WO2009082876A1 - A controlled degradation magnesium metal coating scaffold and its preparation method - Google Patents

A controlled degradation magnesium metal coating scaffold and its preparation method Download PDF

Info

Publication number
WO2009082876A1
WO2009082876A1 PCT/CN2008/001313 CN2008001313W WO2009082876A1 WO 2009082876 A1 WO2009082876 A1 WO 2009082876A1 CN 2008001313 W CN2008001313 W CN 2008001313W WO 2009082876 A1 WO2009082876 A1 WO 2009082876A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
magnesium
stent
alloy
stent body
Prior art date
Application number
PCT/CN2008/001313
Other languages
French (fr)
Chinese (zh)
Inventor
Saying Dong
Zhengcai Zhang
Xiaogang Liu
Lixiao Zhao
Zhongjie Pu
Original Assignee
Lepu Medical Technology (Beijing) Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lepu Medical Technology (Beijing) Co., Ltd. filed Critical Lepu Medical Technology (Beijing) Co., Ltd.
Publication of WO2009082876A1 publication Critical patent/WO2009082876A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/54Biologically active materials, e.g. therapeutic substances
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/306Other specific inorganic materials not covered by A61L27/303 - A61L27/32
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/34Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/10Macromolecular materials
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/148Materials at least partially resorbable by the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2300/00Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
    • A61L2300/60Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a special physical form
    • A61L2300/606Coatings

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Transplantation (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dermatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Materials For Medical Uses (AREA)

Abstract

A controlled degradation magnesium metal coating scaffold includes a backbone made of medical high pure magnesium or Mg-alloy. The surface of the scaffold backbone has an anticorrosive coating. The surface of the anticorrosive coating has a degradable polymer film drug-loading coating which loads a curative drug. The preparation method of the scaffold includes: anticorrosive treating on the surface of the backbone to form anticorrosive coating, coating the degradable polymer film drug-loading coating on the surface of the anticorrosive coating, and coating the curative drug on the surface of the drug-loading coating and so on.

