WO2009152195A2 - Methods of forming earth-boring tools including sinterbonded components and tools formed by such methods - Google Patents

Methods of forming earth-boring tools including sinterbonded components and tools formed by such methods Download PDF

Info

Publication number
WO2009152195A2
WO2009152195A2 PCT/US2009/046812 US2009046812W WO2009152195A2 WO 2009152195 A2 WO2009152195 A2 WO 2009152195A2 US 2009046812 W US2009046812 W US 2009046812W WO 2009152195 A2 WO2009152195 A2 WO 2009152195A2
Authority
WO
WIPO (PCT)
Prior art keywords
fully sintered
less
forming
bit body
sintered component
Prior art date
Application number
PCT/US2009/046812
Other languages
French (fr)
Other versions
WO2009152195A4 (en
WO2009152195A3 (en
Inventor
Redd H. Smith
Nicholas J. Lyons
Original Assignee
Baker Hughes Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Baker Hughes Incorporated filed Critical Baker Hughes Incorporated
Priority to EP09763485.1A priority Critical patent/EP2304162A4/en
Publication of WO2009152195A2 publication Critical patent/WO2009152195A2/en
Publication of WO2009152195A3 publication Critical patent/WO2009152195A3/en
Publication of WO2009152195A4 publication Critical patent/WO2009152195A4/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/007Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent between different parts of an abrasive tool
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/10Sintering only
    • B22F3/1017Multiple heating or additional steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/12Both compacting and sintering
    • B22F3/16Both compacting and sintering in successive or repeated steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F7/00Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression
    • B22F7/06Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools
    • B22F7/062Manufacture of composite layers, workpieces, or articles, comprising metallic powder, by sintering the powder, with or without compacting wherein at least one part is obtained by sintering or compression of composite workpieces or articles from parts, e.g. to form tipped tools involving the connection or repairing of preformed parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D18/00Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for
    • B24D18/0009Manufacture of grinding tools or other grinding devices, e.g. wheels, not otherwise provided for using moulds or presses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/04Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic
    • B24D3/06Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially inorganic metallic or mixture of metals with ceramic materials, e.g. hard metals, "cermets", cements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/42Rotary drag type drill bits with teeth, blades or like cutting elements, e.g. fork-type bits, fish tail bits
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/54Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of the rotary drag type, e.g. fork-type bits
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/46Drill bits characterised by wear resisting parts, e.g. diamond inserts
    • E21B10/54Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of the rotary drag type, e.g. fork-type bits
    • E21B10/55Drill bits characterised by wear resisting parts, e.g. diamond inserts the bit being of the rotary drag type, e.g. fork-type bits with preformed cutting elements
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21BEARTH DRILLING, e.g. DEEP DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B10/00Drill bits
    • E21B10/60Drill bits characterised by conduits or nozzles for drilling fluids
    • E21B10/602Drill bits characterised by conduits or nozzles for drilling fluids the bit being a rotary drag type bit with blades
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/001Cutting tools, earth boring or grinding tool other than table ware
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F5/00Manufacture of workpieces or articles from metallic powder characterised by the special shape of the product
    • B22F2005/002Tools other than cutting tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F2999/00Aspects linked to processes or compositions used in powder metallurgy

