WO2009079448A2 - Disk drive testing - Google Patents

Disk drive testing Download PDF

Info

Publication number
WO2009079448A2
WO2009079448A2 PCT/US2008/086809 US2008086809W WO2009079448A2 WO 2009079448 A2 WO2009079448 A2 WO 2009079448A2 US 2008086809 W US2008086809 W US 2008086809W WO 2009079448 A2 WO2009079448 A2 WO 2009079448A2
Authority
WO
WIPO (PCT)
Prior art keywords
disk drive
robotic arm
tote
test slot
testing system
Prior art date
Application number
PCT/US2008/086809
Other languages
French (fr)
Other versions
WO2009079448A3 (en
Inventor
Edward Garcia
Brian S. Merrow
Evgeny Polyakov
Walter Vahey
Eric L. Truebenbach
Original Assignee
Teradyne, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teradyne, Inc. filed Critical Teradyne, Inc.
Priority to JP2010539675A priority Critical patent/JP2011507146A/en
Priority to CN2008801261923A priority patent/CN101939788A/en
Publication of WO2009079448A2 publication Critical patent/WO2009079448A2/en
Publication of WO2009079448A3 publication Critical patent/WO2009079448A3/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B33/00Constructional parts, details or accessories not provided for in the other groups of this subclass
    • G11B33/12Disposition of constructional parts in the apparatus, e.g. of power supply, of modules
    • G11B33/125Disposition of constructional parts in the apparatus, e.g. of power supply, of modules the apparatus comprising a plurality of recording/reproducing devices, e.g. modular arrangements, arrays of disc drives
    • G11B33/127Mounting arrangements of constructional parts onto a chassis
    • G11B33/128Mounting arrangements of constructional parts onto a chassis of the plurality of recording/reproducing devices, e.g. disk drives, onto a chassis
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B17/00Guiding record carriers not specifically of filamentary or web form, or of supports therefor
    • G11B17/22Guiding record carriers not specifically of filamentary or web form, or of supports therefor from random access magazine of disc records
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B19/00Driving, starting, stopping record carriers not specifically of filamentary or web form, or of supports therefor; Control thereof; Control of operating function ; Driving both disc and head
    • G11B19/02Control of operating function, e.g. switching from recording to reproducing
    • G11B19/04Arrangements for preventing, inhibiting, or warning against double recording on the same blank or against other recording or reproducing malfunctions
    • G11B19/048Testing of disk drives, e.g. to detect defects or prevent sudden failure
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/455Arrangements for functional testing of heads; Measuring arrangements for heads
    • G11B5/4555Arrangements for functional testing of heads; Measuring arrangements for heads by using a spin-stand, i.e. a spinning disc or simulator
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B5/00Recording by magnetisation or demagnetisation of a record carrier; Reproducing by magnetic means; Record carriers therefor
    • G11B5/455Arrangements for functional testing of heads; Measuring arrangements for heads