Description

可控降解的镁金属涂层支架及其制备方法 技术领域  Controllable degradation magnesium metal coated stent and preparation method thereof
本发明属于医疗器械领域,具体涉及一种可控降解的镁金属涂层 支架及其制备方法。 背景技术  The invention belongs to the field of medical instruments, and particularly relates to a magnesium metal coated stent capable of controlled degradation and a preparation method thereof. Background technique
1976年德国学者安德里亚 '格隆茨戈首次提出了动脉内安装支架 的设想, 到 90年代冠状动脉支架已广泛地应用于临床治疗。 目前冠 状动脉支架技术已发展到以不锈钢和钴铬合金为基础的药物洗脱支 架, 但仍不能从根本上解决支架内血栓形成和再狭窄问题, 存在手术 后再狭窄率高、 血栓源性强及支架永久存留于体内等缺陷, 远期效果 不理想。  In 1976, the German scholar Andrea 'Glonzgo first proposed the idea of installing stents in the arteries. By the 1990s, coronary stents have been widely used in clinical treatment. At present, the coronary stent technique has been developed to a drug-eluting stent based on stainless steel and cobalt-chromium alloy, but it still cannot fundamentally solve the problem of stent thrombosis and restenosis. There is a high rate of restenosis after surgery and a strong thrombus source. And the stent remains permanently in the body and other defects, the long-term effect is not ideal.
镁材料是地球上储量最丰富的元素之一, 也是人体内第四位、 细 胞内第二位最丰富的阳离子, 是人体中不可缺少的重要营养元素, 在 人体中总量约 20多克。 镁在生命过程中可以促进骨及细胞的形成, 催化或激活机体 300多种酶系, 参与体内能量代谢, 并且在能量的输 送、 贮存和利用中起关键作用。 镁在体内三大代谢中通过调节核糖体 DNA和 RNA的结构来影响蛋白质的合成。镁在水介质中发生化学反 应转变为镁离子, 镁离子通过体内的吸收和肾脏的代谢来调节平衡, 从而使镁合金材料在体内逐渐被降解吸收。镁合金因具有良好的力学 性能、可控腐蚀性能和降解产物的最小副作用等优点而成为支架的选 用材料。 镁作为生物医用材料具有良好的医学安全性, 尤其适用于心 血管疾病的治疗。 虽然镁合金支架具有良好的核磁共振成像 (MRI ) 相容性, 但在" X光"下不能显示 , 置入时必须釆用血管内超声引导; 镁合金支架的另一个缺点是降解速率过快,在大约 2个月内就已经完 全降解。  Magnesium is one of the most abundant elements on the earth. It is also the fourth most abundant cation in the human body and the second most abundant cation in the human body. It is an indispensable nutrient element in the human body. It is about 20 grams in the human body. Magnesium promotes the formation of bones and cells during life, catalyzes or activates more than 300 enzyme systems in the body, participates in energy metabolism in the body, and plays a key role in the transport, storage and utilization of energy. Magnesium affects protein synthesis by regulating the structure of ribosomal DNA and RNA in the three major metabolisms of the body. The chemical reaction of magnesium in the aqueous medium is converted into magnesium ions, and the magnesium ions are adjusted by the absorption in the body and the metabolism of the kidney, so that the magnesium alloy material is gradually degraded and absorbed in the body. Magnesium alloys have become the material of choice for stents due to their good mechanical properties, controlled corrosion properties and minimal side effects of degradation products. Magnesium has good medical safety as a biomedical material, and is especially suitable for the treatment of cardiovascular diseases. Although magnesium alloy stents have good magnetic resonance imaging (MRI) compatibility, they cannot be displayed under "X-ray". Intravascular ultrasound guidance must be used when implanting; another disadvantage of magnesium alloy stents is that the degradation rate is too fast. It has completely degraded in about 2 months.
可降解高分子材料具有无毒, 无刺激性, 易加工成型, 载药量大 等优点。 但作为支架材料, 它的强度低, 硬度和刚性难以满足使用要 求; 同时可降解高分子支架还有降解可控性差, 加工稳定性差, 保存 稳定性差, 局部酸性降解产物积聚, 影响愈合等一系列缺点。 The degradable polymer material has the advantages of non-toxicity, non-irritation, easy processing and molding, and large drug loading. However, as a scaffold material, its strength is low, hardness and rigidity are difficult to meet the needs of use. At the same time, the degradable polymer scaffold has a series of shortcomings such as poor degradation controllability, poor processing stability, poor storage stability, accumulation of local acidic degradation products, and affecting healing.
专利 CN1857742A公开了一种镁合金与可降解高分子材料结合 使用的支架材料, 可以延缓镁合金腐蚀, 延长支架使用寿命, 提高载 药量和支架的机械强度。 但由于没有镁合金的表面防腐处理过程, 在 血液中, 高分子材料可能和镁合金同时开始降解反应, 还是存在镁合 金材料的降解速度快的缺点。 发明内容  Patent CN1857742A discloses a scaffold material used in combination with a degradable polymer material, which can delay the corrosion of the magnesium alloy, prolong the service life of the stent, and increase the drug loading and the mechanical strength of the stent. However, since there is no surface anti-corrosion treatment process of the magnesium alloy, in the blood, the polymer material may start to degrade at the same time as the magnesium alloy, and there is a disadvantage that the degradation rate of the magnesium alloy material is fast. Summary of the invention
本发明的目的在于提供一种可控降解的镁金属涂层支架及其制 备方法,该支架上设置有由镁合金防腐层与可降解高分子材料组成的 涂层, 可以降低镁合金支架的腐蚀速率并控制药物的释放; 该方法中 通过对镁合金支架表面进行防腐处理, 以延迟镁合金支架的降解。  The object of the present invention is to provide a controllable and degradable magnesium metal coated stent and a preparation method thereof. The stent is provided with a coating composed of a magnesium alloy anticorrosive layer and a degradable polymer material, which can reduce the corrosion of the magnesium alloy stent. Rate and control the release of the drug; in this method, the surface of the magnesium alloy stent is treated with anti-corrosion treatment to delay the degradation of the magnesium alloy stent.
为实现上述目的, 本发明釆用如下技术方案:  In order to achieve the above object, the present invention uses the following technical solutions:
一种可控降解的镁金属涂层支架,其支架本体材质为医用高纯镁 或镁合金, 所述的支架本体表面具有防腐涂层, 防腐涂层表面涂敷有 可降解高分子聚合物膜载药涂层, 所述载药涂层承载有治疗性药物。  A controllable degradation magnesium metal coated stent, wherein the stent body is made of medical high-purity magnesium or magnesium alloy, the surface of the stent body has an anti-corrosion coating, and the surface of the anti-corrosion coating is coated with a degradable polymer film for drug loading a coating that carries a therapeutic drug.
其中, 所述的防腐涂层可以是医学上可接受的金属氧化物涂层, 优选为氧化镁涂层。  Wherein, the anticorrosive coating may be a medically acceptable metal oxide coating, preferably a magnesium oxide coating.
其中, 可降解高分子聚合物膜载药涂层包括下述一种或多种物 质: 聚乳酸、 聚左旋乳酸、 聚乙交酯、 聚羟基乙酸、 聚氰基丙烯酸酯、 聚己酸内酯、 聚酸酐类、 聚乳酸共聚物、 聚羟基丁酸戊酯、 聚乙酰谷 氨酸、 聚正酯、 聚氧化乙烯、 聚丁烯共聚物、 聚原酸酯、 聚己内酯、 聚羟基乙酸、 聚氧化乙烯、 聚对苯二甲酸丁二酯共聚物、 异丁烯酸盐 或酯、 甲基丙烯酸盐或酯、 聚亚安酯、 硅树脂、 聚乙烯乙醇、 乙烯基 乙醇、 聚羟基乙酸、 聚磷酸酯酶、 以及上述聚合物之间的共聚物, 胶 原蛋白、 明胶、 甲壳素。  The degradable polymer film-coated coating comprises one or more of the following substances: polylactic acid, poly-L-lactic acid, polyglycolide, polyglycolic acid, polycyanoacrylate, polycaprolactone , polyanhydrides, polylactic acid copolymers, polyhydroxybutyrate, polyacetylglutamic acid, polyorthoester, polyethylene oxide, polybutene copolymer, polyorthoester, polycaprolactone, polyglycolic acid , polyethylene oxide, polybutylene terephthalate copolymer, methacrylate or ester, methacrylate or ester, polyurethane, silicone, polyvinyl alcohol, vinyl alcohol, polyglycolic acid, poly Phospholipase, and a copolymer between the above polymers, collagen, gelatin, and chitin.
其中, 所述的治疗性药物包括下述一种或多种: 抗增殖试剂、 抗 生素、 抗代谢药物、 激素类药物、 抗凝药物、 抑制分泌药物等等。 其中, 所述的镁合金可以是镁铝系列合金、 镁锰系列合金、 镁锌 系列合金、 镁锆系列合金、 镁稀土系列合金、 镁锂系列合金、 镁钙系 列合金或镁银系列合金的一种或由这些体系组合而成的二元系、三元 系或多元系镁合金, 上述任一种镁合金的镁含量大于 50%。 Wherein, the therapeutic drug comprises one or more of the following: anti-proliferative agent, anti-drug Biotin, antimetabolites, hormonal drugs, anticoagulant drugs, antisecretory drugs, etc. Wherein, the magnesium alloy may be a magnesium-aluminum alloy, a magnesium-manganese alloy, a magnesium-zinc alloy, a magnesium-zirconium alloy, a magnesium rare earth alloy, a magnesium-lithium alloy, a magnesium-calcium alloy or a magnesium-silver alloy. Or a binary, ternary or multi-component magnesium alloy composed of these systems, wherein any of the above magnesium alloys has a magnesium content of more than 50%.
其中,所述的镁合金制作成的医疗器械包括但不限于:血管支架、 骨缝合线、 骨钉、 骨连接件、 脊推骨盘、 缝合用锚、 止血钳、 止血螺 丝、 止血板、 止血夹等等。  The medical device made of the magnesium alloy includes but is not limited to: a blood vessel stent, a bone suture, a bone nail, a bone connector, a spinal bone plate, a suture anchor, a hemostatic forceps, a hemostatic screw, a hemostatic plate, and a hemostasis. Clips and so on.
本发明还提供了一种可控降解的镁金属涂层支架的制备方法,其 支架本体材质为医用高纯镁或镁合金, 该方法包括以下步骤: 对所述 支架本体进行防腐处理,防腐处理后在所述支架本体表面形成防腐涂 层; 在所述防腐涂层表面涂覆可降解高分子聚合物膜载药涂层; 在所 述载药涂层表面涂覆治疗性药物。  The invention also provides a preparation method of a controlled degradation magnesium metal coated stent, wherein the stent body material is medical high-purity magnesium or magnesium alloy, the method comprises the following steps: preserving the stent body, after anti-corrosion treatment The surface of the stent body is formed with an anti-corrosion coating; a surface of the anti-corrosion coating is coated with a degradable polymer film-loaded coating; and a therapeutic drug is coated on the surface of the drug-loading coating.
该方法中, 对所述支架本体进行防腐处理前, 通过激光雕刻或机 械加工制成所述支架本体。  In the method, the stent body is made by laser engraving or machining before the stent body is subjected to an anticorrosive treatment.
