WO2009149229A1 - Site marker visible under multiple modalities - Google Patents

Site marker visible under multiple modalities Download PDF

Info

Publication number
WO2009149229A1
WO2009149229A1 PCT/US2009/046200 US2009046200W WO2009149229A1 WO 2009149229 A1 WO2009149229 A1 WO 2009149229A1 US 2009046200 W US2009046200 W US 2009046200W WO 2009149229 A1 WO2009149229 A1 WO 2009149229A1
Authority
WO
WIPO (PCT)
Prior art keywords
marker
body portion
cavity
site
site marker
Prior art date
Application number
PCT/US2009/046200
Other languages
French (fr)
Inventor
Zachary R. Nicoson
Nicholas Terwiske
Brian Zimmer
Joseph L. Mark
Laresha Fluker
Original Assignee
Suros Surgical Systems, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suros Surgical Systems, Inc. filed Critical Suros Surgical Systems, Inc.
Publication of WO2009149229A1 publication Critical patent/WO2009149229A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B10/00Other methods or instruments for diagnosis, e.g. instruments for taking a cell sample, for biopsy, for vaccination diagnosis; Sex determination; Ovulation-period determination; Throat striking implements
    • A61B10/02Instruments for taking cell samples or for biopsy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00004(bio)absorbable, (bio)resorbable, resorptive
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B2017/00831Material properties
    • A61B2017/00867Material properties shape memory effect
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3904Markers, e.g. radio-opaque or breast lesions markers specially adapted for marking specified tissue
    • A61B2090/3908Soft tissue, e.g. breast tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3925Markers, e.g. radio-opaque or breast lesions markers ultrasonic
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B90/00Instruments, implements or accessories specially adapted for surgery or diagnosis and not covered by any of the groups A61B1/00 - A61B50/00, e.g. for luxation treatment or for protecting wound edges
    • A61B90/39Markers, e.g. radio-opaque or breast lesions markers
    • A61B2090/3995Multi-modality markers

Definitions

  • the present disclosure relates generally to site markers for breast biopsy procedures.
  • a sample is taken by biopsy, and then tested to determine whether the mass is malignant or benign.
  • This biopsy procedure can be performed by an open surgical technique, or through the use of a specialized biopsy instrument.
  • a small specialized instrument such as a biopsy needle is inserted in the breast while the position of the needle is monitored using fluoroscopy, ultrasonic imaging, X-rays, MRI or other suitable imaging techniques.
  • stereotactic needle biopsy In one biopsy procedure, referred to as stereotactic needle biopsy, the patient lies on a special biopsy table with her breast compressed between the plates of a mammography apparatus and two separate X-rays are taken from two different points of reference. A computer then calculates the exact position of the mass or lesion within the breast. The coordinates of the lesion are then programmed into a mechanical stereotactic apparatus which advances the biopsy needle into the lesion with precision. At least five biopsy samples are usually taken from locations around the lesion and one from the center of the lesion.
  • Treatment often includes a mastectomy, lumpectomy, radiation therapy, or chemotherapy procedure that requires the surgeon or radiologist to direct surgical or radiation treatment to the precise location of the lesion. Because this treatment might extend over days or weeks after the biopsy procedure, and the original features of the tissue may have been removed or altered by the biopsy, it is desirable to insert a site marker into the surgical cavity to serve as a landmark for future identification of the location of the lesion.
  • Known biopsy site markers have been found to have disadvantages in that the site markers are not visible under all available modalities. Moreover, because of this problem, when cancer is found at a biopsy site that has been previously marked with a site marker, due to the poor visibility of the biopsy site marker under ultrasound or other visualization modalities, the patient must undergo an additional procedure that places an additional device the biopsy site to enable the surgeon to find the biopsy site in subsequent procedures.
  • One known technique has been to place a breast leasion localization wire at the biopsy site. The localization wire is typically placed at the biopsy site via mammography and/or ultrasound.
  • site markers are typically deployed to the biopsy site, the breast is still under compression. However, when the breast is released from compression, the site marker may migrate within the site or even out of the site through a needle tract created by the biopsy device, thereby preventing a surgeon or radiologist from easily locating the precise location of the lesion or biopsied area.
  • a site marker comprising a body portion and a marker element.
  • the body portion is constructed of a bioabsorbable material and defines at least one cavity therein.
  • the marker element is captured within one of the cavities.
  • the marker element is constructed of a material that may be imaged under at least one imaging modality.
  • FIG. 1 is a perspective view of a biopsy site in a human breast showing the breast in section and one or more site markers being implanted in the biopsy cavity using a site marker delivery system;
  • FIG. 2 is a side elevational view of an embodiment of a site marker
  • FIG. 2A is a side elevational view of another embodiment of a site marker
  • FIG. 3 A is a side elevational view of another embodiment of a site marker
  • FIG. 3B is a side elevational view of the site marker of FIG. 3 A in a pre- deployment configuration
  • FIG. 3 C is a side elevational view of another embodiment of a site marker
  • FIG. 3D is a side elevational view of an embodiment of a site marker in a pre- deployment position
  • FIG. 3E is a side elevational view of the site marker of FIG. 3D in a post- deployment position
  • FIG. 4A is an end view of another embodiment of a site marker
  • FIG. 4B is an end view of the site marker of FIG. 4A in a pre-deployment configuration
  • FIG. 4C is a side elevational view of the site marker of FIG. 4 A in a post- deployment configuration
  • FIG. 5 is a side elevational view of another embodiment of a site marker
  • FIG. 6 is a side elevational view of another embodiment of a site marker
  • FIG. 7 is side elevational view of another embodiment of a site marker
  • FIG. 8 is side elevational view of another embodiment of a site marker
  • FIG. 9A is a perspective view of another embodiment of a site marker.
  • FIG. 9B is a cross-sectional view of the site marker of FIG. 9 A taken along lines 9B-9B.
  • FIG. 1 illustrates a perspective view of a human breast 10 being implanted with a site marker 12 according an embodiment of the disclosure.
  • a biopsy site 14 is a lesion 16 from which a tissue sample has been removed, resulting in a biopsy cavity 18.
  • One or more site markers 12 are implanted in the biopsy cavity 18 using a marker delivery system 20, as shown in FIG. 1.
  • the marker delivery system 20 is slidably advanced through an inner lumen 22 of a biopsy device (not shown), which avoids the need to withdraw the biopsy device and thereafter insert the marker delivery system 20. Delivering the site marker 12 in the biopsy cavity 18 without withdrawing the biopsy device reduces the amount of tissue damage and enables more accurate placement of the site marker 12.
  • the marker delivery system 20 illustrated in FIG. 1 is exemplary only and it is understood that the site marker embodiments disclosed herein are suitable for use with other marker delivery systems.
  • FIGS. 2-9 illustrate various exemplary site marker embodiments according to the present disclosure.
  • the site markers described herein are made, at least in part, from biocompatible materials such as, but not limited to, titanium, stainless steel, and platinum. These materials have appropriate densities for radiographic imaging, appropriate surface characteristics for ultrasonic imaging, and appropriate magnetic characteristics for magnetic resonance imaging.
  • a hollow site marker in the form of a capsule 24 having an open end 26 is illustrated.
  • a cap 28 is attached to the open end 26 by a suitable method, such as a weld 30 or a surgical adhesive.
  • capsule is constructed of a bioabsorbable material, which may also be visible under one or more imaging modalities.
  • the capsule 24 is constructed of a material that is designed to resonate at a predetermined ultrasound frequency. The resonance will be visible under one or more imaging modalities.
  • a resonant beam 32 as shown in FIG 2A, can be attached to an inner surface wall of the cap 28 so that the beam resonance is transmitted through the wall of the capsule 24a.
  • the capsule 24 may be constructed from any biocompatible material with suitable echogenic properties such as, but not limited to, titanium, stainless steel, or platinum.
  • Site marker 34 includes a generally hollow body portion 36 that is flanked by closed ends 38, 40. Positioned within body portion 36 is a smaller permanent marker 42 that is captured therein. However, permanent marker 42 need not be attached to body portion 36 in any way. Permanent marker 42 is preferably constructed of a suitable material that will not biodegrade within the body and which may be viewed under multiple imaging modalities, such as Magnetic Resonance Imaging (MRI). Examples of suitable materials for permanent marker 88 include, but are not limited to, titanium, stainless steel, ceramic, carbon, nickel titanium, and glass. Permanent marker 42 may be any provided in any shape. In one embodiment, permanent marker 42 has a predefined shape, as shown, for example, in FIGS. 5, 8 and 9B.
  • MRI Magnetic Resonance Imaging
  • body portion 36 is constructed of a bioabsorbable material such as polyglycolic acid (PGA), polylactic acid (PLA), hydrogel, collegen-based material or any other suitable material.
  • the bioabsorbable material may be woven into a flexible mesh that has openings formed therein that are sized so as to be smaller than permanent marker 42 such that permanent marker 42 cannot escape body portion 36.
  • body portion 36 After installation in a biopsy cavity, over a predetermined time period, such as, for example, a few weeks to several months, body portion 36 is absorbed by the body, such that only permanent marker 36 remains within the body at the biopsy cavity. Because permanent marker 42 is captured within body portion 36 prior to absorption thereof by the body, permanent marker 42 is restricted from migrating from within the biopsy cavity. Indeed, movement of permanent marker 42 is limited to the internal cavity defined by body portion 36. This insures that permanent marker 42 remains within the biopsy cavity to permit follow-up imaging of the biopsy site.
  • PGA polyglycolic acid
  • PLA polylactic acid
  • hydrogel collegen
  • site marker 34 prior to deployment into the biopsy site by a suitable deployment mechanism, site marker 34, and more specifically, body portion 36, is formed in a first pre-deployment configuration (as shown in FIG. 3B), whereby the site marker 34 is compressed into a predetermined size and shape so as to be readily positionable within the deployment device.
  • site marker 34 may be positioned in the deployment device prior to shipping deployment device.