Definitions

  • This disclosure relates to disk drive testing.
  • Disk drive manufacturers typically test manufactured disk drives for compliance with a collection of requirements. Test equipment and techniques exist for testing large numbers of disk drives serially or in parallel. Manufacturers tend to test large numbers of disk drives simultaneously in batches. Disk drive testing systems typically include one or more racks having multiple test slots that receive disk drives for testing.
  • Current disk drive testing systems employ automation and structural support systems that contribute to excess vibrations in the system and/or require large footprints.
  • Current disk drive testing systems also use an operator or conveyer belt to individually feed disk drives to the testing system for testing.
  • a disk drive testing system includes at least one robotic arm defining a first axis substantially normal to a floor surface.
  • the robotic arm is operable to rotate through a predetermined arc (e.g. 360° ) about, and to extend radially from, the first axis.
  • Multiple racks are arranged around the robotic arm for servicing by the robotic arm. Each rack houses multiple test slots that are each configured to receive a disk drive transporter configured to carry a disk drive for testing.
  • a transfer station is arranged for servicing by the robotic arm.
  • the transfer station includes multiple tote receptacles that are each configured to receive a disk drive tote.
  • the robotic arm includes a manipulator configured to engage the disk drive transporter of one of the test slots.
  • the robotic arm is operable to carrying a disk drive in the disk drive transporter to the test slot for testing.
  • the robotic arm defines a substantially cylindrical working envelope volume, and the racks and the transfer station are arranged within the working envelope volume for servicing by the robotic arm.
  • the racks and the transfer station are arranged in at least a partially closed polygon about the first axis of the robotic arm.
  • the racks may be arranged equidistantly radially away from the first axis of the robotic arm or at different distances.
  • the transfer station is operable to rotate about a longitudinal axis defined by the transfer station substantially normal to a floor surface.
  • the transfer station includes a transfer station housing that defines first and second opposite facing tote receptacles.
  • the transfer station includes a station housing defining a longitudinal axis, and multiple tote receivers rotatably mounted to rotate about the longitudinal axis. Each tote receiver is independently rotatable of the other and defines first and second opposite facing tote receptacles.
  • the tote receivers are rotatably mounted on a spindle extending upwardly substantially normal from a station base.
  • the robotic arm may independently service each test slot by transferring a disk drive between a received disk drive tote of the transfer station and the test slot.
  • the disk drive tote includes a tote body defining multiple disk drive receptacles configured to each house a disk drive. Each disk drive receptacle defines a disk drive support configured to support a central portion of a received disk drive to allow manipulation of the disk drive along non-central portions.
  • the disk drive tote includes a tote body defining multiple column cavities and multiple cantilevered disk drive supports disposed in each column cavity (e.g.
  • each disk drive support is configured to support a central portion of a received disk drive to allow manipulation of the disk drive along non-central portions.
  • the disk drive testing system includes at least one computer in communication with the test slots.
  • a power system supplies power to the disk drive testing system and may be configured to monitor and/or regulate power to the received disk drive in the test slot.
  • a temperature control system controls the temperature of each test slot.
  • the temperature control system may include an air mover (e.g. a fan) operable to circulate air over and/or through the test slot.
  • a vibration control system controls rack vibrations (e.g. via passive dampening).
  • a data interface is in communication with each test slot and is configured to communicate with a disk drive in the disk drive transporter received by the test slot.
  • Each rack may include at least one self-testing system in communication with at least one test slot.
  • the self-testing system includes a cluster controller, a connection interface circuit in electrical communication with a disk drive received in the test slot, and a block interface circuit in electrical communication with the connection interface circuit.
  • the block interface circuit is configured to control power and temperature of the test slot.
  • the connection interface circuit and the block interface circuit are configured to test the functionality of at least one component of the disk drive testing system (e.g. test the functionality of the test slot while empty or while housing a disk drive held by a disk drive transporter).
  • each rack includes at least one functional testing system in communication with at least one test slot.
  • the functional testing system includes a cluster controller, at least one functional interface circuit in electrical communication with the cluster controller, and a connection interface circuit in electrical communication with a disk drive received in the test slot and the functional interface circuit.
  • the functional interface circuit is configured to communicate a functional test routine to the disk drive.
  • the functional testing system includes an Ethernet switch for providing electrical communication between the cluster controller and the at least one functional interface circuit.
  • the disk drive testing system sometimes includes a vision system disposed on the robotic arm to aiding guidance of the robotic arm while transporting a disk drive.
  • the vision system may used to guide a manipulator on the robotic arm that holds the disk drive transporter to insert the disk drive transporter safely into one of the test slots or a disk drive tote.
  • the vision system calibrates the robotic arm by aligning the robotic arm to a fiducial mark on the rack, test slot, transfer station, and/or disk drive tote.
  • a disk drive tote includes a tote body defining multiple disk drive receptacles configured to each house a disk drive.
  • a disk drive tote includes a tote body defining multiple column cavities and multiple cantilevered disk drive supports disposed in each column cavity (e.g. off a rear wall of the column cavity), dividing the column cavity into multiple disk drive receptacles that are each configured to receive a disk drive.
  • Each disk drive support is configured to support a central portion of the received disk drive to allow manipulation of the disk drive along non-central portions.
  • a method of performing disk drive testing includes loading multiple disk drives into disk drive receptacles defined by a disk drive tote, and loading the disk drive tote into a tote receptacle defined by a transfer station.
  • the method includes actuating a robotic arm to retrieve a disk drive transporter from a test slot housed in a rack, and actuating the robotic arm to retrieve one of the disk drives from the transfer station and carry the disk drive in the disk drive transporter.
  • the robotic arm is operable to rotate through a predetermined arc about, and to extend radially from, a first axis defined by the robotic arm substantially normal to a floor surface.
  • the method includes actuating the robotic arm to deliver the disk drive transporter carrying a disk drive to the test slot, and performing a functionality test on the disk drive housed by the received disk drive transporter and the test slot.
  • the method then includes actuating the robotic arm to retrieve the disk drive transporter carrying the tested disk drive from the test slot and deliver the tested disk drive back to the transfer station.
  • the method includes actuating the robotic arm to deposit the disk drive transporter in the test slot (e.g. after depositing the tested disk drive in a disk drive receptacle of the disk drive tote).
  • delivering the disk drive transporter to the test slot includes inserting the disk drive transporter carrying the disk drive into the test slot in the rack, establishing an electric connection between the disk drive and the rack.
  • the method may include rotating the received disk drive tote in the transfer station between a servicing position (e.g. a position accessible by an operator) and a testing position accessible by the robotic arm.
  • the transfer station sometimes includes a transfer station housing that defines first and second opposite facing tote receptacles, each configured to receive a disk drive tote.
  • loading disk drives into the disk drive tote includes placing the disk drive onto a disk drive support in a disk drive receptacle defined by a tote body of the disk drive tote, the disk drive support being configured to support a central portion of a received disk drive to allow manipulation of the disk drive along non- central portions.
  • the method further includes actuating the robotic arm to selectively deliver the tested disk drive to a return tote housed by the transfer station, the robotic arm delivering the tested disk drive to a disk drive receptacle of a passed return tote when the tested disk drive successfully passed the functionality testing, and the robotic arm delivering the tested disk drive to a disk drive receptacle of a failed return tote when the tested disk drive failed the functionality testing.
  • performing a functionality test on the received disk drive includes regulating the temperature of the test slot while operating the disk drive.
  • operating the received disk drive may include performing reading and writing of data to the disk drive.
  • the method includes one or more of circulating air over and/or through the test slot to control the temperature of the test slot, monitoring and/or regulating power delivered to the received disk drive, and performing a self-test on the test slot with a self-testing system housed by the rack to verify the functionality of the test slot.
  • the method may include communicating with a vision system disposed on the robotic arm to aid guidance of the robotic arm while transporting the disk drive.
  • the method may also include calibrating the robotic arm by aligning the robotic arm to a fiducial mark on the rack, test slot, transfer station, and/or disk drive tote recognized by the vision system.
  • FIG. 1 is a perspective view of a disk drive testing system.
  • FIG. 2 is a top view of a disk drive testing system.
  • FIG. 3 is a perspective view of a disk drive testing system.
  • FIGS. 4-5 are top views disk drive testing systems having different sized racks and footprints.
  • FIG. 6 is a perspective view of a disk drive testing system.
  • FIG. 7 is a side view of a robotic am supported on vertical and horizontal actuating supports.
  • FIG. 8 is a perspective view of a disk drive testing system having two robotic arms.
  • FIG. 9 is a top view of a disk drive testing system including a robotic arm supported on a rotating support.
  • FIG 10 is a perspective view of a transfer station.
  • FIG. 11 is a perspective view of a tote defining multiple disk drive receptacles.
  • FIG. 12 is a perspective view of a tote having cantilevered disk drive supports.
  • FIG. 13 is a perspective view of a disk drive transporter.
  • FIG. 14 is a perspective view of a disk drive transporter carrying a disk drive.
  • FIG. 15 is a bottom perspective view of a disk drive transporter carrying a disk drive.
  • FIG. 16 is a perspective view of a disk drive transporter carrying a disk drive aligned for insertion into a test slot.
  • FIG. 17 is a schematic view of a disk drive testing system.
  • FIG. 18 is a schematic view of a disk drive testing system with self-testing and functional testing capabilities.
  • a disk drive testing system 100 includes at least one robotic arm 200 defining a first axis 205 substantially normal to a floor surface 10.
  • the robotic arm 200 is operable to rotate through a predetermined arc about the first axis 205 and to extend radially from the first axis 205.
  • the robotic arm 200 is operable to rotate 360° about the first axis 205 and includes a manipulator 212 disposed at a distal end of the robotic arm 200 to handle a disk drive 500 and/or a disk drive transporter 550 carrying the disk drive 500 (see e.g. FIGS. 13-14).
  • Multiple racks 300 are arranged around the robotic arm 200 for servicing by the robotic arm 200.
  • Each rack 300 houses multiple test slots 310 configured to receive disk drives 500 for testing.
  • the robotic arm 200 defines a substantially cylindrical working envelope volume 210, with the racks 300 being arranged within the working envelope 210 (see e.g. FIGS. 4 and 5) for accessibility of each test slot 310 for servicing by the robotic arm 200.
  • the substantially cylindrical working envelope volume 210 provides a compact footprint and is generally only limited in capacity by height constraints.
  • the robotic arm 200 may be configured to independently service each test slot 310 to provide a continuous flow of disk drives 500 through the testing system 100.
  • a continuous flow of individual disk drives 500 through the testing system 100 allows random start and stop times for each disk drive 500, whereas systems that require batches of disk drives 500 to be run at once must all have the same start and end times. Therefore, with continuous flow, disk drives 500 of different capacities can be run at the same time and serviced (loaded/unloaded) as needed.
  • Isolation of the free standing robotic arm 200 from the racks 300 aids vibration control of the racks 300, which only shares the floor surface 10 (see e.g. FIG. 10) as a common support structure.
  • each rack 300 houses about 480 test slots 310. In other instances, the racks 300 vary in size and test slot capacity. [0043] In the examples illustrated in FIGS. 1-3, the racks 300 are arranged equidistantly radially away from the first axis 205 of the robotic arm 200. However, the racks 300 may be arranged in any pattern and at any distance around the robotic arm 200 within the working envelope volume 210.
  • the racks 300 are arranged in at least a partially closed polygon about the first axis 205 of the robotic arm 200, such as an open or closed octagon, square, triangle, trapezoid, or other polygon, examples of which are shown in FIGS. 4-5.
  • the racks 300 may be configured in different sizes and shapes to fit a particular footprint.
  • the arrangement of racks 300 around the robotic arm 200 may be symmetric or asymmetric.
  • the robotic arm 200 is elevated by and supported on a pedestal or lift 250 on the floor surface 10.
  • the pedestal or lift 250 increases the height of the working envelope volume 210 by allowing the robotic arm 200 to reach not only upwardly, but also downwardly to service test slots 310.
  • the height of the working envelope volume 210 can be further increased by adding a vertical actuator to the pedestal or lift 250, configuring it as a vertically actuating support 252 that supports the robotic arm 200, as shown in FIG. 7.
  • the vertically actuating support 252 is operable to move the robotic arm 200 vertically with respect to the floor surface 10.
  • the vertically actuating support 252 is configured as a vertical track supporting the robotic arm 200 and includes an actuator (e.g.
  • a horizontally actuating support 254 (e.g. a linear actuator), also shown in FIG. 7, may be used to support the robotic arm 200 and be operable to move the robotic arm 200 horizontally along the floor surface 10.
  • the combination of the vertically and horizontally actuating supports 252, 254 supporting the robotic arm 210 provides an enlarged working envelope volume 210 having an elongated substantially elliptical profile from a top view.
  • the disk drive testing system 100 includes two robotic arms 200A and 200B, both rotating about the first axis 205.
  • the disk drive testing system 100 includes a rotatable table 260 that supports the robotic arm 200.
  • the rotatable table 260 is operable to rotate the robotic arm 200 about a second axis 262 substantially normal to the floor surface 10, thereby providing a larger working envelope volume 210 than a robotic arm 200 rotating only about the first axis 205.
  • the disk drive testing system 100 includes a vision system 270 disposed on the robotic arm 200.
  • the vision system 270 is configured to aid guidance of the robotic arm 200 while transporting a disk drive 500.
  • the vision system 270 aids alignment of the disk drive transporter 550, held by the manipulator 212, for insertion in the test slot 310 and/or tote 450.
  • the vision system 270 may calibrate the robotic arm 200 by aligning the robotic arm 200 to a fiducial mark 314 on the rack 300, preferably the test slot 310.
  • the fiducial mark 314 is an "L" shaped mark located near a corner of an opening 312 of the test slot 310 on the rack 300.
  • the robotic arm 200 aligns itself with the fiducial mark 314 before accessing the test slot 310 (e.g. to either pick-up or place a disk drive transporter 550, which may be carrying a disk drive 500).
  • the continual robotic arm alignments enhances the accuracy and reputability of the robotic arm 200, while minimizing misplacement of a disk drive transporter 550 carrying a disk drive 500 (which may result in damage to the disk drive 500 and/or the disk drive testing system 100).
  • the disk drive testing system 100 includes a transfer station 400, as shown in FIGS. 1-3 and 10. While in other implementations, the disk drive testing system 100 include may include a conveyor belt (not shown) or an operator that feeds disk drives 500 to the robotic arm 200. In examples including a transfer station 400, the robotic arm 200 independently services each test slot 310 by transferring a disk drive 500 between the transfer station 400 and the test slot 310.
  • the transfer station 400 includes multiple tote receptacles 430 configured to each receive a tote 450.
  • the tote 450 defines disk drive receptacles 454 that house disk drives 500 for testing and/or storage.
  • each disk drive receptacle 454 the housed disk drive 500 is supported by a disk drive support 456.