支架本体应当洁净,在防腐处理前还应当对所述支架本体表面进 行清洗, 包括机械清理和化学清洗。 机械清理可按照下述步骤进行: 将支架本体表面经砂带打磨, 用于机械去除表面的氧化物, 调整表面 粗糙度; 利用超声波对支架本体表面进行清洗, 用于去除支架本体表 面的杂质; 化学清洗可按照下述步骤进行: 使用医用乙醇溶剂清洗; 医用乙醇溶剂清洗后使用丙酮分析纯溶液清洗;丙酮分析纯溶液清洗 后使用去离子水清洗。 化学清洗还可进一步包括以下步骤: 将支架本 体放入氢氧化钠溶液中浸泡, 用于去除油脂和氧化皮; 然后使用去离 子水清洗, 并真空干燥。  The body of the bracket should be clean and the surface of the bracket body should be cleaned before the anti-corrosion treatment, including mechanical cleaning and chemical cleaning. The mechanical cleaning can be carried out according to the following steps: grinding the surface of the bracket body through a belt, mechanically removing the surface oxide, adjusting the surface roughness; cleaning the surface of the bracket body with ultrasonic waves, and removing impurities on the surface of the bracket body; Chemical cleaning can be carried out according to the following steps: cleaning with medical ethanol solvent; cleaning with medical ethanol solvent and cleaning with acetone analytical pure solution; acetone analysis for pure solution cleaning and washing with deionized water. The chemical cleaning may further comprise the steps of: immersing the stent body in a sodium hydroxide solution for removing grease and scale; then washing with deionized water and drying under vacuum.
该方法中, 防腐处理可以应用化学氧化或阳极氧化方法实现。 化学氧化防腐处理, 可采用如下方法实现: 将支架本体浸入化学 氧化槽液中, 温度为 343 ~ 353K, 氧化时间为 0.5 ~ 2.0分钟, 所述槽 液含: 重铬酸钾 15~20g/L、硝酸 15~25g/L、 氯化钠 0.75 ~ 1.25 g/L。 阳极氧化处理, 可釆用交流电氧化, 具体方法是在两电极上安装 相同的支架本体, 将支架浸入槽液中, 温度为 293 333K, 氧化时间 为 10 ~ 50分钟, 电流密度为 0.1 ~ 10A/dm2, 采用的交流电压为 50 ~ 90 V, 所述槽液含: 高锰酸钾 15~20g/L、 磷酸三钠 15~55 gL、 氟 化钾 25~55g/L、 氢氧化钾 65~165g/L、 氢氧化铝 15 ~ 65 g/L; 该方法中, 可釆用浸涂、 喷涂、 热喷涂、 静电涂敷、 溶胶凝胶、 超临界液态涂覆等方法,在所述防腐涂层表面涂覆可降解高分子聚合 物膜载药涂层。 例如, 可将经防腐处理后的支架浸于可降解高分子材 料溶液中, 适当浸泡后, 真空干燥。 可降解高分子材料溶液的浓度通 常在 1.0mg/mL左右, 浸泡时间通常为 5〜20分钟。 当然, 支架在不 同溶液中的浸泡时间可以作相应的调整,例如采用聚乳酸溶液时浸泡 5〜15分钟即可, 而釆用聚羟基乙酸溶液则为 20分钟, 这主要与可降 解高分子聚合物的种类以及所要求的膜层厚度有关。可釆用低转速离 心的方式去除表面多余的溶液, 例如在 lOOOrpm下离心 3分钟。 真空 干燥时温度可设在 30~40°C, 干燥 30~60min即可。 In this method, the anticorrosive treatment can be carried out by a chemical oxidation or anodization method. The chemical oxidation preservative treatment can be realized by the following method: immersing the stent body in a chemical oxidation bath at a temperature of 343 ~ 353K, and an oxidation time of 0.5 ~ 2.0 minutes, the tank The liquid contains: potassium dichromate 15~20g/L, nitric acid 15~25g/L, sodium chloride 0.75 ~ 1.25g/L. The anodizing treatment can be performed by alternating current oxidation. The specific method is to install the same bracket body on the two electrodes, and immerse the bracket in the bath at a temperature of 293 333K, an oxidation time of 10 to 50 minutes, and a current density of 0.1 to 10 A/ Dm 2 , using an AC voltage of 50 ~ 90 V, the bath contains: potassium permanganate 15 ~ 20g / L, trisodium phosphate 15 ~ 55 gL, potassium fluoride 25 ~ 55g / L, potassium hydroxide 65 ~165g / L, aluminum hydroxide 15 ~ 65 g / L; in this method, dip coating, spray coating, thermal spraying, electrostatic coating, sol-gel, supercritical liquid coating, etc., in the anti-corrosion The surface of the coating is coated with a degradable polymer film-loaded coating. For example, the preservative-treated stent can be immersed in a degradable polymer material solution, properly soaked, and vacuum dried. The concentration of the degradable polymer material solution is usually about 1.0 mg/mL, and the soaking time is usually 5 to 20 minutes. Of course, the soaking time of the stent in different solutions can be adjusted accordingly, for example, immersing in a polylactic acid solution for 5 to 15 minutes, and using a polyglycolic acid solution for 20 minutes, which is mainly related to degradable polymer polymerization. The type of material and the thickness of the film required. The excess surface solution can be removed by low-speed centrifugation, for example, at 1000 rpm for 3 minutes. The temperature can be set at 30~40 °C during vacuum drying, and it can be dried for 30~60min.
该方法中,治疗性药物也可采用浸涂或喷涂的方法涂敷在载药涂 层的表面。 以雷帕霉素为例, 喷涂的方法可以是: 以甲醇作溶剂, 用 浓度为 l~15 g/ml的雷帕霉素溶液对支架本体表面进行定向超声喷 涂, 匀速旋转支架本体, 根据支架本体表面药物含量要求喷涂 1~ 15 次; 浸涂的方法可以是: 以四氢呋喃作有机溶剂, 制成浓度为 1~ 15 g/ml的雷帕霉素溶液, 将支架本体浸泡在上述溶液中 5-10分钟, 重复浸涂四次。  In this method, the therapeutic drug can also be applied to the surface of the drug-loaded coating by dip coating or spraying. Taking rapamycin as an example, the spraying method may be: using methanol as a solvent, using a rapamycin solution having a concentration of l~15 g/ml for directional ultrasonic spraying on the surface of the stent body, rotating the stent body at a constant speed, according to the stent The surface of the body should be sprayed 1~15 times. The dip coating method can be: using tetrahydrofuran as an organic solvent to prepare a rapamycin solution with a concentration of 1~15 g/ml, soak the stent body in the above solution. - 10 minutes, repeat dip coating four times.
该方法中,涂覆可降解高分子聚合物膜载药涂层或涂覆治疗性药 物中的涂覆工艺, 选用下述任一种或其结合: 浸涂、 喷涂、 热喷涂、 静电涂敷、 溶胶凝胶、 超临界液态涂覆。  In the method, the coating process of coating the degradable polymer film-loading coating or coating the therapeutic drug, using any one of the following or a combination thereof: dip coating, spray coating, thermal spraying, electrostatic coating , sol-gel, supercritical liquid coating.
该方法中, 防腐处理还可釆用下述防腐方法中的任一种或多种: 离子注入、 激光表面处理、 热扩散、 金属镀层、 气相沉积、 有机涂层。 本发明所具有的积极有益的效果包括: In the method, the anti-corrosion treatment may also adopt any one or more of the following anti-corrosion methods: Ion implantation, laser surface treatment, thermal diffusion, metal plating, vapor deposition, organic coating. The positive beneficial effects of the present invention include:
1、 优异的机械和药物学性能: 经过表面涂覆处理的可控降解纯 镁及镁合金支架仍保持了金属材料所具备的优异的机械性能,提高了 支架的机械强度,使镁材料植入器件在服役期间能够有效保持良好的 力学性能; 同时表面可降解高分子层的使用, 极大提高了支架所需携 带药物的种类和数量, 提高了药物固定的稳定性; 这种镁合金防腐层 与可降解高分子材料组成的涂层,可以通过调节分子量和聚合物层的 厚度来固定不同的药物和药量, 可携带多种治疗药物, 载药量大于 30 % ;  1. Excellent mechanical and pharmaceutical properties: The surface-coated controlled degradable pure magnesium and magnesium alloy stents still maintain the excellent mechanical properties of the metal materials, improve the mechanical strength of the stent, and enable the implantation of magnesium materials. The device can effectively maintain good mechanical properties during service; at the same time, the use of the surface degradable polymer layer greatly improves the type and quantity of drugs required for the stent, and improves the stability of the drug fixation; the magnesium alloy anti-corrosion layer The coating composed of the degradable polymer material can fix different drugs and dosages by adjusting the molecular weight and the thickness of the polymer layer, and can carry a plurality of therapeutic drugs, and the drug loading amount is more than 30%;
2、 镁材料降解速率降低, 支架使用寿命延长: 由于高分子材料 的不致密性, 不论其厚度如何, 高分子材料都难以阻止水分子到达镁 合金表面, 因此镁合金会与高分子材料同时开始降解; 镁合金表面防 腐涂层的制备, 可以延缓镁合金腐蚀, 延长支架使用寿命, 极大地降 低了镁合金的降解速率并控制药物释放,避免了因支架降解而导致的 使用功能降低的问题;  2. The degradation rate of magnesium material is reduced, and the service life of the stent is prolonged. Due to the intimacy of the polymer material, no matter how thick the polymer is, it is difficult for the polymer material to prevent the water molecules from reaching the surface of the magnesium alloy. Therefore, the magnesium alloy will start simultaneously with the polymer material. Degradation; preparation of anti-corrosion coating on magnesium alloy surface can delay the corrosion of magnesium alloy, prolong the service life of the stent, greatly reduce the degradation rate of magnesium alloy and control the release of the drug, and avoid the problem of reduced function due to degradation of the stent;
3、 使用安全, 满足临床需要: 众所周知, 镁及镁合金在体内生 理环境下可逐步被腐蚀降解并被肌体吸收或代谢,其降解产物主要是 人体所需的镁离子,镁合金材料所含其他合金元素含量均在生物医用 范围之内, 因此釆用纯镁及镁合金制备可控降解医用植入器件是安全 的; 同时, 生物可降解高分子材料在生物体内, 通过水解反应逐渐降 解, 产物为 C02和H20, 降解产物对人体同样是安全的; 改善了现有 可降解高分子支架局部酸性降解产物积聚, 影响愈合的状况, 满足临 床需要。 附图说明 3, safe use, meet clinical needs: As we all know, magnesium and magnesium alloys can be gradually degraded by the body in the physiological environment and absorbed or metabolized by the body. The degradation products are mainly magnesium ions required by the human body, and other magnesium alloy materials. The content of alloying elements is within the range of biomedicine. Therefore, it is safe to prepare controlled degradable medical implanted devices with pure magnesium and magnesium alloys. At the same time, biodegradable polymer materials are gradually degraded by hydrolysis reaction in organisms. For C0 2 and H 2 0, the degradation products are safe to the human body; the accumulation of local acidic degradation products of the existing degradable polymer scaffolds is improved, and the healing condition is affected to meet the clinical needs. DRAWINGS
图 1为本发明可控降解的金属涂层支架的结构示意图;  1 is a schematic structural view of a metal-coated stent with controlled degradation according to the present invention;
图 2为图 1中 I部 A-A剖视放大图; 图 3为本发明可控降解的金属涂层支架的制备方法流程图。 Figure 2 is an enlarged cross-sectional view taken along line AA of Figure 1; 3 is a flow chart of a method for preparing a metal-coated stent with controlled degradation according to the present invention.
图中: 1、 支架; 101、 支架本体; 102、 防腐涂层; 103、 载药涂 层; 104、 治疗性药物;  In the figure: 1, stent; 101, stent body; 102, anti-corrosion coating; 103, drug-coated coating; 104, therapeutic drugs;
