WO2009157063A1 - 人工皮革用基材およびその製造方法 - Google Patents

人工皮革用基材およびその製造方法 Download PDF

Info

Publication number
WO2009157063A1
WO2009157063A1 PCT/JP2008/061530 JP2008061530W WO2009157063A1 WO 2009157063 A1 WO2009157063 A1 WO 2009157063A1 JP 2008061530 W JP2008061530 W JP 2008061530W WO 2009157063 A1 WO2009157063 A1 WO 2009157063A1
Authority
WO
WIPO (PCT)
Prior art keywords
artificial leather
sea
fiber
fibers
island
Prior art date
Application number
PCT/JP2008/061530
Other languages
English (en)
French (fr)
Inventor
道憲 藤澤
田中 次郎
法生 牧山
義幸 安藤
延藤 芳樹
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020107024509A priority Critical patent/KR101712209B1/ko
Priority to EP08790597.2A priority patent/EP2292821B1/en
Priority to KR1020157011384A priority patent/KR101655054B1/ko
Priority to US12/988,563 priority patent/US9752260B2/en
Priority to PCT/JP2008/061530 priority patent/WO2009157063A1/ja
Priority to CN2008801300561A priority patent/CN102076898B/zh
Publication of WO2009157063A1 publication Critical patent/WO2009157063A1/ja

Links

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/08Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
    • D04H3/10Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
    • D04H3/105Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by needling
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H3/00Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
    • D04H3/016Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06NWALL, FLOOR, OR LIKE COVERING MATERIALS, e.g. LINOLEUM, OILCLOTH, ARTIFICIAL LEATHER, ROOFING FELT, CONSISTING OF A FIBROUS WEB COATED WITH A LAYER OF MACROMOLECULAR MATERIAL; FLEXIBLE SHEET MATERIAL NOT OTHERWISE PROVIDED FOR
    • D06N3/00Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof
    • D06N3/0002Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate
    • D06N3/0004Artificial leather, oilcloth or other material obtained by covering fibrous webs with macromolecular material, e.g. resins, rubber or derivatives thereof characterised by the substrate using ultra-fine two-component fibres, e.g. island/sea, or ultra-fine one component fibres (< 1 denier)
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/23907Pile or nap type surface or component
    • Y10T428/2395Nap type surface
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/20Coated or impregnated woven, knit, or nonwoven fabric which is not [a] associated with another preformed layer or fiber layer or, [b] with respect to woven and knit, characterized, respectively, by a particular or differential weave or knit, wherein the coating or impregnation is neither a foamed material nor a free metal or alloy layer
    • Y10T442/2352Coating or impregnation functions to soften the feel of or improve the "hand" of the fabric
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T442/00Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
    • Y10T442/60Nonwoven fabric [i.e., nonwoven strand or fiber material]
    • Y10T442/608Including strand or fiber material which is of specific structural definition
    • Y10T442/609Cross-sectional configuration of strand or fiber material is specified
    • Y10T442/613Microcellular strand or fiber material