Definitions

  • the present invention generally relates to earth-boring drill bits and other earth- boring tools that may be used to drill subterranean formations, and to methods of manufacturing such drill bits and tools. More particularly, the present invention relates to methods of sinterbonding components together to form at least a portion of an earth- boring tool and to tools formed using such methods.
  • bit body 50 means the densification of a particulate component and involves removal of at least a portion of the pores between the starting particles, accompanied by shrinkage, combined with coalescence and bonding between adjacent particles.
  • Such techniques are disclosed in pending United States Patent Application Serial No. 11/271,153, filed November 10, 2005, and pending United States Patent Application Serial No. 11/272,439, also filed November 10, 2005, both of which are assigned to the assignee of the present invention.
  • FIG. 1 An example of a bit body 50 that may be formed using such powder compaction and sintering techniques is illustrated in FIG. 1.
  • the bit body 50 may be predominantly comprised of a particle-matrix composite material 54. As shown in FIG.
  • the bit body 50 may include wings or blades 58 that are separated by junk slots 60, and a plurality of PDC cutting elements 62 (or any other type of cutting element) may be secured within cutting element pockets 64 on the face 52 of the bit body 50.
  • the PDC cutting elements 62 may be supported from behind by buttresses 66, which may be integrally formed with the bit body 50.
  • the bit body 50 may include internal fluid passageways (not shown) that extend between the face 52 of the bit body 50 and a longitudinal bore 56, which extends through the bit body 50.
  • Nozzle inserts also may be provided at the face 52 of the bit body 50 within the internal fluid passageways.
  • bit body 50 may be formed using powder compaction and sintering techniques.
  • a powder mixture 68 may be pressed (e.g., with substantially isostatic pressure) within a mold or container 74.
  • the powder mixture 68 may include a plurality of hard particles and a plurality of particles comprising a matrix material.
  • the powder mixture 68 may further include additives commonly used when pressing powder mixtures such as, for example, organic binders for providing structural strength to the pressed powder component, plasticizers for making the organic binder more pliable, and lubricants or compaction aids for reducing inter-particle friction and otherwise providing lubrication during pressing.
  • the container 74 may include a fluid-tight deformable member 76 such as, for example, deformable polymeric bag and a substantially rigid sealing plate 78. Inserts or displacement members 79 may be provided within the container 74 for defining features of the bit body 50 such as, for example, a longitudinal bore 56 (FIG. 1) of the bit body 50.
  • the sealing plate 78 may be attached or bonded to the deformable member 76 in such a manner as to provide a fluid-tight seal there between.
  • the container 74 (with the powder mixture 68 and any desired displacement members 79 contained therein) may be pressurized within a pressure chamber 70.
  • a removable cover 71 may be used to provide access to the interior of the pressure chamber 70.
  • a fluid (which may be substantially incompressible) such as, for example, water, oil, or gas (such as, for example, air or nitrogen) is pumped into the pressure chamber 70 through an opening 72 at high pressures using a pump (not shown).
  • the high pressure of the fluid causes the walls of the deformable member 76 to deform, and the fluid pressure may be transmitted substantially uniformly to the powder mixture 68. Pressing of the powder mixture 68 may form a green (or unsintered) body 80 shown in FIG. 2B, which can be removed from the pressure chamber 70 and container 74 after pressing.
  • the green body 80 shown in FIG. 2B may include a plurality of particles (hard particles and particles of matrix material) held together by interparticle friction forces and an organic binder material provided in the powder mixture 68 (FIG. 2A).
  • Certain structural features may be machined in the green body 80 using conventional machining techniques including, for example, turning techniques, milling techniques, and drilling techniques. Hand held tools also may be used to manually form or shape features in or on the green body 80.
  • blades 58, junk slots 60 (FIG. 1), and other features may be machined or otherwise formed in the green body 80 to form a partially shaped green body 84 shown in FIG. 2C.
  • the partially shaped green body 84 shown in FIG. 2C may be at least partially sintered to provide a brown (partially sintered) body 90 shown in FIG. 2D, which has less than a desired final density. Partially sintering the green body 84 to form the brown body 90 may cause at least some of the plurality of particles to have at least partially grown together to provide at least partial bonding between adjacent particles.
  • the brown body 90 may be machinable due to the remaining porosity therein. Certain structural features also may be machined in the brown body 90 using conventional machining techniques.
  • internal fluid passageways (not shown), cutting element pockets 64, and buttresses 66 (FIG. 1) may be machined or otherwise formed in the brown body 90 to form a brown body 96 shown in FIG. 2E.
  • the brown body 96 shown in FIG. 2E then may be fully sintered to a desired final density, and the cutting elements 62 may be secured within the cutting element pockets 64 to provide the bit body 50 shown in FIG. 1.
  • the green body 80 shown in FIG. 2B may be partially sintered to form a brown body without prior machining, and all necessary machining may be performed on the brown body prior to fully sintering the brown body to a desired final density.
  • all necessary machining may be performed on the green body 80 shown in FIG. 2B, which then may be fully sintered to a desired final density.
  • the present invention includes methods of forming earth- boring rotary drill bits by forming and joining two or less than fully sintered components, by forming and joining a first fully sintered component with a first shrink rate and forming a second less than fUlly sintered component with a second sinter-shrink rate greater that that of the first shrink rate of the first fully sintered component, by forming and joining a first less than fully sintered component with a first sinter-shrink rate and by forming and joining at least a second less than fully sintered component with a second sinter-shrink rate less than the first sinter-shrink rate.
  • the methods include co-sintering a first less than fully sintered component and a second less than fully sintered component to a desired final density to form at least a portion of an earth-boring rotary drill bit which may either cause the first less than fully sintered component and the second less than fully sintered component to join or may cause one of the first less than fully sintered component and the second less than fully sintered component to shrink around and at least partially capture the other less than fully sintered component.
  • the present invention includes methods of forming earth-boring rotary drill bits by providing a first component with a first sinter-shrink rate, placing at least a second component with a second sinter-shrink rate less than the first sinter-shrink rate at least partially within at least a first recess of the first component, and causing the first component to shrink at least partially around and bond to the at least a second component by co-sintering the first component and the at least a second component.
  • the present invention includes methods of forming earth-boring rotary drill bits by tailoring the sinter-shrink rate of a first component to be greater than the sinter-shrink rate of at least a second component and co-sintering the first component and the at least a second component to cause the first component to at least partially contract upon and bond to the at least a second component.
  • the present invention includes earth-boring rotary drill bits including a first particle-matrix component and at least a second particle-matrix component at least partially surrounded by and sinterbonded to the first particle-matrix component.
  • the present invention includes earth-boring rotary drill bits including a bit body comprising a particle-matrix composite material and at least one cutting structure comprising a particle-matrix composite material sinterbonded at least partially within at least one recess of the bit body.
  • FIG. 1 is a partial longitudinal cross-sectional view of a bit body of an earth-boring rotary drill bit that may be formed using powder compaction and sintering processes;
  • FIGs. 2A-2E illustrate an example of a particle compaction and sintering process that may be used to form the bit body shown in FIG. 1 ;
  • FIG. 3 is a perspective view of one embodiment of an earth-boring rotary drill bit of the present invention that includes two or more sinterbonded components;
  • FIG. 4 is a plan view of the face of the earth-boring rotary drill bit shown in
  • FIG. 3
  • FIG. 5 is a side, partial cross-sectional view of the earth-boring rotary drill bit shown in FIG. 3 taken along the section line 5-5 shown therein, which includes a plug sinterbonded within a recess of a cutting element pocket;
  • FIG. 6 is side, partial cross-sectional view like that of FIG. 5 illustrating a less than fully sintered bit body and a less than fully sintered plug that may be co-sintered to a desired final density to form the earth-boring rotary drill bit shown in FIG. 5;
  • FIG. 7A is a cross-sectional view of the bit body and plug shown in FIG. 6 taken along section line 7A-7A shown therein;
  • FIG. 7B is a cross-sectional view of the bit body shown in FIG. 5 taken along the section line 7B-7B shown therein which may be formed by sintering the bit body and the plug shown in FIG. 7A to a final desired density;
  • FIG. 8 is a longitudinal cross-sectional view of the earth-boring rotary drill bit shown in FIGs. 3 and 4 taken along the section line 8-8 shown in FIG. 4 that includes several particle-matrix components that have been sinterbonded together according to teachings of the present invention
  • FIG. 8A is a longitudinal cross-sectional view of the earth-boring rotary drill bit shown in FIGs. 3 and 4 taken along the section line 8-8 shown in FIG. 4 that includes several particle-matrix components that have been sinterbonded together according to teachings of the present invention
  • FIG. 8B is a cross-sectional view of the earth-boring rotary drill bit shown in FIG. 8A taken along section line 9A-9A shown therein that includes a less than fully sintered extension to be sinterbonded to a fully sintered bit body;
  • FIG. 8C is cross-sectional view, similar to the cross-sectional view shown in FIG. 8C, illustrating a fully sintered bit body and a less than fully sintered extension that may be sintered to a desired final density to form the earth-boring rotary drill bit shown in FIG. 8B;
  • FIG. 9A is a cross-sectional view of the earth-boring rotary drill bit shown in FIG. 8 taken along section line 9A-9A shown therein that includes an extension sinterbonded to a bit body;
  • FIG. 9B is cross-sectional view, similar to the cross-sectional view shown in FIG. 9A, illustrating a less than fully sintered bit body and a less than fully sintered extension that may be co-sintered to a desired final density to form the earth-boring rotary drill bit shown in FIG. 9A;
  • FIG. 1OA is a cross-sectional view of the earth-boring rotary drill bit shown in FIG. 8 taken along section line 10A- 1OA shown therein that includes a blade sinterbonded to a bit body;
  • FIG. 1OB is cross-sectional view, similar to the cross-sectional view shown in FIG. 1OA, illustrating a less than fully sintered bit body and a less than fully sintered blade that may be co-sintered to a desired final density to form the earth-boring rotary drill bit shown in FIG. 1OA;
  • FIG. 1 IA is a partial cross-sectional view of a blade of an earth-boring rotary drill bit with a cutting structure sinterbonded thereto using methods of the present invention
  • FIG. 1 IB is partial cross-sectional view, similar to the partial cross-sectional view shown in FIG. 1 IA, illustrating a less than fully sintered blade of an earth-boring rotary drill bit and a less than fully sintered cutting structure that may be co-sintered to a desired final density to form the blade of the earth-boring rotary drill bit shown in FIG. 1 IA;
  • FIG. 12A is an enlarged partial cross-sectional view of the earth-boring rotary drill bit shown in FIG. 8 that includes a nozzle exit ring sinterbonded to a bit body;
  • FIG. 12B is a cross sectional view, similar to the cross-sectional view shown in FIG. 12A, of a less than full sintered earth-boring rotary drill bit that may be sintered to a final desired density to form the earth-boring rotary drill bit shown in FIG. 12A;
  • FIG. 13 is a partial perspective view of a bit body of another embodiment of an earth-boring rotary drill bit of the present invention, and more particularly of a blade of the bit body of an earth-boring rotary drill bit that includes buttresses that may be sinterbonded to the bit body;
  • FIG. 14A is a partial cross-sectional view of the bit body shown in FIG. 13 taken along the section line 14A-14A shown therein that does not illustrate the cutting element 210;
  • FIG. 14B is partial cross-sectional view, similar to the partial cross-sectional view shown in FIG. 14A, of a less than fully sintered bit body that may be sintered to a desired final density to form the bit body shown in FIG. 14A.
  • FIG. 4 is a top plan view of the face of the earth-boring rotary drill bit 100 shown in FIG. 3.
  • the earth-boring rotary drill bit 100 may comprise a bit body 102 that is secured to a shank 104 having a threaded connection portion 106 (e.g., an American Petroleum Institute (API) threaded connection portion) for attaching the drill bit 100 to a drill string (not shown).
  • a threaded connection portion 106 e.g., an American Petroleum Institute (API) threaded connection portion
  • the bit body 102 may be secured to the shank 104 using an extension 108.
  • the bit body 102 may be secured directly to the shank 104.
  • the bit body 102 may include internal fluid passageways (not shown) that extend between the face 103 of the bit body 102 and a longitudinal bore (not shown), which extends through the shank 104, the extension 108, and partially through the bit body 102, similar to the longitudinal bore 56 shown in FIG. 1.
  • Nozzle inserts 124 also may be provided at the face 103 of the bit body 102 within the internal fluid passageways.
  • the bit body 102 may further include a plurality of blades 116 that are separated by junk slots 118.
  • the bit body 102 may include gage wear plugs 122 and wear knots 128.
  • a plurality of cutting elements 110 (which may include, for example, PDC cutting elements) may be mounted on the face 103 of the bit body 102 in cutting element pockets 112 that are located along each of the blades 116.
  • the earth-boring rotary drill bit 100 shown in FIG. 3 may comprise a particle-matrix composite material 120 and may be formed using powder compaction and sintering processes, such as those described in previously mentioned pending United States Patent Application Serial No. 11/271,153, filed November 10, 2005, and pending United States Patent Application Serial No. 11/272,439, also filed November 10, 2005.
  • the particle-matrix composite material 120 may comprise a plurality of hard particles dispersed throughout a matrix material.
  • the hard particles may comprise a material selected from diamond, boron carbide, boron nitride, aluminum nitride, and carbides or borides of the group consisting of W, Ti, Mo, Nb, V, Hf, Zr, Si, Ta, and Cr, and the matrix material may be selected from the group consisting of iron-based alloys, nickel-based alloys, cobalt-based alloys, titanium-based alloys, aluminum-based alloys, iron and nickel-based alloys, iron and cobalt-based alloys, and nickel and cobalt-based alloys.
  • the term "[metal]-based alloy” (where [metal] is any metal) means commercially pure [metal] in addition to metal alloys wherein the weight percentage of [metal] in the alloy is greater than or equal to the weight percentage of all other components of the alloy individually.
  • the earth-boring rotary drill bit 100 may be formed from two or more, less than fully sintered components (i.e., green or brown components) that may be sinterbonded together to form at least a portion of the drill bit 100. During sintering of two or more less than fully sintered components (i.e., green or brown components), the two or more components will bond together.
  • the relative shrinkage rates of the two or more components may be tailored such that during sintering a first component and at least a second component will shrink essentially the same or a first component will shrink more than at least a second component.
  • the components may be configured such that during sintering the at least a second component is at least partially surrounded and captured as the first component contracts upon it, thereby facilitating a complete sinterbond between the first and at least a second components.
  • the sinter-shrink rates of the two or more components may be tailored by controlling the porosity of the less than fully sintered components. Thus, forming a first component with more porosity than at least a second component may cause the first component to have a greater sinter-shrink rate than the at least a second component having less porosity.
  • the porosity of the components may be tailored by modifying one or more of the following non-limiting variables: particle size and size distribution, particle shape, pressing method, compaction pressure, and the amount of binder used when forming the less than fully sintered components.
  • Particles that are all the same size may be difficult to pack efficiently.
  • Components formed from particles of the same size may include large pores and a high volume percentage of porosity.
  • components formed from particles with a broad range of sizes may pack efficiently and minimize pore space between adjacent particles.
  • porosity and therefore the sinter-shrink rates of a component may be controlled by the particle size and size distribution of the hard particles and matrix material used to form the component.
  • the pressing method may also be used to tailor the porosity of a component.
  • one pressing method may lead to tighter packing and therefore less porosity.
  • substantially isostatic pressing methods may produce tighter packed particles in a less than fully sintered component than uniaxial pressing methods and therefore less porosity. Therefore, porosity and the sinter-shrink rates of a component may be controlled by the pressing method used to form the less than full sintered component.
  • compaction pressure may be used to control the porosity of a component. The greater the compaction pressure used to form the component the lesser amount of porosity the component may exhibit.
  • the amount of binder used in the components relative to the powder mixture may vary which affects the porosity of the powder mixture when the binder is burned from the powder mixture.
  • the binder used in any powder mixture includes commonly used additives when pressing powder mixtures such as, for example, binders for providing lubrication during pressing and for providing structural strength to the pressed powder component, plasticizers for making the binder more pliable, and lubricants or compaction aids for reducing inter-particle friction.
  • the shrink rate of a particle-matrix material component is independent of composition. Therefore, varying the composition of the first component and the at least a second components may not cause a difference in relative sinter-shrink rates. However, the composition of the first and the at least a second components may be varied.
  • composition of the components may be varied to provide a difference in wear resistance or fracture toughness between the components.
  • a different grade of carbide may be used to form one component so that it exhibits greater wear resistance and/or fracture toughness relative to the component to which it is sinterbonded.
  • the first component and at least a second component may comprise green body structures. In other embodiments, the first component and the at least a second component may comprise brown components. In yet additional embodiments, one of the first component and the at least a second component may comprise a green body component and the other a brown body component.
  • Such methods may include machining a first recess in a bit body of an earth-boring tool to define a lateral sidewall surface of a cutting element pocket, machining a second recess to define at least a portion of a shoulder at an intersection with the first recess, and disposing a plug within the second recess to define at least a portion of an end surface of the cutting element pocket.
  • the plug as disclosed by the previously referenced pending United States Patent Application Serial No. 11/838,008, filed August 13, 2007, may be sinterbonded within the second recess to form a unitary bit body. More particularly, the sinter-shrink rates of the plug and the bit body surrounding it may be tailored so the bit body at least partially surrounds and captures the plug during co-sintering to facilitate a complete sinterbond.
  • FIG. 5 is a side, partial cross-sectional view of the bit body 102 shown in FIG. 3 taken along the section line 5-5 shown therein.
  • FIG. 6 is side, partial cross-sectional view of a less than fully sintered bit body 101 (i.e., a green or brown bit body) that may be sintered to a desired final density to form the bit body 102 shown in FIG. 5.
  • the bit body 101 may comprise a cutting element pocket 112 as defined by first and second recesses 130, 132 formed according to the methods of the previously mentioned pending United States Patent Application Serial No. 11/838,008, filed August 13, 2007.
  • a plug 134 may be disposed in the second recess 132 and may be placed so that at least a portion of a leading face 136 of the plug 134 may abut against a shoulder 138 between the first and second recesses 130, 132. At least a portion of the leading face 136 of the plug 134 may be configured to define the back surface (e.g., rear wall) of the cutting element pocket 112 against which a cutting element 110 may abut and rest.
  • the plug 134 may be used to replace the excess material removed from the bit body 101 when forming the first recess 130 and the second recess 132, and to fill any portion or portions of the first recess 130 and the second recess 132 that are not comprised by the cutting element pocket 112.
  • Both the plug 134 and the bit body 102 may be comprise particle-matrix composite components formed from any of the materials described hereinabove in relation to particle-matrix composite material 120.
  • the plug 134 and the bit body 101 may both comprise green powder components.
  • the plug 134 and the bit body 101 may both comprise brown components.
  • one of the plug 134 and the bit body 101 may comprise a green body and the other a brown body.
  • the sinter-shrink rate of the plug 134 and the bit body 101 may be tailored as desired as discussed herein. For instance, the sinter-shrink rate of the plug 134 and the bit body 101 may be tailored so the bit body 101 has a greater sinter shrink rate than the plug 134.
  • the plug 134 may be disposed within the second recess 132 as shown in FIG. 6, and the plug 134 and the bit body 101 may be co-sintered to a final desired density to sinterbond the less than full sintered bit body 101 to the plug 134 to form the unitary bit body 102 shown in FIG. 5.
  • the sinter-shrink rates of the plug 134 and the bit body 101 may be tailored by controlling the porosity of each so the bit body 101 has a greater porosity than the plug 134 such that during sintering the bit body 101 will shrink more than the plug 134.