  • the robotic arm 200 is configured to remove a disk drive transporter 550 from one of the test slots 310 with the manipulator 212, then pick up a disk drive 500 from one the disk drive receptacles 454 at the transfer station 400 with the disk drive transporter 550, and then return the disk drive transporter 550, with a disk drive 500 therein, to the test slot 310 for testing of the disk drive 500.
  • the robotic arm 200 retrieves the tested disk drive 500 from the test slot 310, by removing the disk drive transporter 550 carrying the tested disk drive 500 from the test slot 310 (i.e., with the manipulator 212), carrying the tested disk drive 500 in the disk drive transporter 550 to the transfer station 400, and manipulating the disk drive transporter 550 to return the tested disk drive 500 to one of the disk drive receptacles 454 at the transfer station 400.
  • the fiducial mark 314 may be located adjacent one or more disk drive receptacles 454 to aid guidance of the robotic arm in retrieving or depositing disk drives 500 at the transfer station 400.
  • the transfer station 400 in some examples, includes a station housing 410 that defines a longitudinal axis 415.
  • One or more tote receivers 420 are rotatably mounted in the station housing 410, for example on a spindle 412 extending along the longitudinal axis 415.
  • Each tote receiver 420 may rotate on an individual respective spindle 412 or on a common spindle 412.
  • Each tote receiver 420 defines first and second opposite facing tote receptacles 430A and 430B.
  • the transfer station 400 includes three tote receivers 420 stacked on the spindle 412.
  • Each tote receiver 420 is independently rotatable from the other and may rotate a received disk drive tote 450 between a servicing position (e.g. accessible by an operator) and a testing position accessible by the robotic arm 200.
  • each tote receiver 420 is rotatable between a first position (e.g. servicing position) and a second position (testing position). While in the first position, an operator is provided access to the first tote receptacle 430A, and the robotic arm 200 is provided access on the opposite side to the second tote receptacle 430B.
  • the robotic arm 200 While in the second position the robotic arm 200 is provided access the first tote receptacle 430A, and an operator is provided access on the opposite side to the second tote receptacles 430B.
  • an operator may service the transfer station 400 by loading/unloading totes 450 into tote receptacles 430 on one side of the transfer station 400, while the robotic arm 200 has access to totes 450 housed in tote receptacles 430 on an opposite side of the transfer station 400 for loading/unloading disk drives 500.
  • the transfer station 400 provides a service point for delivering and retrieving disk drives 500 to and from the disk drive testing system 100.
  • the totes 450 allow an operator to deliver and retrieve a batch of disk drives 500 to and from the transfer station 400.
  • each tote 450 that is accessible from respective tote receivers 420 in the second position may be designated as source totes 450 for supplying disk drives 500 for testing or as destination totes 450 for receiving tested disk drives 500.
  • Destination totes 450 may be classified as "passed return totes" or "failed return totes” for receiving respective disk drives 500 that have either passed or failed a functionality test, respectively.
  • a housing door 416 is pivotally or slidably attached to the transfer station housing 410 and configured to provide operator access to one or more tote receptacles 430.
  • An operator opens the housing door 416 associated with a particular tote receiver 420 to load/unload a tote 450 into the respective tote receptacle 430.
  • the transfer station 400 may be configured to hold the respective tote receiver 420 stationary while the associated housing door 416 is open.
  • the transfer station 400 includes a station indicator 418 which provides visual, audible, or other recognizable indications of one or more states of the transfer station 400.
  • the station indicator 418 includes lights (e.g. LED's) that indicate when one or more tote receivers 420 need servicing (e.g. to load/unload totes 450 from particular tote receives 420).
  • the station indicator 418 includes one or more audio devices to provide one or more audible signals (e.g. chirps, clacks, etc.) to signal an operator to service the transfer station 400.
  • the station indicator 418 may be disposed along the longitudinal axis 415, as shown, or on some other portion of the station housing 410.
  • a tote 450A includes a tote body
  • Each disk drive receptacle 454A is configured to house a disk drive 500.
  • each disk drive receptacle 454A includes a disk drive support 456A configured to support a central portion 502 of the 5 received disk drive 500 to allow manipulation of the disk drive 500 along non-central portions.
  • the disk drive transporter 550 is positioned below the disk drive 500 (e.g. by the robotic arm 200) in the disk drive receptacle 454A and elevated to lift the disk drive 500 off of the disk drive support 456A. The disk drive transporter 550 is then removed from the disk o drive receptacle 454A while carrying the disk drive 500 for delivery to a destination target, such as a test slot 310.
  • a tote 450B includes a tote body
  • the disk drive supports 456B are cantilevered off a 5 rear wall 457B of the column cavity 453B.
  • the disk drive supports 456B are configured to support a central portion 502 of the received disk drive 500 to allow manipulation of the disk drive 500 along non-central portions.
  • the cantilevered disk drive supports 456B allow retrieval of disk drives 500 from the tote 450B by inserting a disk drive transporter 550 (e.g. as shown in FIG. 13) into an empty disk drive receptacle 454B just below and lifting the disk drive 500 off the disk drive support 456B for removal from the disk drive receptacle 454B.
  • the same steps are repeated in reverse for depositing the disk drive 500 in the tote 450B.
  • the bottom disk drive receptacle 454B in each column cavity 453B is left empty to facilitate removal of a disk drive 500 housed in the disk drive receptacle 454B above it. Consequently, the disk drives 500 must be loaded /unloaded in a sequential order in a particular column; however a greater storage density is achieved than the tote solution shown in FIG. 11.
  • the test slot 310 is configured to receive the disk drive transporter 550.
  • the disk drive transporter 550 is configured to receive the disk drive 500 and be handled by the robotic arm 200.
  • one of the disk drive transporters 550 is removed from one of the test slots 310 with the robot 200 (e.g., by grabbing, or otherwise engaging, the indentation 552 of the transporter 550 with the manipulator 212 of the robot 200). As illustrated in FIG.
  • the disk drive transporter 550 includes a frame 560 defining a substantially U-shaped opening 561 formed by sidewalls 562, 564 and a base plate 566 that collectively allow the frame 560 to fit around the disk drive support 456 in the tote 450 so that the disk drive transporter 550 can be moved (e.g., via the robotic arm 200) into a position beneath one of the disk drives 500 housed in one of the disk drive receptacles 454 of the tote 450. The disk drive transporter 550 can then be raised (e.g., by the robotic arm 310) into a position engaging the disk drive 600 for removal off of the disk drive support 456 in the tote 450.
  • the disk drive transporter 550 and the disk drive 500 together can be moved by the robotic arm 200 for placement within one of the test slots 310, as shown in FIG. 16.
  • the manipulator 212 is also configured to initiate actuation of a clamping mechanism 570 disposed in the disk drive transporter 550. This allows actuation of the clamping mechanism 570 before the transporter 550 is moved from the tote 450 to the test slot 310 to inhibit movement of the disk drive 500 relative to the disk drive transporter 550 during the move. Prior to insertion in the test slot 310, the manipulator 212 can again actuate the clamping mechanism 570 to release the disk drive 500 within the frame 560.
  • the clamping mechanism 570 may also be configured to engage the test slot 310, once received therein, to inhibit movement of the disk drive transporter 550 relative to the test slot 310. In such implementations, once the disk drive 500 is in the test position, the clamping mechanism 570 is engaged again (e.g., by the manipulator 212) to inhibit movement of the disk drive transporter 550 relative to the test slot 310. The clamping of the transporter 550 in this manner can help to reduce vibrations during testing.
  • the disk drive transporter 550 and disk drive 500 carried therein are both clamped or secured in combination or individually within the test slot 310.
  • a detailed description of the clamping mechanism 570 and other details and features combinable with those described herein may be found in the following U.S. patent application filed concurrently herewith, entitled “DISK DRIVE TRANSPORT, CLAMPING AND TESTING", with attorney docket number: 18523-067001, inventors: Brian Merrow et al., and having assigned serial number 1 1/959,133.
  • the disk drives 500 can be sensitive to vibrations. Fitting multiple disk drives 500 in a single test rack 310 and running the disk drives 500 (e.g., during testing), as well as the insertion and removal of the disk drive transporters 550, each optionally carrying a disk drive 500, from the various test slots 310 in the test rack 300 can be sources of undesirable vibration. In some cases, for example, one of the disk drives 500 may be operating under test within one of the test slots 310, while others are being removed and inserted into adjacent test slots 310 in the same test rack 300.
  • the disk drive testing system 100 includes at least one computer 320 in communication with the test slots 310.
  • the computer 320 may be configured to provide inventory control of the disk drives 500 and/or an automation interface to control the disk drive testing system 100.
  • a power system 330 supplies power to the disk drive testing system 100.
  • the power system 330 may monitor and/or regulate power to the received disk drive 500 in the test slot 310.
  • a temperature control system 340 controls the temperature of each test slot 310.
  • the temperature control system 340 may be a an air mover 342 (e.g. a fan) operable to circulate air over and/or through the test slot 310.
  • the air mover 342 is located exteriorly of the test slot 310.
  • a vibration control system 350 such as active or passive dampening, controls the vibration of each test slot 310.
  • the vibration control system 350 includes a passive dampening system where components of the test slot 310 are connected via grommet isolators (e.g. thermoplastic vinyl) and/or elastomeric mounts (e.g. urethane elastomer).
  • the vibration control system 350 includes an active control system with a spring, damper, and control loop that controls the vibrations in the rack 300 and/or test slot 310.
  • a data interface 360 is in communication with each test slot 310.
  • the data interface 360 is configured to communicate with a disk drive 500 received by the test slot 310.
  • each rack 300 includes at least one self-testing system 600 in communication with at least one test slot 310.
  • the self-testing system 600 tests whether the disk drive testing system 100 and/or specific sub-systems, such as the test slot 310, are functioning properly.
  • the self-testing system 600 includes a cluster controller 610, a connection interface circuit 620 in electrical communication with a disk drive 500 received in the test slot 310, and a block interface circuit 630 in electrical communication with the connection interface circuit 620.
  • the cluster controller 610 may be configured to run one or more testing programs, such as multiple self-tests on test slots 310 and/or functionality tests on disk drives 500.
  • the connection interface circuit 620 and the block interface circuit 630 may be configured to self-test.
  • the self-testing system 600 includes a self-test circuit 660 configured to execute and control a self-testing routine on one or more components of the disk drive testing system 100.
  • the self-test circuit 660 may be configured to perform a 'disk drive' type and/or 'test slot only' type of self-test on one or more components of the disk drive testing system 100.
  • the cluster controller 610 may communicate with the self-test circuit 640 via Ethernet (e.g. Gigabit Ethernet), which may communicate with the block interface circuit 630 and onto the connection interface circuit 620 and disk drive 500 via universal asynchronous receiver/transmitter (UART) serial links.
  • a UART is usually an individual (or part of an) integrated circuit used for serial communications over a computer or peripheral device serial port.
  • the block interface circuit 630 is configured to control power and temperature of the test slot 310, and may control multiple test slots 310 and/or disk drives 500.
  • Each rack 300 includes at least one functional testing system 650 in communication with at least one test slot 310.
  • the functional testing system 650 tests whether a received disk drive 500, held and/or supported in the test slot 310 by the disk drive transporter 550, is functioning properly.
  • a functionality test may include testing the amount of power received by the disk drive 500, the operating temperature, the ability to read and write data, and the ability to read and write data at different temperatures (e.g. read while hot and write while cold, or vice versa).
  • the functionality test may test every memory sector of the disk drive 500 or only random samplings.
  • the functionality test may test an operating temperature of the disk drive 500 and also the data integrity of communications with the disk drive 500.
  • the functional testing system 650 includes a cluster controller 610 and at least one functional interface circuit 660 in electrical communication with the cluster controller 610.
  • a connection interface circuit 620 is in electrical communication with a disk drive 500 received in the test slot 310 and the functional interface circuit 660.
  • the functional interface circuit 660 is configured to communicate a functional test routine to the disk drive 500.
  • the functional testing system 650 may include a communication switch 670 (e.g. Gigabit Ethernet) to provide electrical communication between the cluster controller 610 and the one or more functional interface circuits 660.
  • the computer 320, communication switch 670, cluster controller 610, and functional interface circuit 660 communicate on an Ethernet network. However, other forms of communication may be used.
  • the functional interface circuit 660 may communicate to the connection interface circuit 620 via Parallel AT Attachment (a hard disk interface also known as IDE, ATA, ATAPI, UDMA and PATA), SATA, or SAS (Serial Attached SCSI).
  • a method of performing disk drive testing includes loading multiple disk drives 500 into a transfer station 400 (e.g. as by loading the disk drives 500 into disk drive receptacles 454 defined by a disk drive tote 450, and loading the disk drive tote 450 into a tote receptacle 430 defined by the transfer station 400).
  • the method includes actuating a robotic arm 200 to retrieve a disk drive transporter 550 from a test slot 310 housed in a rack 300, and actuating the robotic arm 200 to retrieve one of the disk drives 500 from the transfer station 400 and carry the disk drive 500 in the disk drive transporter 550.
  • the robotic arm 200 is operable to rotate through a predetermined arc about, and to extend radially from, a first axis 205 defined by the robotic arm 200 substantially normal to a floor surface 10.
  • the method includes actuating the robotic arm 200 to deliver the disk drive transporter 550 carrying the disk drive 500 to the test slot 310, and performing a functionality test on the disk drive 500 housed by the received disk drive transporter 550 and the test slot 310.
  • the method then includes actuating the robotic arm 200 to retrieve the disk drive transporter 550 carrying the tested disk drive 500 from the test slot 310 and deliver the tested disk drive 500 back to the transfer station 400.
  • the rack 300 and two or more associated test slots 310 are configured to move disk drives 500 internally from one test slot 310 to another test slot 310, in case the test slots 310 are provisioned for different kinds of tests.
  • the method includes actuating the robotic arm 200 to deposit the disk drive transporter 550 in the test slot 310 after depositing the tested disk drive 500 in a disk drive receptacle 454 of the disk drive tote 450, or repeating the method by retrieving another disk drive 500 for testing from another disk drive receptacle 454 of the disk drive tote 450.
  • delivering the disk drive transporter 550 to the test slot 310 includes inserting the disk drive transporter 550 carrying the disk drive 500 into the test slot 310 in the rack 300, establishing an electric connection between the disk drive 500 and the rack 300.
  • the method includes performing a functionality test on the received disk drive 500 that includes regulating the temperature of the test slot 310 while operating the disk drive 500. Operation of the received disk drive 500 includes performing reading and writing of data to the disk drive 500. The method may also include circulating air over and/or through the test slot 310 to control the temperature of the test slot 310, and monitoring and/or regulating power delivered to the disk drive 500. [0064] In some examples, the method includes performing a 'disk drive' type and/or 'test slot only' type of self-test on the test slot 320 with the self-testing system 600 housed by the rack 300 to verify the functionality of the test slot 310.
  • the 'disk drive' type self-test tests the functionality of the disk drive testing system with a received disk drive 500, held and/or supported in the test slot 310 by the disk drive transporter 550.
  • the 'test slot only' type of self-test tests the functionality of the test slot 310 while empty.
  • the method includes communicating with the vision system 270 disposed on the robotic arm 200 to aid guidance of the robotic arm 200 while transporting the disk drive 500, which may be carried by a disk drive transporter 550.
  • the method includes calibrating the robotic arm 200 by aligning the robotic arm 200 to a fiducial mark 314 on the rack 300, test slot 310, transfer station 400 and/or tote 450 recognized by the vision system 270.

Abstract

A disk drive testing system (100) includes at least one robotic arm (200) defining a first axis (205) substantially normal to a floor surface (10). The robotic arm is operable to rotate through a predetermined arc about and extend radially from the first axis. Multiple racks (300) are arranged around the robotic arm for servicing by the robotic arm. Each rack houses multiple test slots (310) that are each configured to receive a disk drive transporter (550) configured to carry a disk drive (500) for testing. A transfer station (400) is arranged for servicing by the robotic arm. The transfer station includes multiple tote receptacles (420) that are each configured to receive a disk drive tote (450).

Description

DISK DRIVE TESTING
TECHNICAL FIELD
[0001 ] This disclosure relates to disk drive testing.
BACKGROUND [0002] Disk drive manufacturers typically test manufactured disk drives for compliance with a collection of requirements. Test equipment and techniques exist for testing large numbers of disk drives serially or in parallel. Manufacturers tend to test large numbers of disk drives simultaneously in batches. Disk drive testing systems typically include one or more racks having multiple test slots that receive disk drives for testing.
[0003] The testing environment immediately around the disk drive is closely regulated. Minimum temperature fluctuations in the testing environment are critical for accurate test conditions and for safety of the disk drives. The latest generations of disk drives, which have higher capacities, faster rotational speeds and smaller head clearance, are more sensitive to vibration. Excess vibration can affect the reliability of test results and the integrity of electrical connections. Under test conditions, the drives themselves can propagate vibrations through supporting structures or fixtures to adjacent units. This vibration "cross-talking," together with external sources of vibration, contributes to bump errors, head slap and non-repetitive run-out (NRRO), which may result in lower test yields and increased manufacturing costs.
[0004] Current disk drive testing systems employ automation and structural support systems that contribute to excess vibrations in the system and/or require large footprints. Current disk drive testing systems also use an operator or conveyer belt to individually feed disk drives to the testing system for testing.
SUMMARY
[0005] In one aspect, a disk drive testing system includes at least one robotic arm defining a first axis substantially normal to a floor surface. The robotic arm is operable to rotate through a predetermined arc (e.g. 360° ) about, and to extend radially from, the first axis. Multiple racks are arranged around the robotic arm for servicing by the robotic arm. Each rack houses multiple test slots that are each configured to receive a disk drive transporter configured to carry a disk drive for testing. A transfer station is arranged for servicing by the robotic arm. The transfer station includes multiple tote receptacles that are each configured to receive a disk drive tote.
[0006] Implementations of the disclosure may include one or more of the following features. In some implementations, the robotic arm includes a manipulator configured to engage the disk drive transporter of one of the test slots. The robotic arm is operable to carrying a disk drive in the disk drive transporter to the test slot for testing. The robotic arm defines a substantially cylindrical working envelope volume, and the racks and the transfer station are arranged within the working envelope volume for servicing by the robotic arm. hi some examples, the racks and the transfer station are arranged in at least a partially closed polygon about the first axis of the robotic arm. The racks may be arranged equidistantly radially away from the first axis of the robotic arm or at different distances.
[0007] In some implementations, the transfer station is operable to rotate about a longitudinal axis defined by the transfer station substantially normal to a floor surface. The transfer station includes a transfer station housing that defines first and second opposite facing tote receptacles. In some examples, the transfer station includes a station housing defining a longitudinal axis, and multiple tote receivers rotatably mounted to rotate about the longitudinal axis. Each tote receiver is independently rotatable of the other and defines first and second opposite facing tote receptacles. In some examples, the tote receivers are rotatably mounted on a spindle extending upwardly substantially normal from a station base. [0008] The robotic arm may independently service each test slot by transferring a disk drive between a received disk drive tote of the transfer station and the test slot. In some implementations, the disk drive tote includes a tote body defining multiple disk drive receptacles configured to each house a disk drive. Each disk drive receptacle defines a disk drive support configured to support a central portion of a received disk drive to allow manipulation of the disk drive along non-central portions. In some examples, the disk drive tote includes a tote body defining multiple column cavities and multiple cantilevered disk drive supports disposed in each column cavity (e.g. off a rear wall of the cavity column), dividing the column cavity into multiple disk drive receptacles that are each configured to receive a disk drive. Each disk drive support is configured to support a central portion of a received disk drive to allow manipulation of the disk drive along non-central portions.
[0009] hi some implementations, the disk drive testing system includes at least one computer in communication with the test slots. A power system supplies power to the disk drive testing system and may be configured to monitor and/or regulate power to the received disk drive in the test slot. A temperature control system controls the temperature of each test slot. The temperature control system may include an air mover (e.g. a fan) operable to circulate air over and/or through the test slot. A vibration control system controls rack vibrations (e.g. via passive dampening). A data interface is in communication with each test slot and is configured to communicate with a disk drive in the disk drive transporter received by the test slot. [0010] Each rack may include at least one self-testing system in communication with at least one test slot. The self-testing system includes a cluster controller, a connection interface circuit in electrical communication with a disk drive received in the test slot, and a block interface circuit in electrical communication with the connection interface circuit. The block interface circuit is configured to control power and temperature of the test slot. The connection interface circuit and the block interface circuit are configured to test the functionality of at least one component of the disk drive testing system (e.g. test the functionality of the test slot while empty or while housing a disk drive held by a disk drive transporter). [0011] In some implementations, each rack includes at least one functional testing system in communication with at least one test slot. The functional testing system includes a cluster controller, at least one functional interface circuit in electrical communication with the cluster controller, and a connection interface circuit in electrical communication with a disk drive received in the test slot and the functional interface circuit. The functional interface circuit is configured to communicate a functional test routine to the disk drive. In some examples, the functional testing system includes an Ethernet switch for providing electrical communication between the cluster controller and the at least one functional interface circuit.
[0012] The disk drive testing system sometimes includes a vision system disposed on the robotic arm to aiding guidance of the robotic arm while transporting a disk drive. In particular, the vision system may used to guide a manipulator on the robotic arm that holds the disk drive transporter to insert the disk drive transporter safely into one of the test slots or a disk drive tote. The vision system calibrates the robotic arm by aligning the robotic arm to a fiducial mark on the rack, test slot, transfer station, and/or disk drive tote. [0013] In another aspect, a disk drive tote includes a tote body defining multiple disk drive receptacles configured to each house a disk drive. Each disk drive receptacle defines a disk drive support configured to support a central portion of a received disk drive to allow manipulation of the disk drive along non-central portions. [0014] In yet another aspect, a disk drive tote includes a tote body defining multiple column cavities and multiple cantilevered disk drive supports disposed in each column cavity (e.g. off a rear wall of the column cavity), dividing the column cavity into multiple disk drive receptacles that are each configured to receive a disk drive. Each disk drive support is configured to support a central portion of the received disk drive to allow manipulation of the disk drive along non-central portions. [0015] In another aspect, a method of performing disk drive testing includes loading multiple disk drives into disk drive receptacles defined by a disk drive tote, and loading the disk drive tote into a tote receptacle defined by a transfer station. The method includes actuating a robotic arm to retrieve a disk drive transporter from a test slot housed in a rack, and actuating the robotic arm to retrieve one of the disk drives from the transfer station and carry the disk drive in the disk drive transporter. The robotic arm is operable to rotate through a predetermined arc about, and to extend radially from, a first axis defined by the robotic arm substantially normal to a floor surface. The method includes actuating the robotic arm to deliver the disk drive transporter carrying a disk drive to the test slot, and performing a functionality test on the disk drive housed by the received disk drive transporter and the test slot. The method then includes actuating the robotic arm to retrieve the disk drive transporter carrying the tested disk drive from the test slot and deliver the tested disk drive back to the transfer station. [0016] In some examples, the method includes actuating the robotic arm to deposit the disk drive transporter in the test slot (e.g. after depositing the tested disk drive in a disk drive receptacle of the disk drive tote). In some examples, delivering the disk drive transporter to the test slot includes inserting the disk drive transporter carrying the disk drive into the test slot in the rack, establishing an electric connection between the disk drive and the rack.
[0017] The method may include rotating the received disk drive tote in the transfer station between a servicing position (e.g. a position accessible by an operator) and a testing position accessible by the robotic arm. The transfer station sometimes includes a transfer station housing that defines first and second opposite facing tote receptacles, each configured to receive a disk drive tote.
[0018] In some implementations, loading disk drives into the disk drive tote includes placing the disk drive onto a disk drive support in a disk drive receptacle defined by a tote body of the disk drive tote, the disk drive support being configured to support a central portion of a received disk drive to allow manipulation of the disk drive along non- central portions. In some examples, the method further includes actuating the robotic arm to selectively deliver the tested disk drive to a return tote housed by the transfer station, the robotic arm delivering the tested disk drive to a disk drive receptacle of a passed return tote when the tested disk drive successfully passed the functionality testing, and the robotic arm delivering the tested disk drive to a disk drive receptacle of a failed return tote when the tested disk drive failed the functionality testing. [0019] In some implementations, performing a functionality test on the received disk drive includes regulating the temperature of the test slot while operating the disk drive. Also, operating the received disk drive may include performing reading and writing of data to the disk drive. In some examples, the method includes one or more of circulating air over and/or through the test slot to control the temperature of the test slot, monitoring and/or regulating power delivered to the received disk drive, and performing a self-test on the test slot with a self-testing system housed by the rack to verify the functionality of the test slot. [0020] The method may include communicating with a vision system disposed on the robotic arm to aid guidance of the robotic arm while transporting the disk drive. The method may also include calibrating the robotic arm by aligning the robotic arm to a fiducial mark on the rack, test slot, transfer station, and/or disk drive tote recognized by the vision system.
[0021] The details of one or more implementations of the disclosure are set forth in the accompanying drawings and the description below. Other features, objects, and advantages will be apparent from the description and drawings, and from the claims.
DESCRIPTION OF DRAWINGS
[0022] FIG. 1 is a perspective view of a disk drive testing system.
[0023] FIG. 2 is a top view of a disk drive testing system. [0024] FIG. 3 is a perspective view of a disk drive testing system.
[0025] FIGS. 4-5 are top views disk drive testing systems having different sized racks and footprints.
[0026] FIG. 6 is a perspective view of a disk drive testing system.
[0027] FIG. 7 is a side view of a robotic am supported on vertical and horizontal actuating supports.
[0028] FIG. 8 is a perspective view of a disk drive testing system having two robotic arms.
[0029] FIG. 9 is a top view of a disk drive testing system including a robotic arm supported on a rotating support. [0030] FIG 10 is a perspective view of a transfer station.
[0031] FIG. 11 is a perspective view of a tote defining multiple disk drive receptacles.
[0032] FIG. 12 is a perspective view of a tote having cantilevered disk drive supports. [ [00003333]] FIG. 13 is a perspective view of a disk drive transporter. [0034] FIG. 14 is a perspective view of a disk drive transporter carrying a disk drive. [0035] FIG. 15 is a bottom perspective view of a disk drive transporter carrying a disk drive. [0036] FIG. 16 is a perspective view of a disk drive transporter carrying a disk drive aligned for insertion into a test slot.
[0037] FIG. 17 is a schematic view of a disk drive testing system.
[0038] FIG. 18 is a schematic view of a disk drive testing system with self-testing and functional testing capabilities.
[0039] Like reference symbols in the various drawings indicate like elements.
DETAILED DESCRIPTION
[0040] Referring to FIGS. 1-3, in some implementations, a disk drive testing system 100 includes at least one robotic arm 200 defining a first axis 205 substantially normal to a floor surface 10. The robotic arm 200 is operable to rotate through a predetermined arc about the first axis 205 and to extend radially from the first axis 205. In some examples, the robotic arm 200 is operable to rotate 360° about the first axis 205 and includes a manipulator 212 disposed at a distal end of the robotic arm 200 to handle a disk drive 500 and/or a disk drive transporter 550 carrying the disk drive 500 (see e.g. FIGS. 13-14). Multiple racks 300 are arranged around the robotic arm 200 for servicing by the robotic arm 200. Each rack 300 houses multiple test slots 310 configured to receive disk drives 500 for testing. The robotic arm 200 defines a substantially cylindrical working envelope volume 210, with the racks 300 being arranged within the working envelope 210 (see e.g. FIGS. 4 and 5) for accessibility of each test slot 310 for servicing by the robotic arm 200. The substantially cylindrical working envelope volume 210 provides a compact footprint and is generally only limited in capacity by height constraints.
[0041] The robotic arm 200 may be configured to independently service each test slot 310 to provide a continuous flow of disk drives 500 through the testing system 100. A continuous flow of individual disk drives 500 through the testing system 100 allows random start and stop times for each disk drive 500, whereas systems that require batches of disk drives 500 to be run at once must all have the same start and end times. Therefore, with continuous flow, disk drives 500 of different capacities can be run at the same time and serviced (loaded/unloaded) as needed. [0042] Isolation of the free standing robotic arm 200 from the racks 300 aids vibration control of the racks 300, which only shares the floor surface 10 (see e.g. FIG. 10) as a common support structure. In other words, the robotic arm 200 is decoupled from the racks 300 and only shares the floor surface 10 as the only means of connection between the two structures. In some instances, each rack 300 houses about 480 test slots 310. In other instances, the racks 300 vary in size and test slot capacity. [0043] In the examples illustrated in FIGS. 1-3, the racks 300 are arranged equidistantly radially away from the first axis 205 of the robotic arm 200. However, the racks 300 may be arranged in any pattern and at any distance around the robotic arm 200 within the working envelope volume 210. The racks 300 are arranged in at least a partially closed polygon about the first axis 205 of the robotic arm 200, such as an open or closed octagon, square, triangle, trapezoid, or other polygon, examples of which are shown in FIGS. 4-5. The racks 300 may be configured in different sizes and shapes to fit a particular footprint. The arrangement of racks 300 around the robotic arm 200 may be symmetric or asymmetric.
[0044] In the example shown in FIGS. 3 and 6, the robotic arm 200 is elevated by and supported on a pedestal or lift 250 on the floor surface 10. The pedestal or lift 250 increases the height of the working envelope volume 210 by allowing the robotic arm 200 to reach not only upwardly, but also downwardly to service test slots 310. The height of the working envelope volume 210 can be further increased by adding a vertical actuator to the pedestal or lift 250, configuring it as a vertically actuating support 252 that supports the robotic arm 200, as shown in FIG. 7. The vertically actuating support 252 is operable to move the robotic arm 200 vertically with respect to the floor surface 10. In some examples, the vertically actuating support 252 is configured as a vertical track supporting the robotic arm 200 and includes an actuator (e.g. driven ball-screw or belt) to move the robotic arm 200 vertically along the track. A horizontally actuating support 254 (e.g. a linear actuator), also shown in FIG. 7, may be used to support the robotic arm 200 and be operable to move the robotic arm 200 horizontally along the floor surface 10. In the example shown, the combination of the vertically and horizontally actuating supports 252, 254 supporting the robotic arm 210 provides an enlarged working envelope volume 210 having an elongated substantially elliptical profile from a top view. [0045] In the example illustrated in FIG. 8, the disk drive testing system 100 includes two robotic arms 200A and 200B, both rotating about the first axis 205. One robotic arm 200A is supported on the floor surface 10, while the other robotic arm 200B is suspended from a ceiling structure 12. Similarly, in the example shown in FIG. 7, additional robotic arms 200 may be operational on the vertically actuating support 252. [0046] In the example illustrated in FIG. 9, the disk drive testing system 100 includes a rotatable table 260 that supports the robotic arm 200. The rotatable table 260 is operable to rotate the robotic arm 200 about a second axis 262 substantially normal to the floor surface 10, thereby providing a larger working envelope volume 210 than a robotic arm 200 rotating only about the first axis 205.
[0047] Referring back to FIGS. 7-8, in some implementations, the disk drive testing system 100 includes a vision system 270 disposed on the robotic arm 200. The vision system 270 is configured to aid guidance of the robotic arm 200 while transporting a disk drive 500. In particular, the vision system 270 aids alignment of the disk drive transporter 550, held by the manipulator 212, for insertion in the test slot 310 and/or tote 450. The vision system 270 may calibrate the robotic arm 200 by aligning the robotic arm 200 to a fiducial mark 314 on the rack 300, preferably the test slot 310. In some examples, the fiducial mark 314 is an "L" shaped mark located near a corner of an opening 312 of the test slot 310 on the rack 300. The robotic arm 200 aligns itself with the fiducial mark 314 before accessing the test slot 310 (e.g. to either pick-up or place a disk drive transporter 550, which may be carrying a disk drive 500). The continual robotic arm alignments enhances the accuracy and reputability of the robotic arm 200, while minimizing misplacement of a disk drive transporter 550 carrying a disk drive 500 (which may result in damage to the disk drive 500 and/or the disk drive testing system 100).
[0048] In some implementations, the disk drive testing system 100 includes a transfer station 400, as shown in FIGS. 1-3 and 10. While in other implementations, the disk drive testing system 100 include may include a conveyor belt (not shown) or an operator that feeds disk drives 500 to the robotic arm 200. In examples including a transfer station 400, the robotic arm 200 independently services each test slot 310 by transferring a disk drive 500 between the transfer station 400 and the test slot 310. The transfer station 400 includes multiple tote receptacles 430 configured to each receive a tote 450. The tote 450 defines disk drive receptacles 454 that house disk drives 500 for testing and/or storage. In each disk drive receptacle 454, the housed disk drive 500 is supported by a disk drive support 456. The robotic arm 200 is configured to remove a disk drive transporter 550 from one of the test slots 310 with the manipulator 212, then pick up a disk drive 500 from one the disk drive receptacles 454 at the transfer station 400 with the disk drive transporter 550, and then return the disk drive transporter 550, with a disk drive 500 therein, to the test slot 310 for testing of the disk drive 500. After testing, the robotic arm 200 retrieves the tested disk drive 500 from the test slot 310, by removing the disk drive transporter 550 carrying the tested disk drive 500 from the test slot 310 (i.e., with the manipulator 212), carrying the tested disk drive 500 in the disk drive transporter 550 to the transfer station 400, and manipulating the disk drive transporter 550 to return the tested disk drive 500 to one of the disk drive receptacles 454 at the transfer station 400. In implementations that include a vision system 270 on the robotic arm 200, the fiducial mark 314 may be located adjacent one or more disk drive receptacles 454 to aid guidance of the robotic arm in retrieving or depositing disk drives 500 at the transfer station 400.
[0049] The transfer station 400, in some examples, includes a station housing 410 that defines a longitudinal axis 415. One or more tote receivers 420 are rotatably mounted in the station housing 410, for example on a spindle 412 extending along the longitudinal axis 415. Each tote receiver 420 may rotate on an individual respective spindle 412 or on a common spindle 412. Each tote receiver 420 defines first and second opposite facing tote receptacles 430A and 430B. In the example shown, the transfer station 400 includes three tote receivers 420 stacked on the spindle 412. Each tote receiver 420 is independently rotatable from the other and may rotate a received disk drive tote 450 between a servicing position (e.g. accessible by an operator) and a testing position accessible by the robotic arm 200. In the example shown, each tote receiver 420 is rotatable between a first position (e.g. servicing position) and a second position (testing position). While in the first position, an operator is provided access to the first tote receptacle 430A, and the robotic arm 200 is provided access on the opposite side to the second tote receptacle 430B. While in the second position the robotic arm 200 is provided access the first tote receptacle 430A, and an operator is provided access on the opposite side to the second tote receptacles 430B. As a result, an operator may service the transfer station 400 by loading/unloading totes 450 into tote receptacles 430 on one side of the transfer station 400, while the robotic arm 200 has access to totes 450 housed in tote receptacles 430 on an opposite side of the transfer station 400 for loading/unloading disk drives 500.
[0050] The transfer station 400 provides a service point for delivering and retrieving disk drives 500 to and from the disk drive testing system 100. The totes 450 allow an operator to deliver and retrieve a batch of disk drives 500 to and from the transfer station 400. In the example shown in FIG. 10, each tote 450 that is accessible from respective tote receivers 420 in the second position may be designated as source totes 450 for supplying disk drives 500 for testing or as destination totes 450 for receiving tested disk drives 500. Destination totes 450 may be classified as "passed return totes" or "failed return totes" for receiving respective disk drives 500 that have either passed or failed a functionality test, respectively.
[0051 ] A housing door 416 is pivotally or slidably attached to the transfer station housing 410 and configured to provide operator access to one or more tote receptacles 430. An operator opens the housing door 416 associated with a particular tote receiver 420 to load/unload a tote 450 into the respective tote receptacle 430. The transfer station 400 may be configured to hold the respective tote receiver 420 stationary while the associated housing door 416 is open.
[0052] hi some examples, the transfer station 400 includes a station indicator 418 which provides visual, audible, or other recognizable indications of one or more states of the transfer station 400. In one example, the station indicator 418 includes lights (e.g. LED's) that indicate when one or more tote receivers 420 need servicing (e.g. to load/unload totes 450 from particular tote receives 420). In another example, the station indicator 418 includes one or more audio devices to provide one or more audible signals (e.g. chirps, clacks, etc.) to signal an operator to service the transfer station 400. The station indicator 418 may be disposed along the longitudinal axis 415, as shown, or on some other portion of the station housing 410. [0053] In the example illustrated in FIG. 11 , a tote 450A includes a tote body
452A that defines multiple disk drive receptacles 454A. Each disk drive receptacle 454A is configured to house a disk drive 500. In this example, each disk drive receptacle 454A includes a disk drive support 456A configured to support a central portion 502 of the 5 received disk drive 500 to allow manipulation of the disk drive 500 along non-central portions. To remove a housed disk drive 500 from the disk drive receptacle 454A, the disk drive transporter 550 is positioned below the disk drive 500 (e.g. by the robotic arm 200) in the disk drive receptacle 454A and elevated to lift the disk drive 500 off of the disk drive support 456A. The disk drive transporter 550 is then removed from the disk o drive receptacle 454A while carrying the disk drive 500 for delivery to a destination target, such as a test slot 310.
[0054] In the example illustrated in FIG. 12, a tote 450B includes a tote body
452B that defines column cavities 453B divided into disk drive receptacles 454B by multiple disk drive supports 456B. The disk drive supports 456B are cantilevered off a 5 rear wall 457B of the column cavity 453B. The disk drive supports 456B are configured to support a central portion 502 of the received disk drive 500 to allow manipulation of the disk drive 500 along non-central portions. The cantilevered disk drive supports 456B allow retrieval of disk drives 500 from the tote 450B by inserting a disk drive transporter 550 (e.g. as shown in FIG. 13) into an empty disk drive receptacle 454B just below and lifting the disk drive 500 off the disk drive support 456B for removal from the disk drive receptacle 454B. The same steps are repeated in reverse for depositing the disk drive 500 in the tote 450B. As shown, the bottom disk drive receptacle 454B in each column cavity 453B is left empty to facilitate removal of a disk drive 500 housed in the disk drive receptacle 454B above it. Consequently, the disk drives 500 must be loaded /unloaded in a sequential order in a particular column; however a greater storage density is achieved than the tote solution shown in FIG. 11.
[0055] Referring to FIGS. 13-16, in some examples, the test slot 310 is configured to receive the disk drive transporter 550. The disk drive transporter 550 is configured to receive the disk drive 500 and be handled by the robotic arm 200. In use, one of the disk drive transporters 550 is removed from one of the test slots 310 with the robot 200 (e.g., by grabbing, or otherwise engaging, the indentation 552 of the transporter 550 with the manipulator 212 of the robot 200). As illustrated in FIG. 13, the disk drive transporter 550 includes a frame 560 defining a substantially U-shaped opening 561 formed by sidewalls 562, 564 and a base plate 566 that collectively allow the frame 560 to fit around the disk drive support 456 in the tote 450 so that the disk drive transporter 550 can be moved (e.g., via the robotic arm 200) into a position beneath one of the disk drives 500 housed in one of the disk drive receptacles 454 of the tote 450. The disk drive transporter 550 can then be raised (e.g., by the robotic arm 310) into a position engaging the disk drive 600 for removal off of the disk drive support 456 in the tote 450. [0056] With the disk drive 500 in place within the frame 560 of the disk drive transporter 550, the disk drive transporter 550 and the disk drive 500 together can be moved by the robotic arm 200 for placement within one of the test slots 310, as shown in FIG. 16. The manipulator 212 is also configured to initiate actuation of a clamping mechanism 570 disposed in the disk drive transporter 550. This allows actuation of the clamping mechanism 570 before the transporter 550 is moved from the tote 450 to the test slot 310 to inhibit movement of the disk drive 500 relative to the disk drive transporter 550 during the move. Prior to insertion in the test slot 310, the manipulator 212 can again actuate the clamping mechanism 570 to release the disk drive 500 within the frame 560. This allows for insertion of the disk drive transporter 550 into one of the test slots 310, until the disk drive 500 is in a test position with a disk drive connector 510 engaged with a test slot connector (not shown). The clamping mechanism 570 may also be configured to engage the test slot 310, once received therein, to inhibit movement of the disk drive transporter 550 relative to the test slot 310. In such implementations, once the disk drive 500 is in the test position, the clamping mechanism 570 is engaged again (e.g., by the manipulator 212) to inhibit movement of the disk drive transporter 550 relative to the test slot 310. The clamping of the transporter 550 in this manner can help to reduce vibrations during testing. In some examples, after insertion, the disk drive transporter 550 and disk drive 500 carried therein are both clamped or secured in combination or individually within the test slot 310. A detailed description of the clamping mechanism 570 and other details and features combinable with those described herein may be found in the following U.S. patent application filed concurrently herewith, entitled "DISK DRIVE TRANSPORT, CLAMPING AND TESTING", with attorney docket number: 18523-067001, inventors: Brian Merrow et al., and having assigned serial number 1 1/959,133.
[0057] The disk drives 500 can be sensitive to vibrations. Fitting multiple disk drives 500 in a single test rack 310 and running the disk drives 500 (e.g., during testing), as well as the insertion and removal of the disk drive transporters 550, each optionally carrying a disk drive 500, from the various test slots 310 in the test rack 300 can be sources of undesirable vibration. In some cases, for example, one of the disk drives 500 may be operating under test within one of the test slots 310, while others are being removed and inserted into adjacent test slots 310 in the same test rack 300. Clamping the disk drive transporter 550 to the test slot 310 after the disk drive transporter 550 is fully inserted into the test slot 310, as described above, can help to reduce or limit vibrations by limiting the contact and scraping between the disk drive transporters 550 and the test slots 310 during insertion and removal of the disk drive transporters 550. [0058] Referring to FIG. 17, in some implementations, the disk drive testing system 100 includes at least one computer 320 in communication with the test slots 310. The computer 320 may be configured to provide inventory control of the disk drives 500 and/or an automation interface to control the disk drive testing system 100. A power system 330 supplies power to the disk drive testing system 100. The power system 330 may monitor and/or regulate power to the received disk drive 500 in the test slot 310. A temperature control system 340 controls the temperature of each test slot 310. The temperature control system 340 may be a an air mover 342 (e.g. a fan) operable to circulate air over and/or through the test slot 310. In some examples, the air mover 342 is located exteriorly of the test slot 310. A vibration control system 350, such as active or passive dampening, controls the vibration of each test slot 310. In some examples, the vibration control system 350 includes a passive dampening system where components of the test slot 310 are connected via grommet isolators (e.g. thermoplastic vinyl) and/or elastomeric mounts (e.g. urethane elastomer). In some examples, the vibration control system 350 includes an active control system with a spring, damper, and control loop that controls the vibrations in the rack 300 and/or test slot 310. A data interface 360 is in communication with each test slot 310. The data interface 360 is configured to communicate with a disk drive 500 received by the test slot 310. [0059] In the example illustrated in FIG. 18, each rack 300 includes at least one self-testing system 600 in communication with at least one test slot 310. The self-testing system 600 tests whether the disk drive testing system 100 and/or specific sub-systems, such as the test slot 310, are functioning properly. The self-testing system 600 includes a cluster controller 610, a connection interface circuit 620 in electrical communication with a disk drive 500 received in the test slot 310, and a block interface circuit 630 in electrical communication with the connection interface circuit 620. The cluster controller 610 may be configured to run one or more testing programs, such as multiple self-tests on test slots 310 and/or functionality tests on disk drives 500. The connection interface circuit 620 and the block interface circuit 630 may be configured to self-test. In some examples, the self-testing system 600 includes a self-test circuit 660 configured to execute and control a self-testing routine on one or more components of the disk drive testing system 100. For example, the self-test circuit 660 may be configured to perform a 'disk drive' type and/or 'test slot only' type of self-test on one or more components of the disk drive testing system 100. The cluster controller 610 may communicate with the self-test circuit 640 via Ethernet (e.g. Gigabit Ethernet), which may communicate with the block interface circuit 630 and onto the connection interface circuit 620 and disk drive 500 via universal asynchronous receiver/transmitter (UART) serial links. A UART is usually an individual (or part of an) integrated circuit used for serial communications over a computer or peripheral device serial port. The block interface circuit 630 is configured to control power and temperature of the test slot 310, and may control multiple test slots 310 and/or disk drives 500.
[0060] Each rack 300, in some examples, includes at least one functional testing system 650 in communication with at least one test slot 310. The functional testing system 650 tests whether a received disk drive 500, held and/or supported in the test slot 310 by the disk drive transporter 550, is functioning properly. A functionality test may include testing the amount of power received by the disk drive 500, the operating temperature, the ability to read and write data, and the ability to read and write data at different temperatures (e.g. read while hot and write while cold, or vice versa). The functionality test may test every memory sector of the disk drive 500 or only random samplings. The functionality test may test an operating temperature of the disk drive 500 and also the data integrity of communications with the disk drive 500. The functional testing system 650 includes a cluster controller 610 and at least one functional interface circuit 660 in electrical communication with the cluster controller 610. A connection interface circuit 620 is in electrical communication with a disk drive 500 received in the test slot 310 and the functional interface circuit 660. The functional interface circuit 660 is configured to communicate a functional test routine to the disk drive 500. The functional testing system 650 may include a communication switch 670 (e.g. Gigabit Ethernet) to provide electrical communication between the cluster controller 610 and the one or more functional interface circuits 660. Preferably, the computer 320, communication switch 670, cluster controller 610, and functional interface circuit 660 communicate on an Ethernet network. However, other forms of communication may be used. The functional interface circuit 660 may communicate to the connection interface circuit 620 via Parallel AT Attachment (a hard disk interface also known as IDE, ATA, ATAPI, UDMA and PATA), SATA, or SAS (Serial Attached SCSI). [0061] A method of performing disk drive testing includes loading multiple disk drives 500 into a transfer station 400 (e.g. as by loading the disk drives 500 into disk drive receptacles 454 defined by a disk drive tote 450, and loading the disk drive tote 450 into a tote receptacle 430 defined by the transfer station 400). The method includes actuating a robotic arm 200 to retrieve a disk drive transporter 550 from a test slot 310 housed in a rack 300, and actuating the robotic arm 200 to retrieve one of the disk drives 500 from the transfer station 400 and carry the disk drive 500 in the disk drive transporter 550. The robotic arm 200 is operable to rotate through a predetermined arc about, and to extend radially from, a first axis 205 defined by the robotic arm 200 substantially normal to a floor surface 10. The method includes actuating the robotic arm 200 to deliver the disk drive transporter 550 carrying the disk drive 500 to the test slot 310, and performing a functionality test on the disk drive 500 housed by the received disk drive transporter 550 and the test slot 310. The method then includes actuating the robotic arm 200 to retrieve the disk drive transporter 550 carrying the tested disk drive 500 from the test slot 310 and deliver the tested disk drive 500 back to the transfer station 400. In some implementations, the rack 300 and two or more associated test slots 310 are configured to move disk drives 500 internally from one test slot 310 to another test slot 310, in case the test slots 310 are provisioned for different kinds of tests.
[0062] In some examples, the method includes actuating the robotic arm 200 to deposit the disk drive transporter 550 in the test slot 310 after depositing the tested disk drive 500 in a disk drive receptacle 454 of the disk drive tote 450, or repeating the method by retrieving another disk drive 500 for testing from another disk drive receptacle 454 of the disk drive tote 450. In some examples, delivering the disk drive transporter 550 to the test slot 310 includes inserting the disk drive transporter 550 carrying the disk drive 500 into the test slot 310 in the rack 300, establishing an electric connection between the disk drive 500 and the rack 300.
[0063] hi some implementations, the method includes performing a functionality test on the received disk drive 500 that includes regulating the temperature of the test slot 310 while operating the disk drive 500. Operation of the received disk drive 500 includes performing reading and writing of data to the disk drive 500. The method may also include circulating air over and/or through the test slot 310 to control the temperature of the test slot 310, and monitoring and/or regulating power delivered to the disk drive 500. [0064] In some examples, the method includes performing a 'disk drive' type and/or 'test slot only' type of self-test on the test slot 320 with the self-testing system 600 housed by the rack 300 to verify the functionality of the test slot 310. The 'disk drive' type self-test tests the functionality of the disk drive testing system with a received disk drive 500, held and/or supported in the test slot 310 by the disk drive transporter 550. The 'test slot only' type of self-test tests the functionality of the test slot 310 while empty. [0065] In some examples, the method includes communicating with the vision system 270 disposed on the robotic arm 200 to aid guidance of the robotic arm 200 while transporting the disk drive 500, which may be carried by a disk drive transporter 550. The method includes calibrating the robotic arm 200 by aligning the robotic arm 200 to a fiducial mark 314 on the rack 300, test slot 310, transfer station 400 and/or tote 450 recognized by the vision system 270. [0066] Other details and features combinable with those described herein may be found in the following U.S. patent applications filed concurrently herewith, entitled "DISK DRIVE TESTING", with attorney docket number: 18523-062001, inventors: Edward Garcia et al., and having assigned serial number 11/958,788. [0067] A number of implementations have been described. Nevertheless, it will be understood that various modifications may be made without departing from the spirit and scope of the disclosure. Accordingly, other implementations are within the scope of the following claims.

Claims

WHAT IS CLAIMED IS:
1. A disk drive testing system ( 100) comprising: at least one robotic arm (200) defining a first axis (205) substantially normal to a floor surface (10), the robotic arm (200) operable to rotate through a predetermined arc about, and extend radially from, the first axis (205); multiple racks (300) arranged around the robotic arm (200) for servicing by the robotic arm (200); multiple test slots (310) housed by each rack (300), each test slot (310) being configured to receive a disk drive transporter (550) configured to carry a disk drive (500) for testing; and a transfer station (400) arranged for servicing by the robotic arm (200), the transfer station (400) comprising multiple tote receptacles (430) that are each configured to receive a disk drive tote (450).
2. The disk drive testing system (100) of claim 1, wherein the robotic arm (200) comprises a manipulator (212) configured to engage the disk drive transporter (550) of one of the test slots (310), the robotic arm (200) being operable to carrying a disk drive (500) in the disk drive transporter (550) to the test slot (310) for testing.
3. The disk drive testing system ( 100) of any of the preceding claims, wherein the robotic arm (200) defines a substantially cylindrical working envelope volume (210), the racks (300) and the transfer station (400) being arranged within the working envelope volume (210) for servicing by the robotic arm (200), and preferably the racks (300) and the transfer station (400) are arranged in at least a partially closed polygon about the first axis (205) of the robotic arm (200).
4. The disk drive testing system (100) of any of the preceding claims, wherein the transfer station (400) is operable to rotate about a longitudinal axis (415) defined by the transfer station (400) substantially normal to a floor surface (10).
5. The disk drive testing system ( 100) of any of the preceding claims, wherein the transfer station (400) comprises a transfer station housing (410) that defines first and second opposite facing tote receptacles (430, 430A, 430B).
6. The disk drive testing system (100) of any of the preceding claims, wherein the transfer station (400) comprises: a station housing (410) defining a longitudinal axis (415); and multiple tote receivers (420) rotatably mounted to rotate about the longitudinal axis (415), each tote receiver (420) being independently rotatable of the other and defining first and second opposite facing tote receptacles (430, 430A, 430B).
7. The disk drive testing system (100) of any of the preceding claims, wherein the robotic arm (200) independently services each test slot (310) by transferring a disk drive (500) between a received disk drive tote (450) of the transfer station (400) and the test slot (310).
8. The disk drive testing system (100) of any of the preceding claims, wherein the disk drive tote (450) comprises a tote body (452A, 452B) defining multiple disk drive receptacles (454A, 454B) configured to each house a disk drive (500).
9. The disk drive testing system (100) of claim 8, wherein each disk drive receptacle (454A, 454B) defines a disk drive support (456A, 456B) configured to support a central portion (502) of a received disk drive (500) to allow manipulation of the disk drive (500) along non-central portions.
10. The disk drive testing system (100) of any of the preceding claims, wherein the disk drive tote (450)comprises: a tote body (452B) defining multiple column cavities (453B); and multiple cantilevered disk drive supports (456B) disposed in each column cavity (453B), dividing the column cavity (453B) into multiple disk drive receptacles (454B) that are each configured to receive a disk drive (500); wherein each disk drive support (456B) is configured to support a central portion (502) of a received disk drive (500) to allow manipulation of the disk drive (500) along non-central portions.
11. The disk drive testing system ( 100) of any of the preceding claims, further comprising: at least one computer (320) in communication with the test slots (300); a power system (330) for supplying power to the disk drive testing system (100); a temperature control system (340) for controlling the temperature of each test slot (310); a vibration control system (350) for controlling rack vibrations; and a data interface (360) in communication with each test slot (310), the data interface (360) configured to communicate with a disk drive (500) in the disk drive transporter (550) received by the test slot (310).
12. The disk drive testing system (100) of claim 11, wherein the power system (330) is configured to monitor and/or regulate power to the received disk drive (500) in the test slot (310).
13. The disk drive testing system (100) of claim 11 or claim 12, wherein the temperature control system (340) comprises an air mover (342) operable to circulate air through the test slot (310).
14. The disk drive testing system (100) of any of the preceding claims, wherein each rack (300) comprises at least one self-testing system (600) in communication with at least one test slot (310), the self-testing system (600) comprising: a cluster controller (610); a connection interface circuit (620) in electrical communication with a disk drive (500) received in the test slot (310); and a block interface circuit (630) in electrical communication with the connection interface circuit (620), the block interface circuit (630) configured to control power and temperature of the test slot (310); wherein the connection interface circuit (620) and the block interface circuit (630) are configured to test the functionality of at least one component of the disk drive testing system (100).
15. The disk drive testing system (100) of any of the preceding claims, wherein each rack (300) comprises at least one functional testing system (650) in communication with at least one test slot (310), the functional testing system (650) comprising: a cluster controller (610); at least one functional interface circuit (660) in electrical communication with the cluster controller (610); and a connection interface circuit (620) in electrical communication with a disk drive (500) received in the test slot (310) and the at least one functional interface circuit (660), wherein the at least one functional interface circuit (660) is configured to communicate a functional test routine to the disk drive (500).
16. The disk drive testing system (100) of claim 15, wherein the functional testing system (600) further comprises a communication switch (670), preferably and Ethernet switch, for providing electrical communication between the cluster controller (610) and the at least one functional interface circuit (660).
17. The disk drive testing system (100) of any of the preceding claims, further comprising a vision system (270) disposed on the robotic arm (200), the vision system (270) aiding guidance of the robotic arm (200) while transporting a disk drive (500) and calibration of the robotic arm (200) by aligning the robotic arm (200) to a fiducial mark (314), preferably on one of the racks (310) and/or the transfer station (400).
18. A disk drive tote (450, 450A, 450B) comprising a tote body (542 A, 452B) defining multiple disk drive receptacles (454A, 454B) configured to each house a disk drive (500), each disk drive receptacle (454A, 454B) having a disk drive support (456A, 456B) configured to support a central portion (502) of a received disk drive (500) to allow manipulation of the disk drive (500) along non-central portions.
19. A disk drive tote (450, 450B) comprising: a tote body (452B) defining multiple column cavities (453B); and multiple cantilevered disk drive supports (456B) disposed in each column cavity (453B), dividing the column cavity (453B) into multiple disk drive receptacles (454B) that are each configured to receive a disk drive (500); wherein each disk drive support (456B) is configured to support a central portion
(502) of a received disk drive (500) to allow manipulation of the disk drive (500) along non-central portions.
20. A method of performing disk drive testing comprising: loading multiple disk drives (500) into disk drive receptacles (454A, 454B) defined by a disk drive tote (450, 450A, 450B); loading the disk drive tote (450, 450A, 450B) into a tote receptacle (430) defined by a transfer station (400); actuating a robotic arm (200) to retrieve a disk drive transporter (550) from a test slot (310) housed in a rack (300); actuating the robotic arm (200) to retrieve one of the disk drives (500) from the transfer station (400) and carry the disk drive (500) in the disk drive transporter (550), the robotic arm (200) operable to rotate through a predetermined arc about and to extend radially from a first axis (205) defined by the robotic arm (200) substantially normal to a floor surface (10); actuating the robotic arm (200) to deliver the disk drive transporter (550) carrying a disk drive (500) to the test slot (310); performing a functionality test on the disk drive (500) housed by the received disk drive transporter (550) and the test slot (310); and actuating the robotic arm (200) to retrieve the disk drive transporter (550) carrying the tested disk drive (500) from the test slot (310) and deliver the tested disk drive (500) back to the transfer station (400).
21. The method of claim 20, further comprising actuating the robotic arm (200) to deposit the empty disk drive transporter (550) in the test slot (310).
22. The method of claim 20 or claim 21 , wherein delivering the disk drive transporter (550) carrying the disk drive (500) to the test slot (310) comprises inserting the disk drive transporter (550) into the test slot (310) in the rack (300), establishing an electric connection between the disk drive (500) and the rack (300).
23. The method of any of claims 20-22, further comprising rotating the received disk drive tote (450, 450A, 450B) in the transfer station (400) between a servicing position and a testing position accessible by the robotic arm (200).
24. The method of any of claims 20-23, wherein loading disk drives (500) into the disk drive tote (450, 450A, 450B) comprises placing the disk drive (500) onto a disk drive support (456A, 456B) in a disk drive receptacle (454A, 454B) defined by a tote body (452A, 452B) of the disk drive tote (450, 450A, 450B), the disk drive support
(456A, 456B) being configured to support a central portion (502) of a received disk drive (500) to allow manipulation of the disk drive (500) along non-central portions.
25. The method of any of claims 20-24, further comprising actuating the robotic aπn (200) to selectively deliver the tested disk drive (500) to a return tote (450, 450A, 450B) housed by the transfer station (400), the robotic arm (200) delivering the tested disk drive (500) to a disk drive receptacle (454A, 454B) of a passed return tote (450, 450A, 450B) when the tested disk drive (500) successfully passed the functionality testing, and the robotic arm (200) delivering the tested disk drive (500) to a disk drive receptacle (454A, 454B) of a failed return tote (430, 430A, 430B) when the tested disk (500) drive failed the functionality testing.
26. The method of any of claims 20-25, wherein performing a functionality test on the received disk drive (500) comprises regulating the temperature of the test slot (310) while operating the disk drive (500), in particular, performing reading and writing of data to the disk drive (500).
27. The method of any of claims 20-26, further comprising circulating air through the test slot (310) to control the temperature of the test slot (310).
28. The method of any of claims 20-27, further comprising monitoring and/or regulating power delivered to the disk drive (500) received in the test slot (310).
29. The method of any of claims 20-28, further comprising performing a self-test on the test slot (310) with a self- testing system (600) housed by the rack (300) to verify the functionality of the test slot (310).
30. The method of any of claims 20-29, further comprising communicating with a vision system (270) disposed on the robotic arm (200) to aid guidance of the robotic arm (200) while transporting the disk drive (500) and/or for calibrating the robotic arm (200) by aligning the robotic arm (200) to a fiducial mark (314) on the rack (300).
PCT/US2008/086809 2007-12-18 2008-12-15 Disk drive testing WO2009079448A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010539675A JP2011507146A (en) 2007-12-18 2008-12-15 Disk drive test
CN2008801261923A CN101939788A (en) 2007-12-18 2008-12-15 Disk drive testing

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/958,817 2007-12-18
US11/958,817 US20090153993A1 (en) 2007-12-18 2007-12-18 Disk Drive Testing

Publications (2)

Publication Number Publication Date
WO2009079448A2 true WO2009079448A2 (en) 2009-06-25
WO2009079448A3 WO2009079448A3 (en) 2009-11-05

Family

ID=40445429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/086809 WO2009079448A2 (en) 2007-12-18 2008-12-15 Disk drive testing

Country Status (5)

Country Link
US (1) US20090153993A1 (en)
JP (1) JP2011507146A (en)
KR (1) KR20100112569A (en)
CN (1) CN101939788A (en)
WO (1) WO2009079448A2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8507235B2 (en) 2009-06-17 2013-08-13 Danisco Us Inc. Isoprene production using the DXP and MVA pathway
US8685702B2 (en) 2010-12-22 2014-04-01 Danisco Us Inc. Compositions and methods for improved isoprene production using two types of ISPG enzymes
US8691541B2 (en) 2010-12-22 2014-04-08 Danisco Us Inc. Biological production of pentose sugars using recombinant cells

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7996174B2 (en) * 2007-12-18 2011-08-09 Teradyne, Inc. Disk drive testing
US8549912B2 (en) 2007-12-18 2013-10-08 Teradyne, Inc. Disk drive transport, clamping and testing
US7945424B2 (en) 2008-04-17 2011-05-17 Teradyne, Inc. Disk drive emulator and method of use thereof
US8305751B2 (en) * 2008-04-17 2012-11-06 Teradyne, Inc. Vibration isolation within disk drive testing systems
US7848106B2 (en) 2008-04-17 2010-12-07 Teradyne, Inc. Temperature control within disk drive testing systems
US8041449B2 (en) * 2008-04-17 2011-10-18 Teradyne, Inc. Bulk feeding disk drives to disk drive testing systems
US8160739B2 (en) 2008-04-17 2012-04-17 Teradyne, Inc. Transferring storage devices within storage device testing systems
US8095234B2 (en) 2008-04-17 2012-01-10 Teradyne, Inc. Transferring disk drives within disk drive testing systems
US20090262455A1 (en) * 2008-04-17 2009-10-22 Teradyne, Inc. Temperature Control Within Disk Drive Testing Systems
US8117480B2 (en) 2008-04-17 2012-02-14 Teradyne, Inc. Dependent temperature control within disk drive testing systems
US8238099B2 (en) * 2008-04-17 2012-08-07 Teradyne, Inc. Enclosed operating area for disk drive testing systems
US8102173B2 (en) 2008-04-17 2012-01-24 Teradyne, Inc. Thermal control system for test slot of test rack for disk drive testing system with thermoelectric device and a cooling conduit
US8086343B2 (en) 2008-06-03 2011-12-27 Teradyne, Inc. Processing storage devices
US8466699B2 (en) 2009-07-15 2013-06-18 Teradyne, Inc. Heating storage devices in a testing system
US7920380B2 (en) 2009-07-15 2011-04-05 Teradyne, Inc. Test slot cooling system for a storage device testing system
US8687356B2 (en) 2010-02-02 2014-04-01 Teradyne, Inc. Storage device testing system cooling
US7995349B2 (en) 2009-07-15 2011-08-09 Teradyne, Inc. Storage device temperature sensing
US8628239B2 (en) 2009-07-15 2014-01-14 Teradyne, Inc. Storage device temperature sensing
US8116079B2 (en) 2009-07-15 2012-02-14 Teradyne, Inc. Storage device testing system cooling
US8547123B2 (en) 2009-07-15 2013-10-01 Teradyne, Inc. Storage device testing system with a conductive heating assembly
US9779780B2 (en) 2010-06-17 2017-10-03 Teradyne, Inc. Damping vibrations within storage device testing systems
WO2012002934A1 (en) * 2010-06-29 2012-01-05 Teradyne, Inc. Removing bays of a test system
US8687349B2 (en) * 2010-07-21 2014-04-01 Teradyne, Inc. Bulk transfer of storage devices using manual loading
US9001456B2 (en) 2010-08-31 2015-04-07 Teradyne, Inc. Engaging test slots
US20140262149A1 (en) * 2013-03-15 2014-09-18 Teradyne, Inc. Air circulation in a system
US9459312B2 (en) 2013-04-10 2016-10-04 Teradyne, Inc. Electronic assembly test system
US10377509B2 (en) * 2014-09-19 2019-08-13 Raytheon Company Dynamic testing of attitude determination and control systems, reaction wheel and torque rods using automotive robotic techniques
DE102016124721B4 (en) * 2016-12-16 2019-08-29 KD Maennel GmbH Modular cryogenic storage system for storing samples, in particular for the cryogenic storage of biological samples
US10725091B2 (en) 2017-08-28 2020-07-28 Teradyne, Inc. Automated test system having multiple stages
US11226390B2 (en) 2017-08-28 2022-01-18 Teradyne, Inc. Calibration process for an automated test system
US10845410B2 (en) 2017-08-28 2020-11-24 Teradyne, Inc. Automated test system having orthogonal robots
US10948534B2 (en) 2017-08-28 2021-03-16 Teradyne, Inc. Automated test system employing robotics
US10983145B2 (en) 2018-04-24 2021-04-20 Teradyne, Inc. System for testing devices inside of carriers
US11105847B1 (en) * 2018-06-18 2021-08-31 Seagate Technology Llc Data storage component test socket opener
US10775408B2 (en) 2018-08-20 2020-09-15 Teradyne, Inc. System for testing devices inside of carriers
US11867749B2 (en) 2020-10-22 2024-01-09 Teradyne, Inc. Vision system for an automated test system
US11899042B2 (en) 2020-10-22 2024-02-13 Teradyne, Inc. Automated test system
US11754622B2 (en) 2020-10-22 2023-09-12 Teradyne, Inc. Thermal control system for an automated test system
US11754596B2 (en) 2020-10-22 2023-09-12 Teradyne, Inc. Test site configuration in an automated test system

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426581A (en) * 1994-08-15 1995-06-20 International Business Machines Corporation Using a bar code scanner to calibrate positioning of a robotic system
GB2312984A (en) * 1996-05-11 1997-11-12 Samsung Electronics Co Ltd System for testing hard disk drives
US5851143A (en) * 1996-05-10 1998-12-22 Thermal Industries Disk drive test chamber
US5999356A (en) * 1997-08-29 1999-12-07 International Business Machines Corporation Data cartridge library with rotating storage stacks
EP1045301A2 (en) * 1999-04-13 2000-10-18 Hewlett-Packard Company Guidance system and method for an automated media exchanger
US20020161971A1 (en) * 2001-04-26 2002-10-31 International Business Machines Corporation Library of hard disk drives with transparent emulating interface
WO2003067385A2 (en) * 2002-02-05 2003-08-14 Asaca Corporation Data storage system
US20040236465A1 (en) * 2000-11-16 2004-11-25 Butka David John Storage cell mounting and alignment for cartridge system libraries
US20050010836A1 (en) * 2003-05-15 2005-01-13 Samsung Electronics Co., Ltd. Apparatus for testing hard disk drive
US20050219809A1 (en) * 2002-07-05 2005-10-06 Xyratex Technology Limited Mounting device for a disk drive unit, releasable fastener and method of testing a disk drive unit
EP1760722A1 (en) * 2005-09-02 2007-03-07 Hitachi, Ltd. Disk array apparatus
JP2007220184A (en) * 2006-02-15 2007-08-30 Hitachi Global Storage Technologies Netherlands Bv Fixing tool of recording disk drive, manufacturing method of recording disk drive, and testing apparatus of recording disk drive
US7304855B1 (en) * 2003-03-03 2007-12-04 Storage Technology Corporation Canister-based storage system

Family Cites Families (97)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US557186A (en) * 1896-03-31 Device for repairing spuds of sanitary closet-bowls
US2635524A (en) * 1949-04-04 1953-04-21 Ralph D Jenkins Air circulating or ventilating unit
US2631775A (en) * 1949-08-23 1953-03-17 Price Electric Corp Packaged electrically operated ventilating fan
US3120166A (en) * 1961-11-16 1964-02-04 Kooltronic Fan Company Cooling duct for cabinets
US3364838A (en) * 1966-02-01 1968-01-23 Gen Electric Cabinet for mounting, enclosing and cooling electrical apparatus
US4147299A (en) * 1977-09-26 1979-04-03 International Business Machines Corporation Air flow system for a disk file
US4379259A (en) * 1980-03-12 1983-04-05 National Semiconductor Corporation Process of performing burn-in and parallel functional testing of integrated circuit memories in an environmental chamber
US4495545A (en) * 1983-03-21 1985-01-22 Northern Telecom Limited Enclosure for electrical and electronic equipment with temperature equalization and control
US4654732A (en) * 1984-05-11 1987-03-31 Mark Mesher Transport apparatus for loading microdisks into and retrieving them from a disk drive and thereafter sorting them
JPS61267398A (en) * 1985-05-22 1986-11-26 株式会社日立製作所 Cooling construction of electronic apparatus
US4648007A (en) * 1985-10-28 1987-03-03 Gte Communications Systems Corporation Cooling module for electronic equipment
EP0247408B1 (en) * 1986-05-20 1991-07-03 Erwin Jenkner Distribution and sorting device for sheets
JPS6346656A (en) * 1986-08-13 1988-02-27 Showa Seiki Kogyo Kk Automatic disk changer device
US4809881A (en) * 1987-04-16 1989-03-07 Total Tote, Inc. Bin dispensing machine
US4817273A (en) * 1987-04-30 1989-04-04 Reliability Incorporated Burn-in board loader and unloader
US4801234A (en) * 1987-05-15 1989-01-31 Daymarc Corporation Vacuum pick and place mechanism for integrated circuit test handler
US4817934A (en) * 1987-07-27 1989-04-04 Emf Corporation Dual tote sorter and stacker
US5206772A (en) * 1989-10-02 1993-04-27 Hitachi, Ltd. Magnetic disk apparatus having improved arrangement of head disk assemblies
US5012187A (en) * 1989-11-03 1991-04-30 Motorola, Inc. Method for parallel testing of semiconductor devices
US5176202A (en) * 1991-03-18 1993-01-05 Cryo-Cell International, Inc. Method and apparatus for use in low-temperature storage
JP2862679B2 (en) * 1990-12-11 1999-03-03 富士通株式会社 Storage disk module
JPH0568257A (en) * 1991-07-15 1993-03-19 Canon Inc Color image pickup device
US5295392A (en) * 1992-03-26 1994-03-22 Tech Team, Inc. Pipe testing equipment
US5205132A (en) * 1992-06-12 1993-04-27 Thermonics Incorporated Computer-implemented method and system for precise temperature control of a device under test
US5379229A (en) * 1992-06-18 1995-01-03 Communications Test Design, Inc. Automated storage and retrieval system
US6640235B1 (en) * 1992-08-20 2003-10-28 Intel Corporation Expandable mass disk drive storage system
US5601141A (en) * 1992-10-13 1997-02-11 Intelligent Automation Systems, Inc. High throughput thermal cycler
FR2697717B1 (en) * 1992-10-29 1994-12-16 Thomson Csf Heating device for electronic cards.
US5485436A (en) * 1993-05-24 1996-01-16 National Film Board Of Canada System and method for accessing information on stored optical discs
JPH07209361A (en) * 1994-01-14 1995-08-11 Showa Alum Corp Work inspection facility
US5474520A (en) * 1994-03-14 1995-12-12 Bittikofer; Raymond P. Apparatus for producing multiple motions
JP3213156B2 (en) * 1994-03-15 2001-10-02 富士通株式会社 Electronics
US5610893A (en) * 1994-06-02 1997-03-11 Olympus Optical Co., Ltd. Information recording and reproducing apparatus for copying information from exchangeable master recording medium to a plurality of other exchangeable recording media
US5491610A (en) * 1994-09-09 1996-02-13 International Business Machines Corporation Electronic package having active means to maintain its operating temperature constant
DE19581661C2 (en) * 1994-09-22 1998-11-26 Advantest Corp Ic receiving cup storage device and mounting device for this
JPH08161871A (en) * 1994-12-06 1996-06-21 Fujitsu Ltd Cartridge transporting device, library control system and accessor control method
KR100229031B1 (en) * 1995-01-18 1999-11-01 토마스 에프.멀베니 Disc clamping system for a hard disc drive
JP3113793B2 (en) * 1995-05-02 2000-12-04 株式会社エヌ・ティ・ティ ファシリティーズ Air conditioning system
JP3420655B2 (en) * 1995-05-23 2003-06-30 株式会社アドバンテスト IC tester handler thermostat
US5870630A (en) * 1995-07-31 1999-02-09 Hewlett-Packard Company System for online SCSI drive repair utilizing detachable secondary I/O buses pigtailed to primary I/O bus wherein each secondary I/O bus has a length in excess of 100mm
US5673029A (en) * 1996-02-15 1997-09-30 Orbitron Computer System, Inc. Apparatus for cooling a memory storage device
KR100209018B1 (en) * 1996-09-16 1999-07-15 윤종용 Oven for testing auxiliary memory
US6192282B1 (en) * 1996-10-01 2001-02-20 Intelihome, Inc. Method and apparatus for improved building automation
US5718627A (en) * 1997-02-03 1998-02-17 Wicks; Edward A. System and method for smoke free elevator shaft
US5862037A (en) * 1997-03-03 1999-01-19 Inclose Design, Inc. PC card for cooling a portable computer
JPH10340450A (en) * 1997-06-06 1998-12-22 Sony Tektronix Corp Disk surface test device
US6185097B1 (en) * 1997-09-10 2001-02-06 Inclose Design, Inc. Convectively cooled memory storage device housing
GB2332523B (en) * 1997-12-16 2002-04-10 Havant Internat Ltd Tool,apparatus and method for testing a fixture
US6169930B1 (en) * 1998-04-17 2001-01-02 International Business Machines Corporation Method and apparatus for preventing cold temperature induced damage in a disk drive
US6011689A (en) * 1998-04-27 2000-01-04 Sun Microsystems, Inc. Computer component cooling fan closure device and method thereof
US6042348A (en) * 1998-05-11 2000-03-28 Lucent Technologies Inc. Protective shutter assembly for a forced air cooling system
TW459220B (en) * 1998-10-29 2001-10-11 Teac Corp Disk device
US6177805B1 (en) * 1998-11-24 2001-01-23 International Business Machines Corporation High density test connector for disk drives in a high volume manufacturing environment
US6034870A (en) * 1999-01-27 2000-03-07 Sun Microsystems, Inc. Computer system having a highly efficient forced air cooling subsystem
EP1163570A4 (en) * 1999-02-19 2007-12-19 Gen Dynamics Inf Systems Inc Data storage housing
JP2000242598A (en) * 1999-02-23 2000-09-08 Matsushita Electric Ind Co Ltd Firmware update system and its updating method
US6193339B1 (en) * 1999-04-12 2001-02-27 Inclose Design, Inc. Docking adapter for memory storage devices
US6031717A (en) * 1999-04-13 2000-02-29 Dell Usa, L.P. Back flow limiting device for failed redundant parallel fan
US6473297B1 (en) * 1999-04-23 2002-10-29 Inclose Design, Inc. Memory storage device docking adapted having a laterally mounted fan
US6188191B1 (en) * 1999-05-03 2001-02-13 International Business Machines Corporation Servo system responsive to temperature changes
CA2379410C (en) * 1999-07-08 2015-12-08 Lee Angros Antigen recovery and/or staining apparatus and method
US6526841B1 (en) * 1999-08-02 2003-03-04 Pemstar, Inc. Environmental test chamber and a carrier for use therein
US6181557B1 (en) * 1999-10-29 2001-01-30 Motorola, Inc. Electronic component, method of cooling, and damper therefor
US6356409B1 (en) * 1999-12-15 2002-03-12 International Business Machines Corporation Balancing apparatus and method for high speed hard disk drive spindles
TW454904U (en) * 2000-01-14 2001-09-11 Huang Cheng Yu Computer removable floppy disk driver cooling device
JP2001324404A (en) * 2000-05-12 2001-11-22 Internatl Business Mach Corp <Ibm> Balance correction device, correction method and disk assembling method
US6351379B1 (en) * 2000-08-09 2002-02-26 Lite-On Enclosure Inc. Extracting and positioning structure for hard disk drive
US6525933B2 (en) * 2001-01-31 2003-02-25 Hewlett-Packard Company Computer peripheral mounting bracket
JP2002245749A (en) * 2001-02-21 2002-08-30 Fujitsu Ltd Disk device and information processor
JP2002286620A (en) * 2001-03-23 2002-10-03 Hitachi Ltd Method and device for testing high- and low-temperature on magnetic disk device
US6537013B2 (en) * 2001-04-26 2003-03-25 International Business Machines Corporation Picking mechanism with ventilation system for automated library of memory storage units
US7006325B2 (en) * 2001-07-03 2006-02-28 International Business Machines Corporation Automated handling and interface mechanism for library of disk drive carriers
EP1282347A1 (en) * 2001-08-03 2003-02-05 Hewlett-Packard Company, A Delaware Corporation A housing for a computer sub-assembly comprising a keeper and a support member
US6618254B2 (en) * 2001-09-05 2003-09-09 Hewlett-Packard Development Company, L.P. Methods and apparatus for securing disk drives in a disk array
US7573715B2 (en) * 2002-03-21 2009-08-11 Tempest Microsystems High density storage system
US6862173B1 (en) * 2002-07-11 2005-03-01 Storage Technology Corporation Modular multiple disk drive apparatus
US6861861B2 (en) * 2002-07-24 2005-03-01 Lg Electronics Inc. Device for compensating for a test temperature deviation in a semiconductor device handler
JP4814088B2 (en) * 2003-06-16 2011-11-09 ザイラテックス・テクノロジー・リミテッド Disk drive support mechanism, clamp mechanism, and disk drive carrier
US7251544B2 (en) * 2003-07-01 2007-07-31 Hewlett-Packard Development Company, L.P. Storage system
EP1665271A1 (en) * 2003-09-08 2006-06-07 Xyratex Technology Limited Temperature control device, disk drive unit test apparatus, and a method of testing or operating a plurality of disk drive units
US20050057849A1 (en) * 2003-09-12 2005-03-17 Randolph Twogood Encapsulated data storage system
US7387485B2 (en) * 2003-09-29 2008-06-17 Quantum Corporation Cartridge transport assembly
US7167359B2 (en) * 2003-12-29 2007-01-23 Sherwood Information Partners, Inc. System and method for mass storage using multiple-hard-disk-drive enclosure
JP4069876B2 (en) * 2004-02-03 2008-04-02 ソニー株式会社 Hard disk drive storage device and electronic device
JP4069877B2 (en) * 2004-02-03 2008-04-02 ソニー株式会社 Electronic device and hard disk drive storage device
US7126777B2 (en) * 2004-07-30 2006-10-24 Hitachi Global Storage Technologies Netherlands B.V. Disk drive with selectable power source for heater in a slider
US20060028802A1 (en) * 2004-08-04 2006-02-09 Irm, Llc Object storage devices, systems, and related methods
KR20070062521A (en) * 2004-09-17 2007-06-15 지라텍스 테크놀로지 리미티드 Housings and devices for disk drives
JP2006092645A (en) * 2004-09-24 2006-04-06 Hitachi Global Storage Technologies Netherlands Bv Disk drive apparatus
US7936534B2 (en) * 2005-03-23 2011-05-03 Xyratex Technology Limited Apparatus for supporting a disk drive about a rotation centre which is outside a disk drive receiving portion for reducing vibrations and a disk drive test apparatus using same
JP2008539501A (en) * 2005-04-26 2008-11-13 イノヴェイティヴ ポリマーズ ピーティーイー リミテッド Test carrier for storage devices
JP2007087498A (en) * 2005-09-22 2007-04-05 Hitachi Ltd Memory system
US7483269B1 (en) * 2005-09-30 2009-01-27 Maxtor Corporation Test rack adapter for hard disk drive
JP4394064B2 (en) * 2005-11-18 2010-01-06 富士通株式会社 Tilt detection method, tilt detection device, object position control method, and position control device
US20090028669A1 (en) * 2007-07-25 2009-01-29 Dynamic Micro Systems Removable compartments for workpiece stocker
CN101295201B (en) * 2007-04-26 2011-11-09 鸿富锦精密工业(深圳)有限公司 Data memory frame work
US20090082907A1 (en) * 2007-09-21 2009-03-26 Seagate Technology Llc Mechanically isolated environmental test chamber

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5426581A (en) * 1994-08-15 1995-06-20 International Business Machines Corporation Using a bar code scanner to calibrate positioning of a robotic system
US5851143A (en) * 1996-05-10 1998-12-22 Thermal Industries Disk drive test chamber
GB2312984A (en) * 1996-05-11 1997-11-12 Samsung Electronics Co Ltd System for testing hard disk drives
US5999356A (en) * 1997-08-29 1999-12-07 International Business Machines Corporation Data cartridge library with rotating storage stacks
EP1045301A2 (en) * 1999-04-13 2000-10-18 Hewlett-Packard Company Guidance system and method for an automated media exchanger
US20040236465A1 (en) * 2000-11-16 2004-11-25 Butka David John Storage cell mounting and alignment for cartridge system libraries
US20020161971A1 (en) * 2001-04-26 2002-10-31 International Business Machines Corporation Library of hard disk drives with transparent emulating interface
WO2003067385A2 (en) * 2002-02-05 2003-08-14 Asaca Corporation Data storage system
US20050219809A1 (en) * 2002-07-05 2005-10-06 Xyratex Technology Limited Mounting device for a disk drive unit, releasable fastener and method of testing a disk drive unit
US7304855B1 (en) * 2003-03-03 2007-12-04 Storage Technology Corporation Canister-based storage system
US20050010836A1 (en) * 2003-05-15 2005-01-13 Samsung Electronics Co., Ltd. Apparatus for testing hard disk drive
EP1760722A1 (en) * 2005-09-02 2007-03-07 Hitachi, Ltd. Disk array apparatus
JP2007220184A (en) * 2006-02-15 2007-08-30 Hitachi Global Storage Technologies Netherlands Bv Fixing tool of recording disk drive, manufacturing method of recording disk drive, and testing apparatus of recording disk drive

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8507235B2 (en) 2009-06-17 2013-08-13 Danisco Us Inc. Isoprene production using the DXP and MVA pathway
US8685702B2 (en) 2010-12-22 2014-04-01 Danisco Us Inc. Compositions and methods for improved isoprene production using two types of ISPG enzymes
US8691541B2 (en) 2010-12-22 2014-04-08 Danisco Us Inc. Biological production of pentose sugars using recombinant cells

Also Published As

Publication number Publication date
CN101939788A (en) 2011-01-05
JP2011507146A (en) 2011-03-03
WO2009079448A3 (en) 2009-11-05
US20090153993A1 (en) 2009-06-18
KR20100112569A (en) 2010-10-19

Similar Documents

Publication Publication Date Title
US7996174B2 (en) Disk drive testing
US20090153993A1 (en) Disk Drive Testing
US20120102374A1 (en) Storage device testing
US8712580B2 (en) Transferring storage devices within storage device testing systems
US8140182B2 (en) Bulk feeding disk drives to disk drive testing systems
US7890207B2 (en) Transferring storage devices within storage device testing systems
US8549912B2 (en) Disk drive transport, clamping and testing
US8305751B2 (en) Vibration isolation within disk drive testing systems
US8631698B2 (en) Test slot carriers
US20120136477A1 (en) Storage Device Transport, Clamping And Testing
WO2010120302A1 (en) Storage device testing
US20110123301A1 (en) Bulk feeding storage devices to storage device testing systems

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880126192.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08862787

Country of ref document: EP

Kind code of ref document: A2

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2010539675

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20107014779

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: PI 2010002876

Country of ref document: MY

122 Ep: pct application non-entry in european phase

Ref document number: 08862787

Country of ref document: EP

Kind code of ref document: A2