Definitions

  • the present invention relates to a base material for artificial leather.
  • this artificial leather base material it has a very dense and elegant appearance of raised hair, and has excellent color development, but also has excellent surface wear durability such as pilling resistance, and is soft and swollen.
  • Napped-toned artificial leather that combines a texture with a texture, and a silver-faced artificial leather that has a high smoothness and fine crease surface, combined with a high adhesive peel strength and a soft and bulging texture Can be manufactured.
  • napped-like artificial leathers such as suede-like artificial leather and nubuck-like artificial leather in which napped fibers made of the fiber bundles are formed on the surface of a substrate made of fiber bundles and a polymer elastic body are known.
  • Napped-toned artificial leather is required in terms of sensibility such as appearance (surface feeling closer to that of natural leather), texture (combined soft touch with appropriate swelling and fullness), and color development (color clarity and density).
  • it is required to satisfy all of the requirements in terms of physical properties such as light resistance, pilling resistance, and wear resistance at a high level, and various proposals have been made to solve this.
  • a method of making the fibers constituting the artificial leather into ultrafine fibers is generally used.
  • a method of manufacturing artificial leather made of ultrafine fibers a method of splitting composite fibers such as sea-island type and multi-layer laminated type, or transforming them into ultrafine fiber bundles by decomposing or extracting one component is widely adopted.
  • Napped-toned artificial leather and silver-faced artificial leather using a base material for artificial leather in which a polymer elastic body is incorporated into a nonwoven fabric composed of ultrafine fiber bundles obtained from the composite fibers are very highly evaluated in appearance and texture. It has gained.
  • the fineness is reduced, there is a disadvantage that the color developability is lowered and the vividness and density are remarkably inferior. Absent.
  • a spun fiber is cut into a length of 100 mm or less to form staple fibers, and this is a nonwoven web having a desired basis weight by a card method or a papermaking method.
  • a base material for artificial leather is produced from a nonwoven fabric structure having a desired bulkiness and entanglement degree produced by these methods.
  • the napped-tone artificial leather and the silver-tone artificial leather using such an artificial leather base material are highly evaluated particularly in terms of texture.
  • the staple fibers constituting the nonwoven fabric structure are fixed in the base material by the entanglement between the fibers and the contained polymer elastic body, but the raised surfaces of the napped artificial leather or the silver artificial leather Since the fiber length is short at the adhesive interface with the silver surface layer, the tendency to be pulled out from the nonwoven fabric structure or fall off is inevitable. Due to this tendency, important surface properties such as friction durability of the napped surface and adhesive peel strength of the silver surface layer are lowered.
  • a general method is to increase the degree of entanglement of the nonwoven fabric structure, to bond the fibers together, or to contain a large amount of a polymer elastic body to strongly restrain the fibers. Has been adopted. However, when the degree of entanglement is increased or the content of the polymer elastic body is increased, the texture of the artificial leather is remarkably deteriorated, and it is difficult to satisfy the appearance, texture and surface properties at the same time. It was.
  • a needle punch entangled non-woven fabric made of sea-island fibers is impregnated with a polyurethane DMF solution and solidified, and then a leather-like base material obtained by extracting and removing sea components is raised to produce a suede-like artificial fabric.
  • Manufactures leather The fiber bundle constituting the substrate has a fine fiber (A) of 0.02 to 0.2 denier and a fineness of 1/5 or less of the average fineness of the fine fiber (A) and less than 0.02 denier.
  • the number ratio (A / B) is 2/1 to 2/3.
  • the fiber bundle contains substantially no polymer elastic body, and the ratio (A / B) of the number of fine fibers (A) and extra fine fibers (B) in the napped fibers is 3/1 or more. .
  • Patent Document 4 in order to obtain a long-fiber non-woven fabric that can be converted to a fine-surface-touch nubuck-like artificial leather, the long fibers are actively cut when they are entangled with a needle punch. It has been proposed to develop a cut end of a fiber of ⁇ 100 pieces / mm 2 to eliminate distortion caused by the characteristic entanglement treatment in the long-fiber nonwoven fabric.
  • fiber bundles exist in the range of 5 to 70 per 1 cm in width (that is, fibers oriented in the thickness direction by needle punching in an arbitrary cross section parallel to the thickness direction of the nonwoven fabric.
  • the total area occupied by the fiber bundle is in the range of 5 to 70% of the cross-sectional area in an arbitrary cross section perpendicular to the thickness direction of the nonwoven fabric. Propose that.
  • Patent Document 5 is composed of long fibers that can be converted into ultrafine fibers of 0.5 denier or less, the degree of crimp of the long fibers is 10% or less, and the fiber density of the nonwoven fabric is 0.25 to 0.50 g.
  • a long fiber entangled nonwoven fabric of / cm 3 is proposed.
  • the pilling resistance is insufficient.
  • the effect of fixing fibers inside the leather-like base material is obtained simply by dissolving a part of the polymer elastic body existing on the outermost surface of the leather-like base material and fixing the roots of the napped fibers. Since the gripping ability of the polymer elastic body with respect to the fibers is low, a good pilling resistance improving effect cannot be obtained for fibers of 0.01 dtex or more.
  • the cut end is expressed so as not to reduce the physical properties as much as possible to a target level or less.
  • Patent Document 4 is not for entanglement of long fibers with each other from the surface of the non-woven fabric to the inside, and further to the opposite surface, but 5-100 pieces of long fibers on the surface are cut evenly. This is done to create a very large number of cut edges of / mm 2 .
  • the non-woven fabric structure is interspersed with pores of about 100 ⁇ m to several hundred ⁇ m, and it is difficult to obtain high-quality artificial leather as intended by the present invention. More specifically, although it depends on the fiber diameter and needle punching conditions, the nonwoven fabric structure after needle punching essentially has a gap of several hundred ⁇ m to several mm, and then one component of the fiber is heated. When pressed in the thickness direction while being softened, the gap itself remains as it is, as the shape of the sea component is solidified while being crushed in the thickness direction.
  • JP 53-34903 pages 3-4) JP-A-7-173778 (pages 1 and 2) JP-A-57-154468 (pages 1 and 2) JP 2000-273769 A (pages 3 to 5) JP-A-11-200209 (pages 2 to 3)
  • the present invention provides a base material for artificial leather that combines the performance of the sensibility surface and the performance of the physical properties, both of which have conventionally been recognized as contradictory performances, in the artificial leather base material. It is to be. By using the base material of the present invention, it is possible to obtain an artificial leather that has both high quality and high physical properties that have not existed before.
  • the present invention relates to an artificial leather base material composed of a nonwoven fabric structure of ultrafine long fiber bundles, and the following (1) to (4): (1)
  • the bundle of ultrafine fibers is a bundle of 8 to 70 ultrafine fibers having a substantially circular cross section.
  • the ultra-thin long fiber bundle has a cross-sectional area of 170 to 700 ⁇ m 2 and a flatness of 4.0 or less
  • the cross section of the ultrafine fiber bundle is present in the range of 1500 to 3000 / mm 2
  • the thickness of the nonwoven fabric structure In any cross section parallel to the direction, the gap size between the ultrafine fiber bundles is 70 ⁇ m or less, It is related with the base material for artificial leather characterized by satisfying simultaneously.
  • the present invention further relates to a method for producing a base material for artificial leather, wherein the following steps (a) to (d) are sequentially performed.
  • a heat-shrinkable polymer is used for the island component and a water-soluble polymer is used for the sea component, the number of islands is 8 to 70, the cross-sectional area ratio of the sea to the island is 5:95 to 60:40, and the cross-sectional area is 70 to 350 ⁇ m.
  • Step (c) for producing the structure The wet structure is wet-heat treated under conditions such that the sea component polymer is plasticized and the island component polymer is shrunk. If necessary, dry heat press treatment is performed in the thickness direction.
  • Step of densification until the cross section of the sea-island long fibers reaches 1000-3500 pieces / mm 2 (d) A step of removing sea components from the sea-island long fibers with water or an aqueous solution, and transforming them into ultra-fine long fiber bundles
  • the base material for artificial leather of the present invention since the ultrafine fiber bundles are gathered in a dense state that has not existed before, a surface state with extremely high denseness and excellent smoothness can be obtained.
  • the artificial leather base material of the present invention it has a smooth and elegant appearance and touch that are not inferior to natural leather, and also has excellent surface friction durability such as coloring, swelling texture and pilling resistance. Napped artificial leather can be obtained.
  • a silver-tone artificial leather that is smooth and inferior to natural leather, but has a soft and swell feel and excellent surface strength such as adhesive peel strength.
  • the base material for artificial leather of the present invention can be obtained, for example, by sequentially performing the following steps (a) to (d).
  • Step (a) A heat-shrinkable polymer is used for the island component and a water-soluble polymer is used for the sea component.
  • the sea component polymer and the island component polymer are extruded from a composite spinning die, and the sea-island long fibers are melt-spun.
  • a row in which a large number of nozzle holes are arranged in a straight line to form a cross-sectional state in which any number of island component polymers in the range of 8 to 70 is dispersed in the sea component polymer is arranged in parallel.
  • a structure having a plurality of rows is preferable.
  • Relative supply amount of the sea component polymer and the island component polymer so that the area ratio (that is, the polymer volume ratio) in the cross section of the obtained fiber is any ratio in the range of sea / island 5/95 to 60/40
  • the die is discharged from the die in a molten state under a temperature condition such that the die temperature is any temperature within a temperature range of 180 to 350 ° C.
  • the cross-sectional area of the obtained sea-island long fibers is any value in the range of 70 to 350 ⁇ m 2
  • the single fineness is, for example, when the island component polymer is polyethylene terephthalate and the sea component polymer is water-soluble thermoplastic polyvinyl alcohol.
  • melt-spun sea-island long fibers are accumulated in a collection surface such as a net in a random orientation state without cutting to produce a long fiber web having a desired basis weight, preferably 10 to 1000 g / m 2. .
  • Step (b) The long fiber web is overlaid with a plurality of layers in the thickness direction using a cross-wrapper or the like, if necessary, and then at least 6 barbs of needles are used, and at least one barb of the needles penetrates.
  • the fibers are three-dimensionally entangled by needle punching from both sides simultaneously or alternately, and the sea-island long fibers are present at any density in the range of 400 to 2000 pieces / mm 2 in a parallel section in the thickness direction.
  • a non-woven fabric structure in which sea-island long fibers are gathered very densely is obtained.
  • an oil agent that has an antistatic effect at any stage after its manufacture and until the entanglement treatment an oil agent for controlling the friction resistance with the needle, an oil agent for controlling the friction resistance between fibers, etc.
  • a single or a plurality of types may be added.
  • Step (c) The wet structure obtained by the step (b) is introduced into a wet heat environment in which the sea component polymer is plasticized and the island component polymer contracts, and a heat press treatment is added if necessary.
  • the sea-island long fibers are densely assembled until the cross section of the sea-island long fibers is in the range of 1000 to 3500 pieces / mm 2 in the cross-section parallel to the thickness direction.
  • the wet heat treatment a method of introducing saturated water vapor into an atmosphere in which continuous supply is performed, a water amount sufficient to swell and plasticize the sea component polymer to a desired level is applied to the nonwoven fabric structure, and then heated air And a method of heating moisture in the nonwoven fabric structure by electromagnetic waves such as infrared rays or a combination thereof.
  • the heat press treatment can be expected to have an effect of fixing the form of the nonwoven fabric structure or an effect of smoothing the surface.
  • the average apparent density of the non-woven fabric structure after the densification treatment in step (c) is 0.3 to 0.8 g / Any value in the range of cm 3 is preferred.
  • the average apparent density is determined by a method that does not apply a load such as compression, for example, a method by cross-sectional observation with an electron microscope or the like.
  • the basis weight of the nonwoven fabric structure is usually preferably 100 to 2000 g / m 2 .
  • Step (d) (D) The sea component polymer is extracted and removed from the sea-island long fibers constituting the nonwoven fabric structure with water or an aqueous solution, and the sea-island long fibers are transformed into ultrafine fiber bundles.
  • the base material for artificial leather obtained as described above is further subjected to the following steps (e) to (h) in order to obtain the effects of the present invention, and to natural leather such as suede and nubuck.
  • a suitable artificial leather base material can be obtained by the napped-tone artificial leather having an appearance and touch that is not inferior to that of a superior one.
  • Step (e) An easily extractable polymer solution, an aqueous dispersion or a melt is applied to at least one surface of the nonwoven fabric structure to solidify the easily extractable polymer.
  • Step (f) An aqueous dispersion of a polymer elastic body is applied to the same surface to solidify the polymer elastic body.
  • Step (g) The easily extractable polymer is removed from the nonwoven fabric structure.
  • Step (h) The average void size between the ultrafine fiber bundles is within the range of 200 ⁇ m from the grinding side surface of any cross section parallel to the thickness direction of the nonwoven fabric structure by applying pressure to the surface coated with the polymer elastic body. Densify to a range of 10-40 ⁇ m.
  • the present invention is performed by performing the following step (i) as necessary before performing the step (d) or after performing the step (d).
  • a suitable artificial leather base material can be obtained from the silver-tone artificial leather that has the above-described effects and is excellent in texture such as a sense of unity with the coating layer.
  • Step (i) The nonwoven fabric structure is impregnated with a polymer elastic body solution or water dispersion to solidify the polymer elastic body.
  • the sea-island fiber constituting the nonwoven fabric structure of the present invention is a multicomponent composite fiber composed of at least two types of polymers, and in the sea component polymer mainly constituting the fiber outer peripheral portion in the fiber cross section, It is a fiber having a cross-sectional shape in which different types of island component polymers are distributed.
  • the island component polymer of the present invention is distributed in a substantially circular cross-sectional shape by suitably selecting the effect of surface tension and the ratio of the sea component polymer and the island component polymer.
  • the substantially circular shape here means a shape that is literally close to a circle, and is a circular shape or a polygonal shape or an elliptical shape close to it.
  • This sea-island fiber is used to extract or decompose the sea component polymer at an appropriate stage before or after the formation of a non-woven structure having a desired density and, if necessary, impregnation with a polymer elastic body. By removing in this manner, it is possible to generate a fiber bundle in which a plurality of fibers made of the remaining island component polymer and narrower than the original sea-island fiber are converged.
  • Such a sea-island type fiber can be obtained by using a spinning method of a multicomponent composite fiber represented by a conventionally known chip blend (mixed spinning) method or a composite spinning method.
  • the sea-island fiber is composed mainly of the outer periphery of the fiber component in the fiber cross section, compared to the split split type composite fiber such as a petal shape or a superimposed shape in which a plurality of components are alternately configured on the outer periphery of the fiber.
  • fiber damage such as cracking, bending, and cutting during the fiber entanglement process typified by needle punching can be extremely reduced, that is, the degree of densification due to entanglement can be further increased.
  • the sea-island fiber has less anisotropy in the in-plane direction perpendicular to the fiber axis than the split split-type composite fiber, and the fineness of the individual ultrafine fibers, that is, the fineness of the cross-sectional area is high. Since a fiber bundle can be obtained, a very large number of fiber bundles can be assembled in a non-woven structure with an unprecedented density. Therefore, the non-woven fabric structure of the present invention is manufactured using sea-island fibers in order to obtain these effects that cannot be obtained with peeled split composite fibers such as petals and superposed shapes.
  • the polymer constituting the island component of the sea-island fiber is a heat shrinkable polymer.
  • polyester resins such as polyethylene terephthalate (hereinafter abbreviated as PET), polytrimethylene terephthalate (hereinafter abbreviated as PTT), polybutylene terephthalate (hereinafter abbreviated as PBT), polyester elastomer, or the like
  • PET polyethylene terephthalate
  • PTT polytrimethylene terephthalate
  • PBT polybutylene terephthalate
  • polyester elastomer or the like
  • heat-shrinkable polymers having a conventionally known fiber-forming ability such as heat-shrinkable polyamide resins, heat-shrinkable polyolefin resins, or modified products thereof, are suitable.
  • an artificial structure comprising a nonwoven fabric structure in which ultrafine fiber bundles as intended by the present invention are densely assembled by heat shrinkage.
  • a leather base material can be obtained, and features such as fine surface feeling and solid texture, and practical performance such as wear resistance, light resistance, and form stability are good. It is particularly preferable in that it can be an artificial leather product.
  • the island component polymer preferably has a melting point (hereinafter abbreviated as Tm) of 160 ° C. or higher, more preferably a fiber-forming crystalline resin having a Tm of 180 to 330 ° C.
  • Tm is raised from room temperature to 300 to 350 ° C. according to the type of polymer using a differential scanning calorimeter (hereinafter abbreviated as DSC) at a heating rate of 10 ° C./min in a nitrogen atmosphere. Thereafter, the polymer was immediately cooled to room temperature, and the peak top temperature of the endothermic peak of the polymer observed when the temperature was immediately increased again to 300 to 350 ° C. at a temperature increase rate of 10 ° C./min was adopted.
  • a colorant, an ultraviolet absorber, a heat stabilizer, a deodorant, a fungicide, an antibacterial agent, and other various stabilizers may be added to the polymer constituting the ultrafine fiber at the spinning stage.
  • the polymer constituting the sea component of the sea-island fiber is a water-soluble polymer. And since it is necessary to transform the sea-island type fibers into ultrafine fiber bundles, it is necessary to make the solubility or decomposability to the solvent or decomposing agent different from the adopted island component polymer, and the island component from the viewpoint of spinning stability.
  • the polymer is preferably a polymer having a low affinity and having a melt viscosity smaller than the island component polymer under the spinning conditions, or a polymer having a surface tension smaller than the island component polymer.
  • Preferable specific examples include polyvinyl alcohol, polyethylene glycol, or a water-soluble polymer such as polyethylene oxide or a modified polyester obtained by copolymerizing a compound containing an alkali metal sulfonate, and the optimal sea component polymer is polyvinyl alcohol alone.
  • Polyvinyl alcohol resins such as polymers and polyvinyl alcohol copolymers (hereinafter collectively referred to as PVA).
  • the water-soluble polymer refers to a polymer that can be removed by dissolution or decomposition under conditions such as heating and pressurization with water or an aqueous solution such as an alkaline aqueous solution or an acidic aqueous solution.
  • the sea component polymer swells and plasticizes instantaneously, and the shrinkage ability of the island component polymer is hardly inhibited.
  • a base material for artificial leather consisting of a non-woven structure in which ultrafine fiber bundles are densely assembled as intended, and features in terms of sensitivity such as a dense surface feeling and a rich texture, This is particularly preferable in that an artificial leather product having good practical performance such as wear resistance, light resistance, and form stability can be obtained.
  • the PVA can be obtained by saponifying a resin having a vinyl ester unit as a main structural unit.
  • Vinyl compound monomers for forming vinyl ester units include vinyl formate, vinyl acetate, vinyl propionate, vinyl valenate, vinyl caprate, vinyl laurate, vinyl stearate, vinyl benzoate, vinyl pivalate and Examples include vinyl versatate, and among these, vinyl acetate is preferable from the viewpoint of easily obtaining PVA.
  • the PVA may be a homo PVA or a modified PVA into which copolymer units are introduced, but it is preferable to use a modified PVA from the viewpoint of melt spinnability, water solubility, and fiber properties.
  • a modified PVA from the viewpoint of melt spinnability, water solubility, and fiber properties.
  • Examples of the comonomer include ⁇ -olefins having 4 or less carbon atoms such as ethylene, propylene, 1-butene and isobutene from the viewpoints of copolymerizability, melt spinnability and water solubility of fibers; and methyl vinyl ether Vinyl ethers such as ethyl vinyl ether, n-propyl vinyl ether, isopropyl vinyl ether and n-butyl vinyl ether are preferred.
  • the content of copolymer units in PVA is preferably 1 to 20 mol%, more preferably 4 to 15 mol%, still more preferably 6 to 13 mol%.
  • the copolymer unit is ethylene
  • the fiber physical properties become high, and thus ethylene-modified PVA is particularly preferable.
  • the ethylene unit content in the ethylene-modified PVA is preferably 4 to 15 mol%, more preferably 6 to 13 mol%.
  • the PVA is produced by a known method such as a bulk polymerization method, a solution polymerization method, a suspension polymerization method, or an emulsion polymerization method.
  • a bulk polymerization method or a solution polymerization method in which polymerization is performed without solvent or in a solvent such as alcohol is usually employed.
  • the alcohol used as the solvent for the solution polymerization include lower alcohols such as methyl alcohol, ethyl alcohol, and propyl alcohol.
  • azo initiators such as a, a′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethyl-valeronitrile), benzoyl peroxide, n-propyl peroxycarbonate, etc.
  • a known initiator such as a peroxide-based initiator is used.
  • the polymerization temperature is not particularly limited, but a range of 0 ° C. to 150 ° C. is appropriate.
  • the viscosity average degree of polymerization (hereinafter abbreviated as “degree of polymerization”) of the PVA is preferably 200 to 500, more preferably 250 to 470, and still more preferably 300 to 450.
  • degree of polymerization is 200 or more
  • the melt viscosity shows a sufficiently high value for stable complexation
  • the degree of polymerization is 500 or less
  • the melt viscosity shows a sufficiently low value for easy ejection from the spinning nozzle.
  • so-called low polymerization degree PVA having a polymerization degree of 500 or less there is an advantage that the dissolution rate when removing with water or an aqueous solution is increased.
  • the degree of polymerization of PVA can be obtained from the following equation according to JIS-K6726.
  • P ([ ⁇ ] ⁇ 10 3 /8.29) (1 / 0.62)
  • P is the viscosity average polymerization degree
  • [ ⁇ ] is the intrinsic viscosity measured in water at 30 ° C. after re-saponification and purification of PVA.
  • the saponification degree of the PVA is preferably 90 to 99.99 mol%, more preferably 93 to 99.77 mol%, still more preferably 95 to 99.55 mol%, and particularly preferably 97 to 99.33 mol%. .
  • the Tm of the PVA is preferably 160 ° C. or higher, more preferably 170 to 230 ° C., further preferably 175 to 225 ° C., and particularly preferably 180 to 220 ° C. in view of spinnability.
  • Tm is 160 ° C. or higher, a decrease in fiber strength of PVA due to a decrease in crystallinity can be avoided.
  • the thermal stability of PVA is good and the fiber forming property is good.
  • Tm is 230 ° C. or lower, the melt spinning temperature can be made sufficiently lower than the decomposition temperature of PVA, and ultrafine fiber bundle-forming long fibers can be stably produced.
  • the ratio of the sea component polymer in the sea-island fiber is set at any ratio in the range of 5 to 60% in terms of the area ratio in the fiber cross section, and preferably 10 to 50%.
  • the ratio of the sea component polymer in the sea-island fiber is smaller than 5%, the spinning stability of the sea-island fiber is lowered, so that the industrial productivity is inferior.
  • the ratio of the sea component polymer exceeds 60%, the shape and distribution of the island component in the cross section of the sea-island fiber becomes unstable, and the quality stability is inferior.
  • the island component having the contracting ability is relatively insufficient, or the intended contracted state and densification cannot be obtained. As a result, it is difficult to obtain the intended effect of the present invention.
  • the higher the ratio of the sea component polymer the smaller the amount of ultrafine fibers in the base material for artificial leather after removing the sea component, so a polymer that needs to be included to bring the form stability to a desired level.
  • the amount of elastic body tends to increase remarkably, and in addition to increasing the industrial production load in terms of energy and cost required to recover the removed sea component polymer, naturally the load on the global environment is also of course Increase. Therefore, it is preferable to set the ratio of the sea component polymer to a lower level as long as the above factors allow.
  • the sea-island type fibers are used in the form of long fibers.
  • the long fiber is a fiber that is not intentionally cut into a fiber length of generally about 10 to 50 mm, such as a short fiber, and the fiber length of the long fiber cannot be generally specified.
  • the fiber length of the long fiber before being ultrafine is preferably 100 mm or more, and can be technically manufactured and physically cut off, The fiber length may be several meters, several hundred meters, several kilometers, or more.
  • a composite spinning die is used for spinning the sea-island type fibers.
  • An island component polymer channel in which any number in the range of 8 to 70 per nozzle hole is disposed on average, and a sea component polymer disposed so as to surround the island component polymer channel
  • a large number of nozzle holes having a flow path are arranged in a straight line or a circular shape at equal intervals, and are arranged in parallel in a linear shape or in a concentric shape in a circular shape.
  • a molten sea-island type composite fiber composed of a sea component polymer and an island component polymer is continuously discharged from each nozzle hole.
  • a high-speed air current is applied using a suction device such as an air jet nozzle, and the composite fiber is the target. It is drawn and thinned uniformly to achieve fineness.
  • the high-speed air current is applied so that the average spinning speed corresponding to the mechanical take-up speed in normal spinning becomes any speed in the range of 1000 to 6000 m / min.
  • sucking from the opposite surface side of the net on the collecting surface of a conveyor belt-like mobile net, etc. while opening the composite fiber with a collision plate or airflow according to the texture of the obtained fiber web
  • the long fiber web is formed by collecting and depositing.
  • one nozzle-like suction device is generally used for one base. For this reason, a large number of sea-island fibers converge at the center point of the concentric circles during suction.
  • a plurality of bases are arranged in a straight line to obtain a desired spinning amount, there are almost no fibers between the bundles of sea-island fibers discharged from adjacent bases. Therefore, it is important to open the fiber web in order to obtain a uniform texture.
  • a linear slit-like suction device facing the base is used.
  • the sea-island type fibers from between the rows arranged in parallel are concentrated at the time of suction, a fiber web having a more uniform texture can be obtained as compared with the case where the concentric bases are employed.
  • the parallel arrangement is more preferable than the concentric arrangement.
  • the obtained long fiber web is subsequently subjected to pressure bonding while being partially heated or cooled by a press, embossing or the like, depending on the form stability required in the subsequent process.
  • the melt viscosity of the sea component polymer is smaller than the island component polymer
  • the long fiber is heated or cooled at any temperature in the temperature range of about 60 to 120 ° C. without applying a high temperature up to the melting temperature.
  • the texture of the long-fiber web can be sufficiently maintained in the subsequent steps without greatly degrading the cross-sectional shape of the sea-island fibers constituting the web.
  • the method of making short fibers into a fiber web by a card machine which has been generally adopted by conventional artificial leather, is not only a card machine, but also provides an oil agent and crimp suitable for passing through the card machine, to a predetermined fiber length.
  • a series of large-scale equipment is required for cutting, transporting and opening the raw cotton, and there are problems in terms of production speed, stable production, and cost.
  • this method also requires an auxiliary facility such as a cutting facility. Since it remains up to about 200 g / m 2, the applications to which artificial leather products can be applied are very limited.
  • the production method of the present invention is carried out as a single process in which the fiber web formation is not interrupted from spinning, the equipment is very compact and simple, and the production speed and cost are reduced. Excellent.
  • stable productivity is also excellent.
  • nonwoven fabric structures obtained from long fibers, and substrates for artificial leather using the same and artificial leather exhibit excellent properties in terms of physical properties such as form stability, that is, mechanical strength, surface friction durability, and adhesive peel strength on the silver surface.
  • the manufacturing method of the present invention it is possible to use a fiber having a very thin fiber diameter, which is difficult with a method using a conventional card machine. Since it does not become bulky, it is possible to stably obtain an extremely dense state from the conventional non-woven fabric structure from the stage of mechanical accumulation, and it is impossible to achieve with conventional artificial leather by combining the methods described below. The extremely high-quality artificial leather can be obtained.
  • the fiber diameter when producing a nonwoven fabric structure using conventional short fibers, a fiber diameter of a certain level or more suitable for a fiber opening device or a card machine is required.
  • a cross-sectional area of 200 ⁇ m 2 or more is necessary, and fibers having a thickness of about 300 to 600 ⁇ m 2 have been generally adopted in consideration of industrial stable productivity.
  • the thickness of the fiber to be used is not restricted by the equipment, even a very thin fiber having a cross-sectional area of 100 ⁇ m 2 or less can be used.
  • the cross-sectional area needs to be 70 to 350 ⁇ m 2 , and 80 to 300 ⁇ m 2 is preferable in view of form stability and handling properties in the subsequent steps.
  • the obtained long fiber web has an arbitrary cross section parallel to the thickness direction, and the cross section of the fibers substantially orthogonal to the cross section is 100 to 600 pieces / mm 2 .
  • a fiber distribution state existing at an average number density in the range of 150 to 500 pieces / mm 2 is obtained, and finally the dense nonwoven fabric structure of the present invention can be obtained by entanglement or shrinkage in a subsequent process. It becomes possible.
  • the density of the nonwoven fabric structure constituting the base material for artificial leather to be obtained is important, and it is particularly necessary to improve the density of the nonwoven fabric structure constituting the surface layer portion of the base material for artificial leather.
  • the cross-sectional area of the ultrafine fiber bundle obtained by removing the sea component polymer from the sea-island fiber needs to be at least 700 ⁇ m 2 or less.
  • a cross-sectional area of 700 ⁇ m 2 or less corresponds to the fineness of the ultrafine fiber bundle being approximately 10 dtex or less, for example, when the polymer constituting the ultrafine fibers is polyethylene terephthalate.
  • the cross-sectional area of bundles of microfine long fibers is preferably 500 [mu] m 2 or less, more preferably 400 [mu] m 2 or less.
  • the lower limit of the cross-sectional area of the ultra-fine fiber bundle does not affect the properties of the artificial leather substrate as much as the upper limit described above, but if it is made too thin, the strength and surface friction durability of the artificial leather are significantly reduced.
  • the cross-sectional area of the ultrafine fiber bundle is at least 170 ⁇ m 2 or more, preferably 180 ⁇ m 2 or more, because it may be, and restrictions on the manufacturing process of artificial leather. More preferably, it is 190 ⁇ m 2 or more.
  • the number of ultrafine fibers constituting one ultrafine fiber bundle is the flexibility of the ultrafine fiber bundle, that is, the easy entanglement within the nonwoven fabric structure and the finally obtained base material for artificial leather. 8 or more from the viewpoint of easy bending, 70 or less from the viewpoint of easy bending of the ultra-long fiber bundle, deformability in the cross-sectional shape, and coloring of the artificial leather base material finally obtained. It is. Further, the number of ultrafine fibers is preferably 10 to 60, and more preferably 12 to 45.
  • the number of ultrafine fibers is 7 or less, not only the flexibility of the ultrafine fiber bundle is inferior, but also the restraining number ratio when the nonwoven fabric structure contains a polymer elastic body, that is, the composition of the ultrafine fiber bundle Since the ratio of the number of fibers arranged on the outermost circumference in the number of the fibers increases, the polymer elastic body easily inhibits the bendability of the ultrafine fiber bundle, and the texture is easily cured even with a small amount of the polymer elastic body. Therefore, since the spots in the state of inclusion of the polymer elastic body are easily manifested as texture spots on the base material for artificial leather, it is difficult to recognize the value as an industrial product.
  • the number of ultrafine fibers exceeds 70, the flexibility of each ultrafine fiber itself is excellent, but it is offset by an increase in the contact area between the ultrafine fibers in the ultrafine fiber bundle.
  • the flexibility tends to be rather inferior.
  • deformation due to compressive force from a direction perpendicular to the fiber axis that is, flattening easily occurs, and the fiber bundles are easily spread and the fiber bundle is easily scattered. Therefore, the bulkiness of the fiber bundle is increased, and the limit of densification in the nonwoven fabric structure is decreased.
  • the fiber bundle needs to be at least 70 or less so that it is difficult to flatten, and the flatness of the ultra-long fiber bundle in the finally obtained artificial leather substrate needs to be 4.0 or less. Preferably, it is 3.0 or less.
  • the adverse effects caused by the flattening of the ultra-thin fiber bundle are particularly remarkable on the surface of the artificial leather base material, and the width formed by the fiber bundle when viewed from the surface, that is, the projected size of the ultra-thin fiber bundle is 10 to The thickness is preferably 60 ⁇ m, more preferably 15 to 45 ⁇ m.
  • the projected size of the extra-long elongated fiber bundle exceeds 60 ⁇ m, the fiber bundle is not sufficiently densified, and particularly when it is made into a napped artificial leather, the number of fiber bundles that can form napped is reduced, and the raised nail that is not very high in appearance quality. It becomes difficult to obtain only the surface.
  • the projected size of the ultra-thin fiber bundle is less than 10 ⁇ m, it is very easy to densify the fiber bundle, but even if the fiber bundle is not flattened at all, the diameter of the fiber bundle itself is very thin and less than 10 ⁇ m.
  • the fiber bundle is frequently cut by the napping treatment, so the nap is reduced, and it is difficult to obtain a good appearance quality. It will be inferior in nature.
  • the ultra-thin fiber bundle having characteristics as described above is formed in any cross-section parallel to the thickness direction of the ultra-thin fiber bundle substantially perpendicular to the cross-section.
  • An unprecedented extremely dense fiber assembly structure in which the number of cross-sections is 1500 to 3000 / mm 2 is obtained.
  • the number is less than 1500 / mm 2
  • a space in which the ultrafine fiber bundle does not exist is generated as much as the number density of the ultrafine fiber bundle is small.
  • the nonwoven fabric structure is forcibly compressed in the thickness direction by hot pressing or the like. Or a structure that is simply compressed in the length direction or width direction by the shrinkage force of the shrinkable woven or knitted fabric bonded to the nonwoven fabric structure. Since it is crushed and flattened in the compressed direction, the physical properties are lowered and the texture is hardened.
  • it is 2000 to 2700 pieces / mm 2 .
  • the cross-sectional area when the thickness of the constituent fiber is transformed into an ultrafine fiber bundle from the stage of densifying the nonwoven fabric structure by entanglement or the like is 300 to 600 ⁇ m. Since it is thick enough to be about 2, the densification of the nonwoven structure is insufficient before it is transformed into an ultrafine fiber bundle, and the number density of the cross section of the ultrafine fiber bundle obtained as a result of transforming this into an ultrafine fiber bundle is It was about 200 to 600 pieces / mm 2 at most, and about 750 pieces / mm 2 at most.
  • the fiber bundle itself may be damaged by excessive needle punching.
  • the cross-sectional shape of the fiber bundle may be greatly deformed by a forced compression process such as the above-mentioned hot press or the like, or as a result of relying only on such a process, the gap between the fiber bundles may be reduced. Only large spots can be obtained, and the resultant artificial leather base material is completely different from that intended in the present invention.
  • the ultrafine fiber bundle is included. Since a thick polymer elastic body continuous film is formed between the microfiber bundles due to the small number density of the fiber, the texture as a composite structure of the nonwoven fabric structure and the polymer elastic body not only becomes harder than necessary. Only a region having very large coarse and dense spots in which the region where the fibers or the polymer elastic bodies are densely gathered and the region where the fibers and the polymer elastic bodies hardly exist are scattered in each case was obtained. .
  • the nonwoven fabric structure of the present invention has an ultra-dense structure in which the ultrafine fiber bundles are gathered extremely densely and uniformly.
  • the thickness of the continuous film of the polymer elastic body to be formed can be reduced, and the cells surrounded by the polymer elastic body can be made smaller and evenly distributed. It is possible to suppress the occurrence of coarse and dense spots.
  • the fiber diameter of the ultrafine fiber itself is not particularly limited as long as the nonwoven fabric structure is composed of the ultrafine fiber bundles that satisfy the above-described requirements.
  • the ultrafine fiber is 0.8 to 15 ⁇ m, more preferably 1.0 to 13 ⁇ m, at least in the raised portion.
  • the thickness is preferably 1.2 to 10 ⁇ m, and most preferably 1.5 to 8.5 ⁇ m. If the fiber diameter of the ultrafine fibers exceeds 15 ⁇ m, it may adversely affect the appearance quality of the napped-toned artificial leather, for example, spots may occur on the napped color of the surface or the smoothness of the touch may be hindered. It is not preferable.
  • the napped feel becomes fine when the napped-tone artificial leather is used, but the total appearance quality and surface properties are adversely affected.
  • the napped color of the surface may become whitish or the wear resistance of the surface such as pilling resistance may deteriorate.
  • the fibers constituting the long fiber web are three-dimensionally entangled.
  • the type of needle needle shape and count, barb shape and depth, number and position of barbs, etc.
  • needle punch number needles of needles implanted on the needle board
  • needle punch depth depth at which the needle acts on the long fiber web
  • the type of needle those similar to those used in the production of artificial leather using conventional short fibers can be used as appropriate, but in order to obtain the effects of the present invention, the needle count, the depth of the barb, The number of barbs is particularly important, and it is preferable to use mainly the types of needles described below.
  • the needle count is a factor that affects the density and surface quality obtained after processing, and at least the size of the blade portion (the portion where the barb at the tip of the needle is formed) is No. 30 (the cross-sectional shape is an equilateral triangle) If it is circular, the diameter must be smaller (thin) if it is circular, and the diameter is preferably about 0.73 to 0.75 mm. Preferably, it is 32 (about 0.68 to 0.70 mm) to 46 (0). .33 to 0.35 mm), and more preferably in the range of 36 (height 0.58 to 0.60 mm) to 43 (height 0.38 to 0.40 mm).
  • a needle with a blade size larger than 30 (thick) has a high degree of freedom in the shape and depth of the barb and is preferable in terms of the strength and durability of the needle. Therefore, it is difficult to obtain a dense fiber assembly state and surface quality intended by the present invention. Moreover, since the frictional resistance between the fibers in the long fiber web and the needle becomes too large, it is not preferable because it is necessary to apply an excessive amount of oil for needle punching.
  • a needle having a blade size smaller than No. 46 is not only suitable for industrial production in terms of strength and durability, but also makes it difficult to set a barb having a suitable depth in the present invention.
  • the cross-sectional shape of the blade portion is preferably an equilateral triangle in the present invention from the viewpoint of easy catching of the fiber and small frictional resistance.
  • the barb depth in the present invention is the height from the deepest part of the barb to the barb tip.
  • the height to the tip of the barb protruding outward from the side of the needle sometimes referred to as kick-up
  • the depth to the deepest part of the barb formed inside the needle side (throat depth) It also refers to the combined height.
  • the barb depth is at least equal to or greater than the diameter of the sea-island fiber, and is preferably 120 ⁇ m or less. If the barb depth is less than the diameter of the sea-island fiber, it is not preferable because the sea-island fiber becomes very difficult to be caught by the barb.
  • the barb depth is preferably any multiple in the range of 1.7 to 10.2 times the diameter of the sea-island fiber, more preferably selected from the range of 2.0 to 7.0 times. Is a multiple of If the barb depth is less than 1.7 times, the sea-island fiber is not easily caught by the barb, so even if the number of punches described later is increased, the entanglement effect commensurate with it may not be obtained. On the other hand, even if it exceeds 10.2 times, rather than improving the ease of catching sea-island fibers, the tendency to increase damages such as cutting and cracking of sea-island fibers is increased, which is not preferable.
  • the number of barbs in the present invention may be appropriately selected so as to obtain a desired entanglement effect in the range of 1 to 9, but in order to obtain a dense nonwoven fabric structure essential to the present invention,
  • a needle mainly used for the needle punch entanglement process that is, a needle used for punching at least 50% or more of the number of punches described later needs to have six barbs.