  • the porosity of the bit body 101 and the plug 134 may be tailored by modifying one or more of the particle size and size distribution, pressing method, compaction pressure, and the amount of the binder used in a component when forming the less than fully sintered components as described hereinabove.
  • FIG. 7A is a cross-sectional view of the bit body 101 shown in FIG. 6 taken along section line 7A-7A shown therein.
  • the diameter Di 32 of the second recess 132 of the cutting element pocket 112 may be larger than the diameter D 134 of the plug 134.
  • the difference in the diameters of the second recess 132 and the plug 134 may allow the plug 134 to be easily placed within the second recess 132.
  • FIG. 7B is a cross-sectional view of the bit body 102 shown in FIG. 5 taken along the section line 7B-7B shown therein and may be formed by sintering the bit body 101 and the plug 134 as shown in FIG. 7A to a final desired density. As shown in FIG.
  • any gap between the second recess 132 and the plug 134 created by the difference the diameters Di 32 , Di 34 of the second recess 132 and the plug 134 may be eliminated as the bit body 101 shrinks around and captures the plug 134 during co-sintering.
  • the bit body 101 has a greater sinter-shrink rate than the plug 134 and shrinks around and captures the plug 134 during sintering, a complete sinterbond along the entire interface between the plug 134 and the bit body 101 may be formed despite any gap between the second recess 132 and the plug 134 prior to co-sintering.
  • the bit body 102 and the plug 134 may form a unitary structure.
  • coalescence and bonding may occur between adjacent particles of the particle-matrix composite materials of the plug 134 and the bit body 101 during co-sintering.
  • the bit body 102 may exhibit greater strength than a bit body formed from a plug that has been welded or brazed therein using conventional bonding methods.
  • FIG. 8 is a longitudinal cross-sectional view of the earth-boring rotary drill bit 100 shown in FIGs. 3 and 4 taken along the section line 8-8 shown in FIG. 4.
  • the earth-boring rotary drill bit 100 shown in FIG. 8 does not include cutting elements 110, nozzle inserts 124, or a shank 104.
  • the earth-boring rotary drill bit 100 may comprise one or more particle-matrix components that have been sinterbonded together to form the earth-boring rotary drill bit 100.
  • the earth-boring rotary drill bit 100 may comprise an extension 108 that will be sinterbonded to the bit body 102, a blade 116 that may be sinterbonded to the bit body 102, cutting 146 structures (not shown) that may be sinterbonded to the blade 116, and nozzle exit rings 127 that may be sinterbonded to the bit body 102 all using methods of the present invention in a manner similar to those described above in relation to the plug 134 and the bit body 102.
  • the sinterbonding of the extension 108 and the bit body 102 is described herein below in relation to FIGs. 9A-B; the sinterbonding of the blade 116 to the bit body 102 is described herein below in relation to FIGs.
  • FIG. 8A is another longitudinal cross-sectional view of the earth-boring rotary drill bit 100 shown in FIGs. 3 and 4 taken along the section line 8-8 shown in FIG. 4.
  • the earth-boring rotary drill bit 100 shown in FIG. 8 does not include cutting elements 110, nozzle inserts 124, or a shank 104. As shown in FIG.
  • the earth-boring rotary drill bit 100 may comprise one or more particle-matrix components that will be or are sinterbonded together to form the earth-boring rotary drill bit 100.
  • the earth-boring rotary drill bit 100 may comprise an extension 108 that will be sinterbonded to the previously finally sintered bit body 102, a blade 116 that has been sinterbonded to the bit body 102, cutting 146 structures (not shown) that have been sinterbonded to the blade 116, and nozzle exit rings 127 that have been sinterbonded to the bit body 102 all using methods of the present invention in a manner similar to those described above in relation to the plug 134 and the bit body 102.
  • the sinterbonding of the extension 108 and the bit body 102 occurs after the final sintering of the bit body 102 such as described herein when it is desired to have the shrinking of the extension to attach the extension 108 to the bit body 102.
  • the bit body 102 and the extension 108 are illustrated in relation to FIGs. 8B-8C.
  • the extension 108 may be formed having a taper of approximately 1/2° to approximately 2°, as illustrated, while the bit body 102 may be formed having a mating taper of approximately 1/2° to approximately 2°, as illustrated, so that after the sinterbonding of the extension 108 to the bit body 102 the mating tapers of the extension 108 and the bit body 102 have formed an interference fit therebetween.
  • FIG. 8B is a cross-sectional view of the earth-boring rotary drill bit 100 shown in FIG. 8 taken along the section line 9A-9A shown therein.
  • FIG. 8C is a cross sectional view of a fully sintered earth-boring rotary drill bit 102, similar to the cross-sectional view shown in FIG. 8B, that has been sintered to a final desired density to form the earth-boring rotary drill bit body 102 shown in FIG. 8A.
  • the earth-boring rotary drill bit 100 comprises a fully sintered bit body 102 and a less than fully sintered extension 108.
  • the fully sintered bit body 102 and the less than fully sintered extension 108 may both comprise particle-matrix composite components.
  • both the fully sintered bit body 102 and the less than fully sintered extension 108 may comprise particle-matrix composite components formed form a plurality of tungsten carbide particles dispersed throughout a cobalt matrix material.
  • the less than fully sintered extension 108 and the fully sintered bit body 102 may comprise any of the materials described hereinabove in relation to particle-matrix composite material 120.
  • the fully sintered bit body 102 and less than fully sintered extension 108 may exhibit different material properties.
  • the fully sintered bit body 102 may comprise a tungsten carbide material with greater fracture toughness or wear resistance than a tungsten carbide material used to form the less than fully sintered extension 108.
  • the sinter-shrink rates of the fully sintered bit body 102 although a fully sintered bit body 102 essentially has no sinter-shrink rate after being fully sintered, and the less than fully sintered extension 108 may be tailored by controlling the porosity of each so the extension 108 has a greater porosity than the bit body 102 such that during sintering the extension 108 will shrink more than the fully sintered bit body 102.
  • the porosity of the bit body 102 and the extension 108 may be tailored by modifying one or more of the particle size and size distribution, particle shape, pressing method, compaction pressure, and the amount of the binder used in a component when forming the less than fully sintered components as described hereinabove.
  • Suitable types of connectors such as lugs and recesses 108' or keys and recesses 108" (illustrated in dashed lines in FIG. 8B, 8C) may be used as desired between the bit body 102 and extension 108.
  • FIG. 9A is a cross-sectional view of the earth-boring rotary drill bit 100 shown in FIG. 8 taken along the section line 9A-9A shown therein.
  • FIG. 9B is a cross sectional view of a less than full sintered (i.e., a green or brown bit body) earth-boring rotary drill bit 103, similar to the cross-sectional view shown in FIG. 9A, that may be sintered to a final desired density to form the earth-boring rotary drill bit 100 shown in FIG. 9A.
  • the earth-boring rotary drill bit 103 may comprise a less than fully sintered bit body 101 and a less than fully sintered extension 107.
  • the less than fully sintered bit body 101 and the less than fully sintered extension 107 may both comprise particle-matrix composite components.
  • both the less than fully sintered bit body 101 and the less than fully sintered extension 107 may comprise particle-matrix composite components formed from a plurality of tungsten carbide particles dispersed throughout a cobalt matrix material.
  • the less than fully sintered extension 107 and the less than fully sintered bit body 101 may comprise any of the materials described hereinabove in relation to particle-matrix composite material 120.
  • the less than fully sintered bit body 101 and less than fully sintered extension 107 may exhibit different material properties.
  • the less than fully sintered bit body 101 may comprise a tungsten carbide material with greater fracture toughness or wear resistance than a tungsten carbide material used to form the less than fully sintered extension 107.
  • the sinter-shrink rates of the less than fully sintered bit body 101 and the less than fully sintered extension 107 may be tailored by controlling the porosity of each so the extension 107 has a greater porosity than the bit body 101 such that during sintering the extension 107 will shrink more than the bit body 101.
  • the porosity of the bit body 101 and the extension 107 may be tailored by modifying one or more of the particle size and size distribution, pressing method, compaction pressure, and the amount of the binder used in a component when forming the less than fully sintered components as described hereinabove.
  • the extension 107 and the bit body 101 may be co-sintered to a final desired density to form the earth-boring rotary drill bit 100 shown in FIG. 9A.
  • a portion 140 (FIG. 8) of the bit body 101 may be disposed at least partially within a recess 142 (FIG. 8) of the extension 107 and the extension 107 and the bit body 101 may be co-sintered.
  • the extension 107 has a greater sinter-shrink rate than the bit body 101, the extension 107 may contract around the bit body 101 facilitating a complete sinterbond along an interface 144 therebetween, as shown in FIG. 9A.
  • FIG. 1OA is a cross-sectional view of the earth-boring rotary drill bit 100 shown in FIG. 8 taken along the section line 10A- 1OA shown therein.
  • FIG. 1OB is a cross-sectional view of a less than full sintered (i.e., a green or brown bit body) earth-boring rotary drill bit 103, similar to the cross-sectional view shown in FIG. 1OA, that may be sintered to a final desired density to form the earth-boring rotary drill bit 100 shown in FIG. 1OA.
  • the earth-boring rotary drill bit 103 may comprise a less than fully sintered bit body 101 and a less than fully sintered blade 150.
  • the less than fully sintered bit body 101 and the less than fully sintered blade 150 may both comprise particle-matrix composite components.
  • both the less than fully sintered bit body 101 and the less than fully sintered blade 150 may comprise particle-matrix composite components formed form a plurality of tungsten carbide particles dispersed throughout a cobalt matrix material.
  • the less than fully sintered blade 150 and the less than fully sintered bit body 101 may comprise any of the materials described hereinabove in relation to particle-matrix composite material 120.
  • the less than fully sintered bit body 101 and less than fully sintered blade 150 may exhibit different material properties.
  • the less than fully sintered blade 150 may comprise a tungsten carbide material with greater fracture toughness or wear resistance than a tungsten carbide material used to form the less than fully sintered bit body 101.
  • the binder content may be lowered or a different grade of carbide may be used to form the blade 150 so that it exhibits greater wear resistance and/or fracture toughness relative to the bit body 101.
  • the less than fully sintered bit body 101 and less than fully sintered blade 150 may exhibit similar material properties.
  • the sinter-shrink rates of the less than fully sintered bit body 101 and the less than fully sintered blade 150 may be tailored by controlling the porosity of each so the bit body 101 has a greater porosity than the blade 150 such that during sintering the bit body 101 will shrink more than the blade 150.
  • the porosity of the bit body 101 and the blade 150 may be tailored by modifying one or more of the particle size and size distribution, pressing method, compaction pressure, and the amount of the binder used in a component when forming the less than fully sintered components as described hereinabove.
  • the blade 150 and the bit body 101 may be co-sintered to a final desired density to form the earth-boring rotary drill bit 100 shown in FIG. 1OA.
  • the blade 150 may be at least partially disposed within a recess 154 of the bit body 101 and the blade 150 and the bit body 101 may be co-sintered. Because the bit body 101 has a greater sinter-shrink rate than the blade 150, the bit body 101 may contract around the blade 150 facilitating a complete sinterbond along an interface 154 therebetween as shown in FIG. 1OA.
  • the earth-boring rotary drill bit 100 may include cutting structures 146 that may be sinterbonded to the bit body 102 and more particularly to the blades 116 using methods of the present invention.
  • Cutting structures as used herein mean any structure of an earth-boring rotary drill bit configured to engage earth formations in a bore hole.
  • cutting structures may comprise wear knots 128, gage wear plugs 122, cutting elements 110 (FIG. 3), and BRUTETM cutters 160 (Backups cutters that are Radially Unaggressive and Tangentially Efficient, illustrated in FIG. 12).
  • FIG. 1 IA is a partial cross-sectional view of a blade 116 of an earth-boring rotary drill bit with a cutting structure 146 sinterbonded thereto using methods of the present invention.
  • FIG. 1 IB is a partial cross-sectional view of a less than fully sintered blade 160 of an earth-boring rotary drill bit, similar to the cross-sectional view shown in FIG. 1 IA, that may be sintered to a final desired density to form the blade 116 shown in FIG. 1 IA.
  • a less than fully sintered cutting structurel47 may be disposed at least partially within a recess 148 of the less than fully sintered blade 160.
  • the less than fully sintered cutting structure 147 and the less than fully sintered blade 160 may both comprise particle-matrix composite components.
  • both the less than fully sintered cutting structure 147 and the less than fully sintered blade 160 may comprise particle-matrix composite components formed form a plurality of tungsten carbide particles dispersed throughout a cobalt matrix material.
  • the less than fully sintered blade 160 and the less than fully sintered cutting structure 147 may comprise any of the materials described hereinabove in relation to particle-matrix composite material 120.
  • the less than fully sintered cutting structure 147 and less than fully sintered blade 160 may exhibit different material properties.
  • the less than fully sintered cutting structure 147 may comprise a tungsten carbide material with greater fracture toughness or wear resistance than a tungsten carbide material used to form the less than fully sintered blade 160.
  • the binder content may be lowered or a different grade of carbide may be used to form the less than fully sintered cutting structure 147 so that it exhibits greater wear resistance and/or fracture toughness relative to the blade 160.
  • the less than fully sintered cutting structure 147 and less than fully sintered blade 160 may exhibit similar material properties.
  • the sinter-shrink rates of the less than fully sintered cutting structure 147 and the less than fully sintered blade 160 may be tailored by controlling the porosity of each so the blade 160 has a greater porosity than the cutting structure 147 such that during sintering the blade 160 will shrink more than the cutting structure 147.
  • the porosity of the cutting structure 147 and the blade 160 may be tailored by modifying one or more of the particle size and size distribution, pressing method, compaction pressure, and the amount of the binder used in a component when forming the less than fully sintered components as described hereinabove.
  • the blade 160 and the cutting structure 147 may be co-sintered to a final desired density to form the blade 116 shown in FIG. 1 IA. Because the blade 160 has a greater sinter-shrink rate than the cutting structure 147, the blade 160 may contract around the cutting structure 147 facilitating a complete sinterbond along an interface 162 therebetween as shown in FIG. 1 IA.
  • FIG. 12A is an enlarged partial cross-sectional view of the earth-boring rotary drill bit 100 shown in FIG. 8.
  • FIG. 12B is a cross-sectional view of a less than full sintered earth-boring rotary drill bit 103, similar to the cross-sectional view shown in FIG. 12A, that may be sintered to a final desired density to form the earth-boring rotary drill bit 100 shown in FIG. 12A.
  • the earth-boring rotary drill bit 103 may comprise a less than fully sintered bit body 101 and a less than fully sintered nozzle exit ring 129.
  • the less than fully sintered bit body 101 and the less than fully sintered nozzle exit ring 129 may both comprise particle-matrix composite components.
  • both the less than fully sintered bit body 101 and the less than fully sintered nozzle exit ring 129 may comprise particle-matrix composite components formed form a plurality of tungsten carbide particles dispersed throughout a cobalt matrix material.
  • the less than folly sintered nozzle exit ring 129 and the less than folly sintered bit body 101 may comprise any of the materials described hereinabove in relation to particle-matrix composite material 120.
  • the less than folly sintered bit body 101 and less than folly sintered nozzle exit ring 129 may exhibit different material properties.
  • the less than folly sintered nozzle exit ring 129 may comprise a tungsten carbide material with greater fracture toughness or wear resistance than a tungsten carbide material used to form the less than folly sintered bit body 101.
  • the binder content may be lowered or a different grade of carbide may be used to form the nozzle exit ring 129 so that it exhibits greater wear resistance and/or fracture toughness relative to the bit body 101.
  • the less than folly sintered bit body 101 and less than folly sintered nozzle exit ring 129 may exhibit similar material properties.
  • the sinter-shrink rates of the less than folly sintered bit body 101 and the less than folly sintered nozzle exit ring 129 may be tailored by controlling the porosity of each so the bit body 101 has a greater porosity than the nozzle exit ring 129 such that during sintering the bit body 101 will shrink more than the nozzle exit ring 129.
  • the porosity of the bit body 101 and the nozzle exit ring 129 may be tailored by modifying one or more of the particle size and size distribution, pressing method, compaction pressure, and the amount of the binder used in a component when forming the less than fully sintered components as described hereinabove.
  • the nozzle exit ring 129 and the bit body 101 may be co-sintered to a final desired density to form the earth-boring rotary drill bit 100 shown in FIG. 1 IA.
  • the nozzle exit ring 129 may be at least partially disposed within a recess 163 of the bit body 101 and the nozzle exit ring 129 and the bit body 101 may be co-sintered. Because the bit body 101 has a greater sinter-shrink rate than the nozzle exit ring 129, the bit body 101 may contract around the nozzle exit ring 129 facilitating a complete sinterbond along an interface 173 therebetween, as shown in FIG. 12A.
  • FIG. 13 is a partial perspective view of a bit body 202 of an earth-boring rotary drill bit, and more particularly of a blade 216 of the bit body 202, similar to the bit body 102 shown in FIG. 3.
  • the bit body 202 may comprise a particle-matrix composite material 120 and may be formed using powder compaction and sintering processes, such as those previously described.
  • the bit body 202 may include a plurality of cutting elements 210 supported by buttresses 207.
  • the bit body 202 may also include a plurality of BRUTETM cutters 160 (illustrated in FIG. 12).
  • the buttresses 207 may be sinterbonded to the bit body 202.
  • FIG. 14A is a partial cross-sectional view of the bit body 202 shown in FIG. 13 taken along the section line 14A-14A shown therein. FIG. 14A; however, does not illustrate the cutting element 210.
  • FIG. 14B is a less than fully sintered bit body 201 (i.e., a green or brown bit body) that may be sintered to a desired final density to form the bit body 202 shown in FIG. 14A.
  • the less than fully sintered bit body 201 may comprise a cutting element pocket 212 and a recess 214 configured to receive a less than fully sintered buttress 208.
  • the less than fully sintered buttress 208 and the less than fully sintered bit body 201 may both comprise particle-matrix composite components.
  • both the less than fully sintered buttress 208 and the less than fully sintered bit body 201 may comprise particle-matrix composite components formed from a plurality of tungsten carbide particles dispersed throughout a cobalt matrix material.
  • the less than fully sintered bit body 201 and the less than fully sintered buttress 208 may comprise any of the materials described hereinabove in relation to particle-matrix composite material 120.
  • the less than fully sintered buttress 208 and less than fully sintered bit body 201 may exhibit different material properties.
  • the less than fully sintered buttress 208 may comprise a tungsten carbide material with greater fracture toughness or wear resistance than a tungsten carbide material used to form the less than fully sintered bit body 201.
  • the binder content may be lowered or a different grade of carbide may be used to form the less than fully sintered buttress 208 so that it exhibits greater wear resistance and/or fracture toughness relative to the bit body 201.
  • the less than fully sintered buttress 208 and less than fully sintered bit body 201 may exhibit similar material properties.
  • the sinter-shrink rates of the less than fully sintered buttress 208 and the less than fully sintered bit body 201 may be tailored by controlling the porosity of each so the bit body 201 has a greater porosity than the buttress 208 such that during sintering the bit body 201 will shrink more than the buttress 208.
  • the porosity of the buttress 208 and the bit body 201 may be tailored by modifying one or more of the particle size, particle shape, and particle size distribution, pressing method, compaction pressure, and the amount of the binder used in a component when forming the less than fully sintered components as described hereinabove.
  • bit body 201 and the buttress 208 may be co-sintered to a final desired density to form the bit body 202 shown in FIG. 14A. Because the bit body 201 has a greater sinter-shrink rate than the buttress 208, the bit body 201 may contract around the buttress 208 facilitating a complete sinterbond along an interface 220 therebetween as shown in FIG. 14A.
  • the methods of the present invention have been described in relation to fixed-cutter rotary drill bits, they are equally applicable to any bit body that is formed by sintering a less than fully sintered bit body to a desired final density.
  • the methods of the present invention may be used to form subterranean tools other than fixed-cutter rotary drill bits including, for example, core bits, eccentric bits, bicenter bits, reamers, mills, drag bits, roller cone bits, and other such structures known in the art.
  • core bits eccentric bits, bicenter bits, reamers, mills, drag bits, roller cone bits, and other such structures known in the art.
  • the present invention has been described herein with respect to certain preferred embodiments, those of ordinary skill in the art will recognize and appreciate that it is not so limited. Rather, many additions, deletions and modifications to the preferred embodiments may be made without departing from the scope of the invention as hereinafter claimed.
  • features from one embodiment may be combined with features of another embodiment while still being encompassed within the scope of the invention as contemplated