图 4是镁合金支架涂敷可降解聚合物膜前后的耐蚀性比较, 图中 曲线 1是支架表面涂敷可降解聚合物膜后的线性极化曲线, 曲线 2是 镁合金裸支架的线性极化曲线。 具体实施方式  Figure 4 is a comparison of corrosion resistance of a magnesium alloy stent before and after application of a degradable polymer film. Curve 1 is a linear polarization curve of a stent surface coated with a degradable polymer film, and curve 2 is a linearity of a magnesium alloy bare stent. Polarization curve. detailed description
以下实施例用于说明本发明, 但不用来限制本发明的范围。  The following examples are intended to illustrate the invention but are not intended to limit the scope of the invention.
如图 1所示, 本发明提供的可控降解的镁金属涂层支架, 其支架 1材质可选用医用高纯镁或镁合金。 镁合金为镁含量大于 50%的二元 系、 三元系或多元系镁合金, 镁合金中合金元素的含量基本上应满足 生物医用的要求,使其在降解过程中的降解量应在不引起组织毒性反 应的剂量范围内。 所述的镁合金包括镁铝系列合金、 镁锰系列合金、 镁锌系列合金、 镁锆系列合金、 镁稀土系列合金、 镁锂系列合金、 镁 钙系列合金或镁银系列合金等不同的合金体系的一种或由这些体系 组合而成的二元系、 三元系或多元系镁合金, 但不限于此。  As shown in FIG. 1 , the controllable degradable magnesium metal coated stent provided by the invention can be made of medical high-purity magnesium or magnesium alloy. The magnesium alloy is a binary, ternary or multi-component magnesium alloy with a magnesium content of more than 50%. The content of alloying elements in the magnesium alloy should basically meet the requirements of biomedicine, so that the degradation amount in the degradation process should not be Within the dose range that causes tissue toxicity. The magnesium alloy includes magnesium alloy series alloy, magnesium manganese series alloy, magnesium zinc series alloy, magnesium zirconium series alloy, magnesium rare earth series alloy, magnesium lithium series alloy, magnesium calcium series alloy or magnesium silver series alloy and other different alloy systems. One or a binary, ternary or multi-component magnesium alloy in which these systems are combined, but is not limited thereto.
所述的支架 1是通过激光雕刻或机械加工而成的,除可制成血管 支架外, 还可制成骨缝合线、 骨钉、 骨连接件, 脊推骨盘, 缝合用锚, 止血钳、 止血螺丝、 止血板、 止血夹, 以及组织粘合剂、 密封剂, 人 造骨等医疗设备。  The stent 1 is formed by laser engraving or machining, and can be made into a blood vessel stent, and can also be made into a bone suture, a bone nail, a bone connector, a spinal push bone plate, a suture anchor, a hemostatic forceps. , hemostatic screws, hemostatic plates, hemostatic clips, and medical equipment such as tissue adhesives, sealants, artificial bones.
如图 2所示, 所述的支架 1包括支架本体 101、 防腐涂层 102、 载药涂层 103、 治疗性药物 104等; 其支架本体 101表面设置有防腐 涂层 102, 防腐涂层 102表面设置有可降解高分子聚合物膜载药涂层 103 , 载药涂层 103上承载有治疗性药物 104。  As shown in FIG. 2, the stent 1 includes a stent body 101, an anti-corrosion coating 102, a drug-loaded coating 103, a therapeutic drug 104, and the like; a surface of the stent body 101 is provided with an anti-corrosion coating 102, and the surface of the anti-corrosion coating 102 A degradable polymer film-loaded drug coating 103 is disposed, and the drug-loaded coating 103 carries a therapeutic drug 104 thereon.
所述的防腐涂层 102可为氧化镁, 但不限于此。  The anti-corrosion coating 102 may be magnesium oxide, but is not limited thereto.
所述的可降解高分子聚合物膜载药涂层 103 包括下述一种或多 种物质: 聚乳酸 (PLA )、 聚左旋乳酸 (PLLA )、 聚乙交酯或聚羟基 乙酸(PGA)、 聚氰基丙烯酸酯(PACA), 聚己酸内酯(PCL)、 聚酸 酐类: 包括脂肪族聚酸酐, 芳香族聚酸酐, 杂环族聚酸酐, 聚酰酸酐 及可交联聚酸酐等、 聚乳酸共聚物 (PLGA)、 聚羟基丁酸戊酯 (PHBV)、 聚乙酰谷氨酸 (PAGA)、 聚正酯 (POE)、 聚氧化乙烯 / 聚丁烯共聚物(PEO/PBTP), 聚原酸酯、 聚己内酯、 聚羟基乙酸、 聚 氧化乙烯 /聚对苯二甲酸丁二酯共聚物、 异丁烯酸盐或酯、 甲基丙烯 酸盐或酯、 聚亚胺酯、 硅树脂、 聚乙烯乙醇、 乙烯基乙醇、 聚羟基乙 酸、 聚磷酸酯酶等, 以及上述聚合物之间的共聚物等, 此外还有胶原 蛋白、 明胶、 甲壳素等天然可降解高分子材料, 但不限于此。 The degradable polymer film-coated coating 103 comprises one or more of the following substances: polylactic acid (PLA), poly-L-lactic acid (PLLA), polyglycolide or polyhydroxyl Acetic acid (PGA), polycyanoacrylate (PACA), polycaprolactone (PCL), polyanhydrides: including aliphatic polyanhydrides, aromatic polyanhydrides, heterocyclic polyanhydrides, polyacid anhydrides and cross-linkable Polylactic acid copolymer, etc., polylactic acid copolymer (PLGA), polyhydroxybutyrate (PHBV), polyacetylglutamic acid (PAGA), polyorthoester (POE), polyethylene oxide / polybutene copolymer (PEO) /PBTP), polyorthoester, polycaprolactone, polyglycolic acid, polyoxyethylene/polybutylene terephthalate copolymer, methacrylate or ester, methacrylate or ester, polyurethane , silicone resin, polyvinyl alcohol, vinyl alcohol, polyglycolic acid, polyphosphatase, etc., and copolymers between the above polymers, in addition to natural degradable polymer materials such as collagen, gelatin, and chitin. , but not limited to this.
所述的治疗性药物 104包括下述一种或多种: 抗增殖试剂、 抗生 素、 抗代谢药物、 激素类药物、 抗凝药物、 抑制分泌药物等, 但不限 于此。  The therapeutic drug 104 includes one or more of the following: an anti-proliferative agent, an antibiotic, an antimetabolite, a hormonal drug, an anticoagulant drug, a secretory drug, and the like, but is not limited thereto.
如图 3 所示为本发明可控降解的镁金属涂层支架的制备方法流 程图, 该方法主要包括步骤: ①通过激光雕刻或机械加工制成支架本 体; ②表面清洗; ③表面防腐处理; ④涂覆可降解高分子聚合物膜载 药涂层; ⑤涂覆治疗性药物工艺步骤, 其中:  FIG. 3 is a flow chart showing a method for preparing a controllable degradable magnesium metal coated stent according to the present invention. The method mainly comprises the steps of: 1 forming a stent body by laser engraving or machining; 2 surface cleaning; 3 surface antiseptic treatment; 4 coating a degradable polymer film-loaded drug coating; 5 coating a therapeutic drug process step, wherein:
②表面清洗: 包括机械清理和化学清洗;  2 surface cleaning: including mechanical cleaning and chemical cleaning;
具体机械清理和化学清洗方法为:  Specific mechanical cleaning and chemical cleaning methods are:
a. 将支架本体 101表面经砂带打磨, 机械去除表面的氧化物, 调整表面粗糙度;  a. The surface of the bracket body 101 is ground by a belt, mechanically removing oxides on the surface, and adjusting the surface roughness;
b. 利用超声波对支架表面进行清洗, 去除支架本体 101表面的 杂质, 超声波频率为 28~ 100khz, 清洗时间为 5-15分钟; 清洗步骤 包括 1 )使用浓度为 75%的医用乙醇溶剂清洗; 2)使用浓度为 99.5% 的丙酮分析纯溶液清洗; 3)使用去离子水进行清洗;  b. Ultrasonic cleaning of the surface of the stent to remove impurities on the surface of the stent body 101, the ultrasonic frequency is 28~100khz, the cleaning time is 5-15 minutes; the cleaning step includes 1) cleaning with a concentration of 75% medical ethanol solvent; ) using a solution of 99.5% acetone to clean the solution; 3) using deionized water for cleaning;
c 将支架本体 101放入浓度为 15~60 g/L、 温度为 343 ~373K 的氢氧化钠溶液中浸泡 5- 10分钟, 去除油脂和氧化皮; 然后用去离 子水进行清洗; 将清洗后的支架本体 101放置在真空干燥机中干燥,温度设定在 30~40°C, 干燥 30 ~ 60分钟后取出。 c The stent body 101 is immersed in a sodium hydroxide solution having a concentration of 15 to 60 g/L and a temperature of 343 to 373 K for 5 to 10 minutes to remove grease and scale; and then washed with deionized water; The cleaned stent body 101 is placed in a vacuum dryer to be dried, the temperature is set at 30 to 40 ° C, and dried for 30 to 60 minutes, and then taken out.
③表面防腐处理: 包括化学氧化处理、 阳极氧化处理, 选用其中 之任一种;  3 Surface anti-corrosion treatment: including chemical oxidation treatment, anodizing treatment, or any one of them;
具体方法为:  The specific method is:
a. 化学氧化处理用槽液成分为: 重铬酸钾 15~20g/L、硝酸 15~ 25g/L、 氯化纳 0.75 ~ 1.25 g/L; 将支架本体 101浸入上述溶液中, 温 度选取 343 ~ 353K,氧化时间为 0.5 ~ 2.0分钟,表面即可生成氧化膜; b. 阳极氧化处理釆用交流电氧化, 在两电极上安装完全相同的 镁合金支架 1, 阳极氧化处理用槽液成分为: 高锰酸钾 15~20g/L、 磷酸三钠 15 ~ 55 g/L, 氟化钾 25 ~ 55 g/L, 氢氧化钾 65 ~ 165 g/L, 氢 氧化铝 15 65 g/L; 温度选取 293 -333K, 氧化时间为 10 ~ 50分钟, 电流密度为 0.1 ~ 10A/dm2, 采用的交流电压为 50~90V, 表面即可生 成氧化膜; a. The composition of the bath for chemical oxidation treatment is: potassium dichromate 15~20g/L, nitric acid 15~25g/L, sodium chloride 0.75~ 1.25g/L; the stent body 101 is immersed in the above solution, the temperature is selected 343 ~ 353K, oxidation time is 0.5 ~ 2.0 minutes, the surface can form an oxide film; b. Anodizing treatment 交流 is oxidized by alternating current, the same magnesium alloy support 1 is installed on both electrodes, and the bath composition for anodizing treatment is: Potassium permanganate 15~20g/L, trisodium phosphate 15 ~ 55g/L, potassium fluoride 25 ~ 55g / L, potassium hydroxide 65 ~ 165 g / L, aluminum hydroxide 15 65 g / L; temperature Select 293-333K, oxidation time is 10 ~ 50 minutes, current density is 0.1 ~ 10A / dm 2 , the AC voltage is 50~90V, the surface can form an oxide film;
除上述化学氧化处理、 阳极氧化处理外, 还可釆用离子注入、 激 光表面处理、 热扩散、 金属镀层、 气相沉积、 有机涂层等多种防腐工 艺之任一种或其结合, 使表面生成防腐膜层, 这些防腐处理技术均为 现有技术, 这里不再详述。  In addition to the above chemical oxidation treatment and anodizing treatment, any one of various anticorrosive processes such as ion implantation, laser surface treatment, thermal diffusion, metal plating, vapor deposition, organic coating, or the like may be used to form the surface. Anti-corrosion coatings, these anti-corrosion treatment technologies are all prior art and will not be described in detail here.
④制备可降解高分子聚合物膜载药涂层;  4 preparing a degradable polymer film carrying drug coating;
选用下述方法中的任一种制备:  Prepared by any of the following methods:
a. 将经防腐处理后的支架 1放入浓度为 1.0 mg/mL的可降解高 分子材料聚乳酸(PLA)溶液中浸泡 5~ 15分钟, 在飞鸽 TGL- 16G 离心机上, 以 1000转 /分钟的速度离心处理 3分钟, 然后将支架 1放 入真空干燥箱内干燥, 温度设定在 30~40°C, 干燥 30~60分钟后将 其取出;  a. The preservative-treated stent 1 is immersed in a degradable polymer material polylactic acid (PLA) solution at a concentration of 1.0 mg/mL for 5 to 15 minutes, on a flying pigeon TGL-16G centrifuge at 1000 rpm. Centrifuge at a speed of 3 minutes for 3 minutes, then dry the holder 1 in a vacuum oven, set the temperature at 30~40 °C, and remove it after drying for 30~60 minutes;