  • the number of needle barbs used for the needle punch entanglement process does not have to be one, for example, one and six, three and six, six and nine, and one. Needles with different numbers of barbs such as 6 and 9 may be appropriately combined and used in any order.
  • the positions of the respective barbs include those having different distances from the needle tip side and those having several barbs at the same distance.
  • Examples of the latter needle include a needle having a regular triangular cross-sectional shape and one barb at each of the three apex angles at the same distance from the tip.
  • the former needle is used as the needle mainly used for the entanglement treatment. This is because a needle having a plurality of barbs at the same distance has an effect that the blade portion of the needle is apparently thick and the depth of the barb is large, so that the entanglement effect is high, while the blade portion is This is because the inconvenience seen when the barb is too thick and the barb is too deep appears.
  • the latter needle is entangled to an extent that does not hinder the target dense structure, and then the former needle is used to obtain the target dense structure.
  • the method is mentioned as one of the preferred embodiments.
  • the number of barbs is 6 is the total number from the barb penetrating the nonwoven fabric structure at the tip of the needle to the barbs that substantially act on the nonwoven fabric structure without penetrating the nonwoven fabric structure. Does not include barbs in parts that do not act on the body.
  • the total number of needle punches is preferably any value in the range of 800 to 4000 punches / cm 2 , more preferably in the range of 1000 to 3500 punches / cm 2 .
  • the number of punches in the needle punching process is about 300 punch / cm 2 or less, preferably about 10 to 250 punch / cm 2 .
  • a needle punching process exceeding 300 punches / cm 2 is performed using a needle having several barbs at the same distance as described above, fibers are oriented in the thickness direction. Even if the used needle punching process, heat shrink process, press process or the like is performed, it tends to be difficult to increase the number density of the nonwoven fabric structure.
  • the total number of needle punches is less than 800 punches / cm 2 , not only the densification is insufficient, but the integration of the nonwoven fabric structure due to the entanglement of fibers between different layers of the long fiber web tends to be insufficient.
  • it exceeds 4000 punches / cm 2 it depends on the shape of the needle, but if the fiber is severely damaged such as cutting or cracking by the fiber needle, and the fiber damage is particularly severe, the nonwoven fabric structure
  • the form stability may be significantly lowered and the density may be lowered.
  • the punch depth of the needle is preferably set to such a depth that at least the barb on the most distal side of the needle penetrates the entire thickness of the long fiber web.
  • the barb farthest from the tip acts on the needle with a punch depth that stays in the long fiber web.
  • the number of barbs that do not penetrate the long fiber web is preferably 2 to 5 out of 6 barbs, more preferably 3 or 4. Further, in order to realize an unprecedented dense structure, punching of 50% or more of the number of punches must be set to a punch depth at which the barb at the tip of the needle penetrates the long fiber web. It is preferable to perform the above punching at a punch depth at which the barb at the tip of the needle penetrates the long fiber web.
  • any stage after the long fiber web manufacturing process and before the entanglement processing process in order to suppress damage and cutting of the fiber due to the needle punching process and to suppress charging and heat generation caused by strong friction between the needle and the fiber It is preferable to apply an oil agent.
  • known coating methods such as spray coating method, reverse roll coating method, kiss roll coating method, and lip coating method can be adopted, among which the spray coating method is non-contact with the long fiber web.
  • a low-viscosity oil agent that penetrates into the inner layer of the long fiber web in a short time can be used, which is most preferable.
  • the oil agent to be applied before the entanglement treatment may be an oil agent composed of one type of component, but a plurality of types of oil agents having different effects may be used by mixing them or applying them sequentially.
  • the oil agent used in the present invention is an oil agent having a high sliding effect that relieves friction between the needle and the fiber, that is, friction between the metal and the polymer. Specifically, a mineral oil-based oil agent or a polysiloxane-based oil agent is used.
  • an oil mainly composed of dimethylsiloxane is more preferable.
  • an oil agent with a high sliding effect in a polysiloxane system the sliding effect is too strong, and the entanglement effect due to catching on the barb is locally reduced significantly, especially the friction coefficient between fibers is remarkable.
  • an oil agent having a high friction effect for example, a mineral oil-based oil agent, for the purpose of preventing the maintenance of the entangled state from becoming difficult.
  • a water-soluble polymer is used as the sea component of the sea-island fiber, and water or an aqueous solution is used to transform the fiber into an ultrafine fiber bundle.
  • the processing agent for example, the dyeing state becomes a patchy state due to the oil remaining when the treatment in a water bath represented by the dyeing treatment is performed, or Since the oil agent remaining without being completely removed even after finishing treatment such as in-bath treatment weakens the fixed state of the napped fibers to the nonwoven fabric structure and may cause illness such as pilling. In particular, it is necessary to pay attention to the use of polysiloxane oils.
  • a surfactant for example, a polyoxyalkylene-based surfactant as an antistatic agent when charging due to friction is significant.
  • the average number density (number per unit area of the cross section of the fiber substantially perpendicular to the cross section in an arbitrary cross section parallel to the thickness direction) of the nonwoven fabric structure at the stage made of sea-island fibers is 1000 to 3500 Pieces / mm 2 , preferably 1100 to 3000 pieces / mm 2 , more preferably any value in the range of 1200 to 2500 pieces / mm 2 .
  • a thermal contraction process using hot air, hot water, steam, or the like is used after an entanglement process such as a needle punch process. By combining one or more of these treatments, it is possible to finally obtain a dense structure intended by the present invention.
  • the entanglement process may be performed before or after the entanglement process, or the press process may be performed. Further, when used together with the shrinkage treatment, it may be performed before or after the shrinkage treatment, but a method of performing the shrinkage treatment while performing the press treatment is not preferable because the shrinkage state becomes uneven.
  • the wet heat treatment is a treatment in which the nonwoven fabric structure after the needle punch entanglement treatment is thermally contracted so as to have a desired density in a high temperature and high humidity atmosphere.
  • the target density is first made to be about 350 to 750 pieces / mm 2 by needle punching.
  • the heat shrinkage treatment is performed so that it becomes the same.
  • the long fiber web needs to be formed of sea-island type fibers containing a heat-shrinkable component.
  • a fibrous web or to stack separately manufactured shrinkable webs it is only necessary to use a heat-shrinkable polymer for spinning in either or both of the sea component polymer and the island component polymer.
  • a heat-shrinkable polymer as described above is used as the component polymer.
  • the conditions of the wet heat shrinkage treatment are not particularly limited as long as the temperature is such that at least sufficient shrinkage is obtained with the island component polymer, and the sea component polymer swells and plasticizes but does not dissolve, It may be set as appropriate according to the heat shrink treatment method to be adopted and the amount of treatment of the treatment object.
  • the temperature is in the range of 65 to 100 ° C. and the relative humidity is 70 to 100%.
  • the method of introducing into an atmosphere controlled to any temperature and humidity, or after applying or adding a sufficient amount of water to swell and plasticize the sea component polymer to the nonwoven fabric structure A preferable example is a method in which the heat required for the shrinkage of the island component polymer and the swelling / plasticization of the sea component polymer is continuously applied to the nonwoven fabric structure by any method.
  • a preferred example is a method in which the nonwoven fabric structure is allowed to act on the nonwoven fabric structure to raise the temperature of the nonwoven fabric structure to a desired temperature.
  • spots are likely to occur in the heat-shrinked state due to the influence of the weight of the nonwoven fabric structure itself.
  • the shrinkage start point and shrinkage speed the length of the sheet-like nonwoven fabric structure is increased. It is also a preferable aspect to control to different temperature conditions depending on the position in the width direction and the width direction.
  • the nonwoven fabric structure made of sea-island fibers it is necessary prior to the impregnation treatment of the polymer elastic body to be described later in order to make the nonwoven fabric structure made of sea-island fibers a desired density. Accordingly, it is also preferable to employ a press process. For example, in the case where the average number density of the nonwoven fabric structure is targeted at a density of about 1000 to 1200 pieces / mm 2 , first, after densification to about 600 to 900 pieces / mm 2 until the heat shrink treatment. What is necessary is just to press-process so that it may become the target precision.
  • Specific examples of adopting the press treatment include a method of pressing the wet state after the wet heat shrinkage treatment as it is, a method of pressing the wet heat shrinkage treatment and drying it, and a method without completely drying.
  • the method of pressing in the state where the part moisture remains is mentioned.
  • the temperature at which the press repair is performed is a method in which the softening component is solidified at a temperature lower than the surface temperature of the nonwoven fabric structure before the heat of the wet heat shrinkage treatment or the drying process is cooled, and the temperature is higher than the surface temperature of the nonwoven fabric structure. Examples thereof include a method of softening the components and performing a press treatment while evaporating the contained water.
  • the sea component polymer in the sea-island fiber is heated by heating to a temperature range near the softening temperature of the sea component polymer to a temperature lower than the softening temperature of the island component polymer and higher than the shrinkage temperature of the island component polymer.
  • the shrinkable island component polymer contracts in a state where the degree of freedom of the island component is increased by being softened or close to it.
  • the nonwoven fabric structure is pressed in a state where the temperature has not decreased from the softening temperature of the sea component polymer, the nonwoven fabric structure is compressed into a denser state and cooled to room temperature. Then, a nonwoven fabric structure fixed in a desired dense state can be obtained.
  • Advantages other than the densification of the press treatment include an effect that the surface of the nonwoven fabric structure can be fixed in a more smooth state.
  • smoothing it is possible to more effectively obtain a very dense aggregate state of the ultrafine fiber bundles, which is the greatest feature of the base material for artificial leather of the present invention. That is, since the surface of the base material for artificial leather can be made smoother, it becomes possible to reduce the amount of grinding in the napping formation processing such as buffing in the production of napped-tone artificial leather.
  • a polymer elastic body is contained.
  • the method of inclusion include a method in which a solution or dispersion of a polymer elastic body is impregnated and solidified by a conventionally known dry method or wet method.
  • the impregnation method after immersing the nonwoven fabric structure in a bath filled with a polymer elastic body fluid, the so-called dip is performed once or a plurality of times by squeezing to a predetermined liquid-containing state with a press roll or the like.
  • any of various conventionally known coating methods such as a nip method, a bar coating method, a knife coating method, a roll coating method, a comma coating method, and a spray coating method can be employed.
  • One type of method or a plurality of types of methods may be combined.
  • any of those conventionally used for base materials for artificial leather can be employed.
  • Specific examples include polyurethane elastomers, acrylonitrile elastomers, olefin elastomers, polyester elastomers, An acrylic elastomer is mentioned, Preferably it is a polyurethane elastomer and an acrylic elastomer.
  • polyurethane elastomer examples include at least one polymer polyol having an average molecular weight of 500 to 3000 selected from polyester diol, polyether diol, polyether ester diol, polycarbonate diol, and the like, 4,4′-diphenylmethane diisocyanate, isophorone diisocyanate, hexa Combined with at least one polyisocyanate selected from aromatic, alicyclic, and aliphatic diisocyanates such as methylene diisocyanate as a main component, and two or more active hydrogens such as ethylene glycol and ethylenediamine Combining at least one low molecular weight compound having atoms in a predetermined molar ratio, these are polymerized by a melt polymerization method, a bulk polymerization method, a solution polymerization method or the like in one step or multiple steps.
  • polymer polyol having an average molecular weight of 500 to 3000 selected from polyester diol, polyether diol
  • the homopolymer has a glass transition temperature in the range of ⁇ 90 to ⁇ 5 ° C., and preferably a non-crosslinkable monomer such as methyl acrylate, n-butyl acrylate, The glass transition temperature of at least one soft component selected from isobutyl acrylate, isopropyl acrylate, n-hexyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, and the like and a homopolymer thereof is 50 to 250.
  • At least selected from monomers such as methyl methacrylate, ethyl methacrylate, isopropyl methacrylate, isobutyl methacrylate, cyclohexyl methacrylate, (meth) acrylic acid, etc.
  • Monofunctional or capable of forming a crosslinked structure with one kind of hard component Compounds capable of reacting with functional ethylenically unsaturated monomer units or ethylenically unsaturated monomer units introduced into the polymer chain to form a crosslinked structure, such as ethylene glycol di (meth) acrylate, triethylene glycol di Obtained by polymerizing an ethylenically unsaturated monomer comprising at least one crosslinkable component selected from (meth) acrylate, polyethylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, and the like. And various acrylic elastomers.
  • the base material for artificial leather obtained by adopting polyurethane elastomer as the main polymer elastic body is excellent in the balance of texture and mechanical properties, and also in the balance including durability. Is preferable.
  • the base material for artificial leather obtained by adopting acrylic elastomer has low adhesiveness to ultrafine fiber bundles compared to polyurethane elastomer, and the effect of fixing napped at the time of napped formation is poor.
  • it is unsuitable for forming leather it is particularly preferable when forming artificial leather with a silver tone because the degree of curing of the texture with respect to the content is suppressed.
  • the polymer elastic body different types may be mixed and contained, or different types may be included in multiple times.
  • a non-woven fabric structure is impregnated with a polymer elastic body fluid such as a solution or dispersion of a polymer elastic body, and then the polymer elastic body is solidified by a conventionally known dry method or wet method. Fix in the body.
  • the dry method here refers to all methods for fixing a polymer elastic body in a nonwoven fabric structure by removing a solvent or a dispersant by drying or the like.
  • the wet method referred to here uses a polymer elastic body fluid in which a nonwoven fabric structure impregnated with a polymer elastic body fluid is treated with a non-solvent or coagulant of the polymer elastic body, or a heat-sensitive gelling agent is added.
  • the general method of temporarily fixing or completely fixing the polymer elastic body in the nonwoven fabric structure prior to the removal of the solvent or the dispersant by heat-treating the impregnated nonwoven fabric structure or the like is also preferable to perform a curing treatment such as a heat treatment after removing the solvent or the dispersant.
  • the concentration of the polymer elastic body fluid is preferably 0.1 to 60% by mass.
  • Polymer elastic body fluids include colorants such as dyes and pigments, coagulation regulators, antioxidants, ultraviolet absorbers, fluorescent agents, and anti-molds, as long as the properties of the final artificial leather substrate are not impaired.
  • Conventional artificial leather such as water-soluble polymer compounds such as polyvinyl alcohol and carboxymethylcellulose, agents, penetrants, antifoaming agents, lubricants, water repellents, oil repellents, thickeners, extenders, curing accelerators, foaming agents You may mix
  • the amount of the polymer elastic body or polymer elastic body composition to be contained in the nonwoven fabric structure may be adjusted as appropriate according to the mechanical properties, durability, texture, etc. required for the intended use.
  • the basis weight of the polymer elastic body is preferably 1 to 80% by mass, more preferably 2 to 60% by mass, and 5 to 40% by mass. The range of is more preferable.
  • the content of the polymer elastic body is less than 1% by mass, it is difficult to uniformly contain the polymer elastic body. Quality as a base material for leather is difficult to stabilize.
  • the content of the polymer elastic body exceeds 80% by mass, the nonwoven fabric structure is extremely dense, so that the texture of the artificial leather base material is remarkably cured and the rubber feeling is also strong. Absent.
  • a non-solvent or non-decomposing agent for the island component polymer is used as a method for removing the sea component polymer from the sea-island type fibers constituting the nonwoven fabric structure before or after the inclusion of the polymer elastic body.
  • a method of treating a nonwoven fabric structure with a liquid that is also a non-solvent or non-decomposing agent for a macromolecular elastic body and a liquid that is a solvent or decomposing agent for a sea component polymer when the body is removed after being incorporated Is employed in the present invention.
  • a water-soluble polymer such as polyvinyl alcohol as described above is used as the sea component polymer, it may be removed with warm water at a temperature at which the polymer is soluble.
  • an aqueous solution that is an alkaline decomposing agent such as an aqueous sodium hydroxide solution can be removed at an appropriate temperature. That's fine.
  • the sea-island type fibers are transformed into ultrafine fiber bundles made of island component polymers, whereby the base material for artificial leather of the present invention having a basis weight of preferably 300 to 1800 g / m 2 is obtained. can get.
  • the critical difference from conventional base materials for artificial leather is that in addition to the various points described above, ultra-fine fiber bundles
  • the gap size formed between each other is 70 ⁇ m or less, preferably 60 ⁇ m or less, extremely small, uniform, and small in size spots.
  • the cross-sectional area is about 350 ⁇ m 2 or less, that is, the fiber diameter is about 21 ⁇ m or less, and A non-woven fabric structure in which unnecessary bulkiness is not easily produced until a base material for artificial leather is formed by spinning sea-island fibers with a number of islands that are difficult to flatten and forming a direct web in the form of long fibers.
  • a 6-barb needle is used under the condition that the barb penetrates in the thickness direction.
  • Densification and three-dimensional entanglement progress with a very good balance in the fiber arrangement state peculiar to nonwoven fabric structures consisting of long fibers in which the same fibers are randomly arranged in a continuous state over a wide range As a result, the fibers are gathered close together at a sufficiently high number density in the cross section of the nonwoven fabric structure, and (3) water-soluble polymer and heat are used as constituents of the sea-island fiber.
  • the sea component By combining a shrinkable polymer and performing heat shrink treatment in a humid heat environment, when the nonwoven fabric structure becomes dense due to heat shrinkage, the sea component instantly swells and plasticizes, making the island component close to ideal Since the fiber diameter of the island component can be increased to a level close to the ideal by shrinkage, the sea-island type fiber is easily shrunk along the fiber axis. It is difficult to achieve the effect of eliminating adjacent fibers by moving in a random manner when contracting, and (4) when dissolving and decomposing sea components, the molecular size is smaller than that of conventional organic solvents. Since polar water is used as the medium, the diffusion rate of the solvent molecules in the sea component polymer is relatively fast, and the state from swelling to dissolution is stable.
  • the gap size between the ultrafine fiber bundles is made more uniform, and the napped-toned artificial leather with finer appearance quality and the fine-grained artificial leather with silver that is more folded
  • an easily extractable polymer solution, an aqueous dispersion or a melt is applied to the front surface of the artificial leather product, and the easily extractable polymer is applied. It is also preferable to solidify.
  • a polymer elastic body is provided on the surface on the front side of an artificial leather product for the purpose of obtaining a non-conventional densified nonwoven structure and obtaining a smoother and more uniform raised surface.
  • the surface to which the polymer elastic body has been applied is subjected to a grinding process while applying pressure, whereby not only the area from the original surface to a depth of about 20 to 200 ⁇ m is ground but also removed from the surface after the grinding process.
  • the nonwoven fabric structure can be further densified in the region up to a depth of about 100 to 300 ⁇ m.
  • the surface and the back surface of the artificial leather base material may be smoothed by buffing treatment, calendar treatment, or the like.
  • the obtained base material for artificial leather not only has a smooth surface by grinding treatment, but also has an average gap size between the ultrafine fiber bundles evaluated in the range from the surface to 200 ⁇ m in the range of 10 to 40 ⁇ m. It is in an extremely uniform and dense state.
  • the easily extractable polymer include polyvinyl alcohol, polyurethane elastomer, acrylic elastomer, polyethylene glycol, paraffin wax, polyethylene wax and the like.
  • the polymer elastic body include the same examples as the polymer elastic body to be contained in the nonwoven fabric structure, such as polyurethane elastomer and acrylic elastomer.
  • Examples of coating methods for easily extractable polymers and polymer elastic bodies include known coating methods such as gravure roll coating, rotary screen coating, spray coating, and reverse roll coating.
  • the roll coating method is preferable in view of the balance between the liquid viscosity to be applied and the coating amount.
  • An example of grinding treatment is buffing with sandpaper.
  • the pressure level on the sandpaper evaluates the surface state of the artificial leather substrate while evaluating the cross-sectional state of the artificial leather substrate after treatment. The optimum value may be set by adjusting as appropriate.
  • the base material for artificial leather obtained in this way is adjusted in thickness by slicing into multiple sheets in the thickness direction and grinding the back surface as necessary, as in conventional artificial leather manufacturing.
  • the surface to be the back surface or the surface to be the front surface is treated with a liquid containing a polymer elastic body or a solvent for the ultrafine fiber bundle.
  • at least the surface to be surfaced is raised by a method such as buffing to form a fiber raised surface mainly composed of ultrafine fibers, thereby obtaining a napped artificial leather such as suede or nubuck.
  • a silver-tone artificial leather can be obtained by forming a coating layer made of a polymer elastic body on the surface to be the surface.
  • any known method such as buffing with sandpaper or needle cloth or brushing can be used to form the fiber raised surface.
  • a solvent capable of dissolving or swelling the polymer elastic body or the ultrafine fiber bundle for example, dimethylformamide (DMF) is used if the polymer elastic body is a polyurethane elastomer.
  • DMF dimethylformamide
  • the treatment liquid or the ultrafine fiber bundle is a polyamide resin
  • a treatment liquid containing a phenol compound such as resorcin may be applied to the surface to be raised.
  • a liquid containing the polymer elastic body is directly applied to the surface of the artificial leather base material, or once the liquid is applied onto a support base material such as a release paper. Any known method such as a method of bonding to a base material for artificial leather can be used.
  • the polymer elastic body used for the coating layer to be formed is the same as the polymer elastic body for inclusion in the non-woven fabric structure described above, and is known as a polymer elasticity known as a coating layer for conventional silver-tone artificial leather Any body can be used.
  • the thickness of the coating layer to be formed is about 300 ⁇ m or less, there is no particular limitation because it is possible to produce a silver-tone artificial leather having a well balanced texture with the artificial leather substrate of the present invention.
  • the thickness is 100 ⁇ m.
  • the covering layer may be formed in the range of about below, preferably about 80 ⁇ m or less, more preferably in the range of about 3 to 50 ⁇ m. By forming the coating layer with such a thickness, an extremely fine natural leather-like crease and wrinkle can be formed. It is also possible to obtain a silver-tone artificial leather.
  • Such a napped-tone artificial leather or a silver-tone artificial leather is a preferred embodiment that is dyed at any stage after the sea-island type fibers are transformed into ultrafine fiber bundles.
  • the treatment can be treated in water containing a surfactant in the temperature range of 60 to 140 ° C, so that it has a flexible and bulging feeling that is not inferior to natural leather, but has a dense structure itself. It is also possible to obtain an artificial leather whose feeling is not impaired.
  • the flatness is the value obtained by measuring the length of the longest part and the length in the direction perpendicular to the cross-sectional shape of the fiber or fiber bundle, and dividing the former by the latter. The length is often the length in the direction perpendicular to the thickness direction.
  • the cross-sectional area is individually measured, the maximum cross-sectional area and the minimum cross-sectional area are deleted, and the remaining 18 cross-sectional areas are arithmetically averaged.
  • the cross-sectional area of the sea-island fiber or the ultrafine fiber bundle constituting the sample was obtained.
  • the cross-sectional area of the ultrafine fiber bundle refers to an area surrounded by fibers constituting the outer periphery of the fiber bundle and tangent lines connecting the fibers.
  • the number of bundles when the number of bundles of individual fiber bundles is not constant and has a distribution, 18 ultrafine fiber bundles excluding the maximum number and the minimum number are the same as the average cross-sectional area.
  • the number of converged seam island fibers or ultrafine fiber bundles constituting the sample was obtained by arithmetically averaging the number of converged fibers.
  • the voids in the portions where the fiber bundles are in close contact are excluded from the evaluation targets in the observation field.
  • the term “existing in close contact” refers to a case in which they are close to each other to the extent equal to or less than the fiber diameter of the ultrafine fibers constituting the fiber bundle.
  • the maximum value in the observation visual field was defined as the gap size between the ultrafine fiber bundles of the sample.
  • the average void size between the microfiber bundles was obtained by arithmetically averaging 18 circular diameters measured at 20 voids randomly selected in the observation field and excluding the maximum and minimum values. It was.
  • Example 1 Ethylene-modified polyvinyl alcohol as sea component polymer (ethylene unit content 8.5 mol%, polymerization degree 380, saponification degree 98.7 mol%), and island component polymer isophthalic acid-modified polyethylene terephthalate (content of isophthalic acid unit) 6.0 mol%) were melted individually.
  • the spinneret for composite spinning in which a large number of nozzle holes are arranged in parallel, which can form a cross section in which 25 island component polymers having a uniform cross-sectional area are distributed in the sea component polymer, the molten polymer is combined with the sea component polymer in the cross section.
  • the basis weight is 30 g / m 2
  • the needle punching conditions are: needle number 40, barb depth 40 ⁇ m, one barb with a regular triangular cross-section needle A, and pre-entanglement with the punch depth through which the barb penetrates in the thickness direction from both sides, After entanglement to the extent that the folded long fiber web does not slip, needle No. 42, barb depth 40 ⁇ m, 6 barbs, needle B with equilateral triangle cross section, 3 barbs from both sides are thick
  • Needle punching with the needle B was performed with a total number of punches of 1700 punch / cm 2 from both sides. Next, 18 ° C.
  • the resulting nonwoven fabric structure was impregnated with an aqueous dispersion (solid content concentration 11 mass%) of a polyurethane composition mainly composed of polycarbonate / ether-based polyurethane as a polymer elastic body fluid.
  • a polyurethane composition mainly composed of polycarbonate / ether-based polyurethane as a polymer elastic body fluid.
  • heat-sensitive coagulation is performed by operating an infrared heater for 1 minute under the condition that the surface temperature of the nonwoven fabric structure is 80 ° C.
  • it was introduced into an atmosphere at 120 ° C. to dry the moisture, and then immediately introduced into the atmosphere at 150 ° C. and cured for 2 minutes, so that the polyurethane composition was present in the voids between the sea-island fibers.
  • a base material for artificial leather according to the present invention having a thickness of about 1.4 mm in which a polyurethane composition was contained inside a nonwoven fabric structure composed of ultrafine long fiber bundles of polyethylene terephthalate was obtained.
  • the ultra-long fiber bundle is observed in the cross section of the obtained base material for artificial leather, the cross-sectional area is distributed in the range of 200 to 400 ⁇ m 2 , the average is 250 ⁇ m 2 , and has an almost uniform fiber diameter.
  • ultrafine fibers having a substantially circular cross-sectional shape were converged.
  • the fiber bundles were not very flattened in the thickness direction, and the flatness of the fiber bundles was 2.5 at the maximum, almost less than 2.0, and the projected size was 40 ⁇ m.
  • the number density of the ultrafine fiber bundles in the cross section parallel to the thickness direction was 2500 / mm 2 , the gap size between the ultrafine fiber bundles was 52 ⁇ m, and the average gap size was 35 ⁇ m.
  • Example 2 The artificial leather substrate obtained in Example 1 was divided into two in the thickness direction by slicing, and the divided surface was buffed with sandpaper to adjust the thickness to an average thickness of 0.67 mm.
  • a 6% aqueous solution of polyvinyl alcohol was applied twice with a 55 mesh gravure roll on the surface that had not been buffed and dried, and then the same polycarbonate / ether system used for impregnation in Example 1
  • the polyurethane composition-applied surface was buffed while being pressed with an endless sandpaper set in a buffing machine to raise and trim the hair, thereby forming napped fibers made of ultrafine fibers of modified polyethylene terephthalate. Furthermore, after dyeing with a disperse dye using a liquid dyeing machine, brushing was performed and the hair was finished to obtain a beige raised artificial leather.
  • the obtained napped-tone artificial leather has a very high density with a number density of ultrafine fiber bundles in a region from the napped surface side to 200 ⁇ m in the thickness direction in a cross section parallel to the thickness direction, being 2700 / mm 2 , Not only has an elegant napped appearance similar to natural leather nubuck, but also has a very good texture and surface wear durability, and is a napped artificial leather having the intended effect of the present invention. .
  • the evaluation results are shown in Table 1.
  • Example 1 Comparative Example 1 In Example 1, except that the island component polymer of the sea-island fiber constituting the long-fiber web is changed to nylon 6 and the sea-island fiber is spun under the condition that the average cross-sectional area is 307 ⁇ m 2 (about 3.6 dtex). In the same manner as in Example 1 to obtain a long fiber web having an embossed stabilized basis weight of 30 g / m 2 . An oil agent was applied to the surface of the obtained long fiber web in the same manner as in Example 1, and then a layered long fiber web was obtained with a cross wrapper apparatus. Next, the layered long fiber web was pre-entangled with the needle A in the same manner as in Example 1.
  • the needle count was 42
  • the barb depth was 40 ⁇ m
  • the number of the barbs was one
  • the needle C having an equilateral triangular cross section was used. Is entangled by needle punching with a total number of punches of 3500 punches / cm 2 from both sides so that the sea-island fibers are entangled in the thickness direction at a punch depth that penetrates in the thickness direction It was.
  • the obtained nonwoven fabric structure was subjected to the same wet heat treatment and press treatment as in Example 1 to obtain a nonwoven fabric structure having a basis weight of 700 g / m 2 .
  • the obtained nonwoven structure was made to have a polyurethane composition in the gaps between the sea-island fibers, and then the modified polyvinyl alcohol in the sea-island fibers was extracted and removed.
  • a base material for artificial leather having a thickness of about 1.4 mm in which a polyurethane composition was contained inside a nonwoven fabric structure composed of long fiber bundles was obtained.
  • the obtained artificial leather base material was divided into two parts and buffed in the same manner as in Example 2 to form napped fibers made of nylon 6 ultrafine fibers, and then using a liquid dyeing machine.
  • a beige raised artificial leather was created by dyeing with a metal complex hydrochloric acid dye in the same color as in Example 2 and then finishing the hair.
  • the obtained napped-tone artificial leather is insufficiently dense, it only has a rough napped appearance that can be achieved with conventional suede-like artificial leather, and the surface wear durability is not particularly excellent. It had a texture that was hard and boned, and did not satisfy the target level of the present invention.
  • the evaluation results are shown in Table 1.
  • Example 2 the sea-island type fiber constituting the long-fiber web is the same as in Example 1 except that the sea-island type fiber is spun using a composite spinning base capable of forming a cross section in which 100 island component polymers are distributed.
  • a long fiber web having an embossed stabilized basis weight of 30 g / m 2 was obtained.
  • After the oil agent was applied to the obtained long fiber web surface in the same manner as in Example 1, it was made into a layered long fiber web with a cross wrapper apparatus, and further entangled by needle punching as in Example 1.
  • the obtained nonwoven fabric structure was subjected to a hot press treatment without applying water to obtain a nonwoven fabric structure having a basis weight of 970 g / m 2 .
  • the obtained non-woven fabric structure was made to have a polyurethane composition present in the gaps between the sea-island fibers, and then the modified polyvinyl alcohol in the sea-island fibers was extracted and removed to obtain a modified polyethylene terephthalate.
  • a base material for artificial leather having a thickness of about 1.4 mm in which a polyurethane composition was contained inside a nonwoven fabric structure composed of ultrafine fiber bundles was obtained.
  • the base material for artificial leather thus obtained was subjected to bisection treatment and buffing treatment in the same manner as in Example 2 to form napped fibers made of ultrafine fibers of modified polyethylene terephthalate, and then dyeing with disperse dyes
  • a beige raised artificial leather was prepared by performing hair finishing.
  • the napped-tone artificial leather obtained is dense at first glance, but in reality, the apparent density is only increased by flattening the fiber bundles in the surface layer in the thickness direction. Many fiber bundles had a flatness ratio exceeding 3.0, and the most flattened fiber bundle was 4.7.
  • the surface layer part densified by this flattened fiber bundle returns to the same denseness as the sparse part that has not been densified if raised by buffing, and eventually achieved with conventional suede-like artificial leather. Not only the rough raised surface appearance of the finished level can be obtained, but the structure near the center in the thickness direction is sparse, but only the surface layer is extremely hard and the texture is hard on the cardboard-like surface Was felt and did not satisfy the target level of the present invention.
  • the evaluation results are shown in Table 1. Further, in contrast to Example 2, the ultrafine fibers forming napped fibers were finer, so although they were dyed in the same color, they were whitish and had no depth in color, and lacked a high-class appearance.
  • Example 1 As a sea-island type fiber constituting the long-fiber web, an average cross-sectional area of 485 ⁇ m 2 (about 6.6 dtex) is obtained by using a composite spinning die that can form a cross-section in which 64 island component polymers are distributed. Except for spinning the sea-island type fiber under such conditions, a long fiber web with an embossed stabilized basis weight of 30 g / m 2 was obtained in the same manner as in Example 1. An oil agent was applied to the surface of the obtained long fiber web in the same manner as in Example 1, and then a layered long fiber web was obtained with a cross wrapper apparatus.
  • Example 2 pre-entanglement with the needle A and entanglement treatment with the needle B were performed on the layered long fiber web in the same manner as in Example 1.
  • the obtained nonwoven fabric structure was subjected to the same wet heat treatment and press treatment as in Example 1 to obtain a nonwoven fabric structure having a basis weight of 990 g / m 2 .
  • the obtained non-woven fabric structure was made to have a polyurethane composition present in the gaps between the sea-island fibers, and then the modified polyvinyl alcohol in the sea-island fibers was extracted and removed to obtain a modified polyethylene terephthalate.
  • a base material for artificial leather having a thickness of about 1.4 mm in which a polyurethane composition was contained inside a nonwoven fabric structure composed of ultrafine fiber bundles was obtained.
  • the base material for artificial leather thus obtained was subjected to bisection treatment and buffing treatment in the same manner as in Example 2 to form napped fibers made of ultrafine fibers of modified polyethylene terephthalate, and then dyeing with disperse dyes
  • a beige raised artificial leather was prepared by performing hair finishing.
  • the resulting napped-tone artificial leather has a sufficient number of fiber bundles per unit cross-sectional area and seems to be dense, but the fiber bundles are flattened so that the flatness ratio exceeds 4.0.
  • there are marked spots in the size of the gaps between the fiber bundles and there are gaps with extremely large sizes in some places, resulting in a rough raised appearance that can be achieved even with conventional suede-like artificial leather.
  • the resulting non-woven fabric structure is immersed in a hot water bath at 70 ° C., and subjected to heat shrinkage treatment. Further, it is immersed in a hot water bath at 90 ° C. without drying, and the modified polyvinyl alcohol in the sea-island fiber Was extracted and removed. In this way, a base material for artificial leather having a weight per unit area of 845 g / m 2 , which was made of a bundle of ultrafine long fibers of modified polyethylene terephthalate and did not contain a polyurethane composition, was obtained.
  • the base material for artificial leather thus obtained was subjected to bisection treatment and buffing treatment in the same manner as in Example 2 to form napped fibers made of ultrafine fibers of modified polyethylene terephthalate, and then dyeing with disperse dyes
  • a beige raised artificial leather was prepared by performing hair finishing.
  • the obtained napped-tone artificial leather had a favorable texture with a solid and solid feeling, although it did not contain a polyurethane composition.
  • Example 1 As a composite fiber constituting the long fiber web, a cross section having a superimposed shape in which five layers of removal component polymer (sea component polymer) and six layers of fiber component polymer (corresponding to island component polymer) are alternately overlapped is used. Using a composite spinneret that can be shaped, the same ethylene-modified polyvinyl alcohol as in Example 1 was melted as the removal component polymer, and the same isophthalic acid-modified polyethylene terephthalate as in Example 1 was melted as the fiber component polymer.
  • the layered long fiber web was pre-entangled with the needle A in the same manner as in Example 1, and then the needle D with the needle number 32, the barb depth 60 ⁇ m, the number of barbs 9 and the equilateral triangle cross section needle D Is entangled by needle punching with a total number of punches of 600 punches / cm 2 from both sides so that the composite fibers are entangled in the thickness direction at a punch depth penetrating in the thickness direction ( When needle punching is performed with a needle D exceeding 1000 punches / cm 2 , troubles such as needle breakage frequently occur.) Next, with a needle number 36, a barb depth of 80 ⁇ m, and one barb Needle punching was performed at a punch depth of 400 punches / cm 2 at a punch depth at which the barb did not penetrate in the thickness direction with the needle E having an equilateral triangular cross section.
  • the nonwoven fabric structure When the nonwoven fabric structure is observed after needle punching with the needle E, a large number of fiber bundles oriented in the thickness direction by needle punching are seen in the cross section, and the fiber ends formed by cutting are 0 on the surface. It was observed at a frequency of about 5 to 2.5 / mm 2 .
  • the obtained nonwoven fabric structure was subjected to the same wet heat treatment and press treatment as in Example 1 to obtain a nonwoven fabric structure having a basis weight of 650 g / m 2 .
  • the obtained non-woven fabric structure was made to have a polyurethane composition present in the gaps between the sea-island fibers, and then the modified polyvinyl alcohol in the sea-island fibers was extracted and removed to obtain a modified polyethylene terephthalate.
  • a base material for artificial leather having a thickness of about 1.4 mm in which a polyurethane composition was contained inside a nonwoven fabric structure composed of ultrafine fiber bundles was obtained.
  • the base material for artificial leather thus obtained was subjected to bisection treatment and buffing treatment in the same manner as in Example 2 to form napped fibers made of ultrafine fibers of modified polyethylene terephthalate, and then dyeing with disperse dyes
  • a beige raised artificial leather was prepared by performing hair finishing.
  • the obtained napped-tone artificial leather is not only inferior in density of the fiber bundles seen in the cross section compared to Example 1, but also has noticeable spots in the size of the voids existing between the fiber bundles.
  • Artificial leather obtained using the base material for artificial leather of the present invention has a high level of properties such as appearance, surface strength, and texture, so it is used for clothing such as jackets and skirts, shirts and coats, For footwear represented by sports shoes and men's and women's shoes, for clothing represented by belts, for bags represented by handbags and school bags, for furniture represented by sofas and office chairs, passenger cars and trains, aircraft and ships It can be suitably used for applications such as vehicle seats and interior materials represented by sports gloves, sports gloves such as golf gloves, batting gloves, baseball gloves, driving gloves, and various gloves represented by work gloves.
  • the napped artificial leather obtained from the base material for artificial leather of the present invention has a pristine appearance of natural nubuck-like leather that is extremely dense. In addition, it is excellent in characteristics that have been difficult to combine, such as a texture that is excellent in color developability, a texture that is flexible and swells but has a sense of fulfillment, and a surface friction durability typified by pilling resistance. Further, the silver surface-like artificial leather obtained from the base material for artificial leather of the present invention has an appearance with a natural surface like a natural leather having a high smoothness and a very fine crease.