Abstract

Methods of forming earth-boring rotary drill bits by forming and joining two or less than fully sintered components, by forming and joining a first fully sintered component with a first shrink rate and forming a second less than fully sintered component with a second sinter-shrink rate greater that that of the first shrink rate of the first fully sintered component, by forming and joining a first less than fully sintered component with a first sinter-shrink rate and by forming and joining at least a second less than fully sintered component with a second sinter-shrink rate less than the first sinter- shrink rate. The methods include co-sintering a first less than fully sintered component and a second less than fully sintered component to a desired final density to form at least a portion of an earth-boring rotary drill bit which may either cause the first less than fully sintered component and the second less than fully sintered component to join or may cause one of the first less than fully sintered component and the second less than fully sintered component to shrink around and at least partially capture the other less than fully sintered component. Earth-boring rotary drill bits are formed using such methods.

Description

TITLE OF THE INVENTION
METHODS OF FORMING EARTH-BORING TOOLS INCLUDING SINTERBONDED COMPONENTS AND TOOLS FORMED BY SUCH
METHODS
PRIORITY CLAIM
This application claims the benefit of United States Application Serial No. 12/136,703, titled "METHODS OF FORMING EARTH-BORING TOOLS INCLUDING SINTERBONDED COMPONENTS AND TOOLS FORMED BY SUCH METHODS ", which was filed June 10, 2008, pending.
TECHNICAL FIELD
The present invention generally relates to earth-boring drill bits and other earth- boring tools that may be used to drill subterranean formations, and to methods of manufacturing such drill bits and tools. More particularly, the present invention relates to methods of sinterbonding components together to form at least a portion of an earth- boring tool and to tools formed using such methods.
BACKGROUND
The depth of well bores being drilled continues to increase as the number of shallow depth hydrocarbon-bearing earth formations continues to decrease. These increasing well bore depths are pressing conventional drill bits to their limits in terms of performance and durability. Several drill bits are often required to drill a single well bore, and changing a drill bit on a drill string can be both time consuming and expensive. In efforts to improve drill bit performance and durability, new materials and methods for forming drill bits and their various components are being investigated. For example, methods other than conventional infiltration processes are being investigated to form bit bodies comprising particle-matrix composite materials. Such methods include forming bit bodies using powder compaction and sintering techniques. The term "sintering," as used herein, means the densification of a particulate component and involves removal of at least a portion of the pores between the starting particles, accompanied by shrinkage, combined with coalescence and bonding between adjacent particles. Such techniques are disclosed in pending United States Patent Application Serial No. 11/271,153, filed November 10, 2005, and pending United States Patent Application Serial No. 11/272,439, also filed November 10, 2005, both of which are assigned to the assignee of the present invention. An example of a bit body 50 that may be formed using such powder compaction and sintering techniques is illustrated in FIG. 1. The bit body 50 may be predominantly comprised of a particle-matrix composite material 54. As shown in FIG. 1, the bit body 50 may include wings or blades 58 that are separated by junk slots 60, and a plurality of PDC cutting elements 62 (or any other type of cutting element) may be secured within cutting element pockets 64 on the face 52 of the bit body 50. The PDC cutting elements 62 may be supported from behind by buttresses 66, which may be integrally formed with the bit body 50. The bit body 50 may include internal fluid passageways (not shown) that extend between the face 52 of the bit body 50 and a longitudinal bore 56, which extends through the bit body 50. Nozzle inserts (not shown) also may be provided at the face 52 of the bit body 50 within the internal fluid passageways.
An example of a manner in which the bit body 50 may be formed using powder compaction and sintering techniques is described briefly below.
Referring to FIG. 2A, a powder mixture 68 may be pressed (e.g., with substantially isostatic pressure) within a mold or container 74. The powder mixture 68 may include a plurality of hard particles and a plurality of particles comprising a matrix material. Optionally, the powder mixture 68 may further include additives commonly used when pressing powder mixtures such as, for example, organic binders for providing structural strength to the pressed powder component, plasticizers for making the organic binder more pliable, and lubricants or compaction aids for reducing inter-particle friction and otherwise providing lubrication during pressing.
The container 74 may include a fluid-tight deformable member 76 such as, for example, deformable polymeric bag and a substantially rigid sealing plate 78. Inserts or displacement members 79 may be provided within the container 74 for defining features of the bit body 50 such as, for example, a longitudinal bore 56 (FIG. 1) of the bit body 50. The sealing plate 78 may be attached or bonded to the deformable member 76 in such a manner as to provide a fluid-tight seal there between. The container 74 (with the powder mixture 68 and any desired displacement members 79 contained therein) may be pressurized within a pressure chamber 70. A removable cover 71 may be used to provide access to the interior of the pressure chamber 70. A fluid (which may be substantially incompressible) such as, for example, water, oil, or gas (such as, for example, air or nitrogen) is pumped into the pressure chamber 70 through an opening 72 at high pressures using a pump (not shown). The high pressure of the fluid causes the walls of the deformable member 76 to deform, and the fluid pressure may be transmitted substantially uniformly to the powder mixture 68. Pressing of the powder mixture 68 may form a green (or unsintered) body 80 shown in FIG. 2B, which can be removed from the pressure chamber 70 and container 74 after pressing.
The green body 80 shown in FIG. 2B may include a plurality of particles (hard particles and particles of matrix material) held together by interparticle friction forces and an organic binder material provided in the powder mixture 68 (FIG. 2A). Certain structural features may be machined in the green body 80 using conventional machining techniques including, for example, turning techniques, milling techniques, and drilling techniques. Hand held tools also may be used to manually form or shape features in or on the green body 80. By way of example and not limitation, blades 58, junk slots 60 (FIG. 1), and other features may be machined or otherwise formed in the green body 80 to form a partially shaped green body 84 shown in FIG. 2C.
The partially shaped green body 84 shown in FIG. 2C may be at least partially sintered to provide a brown (partially sintered) body 90 shown in FIG. 2D, which has less than a desired final density. Partially sintering the green body 84 to form the brown body 90 may cause at least some of the plurality of particles to have at least partially grown together to provide at least partial bonding between adjacent particles. The brown body 90 may be machinable due to the remaining porosity therein. Certain structural features also may be machined in the brown body 90 using conventional machining techniques.
By way of example and not limitation, internal fluid passageways (not shown), cutting element pockets 64, and buttresses 66 (FIG. 1) may be machined or otherwise formed in the brown body 90 to form a brown body 96 shown in FIG. 2E. The brown body 96 shown in FIG. 2E then may be fully sintered to a desired final density, and the cutting elements 62 may be secured within the cutting element pockets 64 to provide the bit body 50 shown in FIG. 1.
In other methods, the green body 80 shown in FIG. 2B may be partially sintered to form a brown body without prior machining, and all necessary machining may be performed on the brown body prior to fully sintering the brown body to a desired final density. Alternatively, all necessary machining may be performed on the green body 80 shown in FIG. 2B, which then may be fully sintered to a desired final density.
DISCLOSURE OF INVENTION In some embodiments, the present invention includes methods of forming earth- boring rotary drill bits by forming and joining two or less than fully sintered components, by forming and joining a first fully sintered component with a first shrink rate and forming a second less than fUlly sintered component with a second sinter-shrink rate greater that that of the first shrink rate of the first fully sintered component, by forming and joining a first less than fully sintered component with a first sinter-shrink rate and by forming and joining at least a second less than fully sintered component with a second sinter-shrink rate less than the first sinter-shrink rate. The methods include co-sintering a first less than fully sintered component and a second less than fully sintered component to a desired final density to form at least a portion of an earth-boring rotary drill bit which may either cause the first less than fully sintered component and the second less than fully sintered component to join or may cause one of the first less than fully sintered component and the second less than fully sintered component to shrink around and at least partially capture the other less than fully sintered component.
In additional embodiments, the present invention includes methods of forming earth-boring rotary drill bits by providing a first component with a first sinter-shrink rate, placing at least a second component with a second sinter-shrink rate less than the first sinter-shrink rate at least partially within at least a first recess of the first component, and causing the first component to shrink at least partially around and bond to the at least a second component by co-sintering the first component and the at least a second component.
In yet additional embodiments, the present invention includes methods of forming earth-boring rotary drill bits by tailoring the sinter-shrink rate of a first component to be greater than the sinter-shrink rate of at least a second component and co-sintering the first component and the at least a second component to cause the first component to at least partially contract upon and bond to the at least a second component.
In other embodiments, the present invention includes earth-boring rotary drill bits including a first particle-matrix component and at least a second particle-matrix component at least partially surrounded by and sinterbonded to the first particle-matrix component.
In additional embodiments, the present invention includes earth-boring rotary drill bits including a bit body comprising a particle-matrix composite material and at least one cutting structure comprising a particle-matrix composite material sinterbonded at least partially within at least one recess of the bit body.
BRIEF DESCRIPTION OF DRAWINGS
While the specification concludes with claims particularly pointing out and distinctly claiming that which is regarded as the present invention, the advantages of this invention may be more readily ascertained from the description of the invention when read in conjunction with the accompanying drawings, in which:
FIG. 1 is a partial longitudinal cross-sectional view of a bit body of an earth-boring rotary drill bit that may be formed using powder compaction and sintering processes;
FIGs. 2A-2E illustrate an example of a particle compaction and sintering process that may be used to form the bit body shown in FIG. 1 ;
FIG. 3 is a perspective view of one embodiment of an earth-boring rotary drill bit of the present invention that includes two or more sinterbonded components; FIG. 4 is a plan view of the face of the earth-boring rotary drill bit shown in
FIG. 3;
FIG. 5 is a side, partial cross-sectional view of the earth-boring rotary drill bit shown in FIG. 3 taken along the section line 5-5 shown therein, which includes a plug sinterbonded within a recess of a cutting element pocket; FIG. 6 is side, partial cross-sectional view like that of FIG. 5 illustrating a less than fully sintered bit body and a less than fully sintered plug that may be co-sintered to a desired final density to form the earth-boring rotary drill bit shown in FIG. 5; FIG. 7A is a cross-sectional view of the bit body and plug shown in FIG. 6 taken along section line 7A-7A shown therein;
FIG. 7B is a cross-sectional view of the bit body shown in FIG. 5 taken along the section line 7B-7B shown therein which may be formed by sintering the bit body and the plug shown in FIG. 7A to a final desired density;
FIG. 8 is a longitudinal cross-sectional view of the earth-boring rotary drill bit shown in FIGs. 3 and 4 taken along the section line 8-8 shown in FIG. 4 that includes several particle-matrix components that have been sinterbonded together according to teachings of the present invention; FIG. 8A is a longitudinal cross-sectional view of the earth-boring rotary drill bit shown in FIGs. 3 and 4 taken along the section line 8-8 shown in FIG. 4 that includes several particle-matrix components that have been sinterbonded together according to teachings of the present invention;
FIG. 8B is a cross-sectional view of the earth-boring rotary drill bit shown in FIG. 8A taken along section line 9A-9A shown therein that includes a less than fully sintered extension to be sinterbonded to a fully sintered bit body;
FIG. 8C is cross-sectional view, similar to the cross-sectional view shown in FIG. 8C, illustrating a fully sintered bit body and a less than fully sintered extension that may be sintered to a desired final density to form the earth-boring rotary drill bit shown in FIG. 8B;
FIG. 9A is a cross-sectional view of the earth-boring rotary drill bit shown in FIG. 8 taken along section line 9A-9A shown therein that includes an extension sinterbonded to a bit body;
FIG. 9B is cross-sectional view, similar to the cross-sectional view shown in FIG. 9A, illustrating a less than fully sintered bit body and a less than fully sintered extension that may be co-sintered to a desired final density to form the earth-boring rotary drill bit shown in FIG. 9A;
FIG. 1OA is a cross-sectional view of the earth-boring rotary drill bit shown in FIG. 8 taken along section line 10A- 1OA shown therein that includes a blade sinterbonded to a bit body;
FIG. 1OB is cross-sectional view, similar to the cross-sectional view shown in FIG. 1OA, illustrating a less than fully sintered bit body and a less than fully sintered blade that may be co-sintered to a desired final density to form the earth-boring rotary drill bit shown in FIG. 1OA;
FIG. 1 IA is a partial cross-sectional view of a blade of an earth-boring rotary drill bit with a cutting structure sinterbonded thereto using methods of the present invention; FIG. 1 IB is partial cross-sectional view, similar to the partial cross-sectional view shown in FIG. 1 IA, illustrating a less than fully sintered blade of an earth-boring rotary drill bit and a less than fully sintered cutting structure that may be co-sintered to a desired final density to form the blade of the earth-boring rotary drill bit shown in FIG. 1 IA;
FIG. 12A is an enlarged partial cross-sectional view of the earth-boring rotary drill bit shown in FIG. 8 that includes a nozzle exit ring sinterbonded to a bit body;
FIG. 12B is a cross sectional view, similar to the cross-sectional view shown in FIG. 12A, of a less than full sintered earth-boring rotary drill bit that may be sintered to a final desired density to form the earth-boring rotary drill bit shown in FIG. 12A;
FIG. 13 is a partial perspective view of a bit body of another embodiment of an earth-boring rotary drill bit of the present invention, and more particularly of a blade of the bit body of an earth-boring rotary drill bit that includes buttresses that may be sinterbonded to the bit body;
FIG. 14A is a partial cross-sectional view of the bit body shown in FIG. 13 taken along the section line 14A-14A shown therein that does not illustrate the cutting element 210; and
FIG. 14B is partial cross-sectional view, similar to the partial cross-sectional view shown in FIG. 14A, of a less than fully sintered bit body that may be sintered to a desired final density to form the bit body shown in FIG. 14A.
BEST MODES FOR CARRYING OUT THE INVENTION
The illustrations presented herein are not meant to be actual views of any particular material, apparatus, system, or method, but are merely idealized representations which are employed to describe the present invention. Additionally, elements common between figures may retain the same numerical designation. An embodiment of an earth-boring rotary drill bit 100 of the present invention is shown in perspective in FIG. 3. FIG. 4 is a top plan view of the face of the earth-boring rotary drill bit 100 shown in FIG. 3. The earth-boring rotary drill bit 100 may comprise a bit body 102 that is secured to a shank 104 having a threaded connection portion 106 (e.g., an American Petroleum Institute (API) threaded connection portion) for attaching the drill bit 100 to a drill string (not shown). In some embodiments, such as that shown in FIG. 3, the bit body 102 may be secured to the shank 104 using an extension 108. In other embodiments, the bit body 102 may be secured directly to the shank 104.
The bit body 102 may include internal fluid passageways (not shown) that extend between the face 103 of the bit body 102 and a longitudinal bore (not shown), which extends through the shank 104, the extension 108, and partially through the bit body 102, similar to the longitudinal bore 56 shown in FIG. 1. Nozzle inserts 124 also may be provided at the face 103 of the bit body 102 within the internal fluid passageways. The bit body 102 may further include a plurality of blades 116 that are separated by junk slots 118. In some embodiments, the bit body 102 may include gage wear plugs 122 and wear knots 128. A plurality of cutting elements 110 (which may include, for example, PDC cutting elements) may be mounted on the face 103 of the bit body 102 in cutting element pockets 112 that are located along each of the blades 116.
The earth-boring rotary drill bit 100 shown in FIG. 3 may comprise a particle-matrix composite material 120 and may be formed using powder compaction and sintering processes, such as those described in previously mentioned pending United States Patent Application Serial No. 11/271,153, filed November 10, 2005, and pending United States Patent Application Serial No. 11/272,439, also filed November 10, 2005. By way of example and not limitation, the particle-matrix composite material 120 may comprise a plurality of hard particles dispersed throughout a matrix material. In some embodiments, the hard particles may comprise a material selected from diamond, boron carbide, boron nitride, aluminum nitride, and carbides or borides of the group consisting of W, Ti, Mo, Nb, V, Hf, Zr, Si, Ta, and Cr, and the matrix material may be selected from the group consisting of iron-based alloys, nickel-based alloys, cobalt-based alloys, titanium-based alloys, aluminum-based alloys, iron and nickel-based alloys, iron and cobalt-based alloys, and nickel and cobalt-based alloys. As used herein, the term "[metal]-based alloy" (where [metal] is any metal) means commercially pure [metal] in addition to metal alloys wherein the weight percentage of [metal] in the alloy is greater than or equal to the weight percentage of all other components of the alloy individually. Furthermore, the earth-boring rotary drill bit 100 may be formed from two or more, less than fully sintered components (i.e., green or brown components) that may be sinterbonded together to form at least a portion of the drill bit 100. During sintering of two or more less than fully sintered components (i.e., green or brown components), the two or more components will bond together. Additionally, when sintering the two or more less than fully sintered components together, the relative shrinkage rates of the two or more components may be tailored such that during sintering a first component and at least a second component will shrink essentially the same or a first component will shrink more than at least a second component. By tailoring the sinter-shrink rates such that a first component will have a greater shrinkage rate than the at least a second component, the components may be configured such that during sintering the at least a second component is at least partially surrounded and captured as the first component contracts upon it, thereby facilitating a complete sinterbond between the first and at least a second components. The sinter-shrink rates of the two or more components may be tailored by controlling the porosity of the less than fully sintered components. Thus, forming a first component with more porosity than at least a second component may cause the first component to have a greater sinter-shrink rate than the at least a second component having less porosity.
The porosity of the components may be tailored by modifying one or more of the following non-limiting variables: particle size and size distribution, particle shape, pressing method, compaction pressure, and the amount of binder used when forming the less than fully sintered components.
Particles that are all the same size may be difficult to pack efficiently. Components formed from particles of the same size may include large pores and a high volume percentage of porosity. On the other hand components formed from particles with a broad range of sizes may pack efficiently and minimize pore space between adjacent particles. Thus, porosity and therefore the sinter-shrink rates of a component may be controlled by the particle size and size distribution of the hard particles and matrix material used to form the component. The pressing method may also be used to tailor the porosity of a component.
Specifically, one pressing method may lead to tighter packing and therefore less porosity. As a non-limiting example, substantially isostatic pressing methods may produce tighter packed particles in a less than fully sintered component than uniaxial pressing methods and therefore less porosity. Therefore, porosity and the sinter-shrink rates of a component may be controlled by the pressing method used to form the less than full sintered component. Additionally, compaction pressure may be used to control the porosity of a component. The greater the compaction pressure used to form the component the lesser amount of porosity the component may exhibit.
Finally, the amount of binder used in the components relative to the powder mixture may vary which affects the porosity of the powder mixture when the binder is burned from the powder mixture. The binder used in any powder mixture includes commonly used additives when pressing powder mixtures such as, for example, binders for providing lubrication during pressing and for providing structural strength to the pressed powder component, plasticizers for making the binder more pliable, and lubricants or compaction aids for reducing inter-particle friction. The shrink rate of a particle-matrix material component is independent of composition. Therefore, varying the composition of the first component and the at least a second components may not cause a difference in relative sinter-shrink rates. However, the composition of the first and the at least a second components may be varied. In particular, the composition of the components may be varied to provide a difference in wear resistance or fracture toughness between the components. As a non-limiting example, a different grade of carbide may be used to form one component so that it exhibits greater wear resistance and/or fracture toughness relative to the component to which it is sinterbonded.
In some embodiments, the first component and at least a second component may comprise green body structures. In other embodiments, the first component and the at least a second component may comprise brown components. In yet additional embodiments, one of the first component and the at least a second component may comprise a green body component and the other a brown body component.
Recently, new methods of forming cutting element pockets by using a rotating cutter to machine a cutting element pocket in such a way as to avoid mechanical tool interference problems and forming the pocket so as to sufficiently support a cutting element therein have been investigated. Such methods are disclosed in pending United States Patent Application Serial No. 11/838,008, filed August 13, 2007. Such methods may include machining a first recess in a bit body of an earth-boring tool to define a lateral sidewall surface of a cutting element pocket, machining a second recess to define at least a portion of a shoulder at an intersection with the first recess, and disposing a plug within the second recess to define at least a portion of an end surface of the cutting element pocket.
According some embodiments of the present invention, the plug as disclosed by the previously referenced pending United States Patent Application Serial No. 11/838,008, filed August 13, 2007, may be sinterbonded within the second recess to form a unitary bit body. More particularly, the sinter-shrink rates of the plug and the bit body surrounding it may be tailored so the bit body at least partially surrounds and captures the plug during co-sintering to facilitate a complete sinterbond.
FIG. 5 is a side, partial cross-sectional view of the bit body 102 shown in FIG. 3 taken along the section line 5-5 shown therein. FIG. 6 is side, partial cross-sectional view of a less than fully sintered bit body 101 (i.e., a green or brown bit body) that may be sintered to a desired final density to form the bit body 102 shown in FIG. 5. As shown in FIG. 6, the bit body 101 may comprise a cutting element pocket 112 as defined by first and second recesses 130, 132 formed according to the methods of the previously mentioned pending United States Patent Application Serial No. 11/838,008, filed August 13, 2007. A plug 134 may be disposed in the second recess 132 and may be placed so that at least a portion of a leading face 136 of the plug 134 may abut against a shoulder 138 between the first and second recesses 130, 132. At least a portion of the leading face 136 of the plug 134 may be configured to define the back surface (e.g., rear wall) of the cutting element pocket 112 against which a cutting element 110 may abut and rest. The plug 134 may be used to replace the excess material removed from the bit body 101 when forming the first recess 130 and the second recess 132, and to fill any portion or portions of the first recess 130 and the second recess 132 that are not comprised by the cutting element pocket 112.
Both the plug 134 and the bit body 102 may be comprise particle-matrix composite components formed from any of the materials described hereinabove in relation to particle-matrix composite material 120. In some embodiments, the plug 134 and the bit body 101 may both comprise green powder components. In other embodiments, the plug 134 and the bit body 101 may both comprise brown components. In yet additional embodiments, one of the plug 134 and the bit body 101 may comprise a green body and the other a brown body. The sinter-shrink rate of the plug 134 and the bit body 101 may be tailored as desired as discussed herein. For instance, the sinter-shrink rate of the plug 134 and the bit body 101 may be tailored so the bit body 101 has a greater sinter shrink rate than the plug 134. The plug 134 may be disposed within the second recess 132 as shown in FIG. 6, and the plug 134 and the bit body 101 may be co-sintered to a final desired density to sinterbond the less than full sintered bit body 101 to the plug 134 to form the unitary bit body 102 shown in FIG. 5. As mentioned previously, the sinter-shrink rates of the plug 134 and the bit body 101 may be tailored by controlling the porosity of each so the bit body 101 has a greater porosity than the plug 134 such that during sintering the bit body 101 will shrink more than the plug 134. The porosity of the bit body 101 and the plug 134 may be tailored by modifying one or more of the particle size and size distribution, pressing method, compaction pressure, and the amount of the binder used in a component when forming the less than fully sintered components as described hereinabove.
FIG. 7A is a cross-sectional view of the bit body 101 shown in FIG. 6 taken along section line 7A-7A shown therein. In some embodiments, as shown in FIG. 7A, the diameter Di32 of the second recess 132 of the cutting element pocket 112 may be larger than the diameter D134 of the plug 134. The difference in the diameters of the second recess 132 and the plug 134 may allow the plug 134 to be easily placed within the second recess 132. FIG. 7B is a cross-sectional view of the bit body 102 shown in FIG. 5 taken along the section line 7B-7B shown therein and may be formed by sintering the bit body 101 and the plug 134 as shown in FIG. 7A to a final desired density. As shown in FIG. 7B, after sintering the bit body 101 and the plug 134 to a final desired density, any gap between the second recess 132 and the plug 134 created by the difference the diameters Di32, Di34 of the second recess 132 and the plug 134 may be eliminated as the bit body 101 shrinks around and captures the plug 134 during co-sintering. Thus, because the bit body 101 has a greater sinter-shrink rate than the plug 134 and shrinks around and captures the plug 134 during sintering, a complete sinterbond along the entire interface between the plug 134 and the bit body 101 may be formed despite any gap between the second recess 132 and the plug 134 prior to co-sintering. After co-sintering the plug 134 and the bit body 101 to a final desired density as shown in FIGs. 6 and 7B, the bit body 102 and the plug 134 may form a unitary structure. In other words, coalescence and bonding may occur between adjacent particles of the particle-matrix composite materials of the plug 134 and the bit body 101 during co-sintering. By co-sintering the plug 134 and the bit body 101 and forming a sinterbond therebetween, the bit body 102 may exhibit greater strength than a bit body formed from a plug that has been welded or brazed therein using conventional bonding methods.
FIG. 8 is a longitudinal cross-sectional view of the earth-boring rotary drill bit 100 shown in FIGs. 3 and 4 taken along the section line 8-8 shown in FIG. 4. The earth-boring rotary drill bit 100 shown in FIG. 8 does not include cutting elements 110, nozzle inserts 124, or a shank 104. As shown in FIG. 8, the earth-boring rotary drill bit 100 may comprise one or more particle-matrix components that have been sinterbonded together to form the earth-boring rotary drill bit 100. In particular, the earth-boring rotary drill bit 100 may comprise an extension 108 that will be sinterbonded to the bit body 102, a blade 116 that may be sinterbonded to the bit body 102, cutting 146 structures (not shown) that may be sinterbonded to the blade 116, and nozzle exit rings 127 that may be sinterbonded to the bit body 102 all using methods of the present invention in a manner similar to those described above in relation to the plug 134 and the bit body 102. The sinterbonding of the extension 108 and the bit body 102 is described herein below in relation to FIGs. 9A-B; the sinterbonding of the blade 116 to the bit body 102 is described herein below in relation to FIGs. 10A-B; the sinterbonding of the cutting structures 146 to the blade 116 is described herein below in relation to FIGs. 1 IA-B; and the sinterbonding of the nozzle exit ring 127 to the bit body 102 is described herein below in relation to FIGs. 12A-B. FIG. 8A is another longitudinal cross-sectional view of the earth-boring rotary drill bit 100 shown in FIGs. 3 and 4 taken along the section line 8-8 shown in FIG. 4. The earth-boring rotary drill bit 100 shown in FIG. 8 does not include cutting elements 110, nozzle inserts 124, or a shank 104. As shown in FIG. 8A, the earth-boring rotary drill bit 100 may comprise one or more particle-matrix components that will be or are sinterbonded together to form the earth-boring rotary drill bit 100. In particular, the earth-boring rotary drill bit 100 may comprise an extension 108 that will be sinterbonded to the previously finally sintered bit body 102, a blade 116 that has been sinterbonded to the bit body 102, cutting 146 structures (not shown) that have been sinterbonded to the blade 116, and nozzle exit rings 127 that have been sinterbonded to the bit body 102 all using methods of the present invention in a manner similar to those described above in relation to the plug 134 and the bit body 102. The sinterbonding of the extension 108 and the bit body 102 occurs after the final sintering of the bit body 102 such as described herein when it is desired to have the shrinking of the extension to attach the extension 108 to the bit body 102. In general, after sinterbonding, the bit body 102 and the extension 108 are illustrated in relation to FIGs. 8B-8C. The extension 108 may be formed having a taper of approximately 1/2° to approximately 2°, as illustrated, while the bit body 102 may be formed having a mating taper of approximately 1/2° to approximately 2°, as illustrated, so that after the sinterbonding of the extension 108 to the bit body 102 the mating tapers of the extension 108 and the bit body 102 have formed an interference fit therebetween.
FIG. 8B is a cross-sectional view of the earth-boring rotary drill bit 100 shown in FIG. 8 taken along the section line 9A-9A shown therein. FIG. 8C is a cross sectional view of a fully sintered earth-boring rotary drill bit 102, similar to the cross-sectional view shown in FIG. 8B, that has been sintered to a final desired density to form the earth-boring rotary drill bit body 102 shown in FIG. 8A. As shown in FIG. 8B, the earth-boring rotary drill bit 100 comprises a fully sintered bit body 102 and a less than fully sintered extension 108. The fully sintered bit body 102 and the less than fully sintered extension 108 may both comprise particle-matrix composite components. In some embodiments, both the fully sintered bit body 102 and the less than fully sintered extension 108 may comprise particle-matrix composite components formed form a plurality of tungsten carbide particles dispersed throughout a cobalt matrix material. In other embodiments, the less than fully sintered extension 108 and the fully sintered bit body 102 may comprise any of the materials described hereinabove in relation to particle-matrix composite material 120.
Furthermore, in some embodiments the fully sintered bit body 102 and less than fully sintered extension 108 may exhibit different material properties. As non-limiting examples, the fully sintered bit body 102 may comprise a tungsten carbide material with greater fracture toughness or wear resistance than a tungsten carbide material used to form the less than fully sintered extension 108. The sinter-shrink rates of the fully sintered bit body 102, although a fully sintered bit body 102 essentially has no sinter-shrink rate after being fully sintered, and the less than fully sintered extension 108 may be tailored by controlling the porosity of each so the extension 108 has a greater porosity than the bit body 102 such that during sintering the extension 108 will shrink more than the fully sintered bit body 102. The porosity of the bit body 102 and the extension 108 may be tailored by modifying one or more of the particle size and size distribution, particle shape, pressing method, compaction pressure, and the amount of the binder used in a component when forming the less than fully sintered components as described hereinabove. Suitable types of connectors, such as lugs and recesses 108' or keys and recesses 108" (illustrated in dashed lines in FIG. 8B, 8C) may be used as desired between the bit body 102 and extension 108.
FIG. 9A is a cross-sectional view of the earth-boring rotary drill bit 100 shown in FIG. 8 taken along the section line 9A-9A shown therein. FIG. 9B is a cross sectional view of a less than full sintered (i.e., a green or brown bit body) earth-boring rotary drill bit 103, similar to the cross-sectional view shown in FIG. 9A, that may be sintered to a final desired density to form the earth-boring rotary drill bit 100 shown in FIG. 9A. As shown in FIG. 9B, the earth-boring rotary drill bit 103 may comprise a less than fully sintered bit body 101 and a less than fully sintered extension 107. The less than fully sintered bit body 101 and the less than fully sintered extension 107 may both comprise particle-matrix composite components. In some embodiments, both the less than fully sintered bit body 101 and the less than fully sintered extension 107 may comprise particle-matrix composite components formed from a plurality of tungsten carbide particles dispersed throughout a cobalt matrix material. In other embodiments, the less than fully sintered extension 107 and the less than fully sintered bit body 101 may comprise any of the materials described hereinabove in relation to particle-matrix composite material 120.
Furthermore, in some embodiments the less than fully sintered bit body 101 and less than fully sintered extension 107 may exhibit different material properties. As non-limiting examples, the less than fully sintered bit body 101 may comprise a tungsten carbide material with greater fracture toughness or wear resistance than a tungsten carbide material used to form the less than fully sintered extension 107. The sinter-shrink rates of the less than fully sintered bit body 101 and the less than fully sintered extension 107 may be tailored by controlling the porosity of each so the extension 107 has a greater porosity than the bit body 101 such that during sintering the extension 107 will shrink more than the bit body 101. The porosity of the bit body 101 and the extension 107 may be tailored by modifying one or more of the particle size and size distribution, pressing method, compaction pressure, and the amount of the binder used in a component when forming the less than fully sintered components as described hereinabove.
As mentioned previously, the extension 107 and the bit body 101, as shown in FIG. 9B, may be co-sintered to a final desired density to form the earth-boring rotary drill bit 100 shown in FIG. 9A. In particular, a portion 140 (FIG. 8) of the bit body 101 may be disposed at least partially within a recess 142 (FIG. 8) of the extension 107 and the extension 107 and the bit body 101 may be co-sintered. Because the extension 107 has a greater sinter-shrink rate than the bit body 101, the extension 107 may contract around the bit body 101 facilitating a complete sinterbond along an interface 144 therebetween, as shown in FIG. 9A.
FIG. 1OA is a cross-sectional view of the earth-boring rotary drill bit 100 shown in FIG. 8 taken along the section line 10A- 1OA shown therein. FIG. 1OB is a cross-sectional view of a less than full sintered (i.e., a green or brown bit body) earth-boring rotary drill bit 103, similar to the cross-sectional view shown in FIG. 1OA, that may be sintered to a final desired density to form the earth-boring rotary drill bit 100 shown in FIG. 1OA. As shown in FIG. 1OB, the earth-boring rotary drill bit 103 may comprise a less than fully sintered bit body 101 and a less than fully sintered blade 150. The less than fully sintered bit body 101 and the less than fully sintered blade 150 may both comprise particle-matrix composite components. In some embodiments, both the less than fully sintered bit body 101 and the less than fully sintered blade 150 may comprise particle-matrix composite components formed form a plurality of tungsten carbide particles dispersed throughout a cobalt matrix material. In other embodiments, the less than fully sintered blade 150 and the less than fully sintered bit body 101 may comprise any of the materials described hereinabove in relation to particle-matrix composite material 120.
Furthermore, in some embodiments the less than fully sintered bit body 101 and less than fully sintered blade 150 may exhibit different material properties. As non-limiting examples, the less than fully sintered blade 150 may comprise a tungsten carbide material with greater fracture toughness or wear resistance than a tungsten carbide material used to form the less than fully sintered bit body 101. As non-limiting examples, the binder content may be lowered or a different grade of carbide may be used to form the blade 150 so that it exhibits greater wear resistance and/or fracture toughness relative to the bit body 101. In other embodiments, the less than fully sintered bit body 101 and less than fully sintered blade 150 may exhibit similar material properties.
The sinter-shrink rates of the less than fully sintered bit body 101 and the less than fully sintered blade 150 may be tailored by controlling the porosity of each so the bit body 101 has a greater porosity than the blade 150 such that during sintering the bit body 101 will shrink more than the blade 150. The porosity of the bit body 101 and the blade 150 may be tailored by modifying one or more of the particle size and size distribution, pressing method, compaction pressure, and the amount of the binder used in a component when forming the less than fully sintered components as described hereinabove.
As mentioned previously, the blade 150 and the bit body 101, as shown in FIG. 1OB, may be co-sintered to a final desired density to form the earth-boring rotary drill bit 100 shown in FIG. 1OA. In particular, the blade 150 may be at least partially disposed within a recess 154 of the bit body 101 and the blade 150 and the bit body 101 may be co-sintered. Because the bit body 101 has a greater sinter-shrink rate than the blade 150, the bit body 101 may contract around the blade 150 facilitating a complete sinterbond along an interface 154 therebetween as shown in FIG. 1OA.
Additionally as seen in FIG. 8, the earth-boring rotary drill bit 100 may include cutting structures 146 that may be sinterbonded to the bit body 102 and more particularly to the blades 116 using methods of the present invention. "Cutting structures" as used herein mean any structure of an earth-boring rotary drill bit configured to engage earth formations in a bore hole. For example, cutting structures may comprise wear knots 128, gage wear plugs 122, cutting elements 110 (FIG. 3), and BRUTE™ cutters 160 (Backups cutters that are Radially Unaggressive and Tangentially Efficient, illustrated in FIG. 12). FIG. 1 IA is a partial cross-sectional view of a blade 116 of an earth-boring rotary drill bit with a cutting structure 146 sinterbonded thereto using methods of the present invention. FIG. 1 IB is a partial cross-sectional view of a less than fully sintered blade 160 of an earth-boring rotary drill bit, similar to the cross-sectional view shown in FIG. 1 IA, that may be sintered to a final desired density to form the blade 116 shown in FIG. 1 IA. As shown in FIG. 1 IB, a less than fully sintered cutting structurel47 may be disposed at least partially within a recess 148 of the less than fully sintered blade 160. The less than fully sintered cutting structure 147 and the less than fully sintered blade 160 may both comprise particle-matrix composite components. In some embodiments, both the less than fully sintered cutting structure 147 and the less than fully sintered blade 160 may comprise particle-matrix composite components formed form a plurality of tungsten carbide particles dispersed throughout a cobalt matrix material. In other embodiments, the less than fully sintered blade 160 and the less than fully sintered cutting structure 147 may comprise any of the materials described hereinabove in relation to particle-matrix composite material 120.
Furthermore, in some embodiments the less than fully sintered cutting structure 147 and less than fully sintered blade 160 may exhibit different material properties. As non-limiting examples, the less than fully sintered cutting structure 147 may comprise a tungsten carbide material with greater fracture toughness or wear resistance than a tungsten carbide material used to form the less than fully sintered blade 160. As non-limiting examples, the binder content may be lowered or a different grade of carbide may be used to form the less than fully sintered cutting structure 147 so that it exhibits greater wear resistance and/or fracture toughness relative to the blade 160. In other embodiments, the less than fully sintered cutting structure 147 and less than fully sintered blade 160 may exhibit similar material properties.
The sinter-shrink rates of the less than fully sintered cutting structure 147 and the less than fully sintered blade 160 may be tailored by controlling the porosity of each so the blade 160 has a greater porosity than the cutting structure 147 such that during sintering the blade 160 will shrink more than the cutting structure 147. The porosity of the cutting structure 147 and the blade 160 may be tailored by modifying one or more of the particle size and size distribution, pressing method, compaction pressure, and the amount of the binder used in a component when forming the less than fully sintered components as described hereinabove.
As mentioned previously, the blade 160 and the cutting structure 147, as shown in FIG. 1 IB, may be co-sintered to a final desired density to form the blade 116 shown in FIG. 1 IA. Because the blade 160 has a greater sinter-shrink rate than the cutting structure 147, the blade 160 may contract around the cutting structure 147 facilitating a complete sinterbond along an interface 162 therebetween as shown in FIG. 1 IA.
FIG. 12A is an enlarged partial cross-sectional view of the earth-boring rotary drill bit 100 shown in FIG. 8. FIG. 12B is a cross-sectional view of a less than full sintered earth-boring rotary drill bit 103, similar to the cross-sectional view shown in FIG. 12A, that may be sintered to a final desired density to form the earth-boring rotary drill bit 100 shown in FIG. 12A. As shown in FIG. 12B, the earth-boring rotary drill bit 103 may comprise a less than fully sintered bit body 101 and a less than fully sintered nozzle exit ring 129. The less than fully sintered bit body 101 and the less than fully sintered nozzle exit ring 129 may both comprise particle-matrix composite components. In some embodiments, both the less than fully sintered bit body 101 and the less than fully sintered nozzle exit ring 129 may comprise particle-matrix composite components formed form a plurality of tungsten carbide particles dispersed throughout a cobalt matrix material. In other embodiments, the less than folly sintered nozzle exit ring 129 and the less than folly sintered bit body 101 may comprise any of the materials described hereinabove in relation to particle-matrix composite material 120.
Furthermore, in some embodiments the less than folly sintered bit body 101 and less than folly sintered nozzle exit ring 129 may exhibit different material properties. As non-limiting examples, the less than folly sintered nozzle exit ring 129 may comprise a tungsten carbide material with greater fracture toughness or wear resistance than a tungsten carbide material used to form the less than folly sintered bit body 101. As non-limiting examples, the binder content may be lowered or a different grade of carbide may be used to form the nozzle exit ring 129 so that it exhibits greater wear resistance and/or fracture toughness relative to the bit body 101. In other embodiments, the less than folly sintered bit body 101 and less than folly sintered nozzle exit ring 129 may exhibit similar material properties.
The sinter-shrink rates of the less than folly sintered bit body 101 and the less than folly sintered nozzle exit ring 129 may be tailored by controlling the porosity of each so the bit body 101 has a greater porosity than the nozzle exit ring 129 such that during sintering the bit body 101 will shrink more than the nozzle exit ring 129. The porosity of the bit body 101 and the nozzle exit ring 129 may be tailored by modifying one or more of the particle size and size distribution, pressing method, compaction pressure, and the amount of the binder used in a component when forming the less than fully sintered components as described hereinabove.
As mentioned previously, the nozzle exit ring 129 and the bit body 101, as shown in FIG. 12B, may be co-sintered to a final desired density to form the earth-boring rotary drill bit 100 shown in FIG. 1 IA. In particular, the nozzle exit ring 129 may be at least partially disposed within a recess 163 of the bit body 101 and the nozzle exit ring 129 and the bit body 101 may be co-sintered. Because the bit body 101 has a greater sinter-shrink rate than the nozzle exit ring 129, the bit body 101 may contract around the nozzle exit ring 129 facilitating a complete sinterbond along an interface 173 therebetween, as shown in FIG. 12A.
FIG. 13 is a partial perspective view of a bit body 202 of an earth-boring rotary drill bit, and more particularly of a blade 216 of the bit body 202, similar to the bit body 102 shown in FIG. 3. The bit body 202 may comprise a particle-matrix composite material 120 and may be formed using powder compaction and sintering processes, such as those previously described. As shown in FIG. 13, the bit body 202 may include a plurality of cutting elements 210 supported by buttresses 207. The bit body 202 may also include a plurality of BRUTE™ cutters 160 (illustrated in FIG. 12).
According to some embodiments of the present invention, the buttresses 207 may be sinterbonded to the bit body 202. FIG. 14A is a partial cross-sectional view of the bit body 202 shown in FIG. 13 taken along the section line 14A-14A shown therein. FIG. 14A; however, does not illustrate the cutting element 210. FIG. 14B is a less than fully sintered bit body 201 (i.e., a green or brown bit body) that may be sintered to a desired final density to form the bit body 202 shown in FIG. 14A. As shown in FIG. 14B, the less than fully sintered bit body 201 may comprise a cutting element pocket 212 and a recess 214 configured to receive a less than fully sintered buttress 208.
The less than fully sintered buttress 208 and the less than fully sintered bit body 201 may both comprise particle-matrix composite components. In some embodiments, both the less than fully sintered buttress 208 and the less than fully sintered bit body 201 may comprise particle-matrix composite components formed from a plurality of tungsten carbide particles dispersed throughout a cobalt matrix material. In other embodiments, the less than fully sintered bit body 201 and the less than fully sintered buttress 208 may comprise any of the materials described hereinabove in relation to particle-matrix composite material 120.
Furthermore, in some embodiments the less than fully sintered buttress 208 and less than fully sintered bit body 201 may exhibit different material properties. As non-limiting examples, the less than fully sintered buttress 208 may comprise a tungsten carbide material with greater fracture toughness or wear resistance than a tungsten carbide material used to form the less than fully sintered bit body 201. As non-limiting examples, the binder content may be lowered or a different grade of carbide may be used to form the less than fully sintered buttress 208 so that it exhibits greater wear resistance and/or fracture toughness relative to the bit body 201. In other embodiments, the less than fully sintered buttress 208 and less than fully sintered bit body 201 may exhibit similar material properties.
The sinter-shrink rates of the less than fully sintered buttress 208 and the less than fully sintered bit body 201 may be tailored by controlling the porosity of each so the bit body 201 has a greater porosity than the buttress 208 such that during sintering the bit body 201 will shrink more than the buttress 208. The porosity of the buttress 208 and the bit body 201 may be tailored by modifying one or more of the particle size, particle shape, and particle size distribution, pressing method, compaction pressure, and the amount of the binder used in a component when forming the less than fully sintered components as described hereinabove.
As mentioned previously, the bit body 201 and the buttress 208, as shown in FIG. 14B, may be co-sintered to a final desired density to form the bit body 202 shown in FIG. 14A. Because the bit body 201 has a greater sinter-shrink rate than the buttress 208, the bit body 201 may contract around the buttress 208 facilitating a complete sinterbond along an interface 220 therebetween as shown in FIG. 14A.
Although the methods of the present invention have been described in relation to fixed-cutter rotary drill bits, they are equally applicable to any bit body that is formed by sintering a less than fully sintered bit body to a desired final density. For example, the methods of the present invention may be used to form subterranean tools other than fixed-cutter rotary drill bits including, for example, core bits, eccentric bits, bicenter bits, reamers, mills, drag bits, roller cone bits, and other such structures known in the art. While the present invention has been described herein with respect to certain preferred embodiments, those of ordinary skill in the art will recognize and appreciate that it is not so limited. Rather, many additions, deletions and modifications to the preferred embodiments may be made without departing from the scope of the invention as hereinafter claimed. In addition, features from one embodiment may be combined with features of another embodiment while still being encompassed within the scope of the invention as contemplated by the inventors.