b. 将防腐处理后的支架 1放入浓度为 1.0mg/mL的聚羟基乙酸 (PGA)溶液中浸泡 20分钟, 在飞鸽 TGL- 16G离心机上, 以 1000 转 /分钟的速度离心处理 3分钟, 然后将支架 1放入真空干燥箱内干 燥, 温度设定在 30 ~ 40°C , 干燥 30 - 60分钟后将其取出; b. Soak the preservative-treated stent 1 in a polyglycolic acid (PGA) solution at a concentration of 1.0 mg/mL for 20 minutes, on a flying pigeon TGL-16G centrifuge, to 1000 Centrifuge at a speed of rpm for 3 minutes, then dry the holder 1 in a vacuum oven, set the temperature at 30 ~ 40 ° C, and remove it after drying for 30 - 60 minutes;
⑤涂覆治疗性药物;  5 coating a therapeutic drug;
支架 1表面的可降解高分子聚合物膜载药涂层 103被固定后,选 用下述方法中任一种涂覆治疗性药物:  After the degradable polymer film-coated coating 103 on the surface of the stent 1 is fixed, a therapeutic drug is applied by any one of the following methods:
a. 以甲醇作溶剂, 加入浓度为 1 ~ 15μ^πι1的雷帕霉素或紫杉醇 的溶液对支架 1表面进行定向超声喷涂, 匀速旋转支架 1, 根据支架 1表面药物含量要求喷涂 1 ~ 15次;  a. Using methanol as a solvent, adding rapamycin or paclitaxel at a concentration of 1 ~ 15μ^π1 to the surface of the stent 1 for directional ultrasonic spraying, rotating the stent 1 at a constant speed, spraying 1 to 15 times according to the surface drug content of the stent 1 ;
b. 以四氢呋喃作有机溶剂,加入浓度为 l ~ 15 g/ml的雷帕霉素, 将支架 1浸泡在上述溶液中 5 - 10分钟, 重复浸涂四次。  b. Using tetrahydrofuran as an organic solvent, add rapamycin at a concentration of l ~ 15 g/ml, soak the stent 1 in the above solution for 5 - 10 minutes, and repeat dip coating four times.
该方法中表面涂覆工艺除④涂覆可降解高分子聚合物膜载药涂 层; ⑤涂覆治疗性药物工艺步骤中除采用浸涂、 喷涂外, 还可釆用热 喷涂、静电涂敷、溶胶凝胶、超临界液态涂覆工艺之任一种或其结合。  In the method, the surface coating process except 4 coating the degradable polymer polymer film-loading coating; 5 coating the therapeutic drug process step, in addition to dip coating, spraying, thermal spraying, electrostatic coating Any one of sol gel, supercritical liquid coating process or a combination thereof.
以下给出较佳实施例。  The preferred embodiment is given below.
实施例 1  Example 1
选用高纯镁经抛光后, 用激光雕刻成血管支架;  After high-purity magnesium is polished, it is laser-engraved into a blood vessel stent;
①表面清洗: 1 )使用浓度为 75%的医用乙醇溶剂, 利用超声波 对支架本体 101表面进行清洗, 清洗时间为 10分钟; 2 )使用浓度为 99.5%的丙酮分析纯溶液清洗; 3 )使用去离子水进行清洗, 将清洗后 的支架本体 101放置在真空干燥机中干燥;  1 Surface cleaning: 1) Using a 75% concentration of medical ethanol solvent, the surface of the stent body 101 is cleaned by ultrasonic waves for 10 minutes; 2) cleaning with a solution of 99.5% acetone; 3) Ionized water is washed, and the cleaned stent body 101 is placed in a vacuum dryer to be dried;
②表面防腐处理: 将支架本体 101浸入到重铬酸钾 15g/L、 硝酸 15g/L、 氯化钠 1.0 g/L溶液中, 在 80°C下氧化 1分钟, 表面即可生成 氧化膜;  2 surface anti-corrosion treatment: The stent body 101 is immersed in a solution of potassium dichromate 15g / L, 15g / L of nitric acid, 1.0 g / L of sodium chloride, and oxidized at 80 ° C for 1 minute, the surface can form an oxide film;
③制备可降解高分子聚合物膜载药涂层: 将经防腐处理的支架 1 放入浓度为 1.0 mg/mL的聚乳酸( PLA ) 溶液中浸泡 15分钟, 在飞 鸽 TGL - 16G离心机上, 以 1000转 /分钟的速度离心处理 3分钟, 然 后将支架 1放入真空干燥箱内干燥, 温度设定 30°C, 干燥 60分钟后 取出; 3 Preparation of degradable polymer film-loaded coating: The anti-corrosion-treated stent 1 was immersed in a polylactic acid (PLA) solution at a concentration of 1.0 mg/mL for 15 minutes on a flying pigeon TGL-16G centrifuge. Centrifuge at 1000 rpm for 3 minutes, then place the holder 1 in a vacuum oven to dry, set the temperature at 30 ° C, and dry for 60 minutes. take out;
④涂覆治疗性药物: 以甲醇作溶剂, 加入浓度为 10μβ/ιη1的雷帕 霉素, 喷涂在支架 1表面, 重复喷涂 10次。 4 Coating therapeutic drug: Using methanol as a solvent, adding rapamycin at a concentration of 10 μβ / ηη1, spraying on the surface of the stent 1 and repeating spraying 10 times.
实施例 2  Example 2
选用 AZ31B镁合金经抛光后, 用激光雕刻成血管支架; After the AZ31B magnesium alloy is polished, it is laser-engraved into a blood vessel stent;
①表面清洗: 1 )使用浓度为 75%的医用乙醇溶剂, 利用超声波 对支架本体 101表面进行清洗, 清洗时间为 10分钟; 2 )使用浓度为 99.5%的丙酮分析纯溶液清洗; 3 )使用去离子水进行清洗, 将清洗后 的支架本体 101放置在真空干燥机中干燥; 1 Surface cleaning: 1) Using a 75% concentration of medical ethanol solvent, the surface of the stent body 101 is cleaned by ultrasonic waves for 10 minutes; 2) cleaning with a solution of 99.5% acetone; 3) Ionized water is washed, and the cleaned stent body 101 is placed in a vacuum dryer to be dried;
②表面防腐处理: 将支架本体 101进行阳极氧化处理, 在两电极 上安装完全相同的支架本体 101 , 阳极氧化处理用槽液成分为: 高锰 酸钾 15g/L、 磷酸三纳 15g/L、 氟化钾 25 g/L、 氢氧化钾 65 g/L、 氢氧 化铝 15 g/L, 在 30°C温度下, 氧化 15分钟, 电流密度为 3A/dm2, 交 流电压为 60V, 表面即可生成氧化膜; 2 Surface anti-corrosion treatment: The stent body 101 is anodized, and the same stent body 101 is mounted on the two electrodes. The bath composition of the anodizing treatment is: potassium permanganate 15 g/L, trisodium phosphate 15 g/L, Potassium fluoride 25 g / L, potassium hydroxide 65 g / L, aluminum hydroxide 15 g / L, oxidation at 30 ° C for 15 minutes, current density of 3A / dm 2 , AC voltage is 60V, the surface is An oxide film can be formed;
③制备可降解高分子聚合物膜载药涂层: 将防腐处理后的支架 1 放入 1.0mg/mL聚羟基乙酸( PGA )溶液中浸泡 20分钟,在飞鸽 TGL - 16G离心机上, 以 1000转 /分钟离心处理 3分钟, 然后将支架 1放 入真空干燥箱内干燥, 温度设定在 40°C, 干燥 40分钟后取出;  3 Preparation of degradable polymer film drug-loaded coating: The preservative-treated stent 1 was immersed in a 1.0 mg/mL polyglycolic acid (PMA) solution for 20 minutes on a flying pigeon TGL-16G centrifuge to 1000 Centrifugal treatment for 3 minutes at rpm, then the stent 1 was placed in a vacuum oven to dry, the temperature was set at 40 ° C, and dried for 40 minutes and then taken out;
④涂覆治疗性药物:以四氢呋喃作有机溶剂,加入浓度为 lO g/ml 的雷帕霉素,将支架本体 1浸泡在上述溶液中 5分钟,重复浸涂四次。  4 Coating therapeutic drug: tetrahydrofuran was used as an organic solvent, and rapamycin having a concentration of 10 g/ml was added, and the stent body 1 was immersed in the above solution for 5 minutes, and dip coating was repeated four times.
实验例 1  Experimental example 1
本例用来考察采用防腐处理后支架的降解情况。  This example was used to investigate the degradation of the stent after preservative treatment.
材料与方法  Materials and Methods
以实施例 2制备的支架作为实验对象, 比较该支架涂敷可降解聚 合物膜前后耐蚀性的变化。 利用 M2273恒电位仪的线性扫描功能, 将支架放入 pH7.4的磷酸缓冲溶液中,室温下测试裸支架和涂敷聚合 物膜支架的线性极化曲线, 结果如图 4所示。 图 4中曲线 2是镁合金支架在 pH7.4 PBS中的线性极化曲线, 曲 线 1是支架表面涂敷可降解聚合物膜后的线性极化曲线。由图 4可见: The stent prepared in Example 2 was used as an experimental object, and the change in corrosion resistance before and after the stent was coated with the degradable polymer film was compared. Using the linear scanning function of the M2273 potentiostat, the stent was placed in a phosphate buffer solution of pH 7.4, and the linear polarization curves of the bare stent and the coated polymer membrane stent were tested at room temperature. The results are shown in FIG. Curve 2 in Figure 4 is a linear polarization curve of a magnesium alloy stent in pH 7.4 PBS, and curve 1 is a linear polarization curve after coating the surface of the stent with a degradable polymer film. Can be seen from Figure 4:
1、 镁合金支架涂敷可降解聚合物膜后电位明显正移, 耐蚀性提 高; 同时, 腐蚀电流也明显降低。  1. After the magnesium alloy stent is coated with the degradable polymer film, the potential is obviously positively shifted, and the corrosion resistance is improved; at the same time, the corrosion current is also significantly reduced.
2、 曲线 2的线性极化电阻是 656.3欧姆, 曲线 1 的线性极化电 阻是 9574.6 欧姆, 而极化电阻的倒数即代表金属材料的腐蚀速度。 所以支架表面涂敷可降解聚合物膜后抗腐蚀性能明显提高,镁合金支 架的使用寿命得到延长。  2. The linear polarization resistance of curve 2 is 656.3 ohms, the linear polarization resistance of curve 1 is 9574.6 ohms, and the reciprocal of the polarization resistance represents the corrosion rate of the metal material. Therefore, the corrosion resistance of the stent surface is significantly improved after coating the degradable polymer film, and the service life of the magnesium alloy stent is prolonged.
虽然,上文中已经用一般性说明及具体实施方案对本发明作了详 尽的描述, 但在本发明基础上, 可以对之作一些修改或改进, 这对本 领域技术人员而言是显而易见的。 因此, 在不偏离本发明精神的基础 上所做的这些修改或改进, 均属于本发明要求保护的范围。 工业实用性  Although the present invention has been described in detail with reference to the preferred embodiments of the present invention, it will be apparent to those skilled in the art. Therefore, such modifications or improvements made without departing from the spirit of the invention are intended to be within the scope of the invention. Industrial applicability
本发明的纯镁或镁合金支架经过表面防腐处理以后, 可以延缓镁 合金腐蚀, 延长支架使用寿命, 极大地降低了镁合金的降解速率并控 制药物释放, 避免了因支架降解而导致的使用功能降低的问题, 通过 修饰可降解的高分子材料, 降解可控性提高, 加工稳定性好, 易加工 成型, 其强度、 硬度和刚性可满足医学使用要求。 采用纯镁及镁合金 制备可控降解医用植入器件是安全的, 具有实用性。  After the surface anti-corrosion treatment, the pure magnesium or magnesium alloy stent of the invention can delay the corrosion of the magnesium alloy, prolong the service life of the stent, greatly reduce the degradation rate of the magnesium alloy and control the release of the drug, and avoid the use function caused by the degradation of the stent. The problem of reduction, by modifying the degradable polymer material, improving the controllability of degradation, processing stability, easy processing, and its strength, hardness and rigidity can meet the requirements of medical use. The use of pure magnesium and magnesium alloys for the preparation of controlled degradation medical implants is safe and practical.