Abstract

 極細長繊維束の不織布構造体からなる人工皮革用基材。前記人工皮革用基材は、下記(1)~(4)の条件:(1)極細長繊維束が、断面形状が略円形の極細長繊維が8~70本集束したものであること、(2)極細長繊維束が、断面積170~700μm2、扁平率4.0以下であること、(3)不織布構造体の厚さ方向と平行任意の断面において、極細長繊維束の断面が1500~3000個/mm2の範囲で存在していること、および(4)不織布構造体の厚さ方向と平行任意の断面において、極細繊維束間の空隙サイズが70μm以下であることを同時に満足する。前記条件を満足するので、該人工皮革用基材は、従来は相反する性能であると認識されてきた感性面の性能と物性面での性能とを、いずれも高いレベルで兼備する。

Description

人工皮革用基材およびその製造方法
 本発明は、人工皮革用基材に関する。該人工皮革用基材を用いると、緻密性の極めて高い優美な立毛調の外観を有し、かつ発色性にも優れていながら、耐ピリング性などの表面磨耗耐久性に優れ、柔らかで膨らみ感のある風合いとを兼備した立毛調人工皮革や、平滑性が高くて細かな折れ皺の表面を有し、高い接着剥離強力と柔らかで膨らみ感のある風合いとを兼備した銀面調人工皮革を製造することができる。
 従来、繊維束と高分子弾性体とからなる基材の表面に該繊維束からなる立毛を形成したスエード調人工皮革やヌバック調人工皮革などの立毛調人工皮革は公知である。立毛調人工皮革は、外観(天然皮革により近い表面感)、風合い(柔軟な手触りと適度な膨らみ感や充実感の兼備)、発色性(色の鮮明さや濃度感)等の感性面での要求だけでなく、耐光性、耐ピリング性、耐磨耗性等の物性面での要求をすべて高いレベルで満足することが求められており、これを解決すべく種々の提案がなされてきた。
 外観や風合いにおける要求を満足させるために、例えば人工皮革を構成する繊維を極細繊維にする方法が一般に用いられている。極細繊維からなる人工皮革を製造する一手法として、海島型や多層貼り合わせ型などの複合繊維を分割、または、一成分を分解または抽出除去することで極細繊維束に変成させる方法が広く採用されている。該複合繊維から得られる極細繊維束からなる不織布に高分子弾性体を含有させた人工皮革用基材を用いた立毛調人工皮革や銀面調人工皮革は、外観や風合いにおいて非常に高い評価を得ている。しかしながら、繊度を細くするにつれて、発色性が低下して鮮明さや濃度感が顕著に劣ってしまうという欠点を有しており、特に立毛調人工皮革においては総合的な高品質の要求を満足できていない。
 人工皮革用基材に用いる不織布構造体を製造する方法としては、紡糸した繊維を100mm以下の長さにカットしてステープル繊維とし、これをカード法や抄紙法などにより所望の目付の不織ウェブとし、必要に応じてこの不織ウェブを複数枚積重した後、ニードルパンチ法やスパンレース法などにより繊維を絡合させる方法が最も一般的である。これらの方法により製造された所望の嵩高さや絡合度合いを有する不織布構造体から、人工皮革用基材が製造されている。このような人工皮革用基材を用いた立毛調人工皮革や銀面調人工皮革は、特に風合いの点において高い評価を得ている。しかしながら、不織布構造体を構成するステープル繊維は、繊維間の絡合や含有された高分子弾性体により基材内に固定されてはいるが、立毛調人工皮革の立毛面や銀面調人工皮革の銀面層との接着界面においては、繊維長が短いので不織布構造体から比較的容易に引き抜かれ、あるいは脱落する傾向は避けられない。この傾向により、立毛面の摩擦耐久性や、銀面層の接着剥離強力などの重要な表面物性が低下する。この問題を解決するために、例えば不織布構造体の絡合度合いを大きくしたり、繊維同士を接着させ、あるいは繊維同士を強く拘束するために高分子弾性体を多量に含有させたりする方法が一般的に採用されている。しかし、絡合度合いを大きくしたり、高分子弾性体の含有量を増加させたりすると、一方で人工皮革の風合いが顕著に悪化し、外観や風合いと表面物性を同時に満足させることは困難であった。
 立毛調人工皮革における立毛繊維の耐ピリング性に代表される表面摩擦耐久性の改良については、例えば0.8デニール以下の極細繊維からなる極細繊維束を発生する海島型繊維からなるニードルパンチ絡合不織布をポリビニルアルコール(以下、PVAと略すこともある。)水溶液へ浸漬し、乾燥することで不織布の形状を仮固定し;海島型繊維の海成分を溶解する有機溶剤で海成分を抽出除去し;ポリウレタンのジメチルホルムアミド(以下、DMFと略すこともある。)溶液を含浸し凝固し;次いで表面を起毛することで得られるスエード調人工皮革が提案されている(特許文献1参照)。該極細繊維中に、繊維径の4分の1より大なる径を有し、かつ繊維に対して不活性な粗大粒子を添加することが提案されている。
 特許文献2では、海島型繊維からなるニードルパンチ絡合不織布に、ポリウレタンのDMF溶液を含浸し凝固し、次いで海成分を抽出除去して得られた皮革様基材を起毛することによりスエード調人工皮革を製造している。該基材を構成している繊維束は、0.02~0.2デニールの細繊維(A)と、細繊維(A)の平均繊度の1/5以下でかつ0.02デニール未満の繊度の極細繊維(B)とからなり、その本数の比(A/B)は2/1~2/3である。繊維束内部には実質的に高分子弾性体が含有されておらず、立毛繊維中の細繊維(A)と極細繊維(B)の本数の比(A/B)は3/1以上である。
 また、溶剤で立毛繊維の根元に存在する高分子弾性体の一部を溶解し、立毛繊維の根元を固定することによりスエ―ド調人工皮革の耐ピリング性を改良する方法が提案されている(特許文献3参照)。
 特許文献4は、きめの細かい表面タッチのヌバック調人工皮革に転換することのできる長繊維不織布を得るために、ニードルパンチによって絡合させる際に長繊維を積極的に切断して不織布表面に5~100個/mm2の繊維の切断端を発現させ、長繊維不織布において特徴的な絡合処理によるひずみを解消することを提案している。また、不織布の厚み方向と平行任意の断面において、繊維束が幅1cm当たり5~70本の範囲で存在(即ち、不織布の厚み方向と平行任意の断面において、ニードルパンチによって厚み方向に配向した繊維が、幅1cm当たり5~70本の範囲で存在)させ、かつ、繊維束の占める総面積が、不織布の厚み方向に直交する任意の断面において、該断面積の5~70%の範囲にすることを提案している。
 特許文献5は、0.5デニール以下の極細繊維に変換可能な長繊維からなり、該長繊維の捲縮度が10%以下であり、かつ、不織布の繊維密度が0.25~0.50g/cm3である長繊維絡合不織布を提案している。
 しかしながら、特許文献1に記載の方法では、海島型繊維の海成分を抽出除去した後にポリウレタンのDMF溶液を含浸凝固しているので、極細繊維束の内部へポリウレタンが侵入し、風合いの硬化が避け難い。また、繊維中に粗大粒子が添加されていることから、柔軟な風合いや手触りを得難い。
 特許文献2に記載の方法では、海島型繊維の海成分を抽出除去する前にポリウレタンのDMF溶液を含浸凝固しているので極細繊維束の外周部および内部にはポリウレタンが実質的に存在せず柔軟な風合いや手触りを得ることが可能である。しかし、極細繊維束がポリウレタンで固定されていないので耐ピリング性は不十分であった。
 特許文献3に記載の方法では、皮革様基材の最表面に存在する高分子弾性体の一部を溶解して立毛繊維の根元を固定するのみで、皮革様基材内部の繊維の固定効果に乏しく、繊維に対する高分子弾性体の把持能力が低い為、0.01デシテックス以上の繊維に対しては、良好な耐ピリング性の改良効果が得られない。
 特許文献4の長繊維不織布構造を得るための方法では、目的とするレベル以下にまで物性を極力低下させないように切断端を発現させている。しかし、実際問題として、相当数の長繊維を切断してしまうので、長繊維の利点である繊維の連続性による不織布強力物性の改善効果を低下させてしまい、長繊維の特徴を充分に生かすことができない。また、特許文献4の絡合処理は、長繊維同士を長繊維不織布の表面から内部、さらには反対面に渡って絡合させるためではなく、表面の長繊維を満遍なく切断して5~100個/mm2という極めて多くの切断端を作り出すために行っている。従って、一般的な絡合で採用されるよりはかなり強い条件でニードルパンチする必要があり、繊維同士が絡合しにくいばかりか、元は長繊維だった繊維の多くが短繊維に変化していて、不織布構造としては長繊維のままで絡合させたものとは異なる状態となり、結果的には従来の短繊維不織布から得られるような人工皮革の品位・品質に近づいたものになりやすく、本発明が目的とするような高品位な人工皮革を得ることは困難である。
 特許文献5に記載されている方法では、繊維密度の数値のみでみると比較的緻密性が高い長繊維不織布が得られているが、緻密化の方法がニードルパンチおよびプレスのみなので、得られた不織布構造には百μm大から数百μm大程度の空隙が散在しており、本発明が目的とするような高品位な人工皮革を得ることは困難である。より詳しくいうと、繊維径やニードルパンチ条件によるがニードルパンチ後の不織布構造には、本質的に数百μm大から数mm大程度の空隙を有しており、次いで、繊維の一成分を熱軟化させつつ厚さ方向にプレスすると、厚さ方向に潰れた状態で海成分の固化と共に形状が固定されるだけで空隙自体はそのまま残ってしまう。従って、海成分を除去すると海成分による固定がなくなるので、潰れていた空隙の大きさは元に戻ってしまい、結果的には百μm大から数百μm大程度の空隙が散在する構造となってしまのである。
特開昭53- 34903号公報(第3~4頁) 特開平 7-173778号公報(第1~2頁) 特開昭57-154468号公報(第1~2頁) 特開2000-273769号公報(第3~5頁) 特開平11-200219号公報(第2~3頁)
 従来、立毛調人工皮革においては、優美で緻密な立毛感と極細繊維立毛の発色性;柔らかな膨らみ感と充実感;極細繊維立毛の柔らかな表面タッチと耐ピリング性で代表される表面摩擦耐久性などを兼備することが困難であった。銀面調人工皮革においては、銀面部と基材部のバランス、例えば、平滑性が高くて緻密な折れシボを表現しうるハードな性質と柔軟性が高い基材部と一体感を表現しうるソフトな性質のバランス;柔らかな膨らみ感と充実感を有する銀面部と基材部の風合い;基材部の高い柔軟性による柔らかな風合いと銀面-基材界面における接着剥離強力で代表される表面機械物性などを兼備することが困難であった。
 本発明は、人工皮革用基材において、従来は相反する性能であると認識されてきた感性面の性能と物性面での性能とを、いずれも高いレベルで兼備した人工皮革用基材を提供することである。本発明の基材を用いることで、従来にない高い品位と高い物性を兼備した人工皮革を得ることが可能となる。
 上記課題を達成すべく本発明者らは鋭意研究を重ねた結果、本発明に至った。すなわち、本発明は、極細長繊維束の不織布構造体からなる人工皮革用基材において、下記(1)~(4):
(1)極細長繊維束が、断面形状が略円形の極細長繊維が8~70本集束したものであること、
(2)極細長繊維束が、断面積170~700μm2、扁平率4.0以下であること、
(3)不織布構造体の厚さ方向と平行任意の断面において、極細長繊維束の断面が1500~3000個/mm2の範囲で存在していること、および
(4)不織布構造体の厚さ方向と平行任意の断面において、極細繊維束間の空隙サイズが70μm以下であること、
を同時に満足していることを特徴とする人工皮革用基材に関する。
 本発明はさらに、下記工程(a)~(d)を順次実施することを特徴とする人工皮革用基材の製造方法に関する。
(a)島成分に熱収縮性ポリマー、海成分に水溶性ポリマーを用い、島数が8~70個、海と島の断面積比が5:95~60:40、断面積が70~350μm2の海島型長繊維を溶融紡糸し、これをカットすることなくランダムな配向状態で捕集面上集積してシート状の長繊維ウェブを製造する工程
(b)長繊維ウェブを、必要に応じて複数重ね合わせ、少なくとも6バーブのニードルを用い、かつ該ニードルの少なくとも1つ以上のバーブが貫通するような条件で、両面からニードルパンチングして海島型長繊維同士を三次元絡合させて不織布構造体を製造する工程
(c)不織布構造体を海成分ポリマーが可塑化し、かつ島成分ポリマーが収縮するような条件で湿熱処理し、必要に応じて乾熱プレス処理して、厚さ方向に並行断面において海島型長繊維の断面が1000~3500個/mm2の範囲になるまで緻密化する工程
(d)海島型長繊維から海成分を水または水溶液により除去し、極細長繊維束に変成させる工程
 本発明の人工皮革用基材では、極細繊維束が従来にない緻密な状態に集合しているので、緻密性が極めて高く、平滑性に優れた表面状態が得られる。本発明の人工皮革用基材を用いると、天然皮革に勝るとも劣らない滑らかで優美な外観やタッチを有すると共に、発色性、膨らみ感のある風合いおよび耐ピリング性などの表面摩擦耐久性に優れた立毛調人工皮革を得ることができる。また、天然皮革に勝るとも劣らない平滑でありながら柔らかで膨らみ感のある風合いおよび接着剥離強力などの表面強度に優れた銀面調人工皮革を得ることができる。
 本発明の人工皮革用基材は、例えば、以下の工程(a)~(d)を順次実施することにより得ることができる。
工程(a)
 島成分に熱収縮性ポリマー、海成分に水溶性ポリマーを用い、海成分ポリマーと島成分ポリマーを複合紡糸用口金から押出し、海島型長繊維を溶融紡糸する。
 複合紡糸用口金は、海成分ポリマー中に島成分ポリマーが8~70個の範囲における何れかの個数分散した断面状態を形成することができるノズル孔が直線状に多数並んだ列が並列状に複数列配置された構造のものが好ましい。
 得られる繊維の断面において面積比(即ちポリマー体積比)で海/島=5/95~60/40の範囲における何れかの比率となるように海成分ポリマーと島成分ポリマーの相対的な供給量または供給圧力を調節しつつ口金温度が180~350℃の温度範囲における何れかの温度となるような温度条件にて溶融状態で口金から吐出する。
 得られる海島型長繊維の断面積は70~350μm2の範囲における何れかの値であり、単繊度は、例えば、島成分ポリマーがポリエチレンテレフタレート、海成分ポリマーが水溶性熱可塑性ポリビニルアルコールであれば、複合するポリマーの面積比率にもよるが、0.9~4.9dtexの範囲における何れかの値が好ましく、より好ましくは1.9~3.9dtexの範囲における何れかの値である。
 溶融紡糸された海島型長繊維をカットすることなく、ランダムな配向状態でネット等の捕集面状に集積して、所望の目付、好ましくは10~1000g/m2の長繊維ウェブを製造する。
工程(b)
 前記長繊維ウェブを、必要に応じてクロスラッパー等を用いて厚さ方向に複数層重ね合わせた後、少なくとも6バーブのニードルを用い、かつ該ニードルの少なくとも1つ以上のバーブが貫通する条件で、両面から同時または交互にニードルパンチングして繊維同士を三次元絡合させ、厚さ方向に並行断面において海島型長繊維が400~2000個/mm2の範囲における何れかの密度で存在する、海島型長繊維が極めて緻密に集合した不織布構造体を得る。長繊維ウェブにはその製造後かつ絡合処理までのいずれかの段階で帯電防止効果を有する油剤やニードルとの摩擦抵抗をコントロールするための油剤、繊維同士の摩擦抵抗をコントロールするための油剤などを単一あるいは複数種付与してもよい。
工程(c)
 工程(b)により得られた不織布構造体を、海成分ポリマーが可塑化し、かつ島成分ポリマーが収縮するような湿熱環境中へ導入する湿熱処理によって、また、必要に応じて熱プレス処理を追加して行うことで、厚さ方向に並行断面において海島型長繊維の断面が1000~3500個/mm2の範囲になるまで緻密に集合させる。前記湿熱処理としては、飽和水蒸気を連続供給している雰囲気中へ導入する方法、海成分ポリマーが所望の程度まで膨潤・可塑化するに足る量の水を不織布構造体に付与した後、加熱エアーや赤外線などの電磁波により不織布構造体中の水分を加熱する方法、あるいはそれらを組み合わせた方法などが挙げられる。前記熱プレス処理は、繊維構造を緻密にする効果に加え、不織布構造体の形態を固定化する効果、あるいは表面を平滑化する効果も期待できる。
 工程(c)による緻密化処理後の不織布構造体の平均見掛け密度は、例えば、島成分ポリマーがポリエチレンテレフタレート、海成分ポリマーが水溶性熱可塑性ポリビニルアルコールであれば、0.3~0.8g/cm3の範囲における何れかの値であるのが好ましい。なお、平均見掛け密度は、圧縮させるような荷重を掛けない方法、例えば電子顕微鏡等での断面観察による方法による。不織布構造体の目付は通常で100~2000g/m2あるのが好ましい。
工程(d)
 (d)不織布構造体を構成する海島型長繊維から海成分ポリマーを水または水溶液により抽出除去し、海島型長繊維を極細繊維束に変成させる。
 上記のようにして得られた人工皮革用基材について、さらに以下の工程(e)~(h)を順次行うことにより、本発明の効果を有し、スエード調、ヌバック調などの天然皮革に勝るとも劣らない外観やタッチを備えた立毛調人工皮革により好適な人工皮革用基材を得ることができる。
工程(e)
 不織布構造体の少なくとも片面に、易抽出性高分子の溶液、水分散液または融液を塗布し、易抽出性高分子を固化させる。
工程(f)
 同じ面に高分子弾性体の水分散液を塗布し、高分子弾性体を固化させる。
工程(g)
 不織布構造体から易抽出性高分子を除去する。
工程(h)
 高分子弾性体を塗布した面を加圧しつつ研削処理して、不織布構造体の厚さ方向と平行任意の断面の研削処理側表面から200μmまでの範囲において、極細繊維束間の平均空隙サイズが10~40μmの範囲になるよう緻密化する。
 また、上記した人工皮革用基材の製造方法において、工程(d)を行う前、または工程(d)を行った後で、必要に応じて以下の工程(i)を行うことにより、本発明の効果を有し、被覆層との一体感などの風合いに優れた銀付調人工皮革により好適な人工皮革用基材を得ることができる。
工程(i)
 不織布構造体に高分子弾性体の溶液または水分散液を含浸し、高分子弾性体を固化させる。
 以下、本発明を達成するための手段について、より詳しく説明する。
 本発明の不織布構造体を構成する海島型繊維とは、少なくとも2種類のポリマーからなる多成分系複合繊維であって、繊維断面において繊維外周部を主として構成する海成分ポリマー中に、これとは異なる種類の島成分ポリマーが分布した断面形態の繊維のことである。本発明の島成分ポリマーは、表面張力の作用、および海成分ポリマーと島成分ポリマーとの比率を好適に選ぶことによって、略円形の断面形状で分布する。なお、ここでいう略円形とは、文字通り円に近い形状をいい、円形かそれに近い多角形形状や楕円形状を言う。この海島型繊維は、所望の緻密さの不織布構造体を形成させた後、さらに必要に応じて高分子弾性体を含浸させる場合はその前または後の適当な段階で海成分ポリマーを抽出または分解して除去することで、残った島成分ポリマーからなり元の海島型繊維より細い複数本の繊維が集束した繊維束を生成可能である。このような海島型繊維は、従来公知のチップブレンド(混合紡糸)方式や複合紡糸方式で代表される多成分系複合繊維の紡糸方法を用いて得ることができる。海島型繊維は、繊維断面において海成分ポリマーが繊維外周部を主として構成しているので、繊維外周を複数成分が交互に構成するような花弁形状や重畳形状などの剥離分割型複合繊維に比べると、ニードルパンチ処理で代表的される繊維絡合処理時の割れ、折れ、切断などの繊維損傷を極めて少なくすることができ、即ち絡合による緻密化度合いをより高めることができる。また、海島型繊維は、剥離分割型複合繊維に比べると、繊維軸に垂直な面内方向における異方性がより少なく、また、個々の極細繊維の繊度、即ち断面積の均一性が高い極細繊維束が得られるので、不織布構造体において非常に多くの繊維束を従来にない緻密さで集合させることができる。従って、本発明の不織布構造体は、花弁形状や重畳形状などの剥離分割型複合繊維では得られないようなこれらの効果を得るために、海島型繊維を用いて製造する。
 海島型繊維の島成分を構成するポリマーは、熱収縮ポリマーであることが重要である。例えば、ポリエチレンテレフタレート(以下、PETと略記する。)、ポリトリメチレンテレフタレート(以下、PTTと略記する。)、ポリブチレンテレフタレート(以下、PBTと略記する。)、ポリエステルエラストマー等のポリエステル系樹脂またはそれらの変性物;熱収縮性ポリアミド系樹脂、熱収縮ポリオレフィン系樹脂またはそれらの変性物など、従来公知の繊維形成能を有する種々の熱収縮ポリマーが好適である。これらの中でも、PET、PTT、PBT、あるいはこれらの変性ポリエステル等のポリエステル系樹脂を用いることで、熱収縮により本発明が目的とするような極細繊維束が緻密に集合した不織布構造体からなる人工皮革用基材を得ることができ、緻密な表面感、充実感のある風合いなどの感性面での特徴や、耐磨耗性、耐光性、あるいは形態安定性などの実用的な性能が良好な人工皮革製品とすることができる点で特に好ましい。島成分ポリマーは、融点(以下、Tmと略記する。)が160℃以上であるのが好ましく、Tmが180~330℃の繊維形成性結晶性樹脂であるのがより好ましい。島成分ポリマーのTmが160℃未満の場合には、得られた極細繊維の形態安定性が本発明が目的とするレベルに達することができず、特に人工皮革製品の実用的な性能の点から好ましくない。本発明において、Tmは、示差走査熱量計(以下、DSCと略記する。)を用いて、窒素雰囲気下、昇温速度10℃/分で室温からポリマー種類に応じて300~350℃まで昇温後、直ちに室温まで冷却し、再度直ちに昇温速度10℃/分で300~350℃まで昇温したときに観測されるポリマーの吸熱ピークのピークトップ温度を採用した。本発明において、極細繊維を構成するポリマーには、紡糸段階で着色剤、紫外線吸収剤、熱安定剤、消臭剤、防かび剤、抗菌剤その他各種安定剤などが添加されていてもよい。
 海島型繊維の海成分を構成するポリマーは、水溶性ポリマーであることが重要である。そして、海島型繊維を極細繊維束に変成させる必要があるので、採用した島成分ポリマーとは溶剤または分解剤に対する溶解性または分解性を異にする必要があり、紡糸安定性の点から島成分ポリマーとは親和性が小さいポリマーであって、かつ紡糸条件下では溶融粘度が島成分ポリマーより小さいポリマーであるか、あるいは表面張力が島成分ポリマーより小さいポリマーであることが好ましい。好ましい具体例としては、ポリビニルアルコール、ポリエチレングリコール、あるいはスルホン酸アルカリ金属塩を含有する化合物などを共重合した変性ポリエステル、ポリエチレンオキシドなどの水溶性ポリマーが好ましく、最適な海成分ポリマーは、ポリビニルアルコール単独重合体、ポリビニルアルコール系共重合体などのポリビニルアルコール系樹脂(以下、PVAと総称する。)である。ここで、水溶性ポリマーとは、水またはアルカリ水溶液、酸性水溶液などの水溶液により、加熱、加圧などの条件下で溶解除去または分解除去できるポリマーのことを指す。海成分としてこれらの水溶性ポリマーを用いることで、不織布構造体を湿熱処理する際に、海成分ポリマーが瞬時に膨潤、可塑化し、島成分ポリマーの収縮能を殆ど阻害することがなく、本発明が目的とするような極細繊維束が緻密に集合した不織布構造体からなる人工皮革用基材を得ることができ、緻密な表面感、充実感のある風合いなどの感性面での特徴や、耐磨耗性、耐光性、あるいは形態安定性などの実用的な性能が良好な人工皮革製品とすることができる点で特に好ましい。
 前記PVAは、ビニルエステル単位を主構成単位として有する樹脂をケン化することにより得られる。ビニルエステル単位を形成するためのビニル化合物単量体としては、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バレリン酸ビニル、カプリン酸ビニル、ラウリン酸ビニル、ステアリン酸ビニル、安息香酸ビニル、ピバリン酸ビニルおよびバーサティック酸ビニル等が挙げられ、これらの中でもPVAを容易に得る点からは酢酸ビニルが好ましい。
 前記PVAは、ホモPVAであっても共重合単位を導入した変性PVAであってもよいが、溶融紡糸性、水溶性、繊維物性の観点からは、変性PVAを用いることが好ましい。変性に用いる共重合モノマーの種類を適宜選択することで、PVAの水溶性を低下させることなく、海島型繊維を安定に製造することができる。共重合単量体の種類としては、共重合性、溶融紡糸性および繊維の水溶性の観点からエチレン、プロピレン、1-ブテン、イソブテン等の炭素数4以下のα-オレフィン類;および、メチルビニルエーテル、エチルビニルエーテル、n-プロピルビニルエーテル、イソプロピルビニルエーテル、n-ブチルビニルエーテル等のビニルエーテル類が好ましい。PVA中の共重合単位含有量は、1~20モル%が好ましく、4~15モル%がより好ましく、6~13モル%がさらに好ましい。さらに、共重合単位がエチレンであると繊維物性が高くなるので、エチレン変性PVAが特に好ましい。エチレン変性PVA中のエチレン単位含有量は、好ましくは4~15モル%、より好ましくは6~13モル%である。
 前記PVAは、塊状重合法、溶液重合法、懸濁重合法、乳化重合法などの公知の方法で製造される。その中でも、無溶媒あるいはアルコールなどの溶媒中で重合する塊状重合法や溶液重合法が通常採用される。溶液重合の溶媒として使用されるアルコールとしては、メチルアルコール、エチルアルコール、プロピルアルコールなどの低級アルコールが挙げられる。共重合には、a、a’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチル-バレロニトリル)、過酸化ベンゾイル、n-プロピルパーオキシカーボネートなどのアゾ系開始剤または過酸化物系開始剤などの公知の開始剤が使用される。重合温度については特に制限はないが、0℃~150℃の範囲が適当である。
 前記PVAの粘度平均重合度(以下、重合度と略記する。)は、200~500が好ましく、250~470がより好ましく、300~450がさらに好ましい。重合度が200以上だと、溶融粘度が安定的に複合化させるのに十分高い値を示し、重合度が500以下だと、溶融粘度が紡糸ノズルから容易に吐出させるのに十分低い値を示す。また、重合度500以下の、いわゆる低重合度PVAを用いることで、水または水溶液によって除去する際の溶解速度が速くなるという利点が有る。PVAの重合度は、JIS-K6726に準じて次式により求められる。
  P=([η]×103/8.29)(1/0.62)
(Pは粘度平均重合度、[η]はPVAを再ケン化し、精製した後、30℃の水中で測定した極限粘度である。)
 前記PVAのケン化度は、90~99.99モル%が好ましく、93~99.77モル%がより好ましく、95~99.55モル%がさらに好ましく、97~99.33モル%が特に好ましい。ケン化度が90モル%以上だと、熱安定性が良好であり、溶融紡糸時に熱分解やゲル化をしにくくなり、ケン化度が99.99モル%以下であれば、PVAは安定に製造することが可能である。
 前記PVAのTmは、紡糸性を考慮すると160℃以上が好ましく、170~230℃がより好ましく、175~225℃がさらに好ましく、180~220℃が特に好ましい。Tmが160℃以上であると、結晶性低下によるPVAの繊維強度低下を避けることができる。また、PVAの熱安定性が良好であり、繊維形成性が良好である。Tmが230℃以下であると、溶融紡糸温度をPVAの分解温度より十分低くすることができ、極細繊維束形成性長繊維を安定に製造することができる。
 海島型繊維中に占める海成分ポリマーの比率は、繊維断面における面積比率で5~60%の範囲の何れかの比率で設定するのが重要であり、10~50%が好ましい。海島型繊維中の海成分ポリマー比率が5%より小さくなると、海島型繊維の紡糸安定性が低下するので工業的生産性が劣る。また、海成分が少ないことにより、海島型繊維を湿熱収縮させる際に、島成分同士の摩擦や干渉を緩和させる効果が不足するのか、目的とする収縮状態、緻密化が得られなかったり、不織布構造体に 高分子弾性体の溶液または水分散液を含浸、固化させた場合に、海成分を除去した後で極細繊維束と高分子弾性体との間に形成されるべき空隙が不十分であったりする。その結果、膨らみ感や充実感、緻密な表面感などの本発明が目的とする効果が得られ難くなってしまう。一方、海成分ポリマー比率が60%を超えると、海島型繊維の断面における島成分の形状や分布状態が不安定になって、品質安定性が劣るばかりか、海島型繊維を湿熱収縮させる際に、収縮能を有する島成分が相対的に不足するのか、目的とする収縮状態、緻密化が得られなくなるケースも見られる。その結果、やはり本発明が目的とする効果が得られ難くなってしまう。また、海成分ポリマーの比率は高いほど、海成分を除去した後の人工皮革用基材において極細繊維量が少なくなるので、形態安定性を所望のレベルにするために含有させる必要がある高分子弾性体量が顕著に増大する傾向にある上、除去した海成分ポリマーを回収するために必要なエネルギーやコストの面で工業生産上の負荷が増大するばかりか、地球環境への負荷も当然ながら増大する。従って、前記した諸要因が許す範囲で、海成分ポリマーの比率はより低く設定するのが好ましい。
 本発明において海島型繊維は長繊維の形態で用いる。長繊維とは、短繊維のように一般的に10~50mm程度の繊維長に意図的に切断されていない繊維であり、長繊維の繊維長は一概には特定できない。ただし、本発明の効果を奏するためには、極細化する前の長繊維の繊維長は、100mm以上が好ましく、また、技術的に製造可能であって、かつ、物理的に切れない限りは、数m、数百m、数km、あるいはそれ以上の繊維長であってもよい。
 海島型繊維の紡糸には複合紡糸用口金を用いる。1つのノズル孔に対して8~70個の範囲における何れかの個数が平均的に配された島成分ポリマー用流路と、その島成分ポリマー用流路を取り囲むように配された海成分ポリマー用流路とを有する多数のノズル孔が、直線状または円形状に等間隔に並び、さらに、直線状であれば並列状に、また円形状であれば同心円状に複数列配置されている。海成分ポリマーと島成分ポリマーからなる溶融状態の海島型複合繊維を個々のノズル孔から連続的に吐出させる。ノズル孔直下から後述する吸引装置までの間の何れかの段階で冷却風により実質的に冷却固化しながら、エアジェット・ノズルなどの吸引装置を用いて高速気流を作用させ、複合繊維が目的の繊度にてなるよう均一に牽引細化する。高速気流は、通常の紡糸における機械的な引取り速度に相当する平均紡糸速度が1000~6000m/分の範囲における何れかの速度となるように作用させる。さらに、得られる繊維ウェブの地合いなどに応じて複合繊維を衝突板や気流等により開繊させながら、コンベヤベルト状の移動式ネットなどの捕集面上に、ネットの反対面側から吸引しながら、捕集・堆積させることで長繊維ウェブを形成する。
 複合紡糸用口金が同心円状配置の場合、一般的には1つの口金に対して1つのノズル状吸引装置が使用される。このため吸引の際に多数の海島型繊維が同心円の中心点に集束してしまう。一般的には、複数の口金を直線状に並べて所望の紡糸量を得ているので、隣接する口金から吐出される海島型繊維の束の間には、繊維が殆ど存在していない。従って、繊維ウェブの地合いを均一な状態にするためには開繊することが重要になる。複合紡糸用口金が並列状配置であれば、口金に対向した直線的なスリット状の吸引装置が使用される。このため、並列に配置された列間からの海島型繊維が吸引の際に集束するので、同心円状配置の口金を採用した場合に比べるとより均一な地合いの繊維ウェブが得られる。この点で、同心円状配置に比べると並列状配置の方がより好ましい。
 得られた長繊維ウェブは、後工程において必要となる形態安定性に応じて、引き続きプレス、エンボス等により部分的に加熱または冷却しつつ圧着することも好ましい。海成分ポリマーの溶融粘度が島成分ポリマーより小さい場合には、溶融温度までの高温を付与せずとも、60~120℃程度の温度範囲における何れかの温度で加熱または冷却することにより、長繊維ウェブを構成する海島型繊維の断面形状を大きく損なうことなく、長繊維ウェブの地合いをその後の工程でも十分に保持することができる。さらに、長繊維ウェブの形態安定性を、巻き取りなどの取り扱いが可能なレベルにまで向上させることも可能である。
 従来の人工皮革が一般的に採用してきた、短繊維をカード機により繊維ウェブにする方法は、カード機だけでなく、カード機通過に好適な油剤および捲縮の付与、所定の繊維長へのカット、カット後の原綿の搬送および開繊などに一連の大型設備を必要とし、生産速度、安定生産、コストなどの点において問題がある。また、短繊維を経由する他の方法として抄紙法があるが、この方法もカット設備などの付帯設備を必要とするので、やはり前記方法と同様の問題を有する上、製造可能な不織布目付は高々200g/m2程度までに留まるので、人工皮革製品が適用可能な用途が非常に限定的である。これらの短繊維を用いる方法に対して、本発明の製造方法は、紡糸から繊維ウェブ形成が途切れることのないいわば1つの工程として実施され、設備が非常にコンパクトで簡潔であり、生産速度やコストに優れる。また、従来のような種々の工程、設備を組み合わせることによる複合的な問題が生じ難いので、安定生産性にも優れる。さらに、従来の繊維間の絡合や高分子弾性体による拘束のみに頼っていた短繊維使用の不織布構造体に比べると、長繊維から得られる不織布構造体、それを用いた人工皮革用基材や人工皮革は、形態安定性、即ち機械的強度や表面摩擦耐久性、銀面の接着剥離強力などの物性面において優れた特性を発揮する。
 本発明の製造方法によれば、従来のカード機を採用する方法では困難であった、繊維径が極めて細い繊維を用いることが可能であり、さらには、捲縮を付与する必要がなく、繊維自体が嵩高くならないので、機械的に集積させる段階から、従来の不織布構造体より極めて緻密な状態が安定的に得られ、また後述する方法も組み合わせることで、従来の人工皮革では実現不可能であった極めて高い品位の人工皮革を得ることができるのである。
 繊維径に関しては、従来の短繊維を用いた不織布構造体を製造する場合には、開繊装置やカード機に適した一定以上の繊維径が必要である。具体的には、断面積が200μm2以上の太さは必要であり、工業的な安定生産性を考慮すると、300~600μm2程度の太さの繊維が一般的に採用されてきた。本発明の製造方法では、使用する繊維の太さが設備によって制約されることがないので、断面積が100μm2以下といった極めて細い繊維であっても使用可能であるが、本発明が目的とする不織布構造の緻密さを得るためには、断面積は70~350μm2である必要があり、後工程での形態安定性、取り扱い性も考慮すると80~300μm2が好ましい。このような断面積の長繊維を使用することで、得られた長繊維ウェブは、厚さ方向と平行任意の断面において、断面とほぼ直交する繊維の断面が、100~600個/mm2、好ましくは150~500個/mm2の範囲の平均数密度で存在する繊維分布状態が得られ、後工程での絡合や収縮等により最終的に本発明の緻密な不織布構造体を得ることが可能となる。
 本発明では、得られる人工皮革用基材を構成する不織布構造体の緻密性が重要であり、とりわけ人工皮革用基材の表層部を構成する不織布構造の緻密性を向上させる必要がある。このため、海島型繊維から海成分ポリマーを除去することで得られる極細長繊維束の断面積は、少なくとも700μm2以下である必要がある。700μm2以下という断面積は、例えば極細長繊維を構成するポリマーがポリエチレンテレフタレートの場合に、極細繊維束の繊度が、大凡10dtex以下であることに相当する。極めて高品位な立毛調人工皮革や、緻密な折れシボの銀付調人工皮革が得られるような人工皮革用基材とするためには、このような太さの繊維束によって得られる不織布構造体の緻密さが必要なのである。とりわけヌバック調のような極細繊維立毛が短くて緻密な表面感を有する人工皮革を目的とする場合には、極細長繊維束の断面積は500μm2以下が好ましく、400μm2以下がより好ましい。極細長繊維束の断面積の下限値は、上記した上限値ほど人工皮革用基材の特性に影響するものではないが、細くし過ぎると人工皮革の強度や表面摩擦耐久性などが顕著に低下することもあること、及び人工皮革の製造工程上の制約などから、本発明においては、極細長繊維束の断面積は少なくとも170μm2以上である必要があり、180μm2以上であるのが好ましく、より好ましくは190μm2以上である。
 本発明では、1つの極細繊維束を構成する極細長繊維の本数は、極細長繊維束の易屈曲性、即ち不織布構造体内での易絡合性や最終的に得られる人工皮革用基材の易屈曲性などの点から8本以上であり、極細長繊維束の易屈曲性や断面形状における変形性、さらには最終的に得られる人工皮革用基材の発色性などの点から70本以下である。また、極細長繊維の本数は、10~60本が好ましく、12~45本がより好ましい。極細長繊維の本数が7本以下だと、極細長繊維束の易屈曲性に劣るばかりか、不織布構造体に高分子弾性体を含有させた場合の拘束本数率、即ち極細長繊維束の構成本数に占める最外周に配置された本数の比率が多くなるので、高分子弾性体によって極細長繊維束の易屈曲性が阻害され易く、少量の高分子弾性体でも風合いが硬化し易い。従って、高分子弾性体の含有状態の斑が人工皮革用基材の風合いの斑として顕在化し易いので、工業製品としての価値が認められ難くなる。一方、極細長繊維の本数が70本を超えると、1本1本の極細長繊維自体の易屈曲性には優れるが、極細長繊維束内での極細長繊維同士の接触面積の増大により相殺されるのか、易屈曲性がむしろ劣ってくる傾向にある。また、極細長繊維束の断面形状において、繊維軸に直角な方向からの圧縮力による変形、即ち扁平化が起き易く、また繊維束を構成する繊維間が広がって繊維束が散け易くなることで、繊維束の嵩高性が高くなり、不織布構造体における緻密化の限界が低くなってしまう。このような嵩高性は海島型繊維の段階においても同様であり、繊維が断面形状において扁平化し易いということは、不織布構造体における繊維断面の充填効率を低下させるので、海成分除去前から緻密化を阻害してしまう。
 このような理由から、繊維束は扁平化し難いよう少なくとも70本以下である必要があり、最終的に得られた人工皮革用基材における極細長繊維束の扁平率は4.0以下である必要があり、好ましくは3.0以下である。また、極細長繊維束の扁平化による弊害は、特に人工皮革用基材の表面において顕著であり、表面から見たときに繊維束がなす幅、即ち極細長繊維束の投影サイズは、10~60μmであるのが好ましく、15~45μmがより好ましい。極細長繊維束の投影サイズが60μmを超えると、繊維束の緻密化が不十分で、特に立毛調人工皮革としたときに立毛を形成可能な繊維束が少なくなり、外観品位があまり高くない立毛表面しか得られ難くなる。一方、極細長繊維束の投影サイズが10μm未満だと、繊維束の緻密化は非常にし易いが、繊維束が全く扁平化しないとしても繊維束の径自体が10μm未満の非常に細いものであり、特に立毛調人工皮革の立毛を形成しようとしても、起毛処理による繊維束の切断が頻発するのでむしろ立毛は少なくなってしまい、良好な外観品位が得られ難くなるばかりか、表面の耐磨耗性にも劣るものとなってしまう。
 上記したような特徴を有する極細長繊維束とすることで、人工皮革用基材を構成する不織布構造体において、その厚さ方向と平行任意の断面において、断面とほぼ直交する極細長繊維束の断面の個数が、1500~3000個/mm2も存在するような従来にない極めて緻密な繊維集合構造が得られる。1500個/mm2未満の場合、極細繊維束の数密度が少ない分だけ極細繊維束が存在しない空間が生じることになり、しかも極細繊維束は数密度が少ないと均一に分散せず密集した密な領域と殆ど存在しない疎な領域とに分かれて存在しやすい傾向にある上、極細繊維束間に生じた空間が大きくなると厚い高分子弾性体の連続皮膜を形成してしまうので、人工皮革の風合いが硬くなり、極めて大きな粗密斑によって表面外観や表面物性に劣るものとなってしまう。3000個/mm2を越える場合、一見すると得られたものは本発明の人工皮革用基材より緻密な繊維集合体ではあるが、熱プレス等によって不織布構造体を厚さ方向に強制的に圧縮しただけの構造であったり、不織布構造体に貼り合わせた収縮性の織編物等の収縮力によって長さ方向や幅方向に強制的に圧縮しただけの構造であったりするので、極細繊維束が圧縮された方向に潰れて扁平化してしまっているので、物性低下や逆に風合いが硬くなる。好ましくは、2000~2700個/mm2である。
 従来の不織布構造体を採用した人工皮革用基材では、不織布構造体を絡合等で緻密化させる段階から、構成繊維の太さが、極細繊維束に変成したときの断面積が300~600μm2程度になるような太いものなので、極細繊維束に変成する段階までに不織布構造体の緻密化が不充分であり、これを極細繊維束に変成した結果得られる極細繊維束断面の数密度は高々200~600個/mm2程度、多くても750個/mm2程度であった。仮に、従来の技術において極細繊維束の数密度が750個/mm2を超える不織布構造体を得ようとした場合には、ニードルパンチ処理を過剰に行うことで繊維束自体を損傷させてしまったり、前記したような熱プレス等による強制的な圧縮処理によって繊維束の断面形状を大きく変形させてしまったり、あるいはそのような処理のみに頼って緻密化しようとした結果として繊維束間の空隙に斑が大きい状態しか得られず、得られる人工皮革用基材は、本発明で目的とするものとは全く異なるものである。また、繊維束の数密度が高々200~600個/mm2程度の従来の不織布構造体では、その内部に高分子弾性体を含有させる場合には、含有させる量にもよるが、極細繊維束の数密度が少ない分だけ極細繊維束間に厚い高分子弾性体の連続皮膜を形成してしまうので、不織布構造体と高分子弾性体との複合構造としての風合いが必要以上に硬くなるばかりか、繊維または高分子弾性体が緻密に集合して存在する領域と繊維も高分子弾性体も殆ど存在しない領域とがそれぞれ処々に点在するような極めて大きな粗密斑のあるものしか得られなかった。これに対して、本発明の不織布構造体は、極細繊維束が極めて緻密かつ均一に集合した超緻密構造を有するので、不織布構造体内に高分子弾性体に含有させる場合でも、極細繊維束間に形成させる高分子弾性体の連続皮膜の厚さを薄くすることができ、また高分子弾性体に囲まれたセルもより小さく、均一に分布させることができるので、人工皮革用基材内部に顕著な粗密斑が発生するのを抑制することが可能となる。
 本発明では、前記したような要件を満足する極細長繊維束により不織布構造体が構成されていれば、極細長繊維自体の繊維径は特に限定されるものではないが、本発明が目的とする優美な外観やタッチを有するような立毛面を形成させるためには、少なくとも立毛部分においては極細長繊維が0.8~15μmであることが好ましく、より好ましくは1.0~13μmであり、特に好ましくは1.2~10μmであり、1.5~8.5μmであるのが最も好ましい。極細長繊維の繊維径が15μmを超えると、立毛調人工皮革としたときの外観品位に悪影響、例えば表面の立毛色に斑が発生したり、タッチの滑らかさが阻害されたりすることがあるので好ましくない。一方、極細長繊維の繊維径が1.0μm未満だと、立毛調人工皮革としたとき、立毛感は緻密になるものの、トータルでの外観品位や表面物性に悪影響を生じるようになる。例えば、表面の立毛色が白っぽくなってしまったり、耐ピリング性などの表面の耐磨耗性が悪化したりすることがある。
 得られた長繊維ウェブの目付けや厚さが不足している場合は、所望の目付け、厚さになるようにラッピング(1枚の長繊維ウェブを工程の流れ方向に対して直行する方向から供給し、ほぼ幅方向に折り畳むか、工程の流れ方向に対して並行方向から供給したウェブをその長さ方向に折り畳むこと)や積重(複数枚の長繊維ウェブを重ねること)を行って調整する。海島型繊維からなる不織布構造体の形態安定性や繊維の緻密性が不足している場合や、不織布構造体の海島型繊維の厚さ方向への配向を調節する場合には、ニードルパンチ法などの公知の方法により機械的な絡合処理を行う。これにより、長繊維ウェブを構成する繊維同士、特にラッピングや積重した層状の長繊維ウェブの隣接する層間における繊維同士を三次元絡合させる。ニードルパンチ法により絡合処理する場合は、ニードルの種類(ニードルの形状や番手、バーブの形状や深さ、バーブの数や位置など)、ニードルのパンチ数(ニードルボードに植針されたニードルの密度と該ボードを長繊維ウェブの単位面積当たりに作用させるストローク数を掛け合わせた単位面積当たりのニードルパンチ処理密度)、ニードルのパンチ深さ(長繊維ウェブに対してニードルを作用させる深さ)など各種処理条件を適宜選択して実施する。
 ニードルの種類は、従来の短繊維を用いた人工皮革製造において用いられるものと同様のものも適宜用いることが可能であるが、本発明の効果を得る上でニードルの番手、バーブの深さ、バーブの数が特に重要であり、後述するような種類のニードルを主として用いるのが好ましい。
 ニードルの番手は、処理後に得られる緻密性や表面品位に影響を与える因子であって、少なくともブレード部(ニードル先端のバーブが形成されている部分)のサイズが30番(断面形状が正三角形であれば高さが、また円形であれば直径が0.73~0.75mm程度)より小さい(細い)必要があり、好ましくは32番(0.68~0.70mm程度)から46番(0.33~0.35mm程度)の範囲であり、より好ましくは36番(高さ0.58~0.60mm)から43番(高さ0.38~0.40mm程度)の範囲である。ブレード部のサイズが30番より大きい(太い)ニードルは、バーブの形状や深さの自由度が高く、ニードルの強度や耐久性においても好ましい反面、不織布構造体の表面に大きな孔径のニードルパンチ跡が残り、本発明が目的とする緻密な繊維集合状態や表面品位を得ることが困難である。また、長繊維ウェブ中の繊維とニードルとの摩擦抵抗が大きくなり過ぎるので、ニードルパンチ処理用油剤を過剰に付与する必要があるので好ましくない。一方、ブレード部のサイズが46番より小さいニードルは、強度や耐久性において工業生産に向かないばかりでなく、本発明において好適な深さのバーブを設定することが困難となる。ブレード部の断面形状は、繊維の引っ掛かり易さや摩擦抵抗の小ささなどの点から、本発明においては正三角形が好ましい。
 本発明におけるバーブ深さとはバーブの最深部からバーブ先端までの高さのことである。一般的な形状のバーブでは、ニードル側面より外側に突き出したバーブの先端までの高さ(キックアップということもある)とニードル側面より内側に形成されたバーブの最深部までの深さ(スロートデプスということもある)とを合わせた高さを指す。バーブ深さは、少なくとも海島型繊維の直径以上であり、好ましくは120μm以下である。バーブ深さが海島型繊維の直径未満だと、海島型繊維がバーブに極めて引っ掛かり難くなるので好ましくない。一方、バーブ深さが120μmを超えると、繊維は極めて引っ掛かり易い反面、不織布構造体の表面に大きな孔径のニードルパンチ跡が残り易く、本発明が目的とする緻密な繊維集合状態や表面品位を得ることが困難となる。また、バーブ深さは海島型繊維の直径に対して1.7~10.2倍の範囲における何れかの倍数であるのが好ましく、より好ましくは2.0~7.0倍の範囲から選択した倍数である。バーブ深さが1.7倍未満だと、海島型繊維がバーブに引っ掛かり難いためか、後述するパンチ数を増やしても、それに見合った絡合効果が得られない場合がある。一方、10.2倍を超えても海島型繊維の引っ掛かり易さが向上するよりは、むしろ海島型繊維の切断や割れなどの損傷が増大する傾向が強くなるので好ましくない。
 本発明におけるバーブの数は、1~9個までの範囲で所望の絡合効果が得られるように適宜選択すればよいが、本発明が必須とする緻密な不織布構造体を得るためには、ニードルパンチ絡合処理に主として用いるニードル、即ち後述するパンチ数の少なくとも50%以上のパンチングに用いられるニードルは、バーブ数が6個である必要がある。なお、本発明においては、ニードルパンチ絡合処理に用いるニードルのバーブの数は1種類である必要はなく、例えば1個と6個、3個と6個、6個と9個、1個と6個と9個などの異なるバーブ数のニードルを適宜組み合わせ、任意の順序で使用してもよい。複数個のバーブを有するニードルにおいて、それぞれのバーブの位置は、ニードル先端側からの距離が全て異なるものと、同じ距離にいくつかのバーブを有するものとがある。後者のニードルとしては、例えばブレード部の断面形状が正三角形であって、3つの頂角それぞれにバーブが1個ずつ先端から同じ距離に付いたニードルなどが挙げられる。本発明においては、絡合処理に主として用いるニードルは、前者のニードルを用いる。これは、同じ距離に複数のバーブを有するニードルは、見かけ上ニードルのブレード部が太く、またバーブ深さが大きい効果を有しているので、絡合効果は高いものの、その一方でブレード部が太く、またバーブが深すぎる場合にみられる不都合が顕著に現れるからである。さらには、後者のニードルを用いたニードルパンチ処理を過剰に行うと、1箇所で十数本から数十本という多数の繊維が束になって不織布構造体の厚さ方向に配向した箇所が多くなり過ぎるので、本発明が目的とするような緻密な構造が得られにくくなる傾向がみられる。即ち、不織布構造体の厚さ方向と平行任意の断面において、断面とほぼ平行繊維は多数存在するが、断面とほぼ直交する繊維の数密度が極端に減少する傾向がある。ただし、少ないパンチ数でも強い絡合効果が得られるので、絡合処理の一部に、後者のニードルを用いることも好ましい。例えば、絡合処理の初期段階から中期段階までの任意の段階で、目標の緻密構造を阻害しない程度に後者のニードルで絡合処理し、次いで、前者のニードルを用いて目標の緻密構造にする方法が好ましい態様の1つとして挙げられる。なお、本発明においてバーブ数が6個というのは、ニードル先端の不織布構造体を貫通するバーブから貫通せずとも不織布構造体に実質的に作用するバーブまでの合計個数のことであり、不織布構造体には作用しない部分にあるバーブは含まない。例えば、ニードルに形成されるバーブ数が9個であっても、ニードルが一番深く突き刺さった時点で不織布構造体の外にバーブが3個残るような絡合処理条件を採用すれば、それは実質的にはバーブ数が6個のニードルパンチングと同等の効果を有するからである。
 ニードルの合計パンチ数は、800~4000パンチ/cm2の範囲における何れかの値が好ましく、より好ましくは1000~3500パンチ/cm2の範囲である。前記した同じ距離にいくつかのバーブを有するニードルを用いる場合には、そのニードルパンチ処理のパンチ数は、300パンチ/cm2程度以下、好ましくは10~250パンチ/cm2程度の範囲である。前記した同じ距離にいくつかのバーブを有するニードルを用いて300パンチ/cm2を超えるようなニードルパンチング処理を行うと、繊維が厚さ方向に多く配向してしまうので、その後の別のニードルを用いたニードルパンチング処理や熱収縮処理、プレス処理などを行っても、不織布構造体の数密度を高くすることが困難になる傾向が強い。ニードルの合計パンチ数が800パンチ/cm2未満では、緻密化が不充分なばかりか、特に長繊維ウェブの異層間での繊維同士の絡合による不織布構造体の一体化が不充分な傾向が強くなり、一方、4000パンチ/cm2を超えると、前記したニードルの形状にもよるが、繊維のニードルによる切断や割れなどの損傷が目立ち、繊維の損傷が特にひどい場合には、不織布構造体の形態安定性が大幅に低下すると共にむしろ緻密さが低下してしまうこともある。