Claims

What is claimed is:
L A method of forming a bit body of an earth-boring rotary drill bit, the method is characterized in that: forming a first fully sintered component; forming at least a second less than fully sintered component with a sinter-shrink rate greater than any sinter-shrink rate of the fully sintered component; and co-sintering the first fully sintered component and the at least a second less than fully sintered component to a desired final density to form at least a portion of an earth- boring rotary drill bit by the co-sintering causing the second less than fully sintered component to shrink around and at least partially capture the at least a first second fully sintered component.
2. The method of claim 1, wherein forming at least a second less than fully sintered component with a second sinter-shrink rate greater than any sinter-shrink rate of the first fully sintered component is characterized in that forming the at least a second less than fully sintered component with greater porosity than the first fully sintered component.
3. The method of claim 2, wherein forming the at least a second less than fully sintered component with greater porosity than the first fully sintered component is characterized in that forming the at least a second less than fully sintered component from a plurality of hard particles with a lesser size distribution than a plurality of hard particles used to form the first fully sintered component.
4. The method of claim 1, wherein forming at least a first fully sintered component is characterized in that forming a green component that has been fully sintered subsequently.
5. The method of claim 1, wherein forming at least a second less than fiilly sintered component with a second sinter-shrink rate greater than any sinter-shrink rate of the first component is characterized in that forming a brown component.
6. The method of claim 1, wherein forming a first fully sintered component and forming at least a second less than fully sintered component with a second sinter- shrink rate greater than any sinter-shrink rate of the first component is characterized in that forming a first fully sintered component and at least a second less than fully sintered component from a plurality of hard particles dispersed throughout a matrix material .
7. The method of claim 6, wherein forming a first fully sintered component and at least a second less than fully sintered component from a plurality of hard particles dispersed throughout a matrix material is characterized in that forming a first fully sintered component and at least a second less than fully sintered component from a plurality of tungsten carbide dispersed throughout a cobalt binder.
8. The method of claim 1, wherein co-sintering is characterized in that causing the first fully sintered component to be at least partially surrounded and captured by the second less than fully sintered component.
9. The method of claim 1, wherein forming a first fully sintered component is characterized in that forming at least a portion of a bit body including at least one cutting element pocket and forming at least a second less than folly sintered bit body comprises forming a plug.
10. The method of claim 1, wherein forming a first folly sintered component is characterized in that forming at least a portion of a bit body including at least three recesses and forming at least a second less than folly sintered bit body comprises forming at least a wear knot, a gage wear pad, and a plug.
11. An earth-boring rotary drill bit characterized in that: a bit body comprising a particle-matrix composite material; and at least one cutting structure comprising a particle-matrix composite material sinterbonded at least partially within at least one recess of the bit body.
12. The earth-boring rotary drill bit of claim 11, wherein the cutting structure is characterized in that it is one of a backup cutter that is radially unaggressive in cutting and tangentially efficient in cutting and a wear knot.
13. The earth-boring rotary drill bit of claim 11 , wherein the bit body is characterized in that a tungsten carbide component with a material property and the at least one cutting structure comprises a tungsten carbide component with the material property, the material property of the at least one cutting structure being greater than the material property of the bit body.
14. The earth-boring rotary drill of claim 14, wherein the material property is characterized in that the material property has wear resistance.
15. The earth-boring rotary drill of claim 14, wherein the material property is characterized in that the material property has fracture toughness.
PCT/US2009/046812 2008-06-10 2009-06-10 Methods of forming earth-boring tools including sinterbonded components and tools formed by such methods WO2009152195A2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP09763485.1A EP2304162A4 (en) 2008-06-10 2009-06-10 Methods of forming earth-boring tools including sinterbonded components and tools formed by such methods

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/136,703 2008-06-10
US12/136,703 US8770324B2 (en) 2008-06-10 2008-06-10 Earth-boring tools including sinterbonded components and partially formed tools configured to be sinterbonded

Publications (3)

Publication Number Publication Date
WO2009152195A2 true WO2009152195A2 (en) 2009-12-17
WO2009152195A3 WO2009152195A3 (en) 2010-04-01
WO2009152195A4 WO2009152195A4 (en) 2010-05-20

Family

ID=41399265

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/046812 WO2009152195A2 (en) 2008-06-10 2009-06-10 Methods of forming earth-boring tools including sinterbonded components and tools formed by such methods

Country Status (3)

Country Link
US (4) US8770324B2 (en)
EP (1) EP2304162A4 (en)
WO (1) WO2009152195A2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9016407B2 (en) * 2007-12-07 2015-04-28 Smith International, Inc. Drill bit cutting structure and methods to maximize depth-of-cut for weight on bit applied
WO2009146078A1 (en) * 2008-04-01 2009-12-03 Smith International, Inc. Fixed cutter bit with backup cutter elements on secondary blades
US8925654B2 (en) 2011-12-08 2015-01-06 Baker Hughes Incorporated Earth-boring tools and methods of forming earth-boring tools
US9827611B2 (en) * 2015-01-30 2017-11-28 Diamond Innovations, Inc. Diamond composite cutting tool assembled with tungsten carbide
US10378286B2 (en) * 2015-04-30 2019-08-13 Schlumberger Technology Corporation System and methodology for drilling
EP3421163A1 (en) * 2017-06-27 2019-01-02 HILTI Aktiengesellschaft Drill for chiselling rock
US10662716B2 (en) * 2017-10-06 2020-05-26 Kennametal Inc. Thin-walled earth boring tools and methods of making the same
CN108019153A (en) * 2017-12-05 2018-05-11 中国石油化工股份有限公司 A kind of PDC drill bit of suitable middle-shallow layer directional well drilling

Family Cites Families (224)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1954166A (en) 1931-07-31 1934-04-10 Grant John Rotary bit
US2299207A (en) 1941-02-18 1942-10-20 Bevil Corp Method of making cutting tools
US2507439A (en) 1946-09-28 1950-05-09 Reed Roller Bit Co Drill bit
US2906654A (en) 1954-09-23 1959-09-29 Abkowitz Stanley Heat treated titanium-aluminumvanadium alloy
US2819958A (en) 1955-08-16 1958-01-14 Mallory Sharon Titanium Corp Titanium base alloys
US2819959A (en) 1956-06-19 1958-01-14 Mallory Sharon Titanium Corp Titanium base vanadium-iron-aluminum alloys
NL275996A (en) 1961-09-06
US3368881A (en) 1965-04-12 1968-02-13 Nuclear Metals Division Of Tex Titanium bi-alloy composites and manufacture thereof
US3471921A (en) 1965-12-23 1969-10-14 Shell Oil Co Method of connecting a steel blank to a tungsten bit body
US3660050A (en) 1969-06-23 1972-05-02 Du Pont Heterogeneous cobalt-bonded tungsten carbide
US3757879A (en) 1972-08-24 1973-09-11 Christensen Diamond Prod Co Drill bits and methods of producing drill bits
US3859016A (en) * 1973-04-06 1975-01-07 Amsted Ind Inc Powder metallurgy composite
US3987859A (en) 1973-10-24 1976-10-26 Dresser Industries, Inc. Unitized rotary rock bit
US3880971A (en) 1973-12-26 1975-04-29 Bell Telephone Labor Inc Controlling shrinkage caused by sintering of high alumina ceramic materials
US4017480A (en) 1974-08-20 1977-04-12 Permanence Corporation High density composite structure of hard metallic material in a matrix
US4229638A (en) 1975-04-01 1980-10-21 Dresser Industries, Inc. Unitized rotary rock bit
US4047828A (en) 1976-03-31 1977-09-13 Makely Joseph E Core drill
JPS6041136B2 (en) 1976-09-01 1985-09-14 財団法人特殊無機材料研究所 Method for manufacturing silicon carbide fiber reinforced light metal composite material
US4094709A (en) 1977-02-10 1978-06-13 Kelsey-Hayes Company Method of forming and subsequently heat treating articles of near net shaped from powder metal
DE2722271C3 (en) 1977-05-17 1979-12-06 Thyssen Edelstahlwerke Ag, 4000 Duesseldorf Process for the production of tools by composite sintering
US4157122A (en) 1977-06-22 1979-06-05 Morris William A Rotary earth boring drill and method of assembly thereof
US4128136A (en) 1977-12-09 1978-12-05 Lamage Limited Drill bit
DE2810746A1 (en) 1978-03-13 1979-09-20 Krupp Gmbh PROCESS FOR THE PRODUCTION OF COMPOSITE HARD METALS
US4233720A (en) 1978-11-30 1980-11-18 Kelsey-Hayes Company Method of forming and ultrasonic testing articles of near net shape from powder metal
US4221270A (en) 1978-12-18 1980-09-09 Smith International, Inc. Drag bit
US4255165A (en) 1978-12-22 1981-03-10 General Electric Company Composite compact of interleaved polycrystalline particles and cemented carbide masses
JPS5937717B2 (en) 1978-12-28 1984-09-11 石川島播磨重工業株式会社 Cemented carbide welding method
US4252202A (en) 1979-08-06 1981-02-24 Purser Sr James A Drill bit
US4341557A (en) 1979-09-10 1982-07-27 Kelsey-Hayes Company Method of hot consolidating powder with a recyclable container material
AU6968081A (en) * 1980-05-07 1981-11-12 Imperial Clevite Inc. Shrink fitting of powder met articles
US4526748A (en) 1980-05-22 1985-07-02 Kelsey-Hayes Company Hot consolidation of powder metal-floating shaping inserts
CH646475A5 (en) 1980-06-30 1984-11-30 Gegauf Fritz Ag ADDITIONAL DEVICE ON SEWING MACHINE FOR TRIMMING MATERIAL EDGES.
US4398952A (en) 1980-09-10 1983-08-16 Reed Rock Bit Company Methods of manufacturing gradient composite metallic structures
US4453605A (en) 1981-04-30 1984-06-12 Nl Industries, Inc. Drill bit and method of metallurgical and mechanical holding of cutters in a drill bit
CA1216158A (en) 1981-11-09 1987-01-06 Akio Hara Composite compact component and a process for the production of the same
US4547337A (en) 1982-04-28 1985-10-15 Kelsey-Hayes Company Pressure-transmitting medium and method for utilizing same to densify material
JPS58193304A (en) 1982-05-08 1983-11-11 Hitachi Powdered Metals Co Ltd Preparation of composite sintered machine parts
US4596694A (en) * 1982-09-20 1986-06-24 Kelsey-Hayes Company Method for hot consolidating materials
US4597730A (en) 1982-09-20 1986-07-01 Kelsey-Hayes Company Assembly for hot consolidating materials
US4499048A (en) 1983-02-23 1985-02-12 Metal Alloys, Inc. Method of consolidating a metallic body
US4499958A (en) 1983-04-29 1985-02-19 Strata Bit Corporation Drag blade bit with diamond cutting elements
US4562990A (en) 1983-06-06 1986-01-07 Rose Robert H Die venting apparatus in molding of thermoset plastic compounds
US4774211A (en) 1983-08-08 1988-09-27 International Business Machines Corporation Methods for predicting and controlling the shrinkage of ceramic oxides during sintering
SE454196C (en) 1983-09-23 1991-10-24 Jan Persson EARTH AND MOUNTAIN DRILLING DEVICE CONCERNING BORING AND LINING OF THE DRILL
US4499795A (en) 1983-09-23 1985-02-19 Strata Bit Corporation Method of drill bit manufacture
US4552232A (en) 1984-06-29 1985-11-12 Spiral Drilling Systems, Inc. Drill-bit with full offset cutter bodies
US4889017A (en) 1984-07-19 1989-12-26 Reed Tool Co., Ltd. Rotary drill bit for use in drilling holes in subsurface earth formations
US4554130A (en) 1984-10-01 1985-11-19 Cdp, Ltd. Consolidation of a part from separate metallic components
DE3574738D1 (en) 1984-11-13 1990-01-18 Santrade Ltd SINDERED HARD METAL ALLOY FOR STONE DRILLING AND CUTTING MINERALS.
US4738322A (en) 1984-12-21 1988-04-19 Smith International Inc. Polycrystalline diamond bearing system for a roller cone rock bit
GB8501702D0 (en) 1985-01-23 1985-02-27 Nl Petroleum Prod Rotary drill bits
US4630693A (en) 1985-04-15 1986-12-23 Goodfellow Robert D Rotary cutter assembly
US4656002A (en) 1985-10-03 1987-04-07 Roc-Tec, Inc. Self-sealing fluid die
DE3601385A1 (en) 1986-01-18 1987-07-23 Krupp Gmbh METHOD FOR PRODUCING SINTER BODIES WITH INNER CHANNELS, EXTRACTION TOOL FOR IMPLEMENTING THE METHOD, AND DRILLING TOOL
US4667756A (en) 1986-05-23 1987-05-26 Hughes Tool Company-Usa Matrix bit with extended blades
US4871377A (en) 1986-07-30 1989-10-03 Frushour Robert H Composite abrasive compact having high thermal stability and transverse rupture strength
US4981665A (en) 1986-08-22 1991-01-01 Stemcor Corporation Hexagonal silicon carbide platelets and preforms and methods for making and using same
EP0264674B1 (en) 1986-10-20 1995-09-06 Baker Hughes Incorporated Low pressure bonding of PCD bodies and method
US4809903A (en) 1986-11-26 1989-03-07 United States Of America As Represented By The Secretary Of The Air Force Method to produce metal matrix composite articles from rich metastable-beta titanium alloys
US4744943A (en) 1986-12-08 1988-05-17 The Dow Chemical Company Process for the densification of material preforms
GB2203774A (en) 1987-04-21 1988-10-26 Cledisc Int Bv Rotary drilling device
US5090491A (en) 1987-10-13 1992-02-25 Eastman Christensen Company Earth boring drill bit with matrix displacing material
US4884477A (en) 1988-03-31 1989-12-05 Eastman Christensen Company Rotary drill bit with abrasion and erosion resistant facing
US4968348A (en) 1988-07-29 1990-11-06 Dynamet Technology, Inc. Titanium diboride/titanium alloy metal matrix microcomposite material and process for powder metal cladding
US5593474A (en) * 1988-08-04 1997-01-14 Smith International, Inc. Composite cemented carbide
US4838366A (en) 1988-08-30 1989-06-13 Jones A Raymond Drill bit
US4919013A (en) 1988-09-14 1990-04-24 Eastman Christensen Company Preformed elements for a rotary drill bit
US4956012A (en) 1988-10-03 1990-09-11 Newcomer Products, Inc. Dispersion alloyed hard metal composites
US4923512A (en) 1989-04-07 1990-05-08 The Dow Chemical Company Cobalt-bound tungsten carbide metal matrix composites and cutting tools formed therefrom
GB8921017D0 (en) * 1989-09-16 1989-11-01 Astec Dev Ltd Drill bit or corehead manufacturing process
US5000273A (en) * 1990-01-05 1991-03-19 Norton Company Low melting point copper-manganese-zinc alloy for infiltration binder in matrix body rock drill bits
SE9001409D0 (en) 1990-04-20 1990-04-20 Sandvik Ab METHOD FOR MANUFACTURING OF CARBON METAL BODY FOR MOUNTAIN DRILLING TOOLS AND WEARING PARTS
US5049450A (en) * 1990-05-10 1991-09-17 The Perkin-Elmer Corporation Aluminum and boron nitride thermal spray powder
US5030598A (en) * 1990-06-22 1991-07-09 Gte Products Corporation Silicon aluminum oxynitride material containing boron nitride
US5032352A (en) * 1990-09-21 1991-07-16 Ceracon, Inc. Composite body formation of consolidated powder metal part
US5286685A (en) * 1990-10-24 1994-02-15 Savoie Refractaires Refractory materials consisting of grains bonded by a binding phase based on aluminum nitride containing boron nitride and/or graphite particles and process for their production
US5240672A (en) 1991-04-29 1993-08-31 Lanxide Technology Company, Lp Method for making graded composite bodies produced thereby
US5150636A (en) * 1991-06-28 1992-09-29 Loudon Enterprises, Inc. Rock drill bit and method of making same
US5161898A (en) 1991-07-05 1992-11-10 Camco International Inc. Aluminide coated bearing elements for roller cutter drill bits
JPH05209247A (en) * 1991-09-21 1993-08-20 Hitachi Metals Ltd Cermet alloy and its production
US5232522A (en) * 1991-10-17 1993-08-03 The Dow Chemical Company Rapid omnidirectional compaction process for producing metal nitride, carbide, or carbonitride coating on ceramic substrate
US5281260A (en) * 1992-02-28 1994-01-25 Baker Hughes Incorporated High-strength tungsten carbide material for use in earth-boring bits
US5426343A (en) * 1992-09-16 1995-06-20 Gte Products Corporation Sealing members for alumina arc tubes and method of making the same
US5311958A (en) * 1992-09-23 1994-05-17 Baker Hughes Incorporated Earth-boring bit with an advantageous cutting structure
US5333699A (en) 1992-12-23 1994-08-02 Baroid Technology, Inc. Drill bit having polycrystalline diamond compact cutter with spherical first end opposite cutting end
GB2274467A (en) * 1993-01-26 1994-07-27 London Scandinavian Metall Metal matrix alloys
US5373907A (en) 1993-01-26 1994-12-20 Dresser Industries, Inc. Method and apparatus for manufacturing and inspecting the quality of a matrix body drill bit
SE9300376L (en) * 1993-02-05 1994-08-06 Sandvik Ab Carbide metal with binder phase-oriented surface zone and improved egg toughness behavior
US5560440A (en) 1993-02-12 1996-10-01 Baker Hughes Incorporated Bit for subterranean drilling fabricated from separately-formed major components
US6068070A (en) * 1997-09-03 2000-05-30 Baker Hughes Incorporated Diamond enhanced bearing for earth-boring bit
KR100330107B1 (en) * 1993-04-30 2002-08-21 더 다우 케미칼 캄파니 Densified fine particle refractory metal or solid solution (mixed metal) carbide ceramic
US5467669A (en) 1993-05-03 1995-11-21 American National Carbide Company Cutting tool insert
US5443337A (en) * 1993-07-02 1995-08-22 Katayama; Ichiro Sintered diamond drill bits and method of making
US5351768A (en) * 1993-07-08 1994-10-04 Baker Hughes Incorporated Earth-boring bit with improved cutting structure
US5439608A (en) 1993-07-12 1995-08-08 Kondrats; Nicholas Methods for the collection and immobilization of dust
US5322139A (en) 1993-07-28 1994-06-21 Rose James K Loose crown underreamer apparatus
US5441121A (en) 1993-12-22 1995-08-15 Baker Hughes, Inc. Earth boring drill bit with shell supporting an external drilling surface
US6284014B1 (en) 1994-01-19 2001-09-04 Alyn Corporation Metal matrix composite
US5980602A (en) 1994-01-19 1999-11-09 Alyn Corporation Metal matrix composite
US6073518A (en) 1996-09-24 2000-06-13 Baker Hughes Incorporated Bit manufacturing method
US6209420B1 (en) * 1994-03-16 2001-04-03 Baker Hughes Incorporated Method of manufacturing bits, bit components and other articles of manufacture
US5433280A (en) * 1994-03-16 1995-07-18 Baker Hughes Incorporated Fabrication method for rotary bits and bit components and bits and components produced thereby
AU2143895A (en) * 1994-04-16 1995-11-10 Ceramaspeed Limited Method of manufacturing an electrical resistance heating means
US5543235A (en) * 1994-04-26 1996-08-06 Sintermet Multiple grade cemented carbide articles and a method of making the same
US5778301A (en) * 1994-05-20 1998-07-07 Hong; Joonpyo Cemented carbide
US5482670A (en) * 1994-05-20 1996-01-09 Hong; Joonpyo Cemented carbide
US5682320A (en) 1994-06-03 1997-10-28 Synopsys, Inc. Method for electronic memory management during estimation of average power consumption of an electronic circuit
US5455000A (en) 1994-07-01 1995-10-03 Massachusetts Institute Of Technology Method for preparation of a functionally gradient material
US5506055A (en) * 1994-07-08 1996-04-09 Sulzer Metco (Us) Inc. Boron nitride and aluminum thermal spray powder
DE4424885A1 (en) * 1994-07-14 1996-01-18 Cerasiv Gmbh All-ceramic drill
US5439068B1 (en) * 1994-08-08 1997-01-14 Dresser Ind Modular rotary drill bit
US5606895A (en) 1994-08-08 1997-03-04 Dresser Industries, Inc. Method for manufacture and rebuild a rotary drill bit
US5753160A (en) 1994-10-19 1998-05-19 Ngk Insulators, Ltd. Method for controlling firing shrinkage of ceramic green body
US6051171A (en) 1994-10-19 2000-04-18 Ngk Insulators, Ltd. Method for controlling firing shrinkage of ceramic green body
US5541006A (en) 1994-12-23 1996-07-30 Kennametal Inc. Method of making composite cermet articles and the articles
US5679445A (en) 1994-12-23 1997-10-21 Kennametal Inc. Composite cermet articles and method of making
US5762843A (en) 1994-12-23 1998-06-09 Kennametal Inc. Method of making composite cermet articles
GB9500659D0 (en) * 1995-01-13 1995-03-08 Camco Drilling Group Ltd Improvements in or relating to rotary drill bits
US5586612A (en) 1995-01-26 1996-12-24 Baker Hughes Incorporated Roller cone bit with positive and negative offset and smooth running configuration
US5589268A (en) * 1995-02-01 1996-12-31 Kennametal Inc. Matrix for a hard composite
DE19512146A1 (en) 1995-03-31 1996-10-02 Inst Neue Mat Gemein Gmbh Process for the production of shrink-adapted ceramic composites
DE69612301T2 (en) 1995-05-11 2001-07-05 Anglo Operations Ltd SINKED CARBIDE ALLOY
US5641029A (en) 1995-06-06 1997-06-24 Dresser Industries, Inc. Rotary cone drill bit modular arm
US6453899B1 (en) * 1995-06-07 2002-09-24 Ultimate Abrasive Systems, L.L.C. Method for making a sintered article and products produced thereby
US5697462A (en) 1995-06-30 1997-12-16 Baker Hughes Inc. Earth-boring bit having improved cutting structure
US6214134B1 (en) * 1995-07-24 2001-04-10 The United States Of America As Represented By The Secretary Of The Air Force Method to produce high temperature oxidation resistant metal matrix composites by fiber density grading
US5662183A (en) * 1995-08-15 1997-09-02 Smith International, Inc. High strength matrix material for PDC drag bits
US5641921A (en) * 1995-08-22 1997-06-24 Dennis Tool Company Low temperature, low pressure, ductile, bonded cermet for enhanced abrasion and erosion performance
GB2307918B (en) 1995-12-05 1999-02-10 Smith International Pressure molded powder metal "milled tooth" rock bit cone
SE513740C2 (en) * 1995-12-22 2000-10-30 Sandvik Ab Durable hair metal body mainly for use in rock drilling and mineral mining
GB9603402D0 (en) 1996-02-17 1996-04-17 Camco Drilling Group Ltd Improvements in or relating to rotary drill bits
US5710969A (en) 1996-03-08 1998-01-20 Camax Tool Co. Insert sintering
US5740872A (en) 1996-07-01 1998-04-21 Camco International Inc. Hardfacing material for rolling cutter drill bits
US5880382A (en) * 1996-08-01 1999-03-09 Smith International, Inc. Double cemented carbide composites
CA2212197C (en) 1996-08-01 2000-10-17 Smith International, Inc. Double cemented carbide inserts
US5765095A (en) * 1996-08-19 1998-06-09 Smith International, Inc. Polycrystalline diamond bit manufacturing
US6063333A (en) 1996-10-15 2000-05-16 Penn State Research Foundation Method and apparatus for fabrication of cobalt alloy composite inserts
US5904212A (en) 1996-11-12 1999-05-18 Dresser Industries, Inc. Gauge face inlay for bit hardfacing
US5897830A (en) * 1996-12-06 1999-04-27 Dynamet Technology P/M titanium composite casting
SE510763C2 (en) * 1996-12-20 1999-06-21 Sandvik Ab Topic for a drill or a metal cutter for machining
JPH10219385A (en) 1997-02-03 1998-08-18 Mitsubishi Materials Corp Cutting tool made of composite cermet, excellent in wear resistance
WO1998040525A1 (en) * 1997-03-10 1998-09-17 Widia Gmbh Hard metal or cermet sintered body and method for the production thereof
US5947214A (en) 1997-03-21 1999-09-07 Baker Hughes Incorporated BIT torque limiting device
US5865571A (en) * 1997-06-17 1999-02-02 Norton Company Non-metallic body cutting tools
US5967248A (en) * 1997-10-14 1999-10-19 Camco International Inc. Rock bit hardmetal overlay and process of manufacture
GB2330787B (en) * 1997-10-31 2001-06-06 Camco Internat Methods of manufacturing rotary drill bits
DE19806864A1 (en) * 1998-02-19 1999-08-26 Beck August Gmbh Co Reaming tool and method for its production
WO1999049174A1 (en) 1998-03-26 1999-09-30 Dresser Industries, Inc. Rotary cone drill bit with improved bearing system
US6220117B1 (en) * 1998-08-18 2001-04-24 Baker Hughes Incorporated Methods of high temperature infiltration of drill bits and infiltrating binder
US6241036B1 (en) * 1998-09-16 2001-06-05 Baker Hughes Incorporated Reinforced abrasive-impregnated cutting elements, drill bits including same
US6287360B1 (en) * 1998-09-18 2001-09-11 Smith International, Inc. High-strength matrix body
GB9822979D0 (en) 1998-10-22 1998-12-16 Camco Int Uk Ltd Methods of manufacturing rotary drill bits
JP3559717B2 (en) * 1998-10-29 2004-09-02 トヨタ自動車株式会社 Manufacturing method of engine valve
US6338390B1 (en) 1999-01-12 2002-01-15 Baker Hughes Incorporated Method and apparatus for drilling a subterranean formation employing drill bit oscillation
GB2384017B (en) 1999-01-12 2003-10-15 Baker Hughes Inc Earth drilling device with oscillating rotary drag bit
US6499547B2 (en) * 1999-01-13 2002-12-31 Baker Hughes Incorporated Multiple grade carbide for diamond capped insert
US6454030B1 (en) 1999-01-25 2002-09-24 Baker Hughes Incorporated Drill bits and other articles of manufacture including a layer-manufactured shell integrally secured to a cast structure and methods of fabricating same
US6200514B1 (en) * 1999-02-09 2001-03-13 Baker Hughes Incorporated Process of making a bit body and mold therefor
US6254658B1 (en) * 1999-02-24 2001-07-03 Mitsubishi Materials Corporation Cemented carbide cutting tool
EP1165929A1 (en) * 1999-03-03 2002-01-02 Earth Tool Company L.L.C. Method and apparatus for directional boring
US6135218A (en) 1999-03-09 2000-10-24 Camco International Inc. Fixed cutter drill bits with thin, integrally formed wear and erosion resistant surfaces
SE519106C2 (en) * 1999-04-06 2003-01-14 Sandvik Ab Ways to manufacture submicron cemented carbide with increased toughness
SE519603C2 (en) * 1999-05-04 2003-03-18 Sandvik Ab Ways to make cemented carbide of powder WC and Co alloy with grain growth inhibitors
DE60030246T2 (en) * 1999-06-11 2007-07-12 Kabushiki Kaisha Toyota Chuo Kenkyusho TITANIUM ALLOY AND METHOD FOR THE PRODUCTION THEREOF
US6322746B1 (en) 1999-06-15 2001-11-27 Honeywell International, Inc. Co-sintering of similar materials
US6375706B2 (en) * 1999-08-12 2002-04-23 Smith International, Inc. Composition for binder material particularly for drill bit bodies
JP2003518193A (en) * 1999-11-16 2003-06-03 トリトン・システムズ・インコーポレイテツド Laser processing of discontinuous reinforced metal matrix composites
US6511265B1 (en) 1999-12-14 2003-01-28 Ati Properties, Inc. Composite rotary tool and tool fabrication method
CA2345758C (en) * 2000-05-01 2006-02-21 Smith International, Inc. Rotary cone bit with functionally engineered composite inserts
US6474425B1 (en) 2000-07-19 2002-11-05 Smith International, Inc. Asymmetric diamond impregnated drill bit
US6908688B1 (en) 2000-08-04 2005-06-21 Kennametal Inc. Graded composite hardmetals
US6592985B2 (en) * 2000-09-20 2003-07-15 Camco International (Uk) Limited Polycrystalline diamond partially depleted of catalyzing material
US6408958B1 (en) 2000-10-23 2002-06-25 Baker Hughes Incorporated Superabrasive cutting assemblies including cutters of varying orientations and drill bits so equipped
US6651756B1 (en) 2000-11-17 2003-11-25 Baker Hughes Incorporated Steel body drill bits with tailored hardfacing structural elements
SE522845C2 (en) * 2000-11-22 2004-03-09 Sandvik Ab Ways to make a cutter composed of different types of cemented carbide
US7261782B2 (en) * 2000-12-20 2007-08-28 Kabushiki Kaisha Toyota Chuo Kenkyusho Titanium alloy having high elastic deformation capacity and method for production thereof
US6454028B1 (en) * 2001-01-04 2002-09-24 Camco International (U.K.) Limited Wear resistant drill bit
US6615935B2 (en) * 2001-05-01 2003-09-09 Smith International, Inc. Roller cone bits with wear and fracture resistant surface
ITRM20010320A1 (en) * 2001-06-08 2002-12-09 Ct Sviluppo Materiali Spa PROCEDURE FOR THE PRODUCTION OF A TITANIUM ALLOY COMPOSITE REINFORCED WITH TITANIUM CARBIDE, AND REINFORCED COMPOSITE SO OCT
US6651481B1 (en) 2001-10-12 2003-11-25 The United States Of America As Represented By The United States National Aeronautics And Space Administration Method and apparatus for characterizing pressure sensors using modulated light beam pressure
EP1308528B1 (en) * 2001-10-22 2005-04-06 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Alfa-beta type titanium alloy
US6772849B2 (en) 2001-10-25 2004-08-10 Smith International, Inc. Protective overlay coating for PDC drill bits
EP1453627A4 (en) 2001-12-05 2006-04-12 Baker Hughes Inc Consolidated hard materials, methods of manufacture, and applications
KR20030052618A (en) * 2001-12-21 2003-06-27 대우종합기계 주식회사 Method for joining cemented carbide to base metal
US20050220658A1 (en) * 2002-01-25 2005-10-06 Kent Olsson Process for producing a high density by high velocity compacting
US7381283B2 (en) 2002-03-07 2008-06-03 Yageo Corporation Method for reducing shrinkage during sintering low-temperature-cofired ceramics
JP4280539B2 (en) * 2002-06-07 2009-06-17 東邦チタニウム株式会社 Method for producing titanium alloy
US7410610B2 (en) * 2002-06-14 2008-08-12 General Electric Company Method for producing a titanium metallic composition having titanium boride particles dispersed therein
US20040007393A1 (en) 2002-07-12 2004-01-15 Griffin Nigel Dennis Cutter and method of manufacture thereof
JP3945455B2 (en) * 2002-07-17 2007-07-18 株式会社豊田中央研究所 Powder molded body, powder molding method, sintered metal body and method for producing the same
US6766870B2 (en) * 2002-08-21 2004-07-27 Baker Hughes Incorporated Mechanically shaped hardfacing cutting/wear structures
US7470341B2 (en) 2002-09-18 2008-12-30 Smith International, Inc. Method of manufacturing a cutting element from a partially densified substrate
US7250069B2 (en) 2002-09-27 2007-07-31 Smith International, Inc. High-strength, high-toughness matrix bit bodies
US6742608B2 (en) * 2002-10-04 2004-06-01 Henry W. Murdoch Rotary mine drilling bit for making blast holes
WO2004053197A2 (en) 2002-12-06 2004-06-24 Ikonics Corporation Metal engraving method, article, and apparatus
US7044243B2 (en) * 2003-01-31 2006-05-16 Smith International, Inc. High-strength/high-toughness alloy steel drill bit blank
US20060032677A1 (en) * 2003-02-12 2006-02-16 Smith International, Inc. Novel bits and cutting structures
US7048081B2 (en) * 2003-05-28 2006-05-23 Baker Hughes Incorporated Superabrasive cutting element having an asperital cutting face and drill bit so equipped
US7270679B2 (en) 2003-05-30 2007-09-18 Warsaw Orthopedic, Inc. Implants based on engineered metal matrix composite materials having enhanced imaging and wear resistance
US20040245024A1 (en) * 2003-06-05 2004-12-09 Kembaiyan Kumar T. Bit body formed of multiple matrix materials and method for making the same
US7625521B2 (en) 2003-06-05 2009-12-01 Smith International, Inc. Bonding of cutters in drill bits
US20050084407A1 (en) * 2003-08-07 2005-04-21 Myrick James J. Titanium group powder metallurgy
US7395882B2 (en) * 2004-02-19 2008-07-08 Baker Hughes Incorporated Casing and liner drilling bits
US7384443B2 (en) * 2003-12-12 2008-06-10 Tdy Industries, Inc. Hybrid cemented carbide composites
US7066286B2 (en) 2004-03-25 2006-06-27 Baker Hughes Incorporated Gage surface scraper
WO2006073428A2 (en) 2004-04-19 2006-07-13 Dynamet Technology, Inc. Titanium tungsten alloys produced by additions of tungsten nanopowder
US20080101977A1 (en) * 2005-04-28 2008-05-01 Eason Jimmy W Sintered bodies for earth-boring rotary drill bits and methods of forming the same
US20050211475A1 (en) 2004-04-28 2005-09-29 Mirchandani Prakash K Earth-boring bits
US20060016521A1 (en) * 2004-07-22 2006-01-26 Hanusiak William M Method for manufacturing titanium alloy wire with enhanced properties
US20070202000A1 (en) * 2004-08-24 2007-08-30 Gerhard Andrees Method For Manufacturing Components
JP4468767B2 (en) 2004-08-26 2010-05-26 日本碍子株式会社 Control method of ceramic molded product
US7513320B2 (en) * 2004-12-16 2009-04-07 Tdy Industries, Inc. Cemented carbide inserts for earth-boring bits
US7373997B2 (en) * 2005-02-18 2008-05-20 Smith International, Inc. Layered hardfacing, durable hardfacing for drill bits
US7398840B2 (en) * 2005-04-14 2008-07-15 Halliburton Energy Services, Inc. Matrix drill bits and method of manufacture
US7687156B2 (en) * 2005-08-18 2010-03-30 Tdy Industries, Inc. Composite cutting inserts and methods of making the same
US7776256B2 (en) 2005-11-10 2010-08-17 Baker Huges Incorporated Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
US7913779B2 (en) * 2005-11-10 2011-03-29 Baker Hughes Incorporated Earth-boring rotary drill bits including bit bodies having boron carbide particles in aluminum or aluminum-based alloy matrix materials, and methods for forming such bits
US7802495B2 (en) * 2005-11-10 2010-09-28 Baker Hughes Incorporated Methods of forming earth-boring rotary drill bits
US7807099B2 (en) 2005-11-10 2010-10-05 Baker Hughes Incorporated Method for forming earth-boring tools comprising silicon carbide composite materials
US7510032B2 (en) 2006-03-31 2009-03-31 Kennametal Inc. Hard composite cutting insert and method of making the same
US7644786B2 (en) 2006-08-29 2010-01-12 Smith International, Inc. Diamond bit steel body cutter pocket protection
US20080202814A1 (en) 2007-02-23 2008-08-28 Lyons Nicholas J Earth-boring tools and cutter assemblies having a cutting element co-sintered with a cone structure, methods of using the same
US8268452B2 (en) 2007-07-31 2012-09-18 Baker Hughes Incorporated Bonding agents for improved sintering of earth-boring tools, methods of forming earth-boring tools and resulting structures
US7836980B2 (en) 2007-08-13 2010-11-23 Baker Hughes Incorporated Earth-boring tools having pockets for receiving cutting elements and methods for forming earth-boring tools including such pockets

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2304162A4

Also Published As

Publication number Publication date
WO2009152195A4 (en) 2010-05-20
US20170321488A1 (en) 2017-11-09
US20160023327A1 (en) 2016-01-28
US8770324B2 (en) 2014-07-08
US9192989B2 (en) 2015-11-24
US20140318024A1 (en) 2014-10-30
US10144113B2 (en) 2018-12-04
WO2009152195A3 (en) 2010-04-01
US20090301789A1 (en) 2009-12-10
EP2304162A4 (en) 2013-09-04
US9700991B2 (en) 2017-07-11
EP2304162A2 (en) 2011-04-06

Similar Documents

Publication Publication Date Title
US10144113B2 (en) Methods of forming earth-boring tools including sinterbonded components
EP2122112B1 (en) Drilling bit having a cutting element co-sintered with a cone structure
EP1960630B1 (en) Methods of forming earth-boring rotary drill bits
US8043555B2 (en) Cemented tungsten carbide rock bit cone
US10118223B2 (en) Methods of forming bodies for earth-boring drilling tools comprising molding and sintering techniques
US7776256B2 (en) Earth-boring rotary drill bits and methods of manufacturing earth-boring rotary drill bits having particle-matrix composite bit bodies
US7841259B2 (en) Methods of forming bit bodies
US20100006345A1 (en) Infiltrated, machined carbide drill bit body
US20090308662A1 (en) Method of selectively adapting material properties across a rock bit cone
WO2009152197A2 (en) Methods for sintering bodies of earth boring tools and structures formed during the same
US20100230176A1 (en) Earth-boring tools with stiff insert support regions and related methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09763485

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2009763485

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE