicación de dicho control para conseguir una estimulación donde cada uno de los estímulos individuales colabore con los demás para conseguir un efecto conjunto, en base al cual determinar previamente las características de cada uno de los estímulos individuales.
Una de las conclusiones más importantes a Ia que se llega al analizar el estado de Ia técnica, es que ambas, Ia estimulación TMS y Ia tDCS, adolecen de una especificidad y de una focalidad limitadas (Wagner et al, Noninvasive Human Brain Stimulation, Ann. Rev. Biomed. Eng. 2007, 9:19.1-19.39).
Estudios recientes revelan que el soporte estructural de Ia actividad cerebral implica Ia actividad orquestada de regiones cerebrales diferentes y separadas espacialmente (ver Ray C, Ruffini G, Marco-Pallares J, Fuentemilla Ll, Grau C, Complex networks in brain electrical activity, Europhysics letters. 2007), con, incluso, frecuencias y fases específicas. Verdaderamente un importante desafío para Ia neurociencia es el de mapear y analizar los patrones espaciotemporales de Ia actividad de grandes poblaciones de neuronas, los cuales se cree que son responsables de procesar Ia información en el cerebro humano. El cerebro es quizás el sistema más interesante de todos los sistemas complejos, con cientos de billones de neuronas altamente interconectadas con procesamiento de información basado en tiempos y escalas espaciales diferentes (Buzsaki G, Draguhn A (2004) Neuronal oscillations in cortical networks. Science 304:1926-19293). El cerebro puede ser estudiado como una herramienta de modelado de patrones, donde son analizadas las entradas del entorno, una vez transformadas por transducción mediante unos sensores corporales. La capacidad para modelar entradas del entorno es crucial para Ia supervivencia de organismos superiores. Las redes neuronales responsables de esta tarea determinan si Ia información entrante necesita alterar profundamente las dinámicas del cerebro (robustez) o ajustarías (respuesta), incluso de manera dramática, con el fin de responder efectivamente (Bar-Yam and Epstein 2004).
A modo de ejemplo, algunos hallazgos previos soportan Ia idea de que las zonas supratemporal e inferior frontal trabajan juntas en el procesado de datos para determinar las diferencias entre sonidos. En este marco se plantea que un conjunto de grupos neuronales distribuido espacialmente que son activados de manera coherente y forman parte de Ia misma representación forman una asociación (Engel AK, Fries P, Singer W (2001) Dynamic predictions: Oscillations and synchrony in top-down processing. Nature Reviews Neuroscience 2:704-7164). En otros términos, el cerebro podría describirse como una serie de redes distribuidas locales de neuronas enlazadas de manera transitoria mediante conexiones dinámicas recíprocas, que soporta integración funcional (Várela F, Lachaux JP, Rodríguez E, Martinerie J (2001) The brainweb: Phase synchronization and large-scale integration. Nature Reviews Neuroscience 2:229-2391). Al mismo tiempo, se piensa en Ia actualidad que el cerebro puede verse mejor como un sistema oscilatorio acoplado no lineal, en el cual diferentes áreas contribuyen al mismo tiempo en diferentes procesos.
No se conocen propuestas relativas a Ia estimulación craneal multisitio que tenga en cuenta Ia mencionada visión del cerebro como un sistema oscilatorio acoplado no lineal, para determinar los estímulos individuales a aplicar.
Explicación de Ia invención
Aparece necesario aportar una alternativa al estado de Ia técnica, que ofrezca una estimulación craneal más ventajosa que las conocidas, mediante Ia utilización de estrategias de determinación de las señales de estímulo a aplicar que, a diferencia de las propuestas convencionales, tengan en consideración Ia mencionada visión del cerebro como un sistema oscilatorio acoplado no lineal, con el fin de estimular el cerebro mejor globalmente utilizando conceptos relativos a Ia resonancia.
Para ello Ia presente invención concierne, en un primer aspecto, a un método de estimulación craneal multisitio que comprende aplicar unos estímulos individuales a diferentes zonas de un cerebro, mediante Ia aplicación de unas señales de estímulo determinadas a unos correspondientes elementos de estimulación dispuestos adyacentes a dichas zonas de dicho cerebro.
A diferencia de las propuestas convencionales de estimulación craneal, el método propuesto por el primer aspecto de Ia presente invención comprende realizar como mínimo un modelo simplificado del cerebro o de un sector del mismo considerándolo como un sistema oscilatorio acoplado no lineal, y comprende determinar dichas señales de estímulo para que sean aptas para excitar como mínimo un modo natural de vibración de dicho sistema oscilatorio acoplado no lineal.
El método comprende realizar dicha aplicación de dichas señales de estímulo de manera coordinada en el espacio y en el tiempo, y, para un ejemplo de realización, comprende aplicar parte o Ia totalidad de dichas señales de estímulo de manera simultánea, para producir Ia excitación de uno o más modos naturales de vibración del cerebro o de dicha sección del mismo, mediante Ia aplicación de dichas señales de estímulo. Por Io que se refiere a las zonas a estimular, éstas dependen de Ia intervención a aplicar, extendiéndose, para un ejemplo de realización, a Io largo de sustancialmente todo el córtex cerebral del cerebro.
El método propuesto por el primer aspecto de Ia presente invención comprende monitorizar Ia actividad cerebral de dicho cerebro de manera previa y/o durante y/o tras Ia aplicación de dichas señales de estímulo, por ejemplo mediante Ia utilización de unos sensores electrofisiológicos dispuestos adyacentes a unas determinadas zonas del cerebro.
La mencionada monitorización se lleva a cabo mediante Ia aplicación de cualquier técnica en sí conocida por un experto en Ia materia, tal como Ia electroencefalografía o Ia magnetoencefalografía.
Uno de los fines de Ia mencionada monitorización es el de proporcionar o más señales obtenidas como fruto de Ia monitorización, o señales monitorizadas, para controlar dicha estimulación mediante Ia variación de dichas señales de estímulo en función de las señales monitorizadas, aplicando el método propuesto. De esta manera se consigue adaptar, o autocalibrar, Ia estimulación en tiempo real a los cambios observados en Ia actividad cerebral, Io cual es realmente ventajoso para evitar, hasta cierto punto, los posibles problemas e imprecisiones asociados con el posicionamiento poco fiable de los elementos de estimulación o con el desconocimiento de Ia geometría de Ia cabeza del paciente o usuario que, como se explicará posteriormente influyen de manera negativa en Ia distribución final del campo eléctrico (o magnético) sobre el cerebro.
Para llevar a cabo Ia mencionada variación de las señales de estímulo, el método comprende controlar Ia fase, frecuencia y amplitud de cada una de dichas señales de estímulo, de manera independiente, para variar en consecuencia Ia fase, frecuencia, y amplitud de las señales eléctricas inducidas. Por lo que se refiere al tipo de estimulación craneal multisitio a aplicar, para un ejemplo de realización ésta es una estimulación transcraneal magnética, siendo dichos elementos de estimulación unas bobinas o emisores magnéticos adaptados para generar campos magnéticos en función de las señales eléctricas de estímulo que se les apliquen. Para otro ejemplo de realización Ia estimulación craneal multisitio es una estimulación eléctrica, siendo dichos elementos de estimulación unos correspondientes electrodos, y siendo dicha estimulación eléctrica, al contrario de Ia convencional de corriente continua, o tDCS, una estimulación de corriente generalizada, o TCS, es decir que no está limitada ni a Ia utilización de corriente continua ni a Ia de alterna, pudiéndose utilizar señales con frecuencias que van desde los 0 Hz hasta el valor máximo deseado, por ejemplo de unos 200 Hz.