 得られる不織布構造体および人工皮革用基材の形態安定性や引裂き強力などの力学的物性、厚さ方向における繊維の配向性などの観点からは、長繊維ウェブの厚さ全体に渡ってニードルのバーブがより多く作用するのが好ましい。従って、ニードルのパンチ深さは、少なくともニードルの最も先端側にあるバーブが長繊維ウェブの厚さ全体を貫通するような深さに設定するのが好ましい。特に、本発明で必須のバーブが6個のニードルにおいては、本発明が目的とするような絡合効果を最大限に発揮させるために、全てのバーブは貫通させないことが重要である。即ち、最も先端から遠いバーブは長繊維ウェブの中に留まるようなパンチ深さでニードルを作用させるのである。全てのバーブを貫通させると、6個のバーブに引っ掛かった長繊維が全て長繊維ウェブ内から突き出されてしまうので、本発明が目的とするような緻密な構造が得られなくなってしまう。長繊維ウェブを貫通させないバーブの個数は、6個のバーブの内の2個から5個が好ましく、より好ましくは3個または4個である。また、従来にない緻密な構造を実現させるためにも、前記のパンチ数の50%以上のパンチングは、ニードル先端のバーブが長繊維ウェブを貫通するパンチ深さに設定する必要があり、70%以上のパンチングをニードル先端のバーブが長繊維ウェブを貫通するパンチ深さで行うのが好ましい。但し、パンチ深さを深くし過ぎると、バーブが6個のニードルの場合には前記したように緻密な構造が得られなくなってしまうだけでなく、バーブが1個、2個、3個、4個、5個、あるいは7個、8個、9個、さらには10個以上のニードルの場合においても、即ちバーブの個数に依らず、バーブによる繊維の損傷が顕著になり、極端な場合には繊維が切断してしまうような傾向や、パンチング跡が不織布構造体の表面に残り易くなる傾向などがみられるので、ニードル条件を設定する際にはこれらの点にも留意する必要がある。
 ニードルパンチ処理による繊維の損傷や切断を抑制し、またニードルと繊維との強い摩擦により生じる帯電や発熱などを抑制するために、長繊維ウェブ製造工程以降、絡合処理工程以前の何れかの段階で油剤を付与するのが好ましい。付与する方法としては、スプレーコーティング法、リバースロールコーティング法、キスロールコーティング法、リップコーティング法などの公知のコーティング法が採用可能であり、中でもスプレーコーティング法が長繊維ウェブに対して非接触であり、かつ、長繊維ウェブ内層に短時間で浸透する低粘度の油剤が使用可能なので最も好ましい。尚、ここでいう長繊維ウェブ製造工程以降とは、海島型繊維を溶融紡糸して移動式ネットなどの捕集面上に捕集・堆積させた段階以降のことを指す。本発明において絡合処理前に付与する油剤は1種類の成分からなる油剤でもよいが、異なる効果を有する複数種の油剤を用い、それらを混合して付与するか、順次付与してもよい。本発明において使用される油剤は、ニードルと繊維との摩擦、即ち金属とポリマーとの摩擦を緩和させる滑り効果の高い油剤であり、具体的には鉱物油系の油剤やポリシロキサン系の油剤が好ましく、後者であればジメチルシロキサンを主体とする油剤がより好ましい。ポリシロキサン系で滑り効果の高い油剤を用いる場合には、滑り効果が強すぎてバーブへの引っ掛かりによる絡合効果が局所的に顕著に低下してしまったり、特に、繊維同士の摩擦係数が顕著に低下することで絡合状態の維持が困難になってしまったりするのを抑制する目的で、摩擦効果の高い油剤、例えば鉱物油系の油剤を組み合わせて使用することも好ましい。但し、本発明では海島型繊維の海成分に水溶性ポリマーを用い、繊維を極細繊維束に変成するのに水または水溶液を用いるので、特にポリシロキサン系の油剤は極細繊維束に変成する際に同時に除去されてしまわず、人工皮革用基材の段階になるまで極細繊維表面や高分子弾性体表面に多くが残存しやすい。従って、得られる人工皮革用基材をスエード調人工皮革に用いる場合には、染色処理に代表される水浴中処理を行う際に残存する油剤によって処理斑、例えば染色状態が斑状になったり、あるいは浴中処理などの仕上げ処理後も完全に除去されずに残存する油剤が不織布構造体への立毛繊維の固定状態を弱くしてしまいピリングになり易くなったりするなどの弊害を生じる場合があるので、特にポリシロキサン系油剤の使用には留意する必要がある。鉱物油系油剤とポリシロキサン系油剤の併用の他にも、摩擦による帯電が顕著な場合には、界面活性剤、例えばポリオキシアルキレン系界面活性剤などを帯電防止剤として併用するのも好ましい。
 海島型繊維からなる段階の不織布構造体において最終的に必要な平均数密度(厚さ方向と平行任意の断面における、断面とほぼ直交する繊維の断面の単位面積当たりの個数)は、1000~3500個/mm2であり、好ましくは1100~3000個/mm2、より好ましくは1200~2500個/mm2の範囲における何れかの値である。このような平均数密度の範囲を有するような緻密な構造を得るために、ニードルパンチ処理などの絡合処理の後で、熱風、温水、スチームなどによる熱収縮処理を併用する。これらの処理を1種類または複数組み合わせることで、最終的には本発明が目的とする緻密な構造を得ることができる。もちろん、絡合処理や収縮処理に加えて、プレス処理を行うことも好ましい。プレス処理を絡合処理と併用する場合には、絡合処理の前や後に行ったり、プレス処理しつつ絡合処理を行ったりすればよい。また、収縮処理と併用する場合には、収縮処理の前や後に行えばよいが、プレス処理しつつ収縮処理する方法は収縮状態が不均一になってしまうので好ましくない。
 ニードルパンチ処理後に行う熱収縮処理としては、本発明では少なくとも湿熱処理を行う必要がある。湿熱処理とは、ニードルパンチ絡合処理後の不織布構造体を、あるいは高温高湿雰囲気中で所望の緻密さになるように熱収縮させる処理のことである。例えば、平均数密度が800~1100個/mm2程度の不織布構造体の緻密さを得る場合、まずニードルパンチ処理により350~750個/mm2程度まで緻密化させた後で、目標とする緻密さになるよう熱収縮処理するのである。熱収縮処理のためには、長繊維ウェブが熱収縮性の成分を含む海島型繊維で形成されている必要があり、また、海島型繊維以外にも収縮性の繊維を併用して製造した長繊維ウェブを用いたり、別途製造した収縮性のウェブを積重したりするのも好ましい。熱収縮性の海島型繊維を得るためには、海成分ポリマー、島成分ポリマーの何れか、または両方に、熱収縮性のポリマーを採用して紡糸すればよいが、本発明においては、少なくとも島成分ポリマーとして前記したような熱収縮性のポリマーを用いる。湿熱収縮処理の条件としては、少なくとも島成分ポリマーでは十分な収縮が得られ、かつ海成分ポリマーが膨潤・可塑化はするが溶出はしてしまわないような温度条件であれば特に限定されず、採用する熱収縮処理方法や処理対象物の処理量などに応じて適宜設定すればよいが、例えば飽和水蒸気を連続的に供給することで温度65~100℃、相対湿度70~100%の範囲における何れかの温湿度に制御した雰囲気中へ導入する方法や、あるいは不織布構造体に海成分ポリマーが膨潤・可塑化するのに十分な量の水を付与した後で、あるいは付与しながら、次の何れかの方法で島成分ポリマーの収縮と海成分ポリマーの膨潤・可塑化に要する熱を不織布構造体へ連続的に作用させる方法が好ましい例として挙げられる。水分が付与された不織布構造体へ熱を作用させる方法としては、所望の温度に制御した雰囲気中へ導入する方法、所望の温度のエアーを不織布構造体に直接作用させる方法、または赤外線などの電磁波を不織布構造体に作用させて不織布構造体を所望の温度に昇温する方法が、好ましい例として挙げられる。不織布構造体は面積が広くなると、それ自身の重さの影響などによって熱収縮状態に斑が生じやすくなるので、収縮の開始点や収縮速度を制御する目的で、シート状の不織布構造体の長さ方向、幅方向の位置によって異なる温度条件に制御することも好ましい態様である。
 前記のニードルパンチによる絡合処理や熱収縮処理の他に、海島型繊維からなる不織布構造体を目的とする緻密さにするために、後述する高分子弾性体の含浸処理に先立って、必要に応じて、プレス処理を採用するのも好ましい。例えば、不織布構造体の平均数密度が1000~1200個/mm2程度の緻密さを目標とする場合には、まず熱収縮処理までで600~900個/mm2程度まで緻密化させた後で目標とする緻密さになるようプレス処理すればよい。プレス処理を採用する場合の具体例としては、前記の湿熱収縮処理後の濡れた状態でそのままプレスする方法、湿熱収縮処理して乾燥させた状態でプレスする方法、完全には乾燥させずに一部水分が残っている状態でプレスする方法などが挙げられる。プレス修理する温度としては、湿熱収縮処理や乾燥処理の熱が冷める前に、不織布構造体の表面温度より低温で軟化成分を固化させつつプレス処理する方法、不織布構造体の表面温度より高温で一成分をより軟化させ、また含有水分を蒸発させつつプレス処理する方法などが挙げられる。このような処理方法を採用することで、熱収縮処理に加えてプレス処理による緻密化がほぼ同時に進むので、単にプレス処理のみを実施するよりは均一な緻密化状態を得ることが可能であり、また優れた生産効率を得ることも可能である。不織布構造体を構成する海島型繊維において、海成分ポリマーの軟化温度が島成分ポリマーの軟化温度より20℃以上、好ましくは30℃以上低い場合に、熱収縮処理と併用したプレス処理が緻密化により有効である。この場合、海成分ポリマーの軟化温度に近い温度から島成分ポリマーの軟化温度より低く、かつ島成分ポリマーの収縮温度よりは高い温度範囲に加熱することによって、海島型繊維中の海成分ポリマーのみが軟化またはそれに近い状態になって島成分の自由度が高まった状態で、収縮性の島成分ポリマーが収縮する。その収縮が十分に進行した後、海成分ポリマーの軟化温度からは温度が低下していない状態で不織布構造体をプレスすると、不織布構造体がより緻密な状態に圧縮され、これを室温にまで冷却すれば所望の緻密な状態で固定された不織布構造体を得ることができる。プレス処理の緻密化以外の利点としては、不織布構造体の表面をより平滑化した状態で固定できる効果が挙げられる。平滑化することにより、本発明の人工皮革用基材における最大の特徴である極細繊維束の極めて緻密な集合状態を、より効果的に得ることも可能である。即ち、人工皮革用基材の表面をより平滑にすることができるので、立毛調人工皮革の製造において、バフィング等の立毛形成処理での研削量をより少なくすることが可能となり、また、銀面調人工皮革の製造においては、基材表面を加熱プレスやバフィング等を行うことなく、平滑で厚さが50μm以下の極めて薄い銀面層を安定的に形成することが可能となる。
 このようにして得られた数密度が1000~3500個/mm2、好ましくは1300~3000個/mm2の範囲である緻密な不織布構造体に、必要に応じて、海成分ポリマーを除去する前または除去した後で、高分子弾性体を含有させる。含有させる方法としては、高分子弾性体の溶液または分散液を含浸し、従来公知の乾式法または湿式法により凝固させる方法が挙げられる。含浸方法としては、不織布構造体を高分子弾性体液で満たされた浴中へ浸した後、プレスロール等で所定の含液状態になるように絞るという処理を1回または複数回行う、いわゆるディップニップ法や、バーコーティング法、ナイフコーティング法、ロールコーティング法、コンマコーティング法、スプレーコーティング法など従来公知の種々のコーティング法などが何れも採用可能である。1種類の方法であっても複数種類の方法を組み合わせてもよい。
 不織布構造体に含有させる高分子弾性体は、人工皮革用基材に従来用いられているものであれば何れも採用可能であり、具体例としてはポリウレタンエラストマー、アクリロニトリルエラストマー、オレフィンエラストマー、ポリエステルエラストマー、アクリルエラストマーが挙げられ、好ましくはポリウレタンエラストマー、アクリルエラストマーである。ポリウレタンエラストマーとしては、ポリエステルジオール、ポリエーテルジオール、ポリエーテルエステルジオール、ポリカーボネートジオールなどから選ばれた少なくとも1種類の平均分子量500~3000のポリマーポリオールと、4,4’-ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネートなどの、芳香族系、脂環族系、脂肪族系のジイソシアネートなどから選ばれた少なくとも1種のポリイソシアネートとを主成分として組み合わせ、さらにエチレングリコール、エチレンジアミン等の2個以上の活性水素原子を有する少なくとも1種の低分子化合物を所定のモル比で組み合わせて、これらを1段階、あるいは多段階で溶融重合法、塊状重合法、溶液重合法などにより重合反応させて得た各種のポリウレタンエラストマーが挙げられ、ポリウレタンエラストマーに占めるポリマーポリオール成分の含有量は15~90質量%が好ましい。また、アクリルエラストマーとしては、その単独重合体のガラス転移温度が-90~-5℃の範囲であり、好ましくは非架橋性であるようなモノマー、例えば、アクリル酸メチル、アクリル酸n-ブチル、アクリル酸イソブチル、アクリル酸イソプロピル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸2-エチルヘキシルなどから選ばれた少なくとも1種類の軟質成分と、その単独重合体のガラス転移温度が50~250℃の範囲であり、好ましくは非架橋性であるようなモノマー、例えば、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸イソプロピル、メタクリル酸イソブチル、メタクリル酸シクロヘキシル、(メタ)アクリル酸などから選ばれた少なくとも1種類の硬質成分と、架橋構造を形成し得る単官能または多官能エチレン性不飽和モノマー単位、または、ポリマー鎖に導入されたエチレン製不飽和モノマー単位と反応して架橋構造を形成し得るような化合物、例えば、エチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレートなどから選ばれた少なくとも1種類の架橋形成性成分からなるエチレン性不飽和モノマーを重合反応させて得た各種のアクリルエラストマーが挙げられる。主体となる高分子弾性体としてポリウレタンエラストマーを採用して得られた人工皮革用基材は、風合いや力学的物性のバランスにおいて優れており、さらには耐久性を含めたバランスにおいても優れている点で好ましい。また、アクリルエラストマーを採用して得られた人工皮革用基材は、アクリルエラストマーがポリウレタンエラストマーに比べて極細長繊維束への接着性が低く、立毛形成時の立毛固定効果に乏しいので立毛調人工皮革を形成するには不向きだが、含有量に対する風合いの硬化度合いが抑制されるので銀付調人工皮革を形成する場合には特に好ましい。高分子弾性体としては、異なる種類を混合して含有させたり、異なる種類を複数回に分けて含有させたりしてもよく、また、主体となる高分子弾性体以外にも、合成ゴム、ポリエステルエラストマーなどの高分子弾性体を必要に応じて添加した高分子弾性体組成物として含有させてもよい。
 高分子弾性体の溶液あるいは分散液などの高分子弾性体液を不織布構造体に含浸し、次いで高分子弾性体を従来公知の乾式法または湿式法により凝固させることで、高分子弾性体を不織布構造体内に固定する。ここでいう乾式法とは、溶剤あるいは分散剤を乾燥等により除去することで高分子弾性体を不織布構造体内に固定させる方法全般を指す。また、ここでいう湿式法とは、高分子弾性体液を含浸した不織布構造体を高分子弾性体の非溶剤や凝固剤で処理したり、感熱ゲル化剤などを添加した高分子弾性体液を採用して含浸後の不織布構造体を加熱処理したりすることにより、溶剤あるいは分散剤を除去するに先立って不織布構造体内に高分子弾性体を仮に固定するか完全に固定させる方法全般を指す。なお、凝固させた高分子弾性体を完全に固定させるために、溶剤あるいは分散剤を除去した後で加熱処理などのキュア処理を行うことも好ましい。
 高分子弾性体液の濃度、即ち高分子弾性体液中の高分子弾性体の含有量は、0.1~60質量%が好ましい。高分子弾性体液には、最終的に得られる人工皮革用基材の性質を損なわない範囲で、染料や顔料などの着色剤、凝固調節剤、酸化防止剤、紫外線吸収剤、蛍光剤、防黴剤、浸透剤、消泡剤、滑剤、撥水剤、撥油剤、増粘剤、増量剤、硬化促進剤、発泡剤、ポリビニルアルコールやカルボキシルメチルセルロースなどの水溶性高分子化合物等の従来の人工皮革用基材に含有させる高分子弾性体液に配合される各種添加剤を適宜配合してもよい。不織布構造体に含有させる高分子弾性体あるいは高分子弾性体組成物の量は、目的とする用途において必要とされる力学的物性、耐久性、風合いなどに応じて適宜調節すればよいが、極細繊維束からなる不織布構造体の目付けを100としたとき、これに対する高分子弾性体の目付けとして1~80質量%の範囲が好ましく、2~60質量%の範囲がより好ましく、5~40質量%の範囲がさらに好ましい。高分子弾性体の含有量が1質量%に満たない場合は、高分子弾性体を均一に含有させるのが困難なので、人工皮革用基材内部における高分子弾性体の含有斑が激しくなり、人工皮革用基材としての品質が安定し難い。一方、高分子弾性体の含有量が80質量%を超える場合は、不織布構造体が極めて緻密であるために、人工皮革用基材の風合いが顕著に硬化する上、ゴム感も強くなるので好ましくない。
 高分子弾性体を含有させる前または含有させた後の不織布構造体を構成する海島型繊維から海成分ポリマーを除去する方法としては、島成分ポリマーの非溶剤または非分解剤であり、高分子弾性体を含有させた後に除去する場合には、高分子弾性体の非溶剤または非分解剤でもある液体であって、かつ海成分ポリマーの溶剤または分解剤である液体で不織布構造体を処理する方法が本発明において採用される。例えば、海成分ポリマーとして、前記したようなポリビニルアルコールなどの水に可溶なポリマーを用いる場合は、そのポリマーが可溶な温度の温水で除去すればよく、また、海成分ポリマーとして、前記したようなスルホン酸アルカリ金属塩を含有する化合物などを共重合した易アルカリ分解性の変性ポリエステルを用いる場合は、水酸化ナトリウム水溶液などのアルカリ性分解剤である水溶液を適当な温度下で用いて除去すればよい。このような海成分ポリマー除去処理により、海島型繊維を島成分ポリマーからなる極細長繊維束に変成させることで、好ましくは300~1800g/m2の目付を有する本発明の人工皮革用基材が得られる。
 海島型繊維を極細長繊維束に変成することで得られる人工皮革用基材において、従来の人工皮革用基材と決定的に異なる点としては、前記した種々の点以外にも極細長繊維束同士の間に形成される空隙サイズが70μm以下、好ましくは60μm以下であって極めて小さく、かつ均一であってサイズの斑が小さい点が挙げられる。これは、海島型繊維を紡糸して集積させて3次元絡合した不織布構造体を形成させる過程において、(1)断面積が350μm2以下程度、即ち繊維径でいうと21μm以下程度で、かつ扁平化しにくい島数の海島型繊維を紡糸し、長繊維形態のままで直接ウェブとすることで、人工皮革用基材を形成するまでの間に不要な嵩高性を奏しにくい状態で不織布構造体を形成させていること、(2)長繊維ウェブを3次元絡合させる際に主体となるニードルパンチング処理において6バーブのニードルを用いて厚さ方向にバーブが貫通するような条件で行うことで、広範囲に渡って同一繊維が連続した状態でランダムに配置されるという長繊維からなる不織布構造体に特有の繊維配置状態において極めて良いバランスで緻密化と3次元絡合化が進行するのではないかと考えられ、それによって不織布構造体の断面において繊維が十分に高い数密度で近接して集積されること、さらには(3)海島型繊維の構成成分として、水溶性ポリマーと熱収縮性ポリマーを組み合わせ、かつ熱収縮処理を湿熱環境下で行うことで、不織布構造体が熱収縮によって緻密化する際に、海成分が瞬時に膨潤、可塑化することで島成分が理想に近いレベルまで収縮可能であり、しかも島成分の繊維径が収縮によって理想に近いレベルまで太径化可能であるため、海島型繊維が繊維軸に沿って収縮し易く、従来のように海島型繊維が収縮時にランダムに暴れるように動くことで近接する繊維を排除するような効果を奏しにくいこと、また、(4)海成分を溶解、分解させる際に従来の有機溶剤よりは分子サイズが小さくて極性を有する水を媒体とするので、海成分ポリマー内での溶媒分子の拡散速度が比較的速く、また膨潤から溶解に至る状態が安定していて、海成分ポリマーの溶解物を構造体外に順次排出させるために液圧や機械応力などを掛ける必要が少ないので、従来に比べて極めて緻密化した本発明の不織布構造体であっても極細繊維束間の空隙サイズを拡大させることなく容易に海成分溶解物が排出できること、といった要因が全て複合化された結果であると考えられる。
 得られた人工皮革用基材において、極細繊維束間の空隙サイズをより均一化させ、より緻密な外観品位の立毛調人工皮革や、より折れシボの細かな銀付調人工皮革を製造するのに適した人工皮革用基材を製造するために、まず人工皮革製品において表側となる表面に、易抽出性高分子の溶液、水分散液または融液を塗布して、易抽出性高分子を固化させることも好ましい。本発明では、後工程であるバフィング処理において、従来にない緻密化された不織布構造を得ると共に、より平滑で均一な立毛表面を得る目的で、人工皮革製品において表側となる表面に高分子弾性体の水分散液を塗布して、高分子弾性体を固化させた後、先に易抽出性高分子を付与していれば、それを溶解等により除去する工程を実施する。次いで、高分子弾性体を付与した面について、加圧しつつ研削処理を行うことで、元の表面から20~200μm程度の深さまでの領域を研削除去するだけでなく、研削処理後の表面から大凡100~300μm程度の深さまでの領域について不織布構造を一層緻密化することができる。また、前記した表面への高分子弾性体の付与に先立って、人工皮革用基材の表面や裏面をバフィング処理やカレンダー処理等により平滑化してもよい。得られた人工皮革用基材は、研削処理によって表面が平滑になっているだけでなく、表面から200μmまでの範囲において評価される極細繊維束間の平均空隙サイズが、10~40μmの範囲になるような極めて均一で緻密な状態になっている。
 易抽出性高分子の例としては、ポリビニルアルコール、ポリウレタンエラストマー、アクリルエラストマー、ポリエチレングリコール、パラフィンワックス、ポリエチレンワックスなどが挙げられる。高分子弾性体の例としては、ポリウレタンエラストマーやアクリルエラストマーなど、前記した不織布構造体へ含有させる高分子弾性体と同様の例が挙げられる。易抽出性高分子、高分子弾性体の塗布方法の例としては、グラビアロールコーティング法、ロータリースクリーンコーティング法、スプレーコーティング法、リバースロールコーティング法などの公知のコーティング法が採用可能であり、中でもグラビアロールコーティング法が塗布する液粘度と塗布量とのバランス上好ましい。 研削処理の例としては、サンドペーパーによるバフィングが挙げられ、サンドペーパーへの加圧レベルは人工皮革用基材の表面状態を観察しながら、また処理後の人工皮革用基材の断面状態を評価しながら適宜調節して最適値を設定すればよい。
 このようにして得られた人工皮革用基材を、従来の人工皮革製造と同様に、必要により、厚さ方向に複数枚にスライスし、裏面となる面を研削するなどして厚さを調節したり、裏面となる面や表面となる面に高分子弾性体や極細繊維束の溶剤を含む液体で処理する。その後、少なくとも表面となる面をバフィング処理などの方法により起毛処理して極細繊維を主体とした繊維立毛面を形成させることで、スエード調やヌバック調などの立毛調人工皮革が得られる。また、表面となる面に高分子弾性体からなる被覆層を形成させることで銀面調人工皮革が得られる。
 繊維立毛面の形成には、サンドペーパーや針布などによるバフィング処理や、ブラッシング処理などの公知の方法を何れも用いることができる。また、このような起毛処理の前あるいは後に、高分子弾性体または極細繊維束を溶解または膨潤させることのできる溶剤、例えば、高分子弾性体がポリウレタンエラストマーであればジメチルホルムアミド(DMF)などを含む処理液、また極細繊維束がポリアミド系樹脂であればレゾルシンなどのフェノール系化合物を含む処理液を起毛処理する表面に塗布してもよい。これにより、高分子弾性体や極細繊維束の接着による極細繊維束の拘束状態、立毛調人工皮革の極細繊維立毛長、表面摩擦耐久性などを微調節することができる。
 高分子弾性体からなる被覆層の形成には、高分子弾性体を含む液体を人工皮革用基材の表面に直接付与する方法や、一旦離型紙などの支持基材上に該液体を塗布してから人工皮革用基材に貼り合わせる方法などの公知の方法を何れも用いることができる。形成する被覆層に用いられる高分子弾性体としては、前記した不織布構造体に含有させるための高分子弾性体と同様のものなど、従来の銀面調人工皮革の被覆層として公知の高分子弾性体であれば何れも採用可能である。形成する被覆層の厚さは、300μm以下程度であれば本発明の人工皮革用基材と十分に風合いがバランスした銀面調人工皮革を製造可能なので、特に限定されるものではない。本発明の人工皮革用基材の最大の特徴である極細繊維束による緻密な集合状態により得られる極めて平滑で均一な表面層を有する銀面調人工皮革を製造する場合には、厚さが100μm以下程度、好ましくは80μm以下程度、より好ましくは3~50μm程度の範囲で被覆層を形成するとよく、このような厚さの被覆層を形成することで、極めて細かな天然皮革調の折れシボを有する銀面調人工皮革を得ることも可能となる。