Claims

权利要求书 Claim
1. 一种可控降解的镁金属涂层支架, 其支架本体材质为医用高 纯镁或镁合金, 其特征在于, 所述的支架本体表面涂覆有防腐涂层, 防腐涂层表面涂敷有可降解高分子聚合物膜载药涂层,所述载药涂层 承载有治疗性药物。  A controllable degradation magnesium metal coated stent, wherein the stent body is made of medical high-purity magnesium or magnesium alloy, wherein the surface of the stent body is coated with an anti-corrosion coating, and the surface of the anti-corrosion coating is coated with The polymeric polymer film-loaded coating is degraded, and the drug-loaded coating carries a therapeutic drug.
2. 根据权利要求 1所述的可控降解的镁金属涂层支架, 其特征 在于, 所述的防腐涂层为氧化镁。  2. The controlled degradation magnesium metal coated stent according to claim 1, wherein the anticorrosive coating is magnesium oxide.
3. 根据权利要求 1所述的可控降解的镁金属涂层支架, 其特征 在于, 可降解高分子聚合物膜载药涂层包括下述一种或多种物质: 聚乳酸、 聚左旋乳酸、聚乙交酯、聚羟基乙酸、聚氰基丙烯酸酯、 聚己酸内酯、 聚酸酐类、 聚乳酸共聚物、 聚羟基丁酸戊酯、 聚乙酰谷 氨酸、 聚正酯、 聚氧化乙烯、 聚丁烯共聚物、 聚原酸酯、 聚己内酯、 聚羟基乙酸、 聚氧化乙烯、 聚对苯二甲酸丁二酯共聚物、 异丁烯酸盐 或酯、 甲基丙烯酸盐或酯、 聚亚安酯、 硅树脂、 聚乙烯乙醇、 乙烯基 乙醇、 聚羟基乙酸、 聚磷酸酯酶、 以及上述聚合物之间的共聚物, 胶 原蛋白、 明胶、 甲壳素。  3. The controlled degradation magnesium metal coated stent according to claim 1, wherein the degradable polymer film-loaded coating comprises one or more of the following: polylactic acid, poly-L-lactic acid , polyglycolide, polyglycolic acid, polycyanoacrylate, polycaprolactone, polyanhydride, polylactic acid copolymer, amyl hydroxybutyrate, polyacetyl glutamic acid, polyorthoester, polyoxidation Ethylene, polybutene copolymer, polyorthoester, polycaprolactone, polyglycolic acid, polyethylene oxide, polybutylene terephthalate copolymer, methacrylate or ester, methacrylate or ester, Polyurethane, silicone, polyvinyl alcohol, vinyl alcohol, polyglycolic acid, polyphosphatase, and copolymers between the above polymers, collagen, gelatin, chitin.
4. 根据权利要求 1所述的可控降解的镁金属涂层支架, 其特征 在于,所述的治疗性药物包括下述一种或多种:抗增殖试剂、抗生素、 抗代谢药物、 激素类药物、 抗凝药物、 抑制分泌药物。  4. The controlled degradation magnesium metal coated stent according to claim 1, wherein the therapeutic drug comprises one or more of the following: an anti-proliferative agent, an antibiotic, an antimetabolite, a hormone. Drugs, anticoagulants, and secreted drugs.
5.根据权利要求 1~4任一项所述的可控降解的镁金属涂层支架, 其特征在于, 所述的镁合金为镁铝系列合金、 镁锰系列合金、 镁锌系 列合金、 镁锆系列合金、 镁稀土系列合金、 镁锂系列合金、 镁钙系列 合金或镁银系列合金的一种或由这些体系组合而成的二元系、三元系 或多元系镁合金, 上述任一种镁合金的镁含量大于 50%。  The controllable degradable magnesium metal coated stent according to any one of claims 1 to 4, wherein the magnesium alloy is a magnesium-aluminum alloy, a magnesium-manganese alloy, a magnesium-zinc alloy, and magnesium. a zirconium series alloy, a magnesium rare earth series alloy, a magnesium lithium series alloy, a magnesium calcium series alloy or a magnesium silver series alloy, or a binary system, a ternary system or a multicomponent magnesium alloy formed by combining these systems, any of the above The magnesium content of the magnesium alloy is greater than 50%.
6.根据权利要求 1〜4任一项所述的可控降解的镁金属涂层支架, 其特征在于,所述的镁合金制作成的支架包括:血管支架、骨缝合线、 骨钉、 骨连接件、 脊推骨盘、 缝合用锚、 止血钳、 止血螺丝、 止血板、 止血夹, 以及组织粘合剂、 密封剂、 人造骨用的医疗支架。 The controlled degradation magnesium metal coated stent according to any one of claims 1 to 4, wherein the magnesium alloy is formed by a stent comprising: a blood vessel stent, a bone suture, a bone nail, and a bone. Connector, ridge push plate, suture anchor, hemostat, hemostatic screw, hemostatic plate, Hemostatic clips, as well as medical scaffolds for tissue adhesives, sealants, and artificial bones.
7, 一种制备权利要求 1〜6任一项所述支架的方法, 其包括以下 步骤:  A method of preparing the stent according to any one of claims 1 to 6, comprising the steps of:
对所述支架本体进行防腐处理, 使其表面形成防腐涂层; 在所述防腐涂层表面涂覆可降解高分子聚合物膜载药涂层; 在所述载药涂层表面涂覆治疗性药物。  And preserving the stent body to form an anticorrosive coating on the surface thereof; coating a surface of the anticorrosive coating with a degradable polymer film-loading coating; and coating the surface of the drug-loading coating with therapeuticity drug.
8、 如权利要求 7所述的方法, 其特征在于, 所述支架本体通过 激光雕刻或机械加工制得。  8. The method of claim 7, wherein the stent body is made by laser engraving or machining.
9、 如权利要求 7所述的方法, 其特征在于, 在防腐处理前还包 括对所述支架本体表面进行机械清理和化学清洗的步骤。  9. The method of claim 7 further comprising the step of mechanically cleaning and chemically cleaning the surface of the stent body prior to the preservative treatment.
10、 如权利要求 7所述的方法, 其特征在于, 所述防腐处理为化 学氧化处理或阳极氧化处理。  10. The method according to claim 7, wherein the preservative treatment is a chemical oxidation treatment or an anodization treatment.
11、 如权利要求 10所述的方法, 其特征在于, 所述化学氧化防 腐处理中所用化学氧化处理的槽液含:重铬酸钾 15 ~ 20g/L、硝酸 15 ~ 25 g/L、 氯化钠 0.75 1.25 g/L; 将支架本体浸入所述化学氧化处理用 槽液中, 温度为 343 - 353K, 氧化时间为 0.5 - 2.0分钟。  The method according to claim 10, wherein the chemical oxidation treatment tank used in the chemical oxidation preservative treatment comprises: potassium dichromate 15-20 g/L, nitric acid 15-25 g/L, chlorine Sodium hydride 0.75 1.25 g/L; The stent body is immersed in the bath for chemical oxidation treatment at a temperature of 343 - 353 K and an oxidation time of 0.5 - 2.0 minutes.
12、 如权利要求 10所述的方法, 其特征在于, 所述阳极氧化处 理采用交流电氧化, 在两电极上安装相同的支架本体, 阳极氧化处理 用槽液含: 高锰酸钾 15 ~ 20g/L、 磷酸三纳 15 ~ 55 g/L、 氟化钾 25 ~ 55 g/L、 氢氧化钾 65 ~ 165 g/L、 氢氧化铝 15 ~ 65 g/L; 温度为 293 ~ 333K, 氧化时间为 10 50分钟, 电流密度为 0.1 ~ 10A/dm2, 釆用的 交流电压为 50 ~ 90V。 12. The method according to claim 10, wherein the anodizing treatment is performed by alternating current oxidation, and the same stent body is mounted on the two electrodes, and the bath for anodizing treatment comprises: potassium permanganate 15-20 g/ L, trisodium phosphate 15 ~ 55 g / L, potassium fluoride 25 ~ 55 g / L, potassium hydroxide 65 ~ 165 g / L, aluminum hydroxide 15 ~ 65 g / L; temperature 293 ~ 333K, oxidation time For 10 50 minutes, the current density is 0.1 ~ 10A/dm 2 , and the AC voltage used is 50 ~ 90V.
13、 如权利要求 9所述的方法, 其特征在于, 所述机械清理步骤 为: 将支架本体表面经砂带打磨, 用于去除表面的氧化物, 调整表面 粗糙度; 利用超声波对支架本体表面进行清洗, 用于去除支架本体表 面的杂质。  13. The method according to claim 9, wherein the mechanical cleaning step is: grinding the surface of the bracket body through a belt, removing oxides on the surface, adjusting surface roughness; and using ultrasonic waves on the surface of the bracket body Cleaning is performed to remove impurities from the surface of the stent body.
14、 如权利要求 9所述的方法, 其特征在于, 所述化学清洗步骤 为: 使用医用乙醇溶剂清洗; 再用丙酮分析纯溶液清洗; 最后用去离 子水清洗。 14. The method of claim 9 wherein said chemical cleaning step For: Wash with medical ethanol solvent; clean with acetone to analyze pure solution; finally rinse with deionized water.
15. 如权利要求 14所述的制备方法, 其特征在于, 在对所述支 架本体表面进行化学清洗后还包括以下步骤:  15. The method according to claim 14, further comprising the following steps after chemically cleaning the surface of the support body:
将支架本体放入碱性溶液中浸泡, 用于去除油脂和氧化皮; 然后 使用去离子水清洗, 并真空干燥。  The stent body is immersed in an alkaline solution for removing grease and scale; then washed with deionized water and dried under vacuum.
16. 如权利要求 7所述的方法, 其特征在于, 在所述防腐涂层表 面涂覆可降解高分子聚合物膜涂层的方法, 选用下述之任一种: 将所述支架本体放入浓度为 1.0 mg/mL 的可降解高分子材料聚 乳酸溶液中浸泡 5 15分钟, 以 1000转 /分钟速度离心处理 3分钟, 将支架本体放入真空干燥箱内干燥,温度设定在 30 ~ 40 °C,干燥 30 ~ 60min后取出;  The method according to claim 7, wherein the method for coating the surface of the anti-corrosion coating with a degradable polymer film coating is selected from any one of the following: Soak in a degradable polymer material polylactic acid solution with a concentration of 1.0 mg/mL for 5 15 minutes, centrifuge at 1000 rpm for 3 minutes, and place the holder body in a vacuum drying oven to dry. The temperature is set at 30 ~ Remove at 40 °C for 30 to 60 minutes;
将所述支架本体放入浓度为 1.0mg/mL的聚羟基乙酸溶液中浸泡 20分钟, 以 1000转 /分钟的速度离心处理 3分钟, 将支架本体放入真 空干燥箱内干燥, 温度设定在 30 ~ 40°C, 干燥 30 ~ 60min后取出。  The stent body was immersed in a polyglycolic acid solution having a concentration of 1.0 mg/mL for 20 minutes, centrifuged at 1000 rpm for 3 minutes, and the stent body was placed in a vacuum drying oven to be dried. The temperature was set at 30 ~ 40 ° C, dry for 30 ~ 60min and remove.
17. 如权利要求 7所述的方法, 其特征在于, 在所述可降解高分 子聚合物膜涂层表面涂覆治疗性药物的方法, 选用下述之任一种: 以甲醇作溶剂, 用浓度为 l ~ 15 g/ml的雷帕霉素溶液对支架本 体表面进行定向超声喷涂, 匀速旋转支架本体, 根据支架本体表面药 物含量要求喷涂 1 ~ 15次;  The method according to claim 7, wherein the method for applying a therapeutic drug to the surface of the degradable polymer film coating layer is any one of the following: using methanol as a solvent The rapamycin solution having a concentration of l ~ 15 g/ml is subjected to directional ultrasonic spraying on the surface of the stent body, and the stent body is rotated at a constant speed, and spraying is performed 1 to 15 times according to the drug content of the stent body surface;
以四氢呋喃作有机溶剂, 制成浓度为 l ~ 15 g/ml的雷帕霉素溶 液, 将支架本体浸泡在上述溶液中 5-10分钟, 重复浸涂四次。  Using tetrahydrofuran as an organic solvent, a rapamycin solution having a concentration of l ~ 15 g/ml was prepared, and the stent body was immersed in the above solution for 5-10 minutes, and dip coating was repeated four times.
18. 如权利要求 7所述的方法, 其特征在于, 涂覆可降解高分子 聚合物膜载药涂层或涂覆治疗性药物中的涂覆工艺,选用下述任一种 或其结合: 浸涂、 喷涂、 热喷涂、 静电涂敷、 溶胶凝胶、 超临界液态  18. The method according to claim 7, wherein the coating process of coating the degradable polymer film-coated coating or coating the therapeutic drug is selected from any one of the following or a combination thereof: Dip coating, spray coating, thermal spraying, electrostatic coating, sol-gel, supercritical liquid
19. 如权利要求 7所述的方法, 其特征在于, 防腐处理釆用下述 防腐方法中的任一种或多种: 离子注入、 激光表面处理、 热扩散、 金 属镀层、 气相沉积、 有机涂层。 19. The method according to claim 7, wherein the anticorrosive treatment is as follows Any one or more of the anti-corrosion methods: ion implantation, laser surface treatment, thermal diffusion, metal plating, vapor deposition, organic coating.
PCT/CN2008/001313 2008-01-03 2008-07-14 A controlled degradation magnesium metal coating scaffold and its preparation method WO2009082876A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN200810055954.7 2008-01-03
CNA2008100559547A CN101214396A (en) 2008-01-03 2008-01-03 Controlled degradation magnesium alloy coating bracket and preparation thereof

Publications (1)

Publication Number Publication Date
WO2009082876A1 true WO2009082876A1 (en) 2009-07-09

Family

ID=39620942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2008/001313 WO2009082876A1 (en) 2008-01-03 2008-07-14 A controlled degradation magnesium metal coating scaffold and its preparation method

Country Status (2)

Country Link
CN (1) CN101214396A (en)
WO (1) WO2009082876A1 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112341795A (en) * 2020-11-27 2021-02-09 浙江长鸿纺织科技有限公司 Degradable TPU membrane
CN112472879A (en) * 2020-12-21 2021-03-12 上海康德莱医疗器械股份有限公司 Magnesium alloy stent and preparation method thereof
CN113499475A (en) * 2021-06-10 2021-10-15 广东省科学院健康医学研究所 Composite material for bracket and preparation method and application thereof
CN114392398A (en) * 2022-01-19 2022-04-26 常熟致圆微管技术有限公司 Biodegradable medical metal magnesium patch and preparation method thereof
CN114432499A (en) * 2021-12-20 2022-05-06 脉通医疗科技(嘉兴)有限公司 Artificial blood vessel and preparation method thereof
CN114571644A (en) * 2022-02-22 2022-06-03 浙江大学 Combined type closed impeller with perfluor surface
CN114917414A (en) * 2022-04-26 2022-08-19 东南大学 Multifunctional composite coating for preparing magnesium alloy cardiac stent material and preparation method thereof
CN116236623A (en) * 2023-03-07 2023-06-09 南京市第一医院 Space-time adjustable infectious osteochondral defect magnesium alloy composite hydrogel stent material and preparation method and application thereof
CN116586633A (en) * 2023-07-17 2023-08-15 陕西斯瑞新材料股份有限公司 Method for preparing arc ablation-resistant CuCr contact material by 3D printing
US20230263647A1 (en) * 2009-04-02 2023-08-24 Q3 Medical Devicess Limited Stent
CN116815107A (en) * 2023-05-29 2023-09-29 北京大学第三医院(北京大学第三临床医学院) Composite alloy material and preparation method and application thereof

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101214396A (en) * 2008-01-03 2008-07-09 乐普(北京)医疗器械股份有限公司 Controlled degradation magnesium alloy coating bracket and preparation thereof
DE102009025511A1 (en) * 2009-06-19 2010-12-23 Qualimed Innovative Medizin-Produkte Gmbh Implant with a resorbable metallic material
CN101721753B (en) * 2009-12-23 2014-04-09 天津大学 Absorbable magnesium alloy bracket of inorganic and organic antiseptic biocompatible composite coating and preparation method thereof
ES2522265T3 (en) 2010-06-21 2014-11-14 Zorion Medical, Inc. Bioabsorbable Implants
CN102294054B (en) * 2010-06-24 2014-04-09 乐普(北京)医疗器械股份有限公司 Bioabsorbable compound stent and preparation method thereof
CN102008751B (en) * 2010-11-24 2014-01-08 北京道淼浩博科技发展有限公司 Biodegradable stent composite material and preparation method thereof
US8986369B2 (en) 2010-12-01 2015-03-24 Zorion Medical, Inc. Magnesium-based absorbable implants
CN102652840A (en) * 2011-03-02 2012-09-05 吉林金源北方科技发展有限公司 Medical biology degradable magnesium alloy composite material
CN102247623B (en) * 2011-08-17 2014-07-23 上海微创医疗器械(集团)有限公司 Multilayer degradable stent having shape memory and preparation method thereof
CN102441994B (en) * 2011-09-26 2014-01-01 南京师范大学 Ultrasonic process technology of tissue engineering scaffold material with controllable permeability
CN102671241B (en) * 2012-05-29 2015-04-01 山东科技大学 Medical magnesium alloy surface phytic acid micro-arc anodic oxide film and polylactic acid coating and process
CN102772831A (en) * 2012-08-20 2012-11-14 道淼科技(北京)有限公司 Degradable drug loading stent
CN102793947B (en) * 2012-08-28 2015-05-20 广州有色金属研究院 Degradable magnesium and surface modification method of alloy thereof
CN102793951A (en) * 2012-08-29 2012-11-28 哈尔滨医科大学 Medical intestinal anastomosis ring made of degradable magnesium alloy
CN102908675A (en) * 2012-10-29 2013-02-06 东南大学 Absorbable suture nail for anastomat
CN103272287B (en) * 2013-05-24 2015-03-11 华南理工大学 Biological medical degradable material and preparation method thereof
DE102013214636A1 (en) * 2013-07-26 2015-01-29 Heraeus Medical Gmbh Bioresorbable material composites containing magnesium and magnesium alloys as well as implants from these composites
CN104511048B (en) * 2013-09-27 2016-09-28 上海交通大学医学院附属第九人民医院 A kind of antibacterial suture of degradable metal
CN104127910B (en) * 2014-07-15 2015-12-30 东南大学 There is absorbable magnesium alloy staple and the preparation method of anti-inflammation function
CN104233431B (en) * 2014-09-26 2016-10-19 佳木斯大学 The preparation method of pure magnesium surface ultrasonic microarc oxidation-phytic acid-fibroin albumen multistage composite bioactivity coatings composite
CN104548203B (en) * 2014-12-29 2017-02-22 东莞颠覆产品设计有限公司 Preparation method of collagen-rich artificial nerve scaffold and thereof
CN105031745B (en) * 2015-05-08 2018-10-19 上海起励生物技术服务中心 A kind of orthopaedics implant with polymer wrapped metal prostheses
CN106310372B (en) * 2015-06-23 2020-05-22 上海交通大学 Degradable magnesium-based intrabony implant drug-loaded polymer/calcium-phosphorus composite coating and preparation
CN105232193A (en) * 2015-08-19 2016-01-13 北京迈迪顶峰医疗科技有限公司 Pulmonary artery stent
TWI577324B (en) * 2015-12-30 2017-04-11 Applicable to hot melt implantation to bone correction or bone defect
CN106214295A (en) * 2016-01-20 2016-12-14 沈晨阳 A kind of it is applicable to the arterial vascular Biodegradable vascular scaffold with tapering
CN106581781A (en) * 2016-12-09 2017-04-26 苏州纳贝通环境科技有限公司 Vascular stent material and preparation method thereof
CN108236483A (en) * 2016-12-27 2018-07-03 江苏风和医疗器材股份有限公司 Hemostatic clamp
CN108236484B (en) * 2016-12-27 2021-05-11 江苏风和医疗器材股份有限公司 Hemostatic clamp
CN108236480A (en) * 2016-12-27 2018-07-03 江苏风和医疗器材股份有限公司 Hemostatic clamp
CN106620837B (en) * 2017-01-18 2020-01-24 杨水祥 Preparation method of magnesium alloy intravascular stent
CN107281543A (en) * 2017-06-30 2017-10-24 南京师范大学 The biologic medical magnesium or magnesium alloy implant material of a kind of surface multi-use protection
CN109199514B (en) * 2017-07-04 2020-12-15 江苏风和医疗器材股份有限公司 Absorbable vascular clamp
CN107412886A (en) * 2017-08-02 2017-12-01 北京华信佳音医疗科技发展有限责任公司 A kind of preparation method of the biomaterial of sclerosed collagen composite polylactic acid
CN107820416A (en) * 2017-08-17 2018-03-20 鼎科医疗技术(苏州)有限公司 Degradable metal support and its manufacture method
CN107715176A (en) * 2017-10-31 2018-02-23 无锡中科光远生物材料有限公司 A kind of preparation method of the nanofiber coating support of promotion osteanagenesis
CN108309513B (en) * 2018-02-05 2020-05-19 刘洋 Joint replacement prosthesis
CN108498875A (en) * 2018-04-24 2018-09-07 苏州脉悦医疗科技有限公司 A kind of Bioabsorbable medical instrument and preparation method thereof
CN108543118B (en) * 2018-05-21 2022-04-26 申英末 Magnesium alloy fixing screw capable of being degraded controllably in vivo
CN108714252B (en) * 2018-05-21 2022-04-26 申英末 Preparation method of magnesium alloy fixing screw capable of being degraded controllably in vivo
CN109939271B (en) * 2019-04-11 2021-10-15 赵亚芳 Coating structure of medical biodegradable zinc alloy stent and preparation method thereof
CN112155814B (en) * 2020-09-27 2022-05-13 艾柯医疗器械(北京)有限公司 Low thrombus intracranial blood vessel braided stent and treatment method thereof
CN112494718A (en) * 2020-11-24 2021-03-16 淮阴工学院 Preparation method of biomedical metal material loaded with multifunctional composite coating
CN112675362A (en) * 2020-12-24 2021-04-20 上海纳米技术及应用国家工程研究中心有限公司 Preparation method of personalized magnesium alloy bracket for bone repair and product thereof
CN112877679B (en) * 2021-01-07 2021-10-22 江苏丰范嘉致新材料有限公司 High-strength degradable magnesium alloy suture line and preparation method thereof
CN113209366A (en) * 2021-04-23 2021-08-06 常州市第二人民医院 Degradable local vancomycin slow release system and preparation method thereof
CN113413237A (en) * 2021-06-01 2021-09-21 温州医科大学 Surface-modified artificial lens with degradable drug sustained-release coating with concentric ring patterns and preparation method thereof
CN114246993B (en) * 2021-12-09 2023-09-01 中国科学院宁波材料技术与工程研究所 Composite coating with adjustable active ingredient release performance and preparation method thereof
CN114395763A (en) * 2021-12-15 2022-04-26 创美得医疗器械(天津)有限公司 Surface cleaning process suitable for magnesium alloy implant
CN114159197B (en) * 2022-02-14 2022-05-17 北京美中双和医疗器械股份有限公司 Degradable biomedical magnesium alloy drug-eluting intravascular stent and preparation method thereof
CN115531606B (en) * 2022-09-30 2024-03-26 珠海奥华复维医疗技术有限公司 Gradient degradation reticular implant, preparation method and application thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1552945A (en) * 2003-06-06 2004-12-08 成都发动机(集团)有限公司有色金属 Magnesium alloy casting surface anticorrosive treating technology
CN1900360A (en) * 2006-07-14 2007-01-24 西南大学 Process for preparing magnesium alloy surface function gradient film
CN100998897A (en) * 2006-12-27 2007-07-18 天津大学 Absorbale magnesium alloy stent possessing double controllable relieasing coating layer and its preparation method
US20070224244A1 (en) * 2006-03-22 2007-09-27 Jan Weber Corrosion resistant coatings for biodegradable metallic implants
CN101214396A (en) * 2008-01-03 2008-07-09 乐普(北京)医疗器械股份有限公司 Controlled degradation magnesium alloy coating bracket and preparation thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1552945A (en) * 2003-06-06 2004-12-08 成都发动机(集团)有限公司有色金属 Magnesium alloy casting surface anticorrosive treating technology
US20070224244A1 (en) * 2006-03-22 2007-09-27 Jan Weber Corrosion resistant coatings for biodegradable metallic implants
CN1900360A (en) * 2006-07-14 2007-01-24 西南大学 Process for preparing magnesium alloy surface function gradient film
CN100998897A (en) * 2006-12-27 2007-07-18 天津大学 Absorbale magnesium alloy stent possessing double controllable relieasing coating layer and its preparation method
CN101214396A (en) * 2008-01-03 2008-07-09 乐普(北京)医疗器械股份有限公司 Controlled degradation magnesium alloy coating bracket and preparation thereof

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230263647A1 (en) * 2009-04-02 2023-08-24 Q3 Medical Devicess Limited Stent
CN112341795A (en) * 2020-11-27 2021-02-09 浙江长鸿纺织科技有限公司 Degradable TPU membrane
CN112472879A (en) * 2020-12-21 2021-03-12 上海康德莱医疗器械股份有限公司 Magnesium alloy stent and preparation method thereof
CN113499475A (en) * 2021-06-10 2021-10-15 广东省科学院健康医学研究所 Composite material for bracket and preparation method and application thereof
CN114432499A (en) * 2021-12-20 2022-05-06 脉通医疗科技(嘉兴)有限公司 Artificial blood vessel and preparation method thereof
CN114432499B (en) * 2021-12-20 2023-02-17 浙江脉通智造科技(集团)有限公司 Artificial blood vessel and preparation method thereof
CN114392398A (en) * 2022-01-19 2022-04-26 常熟致圆微管技术有限公司 Biodegradable medical metal magnesium patch and preparation method thereof
CN114571644A (en) * 2022-02-22 2022-06-03 浙江大学 Combined type closed impeller with perfluor surface
CN114571644B (en) * 2022-02-22 2023-03-17 浙江大学 Combined type closed impeller with perfluor surface
CN114917414A (en) * 2022-04-26 2022-08-19 东南大学 Multifunctional composite coating for preparing magnesium alloy cardiac stent material and preparation method thereof
CN114917414B (en) * 2022-04-26 2023-09-29 东南大学 Multifunctional composite coating for preparing magnesium alloy heart stent material and preparation method thereof
CN116236623A (en) * 2023-03-07 2023-06-09 南京市第一医院 Space-time adjustable infectious osteochondral defect magnesium alloy composite hydrogel stent material and preparation method and application thereof
CN116815107A (en) * 2023-05-29 2023-09-29 北京大学第三医院(北京大学第三临床医学院) Composite alloy material and preparation method and application thereof
CN116586633A (en) * 2023-07-17 2023-08-15 陕西斯瑞新材料股份有限公司 Method for preparing arc ablation-resistant CuCr contact material by 3D printing
CN116586633B (en) * 2023-07-17 2023-11-10 陕西斯瑞新材料股份有限公司 Method for preparing arc ablation-resistant CuCr contact material by 3D printing

Also Published As

Publication number Publication date
CN101214396A (en) 2008-07-09

Similar Documents

Publication Publication Date Title
WO2009082876A1 (en) A controlled degradation magnesium metal coating scaffold and its preparation method
EP3144018B1 (en) Method for preparing surface coating with reduced degradation rate of biodegradable magnesium alloy vascular stent
CN101337090B (en) Composite coating magnesium/magnesium alloy biology device and preparation method thereof
Zeng et al. In vitro corrosion and cytocompatibility of a microarc oxidation coating and poly (l-lactic acid) composite coating on Mg–1Li–1Ca alloy for orthopedic implants
CN101249286B (en) Degradable chemical bitter earth alloy bracket and method of preparing the same
CN101239009B (en) Controlled degradation microarc oxidized metallic support and manufacture method thereof
Qi et al. Mechanism of acceleration of iron corrosion by a polylactide coating
US8603569B2 (en) Implant and method for producing a degradation-inhibiting layer on the surface of an implant body
US8337936B2 (en) Implant and method for manufacturing same
US20220041890A1 (en) Pem layer-by-layer systems for coating substrates to improve bioactivity and biomolecule delivery
EP2793966B1 (en) Selective plasma activation for medical implants and wound healing devices
US8741073B2 (en) Implant and method for producing the same
US20100087915A1 (en) Implant and Method for Manufacturing Same
CN101869723A (en) Composite medicament stent for inhibiting cardiovascular restenosis and preparation method
EP2762111A1 (en) Interventional medical device and manufacturing method thereof
CN104784750A (en) Surface modification method for improving corrosion resistance of deformable biomedical magnesium alloy implantable device
Tang et al. A surface-eroding poly (1, 3-trimethylene carbonate) coating for magnesium based cardiovascular stents with stable drug release and improved corrosion resistance
Huan et al. Porous TiO2 surface formed on nickel‐titanium alloy by plasma electrolytic oxidation: A prospective polymer‐free reservoir for drug eluting stent applications
Xu et al. Corrosion resistance of HF-treated Mg alloy stent following balloon expansion and its improvement through biodegradable polymer coating
Ghafarzadeh et al. Bilayer micro-arc oxidation-poly (glycerol sebacate) coating on AZ91 for improved corrosion resistance and biological activity
US20100145432A1 (en) Implant and method for producing the same
Zhao et al. Dual strengthened corrosion control of biodegradable coating on magnesium alloy for vascular stent application
Moaref et al. Application of sustainable polymers for reinforcing bio-corrosion protection of magnesium implants–a review
CA2476841C (en) Chitosan-coated metallic article, and process for the production thereof
Bazaka et al. Polymer encapsulation of magnesium to control biodegradability and biocompatibility

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08783518

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 08783518

Country of ref document: EP

Kind code of ref document: A1