  • site marker 34 is released from its compressed first pre-deployment configuration and automatically expands into a second post-deployment configuration (shown in FIG. 3A), whereby at least a portion of the body portion 36 of the site marker 34 expands at least as much as the outside diameter of the deployment device to form a close cage that holds permanent marker 42 such that site marker 34 cannot migrate back into the deployment device.
  • an outside surface 44 of body portion 36 is provided with one or more barbs 46 disposed thereon.
  • the barbs 46 assist in adhering site marker 34 to internal walls of the biopsy cavity.
  • Barbs 46 are configured so as to extend at a predetermined angle relative to outside surface 44.
  • barbs 46 are configured to extend perpendicular to outside surface 44.
  • barbs 46 are positioned at different angles relative to one another, including opposing one another.
  • body portion 36' of site marker 34' is manually expanded from a first pre-deployment configuration (FIG. 3D) into a second post-deployment configuration (FIG. 3E).
  • site marker 34' is provided with a thread 46 or deployment line (e.g., thread, filament, wire) that is attached to the forward end 38' of body portion 36'.
  • thread 46 is held by a tie- wrap style clinch via the deployment device. Once the site marker 34' is deployed, the tie-wrap pulls on thread 46 which pops open body portion 36' to the second post-deployment device to a predetermined maximum size.
  • FIG. 4A -4C depict a site marker 50 that is constructed of a foam-like material.
  • the foam-like material may be a carbon filled polymer or a glass filled polymer so as to be visible under multiple modalities.
  • the foam-like material may contain therapeutic materials to deliver medication to the biopsy site.
  • One exemplary material for construction of site marker 50 is a thrombin filled polymer.
  • the foam-like material acts as a matrix for tissue ingrowth.
  • Site marker 50 expands from a first pre-deployment configuration (shown in
  • site marker is substantially compressed in either length or width or both so as to be receivable within a suitable deployment device.
  • the site marker may remain in the pre-deployment device for an extended period of time, such that it may be desirable to pre-load a deployment device with one or more of the site markers in the first pre-deployment configuration.
  • the material may from which site marker 50 is constructed is a shape memory material that will spring into the second post deployment configuration upon release from a deployment device into a biopsy cavity.
  • the site marker is designed to have a predetermined shape and then compressed into the first pre-deployment configuration. The site marker is then retained in the first pre-deployment configuration and may be loaded into a deployment device. It should be noted that the site marker may be stored in the deployment device in the first pre- deployment configuration for an extended period of time.
  • the site marker automatically springs into the second post-deployment configuration having a predetermined size and shape such that the site marker is easily visible under various imaging modalities.
  • site marker 50 is constructed of a temperature dependent material.
  • the site marker does not expand from the first pre-deployment configuration into the second post-deployment configuration until heat is applied to the site marker 50.
  • Deploying the site marker 50 into a biopsy cavity provides a sufficient level of heat generated from the body to enable site marker 50 to automatically expand into the second post-deployment configuration after deployment.
  • FIG. 5 Another embodiment of a site marker 52 is shown in FIG. 5.
  • Site marker 52 includes a body portion 54, similar to body portion 36.
  • body portion 54 is constructed of a tube of bioabsorbable material, having open ends. The ends 56 are stitched or weaved, to cinch each end 56, thereby minimizing the size of a cavity defined by body portion 54 so as to create a cavity that is as small as possible for retaining a permanent marker 58.
  • body portion 54 is illustrated as a mesh material having small openings therethrough, it is understood that the embodiment is not limited to use of a mesh material. Indeed, the material need not have any small openings therein. Further, in the embodiment shown in FIG. 5, body portion 54 can, but need not expand once deployed from a site marker deployment device and positioned within the biopsy cavity.
  • the permanent marker 58 may be any shape. To facilitate its recognition, permanent marker 58 may (but is not required to) have a predefined shape, such as the Venus symbol as shown in FIG. 5, the bow-tie symbol shown in FIG. 8, or the ribbon symbol shown in FIGS. 9 A and 9B.
  • FIG. 6 illustrates another alternative embodiment of a site marker 60.
  • Site marker 60 comprises a body portion 62 and a permanent marker 64.
  • Body portion 62 is constructed of a bioabsorbable material and defines a cavity in which permanent marker 64 is housed.
  • a segment S of body portion 62 adjacent to each end 66 is secured together, such as by fusing or other suitable methods. Indeed, by securing the segments S together, the cavity may be minimized so as to further restrict movement of the permanent marker 64, especially once deployed within the biopsy site. Thus, migration of the permanent marker 64 is minimized.
  • site marker 68 includes a body portion 70 and a permanent marker 72.
  • Body portion 70 is constructed of a bioabsorbable material and flanked by two ends 74 that are closed. However, body portion 70 is also attached or fused at least at one additional location 76. In the specific, exemplary embodiment shown in FIG. 7, body portion 70 is fused at two additional locations 76.
  • separate cavities 7OA, 7OB, and 7OC may be created. In one of those cavities 7OB, permanent marker 72 is positioned.
  • a smaller cavity 7OB may be formed (as compared to a cavity simply defined by body portion 70 and ends 74) into which permanent marker 72 is placed.
  • a cavity 7OB size By minimizing the cavity 7OB size, movement of the permanent marker 72 is restricted. Thus, when deployed into a biopsy cavity, migration of the permanent marker 72 will also be minimized.
  • FIG. 7 illustrates one permanent marker 72 disposed in a center cavity 7OB, it is understood that the marker 72 may be disposed in any of the cavities. Indeed, each cavity may be provided with its own permanent marker 72. In yet another embodiment, one or more of the cavities may be provided with a therapeutic agent or a haemostatic agent, as well. Further, while the exemplary embodiment shown in FIG. 7 illustrates the fusing or attachment locations 76 be to generally spaced apart in an equidistantly, it is also understood the fusing or attachment locations 76 may be positioned at a variety of intervals and may also includes more than two locations.
  • body portion 70 is illustrated as a mesh material having small openings therethrough, it is understood that the embodiment is not limited to use of a mesh material. Indeed, the material need not have any small openings therein. Further, in the embodiment shown in FIG. 7, body portion 70 can, but need not expand once deployed from a site marker deployment device and positioned within the biopsy cavity.
  • FIG. 8 Another embodiment of a site marker 78 is illustrated in FIG. 8.
  • First body portion 80 is defined by two ends 84 that are closed off and cooperate to define a first cavity 86 within first body portion 80.
  • Second body portion 82 is positioned within first cavity 86. Accordingly, second body portion 82 is at least slightly smaller than first cavity 86 of first body portion 80.
  • Second body portion 82 is defined by two ends 88 that are closed off and cooperate to define a second cavity 90. Disposed within second cavity 90 is a permanent marker 92.
  • body portion 70 is illustrated as a mesh material having small openings therethrough, it is understood that the embodiment is not limited to use of a mesh material. Indeed, the material need not have any small openings therein. Further, in the embodiment shown in FIG. 7, body portion 70 can, but need not expand once deployed from a site marker deployment device and positioned within the biopsy cavity.
  • FIGS. 9A -9B illustrate yet another embodiment of a site marker 94.
  • Site marker 94 comprises includes a generally hollow cannula body 96 constructed of a bioabsorbable material. Ends 98 of cannula body 96 are at least partially sealed (or may be fully sealed) to create a chamber within the body 96.
  • a permanent marker 100 component is housed in the chamber within the cannula body 86 and allowed to free-float within the cannula body 96. By at least partially sealing the ends 98 of the cannula body 96, permanent marker 100 remains trapped within the chamber of the cannula body 96.
  • Site marker 94 is constructed to fill a substantial space within a biopsy cavity, but still at least minimize migration of the permanent marker 100 as the permanent marker 100 is trapped within the cannula body 96.
  • cannula body 96 is illustrated as a mesh having a plurality of openings that are substantially smaller than the size of the permanent marker 100.
  • permanent marker 100 is prevented from escaping from the chamber of the cannula body 96 when the ends 98 are sealed.
  • the cannula body 96 may be constructed of a bioabsorbable material that does not have any openings without departing from the disclosure.

Landscapes

  • Health & Medical Sciences (AREA)
  • Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Pathology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)

Abstract

Various embodiments of a site marker are disclosed that comprise a body portion and a marker element. The body portion is constructed of a bioabsorbable material and defines at least one cavity therein. The marker element is captured within one of the cavities. The marker element is constructed of a material that may be imaged under at least one imaging modality.

Description

SITE MARKER VISIBLE UNDER MULTIPLE MODALITIES
CROSS REFERENCE TO RELATED APPLICATIONS
[0001] This application claims priority to U.S. Application Serial No. 12/133,312 filed June 4, 2008 which application is a continuation-in-part of U.S. Application Serial No. 11/242,334 filed October 5, 2005 which application is a continuation-in-part of U.S. Serial No. 10/964,087 filed October 13, 2004, each application is incorporated herein in their entirety.
TECHNICAL FIELD
[0002] The present disclosure relates generally to site markers for breast biopsy procedures.
BACKGROUND
[0003] In the diagnosis and treatment of breast cancer, it is often necessary to perform a biopsy to remove tissue samples from a suspicious mass. The suspicious mass is typically discovered during a preliminary examination involving visual examination, palpation, X-ray, magnetic resonance imaging (MRI), ultrasound imaging or other detection means.
[0004] When a suspicious mass is detected, a sample is taken by biopsy, and then tested to determine whether the mass is malignant or benign. This biopsy procedure can be performed by an open surgical technique, or through the use of a specialized biopsy instrument. To minimize surgical intrusion, a small specialized instrument such as a biopsy needle is inserted in the breast while the position of the needle is monitored using fluoroscopy, ultrasonic imaging, X-rays, MRI or other suitable imaging techniques.
[0005] In one biopsy procedure, referred to as stereotactic needle biopsy, the patient lies on a special biopsy table with her breast compressed between the plates of a mammography apparatus and two separate X-rays are taken from two different points of reference. A computer then calculates the exact position of the mass or lesion within the breast. The coordinates of the lesion are then programmed into a mechanical stereotactic apparatus which advances the biopsy needle into the lesion with precision. At least five biopsy samples are usually taken from locations around the lesion and one from the center of the lesion.
[0006] Regardless of the method or instrument used to perform the biopsy, subsequent examination of the surgical site may be necessary, either in a follow up examination or for treatment of a cancerous lesion. Treatment often includes a mastectomy, lumpectomy, radiation therapy, or chemotherapy procedure that requires the surgeon or radiologist to direct surgical or radiation treatment to the precise location of the lesion. Because this treatment might extend over days or weeks after the biopsy procedure, and the original features of the tissue may have been removed or altered by the biopsy, it is desirable to insert a site marker into the surgical cavity to serve as a landmark for future identification of the location of the lesion.
[0007] Known biopsy site markers have been found to have disadvantages in that the site markers are not visible under all available modalities. Moreover, because of this problem, when cancer is found at a biopsy site that has been previously marked with a site marker, due to the poor visibility of the biopsy site marker under ultrasound or other visualization modalities, the patient must undergo an additional procedure that places an additional device the biopsy site to enable the surgeon to find the biopsy site in subsequent procedures. One known technique has been to place a breast leasion localization wire at the biopsy site. The localization wire is typically placed at the biopsy site via mammography and/or ultrasound.
[0008] Another issue that arises with site markers is migration. When the site markers are typically deployed to the biopsy site, the breast is still under compression. However, when the breast is released from compression, the site marker may migrate within the site or even out of the site through a needle tract created by the biopsy device, thereby preventing a surgeon or radiologist from easily locating the precise location of the lesion or biopsied area.
[0009] Accordingly, there is a need for site markers made from biocompatible materials that are visible under various modes of imaging to reduce the number of procedures that patients must undergo in detection and treatment of cancer. There is also a need to limit migration of a site marker when the site marker is placed in a biopsy site. SUMMARY
[0010] A site marker is disclosed comprising a body portion and a marker element.
The body portion is constructed of a bioabsorbable material and defines at least one cavity therein. The marker element is captured within one of the cavities. The marker element is constructed of a material that may be imaged under at least one imaging modality.
BRIEF DESCRIPTION OF THE DRAWINGS
[0011] These and other features and advantages of the invention will be apparent from the following detailed description and the appended claims, taken in conjunction with the accompanying drawings, in which:
[0012] FIG. 1 is a perspective view of a biopsy site in a human breast showing the breast in section and one or more site markers being implanted in the biopsy cavity using a site marker delivery system;
[0013] FIG. 2 is a side elevational view of an embodiment of a site marker;
[0014] FIG. 2A is a side elevational view of another embodiment of a site marker;
[0015] FIG. 3 A is a side elevational view of another embodiment of a site marker;
[0016] FIG. 3B is a side elevational view of the site marker of FIG. 3 A in a pre- deployment configuration;
[0017] FIG. 3 C is a side elevational view of another embodiment of a site marker;
[0018] FIG. 3D is a side elevational view of an embodiment of a site marker in a pre- deployment position;
[0019] FIG. 3E is a side elevational view of the site marker of FIG. 3D in a post- deployment position;
[0020] FIG. 4A is an end view of another embodiment of a site marker;
[0021] FIG. 4B is an end view of the site marker of FIG. 4A in a pre-deployment configuration; [0022] FIG. 4C is a side elevational view of the site marker of FIG. 4 A in a post- deployment configuration;
[0023] FIG. 5 is a side elevational view of another embodiment of a site marker;
[0024] FIG. 6 is a side elevational view of another embodiment of a site marker;
[0025] FIG. 7 is side elevational view of another embodiment of a site marker;
[0026] FIG. 8 is side elevational view of another embodiment of a site marker;
[0027] FIG. 9A is a perspective view of another embodiment of a site marker; and
[0028] FIG. 9B is a cross-sectional view of the site marker of FIG. 9 A taken along lines 9B-9B.
DETAILED DESCRIPTION
[0029] FIG. 1 illustrates a perspective view of a human breast 10 being implanted with a site marker 12 according an embodiment of the disclosure. At a biopsy site 14 is a lesion 16 from which a tissue sample has been removed, resulting in a biopsy cavity 18. One or more site markers 12 are implanted in the biopsy cavity 18 using a marker delivery system 20, as shown in FIG. 1. In one embodiment, the marker delivery system 20 is slidably advanced through an inner lumen 22 of a biopsy device (not shown), which avoids the need to withdraw the biopsy device and thereafter insert the marker delivery system 20. Delivering the site marker 12 in the biopsy cavity 18 without withdrawing the biopsy device reduces the amount of tissue damage and enables more accurate placement of the site marker 12. The marker delivery system 20 illustrated in FIG. 1 is exemplary only and it is understood that the site marker embodiments disclosed herein are suitable for use with other marker delivery systems.
[0030] FIGS. 2-9 illustrate various exemplary site marker embodiments according to the present disclosure. In general, the site markers described herein are made, at least in part, from biocompatible materials such as, but not limited to, titanium, stainless steel, and platinum. These materials have appropriate densities for radiographic imaging, appropriate surface characteristics for ultrasonic imaging, and appropriate magnetic characteristics for magnetic resonance imaging. [0031] Referring initially to FIG. 2, a hollow site marker in the form of a capsule 24 having an open end 26 is illustrated. A cap 28 is attached to the open end 26 by a suitable method, such as a weld 30 or a surgical adhesive. In one embodiment, capsule is constructed of a bioabsorbable material, which may also be visible under one or more imaging modalities.
[0032] In another embodiment, the capsule 24 is constructed of a material that is designed to resonate at a predetermined ultrasound frequency. The resonance will be visible under one or more imaging modalities. In the event that the capsule 24 needs to resonate at more than one frequency, a resonant beam 32, as shown in FIG 2A, can be attached to an inner surface wall of the cap 28 so that the beam resonance is transmitted through the wall of the capsule 24a. The capsule 24 may be constructed from any biocompatible material with suitable echogenic properties such as, but not limited to, titanium, stainless steel, or platinum.
[0033] Referring to FIG. 3 A, another embodiment of a site marker 34 is shown. Site marker 34 includes a generally hollow body portion 36 that is flanked by closed ends 38, 40. Positioned within body portion 36 is a smaller permanent marker 42 that is captured therein. However, permanent marker 42 need not be attached to body portion 36 in any way. Permanent marker 42 is preferably constructed of a suitable material that will not biodegrade within the body and which may be viewed under multiple imaging modalities, such as Magnetic Resonance Imaging (MRI). Examples of suitable materials for permanent marker 88 include, but are not limited to, titanium, stainless steel, ceramic, carbon, nickel titanium, and glass. Permanent marker 42 may be any provided in any shape. In one embodiment, permanent marker 42 has a predefined shape, as shown, for example, in FIGS. 5, 8 and 9B.
[0034] In one embodiment, body portion 36 is constructed of a bioabsorbable material such as polyglycolic acid (PGA), polylactic acid (PLA), hydrogel, collegen-based material or any other suitable material. The bioabsorbable material may be woven into a flexible mesh that has openings formed therein that are sized so as to be smaller than permanent marker 42 such that permanent marker 42 cannot escape body portion 36. After installation in a biopsy cavity, over a predetermined time period, such as, for example, a few weeks to several months, body portion 36 is absorbed by the body, such that only permanent marker 36 remains within the body at the biopsy cavity. Because permanent marker 42 is captured within body portion 36 prior to absorption thereof by the body, permanent marker 42 is restricted from migrating from within the biopsy cavity. Indeed, movement of permanent marker 42 is limited to the internal cavity defined by body portion 36. This insures that permanent marker 42 remains within the biopsy cavity to permit follow-up imaging of the biopsy site.
[0035] In one embodiment, prior to deployment into the biopsy site by a suitable deployment mechanism, site marker 34, and more specifically, body portion 36, is formed in a first pre-deployment configuration (as shown in FIG. 3B), whereby the site marker 34 is compressed into a predetermined size and shape so as to be readily positionable within the deployment device. In fact, site marker 34 may be positioned in the deployment device prior to shipping deployment device. Once site marker 34 exits the deployment device into the biopsy site, site marker 34 is released from its compressed first pre-deployment configuration and automatically expands into a second post-deployment configuration (shown in FIG. 3A), whereby at least a portion of the body portion 36 of the site marker 34 expands at least as much as the outside diameter of the deployment device to form a close cage that holds permanent marker 42 such that site marker 34 cannot migrate back into the deployment device.
[0036] In another embodiment, as shown in FIG. 3 C, an outside surface 44 of body portion 36 is provided with one or more barbs 46 disposed thereon. The barbs 46 assist in adhering site marker 34 to internal walls of the biopsy cavity. Barbs 46 are configured so as to extend at a predetermined angle relative to outside surface 44. In one specific embodiment, barbs 46 are configured to extend perpendicular to outside surface 44. In another embodiment, barbs 46 are positioned at different angles relative to one another, including opposing one another.
[0037] In another embodiment, as shown in FIGS. 3D and 3E, body portion 36' of site marker 34' is manually expanded from a first pre-deployment configuration (FIG. 3D) into a second post-deployment configuration (FIG. 3E). In this embodiment, site marker 34' is provided with a thread 46 or deployment line (e.g., thread, filament, wire) that is attached to the forward end 38' of body portion 36'. In one embodiment, thread 46 is held by a tie- wrap style clinch via the deployment device. Once the site marker 34' is deployed, the tie-wrap pulls on thread 46 which pops open body portion 36' to the second post-deployment device to a predetermined maximum size. Upon reaching the predetermined maximum size, the deployment device severs thread 46, releasing site marker 34' into the biopsy site. [0038] FIG. 4A -4C depict a site marker 50 that is constructed of a foam-like material. The foam-like material may be a carbon filled polymer or a glass filled polymer so as to be visible under multiple modalities. In addition, the foam-like material may contain therapeutic materials to deliver medication to the biopsy site. One exemplary material for construction of site marker 50 is a thrombin filled polymer. The foam-like material acts as a matrix for tissue ingrowth.
[0039] Site marker 50 expands from a first pre-deployment configuration (shown in
FIG. 4B) to a second post-deployment configuration (shown in FIG. 4C). In the first pre- deployment configuration, site marker is substantially compressed in either length or width or both so as to be receivable within a suitable deployment device. The site marker may remain in the pre-deployment device for an extended period of time, such that it may be desirable to pre-load a deployment device with one or more of the site markers in the first pre-deployment configuration.
[0040] In one embodiment, the material may from which site marker 50 is constructed is a shape memory material that will spring into the second post deployment configuration upon release from a deployment device into a biopsy cavity. In accordance with this embodiment, the site marker is designed to have a predetermined shape and then compressed into the first pre-deployment configuration. The site marker is then retained in the first pre-deployment configuration and may be loaded into a deployment device. It should be noted that the site marker may be stored in the deployment device in the first pre- deployment configuration for an extended period of time.
[0041] Once released from the deployment device and into the biopsy cavity, the site marker automatically springs into the second post-deployment configuration having a predetermined size and shape such that the site marker is easily visible under various imaging modalities.
[0042] In another embodiment, site marker 50 is constructed of a temperature dependent material. In accordance with this embodiment, the site marker does not expand from the first pre-deployment configuration into the second post-deployment configuration until heat is applied to the site marker 50. Deploying the site marker 50 into a biopsy cavity provides a sufficient level of heat generated from the body to enable site marker 50 to automatically expand into the second post-deployment configuration after deployment. [0043] Another embodiment of a site marker 52 is shown in FIG. 5. Site marker 52 includes a body portion 54, similar to body portion 36. In one embodiment, body portion 54 is constructed of a tube of bioabsorbable material, having open ends. The ends 56 are stitched or weaved, to cinch each end 56, thereby minimizing the size of a cavity defined by body portion 54 so as to create a cavity that is as small as possible for retaining a permanent marker 58.
[0044] While body portion 54 is illustrated as a mesh material having small openings therethrough, it is understood that the embodiment is not limited to use of a mesh material. Indeed, the material need not have any small openings therein. Further, in the embodiment shown in FIG. 5, body portion 54 can, but need not expand once deployed from a site marker deployment device and positioned within the biopsy cavity.
[0045] As mentioned above, the permanent marker 58 may be any shape. To facilitate its recognition, permanent marker 58 may (but is not required to) have a predefined shape, such as the Venus symbol as shown in FIG. 5, the bow-tie symbol shown in FIG. 8, or the ribbon symbol shown in FIGS. 9 A and 9B.
[0046] FIG. 6 illustrates another alternative embodiment of a site marker 60. Site marker 60 comprises a body portion 62 and a permanent marker 64. Body portion 62 is constructed of a bioabsorbable material and defines a cavity in which permanent marker 64 is housed. To minimize the size of the cavity, a segment S of body portion 62 adjacent to each end 66 is secured together, such as by fusing or other suitable methods. Indeed, by securing the segments S together, the cavity may be minimized so as to further restrict movement of the permanent marker 64, especially once deployed within the biopsy site. Thus, migration of the permanent marker 64 is minimized.
[0047] Another embodiment of a site marker 68 is shown in FIG. 7. In this embodiment, site marker 68 includes a body portion 70 and a permanent marker 72. Body portion 70 is constructed of a bioabsorbable material and flanked by two ends 74 that are closed. However, body portion 70 is also attached or fused at least at one additional location 76. In the specific, exemplary embodiment shown in FIG. 7, body portion 70 is fused at two additional locations 76. By fusing together at least one location of body portion 70 and spaced from one of the ends 74, separate cavities 7OA, 7OB, and 7OC, may be created. In one of those cavities 7OB, permanent marker 72 is positioned. Because body portion 70 is segmented to form the separate cavities, a smaller cavity 7OB may be formed (as compared to a cavity simply defined by body portion 70 and ends 74) into which permanent marker 72 is placed. By minimizing the cavity 7OB size, movement of the permanent marker 72 is restricted. Thus, when deployed into a biopsy cavity, migration of the permanent marker 72 will also be minimized.
[0048] While the embodiment shown in FIG. 7 illustrates one permanent marker 72 disposed in a center cavity 7OB, it is understood that the marker 72 may be disposed in any of the cavities. Indeed, each cavity may be provided with its own permanent marker 72. In yet another embodiment, one or more of the cavities may be provided with a therapeutic agent or a haemostatic agent, as well. Further, while the exemplary embodiment shown in FIG. 7 illustrates the fusing or attachment locations 76 be to generally spaced apart in an equidistantly, it is also understood the fusing or attachment locations 76 may be positioned at a variety of intervals and may also includes more than two locations.
[0049] While body portion 70 is illustrated as a mesh material having small openings therethrough, it is understood that the embodiment is not limited to use of a mesh material. Indeed, the material need not have any small openings therein. Further, in the embodiment shown in FIG. 7, body portion 70 can, but need not expand once deployed from a site marker deployment device and positioned within the biopsy cavity.
[0050] Another embodiment of a site marker 78 is illustrated in FIG. 8. Site marker
78 comprises a first body portion 80 and a second body portion 82, both of which are constructed of a bioabsorbable material. First body portion 80 is defined by two ends 84 that are closed off and cooperate to define a first cavity 86 within first body portion 80. Second body portion 82 is positioned within first cavity 86. Accordingly, second body portion 82 is at least slightly smaller than first cavity 86 of first body portion 80. Second body portion 82 is defined by two ends 88 that are closed off and cooperate to define a second cavity 90. Disposed within second cavity 90 is a permanent marker 92.
[0051] Due to the nested configuration of first and second body portions 80 and 82 and permanent marker 92, movement of the permanent marker 92 will is restricted to second cavity 90. Thus, when deployed into a biopsy cavity, migration of the permanent marker 92 will be minimized. [0052] While body portion 70 is illustrated as a mesh material having small openings therethrough, it is understood that the embodiment is not limited to use of a mesh material. Indeed, the material need not have any small openings therein. Further, in the embodiment shown in FIG. 7, body portion 70 can, but need not expand once deployed from a site marker deployment device and positioned within the biopsy cavity.
[0053] FIGS. 9A -9B illustrate yet another embodiment of a site marker 94. Site marker 94 comprises includes a generally hollow cannula body 96 constructed of a bioabsorbable material. Ends 98 of cannula body 96 are at least partially sealed (or may be fully sealed) to create a chamber within the body 96. A permanent marker 100 component is housed in the chamber within the cannula body 86 and allowed to free-float within the cannula body 96. By at least partially sealing the ends 98 of the cannula body 96, permanent marker 100 remains trapped within the chamber of the cannula body 96. Site marker 94 is constructed to fill a substantial space within a biopsy cavity, but still at least minimize migration of the permanent marker 100 as the permanent marker 100 is trapped within the cannula body 96.
[0054] In one embodiment, cannula body 96 is illustrated as a mesh having a plurality of openings that are substantially smaller than the size of the permanent marker 100. Thus, permanent marker 100 is prevented from escaping from the chamber of the cannula body 96 when the ends 98 are sealed. It is also understood, however, that the cannula body 96 may be constructed of a bioabsorbable material that does not have any openings without departing from the disclosure.
[0055] While the present invention has been particularly shown and described with reference to the foregoing preferred embodiments, it should be understood by those skilled in the art that various alternatives to the embodiments of the invention described herein may be employed in practicing the invention without departing from the spirit and scope of the invention as defined in the following claims. It is intended that the following claims define the scope of the invention embodiments within the scope of these claims and their equivalents be covered thereby. This description of the invention should be understood to include all novel and non-obvious combinations of elements described herein, and claims may be presented in this or a later application to any novel and non-obvious combination of these elements. The foregoing embodiment is illustrative, and no single feature or element is essential to all possible combinations that may be claimed in this or a later application.

Claims

CLAIMSWhat is claimed is:
1. A site marker, comprising: at least one body portion that defines at least one cavity therein; and at least one marker element captured within the at least one cavity, thereby preventing migration of said marker element within a body, but able to move within the cavity; wherein the body portion is constructed of a bioabsorbable material and the marker element is constructed of a material that may be imaged under at least one imaging modality.
2. The site marker of claim 1 , wherein the body portion is flanked by at least partially closed ends.
3. The site marker of claim 2, wherein the body portion is formed as a hollow cannula.
4. The site marker of claim 3, wherein the ends are at least partially sealed so as to create the cavity, with the marker element being captured within the cavity.
5. The site marker of claim 2, further comprising at least one segment of the body portion that is fused together, extending from one end of the body portion toward an opposite end of the body portion so as to reduce the volume of the cavity defined by the body portion.
6. The site marker of claim 5, comprising a first fused segment and a second fused segment, with the cavity being positioned between the first and second fused segments.
7. The site marker of claim 2, wherein the body portion is attached to itself at a first location that is spaced inwardly from one of the ends so as to create more than one cavity.
8. The site marker of claim 7, wherein the body portion is attached to itself at multiple locations that are spaced inwardly from the ends of the body portion to create multiple cavities of reduced volume.
9. The site marker of claim 7, wherein the body portion is attached to itself at two locations positioned inwardly from the ends of the body portion so as to create three cavities, with a center cavity retaining the marker element.
10. The site marker of claim 7, wherein one of the cavities houses the marker element and the other cavity houses a therapeutic agent.
11. The site marker of claim 7, wherein each cavity houses a separate marker element.
12. The site marker of claim 1, wherein the bioabsorbable material is one of polyglycolic acid, polylactic acid, hydrogel, and collagen-based material.
13. The site marker of claim 1 , wherein the bioabsorbable material is woven into a flexible mesh material having openings therein, wherein said openings are smaller in size than the size of the marker element such that the marker element cannot escape the cavity.
14. The site marker of claim 1, wherein the body portion is absorbed by a body when deployed into the body, after a predetermined time period.
15. The site marker of claim 14, wherein the predetermined time period is in the range of about three weeks to six months.
16. The site marker of claim 1 , wherein the marker element is permanent such that marker remains within a body when the site marker is deployed into a body, including after the body portion is absorbed by the body.
17. The site marker of claim 16, wherein the marker element is visible under multiple modalities.
18. The site marker of claim 1 , wherein ends of the body portion are woven so as to close the body portion to form the cavity.
19. The site marker of claim 1 , wherein the marker element has a predetermined shape.
20. The site marker of claim 1 , wherein the predetermined shape is one of a Venus symbol, bow-tie, and ribbon.
21. A site marker comprising: a first body portion constructed of a bioabsorbable material that defines a first cavity therein; a second body portion constructed of a bioabsorbable material that defines a second cavity therein; and at least one marker element constructed of a material that may be imaged under at least one imaging modality, wherein the marker element is captured within the second cavity, thereby preventing migration of said marker element within a body, but permitting movement of the marker element within the second cavity; wherein the second body portion is sized so as to be at least slightly smaller than the first cavity, and wherein the second body portion is positioned within the first cavity.
PCT/US2009/046200 2008-06-04 2009-06-04 Site marker visible under multiple modalities WO2009149229A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US12/133,212 US8442623B2 (en) 2004-10-13 2008-06-04 Site marker visible under multiple modalities
US12/133,212 2008-06-04

Publications (1)

Publication Number Publication Date
WO2009149229A1 true WO2009149229A1 (en) 2009-12-10

Family

ID=40886209

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2009/046200 WO2009149229A1 (en) 2008-06-04 2009-06-04 Site marker visible under multiple modalities

Country Status (2)

Country Link
US (1) US8442623B2 (en)
WO (1) WO2009149229A1 (en)

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8668737B2 (en) 1997-10-10 2014-03-11 Senorx, Inc. Tissue marking implant
US9820824B2 (en) 1999-02-02 2017-11-21 Senorx, Inc. Deployment of polysaccharide markers for treating a site within a patent
US8361082B2 (en) 1999-02-02 2013-01-29 Senorx, Inc. Marker delivery device with releasable plug
US8498693B2 (en) 1999-02-02 2013-07-30 Senorx, Inc. Intracorporeal marker and marker delivery device
US7651505B2 (en) 2002-06-17 2010-01-26 Senorx, Inc. Plugged tip delivery for marker placement
US20090216118A1 (en) 2007-07-26 2009-08-27 Senorx, Inc. Polysaccharide markers
US8442623B2 (en) 2004-10-13 2013-05-14 Suros Surgical Systems, Inc. Site marker visible under multiple modalities
US8280486B2 (en) * 2004-10-13 2012-10-02 Suros Surgical Systems, Inc. Site marker visable under multiple modalities
US8060183B2 (en) 2004-10-13 2011-11-15 Suros Surgical Systems, Inc. Site marker visible under multiple modalities
US10357328B2 (en) 2005-04-20 2019-07-23 Bard Peripheral Vascular, Inc. and Bard Shannon Limited Marking device with retractable cannula
US11241296B2 (en) 2005-11-17 2022-02-08 Breast-Med, Inc. Imaging fiducial markers and methods
US7702378B2 (en) 2005-11-17 2010-04-20 Breast-Med, Inc. Tissue marker for multimodality radiographic imaging
WO2008073965A2 (en) 2006-12-12 2008-06-19 C.R. Bard Inc. Multiple imaging mode tissue marker
US9327061B2 (en) 2008-09-23 2016-05-03 Senorx, Inc. Porous bioabsorbable implant
ES2560515T3 (en) 2008-12-30 2016-02-19 C.R. Bard, Inc. Marker administration device for tissue marker placement
US10022094B2 (en) * 2009-02-04 2018-07-17 Pfm Medical, Inc. X-ray discernable marker for power injectable vascular access port
WO2014081940A1 (en) 2012-11-21 2014-05-30 Trustees Of Boston University Tissue markers and uses thereof
USD716450S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD715442S1 (en) 2013-09-24 2014-10-14 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD715942S1 (en) 2013-09-24 2014-10-21 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
USD716451S1 (en) 2013-09-24 2014-10-28 C. R. Bard, Inc. Tissue marker for intracorporeal site identification
US10398441B2 (en) 2013-12-20 2019-09-03 Terumo Corporation Vascular occlusion
US9795455B2 (en) 2014-08-22 2017-10-24 Breast-Med, Inc. Tissue marker for multimodality radiographic imaging
CN104856759B (en) * 2015-03-26 2017-11-28 张海 A kind of multimode mammary gland development target and the special purpose device for discharging target
US11191611B2 (en) 2016-06-03 2021-12-07 Somatex Medical Technologies Gmbh Marking device and implantation system
JP7261160B2 (en) * 2016-11-23 2023-04-19 ホロジック, インコーポレイテッド biopsy site marker
US11219502B2 (en) * 2017-09-11 2022-01-11 Medtronic Advanced Energy, Llc Transformative shape-memory polymer tissue cavity marker devices, systems and deployment methods
US11564692B2 (en) 2018-11-01 2023-01-31 Terumo Corporation Occlusion systems
US20200297453A1 (en) * 2019-03-21 2020-09-24 Surgical Radiation Products, Llc Braided fiducial metallic marker system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000101A1 (en) * 1999-06-30 2001-01-04 Senorx, Inc. Biopsy site marker and process and apparatus for applying it
EP1602341A1 (en) * 2004-06-04 2005-12-07 Inrad, Inc. Multi-mode imaging marker
US20070118176A1 (en) * 2005-10-24 2007-05-24 Opolski Steven W Radiopaque bioabsorbable occluder
US20070167980A1 (en) * 2005-11-14 2007-07-19 Jen.Meditec Gmbh Self-expanding medical occlusion device
EP1925266A2 (en) * 2006-11-21 2008-05-28 Suros Surgical Systems, Inc. Site marker visible under multiple modalities

Family Cites Families (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3614142C2 (en) * 1985-04-26 1996-03-28 Toshiba Kawasaki Kk Use of a material for diagnosis by nuclear magnetic resonance spectroscopy
JPH0781204B2 (en) * 1987-04-21 1995-08-30 株式会社バイオマテリアルユニバ−ス Polylactic acid fiber
US4991579A (en) 1987-11-10 1991-02-12 Allen George S Method and apparatus for providing related images over time of a portion of the anatomy using fiducial implants
US5218964A (en) * 1988-10-21 1993-06-15 Instrumentarium Corp. Method for providing accurate reference markers in magnetic resonance images
US5104539A (en) * 1990-08-06 1992-04-14 Wisconsin Alumni Research Foundation Metal oxide porous ceramic membranes with small pore sizes
US5368030A (en) * 1992-09-09 1994-11-29 Izi Corporation Non-invasive multi-modality radiographic surface markers
US5469847A (en) * 1992-09-09 1995-11-28 Izi Corporation Radiographic multi-modality skin markers
US5799099A (en) * 1993-02-12 1998-08-25 George S. Allen Automatic technique for localizing externally attached fiducial markers in volume images of the head
US5551429A (en) * 1993-02-12 1996-09-03 Fitzpatrick; J. Michael Method for relating the data of an image space to physical space
US6015844A (en) * 1993-03-22 2000-01-18 Johnson & Johnson Medical, Inc. Composite surgical material
US5427099A (en) * 1994-03-17 1995-06-27 Adams; Timothy L. Marker for magnetic resonance imaging
DE69527141T2 (en) * 1994-04-29 2002-11-07 Scimed Life Systems Inc STENT WITH COLLAGEN
CA2199864C (en) * 1994-09-16 2006-06-20 Seth A. Foerster Methods and devices for defining and marking tissue
US6231834B1 (en) * 1995-06-07 2001-05-15 Imarx Pharmaceutical Corp. Methods for ultrasound imaging involving the use of a contrast agent and multiple images and processing of same
US6333971B2 (en) * 1995-06-07 2001-12-25 George S. Allen Fiducial marker
US5782764A (en) * 1995-11-07 1998-07-21 Iti Medical Technologies, Inc. Fiber composite invasive medical instruments and methods for use in interventional imaging procedures
US5902310A (en) * 1996-08-12 1999-05-11 Ethicon Endo-Surgery, Inc. Apparatus and method for marking tissue
US6016439A (en) * 1996-10-15 2000-01-18 Biosense, Inc. Method and apparatus for synthetic viewpoint imaging
US5961455A (en) * 1996-12-31 1999-10-05 Daum Gmbh Device for positioning a medical instrument and method
DE19746735C2 (en) * 1997-10-13 2003-11-06 Simag Gmbh Systeme Und Instr F NMR imaging method for the display, position determination or functional control of a device inserted into an examination object and device for use in such a method
US6270464B1 (en) * 1998-06-22 2001-08-07 Artemis Medical, Inc. Biopsy localization method and device
US6011987A (en) * 1997-12-08 2000-01-04 The Cleveland Clinic Foundation Fiducial positioning cup
US6161034A (en) * 1999-02-02 2000-12-12 Senorx, Inc. Methods and chemical preparations for time-limited marking of biopsy sites
DE69935716T2 (en) * 1998-05-05 2007-08-16 Boston Scientific Ltd., St. Michael STENT WITH SMOOTH ENDS
US6057700A (en) * 1998-05-06 2000-05-02 Lucent Technologies, Inc. Pressure controlled alignment fixture
AU2001217746A1 (en) * 1998-05-14 2002-05-27 Calypso Medical, Inc. Systems and methods for locating and defining a target location within a human body
US5941890A (en) * 1998-06-26 1999-08-24 Ethicon Endo-Surgery, Inc. Implantable surgical marker
US6261302B1 (en) * 1998-06-26 2001-07-17 Ethicon Endo-Surgery, Inc. Applier for implantable surgical marker
US6056700A (en) * 1998-10-13 2000-05-02 Emx, Inc. Biopsy marker assembly and method of use
AU1126500A (en) 1998-10-23 2000-05-15 Armand F. Cortese Marker for indicating the location of identified tissue
US6371904B1 (en) * 1998-12-24 2002-04-16 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US6356782B1 (en) * 1998-12-24 2002-03-12 Vivant Medical, Inc. Subcutaneous cavity marking device and method
US6725083B1 (en) * 1999-02-02 2004-04-20 Senorx, Inc. Tissue site markers for in VIVO imaging
US6862470B2 (en) * 1999-02-02 2005-03-01 Senorx, Inc. Cavity-filling biopsy site markers
US6368331B1 (en) * 1999-02-22 2002-04-09 Vtarget Ltd. Method and system for guiding a diagnostic or therapeutic instrument towards a target region inside the patient's body
US6173715B1 (en) * 1999-03-01 2001-01-16 Lucent Medical Systems, Inc. Magnetic anatomical marker and method of use
US6640127B1 (en) * 1999-06-10 2003-10-28 Olympus Optical Co., Ltd. Surgical operation navigating system using a reference frame
US6766186B1 (en) * 1999-06-16 2004-07-20 C. R. Bard, Inc. Post biospy tissue marker and method of use
JP2001000430A (en) * 1999-06-24 2001-01-09 Alcare Co Ltd Marker for image photographing
WO2001008578A1 (en) 1999-07-30 2001-02-08 Vivant Medical, Inc. Device and method for safe location and marking of a cavity and sentinel lymph nodes
US6350244B1 (en) * 2000-02-21 2002-02-26 Biopsy Sciences, Llc Bioabsorable markers for use in biopsy procedures
US6628982B1 (en) * 2000-03-30 2003-09-30 The Regents Of The University Of Michigan Internal marker device for identification of biological substances
US7660621B2 (en) * 2000-04-07 2010-02-09 Medtronic, Inc. Medical device introducer
US6554848B2 (en) * 2000-06-02 2003-04-29 Advanced Cardiovascular Systems, Inc. Marker device for rotationally orienting a stent delivery system prior to deploying a curved self-expanding stent
US6494844B1 (en) * 2000-06-21 2002-12-17 Sanarus Medical, Inc. Device for biopsy and treatment of breast tumors
US6466813B1 (en) * 2000-07-22 2002-10-15 Koninklijke Philips Electronics N.V. Method and apparatus for MR-based volumetric frameless 3-D interactive localization, virtual simulation, and dosimetric radiation therapy planning
US6394965B1 (en) * 2000-08-15 2002-05-28 Carbon Medical Technologies, Inc. Tissue marking using biocompatible microparticles
DE10050199A1 (en) * 2000-10-11 2002-04-25 Ethicon Gmbh Areal implant having a flexible basic structure on a polymer basis, contains ultrasonically detectable elements, which contain or produce gas and set up for detectability for at least four weeks after implantation
US6544185B2 (en) * 2000-10-23 2003-04-08 Valentino Montegrande Ultrasound imaging marker and method of use
JP4180382B2 (en) * 2000-11-07 2008-11-12 アーテミス・メディカル・インコーポレイテッド Tissue separation assembly and tissue separation method
CN100439013C (en) * 2001-02-16 2008-12-03 株式会社大阪钛技术 Titanium powder sintered compact
CN1582400A (en) * 2001-02-21 2005-02-16 加拿大国立研究院 Magnetic resonance spectroscopy to identify and classify microorganisms
US6585755B2 (en) * 2001-06-29 2003-07-01 Advanced Cardiovascular Polymeric stent suitable for imaging by MRI and fluoroscopy
US20040219186A1 (en) * 2001-08-16 2004-11-04 Ayres James W. Expandable gastric retention device
WO2003039626A2 (en) * 2001-11-08 2003-05-15 Houser Russell A Rapid exchange catheter with stent deployment, therapeutic infusion, and lesion sampling features
US6654629B2 (en) * 2002-01-23 2003-11-25 Valentino Montegrande Implantable biomarker and method of use
US7826883B2 (en) * 2002-04-23 2010-11-02 Devicor Medical Products, Inc. Localization mechanism for an MRI compatible biopsy device
US7329414B2 (en) * 2002-05-03 2008-02-12 Biopsy Sciences, Llc Biodegradable polymer for marking tissue and sealing tracts
US20040105890A1 (en) * 2002-05-28 2004-06-03 Carbon Medical Technologies, Inc. Biocompatible injectable materials
US20040030237A1 (en) * 2002-07-29 2004-02-12 Lee David M. Fiducial marker devices and methods
EP1545316B1 (en) 2002-08-01 2008-01-09 James E. Selis Biopsy devices
US20040116802A1 (en) * 2002-10-05 2004-06-17 Jessop Precision Products, Inc. Medical imaging marker
AU2003290918A1 (en) * 2002-11-18 2004-06-15 Chesbrough, Richard, M. Tissue localizing and marking device and method of using same
US7611462B2 (en) * 2003-05-22 2009-11-03 Insightec-Image Guided Treatment Ltd. Acoustic beam forming in phased arrays including large numbers of transducer elements
US20050033157A1 (en) * 2003-07-25 2005-02-10 Klein Dean A. Multi-modality marking material and method
US20050234336A1 (en) 2004-03-26 2005-10-20 Beckman Andrew T Apparatus and method for marking tissue
US8075568B2 (en) * 2004-06-11 2011-12-13 Selis James E Biopsy devices and methods
US20050288766A1 (en) * 2004-06-28 2005-12-29 Xtent, Inc. Devices and methods for controlling expandable prostheses during deployment
US8442623B2 (en) 2004-10-13 2013-05-14 Suros Surgical Systems, Inc. Site marker visible under multiple modalities
US20060079805A1 (en) * 2004-10-13 2006-04-13 Miller Michael E Site marker visable under multiple modalities
US8280486B2 (en) * 2004-10-13 2012-10-02 Suros Surgical Systems, Inc. Site marker visable under multiple modalities

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001000101A1 (en) * 1999-06-30 2001-01-04 Senorx, Inc. Biopsy site marker and process and apparatus for applying it
EP1602341A1 (en) * 2004-06-04 2005-12-07 Inrad, Inc. Multi-mode imaging marker
US20070118176A1 (en) * 2005-10-24 2007-05-24 Opolski Steven W Radiopaque bioabsorbable occluder
US20070167980A1 (en) * 2005-11-14 2007-07-19 Jen.Meditec Gmbh Self-expanding medical occlusion device
EP1925266A2 (en) * 2006-11-21 2008-05-28 Suros Surgical Systems, Inc. Site marker visible under multiple modalities

Also Published As

Publication number Publication date
US8442623B2 (en) 2013-05-14
US20080269603A1 (en) 2008-10-30

Similar Documents

Publication Publication Date Title
US8442623B2 (en) Site marker visible under multiple modalities
EP1931274B1 (en) Site marker visible under multiple modalities
US8352014B2 (en) Site marker visible under multiple modalities
US7783336B2 (en) Subcutaneous biopsy cavity marker device
US9801688B2 (en) Fibrous marker and intracorporeal delivery thereof
US20060079805A1 (en) Site marker visable under multiple modalities
US20080228164A1 (en) Implant delivery system
JP2011518639A (en) Assembly with hemostatic and radiation detectable pellets
AU2010210381A1 (en) Anchor markers
US8157812B2 (en) Slotted deployment device
US20090131815A1 (en) Marker deployment device
US20090069819A1 (en) Compressible deployment device
US20090131914A1 (en) Push button pull back device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09759388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09759388

Country of ref document: EP

Kind code of ref document: A1