 このような立毛調人工皮革や銀面調人工皮革は、海島型繊維を極細長繊維束に変成した後の何れの段階で染色することも好ましい実施態様である。本発明においては、繊維の種類に応じて適宜選択される分散染料、反応染料、酸性染料、金属錯塩染料、硫化染料、硫化建染染料などを主体とした染料を用いた、パッダー、ジッガー、サーキュラー、ウィンスなどの従来の人工皮革の染色に通常用いられる公知の染色機を使用した染色方法が何れも採用可能である。また、染色以外にも、必要に応じて、ドライ状態での機械的もみ処理、染色機や洗濯機などを使用したウェット状態でのリラックス処理、柔軟剤処理、防燃剤や抗菌剤、消臭剤、撥水撥油剤などの機能性付与処理、シリコーン系樹脂やシルクプロテイン含有処理剤、グリップ性付与樹脂などの触感改質剤付与処理、着色剤やエナメル調用コーティング樹脂などの前記した以外の樹脂を塗布する意匠性付与処理などの仕上げ処理を行うことも好ましい。本発明の人工皮革用基材は、極細繊維束が非常に緻密に集合した構造をとっているので、ウェット状態でのリラックス処理や柔軟剤処理は、風合いを著しく改善するので、取り分け銀面調人工皮革において好ましく採用される処理である。例えばリラックス処理であれば60~140℃程度の温度範囲で界面活性剤を含むような水中で処理することで、天然皮革に勝るとも劣らない柔軟で膨らみ感がありながら、緻密構造自体がもつ充実感が損なわれていない人工皮革を得ることも可能である。
 次に、本発明の実施態様を具体的な実施例で説明するが、本発明はこれら実施例に限定されるものではない。なお、実施例中の部および%は、ことわりのない限り質量に関するものである。
(1)海島型繊維、あるいは極細長繊維束の断面積、集束本数、扁平率
 サンプルの厚さ方向と並行任意の断面について、走査型電子顕微鏡(100~300倍程度)を用いて観察し、観察視野から断面に対してほぼ垂直に配向した海島型繊維、あるいは極細長繊維束を20個、万遍なく、かつ、無作為に選び出した。次いで選び出した個々の海島型繊維、あるいは極細繊維束の集束本数、扁平率、及び投影サイズは、必要に応じて1000~3000倍程度の倍率に拡大して再観察して求めた。扁平率とは、繊維または繊維束の断面形状において、最も長い部分の長さと、これに垂直な方向の長さを測定し、前者を後者で割った値であり、通常は、最も長い部分の長さとは厚さ方向に垂直な方向の長さであることが多い。
 次に、選び出した20個の海島型繊維、あるいは極細繊維束について、個々に断面積を測定し、最大の断面積および最小の断面積を削除し、残った18個の断面積を算術平均することで、サンプルを構成する海島型繊維、あるいは極細繊維束の断面積を求めた。
 なお、極細繊維束の断面積は、繊維束外周を構成する繊維、及びそれら繊維間を結ぶ接線で囲まれた面積をいう。また、集束本数に関しては、個々の繊維束の収束本数が一定でなく分布を持っている場合には、断面積を平均したのと同様に最大本数、最小本数を除いた18個の極細繊維束の集束本数を算術平均することで、サンプルを構成する海島型繊維、あるいは極細繊維束の集束本数を求めた。
(2)人工皮革用基材断面における海島型繊維、あるいは極細長繊維の数密度、及び海島型繊維、あるいは極細繊維束間の空隙サイズ、平均空隙サイズ
 サンプルの厚さ方向と平行任意の断面について、走査型電子顕微鏡(100~300倍程度)を用いて、観察面積が合計0.3~0.5mm2程度になるように、連続した断面領域を観察した。その観察視野において、海島型繊維、あるいは極細繊維束の長さ方向に対してほぼ垂直であると判断される断面の個数を数え、その合計個数を観察面積で割ることにより1mm2当たりに存在する海島型繊維、あるいは極細繊維束断面の個数を求めた。このような観察を1種類のサンプルに対して少なくとも5箇所以上行い、最も少ない値をそのサンプルの数密度とした。
 次に、同じ観察視野において、海島型繊維、あるいは極細繊維束の断面以外の領域を全て空隙とみなし、海島型繊維、あるいは極細繊維束の断面に接する最大の円を描いて、その円の直径を測定した。但し、空隙が連続して広範囲に存在する場合には、円同士が重ならないようにして複数の円を描いて、描かれた複数の円の中で最大径の円を測定した。また、観察視野全体において繊維束同士が殆ど全て密着するように存在するような場合を除き、繊維束同士が密着するように存在する部分の空隙は、その観察視野における評価対象からは除外した。なお、密着するように存在するとは、繊維束を構成する極細繊維の繊維径と同等以下程度にまで近接して存在する場合をいう。このようにして測定された円の直径において、観察視野における最大値をサンプルの極細繊維束間の空隙サイズとした。また、観察視野において万遍なく、かつ無作為に選び出した空隙20箇所で測定された円直径について、最大値、最小値を除外した18箇所で算術平均した値を極細繊維束間の平均空隙サイズとした。
(3)立毛調人工皮革の外観の評価
 人工皮革分野の当業者から選出された5人のパネリストが、立毛調人工皮革の外観を目視により以下の基準で評価し、最も多くのパネリストが付けた評価を外観の評価結果とした。
 A:立毛表面の緻密性が全体的に極めて高く、手で触ったときにざらつきが全く無くて滑らかである。
 B:立毛表面の緻密性が全体的に僅かに粗いか、又は、全体的に比較的高いものの部分的に緻密性が明らかに低くて粗い部分が散在し、手で触ったときにややざらつきがある。
 C:全体的に粗い立毛表面であり、手で触ったときにかなりのざらつきがある。
(4)立毛調人工皮革の風合いの評価
 得られた立毛調人工皮革の厚さが0.8mm未満の場合にはゴルフ手袋に縫製し、厚さが0.8~1.2mmの場合にはジャケットに縫製し、厚さが1.2mmを超える場合にはソファーに縫製した。人工皮革分野の当業者から選出された5人のパネリストが着用により、立毛調人工皮革の風合いを以下の基準で評価し、最も多くのパネリストが付けた評価を風合いの評価結果とした。
 A:柔軟で膨らみ感がありながら十分な充実感も感じられる風合いであり、縫製品のフィット感が良好である。
 B:柔軟さ、膨らみ感、充実感の何れかに欠けていてやや物足りない風合いであり、縫製品のフィット感が不足している(風合いやフィット感において、従来の一般的な立毛調人工皮革と同程度である)。
 C:柔軟さ、膨らみ感、充実感の何れかが大幅に劣っているか、又は、何れも大幅に劣った風合いであり、縫製品のフィット感が不良である(風合いやフィット感において、従来の一般的な立毛調人工皮革に劣っている)。
(5)立毛調人工皮革の表面摩耗耐久性の評価
 JIS L1096に規定されているマーチンデール磨耗試験測定方法に準じ、荷重12kPa、磨耗回数50000回の条件で、得られた立毛調人工皮革の表面を磨耗処理した。処理前後の質量差(磨耗減量)が50mg以下の場合を耐磨耗性が良好であると判定した。また、処理前後の立毛調人工皮革表面のピリング発生状態(増減)を目視により以下の基準で比較した。耐磨耗性が良好であり、かつピリング発生状態がAまたはBであるものを、表面磨耗耐久性に優れていると評価した。
 A:ピリングの増加は見られない(立毛の切断などによるピリングの減少は見られてもよい)
 B:ピリングの僅かな増加が見られるものの、手で触れて硬さが感じられるピリングは殆ど増加していない
 C:ピリングが明らかに増加しており、手で触れて硬さが感じられるピリングが明らかに増加している
実施例1
 海成分ポリマーとしてエチレン変性ポリビニルアルコール(エチレン単位の含有量8.5モル%、重合度380、ケン化度98.7モル%)、島成分ポリマーとしてイソフタル酸変性ポリエチレンテレフタレート(イソフタル酸単位の含有量6.0モル%)を、それぞれを個別に溶融させた。海成分ポリマー中に均一な断面積の島成分ポリマーが25個分布した断面を形成できる、多数のノズル孔が並列状に配置された複合紡糸用口金に、該溶融ポリマーを断面における海成分ポリマーと島成分ポリマーの平均面積比が海成分/島成分=25/75となるような圧力バランスで供給し、口金温度250℃でノズル孔より吐出させた。平均紡糸速度が3600m/分となるように気流の圧力を調節したエアジェット・ノズル型の吸引装置で牽引細化させ、平均断面積が177μm2(約2.4dtex)の海島型繊維を紡糸し、これを裏面側から吸引しつつネット上に連続的に捕集した。ネットの移動速度を調節して堆積量を調節し、さらに80℃に保温したエンボスロールにより線圧70kg/cmで押さえ、目付30g/m2、厚さ方向に並行断面上に海島型繊維の断面が220~250個/mm2存在し、巻き取りが可能な程度にまで形態が安定化された長繊維ウェブを得た。
 エンボス後の長繊維ウェブ表面に、鉱物油系の滑り性油剤を主体とし、帯電防止剤を混合した油剤をスプレー付与した後、クロスラッパー装置を用いて長繊維ウェブを連続的に折り畳むことにより、14層の層状長繊維ウェブにした。次いで、層状長繊維ウェブにニードルパンチングを作用させるニードルパンチ法によって三次元絡合処理を行い、海島型繊維の数密度が500個/mm2の不織布構造体を得た。ニードルパンチングの条件は、ニードル番手40番、バーブ深さ40μm、バーブ数1個で正三角形断面のニードルAで、両面側からバーブが厚さ方向に貫通するパンチ深さにて予備絡合、即ち折り畳んだ長繊維ウェブがずれてしまわない程度の絡合を行った後、ニードル番手42番、バーブ深さ40μm、バーブ数6個で正三角形断面のニードルBで、両面側からバーブ3個が厚さ方向に貫通するパンチ深さにて、海島型繊維同士が所望のレベルまで厚さ方向に絡合するように絡合処理を行った。ニードルBでのニードルパンチングは、両面側から合計で1700パンチ/cm2のパンチ数で行った。
 次いで、この不織布構造体の両面に18℃の水を均一にスプレー塗布した後、直ちに温度75℃、相対湿度95%の雰囲気中を長さ方向、幅方向の何れの方向にも張力や摩擦応力が殆ど作用しないようにしつつ、4分間かけて連続的に通過させるような条件で湿熱収縮処理を行うことによって、海島型繊維間を均一に近接させた。その後、不織布構造体を乾燥させる前に120℃に保温した金属ロール間でプレス処理して表面を圧縮平滑化しつつ乾燥させ、次いで不織布構造体全体を120℃の雰囲気中へ導入して乾燥させることにより、目付け1125g/m2で厚さ方向に並行な断面において、海島型繊維の数密度が1900個/mm2であるような極めて緻密な不織布構造体を得た。
 得られた不織布構造体に、高分子弾性体液としてポリカーボネート/エーテル系ポリウレタンを主体とするポリウレタン組成物の水分散液(固形分濃度11質量%)を含浸し、不織布構造体の質量100に対して高分子弾性体液の含液量が50になるよう金属ロールでプレスした後、さらに不織布構造体の表面温度が80℃になるような条件で赤外線ヒーターを1分間作用させることで感熱凝固させて、最後に120℃の雰囲気中へ導入して水分を乾燥させ、次いで直ちに150℃の雰囲気中へ導入して2分間キュア処理を行うことでポリウレタン組成物を海島型繊維同士の空隙に存在させた。次いで、液流染色機中で90℃の熱水により20分間処理して海島型繊維中の変性ポリビニルアルコールを抽出除去した後、120℃の雰囲気中へ導入して水分を乾燥させることで、変性ポリエチレンテレフタレートの極細長繊維束からなる不織布構造体の内部にポリウレタン組成物が含有された厚さ約1.4mmの本発明の人工皮革用基材を得た。
 得られた人工皮革用基材の断面において極細長繊維束を観察すると、その断面積は200~400μm2の範囲で分布していて平均は250μm2であり、ほぼ均一な繊維径を有していて略円形の断面形状の極細長繊維が25本集束していた。繊維束は厚さ方向への扁平化があまり見られず、繊維束の扁平率は最大でも2.5で、殆どが2.0未満であり、投影サイズは40μmであった。また、厚さ方向と平行断面における極細長繊維束の数密度は2500個/mm2であり、極細繊維束間の空隙サイズは52μm、平均空隙サイズは35μmであった。
実施例2
 実施例1により得た人工皮革用基材をスライスにより厚さ方向に二分割し、分割面をサンドペーパーでバフィング処理して平均厚さ0.67mmに厚みを合わせた。バフィング処理を行わなかった方の面に、ポリビニルアルコールの6%水溶液を55メッシュのグラビアロールにて2回塗布して乾燥し、次いで、実施例1で含浸に用いたものと同じポリカーボネート/エーテル系ポリウレタンを主体とするポリウレタン組成物の水分散液(固形分濃度6質量%)を75メッシュのグラビアロールにて3回塗布して乾燥した。このポリウレタン組成物付与面を、バフ機にセットしたエンドレスのサンドペーパーで加圧しつつバフィング処理して起毛および整毛することで、変性ポリエチレンテレフタレートの極細繊維からなる立毛を形成した。さらに液流染色機を用いて分散染料で染色加工を行った後、ブラッシングして整毛仕上げをしてベージュ色の立毛調人工皮革を得た。得られた立毛調人工皮革は、厚さ方向と平行断面において立毛面側から厚さ方向に200μmまでの領域における極細繊維束の数密度は2700個/mm2であって緻密性が極めて高く、天然皮革ヌバックに似た優美な立毛外観を有しているばかりでなく、風合い、表面磨耗耐久性の何れもが極めて良好であり、本発明が目的とする効果を有する立毛調人工皮革であった。評価結果を表1に示す。
比較例1
 実施例1において、長繊維ウェブを構成する海島型繊維の島成分ポリマーをナイロン6に変更し、平均断面積が307μm2(約3.6dtex)となるような条件で海島型繊維を紡糸する以外は実施例1と同様にして、エンボス安定化した目付30g/m2の長繊維ウェブを得た。得られた長繊維ウェブ表面に、実施例1と同様にして油剤を付与した後、クロスラッパー装置で層状長繊維ウェブを得た。次いで、層状長繊維ウェブに、実施例1と同様にニードルAでの予備絡合を行った後、ニードル番手42番、バーブ深さ40μm、バーブ数1個で正三角形断面のニードルCで、バーブが厚さ方向に貫通するパンチ深さにて、海島型繊維同士が厚さ方向に絡合するように、両面側から合計で3500パンチ/cm2のパンチ数でニードルパンチングによる絡合処理を行った。得られた不織布構造体に、実施例1と同様の湿熱処理、プレス処理を行うことで、目付700g/m2の不織布構造体を得た。
 得られた不織布構造体に、実施例1と同様にして、ポリウレタン組成物を海島型繊維同士の空隙に存在させた後で海島型繊維中の変性ポリビニルアルコールを抽出除去して、ナイロン6の極細長繊維束からなる不織布構造体の内部にポリウレタン組成物が含有された厚さ約1.4mmの人工皮革用基材を得た。次いで、得られた人工皮革用基材について、実施例2と同様の方法で二分割処理、バフィング処理を行って、ナイロン6の極細繊維からなる立毛を形成した後、液流染色機を用いて金属錯塩酸性染料で実施例2と同様の色調に染色加工を行い、さらに整毛仕上げを行うことでベージュ色の立毛調人工皮革を作成した。得られた立毛調人工皮革は緻密性が不充分なので、従来のスエード調人工皮革でも達成できたレベルの粗い立毛外観を有するに過ぎず、表面磨耗耐久性は特に優れているわけではない上、硬くて骨ばった感じの風合いを有するものであって、本発明の目的とするレベルを満たしていないものであった。評価結果を表1に示す。
比較例2
 実施例1において、長繊維ウェブを構成する海島型繊維として、島成分ポリマーが100個分布した断面を形成できる複合紡糸用口金を用いて海島型繊維を紡糸する以外は実施例1と同様にして、エンボス安定化した目付30g/m2の長繊維ウェブを得た。得られた長繊維ウェブ表面に、実施例1と同様にして油剤を付与した後、クロスラッパー装置で層状長繊維ウェブとし、さらに実施例1と同様のニードルパンチングによる絡合処理を行った。得られた不織布構造体に、水を塗布することなく熱プレス処理を行うことで、目付970g/m2の不織布構造体を得た。
 得られた不織布構造体に、実施例1と同様にして、ポリウレタン組成物を海島型繊維同士の空隙に存在させた後で海島型繊維中の変性ポリビニルアルコールを抽出除去して、変性ポリエチレンテレフタレートの極細長繊維束からなる不織布構造体の内部にポリウレタン組成物が含有された厚さ約1.4mmの人工皮革用基材を得た。次いで、得られた人工皮革用基材について、実施例2と同様の方法で二分割処理、バフィング処理を行って、変性ポリエチレンテレフタレートの極細繊維からなる立毛を形成した後、分散染料での染色加工及び整毛仕上げを行うことでベージュ色の立毛調人工皮革を作成した。得られた立毛調人工皮革は一見すると緻密だが、実際には表層部分の繊維束が厚さ方向に潰れて扁平化することで見かけ密度が高くなっているに過ぎない。繊維束の扁平率は、3.0を超えるものが多数存在しており、最も扁平化している繊維束は4.7であった。この扁平化した繊維束により緻密化した表層部分は、バフィング処理によって起毛されてしまうと緻密化されていない疎な部分と同様の緻密さに戻ってしまい、結局は従来のスエード調人工皮革でも達成できたレベルの粗い立毛外観しか得られないばかりか、かつ厚さ方向の中央付近が疎であるのに対して表層部分だけが極端に硬く詰まった構造なので、風合いはダンボール様の表面に硬さが感じられるものであり、本発明の目的とするレベルを満たしていないものであった。評価結果を表1に示す。また、実施例2との対比においては、立毛を形成する極細繊維がより細いので、同じ色に染色したものの白っぽくて色に深みがなく、高級感に欠ける外観であった。
比較例3
 実施例1において、長繊維ウェブを構成する海島型繊維として、島成分ポリマーが64個分布した断面を形成できる複合紡糸用口金を用いて、平均断面積が485μm2(約6.6dtex)となるような条件で海島型繊維を紡糸する以外は実施例1と同様にして、エンボス安定化した目付30g/m2の長繊維ウェブを得た。得られた長繊維ウェブ表面に、実施例1と同様にして油剤を付与した後、クロスラッパー装置で層状長繊維ウェブを得た。次いで、層状長繊維ウェブに、実施例1と同様にニードルAでの予備絡合、及びニードルBでの絡合処理を行った。得られた不織布構造体に、実施例1と同様の湿熱処理、プレス処理を行うことで、目付990g/m2の不織布構造体を得た。
 得られた不織布構造体に、実施例1と同様にして、ポリウレタン組成物を海島型繊維同士の空隙に存在させた後で海島型繊維中の変性ポリビニルアルコールを抽出除去して、変性ポリエチレンテレフタレートの極細長繊維束からなる不織布構造体の内部にポリウレタン組成物が含有された厚さ約1.4mmの人工皮革用基材を得た。次いで、得られた人工皮革用基材について、実施例2と同様の方法で二分割処理、バフィング処理を行って、変性ポリエチレンテレフタレートの極細繊維からなる立毛を形成した後、分散染料での染色加工及び整毛仕上げを行うことでベージュ色の立毛調人工皮革を作成した。得られた立毛調人工皮革は、単位断面積当たりの繊維束の数は十分に存在して緻密性はあるように見えるが、繊維束は扁平率が4.0を超えるほど扁平化してしまっていて、繊維束同士の間に存在する空隙サイズに顕著な斑があり、しかも所々に極めてサイズが大きな空隙が存在するため、結局は従来のスエード調人工皮革でも達成できたレベルの粗い立毛外観を有するに過ぎず、表面磨耗の減量は少ないがピリングが明確に増加する上、少し芯があって膨らみ感が足りない感じの風合いを有するものであって、本発明の目的とするレベルを満たしていないものであった。評価結果を表1に示す。
比較例4
 実施例1において、長繊維ウェブを構成する海島型繊維として、断面における海成分ポリマーと島成分ポリマーの平均面積比が海成分/島成分=20/80であり、平均断面積が147μm2(約2.0dtex)となるような条件で海島型繊維を紡糸する以外は実施例1と同様にして、エンボス安定化した目付30g/m2の長繊維ウェブを得た。得られた長繊維ウェブ表面に、実施例1と同様にして油剤を付与した後、クロスラッパー装置で層状長繊維ウェブとし、さらに実施例1と同様のニードルパンチングによる絡合処理を行った。得られた不織布構造体を、70℃の温水浴中に浸漬することで熱収縮処理を行い、さらに乾燥させることなく90℃の熱水浴中へ浸漬することで海島型繊維中の変性ポリビニルアルコールを抽出除去した。このようにして、変性ポリエチレンテレフタレートの極細長繊維束からなり、ポリウレタン組成物を含有しない、目付845g/m2の人工皮革用基材を得た。
 次いで、得られた人工皮革用基材について、実施例2と同様の方法で二分割処理、バフィング処理を行って、変性ポリエチレンテレフタレートの極細繊維からなる立毛を形成した後、分散染料での染色加工及び整毛仕上げを行うことでベージュ色の立毛調人工皮革を作成した。得られた立毛調人工皮革は、他の例と異なりポリウレタン組成物を含有しないにも関わらず、しっかりして充実感のある好ましい風合いを有していた。しかしながら、断面を観察すると繊維束が非常に緻密に集まった部分と少し疎な部分とが混在した状態であり、その繊維束数に斑がある基材をバフィング処理することで形成された立毛表面は、斑に起因すると思われる立毛数が多い部分と少ない部分とが混在していた。厚さ方向と平行断面における極細長繊維束の数密度を評価したところ、表面付近の多いところでも1400個/mm2であり、極細繊維束間の空隙サイズは74μm、表面から200μmまでの範囲の平均空隙サイズは42μmであった。結果として全体としては粗い立毛外観であり、本発明の目的とするレベルを満たしていないものであった。評価結果を表1に示す。
比較例5
 実施例1において、長繊維ウェブを構成する複合繊維として、除去成分ポリマー(海成分ポリマー)5層と繊維成分ポリマー(島成分ポリマーに相当)6層とが、交互に重なった重畳形状の断面を形状できる複合紡糸用口金を用い、除去成分ポリマーとして実施例1と同様のエチレン変性ポリビニルアルコールを、また、繊維成分ポリマーとして実施例1と同様のイソフタル酸変性ポリエチレンテレフタレートをそれぞれ個別に溶融させた。該溶融ポリマーを断面における除去成分ポリマーと繊維成分ポリマーの平均面積比が除去成分/繊維成分=35/65となるような圧力バランスで供給し、平均断面積が330μm2(約4.4dtex)となるような条件で複合繊維を紡糸する以外は実施例1と同様にして、エンボス安定化した目付30g/m2の長繊維ウェブを得た。得られた長繊維ウェブ表面に、実施例1と同様にして油剤を付与した後、クロスラッパー装置で層状長繊維ウェブを得た。次いで、層状長繊維ウェブに、実施例1と同様にニードルAでの予備絡合を行った後、ニードル番手32番、バーブ深さ60μm、バーブ数9個で正三角形断面のニードルDで、バーブが厚さ方向に貫通するパンチ深さにて、複合繊維同士が厚さ方向に絡合するように、両面側から合計で600パンチ/cm2のパンチ数でニードルパンチングによる絡合処理を行い(ニードルDで1000パンチ/cm2を超えるパンチ数でニードルパンチングを行うと、ニードル折損などのトラブルが多発するようになる。)、次いで、ニードル番手36番、バーブ深さ80μm、バーブ数1個で正三角形断面のニードルEで、バーブが厚さ方向に貫通しないパンチ深さにて400パンチ/cm2のパンチ数でニードルパンチングを行った。ニードルEでのニードルパンチングを行った後、不織布構造体を観察すると、断面にはニードルパンチングによって厚さ方向に配向した繊維束が多数みられ、また表面には切断により形成された繊維端が0.5~2.5本/mm2程度の頻度で観察された。得られた不織布構造体に、実施例1と同様の湿熱処理、プレス処理を行うことで、目付650g/m2の不織布構造体を得た。
 得られた不織布構造体に、実施例1と同様にして、ポリウレタン組成物を海島型繊維同士の空隙に存在させた後で海島型繊維中の変性ポリビニルアルコールを抽出除去して、変性ポリエチレンテレフタレートの極細長繊維束からなる不織布構造体の内部にポリウレタン組成物が含有された厚さ約1.4mmの人工皮革用基材を得た。次いで、得られた人工皮革用基材について、実施例2と同様の方法で二分割処理、バフィング処理を行って、変性ポリエチレンテレフタレートの極細繊維からなる立毛を形成した後、分散染料での染色加工及び整毛仕上げを行うことでベージュ色の立毛調人工皮革を作成した。得られた立毛調人工皮革は、断面にみられる繊維束の緻密性が実施例1に比べて明らか劣っているばかりか、繊維束同士の間に存在する空隙サイズに顕著な斑があり、しかも所々に極めてサイズが大きな空隙が存在するため、従来のスエード調人工皮革レベルの外観にも及ばない極めて粗い立毛外観を有するに過ぎず、さらには、極めて硬くて骨ばった感じの風合いを有し、本発明の目的とするレベルを到底満たしていないものであった。評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 本発明の人工皮革用基材を用いて得られる人工皮革は、外観、表面強度、風合いなどの性質を高いレベルで兼備しているので、ジャケットやスカート、シャツやコートで代表される衣料用、スポーツ靴や紳士婦人靴で代表される履物用、ベルトで代表される服飾品用、ハンドバッグやランドセルで代表される鞄用、ソファーやオフィスチェアで代表される家具用、乗用車や列車、航空機や船舶に代表される乗物のシートや内装材用、ゴルフ手袋やバッティング手袋、野球グローブなどのスポーツ手袋やドライビング手袋、作業用手袋で代表される各種手袋用などの用途に好適に使用できる。
 本発明の人工皮革用基材から得られる立毛調人工皮革は、緻密性が極めて高い天然ヌバック調皮革様の立毛感のある外観を有する。また、発色性に優れ、柔軟で膨らみ感がありながら充実感も有する風合い、および、耐ピリング性に代表される表面摩擦耐久性など、従来兼備することが難しかった特性においても優れている。また、本発明の人工皮革用基材から得られる銀面調人工皮革は、平滑性が高くて折れシボが極めて細かい天然皮革様の銀面感のある外観を有する。また、基材と銀面層との一体感、柔軟で膨らみ感のある風合いおよび接着剥離強力など、従来兼備することが難しかった特性おいても優れている。これらの人工皮革は、衣料用、靴用、袋物用、家具用、カーシート用、ゴルフ手袋等の各種スポーツ手袋用などの用途において好適に利用できる。