El método propuesto por el primer aspecto de Ia presente invención comprende, para un ejemplo de realización, determinar las señales de estímulo para que sean aptas para excitar varios modos naturales de vibración de dicho sistema oscilatorio acoplado no lineal de manera simultánea o espaciada en el tiempo, ya sea de manera directa y externa, es decir mediante Ia determinación ex profeso de las señales de estímulo para que exciten directamente cada uno de dichos modos naturales de vibración, o en parte de manera natural, en cuyo caso las señales de estímulo se determinan para excitar un primer modo natural de vibración, y el resto son excitados mediante auto excitación por armónicos o sub-armónicos de las señales de estímulo determinadas para excitar el primer modo natural de vibración.
Para un ejemplo de realización el método propuesto comprende realizar una pluralidad de dichos modelos simplificados para una correspondiente pluralidad de secciones del cerebro, y comprende determinar y controlar dichas señales de estímulo para que sean aptas para excitar selectivamente uno o más modos naturales de vibración de uno o más de los sistemas oscilatorios acoplados no lineales correspondientes a dichos modelos simplificados de dichas secciones del cerebro.
Es decir que el método propuesto por el primer aspecto de Ia presente invención es aplicable tanto para estimular de manera global el cerebro, o diferentes secciones del mismo, en función de Ia intervención o aplicación prevista, entendiéndose en cualquier caso que tanto el cerebro completo como las diferentes secciones del mismo son vistos como sistemas oscilatorios acoplados no lineales, con unas frecuencias de resonancia determinadas, y que son tenidas en consideración para Ia determinación de las señales de estímulo a aplicar. Para un ejemplo de realización del método propuesto, Ia mencionada estimulación craneal multisitio es una estimulación intracraneal, siendo dichos elementos de estimulación utilizados de tipo invasivo.
Para un ejemplo de realización preferido Ia estimulación craneal multisitio es una estimulación transcraneal, siendo los elementos de estimulación utilizados no invasivos, que, aunque el método propuesto no está limitado a Ia utilización de un tipo de elementos de estimulación específico, para un ejemplo de realización preferido son tales como los constituidos por el sensor electrofisiológico basado en nanoestructuras conductoras propuesto en Ia solicitud de patente ES2289948, propiedad del presente solicitante, para Ia mencionada monitorización, o unos similares para llevar a cabo Ia aplicación de señales de estímulos, para el caso de que Ia estimulación sea eléctrica.
Para un ejemplo de realización el método propuesto comprende llevar a cabo una monitorización y estimulación transcraneal multisitio por corriente eléctrica, que aquí se denominará como MtCS, con un control fino de los flujos de corriente en el cerebro, para Io cual el método comprende utilizar a Ia vez uno o más conjuntos ordenados, o arrays, de electrodos, con un control fino e independiente de las fases, amplitudes y frecuencias de las señales de estímulo a aplicar a través de ellos, con el fin de proporcionar una modulación espacio-temporal de los flujos de corriente en diferentes partes del cerebro. Para otro ejemplo de realización el método comprende controlar a varios sub- grupos de electrodos con una señal de control común para cada sub-grupo.
Se ha demostrado en estudios previos sobre Ia estimulación eléctrica del cerebro (en este caso tDCS), que Ia alta resistividad del cráneo atenúa las corrientes que alcanzan el córtex, derivándose en su mayor parte a Io largo del cuero cabelludo, que tanto Ia geometría de Ia cabeza, como las propiedades electromagnéticas del tejido y el posicionamiento del electrodo, juegan todos un importante papel en Ia determinación de Ia distribución del campo eléctrico final. Tal sensibilidad requiere el diseño y utilización de un sub-sistema de calibración de soporte para el sistema de estimulación, además de llevarse a cabo el mencionado modelo simplificado del cerebro de manera cuidadosa.
El método propuesto por el primer aspecto de Ia invención tiene en cuenta los mencionados requerimientos y para satisfacerlos comprende unas etapas de guiado y calibración, encargadas de implementar las funciones del mencionado sub-sistema de calibración, y que son llevadas a cabo gracias a Ia monitorización de Ia actividad cerebral explicada anteriormente. Con el fin de focalizar los estímulos individuales, el método propuesto comprende llevar a cabo una primera etapa, o etapa de guiado, en Ia cual determinar y controlar las señales de estímulo a aplicar a los elementos de estimulación en función del área cerebral (tridimensional) respecto a Ia cual se encuentran dispuestos de manera adyacente.
Para mejorar aún más Ia mencionada focalización, el método comprende realizar una segunda etapa, o etapa de calibración o ajuste, en Ia cual llevar a cabo dicha variación de las señales de estímulo en función de las señales monitorizadas, es decir en función de las medidas de "qué" está provocando Ia estimulación (eléctrica o magnética) que se está llevando a cabo, con el fin de ajustaría mejor.
Al adquirir las mencionadas señales de monitorización, éstas pueden incluir señales indeseadas inducidas por los estímulos, ya sean directamente las señales de estímulo o unas señales derivadas de su aplicación. Es necesario realizar un correcto filtrado de las señales monitorizadas con el fin de "limpiar" de dichas señales indeseadas, o ruido, de las realmente indicativas de Ia actividad cerebral, ya sea Ia actividad natural o Ia resultante del estímulo aplicado.
Para ello el método propuesto por el primer aspecto de Ia invención comprende Ia utilización de una o más técnicas de análisis, aplicadas a dichas señales monitorizadas, obtenidas por ejemplo mediante un EEG, para distinguir entre las señales eléctricas inducidas por los estímulos y las señales bio-eléctricas naturales o de respuesta a dichos estímulos.
Para un ejemplo de realización el método comprende utilizar una o más de las siguientes técnicas de análisis: técnica separación de frecuencias, técnica de separación temporal y técnica tomográfíca, o una combinación de las mismas. El método propuesto también comprende, para un ejemplo de realización, utilizar técnicas de espectro ensanchado, aplicadas a dichas señales monitorizadas, para identificar Ia actividad asociada a Ia estimulación en cada elemento de estimulación.
El método comprende asociar una señal de mareaje a cada una de las señales de estímulo, por ejemplo mediante Ia superposición de Ia misma sobre Ia señal de estímulo correspondiente en cada elemento de estimulación, con el fin de mejorar Ia localización de cada señal inducida por Ia aplicación de una correspondiente señal de estímulo y para mejorar dicha distinción entre las señales eléctricas inducidas por los estímulos y las señales indicativas de Ia actividad cerebral, ya sea Ia actividad natural o Ia resultante de los estímulos aplicados, al analizar las señales monitorizadas. Para un ejemplo de realización dicha señal de mareaje corresponde al espectro ensanchado de secuencia directa, o DSSS ("Direct Sequence Spread Spectrum"), de una señal sinusoidal pura que genera una señal con una densidad de potencia por debajo del nivel de ruido de Ia señal monitorizada, por ejemplo EEG. El proceso de recuperación de Ia dispersión de Ia señal en cada vóxel tomográfico permite recuperar Ia contribución hecha por cada elemento de estimulación en cada vóxel (utilizando el principio de Ia superposición) y es utilizado, aplicando el método propuesto por el primer aspecto de Ia invención, para mejorar el guiado mediante el ajuste de las intensidades de las señales de estímulo aplicadas en los diferentes elementos de estimulación.
Para otro ejemplo de realización el método comprende utilizar el proceso de recuperación de Ia dispersión de manera previa a Ia realización de Ia tomografía, ya que el proceso es lineal.
Para un ejemplo de realización Ia señal de mareaje es Ia misma en cada elemento de estimulación suministrador de estímulo, pero su espectro es ensanchado utilizando códigos diferentes de ruido seudo aleatorio, o PRN ("Pseudo Random Noise"), como es habitual en los sistemas de acceso múltiple por división de código, o sistemas CDMA ("Code División Múltiple Access") como los utilizados en sistemas GPS, en los teléfonos móviles americanos, etc. De este modo los sensores utilizados para adquirir las señales de monitorización reciben todas las contribuciones provocadas por las señales de estímulo con una potencia por debajo de Ia de Ia señal representativa de Ia actividad cerebral presente en Ia señal monitorizada, por ejemplo mediante EEG.
Mediante Ia aplicación del método propuesto por el primer aspecto de Ia invención se reproducen de manera controlada, a través de un modelo, los patrones complejos de activación del cerebro.
Asimismo Ia estimulación craneal multisitio realizada según el método propuesto, permite:
- Libertad de ajuste a los ritmos y patrones específicos en el cerebro oscilante; - Mejorar Ia focalización a sitios específicos;
- Una estimulación coordinada en el espacio y en el tiempo a Io largo del córtex completo;
- Un control de las relaciones de frecuencias y fases en cada sitio;
- Una autocalibración o adaptación de Ia estimulación gracias a Ia realimentación en tiempo real de las señales monitorizadas; La presente invención también concierne, en un segundo aspecto, a un sistema de estimulación craneal multisitio, que comprende:
- una pluralidad de elementos de estimulación dispuestos adyacentes a una correspondiente pluralidad de diferentes zonas de un cerebro, y - un sistema electrónico en conexión con dicha pluralidad de elementos de estimulación y previsto para aplicarles unas correspondientes señales de estímulo con el fin de estimular individualmente dicha pluralidad de zonas de dicho cerebro, pero no para conseguir un resultado local en cada zona como resultado de cada estímulo individual, sino para obtener un resultado global provocado por Ia sinergia de dichos estímulos individuales.
Para obtener dicho resultado global, de manera característica, el mencionado sistema electrónico del sistema de estimulación propuesto, comprende una o más unidades de procesamiento con acceso a uno o más modelos simplificados del cerebro o de uno o más sectores del mismo considerándolo como un sistema oscilatorio acoplado no lineal, estando dichas o dichas unidades de procesamiento previstas para determinar dichas señales de estímulo para que sean aptas para excitar como mínimo un modo natural de vibración de dicho sistema oscilatorio acoplado no lineal.
El sistema propuesto por el segundo aspecto de Ia invención comprende una serie de sensores electrofisiológicos dispuestos adyacentes a unas determinadas zonas del cerebro, y en conexión con dicha unidad de procesamiento de dicho sistema electrónico para monitorizar Ia actividad cerebral de dicho cerebro.
Para un ejemplo de realización dichos sensores electrofisiológicos están dispuestos coincidentes, en el espacio, con los elementos de estimulación, siendo, para una variante de dicho ejemplo de realización, cada elemento de estimulación y cada sensor electrofisiológico un mismo elemento capaz de realizar ambas funciones, Ia de estimular y Ia de monitorizar.
El sistema de colocación utilizado puede ser cualquier sistema estándar conocido, tal como el sistema 10/30 de colocación de electrodos. Por Io que se refiere a Ia mencionada unidad de procesamiento, ésta está prevista para controlar dichas señales de estímulo en función de dicha actividad cerebral monitorizada.
El sistema propuesto por el segundo aspecto de Ia invención está previsto para llevar a cabo Ia mencionada estimulación craneal multisitio mediante Ia aplicación del método propuesto por el primer aspecto de Ia invención, para Io cual Ia mencionada unidad de procesamiento ¡mplementa una serie de algoritmos mediante los cuales llevar a cabo las diferentes etapas del método, específicamente las relativas al acceso y análisis del modelo o modelos simplificados del cerebro (y para un ejemplo de realización también a Ia generación de dichos modelos), a Ia determinación de las señales de estímulo en base a dicho o dichos modelos, al análisis de las señales monitorizadas y su utilización para adaptar las señales de estímulo en tiempo real durante el periodo de operación de Ia estimulación craneal, así como en una fase inicial que incluye las diferentes etapas de guiado y calibración descritas anteriormente.
Para un ejemplo de realización, el método comprende llevar a cabo dicha determinación de dichas señales de estímulo a partir del cálculo de corrientes generadas de manera bipolar entre dos de dichos elementos de estimulación, al aplicarles unas señales de estímulo determinadas, y Ia utilización de técnicas de superposición para el cálculo de corrientes generadas multisitio, asumiendo dichas técnicas que el efecto de Ia estimulación aplicada mediante todo el conjunto de elementos de estimulación será Ia superposición del efecto de Ia estimulación aplicada en cada par de elementos de estimulación.
El método propuesto por el primer aspecto de Ia invención comprende, para un ejemplo de realización, determinar dichas señales de estímulo para reducir o suprimir una actividad cerebral determinada.
Las aplicaciones del método y el sistema propuestos son de índole muy diversa, incluyéndose las relativas a:
- Investigación: Psicología/neurociencia cognitiva, mediante Ia cual puede demostrarse Ia causalidad. Se ha demostrado que Ia plasticidad del cerebro humano puede ser también medida con estimulación TMS repetitiva (y variantes de esta técnica, como Ia estimulación theta-burst o Ia estimulación asociativa en pares).
- Diagnosis: Actualmente Ia estimulación TMS se utiliza clínicamente para medir Ia actividad y Ia función de circuitos cerebrales específicos en seres humanos. - Terapia: La estimulación TMS se utiliza actualmente para tratar varias afecciones neurológicas, tales como Ia migraña, el ictus, Ia epilepsia, Ia enfermedad de Parkinson, Ia distonía o el tinnitus, así como afecciones psiquiátricas, tales como Ia depresión clínica o las alucinaciones auditivas.
- Interfaz cerebro-máquina: Comunicación desde las máquinas hacia el cerebro, y viceversa.
- Síntesis sensorial: Creación de nuevos sentidos mediante el acoplamiento de fuentes de datos directamente al cerebro humano
Si bien, tal y como se indica, en algunas de dichas aplicaciones ya existen trabajos previos, mediante Ia aplicación del método y el sistema propuestos por Ia presente invención se pretenden mejorar sobremanera los resultados obtenidos, así como Ia funcionalidad y libertad de ajuste y adaptación de los diferentes parámetros inherentes a los sistemas de estimulación, en comparación con las propuestas convencionales.
Breve descripción de los dibujos Las anteriores y otras ventajas y características se comprenderán más plenamente a partir de Ia siguiente descripción detallada de un ejemplo de realización con referencia a los dibujos adjuntos, que debe tomarse a título ilustrativo y no limitativo, en los que:
La Fig. 1 es una representación esquemática del sistema propuesto por el segundo aspecto de Ia presente invención para un ejemplo de realización.
Descripción detallada de un ejemplo de realización
En Ia Fig. 1 se ha ilustrado el sistema propuesto por el segundo aspecto de Ia invención para un ejemplo de realización, para el cual un paciente H tiene dispuesta Ia anteriormente descrita pluralidad de elementos de estimulación E1 , E2...En (representados a nivel esquemático por un pequeño círculo que representa una agrupación ordenada o "array" de electrodos) adyacentes a una correspondiente pluralidad de diferentes zonas de su cerebro.
Tal y como se ha descrito anteriormente el sistema propuesto por el segundo aspecto de Ia invención también comprende una serie de sensores electrofisiológicos S1 , S2...Sn dispuestos adyacentes a unas determinadas zonas del cerebro, y en conexión con dicha unidad de procesamiento de dicho sistema electrónico para monitorizar Ia actividad cerebral de dicho cerebro. Dichos sensores electrofisiológicos S1 , S2...Sn también se encuentran ilustrados en Ia Fig. 1 adyacentes al cerebro del paciente H (también representados a nivel esquemático por un pequeño círculo que representa una agrupación ordenada o "array" de sensores).
El sistema propuesto comprende un sistema electrónico en conexión con dicha pluralidad de elementos de estimulación E1 , E2...En y previsto para aplicarles unas correspondientes señales de estímulo con el fin de estimular individualmente dicha pluralidad de zonas de dicho cerebro, aunque, tal y como se ha descrito en un apartado anterior, el verdadero objetivo del sistema propuesto por el segundo aspecto de Ia invención no es el resultado individual obtenido en cada zona estimulada (como es el caso de las propuestas convencionales), sino Ia sinergia que se produce al estimular cada zona con unas señales de estímulo determinadas, redundando en Ia excitación de un modo natural de vibración del cerebro, o de un sector del mismo, entendiendo éste como un sistema oscilatorio acoplado no lineal. Dicho sistema electrónico comprende un sistema local SCM que, para un ejemplo de realización está sustentado por un soporte (no ilustrado) que también sustenta a dichos elementos de estimulación E1 , E2...En y a dichos sensores electrofisiológicos S1 , S2...Sn. Si bien dicho soporte no se ha ilustrado en Ia Fig. 1 , éste es para un ejemplo de realización el ilustrado en las Figs. 4a a 4e del modelo de utilidad español con número de publicación 1067908, propiedad del presente solicitante, e indicado con Ia referencia C, el cual como puede verse en dichas Figs. 4a a 4e de dicho modelo de utilidad, y en su correspondiente descripción, está configurado para ser acoplado en Ia cabeza de un paciente H, posicionando los elementos de estimulación, en este caso E1 , E2...En, y sensores, en este caso los indicados como S1 , S2...Sn, en las mencionadas zonas adyacentes a dichas zonas determinadas del cerebro.
Para un ejemplo de realización el sistema propuesto comprende unos medios de visualización, tal como un display, previstos para mostrar, en tiempo real o casi real, un mapa de Ia estimulación programada, a partir de las señales de estímulo determinadas, y un mapa de Ia actividad cerebral monitorizada, preferentemente de manera simultánea.
Con preferencia, aunque el sistema no esté limitado a ello, Ia estimulación llevada a cabo mediante el sistema propuesto por el segundo aspecto de Ia invención es de tipo transcraneal, utilizándose elementos de estimulación no invasivos. Tal y como se ilustra en Ia Fig. 1 , el sistema electrónico local SCM es apto para comunicarse inalámbricamente con un sistema electrónico remoto SR comprendido por dicho sistema electrónico, para Io cual comprende un módulo de comunicaciones adecuado para tal fin (no ilustrado), que en Ia Fig. 1 se indica que trabaja con las especificaciones IEEE802.15.4, pero que para otros ejemplos de realización puede operar con otra tecnología y/o protocolo de comunicaciones inalámbricas.
El sistema electrónico local SCM es apto para realizar las funciones descritas para el sistema local referido también como SCM en dicho modelo de utilidad ES1067908U , de acondicionamiento de señales biopotenciales (de Ia manera descrita en dicho modelo de utilidad o de otra forma), pero además está adaptado para llevar a cabo, en parte o en su totalidad, las anteriormente descritas etapas de determinación y adaptación de las señales de estímulo, así como su acondicionamiento (conversión D/A, etc.) y suministro a los elementos de estimulación E1 , E2,...En, recepción y análisis de las señales monitorizadas a través de los sensores S1 , S2...Sn, acceso al modelo o modelos simplificados, guiado, calibración, etc. Dicho sistema electrónico local SCM comprende una batería, no ilustrada, y, en función de los requerimientos finales es apto para proporcionar señales con frecuencias, fases y amplitudes diferentes entre distintos elementos de estimulación.
En definitiva el sistema electrónico local SCM controla los elementos de estimulación/sensores monitorización, y está comunicado inalámbricamente con un sistema electrónico remoto SR, constituyendo un sistema inalámbrico, portable y completamente digital.
Para un ejemplo de realización el sistema electrónico local SCM incluye una memoria para guardar los datos "a bordo", pudiendo SCM funcionar de manera autónoma.
Para un ejemplo de realización dicho sistema remoto SR implementa una aplicación de estimulación/monitorización que, para Ia variante ilustrada por Ia FIg. 1 , es accesible bidireccionalmente a través del protocolo TCP/IP, y se encuentra conectada a una unidad de procesamiento PDPU a través de un controlador USB. Dicha unidad de procesamiento PDPU es para el ejemplo de realización ilustrado una unidad de procesamiento de datos personal PDPU que incorpora un módulo de comunicaciones (no ilustrado) apto para comunicarse bidireccionalmente, de manera inalámbrica con el correspondiente módulo de comunicaciones del sistema electrónico local SCM, actuando como interfaz entre el sistema SCM y el sistema remoto SR.
Para un ejemplo de realización Ia comunicación inalámbrica entre el sistema local SCM y Ia unidad de procesamiento PDPU está basada en las redes de área personal inalámbricas de baja velocidad (LR-WPANs: "Low-Rate Wireless Personal
Área Networks"), y tal y como se ha indicado anteriormente Ia monitorización está basada en el circuito descrito en el modelo de utilidad ES1067908U.
Los anteriormente descritos procesado DSSS, así como Ia sincronización de las señales de mareaje, el control de los elementos de estimulación que aplican las señales de estímulo, el muestreo, el proceso de recuperación de Ia dispersión de las señales de mareaje, así como los algoritmos de bucle de enganche de fase PLL utilizados para el seguimiento de Ia fase de las señales de mareaje, requieren un procesamiento intensivo de señales digitales que es llevado a cabo en tiempo real en el sistema local SCM. Para ello el procesamiento digital se lleva a cabo, para un ejemplo de realización, mediante una matriz de puertas programable in-situ, o FPGA, con un procesador integrado con el fin de mantener los requerimientos de potencia en un mínimo. Un experto en Ia materia podría introducir cambios y modificaciones en los ejemplos de realización descritos sin salirse del alcance de Ia invención según está definido en las reivindicaciones adjuntas.

Claims

Reivindicaciones
1.- Método de estimulación craneal mutisitio, del tipo que comprende aplicar unos estímulos individuales a diferentes zonas de un cerebro, mediante Ia aplicación de unas señales de estímulo determinadas a unos correspondientes elementos de estimulación dispuestos adyacentes a dichas zonas de dicho cerebro, estando dicho método caracterizado porque comprende realizar al menos un modelo simplificado del cerebro o de un sector del mismo considerándolo como un sistema oscilatorio acoplado no lineal, y porque comprende determinar dichas señales de estímulo para que sean aptas para excitar al menos un modo natural de vibración de dicho sistema oscilatorio acoplado no lineal.
2.- Método según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende realizar dicha aplicación de dichas señales de estímulo de manera coordinada en el espacio y en el tiempo.
3.- Método según Ia reivindicación 2, caracterizado porque comprende aplicar al menos parte de dichas señales de estímulo de manera simultánea, para producir Ia excitación de al menos un modo natural de vibración del cerebro o de dicha sección del mismo, mediante Ia aplicación de dichas señales de estímulo.
4.- Método según Ia reivindicación 3, caracterizado porque comprende aplicar todas dichas señales de estímulo de manera simultánea.
5.- Método según cualquiera de las reivindicaciones anteriores, caracterizado porque dichas zonas a estimular se extienden a Io largo de sustancialmente todo el córtex cerebral de dicho cerebro.
6.- Método según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende monitorizar Ia actividad cerebral de dicho cerebro de manera previa y/o durante y/o tras Ia aplicación de dichas señales de estímulo.
7.- Método según Ia reivindicación 6, caracterizado porque comprende llevar a cabo dicha monitorización mediante Ia utilización de unos sensores electrofisiológicos dispuestos adyacentes a unas determinadas zonas del cerebro.
8.- Método según Ia reivindicación 6 ó 7, caracterizado porque comprende controlar dicha estimulación mediante Ia variación de dichas señales de estímulo en función de una o más señales obtenidas como fruto de dicha monitorización, o señales monitorizadas.
9.- Método según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende controlar Ia fase, frecuencia y amplitud de cada una de dichas señales de estímulo, de manera independiente, para variar en consecuencia Ia fase, frecuencia, y amplitud de las señales eléctricas inducidas.
10.- Método según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende determinar dichas señales de estímulo para que sean aptas para excitar varios modos naturales de vibración de dicho sistema oscilatorio acoplado no lineal de manera simultánea o espaciada en el tiempo.
11.- Método según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende realizar una pluralidad de dichos modelos simplificados para una correspondiente pluralidad de secciones del cerebro, y porque comprende determinar y controlar dichas señales de estímulo para que sean aptas para excitar selectivamente uno o más modos naturales de vibración de uno o más de los sistemas oscilatorios acoplados no lineales correspondientes a dichos modelos simplificados de dichas secciones del cerebro.
12.- Método según Ia reivindicación 6, 7 u 8, caracterizado porque comprende llevar a cabo dicha monitorización mediante electroencefalografía, magnetoencefalografía o espectroscopia de infrarrojo cercano, o NIRS.
13.- Método según cualquiera de las reivindicaciones anteriores, caracterizado porque dicha estimulación craneal es una estimulación transcraneal multisitio magnética, siendo dichos elementos de estimulación unas bobinas o emisores magnéticos adaptados para generar campos magnéticos en función de las señales eléctricas de estímulo que se les apliquen.
14.- Método según cualquiera de las reivindicaciones 1 a 12, caracterizado porque dicha estimulación craneal multisitio es una estimulación eléctrica.
15.- Método según cualquiera de las reivindicaciones anteriores, caracterizado porque dicha estimulación craneal multisitio es una estimulación transcraneal y porque dichos elementos de estimulación utilizados son no invasivos.
16.- Método según Ia reivindicación 14, caracterizado porque dicha estimulación craneal multisitio es una estimulación intracraneal, siendo dichos elementos de estimulación utilizados de tipo invasivo.
17.- Método según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende focalizar los estímulos individuales mediante una primera etapa, o etapa de guiado, en Ia cual determinar y controlar las señales de estímulo a aplicar a los elementos de estimulación en función del área cerebral respecto a Ia cual se encuentran dispuestos de manera adyacente.
18.- Método según Ia reivindicación 17 cuando depende de Ia 8, caracterizado porque comprende mejorar Ia mencionada focalización mediante una segunda etapa, o etapa de calibración o ajuste, en Ia cual llevar a cabo dicha variación de las señales de estímulo en función de las señales monitorizadas.
19.- Método según cualquiera de las reivindicaciones 8 a 18, caracterizado porque comprende Ia utilización de una o más técnicas de análisis, aplicadas a dichas señales monitorizadas, para distinguir entre las señales eléctricas inducidas por los estímulos y las señales bio-eléctricas naturales o de respuesta a dichos estímulos.
20.- Método según Ia reivindicación 19, caracterizado porque dichas técnicas de análisis son al menos una del grupo que comprende las siguientes técnicas: técnica separación de frecuencias, técnica de separación temporal y técnica tomográfica, o una combinación de las mismas.
21.- Método según Ia reivindicación cualquiera de las reivindicaciones 8 a 20, caracterizado porque comprende Ia utilización de técnicas de espectro ensanchado, aplicadas a dichas señales monitorizadas, para identificar Ia actividad asociada a Ia estimulación en cada elemento de estimulación.
22.- Método según Ia reivindicación 19, 20 ó 21 , caracterizado porque comprende asociar una señal de mareaje a cada una de las señales de estímulo, para mejorar Ia localización de cada señal inducida por Ia aplicación de las mismas, y para mejorar dicha distinción entre las señales eléctricas inducidas por los estímulos y las señales respuesta a dichos estímulos al analizar las señales monitorizadas.
23.- Método según Ia reivindicación 22, caracterizado porque comprende llevar a cabo dicha asociación de dicha señal de mareaje mediante Ia superposición de Ia misma sobre Ia señal de estímulo correspondiente en cada elemento de estimulación.
24.- Método según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende llevar a cabo dicha determinación de dichas señales de estímulo a partir del cálculo de corrientes generadas de manera bipolar entre dos de dichos elementos de estimulación, al aplicarles unas señales de estímulo determinadas, y Ia utilización de técnicas de superposición para el cálculo de corrientes generadas multisitio.
25.- Método según cualquiera de las reivindicaciones anteriores, caracterizado porque comprende determinar dichas señales de estímulo para suprimir una actividad cerebral determinada.
26.- Sistema de estimulación craneal multisitio, del tipo que comprende: - una pluralidad de elementos de estimulación (E1 , E2...En) dispuestos adyacentes a una correspondiente pluralidad de diferentes zonas de un cerebro, - un sistema electrónico en conexión con dicha pluralidad de elementos de estimulación (E1 , E2...En) y previsto para aplicarles unas correspondientes señales de estímulo con el fin de estimular individualmente dicha pluralidad de zonas de dicho cerebro, estando dicho sistema de estimulación caracterizado porque dicho sistema electrónico comprende al menos una unidad de procesamiento con acceso a al menos un modelo simplificado del cerebro o de un sector del mismo considerándolo como un sistema oscilatorio acoplado no lineal, y prevista para determinar dichas señales de estímulo para que sean aptas para excitar al menos un modo natural de vibración de dicho sistema oscilatorio acoplado no lineal.
27.- Sistema según Ia reivindicación 26, caracterizado porque comprende una serie de sensores electrofisiológicos (S1 , S2...Sn) dispuestos adyacentes a unas determinadas zonas del cerebro, y en conexión con dicha unidad de procesamiento de dicho sistema electrónico para monitorizar Ia actividad cerebral de dicho cerebro.
28.- Sistema según Ia reivindicación 27, caracterizado porque dichos sensores electrofisiológicos (S1 , S2...Sn) y dichos elementos de estimulación (E1 , E2...En) son unos mismos elementos capaces de realizar ambas funciones, Ia de estimular y Ia de monitorizar.
29.- Sistema según Ia reivindicación 27, caracterizado porque dicha unidad de procesamiento está prevista para controlar dichas señales de estímulo en función de dicha actividad cerebral monitorizada.
30.- Sistema según Ia reivindicación 27, 28 ó 29, caracterizado porque comprende unos medios de visualización previstos para mostrar un mapa de Ia estimulación programada, a partir de las señales de estímulo determinadas, y un mapa de Ia actividad cerebral monitorizada.
31.- Sistema según Ia reivindicación 27, 28 ó 29, caracterizado porque dicho sistema electrónico comprende al menos un sistema local (SCM) sustentado por un soporte que también sustenta a dichos elementos de estimulación (E1 , E2...En) y a dichos sensores electrofisiológicos (S1 , S2...Sn).
32.- Sistema según Ia reivindicación 31 , caracterizado porque dicho soporte está configurado para ser acoplado en Ia cabeza de un paciente (H), posicionando los elementos de estimulación (E1 , E2...En) y sensores (S1 , S2...Sn) en las mencionadas zonas adyacentes a dichas zonas determinadas del cerebro.
33.- Sistema según Ia reivindicación 31 ó 32, caracterizado porque dicho sistema electrónico local (SCM) comprende una memoria para datos a bordo.
34.- Sistema según Ia reivindicación 31 , 32 ó 33, caracterizado porque dicho sistema electrónico local (SCM) comprende un módulo de comunicaciones adaptado para comunicar inalámbricamente con un sistema electrónico remoto (SR) comprendido por dicho sistema electrónico.
35.- Sistema según una cualquiera de las reivindicaciones 26 a 34, caracterizado porque está previsto para llevar a cabo dicha estimulación craneal multisitio mediante Ia aplicación del método según una cualquiera de las reivindicaciones 1 a 23.
PCT/ES2009/000427 2008-08-13 2009-08-13 Método y sistema de estimulación craneal multisitio WO2010018275A1 (es)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP09806467.8A EP2324882B1 (en) 2008-08-13 2009-08-13 Multi-site cranial stimulation system
ES09806467T ES2791480T3 (es) 2008-08-13 2009-08-13 Sistema de estimulación craneal multisitio
US13/058,886 US8660649B2 (en) 2008-08-13 2009-10-13 Multi-site cranial stimulation method and system
JP2011522525A JP2013507146A (ja) 2009-08-13 2009-10-13 多地点で頭蓋を励起する方法とシステム

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP200802423 2008-08-13
ES200802423A ES2334316B1 (es) 2008-08-13 2008-08-13 Metodo y sistema de estimulacion craneal multisitio.

Publications (2)

Publication Number Publication Date
WO2010018275A1 true WO2010018275A1 (es) 2010-02-18
WO2010018275A8 WO2010018275A8 (es) 2011-04-07

Family

ID=41668739

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2009/000427 WO2010018275A1 (es) 2008-08-13 2009-08-13 Método y sistema de estimulación craneal multisitio

Country Status (4)

Country Link
US (1) US8660649B2 (es)
EP (1) EP2324882B1 (es)
ES (2) ES2334316B1 (es)
WO (1) WO2010018275A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016517283A (ja) * 2013-02-22 2016-06-16 シンク, インク.Thync, Inc. 個人グループのネットワーク化神経調節方法及び装置

Families Citing this family (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8682449B2 (en) * 2008-04-10 2014-03-25 ElectroCore, LLC Methods and apparatus for transcranial stimulation
US8838247B2 (en) 2010-01-06 2014-09-16 Evoke Neuroscience, Inc. Transcranial stimulation device and method based on electrophysiological testing
WO2013025556A1 (en) 2011-08-12 2013-02-21 Splunk Inc. Elastic scaling of data volume
US9440070B2 (en) 2012-11-26 2016-09-13 Thyne Global, Inc. Wearable transdermal electrical stimulation devices and methods of using them
CN204147427U (zh) 2012-11-26 2015-02-11 塞恩克公司 可穿戴的皮肤电刺激设备
US11033731B2 (en) 2015-05-29 2021-06-15 Thync Global, Inc. Methods and apparatuses for transdermal electrical stimulation
US10537703B2 (en) 2012-11-26 2020-01-21 Thync Global, Inc. Systems and methods for transdermal electrical stimulation to improve sleep
US10814131B2 (en) 2012-11-26 2020-10-27 Thync Global, Inc. Apparatuses and methods for neuromodulation
US10485972B2 (en) 2015-02-27 2019-11-26 Thync Global, Inc. Apparatuses and methods for neuromodulation
US10293161B2 (en) 2013-06-29 2019-05-21 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
CN105934261B (zh) 2013-06-29 2019-03-08 赛威医疗公司 用于改变或诱导认知状态的经皮电刺激设备和方法
CN106573138A (zh) 2014-02-27 2017-04-19 赛威医疗公司 用于神经刺激的用户控制的方法和装置
EP3148639A4 (en) 2014-05-17 2018-04-18 Cerevast Medical Inc. Methods and apparatuses for the application of ensemble waveforms using transdermal neurostimulation
US9393401B2 (en) 2014-05-25 2016-07-19 Thync Global, Inc. Wearable transdermal neurostimulator having cantilevered attachment
US9333334B2 (en) 2014-05-25 2016-05-10 Thync, Inc. Methods for attaching and wearing a neurostimulator
US11534608B2 (en) 2015-01-04 2022-12-27 Ist, Llc Methods and apparatuses for transdermal stimulation of the outer ear
WO2016109851A1 (en) 2015-01-04 2016-07-07 Thync, Inc. Methods and apparatuses for transdermal stimulation of the outer ear
WO2017106411A1 (en) 2015-12-15 2017-06-22 Cerevast Medical, Inc. Electrodes having surface exclusions
US9956405B2 (en) 2015-12-18 2018-05-01 Thyne Global, Inc. Transdermal electrical stimulation at the neck to induce neuromodulation
WO2017106878A1 (en) 2015-12-18 2017-06-22 Thync Global, Inc. Apparatuses and methods for transdermal electrical stimulation of nerves to modify or induce a cognitive state
US10646708B2 (en) 2016-05-20 2020-05-12 Thync Global, Inc. Transdermal electrical stimulation at the neck
WO2017218752A1 (en) * 2016-06-15 2017-12-21 Pluri, Inc. Wireless biological interface platform
US20220111212A1 (en) * 2017-05-26 2022-04-14 Newton Howard Brain monitoring and stimulation devices and methods
WO2019060298A1 (en) 2017-09-19 2019-03-28 Neuroenhancement Lab, LLC METHOD AND APPARATUS FOR NEURO-ACTIVATION
US11717686B2 (en) 2017-12-04 2023-08-08 Neuroenhancement Lab, LLC Method and apparatus for neuroenhancement to facilitate learning and performance
EP3731749A4 (en) 2017-12-31 2022-07-27 Neuroenhancement Lab, LLC NEURO-ACTIVATION SYSTEM AND METHOD FOR ENHANCING EMOTIONAL RESPONSE
US11364361B2 (en) 2018-04-20 2022-06-21 Neuroenhancement Lab, LLC System and method for inducing sleep by transplanting mental states
US11278724B2 (en) 2018-04-24 2022-03-22 Thync Global, Inc. Streamlined and pre-set neuromodulators
WO2020056418A1 (en) 2018-09-14 2020-03-19 Neuroenhancement Lab, LLC System and method of improving sleep
CN109276814A (zh) * 2018-10-31 2019-01-29 北京大学(天津滨海)新代信息技术研究院 一种用于经颅磁刺激的多路刺激系统与刺激方法
US11786694B2 (en) 2019-05-24 2023-10-17 NeuroLight, Inc. Device, method, and app for facilitating sleep

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6488617B1 (en) 2000-10-13 2002-12-03 Universal Hedonics Method and device for producing a desired brain state
WO2003085546A1 (de) * 2002-04-05 2003-10-16 Oliver Holzner Verfahren und vorrichtung zur elektromagnetischen modifikation von hirnaktivität
US20040138578A1 (en) 2002-07-25 2004-07-15 Pineda Jaime A. Method and system for a real time adaptive system for effecting changes in cognitive-emotive profiles
WO2005065768A1 (en) * 2003-12-30 2005-07-21 Jacob Zabara Systems and methods for therapeutically treating neuro-psychiatric disorders and other illnesses
US20060161219A1 (en) 2003-11-20 2006-07-20 Advanced Neuromodulation Systems, Inc. Electrical stimulation system and method for stimulating multiple locations of target nerve tissue in the brain to treat multiple conditions in the body
US20070032834A1 (en) * 2000-07-13 2007-02-08 Northstar Neuroscience, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
US7257439B2 (en) 2002-08-21 2007-08-14 New York University Brain-machine interface systems and methods
WO2007097872A1 (en) * 2006-02-24 2007-08-30 Medtronic, Inc. User interface with 3d environment for configuring stimulation therapy
WO2007100427A1 (en) * 2006-02-24 2007-09-07 Medtronic, Inc. Electrical and activation field models for programming a stimulation lead with complex electrode array geometry
ES2289948A1 (es) 2006-07-19 2008-02-01 Starlab Barcelona, S.L. Sensor electrofisiologico.
US20080154331A1 (en) * 2006-12-21 2008-06-26 Varghese John Device for multicentric brain modulation, repair and interface
ES1067908U (es) 2008-04-22 2008-07-16 Starlab Barcelona, S.L. Circuito acondicionador de señales electricas debiles.

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9113801B2 (en) * 1998-08-05 2015-08-25 Cyberonics, Inc. Methods and systems for continuous EEG monitoring
US20050124848A1 (en) * 2002-04-05 2005-06-09 Oliver Holzner Method and apparatus for electromagnetic modification of brain activity
DE10233960B4 (de) * 2002-07-29 2006-11-02 Forschungszentrum Jülich GmbH Vorrichtung zur bedarfsgesteuerten Modulation physiologischer und pathologischer neuronaler rhythmischer Aktivität im Gehirn mittels sensorischer Stimulation
WO2007075477A2 (en) * 2005-12-19 2007-07-05 University Of Florida Closed-loop state-dependent seizure prevention systems
US7801601B2 (en) * 2006-01-27 2010-09-21 Cyberonics, Inc. Controlling neuromodulation using stimulus modalities
US20100113959A1 (en) * 2006-03-07 2010-05-06 Beth Israel Deaconess Medical Center, Inc. Transcranial magnetic stimulation (tms) methods and apparatus
WO2008001155A1 (en) * 2006-06-26 2008-01-03 Alexandre Carpentier Method and apparatus for transbody magnetic stimulation and/or inhibition
US8700167B2 (en) * 2006-12-22 2014-04-15 Ebs Technologies Gmbh Apparatus and method for stimulating a brain of a person

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070032834A1 (en) * 2000-07-13 2007-02-08 Northstar Neuroscience, Inc. Systems and methods for automatically optimizing stimulus parameters and electrode configurations for neuro-stimulators
US6488617B1 (en) 2000-10-13 2002-12-03 Universal Hedonics Method and device for producing a desired brain state
WO2003085546A1 (de) * 2002-04-05 2003-10-16 Oliver Holzner Verfahren und vorrichtung zur elektromagnetischen modifikation von hirnaktivität
US20040138578A1 (en) 2002-07-25 2004-07-15 Pineda Jaime A. Method and system for a real time adaptive system for effecting changes in cognitive-emotive profiles
US7257439B2 (en) 2002-08-21 2007-08-14 New York University Brain-machine interface systems and methods
US20060161219A1 (en) 2003-11-20 2006-07-20 Advanced Neuromodulation Systems, Inc. Electrical stimulation system and method for stimulating multiple locations of target nerve tissue in the brain to treat multiple conditions in the body
WO2005065768A1 (en) * 2003-12-30 2005-07-21 Jacob Zabara Systems and methods for therapeutically treating neuro-psychiatric disorders and other illnesses
EP1703940A1 (en) 2003-12-30 2006-09-27 Jacob Zabara Systems and methods for therapeutically treating neuro-psychiatric disorders and other illnesses
WO2007097872A1 (en) * 2006-02-24 2007-08-30 Medtronic, Inc. User interface with 3d environment for configuring stimulation therapy
WO2007100427A1 (en) * 2006-02-24 2007-09-07 Medtronic, Inc. Electrical and activation field models for programming a stimulation lead with complex electrode array geometry
ES2289948A1 (es) 2006-07-19 2008-02-01 Starlab Barcelona, S.L. Sensor electrofisiologico.
US20080154331A1 (en) * 2006-12-21 2008-06-26 Varghese John Device for multicentric brain modulation, repair and interface
ES1067908U (es) 2008-04-22 2008-07-16 Starlab Barcelona, S.L. Circuito acondicionador de señales electricas debiles.

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
BUZSAKI G; DRAGUHN A: "Neuronal oscillations in cortical networks", SCIENCE, vol. 304, 2004, pages 1926 - 19293
CUMIN D. ET AL.: "Generalising the Kuramoto modthe for the study of neuronal synchronisation in the brain", PHYSICA D, vol. 226, no. 2, 2 February 2007 (2007-02-02), pages 181 - 196, XP005870453 *
ENGEL AK; FRIES P; SINGER W: "Dynamic predictions: Oscillations and synchrony in top- down processing", NATURE REVIEWS NEUROSCIENCE, vol. 2, 2001, pages 704 - 7164
FRANK T.D. ET AL.: "Towards a comprehensive theory of brain activity: Coupled oscillator systems under external forces", PHYSICA D, vol. 144, no. 1-2, 15 September 2000 (2000-09-15), pages 62 - 86, XP008143837 *
HERZOG A. ET AL.: "Structural adaptation in young neocortical networks modeled by spatially coupled oscillators", PROCEEDINGS OF INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, 2007, IEEE, - 2007, pages 3045 - 3048, XP031155081 *
RAY C; RUFFINI G; MARCO-PALLARÉS J; FUINTEMILLA LI; GRAU C.: "Complex networks in brain electrical activity", EUROPHYSICS LETTERS, 2007
See also references of EP2324882A4
VARELA F; LACHAUX JP; RODRIGUEZ E; MARTINERIE J: "The brainweb: Phase synchronization and large-scale integration", NATURE REVIEWS NEUROSCIENCE, vol. 2, 2001, pages 229 - 2391
WAGNER ET AL.: "Noninvasive Human Brain Stimulation", ANN. REV. BIOMED. ENG., vol. 9, 2007, pages 19.1 - 19.39

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016517283A (ja) * 2013-02-22 2016-06-16 シンク, インク.Thync, Inc. 個人グループのネットワーク化神経調節方法及び装置

Also Published As

Publication number Publication date
EP2324882B1 (en) 2020-02-12
WO2010018275A8 (es) 2011-04-07
US20110190846A1 (en) 2011-08-04
ES2791480T3 (es) 2020-11-04
EP2324882A1 (en) 2011-05-25
ES2334316B1 (es) 2011-06-13
US8660649B2 (en) 2014-02-25
ES2334316A1 (es) 2010-03-08
EP2324882A4 (en) 2013-11-27

Similar Documents

Publication Publication Date Title
ES2334316B1 (es) Metodo y sistema de estimulacion craneal multisitio.
US11633595B2 (en) System for variably configurable, adaptable electrode arrays and effectuating software
ES2608929T3 (es) Dispositivo para la calibración de una estimulación cerebral desincronizadora no invasiva
US11715566B2 (en) Optimal multi-electrode transcutaneous stimulation with high locality and intensity
ES2643045T3 (es) Aparato para calibrar una neuroestimulación invasiva, eléctrica y desincronizadora
ES2923633T3 (es) Dispositivo para el tratamiento de un paciente con estímulos vibratorios, táctiles y/o térmicos
ES2918799T3 (es) Dispositivo neuroprotésico para la monitorización y supresión de temblores patológicos mediante la neuroestimulación de vías aferentes
CN108697890A (zh) 一种通过同步激活神经治疗各种神经疾病的系统和方法
ES2820578T3 (es) Aparato de tratamiento de diversas afecciones neurológicas
ES2781201T3 (es) Dispositivo para la neuroestimulación efectiva no invasiva de dos etapas
US20160361534A9 (en) Variably configurable, adaptable electrode arrays and effectuating software, methods, and systems
KR101750294B1 (ko) 단일 뇌에 적용되는 뇌-뇌 인터페이스 시스템
ES2616243T3 (es) Dispositivo para la estimulación de termorreceptores
JP2014502900A (ja) 非侵襲的な脳深部電気刺激療法を行うための装置
US11744514B2 (en) Device and method for calibrating a non-invasive mechanically tactile and/or thermal neurostimulation
EP3810258A1 (en) Medical treatment device and method for stimulating neurons of a patient to suppress a pathologically synchronous activity thereof
ES2729726T3 (es) Dispositivo para una neuroestimulación invasiva efectiva en dos fases
KR102422546B1 (ko) 이혈 자극 장치 및 그의 제어 방법
ES2398179B1 (es) Dispositivo para estimulación del sistema nervioso por medio de campo magnético estático.
JP2020108740A (ja) 非侵襲的神経インターフェース
JP6038982B2 (ja) 多地点で頭蓋を刺激するシステム
Song et al. Typical electrode configuration analysis for temporally interfering deep brain stimulation
Henson et al. A Transcranial Alternating Current Stimulator for Neural Entrainment
US11896833B2 (en) Generating voltage-gradient geometries in biological tissue
JP2013507146A (ja) 多地点で頭蓋を励起する方法とシステム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09806467

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2011522525

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2009806467

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 13058886

Country of ref document: US