Claims (7)

  1. 極細長繊維束の不織布構造体からなる人工皮革用基材において、下記(1)~(4):
    (1)極細長繊維束が、断面形状が略円形の極細長繊維が8~70本集束したものであること、
    (2)極細長繊維束が、断面積170~700μm2、扁平率4.0以下であること、
    (3)不織布構造体の厚さ方向と平行任意の断面において、極細長繊維束の断面が1500~3000個/mm2の範囲で存在していること、および
    (4)不織布構造体の厚さ方向と平行任意の断面において、極細繊維束間の空隙サイズが70μm以下であること、
    を同時に満足していることを特徴とする人工皮革用基材。
  2. 不織布構造体の厚さ方向と平行任意の断面の表面から200μmまでの範囲において、極細繊維束間の平均空隙サイズが10~40μmの範囲にある請求項1記載の人工皮革用基材。
  3. 高分子弾性体が含有されている請求項1または2記載の人工皮革用基材。
  4. 請求項1~3いずれか1項に記載の人工皮革用基材の表面を起毛してなる立毛調人工皮革。
  5. 下記工程(a)~(d)を順次実施することを特徴とする人工皮革用基材の製造方法。
    (a)島成分に熱収縮性ポリマー、海成分に水溶性ポリマーを用い、島数が8~70個、海と島の断面積比が5:95~60:40、断面積が70~350μm2の海島型長繊維を溶融紡糸し、これをカットすることなくランダムな配向状態で捕集面上に集積してシート状の長繊維ウェブを製造する工程
    (b)長繊維ウェブを、必要に応じて複数重ね合わせ、少なくとも6バーブのニードルを用い、かつ該ニードルの少なくとも1つ以上のバーブが貫通するような条件で、両面からニードルパンチングして海島型長繊維同士を三次元絡合させて不織布構造体を製造する工程
    (c)不織布構造体を海成分ポリマーが可塑化し、かつ島成分ポリマーが収縮するような条件で湿熱処理し、必要に応じて乾熱プレス処理して、厚さ方向に並行断面において海島型長繊維の断面が1000~3500個/mm2の範囲になるまで緻密化する工程
    (d)海島型長繊維から海成分を水または水溶液により除去し、極細長繊維束に変成させる工程。
  6. 請求項5記載の人工皮革用基材の製造方法における工程(d)の後工程として、下記工程(e)~(h)を順次実施する人工皮革用基材の製造方法。
    (e)不織布構造体の少なくとも片面に、易抽出性高分子の溶液、水分散液または融液を塗布し、易抽出性高分子を固化させる工程
    (f)同じ面に高分子弾性体の水分散液を塗布し、高分子弾性体を固化させる工程
    (g)不織布構造体から易抽出性高分子を除去する工程
    (h)高分子弾性体を塗布した面を加圧しつつ研削処理して、不織布構造体の厚さ方向と平行任意の断面の研削処理側表面から200μmまでの範囲において、極細繊維束間の平均空隙サイズが10~40μmの範囲になるよう緻密化する工程。
  7. 請求項5または6記載の人工皮革用基材の製造方法における工程(d)の前工程または後工程として、下記工程(i)を実施する人工皮革用基材の製造方法。
    (i)不織布構造体に高分子弾性体の溶液または水分散液を含浸し、高分子弾性体を固化させる工程。
PCT/JP2008/061530 2008-06-25 2008-06-25 人工皮革用基材およびその製造方法 WO2009157063A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020107024509A KR101712209B1 (ko) 2008-06-25 2008-06-25 인공 피혁용 기재 및 그 제조 방법
EP08790597.2A EP2292821B1 (en) 2008-06-25 2008-06-25 Base material for artificial leather and process for producing the same
KR1020157011384A KR101655054B1 (ko) 2008-06-25 2008-06-25 인공 피혁용 기재 및 그 제조 방법
US12/988,563 US9752260B2 (en) 2008-06-25 2008-06-25 Base material for artificial leather and process for producing the same
PCT/JP2008/061530 WO2009157063A1 (ja) 2008-06-25 2008-06-25 人工皮革用基材およびその製造方法
CN2008801300561A CN102076898B (zh) 2008-06-25 2008-06-25 人造皮革用基材及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2008/061530 WO2009157063A1 (ja) 2008-06-25 2008-06-25 人工皮革用基材およびその製造方法

Publications (1)

Publication Number Publication Date
WO2009157063A1 true WO2009157063A1 (ja) 2009-12-30

Family

ID=41444140

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/061530 WO2009157063A1 (ja) 2008-06-25 2008-06-25 人工皮革用基材およびその製造方法

Country Status (5)

Country Link
US (1) US9752260B2 (ja)
EP (1) EP2292821B1 (ja)
KR (2) KR101655054B1 (ja)
CN (1) CN102076898B (ja)
WO (1) WO2009157063A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098364A1 (ja) * 2009-02-27 2010-09-02 株式会社クラレ 人工皮革、長繊維絡合ウェブおよびそれらの製造方法
JP2011058108A (ja) * 2009-09-08 2011-03-24 Kuraray Co Ltd 人工皮革用基材およびその製造方法
JP2012207353A (ja) * 2011-03-30 2012-10-25 Kuraray Co Ltd 皮革様基材、その製造方法、及び該皮革様基材を用いた紐
WO2015045367A1 (ja) * 2013-09-30 2015-04-02 株式会社クラレ 立毛調人工皮革及びその製造方法
WO2018230417A1 (ja) * 2017-06-14 2018-12-20 株式会社クラレ 立毛調人工皮革
WO2019181676A1 (ja) * 2018-03-19 2019-09-26 株式会社クラレ 立毛人工皮革及びその製造方法

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8513147B2 (en) * 2003-06-19 2013-08-20 Eastman Chemical Company Nonwovens produced from multicomponent fibers
US20040260034A1 (en) * 2003-06-19 2004-12-23 Haile William Alston Water-dispersible fibers and fibrous articles
US7892993B2 (en) * 2003-06-19 2011-02-22 Eastman Chemical Company Water-dispersible and multicomponent fibers from sulfopolyesters
WO2007138931A1 (ja) 2006-05-30 2007-12-06 Kuraray Co., Ltd. 人工皮革用基材および銀付調人工皮革
US20080160859A1 (en) * 2007-01-03 2008-07-03 Rakesh Kumar Gupta Nonwovens fabrics produced from multicomponent fibers comprising sulfopolyesters
US20110033687A1 (en) * 2008-04-25 2011-02-10 Junko Deguchi Thin woven fabric
US8512519B2 (en) * 2009-04-24 2013-08-20 Eastman Chemical Company Sulfopolyesters for paper strength and process
US20120183861A1 (en) 2010-10-21 2012-07-19 Eastman Chemical Company Sulfopolyester binders
DK2597193T3 (da) 2011-11-24 2014-02-10 Jade Long John Entpr Co Ltd Fremgangsmåde til at fremstille stof der føles som et kunstlædertekstil
US8840757B2 (en) 2012-01-31 2014-09-23 Eastman Chemical Company Processes to produce short cut microfibers
US9303357B2 (en) 2013-04-19 2016-04-05 Eastman Chemical Company Paper and nonwoven articles comprising synthetic microfiber binders
JP6429790B2 (ja) * 2013-11-01 2018-11-28 株式会社クラレ ヌバック調皮革様シート及びその製造方法
US9598802B2 (en) 2013-12-17 2017-03-21 Eastman Chemical Company Ultrafiltration process for producing a sulfopolyester concentrate
US9605126B2 (en) 2013-12-17 2017-03-28 Eastman Chemical Company Ultrafiltration process for the recovery of concentrated sulfopolyester dispersion
WO2016051711A1 (ja) * 2014-09-29 2016-04-07 株式会社クラレ 起毛皮革調シート及びその製造方法
US20180355523A1 (en) * 2015-01-09 2018-12-13 Mill Direct, Inc. Renewably Sourced Yarn and Method of Manufacturing Same
CN104894880A (zh) * 2015-04-20 2015-09-09 天守(福建)超纤科技股份有限公司 一种超软手感超纤仿真皮制造方法
CN104878611A (zh) * 2015-04-20 2015-09-02 天守(福建)超纤科技股份有限公司 一种耐水解性的超细纤维合成革制造方法
US20180245282A1 (en) * 2015-09-07 2018-08-30 Seiren Co., Ltd. Nubuck-like artificial leather, and method for producing nubuck-like artificial leather
KR20180103307A (ko) * 2017-03-09 2018-09-19 현대자동차주식회사 표면촉감이 우수한 고밀도 인공피혁 및 그 제조방법
CN108950866B (zh) * 2018-08-31 2020-04-14 福建冠泓工业有限公司 一种防撕裂无纺布及其制备方法
KR102191006B1 (ko) * 2019-12-06 2020-12-16 주식회사 하코 형태안정성이 향상된 부직포 및 그 제조방법

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334903A (en) 1976-09-13 1978-03-31 Toray Industries Antipilling suede like sheet article
JPS57154468A (en) 1981-03-10 1982-09-24 Kuraray Co Raised porous sheet like article and production thereof
JPH07173778A (ja) 1993-10-29 1995-07-11 Kuraray Co Ltd スエード調人工皮革
JPH11200219A (ja) 1998-01-20 1999-07-27 Teijin Ltd 人工皮革用基布、および柔軟で伸び止め感の改善された人工皮革の製造方法
JP2000273769A (ja) 1999-03-25 2000-10-03 Teijin Ltd 長繊維不織布およびそれを含む人工皮革
JP2002220741A (ja) * 2000-03-16 2002-08-09 Kuraray Co Ltd 複合繊維、中空繊維および該複合繊維を用いた中空繊維の製造方法
JP2003096676A (ja) * 2001-09-25 2003-04-03 Toray Ind Inc 皮革様シート状物の製造方法
JP2003213575A (ja) * 2002-01-22 2003-07-30 Toray Ind Inc 皮革様シート状物の製造方法
JP2006233393A (ja) * 2005-02-28 2006-09-07 Kuraray Co Ltd 緻密な絡合不織布の製造方法
JP2008025041A (ja) * 2006-07-19 2008-02-07 Kuraray Co Ltd 染色された生分解性皮革様シートおよびその製造方法

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3121462B2 (ja) * 1992-12-07 2000-12-25 株式会社クラレ 立毛シート
US6716776B2 (en) * 1999-05-13 2004-04-06 Teijin Limited Nonwoven fabric made from filaments and artificial leather containing it
DE69920177T2 (de) 1999-05-19 2005-09-22 Teijin Ltd. Vliesstoffbahn aus Filamenten und diese enthaltendes Kunstleder
ES2316408T3 (es) 2000-03-16 2009-04-16 Kuraray Co., Ltd. Fibras huecas y procedimiento de fabricacion de fibras huecas.
DE60302938T2 (de) * 2002-06-12 2006-09-21 KURARAY CO., LTD, Kurashiki Flammfestes, lederartiges bahnenförmiges Substrat und Verfahren zu seiner Herstellung
CA2555902C (en) 2004-02-13 2012-10-09 Toray Industries, Inc. Leather-like sheet and process for producing thereof
CN101198742B (zh) * 2005-06-17 2010-12-08 可乐丽股份有限公司 人造革用基材及其制造方法
JP4869242B2 (ja) * 2005-09-30 2012-02-08 株式会社クラレ 皮革様シートおよびその製造方法
JP4847472B2 (ja) * 2005-12-14 2011-12-28 株式会社クラレ 人工皮革用基材およびその基材を用いた人工皮革

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5334903A (en) 1976-09-13 1978-03-31 Toray Industries Antipilling suede like sheet article
JPS57154468A (en) 1981-03-10 1982-09-24 Kuraray Co Raised porous sheet like article and production thereof
JPH07173778A (ja) 1993-10-29 1995-07-11 Kuraray Co Ltd スエード調人工皮革
JPH11200219A (ja) 1998-01-20 1999-07-27 Teijin Ltd 人工皮革用基布、および柔軟で伸び止め感の改善された人工皮革の製造方法
JP2000273769A (ja) 1999-03-25 2000-10-03 Teijin Ltd 長繊維不織布およびそれを含む人工皮革
JP2002220741A (ja) * 2000-03-16 2002-08-09 Kuraray Co Ltd 複合繊維、中空繊維および該複合繊維を用いた中空繊維の製造方法
JP2003096676A (ja) * 2001-09-25 2003-04-03 Toray Ind Inc 皮革様シート状物の製造方法
JP2003213575A (ja) * 2002-01-22 2003-07-30 Toray Ind Inc 皮革様シート状物の製造方法
JP2006233393A (ja) * 2005-02-28 2006-09-07 Kuraray Co Ltd 緻密な絡合不織布の製造方法
JP2008025041A (ja) * 2006-07-19 2008-02-07 Kuraray Co Ltd 染色された生分解性皮革様シートおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2292821A4 *

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010098364A1 (ja) * 2009-02-27 2010-09-02 株式会社クラレ 人工皮革、長繊維絡合ウェブおよびそれらの製造方法
US10465337B2 (en) 2009-02-27 2019-11-05 Kuraray Co., Ltd. Artificial leather, entangled web of filaments, and process for producing these
JP2011058108A (ja) * 2009-09-08 2011-03-24 Kuraray Co Ltd 人工皮革用基材およびその製造方法
JP2012207353A (ja) * 2011-03-30 2012-10-25 Kuraray Co Ltd 皮革様基材、その製造方法、及び該皮革様基材を用いた紐
WO2015045367A1 (ja) * 2013-09-30 2015-04-02 株式会社クラレ 立毛調人工皮革及びその製造方法
JPWO2015045367A1 (ja) * 2013-09-30 2017-03-09 株式会社クラレ 立毛調人工皮革及びその製造方法
JP7203022B2 (ja) 2017-06-14 2023-01-12 株式会社クラレ 立毛調人工皮革
WO2018230417A1 (ja) * 2017-06-14 2018-12-20 株式会社クラレ 立毛調人工皮革
JPWO2018230417A1 (ja) * 2017-06-14 2020-05-21 株式会社クラレ 立毛調人工皮革
US11761149B2 (en) 2017-06-14 2023-09-19 Kuraray Co., Ltd. Napped artificial leather
WO2019181676A1 (ja) * 2018-03-19 2019-09-26 株式会社クラレ 立毛人工皮革及びその製造方法
JP7220202B2 (ja) 2018-03-19 2023-02-09 株式会社クラレ 立毛人工皮革及びその製造方法
TWI797277B (zh) * 2018-03-19 2023-04-01 日商可樂麗股份有限公司 絨毛人工皮革及其製造方法
JPWO2019181676A1 (ja) * 2018-03-19 2021-03-11 株式会社クラレ 立毛人工皮革及びその製造方法

Also Published As

Publication number Publication date
KR101655054B1 (ko) 2016-09-06
EP2292821B1 (en) 2017-02-15
EP2292821A4 (en) 2014-07-09
EP2292821A1 (en) 2011-03-09
KR20150056868A (ko) 2015-05-27
CN102076898A (zh) 2011-05-25
US9752260B2 (en) 2017-09-05
KR20110038611A (ko) 2011-04-14
KR101712209B1 (ko) 2017-03-03
US20110039055A1 (en) 2011-02-17
CN102076898B (zh) 2012-12-12

Similar Documents

Publication Publication Date Title
WO2009157063A1 (ja) 人工皮革用基材およびその製造方法
JP4847472B2 (ja) 人工皮革用基材およびその基材を用いた人工皮革
JP4913678B2 (ja) 人工皮革用基材およびその製造方法
JP5555468B2 (ja) 耐ピリング性の良好な立毛調人工皮革
JP5593379B2 (ja) 皮革様シート
KR102444372B1 (ko) 기모 피혁풍 시트 및 그 제조 방법
JP6745078B2 (ja) 立毛調人工皮革
EP1895044B1 (en) Base material for artificial leathers and method of producing the same
JP2014065980A (ja) 皮革様シートおよび皮革様シートの製造方法
KR101644209B1 (ko) 인공 피혁, 필라멘트 낙합 웹 및 그들의 제조 방법
KR20160078366A (ko) 누벅풍 피혁형 시트 및 그 제조 방법
JP2012211414A (ja) スエード調皮革様シートの製造方法
JP6446012B2 (ja) 人工皮革用基材
JP2011058108A (ja) 人工皮革用基材およびその製造方法
JP2011058107A (ja) 人工皮革用基材およびその製造方法
JP2011058109A (ja) 人工皮革用基材およびその製造方法
JP2012046849A (ja) スエード調皮革様シートの製造方法
JP2012214944A (ja) 皮革様基材、および該皮革様基材を用いた人工皮革,並びに研磨パッド
JP2014065979A (ja) 皮革様シートおよび皮革様シートの製造方法
JP6087073B2 (ja) 銀付調人工皮革及びその製造方法

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880130056.1

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08790597

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12988563

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20107024509

Country of ref document: KR

Kind code of ref document: A

REEP Request for entry into the european phase

Ref document number: 2008790597

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2008790597

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP