WO2009068756A1 - Procede de cristallisation - Google Patents

Procede de cristallisation Download PDF

Info

Publication number
WO2009068756A1
WO2009068756A1 PCT/FR2007/001965 FR2007001965W WO2009068756A1 WO 2009068756 A1 WO2009068756 A1 WO 2009068756A1 FR 2007001965 W FR2007001965 W FR 2007001965W WO 2009068756 A1 WO2009068756 A1 WO 2009068756A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
thin layer
amorphous
layer
crystallized
Prior art date
Application number
PCT/FR2007/001965
Other languages
English (en)
Inventor
Philippe Bouchut
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to PCT/FR2007/001965 priority Critical patent/WO2009068756A1/fr
Priority to AT08354088T priority patent/ATE516389T1/de
Priority to JP2008305198A priority patent/JP2009135501A/ja
Priority to ES08354088T priority patent/ES2368774T3/es
Priority to US12/292,882 priority patent/US7923317B2/en
Priority to EP08354088A priority patent/EP2071058B1/fr
Publication of WO2009068756A1 publication Critical patent/WO2009068756A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B1/00Single-crystal growth directly from the solid state
    • C30B1/02Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing
    • C30B1/023Single-crystal growth directly from the solid state by thermal treatment, e.g. strain annealing from solids with amorphous structure
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/06Silicon
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/02Elements
    • C30B29/08Germanium
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/16Oxides
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/40AIIIBV compounds wherein A is B, Al, Ga, In or Tl and B is N, P, As, Sb or Bi
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02656Special treatments
    • H01L21/02664Aftertreatments
    • H01L21/02667Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth
    • H01L21/02675Crystallisation or recrystallisation of non-monocrystalline semiconductor materials, e.g. regrowth using laser beams
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • H01L27/127Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement
    • H01L27/1274Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor
    • H01L27/1277Multistep manufacturing methods with a particular formation, treatment or patterning of the active layer specially adapted to the circuit arrangement using crystallisation of amorphous semiconductor or recrystallisation of crystalline semiconductor using a crystallisation promoting species, e.g. local introduction of Ni catalyst

Definitions

  • the invention relates to a crystallization process.
  • crystallization There are many methods of crystallization: the crystallization of a material from its vapor phase, crystallization from molten baths or crystallization from solutions. In these cases, the crystal appears by cooling during the liquid-solid transition or during the vapor-solid transition.
  • materials crystallized in monocrystalline form can be obtained by growth from a monocrystalline seed.
  • monocrystalline silicon ingots can be obtained by the Czochralski method of dipping a monocrystalline seed on the surface of a slightly overheated silicon bath and pulling the seed at a continuous rate. The solidification takes place and reproduces the crystalline pattern of the seed until obtaining a monocrystalline silicon ingot.
  • the silicon bath is contained in a crucible which must be formed by a material having a melting point higher than that of monocrystalline silicon. It is, for example, silica or boron nitride.
  • the higher the melting temperature of the single crystal the higher the volume of crystal, the more the cost of the crucible becomes prohibitive.
  • current methods of crystallization are not suitable for making crystals over large areas.
  • Thin polycrystalline films can be obtained by crystallization, either from the liquid phase or from the solid phase of an amorphous layer.
  • the crystallization, in polycrystalline form, of an amorphous layer of silicon deposited on a substrate, for example made of glass can be carried out using a pulsed laser beam, mainly an excimer laser.
  • the crystallization is performed after a passage in the liquid phase, that is to say by liquid.
  • the energy of the laser is, in fact, absorbed locally by the layer to be crystallized, which makes it possible to carry the material at high temperature, while the substrate remains at a relatively low temperature.
  • the polycristal appears, then, during the melting-solidification cycle.
  • SLG Super Lateral Growth
  • the crystallization of the exposed area heated by the laser begins with external portions of said zone, said portions being those which cool the fastest within the zone heated by the laser beam.
  • the maximum grain size obtained by this liquid crystallization technique is of the order of 5 to 10 times the thickness of the layer to be crystallized.
  • the layers are, in general, a thickness of a few hundred nanometers thick.
  • this technique generally applies to very thin layers.
  • it is a difficult technique to implement to crystallize a large area homogeneously.
  • patent application JP-A-61 068 385 proposes, for example, to deposit a thin layer of silicon to be crystallized on a structured silica interlayer.
  • a metal layer disposed under the silica intermediate layer to reflect the light of the laser beam, in order to obtain more uniform grains in the thickness of the layer to crystallize.
  • liquid crystal crystallization using a laser, produces only polycrystals, the grain size of which is at best about one micrometer, for layers having a thickness of less than 100 nm.
  • Solid phase crystallization is generally performed by conventional thermal annealing, also known as SPC.
  • SPC thermal annealing
  • the stack formed of an amorphous layer deposited on a substrate is annealed for a time varying from several minutes to a few hours, depending on the temperature and the type of material to be crystallized.
  • the material to be crystallized and the substrate are, moreover, brought to the same temperature, which is traditionally maintained below the glass transition temperature or melting of the substrate.
  • Solid phase crystallization can also be promoted by deposition of materials facilitating the crystallization of crystallites.
  • MIC metal-assisted annealing
  • a catalyst element such as palladium or nickel, is disposed on the layer to be crystallized, to control the grain size of said layer, before a heat treatment in a conventional oven is performed, for example about 600 0 C for 10 minutes or less.
  • US-A-5994164 also mentions an alternative solution for controlling grain size.
  • This alternative solution consists in carrying out a rapid thermal annealing, also called RTA. This makes it possible to considerably reduce the crystallization time of the layers on the substrate.
  • RTA rapid thermal annealing
  • the RTA technique results, however, in grains that are much less defective but smaller than conventional thermal annealing, because of the large number of microorganisms created.
  • the glass substrate used in patent application US-A-5994164 according to the PCM technique or according to the RTA technique is slightly deformed.
  • the patent application US-A-5994164 then recommends another solution consisting in depositing, between the substrate and the layer to be crystallized, an intermediate layer having a glass transition temperature lower than the solid phase crystallization temperature of the layer to be crystallized, to allow the relaxation of the stress induced by the crystallization of said layer and to avoid the deformation of the substrate.
  • microcrystalline silicon films are carried out for high hydrogen partial pressures and for a substrate temperature of between 150 ° C. and 300 ° C.
  • the object of the invention is a crystallization process which overcomes the disadvantages of the processes according to the prior art.
  • the object of the invention is, in particular, to obtain a crystallized material of small thickness, for example of the order of one hundred nanometers, and of very large surface area, with properties that are homogeneous over the entire surface.
  • this object is achieved by a crystallization process comprising the following successive steps: a) deposition of at least one thin layer of amorphous or polycrystalline material, on at least one area of the surface of an upper part of a substrate, b) deposition of at least one metal layer, of a thickness of between 1 nm and 20 nm, advantageously between 5 nm and 10 nm, over an area of said thin layer, the upper part of the substrate consisting, after step b), by an amorphous material capable of passing into a liquid state or supercooled liquid c) and heat treatment to allow crystal growth of the thin film material, simultaneously causing:
  • step c) is carried out by applying a continuous or pulsed laser beam having a range of emission wavelengths corresponding to the wavelength range of absorption of the upper part of the substrate and the wavelength range of transparency of the amorphous or polycrystalline material of the thin layer to be crystallized.
  • FIG. 1 to 7 show schematically, in section, different steps of a first embodiment of a method according to the invention.
  • FIG. 8 represents the temperature cycle applied to the upper part of the substrate as a function of time, during said first embodiment.
  • Figures 9 to 12 show schematically, in section, an alternative embodiment of said first embodiment.
  • Figures 13 to 16 show, schematically, in section, different steps of a third embodiment of a method according to the invention.
  • Figures 17 to 20 show, schematically, in section, different steps of a fourth embodiment of a method according to the invention.
  • a crystallization process comprises a step of depositing at least one thin layer, made of an amorphous or polycrystalline material intended to be crystallized, for example in monocrystalline form, on at least one area of the surface of an upper part of a substrate .
  • the deposition step of the thin layer is followed by a step of deposition of at least one metal layer on an area of said thin layer of amorphous or polycrystalline material.
  • the metal layer has a thickness of between 1 nm and 20 nm, advantageously between 5 nm and 10 nm.
  • a heat treatment step is performed. Under certain conditions, a reducing, inert or oxidizing atmosphere may be provided during the heat treatment.
  • the upper part of the substrate consists of a material distinct from the material to be crystallized.
  • the material of the upper part of the substrate is, moreover, amorphous before the heat treatment and is able to pass to the state of liquid or the state of supercooled liquid.
  • the upper part of the substrate is, for example, constituted before the heat treatment step, by an amorphous material such as:
  • a glass for example glasses based on oxide (silicon oxide (SiO 2 ), borosilicate (B 2 O 31 SiO 2 ),) and chalcogenide-based glasses (such as As 2 Se 3 ) or ceramics such as alumina (AI 2 O 3 ) ...
  • oxide silicon oxide (SiO 2 ), borosilicate (B 2 O 31 SiO 2 ),
  • chalcogenide-based glasses such as As 2 Se 3
  • ceramics such as alumina (AI 2 O 3 ) ...
  • said amorphous material may be subjected to a glass transition phenomenon.
  • thermodynamic quantity such as the specific heat density
  • glass transition zone is therefore meant a temperature range, delimited by the melting temperature and the glass transition temperature of said material. This glass transition zone corresponds to the transition from the solid state to the liquid state of the material. In this zone of temperature called transition zone or glass transition zone, the material is considered in the state of supercooled liquid.
  • the upper part of the substrate may also consist of a metal (for example Fe, Cu, Ti ...) or a metal alloy (for example stainless steel) , amorphous before the heat treatment step.
  • the transition zone corresponds to the melting temperature of the material constituting the upper part of the substrate.
  • the material constituting the upper part of the substrate may be the same material as that constituting the thin layer to be crystallized, the two materials then having, preferably, different states of structure.
  • the material constituting the upper part of the substrate may be in amorphous form, whereas that constituting the thin layer to be crystallized may be in polycrystalline form.
  • the material of the upper part of the substrate is distinct from the amorphous or polycrystalline material to be crystallized.
  • the heat treatment step is intended to cause a very rapid rise in the temperature of the upper part of the substrate, preferably without directly heating the thin layer to be crystallized.
  • the rise in temperature also called thermal ramp, is performed at a speed greater than 100K per second and is performed until the upper part of the substrate reaches the transition zone.
  • the rise in temperature is carried out until the upper part of the substrate goes into a liquid state or into a supercooled liquid state.
  • the heat treatment is advantageously carried out by a polarized laser beam whose energy is absorbed by the upper part of the substrate.
  • the laser beam does not directly heat the thin layer to crystallize, but the upper part of the substrate.
  • the thin layer to be crystallized does not pass into a liquid state, but remains in a solid state.
  • the crystallization process is a solid-crystallization process.
  • the heat input of the laser beam is, in fact, sufficient for the upper part of the substrate to change from the solid state to the state of liquid or supercooled liquid.
  • the thin layer to be crystallized remains, advantageously, "cold", so that the heat flow is initially the more intense possible, between the upper part of the substrate and the thin layer to be crystallized. In other words, the thin layer to be crystallized practically does not absorb the energy emitted by the laser beam.
  • the laser beam used during the heat treatment step advantageously has a range of emission wavelengths corresponding to: - the absorption wavelength range of the upper part of the substrate
  • the laser beam can also be continuous or pulsed and it can be a CO 2 or YAG laser.
  • the heat treatment step must simultaneously cause the passage of the upper part of the substrate in supercooled liquid or liquid phase, and a thermal transfer in the thin layer to be crystallized, from the interface of said layer with the substrate towards the interface of said layer and the metal layer.
  • the absorption coefficient of the upper part of the substrate is advantageously three times greater than that of the thin layer to be crystallized, in the range of emission wavelengths. of the laser beam.
  • the thermal transfer time between the interface between the upper part of the substrate and the thin layer to be crystallized and the interface between the thin layer to be crystallized and the metal layer is, in particular, of the order of 25ps for a thin layer. 100nm.
  • the thermal transfer of heat from the upper part of the substrate to the thin layer to be crystallized causes stressing of the thin layer to be crystallized.
  • this stress is all the more intense as the thermal ramp is fast and the instantaneous temperature difference between the substrate and the layer is important.
  • this initial stressing promotes thermodynamically the crystallization, since there is then reduction of the molar volume of the thin layer to crystallize, which tends to that of the crystalline phase.
  • the heat flux must be maintained so that the "solid state" crystal growth can continue.
  • the heat from the upper part of the substrate and the enthalpy of crystallization must be able to be discharged to the surface of the thin layer being crystallized. This evacuation is carried out radiatively by the metal layer.
  • the supercooled zone of the substrate adapts to the densification of the crystallized layer before going into the solid state.
  • the crystallization of a material is obtained from a substrate 1 formed, for example, by a crystalline material which, rendered amorphous, exhibits a vitreous transition phenomenon. .
  • the substrate 1 is, in particular, treated to form an amorphous upper part 2 in the substrate 1.
  • the arrows F1 represent, in FIG. 2, the processing step making it possible to make the upper part 2 of the substrate 1 amorphous.
  • the upper part 2 of the substrate 1 can be rendered amorphous by polishing or by ion implantation.
  • a thin layer 3 constituted by a material to be crystallized is then deposited on the free surface of the part upper 2 of the substrate 1.
  • the free surface of the upper part of the substrate can be previously cleaned, before the deposition of the thin layer 3.
  • the thin layer 3 is deposited on the entire free surface of the upper part 2 of the substrate 1.
  • the material to be crystallized is, more particularly, deposited in an amorphous or polychstalline form. It can be of any type since it is able to crystallize in the solid phase. By way of example, it is a semiconductor material such as silicon, germanium, gallium arsenide (AsGa), gallium and indium arsenide (InGaAs), indium antimonide (InSb) . It can also be an insulating material such as an oxide, for example silicon oxide (SiO 2), boron oxide (B2O 3), titanium oxide (TiO 2), tantalum oxide (Ta 2 ⁇ s) or it may be arsenic selenide (As 2 S ⁇ 3 ).
  • the deposition of the thin layer 3 can be of any known type.
  • the thin layer 3 may be deposited by evaporation, by spraying possibly assisted by ion gun or magnetron.
  • a metal layer 4 is deposited on an area of the free surface of the thin layer 3.
  • the thickness of said metal layer 4 is between 1 nm and 20 nm, advantageously between 5 nm and 10 nm.
  • the metal layer 4 is, in particular, constituted by a metal such as a metal used in catalysis (Ni, Pd, Pt), but not only. It may also be chosen from Cu, Ag, Cr, Au and Fe. In addition, the metal layer 4 may consist of a pure metal, a metal alloy or a mixture of metals (Ni + Cr, Ni + Au ).
  • the metal layer 4 is not, within the scope of the invention, intended to act as a catalyst to adjust the size of the grains in a controlled manner. It is the combination of said metal layer with a particular heat treatment allowing the upper part of the substrate to pass into a liquid or supercooled liquid state, advantageously without directly heating the thin layer to be crystallized which allows, according to the invention, to obtain crystallization in the solid phase. More particularly, the metal layer 4 serves as a radiator for evacuating the heat in the thin layer to be crystallized. Without this metal layer, the layer to be crystallized changes to the liquid state and the process is no longer a "solid phase" process.
  • the assembly consisting of the substrate 1, the thin layer 3 and the metal layer 4, undergoes heat treatment.
  • the heat treatment is intended to bring heat to the upper part 2 of the substrate 1 and to cause a rapid rise in temperature in the upper part 2 of the substrate 1 and more generally in the substrate 1.
  • the temperature of the upper part 2 of the substrate 1 rises, thus, at least to the glass transition zone, so that said upper portion 2 passes at least in the state of supercooled liquid.
  • the rise in temperature of the upper part 2 of the substrate must be rapid, with a speed greater than 100K / s.
  • Such a rise in temperature can be obtained by interacting, for example, with a continuous laser beam or pulsed on the upper part 2 of the substrate 1, through the metal layer 4 and the thin layer 3.
  • the range of lengths emission wave of the laser beam corresponds to the absorption wavelength range of the upper part 2 of the substrate 1.
  • the emission of the laser beam is partially or totally absorbed by the upper part 2 of the
  • the emission wavelength range of the laser beam also corresponds to the range of wavelengths of transparency of the thin layer 3.
  • the thin layer 3 does not absorb or slightly the lengths of light. beamwave laser, it is not heated directly.
  • the laser beam is represented by the arrow F2 and is applied so as to pass through the metal layer 4 and the thin layer 3 before reaching the upper part 2 of the substrate.
  • the laser beam may be a CO2 laser emitting at 10.6 ⁇ m.
  • the laser beam may be a CO 2 laser or a YAG laser emitting at 1. 064 microns. At this wavelength, the amorphous silicon absorbs little (a few hundred cm '1 ) relative to the metal.
  • the upper part 2 of the substrate passes from the solid state to a state of supercooled liquid and allows the crystallization of an area 5 of the thin layer 3, by thermal transfer.
  • the zone 5 corresponds to the zone of the thin layer 3, disposed under the metal layer 4, while the remainder of the thin layer 3, not covered by the thin metallic layer, is not crystallized (FIG. 7).
  • the metal layer 4 covers the entire thin layer 3 to crystallize, it can be fully crystallized.
  • FIG. 8 represents the temperature cycle applied to the upper part 2 of the substrate 1 as a function of time, in the embodiment shown in FIGS. 1 to 7.
  • the temperature of the upper part 2 of the substrate 1 remains, for example, constant during the deposition of the thin layer 3, then it increases rapidly during the heat treatment step.
  • the increase in the temperature of the upper part 2 of the substrate 1 is, for example, linear and it goes beyond the glass transition temperature of the material of the upper part 2 of the substrate 1.
  • the upper part 2 of the substrate 1 can be in any type of solid material, amorphous or capable of becoming by treatment, since the material is able to pass to the liquid state or supercooled liquid.
  • the upper part 2 of the substrate 1 or even the whole of the substrate 1 can be amorphous before the crystallization process.
  • the substrate or at least an upper part of the substrate may, for example, consist of a glass, such as an amorphous oxide, an amorphous semiconductor element or material or a non-crystalline polymer.
  • the upper part of the substrate or even the entire substrate may also be, in the beginning of the process, in a crystalline form. In this case, it can undergo, before the heat treatment, a treatment for obtaining at least an upper portion in amorphous form.
  • the upper part of the substrate or the entire substrate may thus be rendered amorphous before the deposition of the thin film to be crystallized 3, before or after the deposition of the metal layer 4.
  • the substrate 1 can remain crystalline during the deposition of the thin layer 3.
  • a treatment illustrated by the arrows F1 in FIG. 11, can then be performed after the deposition of the thin layer 3 and before the heat treatment. This treatment makes it possible to obtain an amorphous upper part 2.
  • the substrate or said upper part 2 of the substrate 1 can undergo a treatment capable of reinforcing the state stress on the surface before the heat treatment.
  • Such a treatment can be carried out before the deposition or after the deposition of the thin layer 3.
  • the treatment can be:
  • a mechanical treatment such as polishing, sandblasting, heat treatment such as melting followed by quenching,
  • a physicochemical treatment such as a vapor phase deposition or an ion implantation.
  • a plurality of thin layers are successively deposited on the surface of the upper part 2 of the substrate 1.
  • an additional thin layer 6 is deposited on the thin layer 3 to be crystallized, so as to obtain two superimposed thin layers.
  • a metal layer 4 is then deposited on an area of the additional thin layer 6. The assembly, formed by the substrate 1, the two superimposed thin layers 6, 3 and the metal layer 4, is then subjected to a heat treatment (arrow F2 in FIG.
  • crystallization by a single heat treatment step, a plurality of superimposed thin layers of distinct and crystalline materials.
  • Such an embodiment is also called crystallization in series mode and it can in particular be used to produce heterostructures.
  • the crystallization may even include the metal layer.
  • the crystallization takes place under the metal layer 4 and its surroundings.
  • the metal layer 4 covers the entire free surface of the additional thin layer 6, the layers 3 and 6 can be fully crystallized.
  • a plurality of thin layers may be deposited on a plurality of areas of the surface of the upper portion 2 of the substrate 1, before the heat treatment.
  • the surface of the upper part 2 is covered by two thin layers 8 and 9, adjacent and respectively constituted by distinct materials to be crystallized, for example in monocrystalline form.
  • a metal layer 4 with a thickness of between 1 nm and 20 nm is then deposited on the stack, so as to advantageously cover a portion of the thin layer 8 and a portion of the thin layer 9 ( Figure 18).
  • the assembly formed by the substrate, the two adjacent thin layers 8 and 9 and the metal layer 4 is then subjected to a heat treatment (arrow F2 in FIG.
  • the two thin layers 8 and 9 may be successively deposited on the surface of the upper part 2 of the substrate.
  • the thin layer 8 may be previously deposited on an area of the surface of the upper part 2 of the substrate, through a mask hiding the area to be covered by the second thin layer 8.
  • the second thin layer is deposited on the free zone of the substrate, through a mask hiding the thin layer 8 already deposited.
  • Such a variant is also called crystallization in parallel mode and is particularly adapted to combine the functionalities of several materials on the same substrate.
  • a crystallization process according to the invention therefore makes it possible to crystallize a material of nanometric thickness.
  • it is then possible to obtain very thin crystalline thin layers for example of a thickness of the order of a hundred nanometers, without requiring additional conditioning steps.
  • such a method makes it possible to obtain crystalline thin films of very large surface area and advantageously monocrystalline, with homogeneous properties on all said surface.
  • Such a method is relatively inexpensive because it does not require a crucible and it has a relatively low thermal budget since the heat input required for crystallization does not need to reach the melting temperature of the material to be crystallized.
  • the crystallized thin layer may be in a different crystalline phase, with different physical properties from those synthesized by existing crystallization processes.
  • Such a production method can be used in the field of nanotechnological processes, but also in the energy field and more particularly in the field of photovoltaic cells.
  • a device for implementing the crystallization process may comprise: a CO 2 laser source emitting a continuous laser beam
  • a focusing lens for focusing the laser beam on the substrate provided with a thin film to be crystallized and a metal layer, previously deposited on said substrate; and a device for moving said substrate or laser beam, so as to be able to heat-treat the entire surface of the substrate.
  • the substrate is, for example, formed by S2 silica marketed by the company Heraeus, 1 mm thick.
  • the thin layer to be crystallized is, for example, amorphous silicon deposited by ion beam sputtering or IBS ("Ion Beam Sputtering") and has, more particularly, a 100 nm thick.
  • IBS ion Beam Sputtering
  • the metal layer which allows heat transfer, is a 5nm silver layer. It is deposited in the same chamber as that used to deposit the thin layer to be crystallized.
  • the continuous CO2 laser beam makes it possible to heat-treat the upper layer of the substrate.
  • the emission wavelength of said laser is of the order of 10.59 microns, which corresponds to the emission line of the most powerful laser.
  • This excitation wavelength is adapted to the absorption range of the upper layer of the substrate, which allows a rise in temperature of said upper layer. Indeed, in the amorphous silica, all emission lines of the CO2 laser beam (9.2 - 10.8 ⁇ m) can be used.
  • the power stability of the excitation source is standard, typically of the order of ⁇ 3%, over the duration of the heat treatment.
  • the laser emission mode can be any (Gaussian, flat, annular ...), but it must be stable. It is, advantageously, flat.
  • the power required to perform the heat treatment is a linear power which depends on the characteristic dimensions of the laser beam and the physical properties of the amorphous top layer of the substrate (absorption, thermal conductivity, etc.), as well as the scanning speed. said beam.
  • the incident laser power to achieve crystallization is typically 8 Watts at a speed of 1 cm / s, interacting with the implementation device described above. above.
  • the radiation of the CO 2 laser beam is incident on the front face of the stack formed by the metal layer, the thin layer to be crystallized and the substrate. It passes through the metal and the thin film to be crystallized, before being absorbed into the substrate and causing a rapid rise in the temperature of said substrate, with passage into the glass transition zone, which causes the crystallization of the silicon thin film .
  • the device for controlling and stabilizing the power of the laser preferably comprises several elements: a laser power variator which can consist of a half wave plate followed by a polarizer. Such a device makes it possible to adjust the excitation power to a setpoint and thus to vary the power applied to the substrate to be heat-treated.
  • This device can be completed by a shutter and a laser power measuring device for verifying that the power setpoint is reached. It can even include a device for stabilizing the annealing laser power in real time.
  • the shutter could be replaced by an "off-on" switching device of the laser source itself.
  • the focusing lens is, for example, ZnSe and can be processed to be anti-reflective at the emission wavelength of the laser beam. Its focal length can be adapted to the desired focal spot on the thin layer to be crystallized. In addition, the dimensions of the focal spot on the surface of the stack can be determined by a so-called knife method.
  • the lens may also be cylindrical, to produce a larger light brush in a direction perpendicular to the scanning direction. This makes it possible to cover a larger area of substrate per line of passage.
  • the invention is not limited to the embodiments described above.
  • the surface of the upper part 2 of the substrate 1 is not necessarily flat. It may, for example, be spherical, concave or convex, or it may comprise recessed areas and / or raised areas.
  • said surface may be structured during its passage in the liquid state or supercooled liquid. This structuring can be induced by different mechanical processes, acoustic, lasers, ...
  • Such a crystallization process can be applied to devices that require crystalline layers, such as electronic devices (diode, transistor, ). optical devices (mirror, spherical optics, ...), photonic devices (waveguide, %), ...
  • the crystallization process is, in fact, intrinsically favorable to the crystallization of layers having a thickness ranging from nanometers to a few hundred nanometers.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Recrystallisation Techniques (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

Pour cristalliser un matériau, une couche mince (3) en matériau amorphe ou polycristallin est déposée, sur au moins une zone de la surface d'une partie supérieure (2) d'un substrat (1 ). Une couche métallique (4) est ensuite déposée sur au moins une zone de la couche mince (3). Un traitement thermique (F2) est, ensuite, réalisé pour permettre la croissance cristalline du matériau de la couche mince (3), en provoquant : une montée rapide de la température de la partie supérieure (2) du substrat (1 ) jusqu'à atteindre l'état liquide ou de liquide surfondu et un transfert thermique depuis l'interface entre la partie supérieure (2) du substrat (1) et la couche mince (3) vers l'interface entre la couche mince (3) et la couche métallique (4).

Description

Procédé de cristallisation.
Domaine technique de l'invention
L'invention concerne un procédé de cristallisation.
État de la technique
II existe de nombreuses méthodes de cristallisation : la cristallisation d'un matériau à partir de sa phase vapeur, la cristallisation à partir de bains fondus ou la cristallisation à partir de solutions. Dans ces cas, le cristal apparaît par refroidissement lors de la transition liquide-solide ou lors de la transition vapeur-solide.
Plus particulièrement, des matériaux cristallisés sous une forme monocristalline peuvent être obtenus par croissance à partir d'un germe monocristallin. À titre d'exemple, des lingots en silicium monocristallin peuvent être obtenus par le procédé de Czochralski qui consiste à tremper un germe monocristallin, à la surface d'un bain de silicium faiblement surchauffé et à tirer le germe à vitesse continue. La solidification a lieu et reproduit le motif cristallin du germe jusqu'à l'obtention d'un lingot en silicium monocristallin. Le bain de silicium est contenu dans un creuset qui doit être formé par un matériau ayant un point de fusion supérieur à celui du silicium monocristallin. Il est, par exemple, en silice ou en nitrure de bore. Or, plus la température de fusion du monocristal est élevée, plus le volume de cristal est important, plus le coût du creuset devient prohibitif. De plus, il faut maintenir le bain liquide à la température de fusion pendant toute la durée de croissance du cristal, ce qui nécessite un apport énergétique important et contrôlé sur de longues périodes de temps. Enfin, les procédés actuels de cristallisation ne sont pas adaptés pour réaliser des cristaux sur de grandes surfaces.
De plus, dans le cas d'un lingot de silicium monocristallin, obtenu par procédé de Czochralski, celui-ci doit subir un certain nombre d'étapes supplémentaires, avant de pouvoir être utilisé sous forme de tranches. Il doit, ainsi, être conditionné, découpé, poli, nettoyé... Or, ces traitements provoquent une perte de matière et affectent les propriétés physiques de la surface du silicium monocristallin. Ainsi, dans le domaine de la microélectronique, à l'issue du conditionnement, les tranches de silicium monocristallin sont d'une épaisseur supérieure à 100 μm, afin de permettre leur préhension et leur maniement robotisé. Or, l'épaisseur utilisée pour réaliser un dispositif microélectronique ne représente qu'une très faible proportion de l'épaisseur totale de la tranche. De tels procédés de cristallisation monocristalline ne sont donc pas adaptés pour réaliser des épaisseurs nanométriques.
Des films minces polycristallins peuvent être obtenus par cristallisation, soit à partir de la phase liquide, soit à partir de la phase solide d'une couche amorphe.
À titre d'exemple, la cristallisation, sous forme polycristalline, d'une couche amorphe de silicium, déposée sur un substrat, par exemple en verre, peut être réalisée à l'aide d'un faisceau laser puisé, principalement un laser excimère. Dans ce cas, la cristallisation est réalisée après un passage en phase liquide, c'est-à-dire par voie liquide. L'énergie du laser est, en effet, absorbée localement par la couche à cristalliser, ce qui permet de porter le matériau à haute température, tandis que le substrat reste à une température relativement basse. Le polycristal apparaît, alors, lors du cycle de fusion- solidification. Lors de la croissance, dite SLG (ou « Super Latéral Growth »), la cristallisation de la zone exposée et chauffée par le laser débute par les parties externes de ladite zone, lesdites parties étant celles qui se refroidissent le plus vite à l'intérieur de la zone chauffée par le faisceau laser.
La dimension maximale des grains obtenus par cette technique de cristallisation en voie liquide est de l'ordre de 5 à 10 fois l'épaisseur de la couche à cristalliser. Or, les couches ont, en général, une épaisseur de quelques centaines de nanomètres d'épaisseur. Ainsi, cette technique s'applique, en général, à des couches très minces. De plus, c'est une technique difficile à mettre en œuvre pour cristalliser une grande surface de façon homogène.
Pour remédier à cet inconvénient, la demande de brevet JP-A-61 068385 propose, par exemple, de déposer une couche mince en silicium à cristalliser, sur une couche intermédiaire en silice structurée. Dans la demande de brevet US-A-2005142708, il a été proposé d'utiliser une couche métallique disposée sous la couche intermédiaire en silice, pour réfléchir la lumière du faisceau laser, afin d'obtenir des grains plus homogènes dans l'épaisseur de la couche à cristalliser. Cependant, à ce jour, la cristallisation par voie liquide, en utilisant un laser, ne produit que des polycristaux, dont la taille de grain est au mieux de l'ordre du micromètre, pour des couches ayant une épaisseur inférieure à 100nm.
Une autre technique consiste à cristalliser le matériau en phase solide, c'est- à-dire sans passer par l'état liquide. La cristallisation en phase solide est, généralement, réalisée par recuit thermique conventionnel, également appelé SPC. Ainsi, l'empilement formé d'une couche amorphe déposée sur un substrat est soumis à un recuit, réalisé pendant une durée variant de plusieurs minutes à quelques heures, suivant la température et le type de matériau à cristalliser. Le matériau à cristalliser et le substrat sont, de plus, portés à la même température, qui est traditionnellement maintenue en dessous de la température de transition vitreuse ou de fusion du substrat. La cristallisation en phase solide peut, également, être favorisée par un dépôt de matériaux facilitant la germination des cristallites. Une telle technique, appelée recuit assisté par un métal ou « MIC », est décrite dans la demande de brevet US-A-5994164 pour ajuster de manière contrôlée la taille de grain d'une couche mince en silicium amorphe, cristallisée en phase solide. Ainsi, un élément catalyseur, tel que du palladium ou du nickel, est disposé sur la couche à cristalliser, pour contrôler la taille de grain de ladite couche, avant qu'un traitement thermique dans un four conventionnel ne soit réalisé, par exemple à environ 6000C pendant 10 minutes ou moins.
La demande de brevet US-A-5994164 mentionne également une solution alternative pour contrôler la taille de grain. Cette solution alternative consiste à réaliser un recuit thermique rapide, également appelé RTA. Celui-ci permet de diminuer considérablement la durée de cristallisation des couches sur substrat. La technique RTA aboutit, cependant à des grains beaucoup moins défectueux mais plus petits qu'un recuit thermique conventionnel, du fait du grand nombre de germes créés.
Cependant, le substrat en verre utilisé dans la demande de brevet US-A- 5994164 selon la technique MIC ou selon la technique RTA se déforme légèrement. La demande de brevet US-A-5994164 préconise, alors, une autre solution consistant à déposer, entre le substrat et la couche à cristalliser, une couche intermédiaire ayant une température de transition vitreuse plus faible que la température de cristallisation en phase solide de la couche à cristalliser, pour permettre la relaxation de la contrainte induite par la cristallisation de ladite couche et éviter la déformation du substrat.
Il existe également des procédés de dépôt de matériaux sur un substrat, par pulvérisation réactive par magnétron ou par dépôt chimique en phase vapeur assisté par plasma (PECVD), qui permettent une cristallisation partielle du matériau sur le substrat. Cependant, avec ces techniques de dépôt, la dimension des grains obtenus est inférieure au micromètre, ce qui ne procure pas toujours au matériau les propriétés thermiques, optiques et électroniques optimales pour les applications voulues. A titre d'exemple, J. E. Gerbi et al. étudient, dans l'article « Déposition of microcrystalline silicon : Direct évidence for hydrogen-induced surface mobility of Si adspecies » (Journal of Applied Physics, Janvier 2001 , Vol 89, N°2, p1463-1469), le dépôt par pulvérisation réactive par magnétron de films en silicium microcristallin hydrogéné, sur un film en chrome thermiquement évaporé sur un substrat en verre non chauffé. La formation de films en silicium microcristallin est réalisée pour des pressions partielles en hydrogène élevées et pour une température de substrat comprise entre 1500C et 3000C.
Objet de l'invention
L'invention a pour but un procédé de cristallisation remédiant aux inconvénients des procédés selon l'art antérieur. L'invention a, en particulier, pour but d'obtenir un matériau cristallisé de faible épaisseur, par exemple de l'ordre de la centaine de nanomètres, et de très grande surface, avec des propriétés homogènes sur toute ladite surface.
Selon l'invention, ce but est atteint par les revendications annexées.
Plus particulièrement, ce but est atteint par un procédé de cristallisation comportant les étapes successives suivantes : a) dépôt d'au moins d'une couche mince en matériau amorphe ou polycristallin, sur au moins une zone de la surface d'une partie supérieure d'un substrat, b) dépôt d'au moins une couche métallique, d'une épaisseur comprise entre 1 nm et 20nm, avantageusement entre 5nm et 10nm, sur une zone de ladite couche mince, la partie supérieure du substrat étant constituée, après l'étape b), par un matériau amorphe apte à passer dans un état liquide ou de liquide surfondu c) et traitement thermique pour permettre la croissance cristalline du matériau de la couche mince, en provoquant simultanément :
- une montée de la température de la partie supérieure du substrat à une vitesse supérieure à 100K par seconde, jusqu'à ce que le matériau de la partie supérieure du substrat passe à l'état liquide ou à l'état de liquide surfondu,
- et un transfert thermique depuis l'interface entre la partie supérieure du substrat et la couche mince vers l'interface entre la couche mince et la couche métallique.
Selon un développement de l'invention l'étape c) est réalisée par application d'un faisceau laser continu ou puisé, présentant une gamme de longueurs d'onde d'émission correspondant à la gamme de longueurs d'onde d'absorption de la partie supérieure du substrat et à la gamme de longueurs d'onde de transparence du matériau amorphe ou polycristallin de la couche mince à cristalliser.
Description sommaire des dessins
D'autres avantages et caractéristiques ressortiront plus clairement de la description qui va suivre de modes particuliers de réalisation de l'invention donnés à titre d'exemples non limitatifs et représentés aux dessins annexés, dans lesquels :
- Les figures 1 à 7 représentent schématiquement, en coupe, différentes étapes d'un premier mode de réalisation d'un procédé selon l'invention.
- La figure 8 représente le cycle en température appliqué à la partie supérieure du substrat en fonction du temps, pendant ledit premier mode de réalisation.
- Les figures 9 à 12 représentent schématiquement, en coupe, une variante de réalisation dudit premier mode de réalisation. Les figures 13 à 16 représentent, schématiquement, en coupe, différentes étapes d'un troisième mode de réalisation d'un procédé selon l'invention.
Les figures 17 à 20 représentent, schématiquement, en coupe, différentes étapes d'un quatrième mode de réalisation d'un procédé selon l'invention.
Description de modes particuliers de réalisation
Un procédé de cristallisation comporte une étape de dépôt d'au moins une couche mince, en un matériau amorphe ou polycristallin destiné à être cristallisé par exemple sous forme monocristalline, sur au moins une zone de la surface d'une partie supérieure d'un substrat. L'étape de dépôt de la couche mince est suivie d'une étape de dépôt d'au moins une couche métallique, sur une zone de ladite couche mince en matériau amorphe ou polycristallin. La couche métallique a une épaisseur comprise entre 1 nm et 20nm, avantageusement entre 5nm et 10nm. Puis, une étape de traitement thermique est réalisée. Dans certaines conditions, une atmosphère réductrice, inerte ou oxydante peut être prévue lors du traitement thermique.
Par ailleurs, la partie supérieure du substrat est constituée par un matériau distinct du matériau à cristalliser. Le matériau de la partie supérieure du substrat est, de plus, amorphe avant le traitement thermique et il est apte à passer à l'état de liquide ou à l'état de liquide surfondu.
La partie supérieure du substrat est, par exemple, constituée avant l'étape de traitement thermique, par un matériau amorphe tel que :
- un verre, par exemple les verres à base d'oxyde (oxyde de silicium (SiO2), borosilicate (B2O31SiO2),) et les verres à base de chalcogénure (tel que As2Se3) ou des céramiques comme l'alumine (AI2O3)...
- ou un polymère non cristallin tel que le polycarbonate. Dans ce cas, ledit matériau amorphe peut être soumis à un phénomène de transition vitreuse.
En effet, dans le cas d'un verre, l'étude de la variation d'une grandeur thermodynamique, telle que la chaleur spécifique volumique, permet de constater que, lors du refroidissement de la phase liquide stable, si la viscosité est trop importante ou si le refroidissement est très rapide, la cristallisation n'a pas le temps de se produire et un liquide surfondu est obtenu. La zone de température dans laquelle est obtenu le liquide surfondu correspond à la zone de transition vitreuse. De plus, en poursuivant le refroidissement, la viscosité du liquide augmente fortement et le liquide surfondu devient quasiment solide. Or, lorsque la viscosité atteint 1013 poises, la rigidité empêche les mouvements microscopiques locaux et un changement de pente de la grandeur étudiée est observé. La température à laquelle se produit ce changement correspond à la température de transition vitreuse du matériau (Tg). Ainsi, pour une température inférieure à la température de transition vitreuse, le matériau est dit solide avec le désordre structural d'un liquide, tandis qu'au-dessus de la température de fusion, le matériau est dit à l'état liquide. Par zone de transition vitreuse, on entend donc une plage de température, délimitée par la température de fusion et par la température de transition vitreuse dudit matériau. Cette zone de transition vitreuse correspond au passage de l'état solide à l'état liquide du matériau. Dans cette zone de température dite zone de transition ou zone de transition vitreuse, le matériau est considéré à l'état de liquide surfondu.
Plutôt que d'être en verre ou en polymère non cristallin, la partie supérieure du substrat peut également être constituée par un métal (par exemple Fe, Cu, Ti...) ou un alliage métallique (par exemple de l'acier inoxydable), amorphe avant l'étape de traitement thermique. Dans ce cas, la zone de transition correspond à la température de fusion du matériau constituant la partie supérieure du substrat. Par ailleurs, le matériau constituant la partie supérieure du substrat peut être le même matériau que celui constituant la couche mince à cristalliser, les deux matériaux présentant, alors, préférentiellement, des états de structure différents. Par exemple, le matériau constituant la partie supérieure du substrat peut être sous forme amorphe, tandis que celui constituant la couche mince à cristalliser peut être sous forme polycristalline. Cependant, de manière avantageuse, le matériau de la partie supérieure du substrat est distinct du matériau amorphe ou polycristallin à cristalliser.
Ainsi, dans le procédé de cristallisation selon l'invention, l'étape de traitement thermique est destinée à provoquer une montée très rapide de la température de la partie supérieure du substrat, avantageusement sans chauffer directement la couche mince à cristalliser. La montée en température, également appelée rampe thermique, est réalisée à une vitesse supérieure à 100K par seconde et elle est réalisée jusqu'à ce que la partie supérieure du substrat atteigne la zone de transition. Ainsi, la montée en température est réalisée jusqu'à ce que la partie supérieure du substrat passe dans un état de liquide ou dans un état de liquide surfondu.
Le traitement thermique est, avantageusement, réalisé par un faisceau laser polarisé, dont l'énergie est absorbée par la partie supérieure du substrat. Par contre, contrairement à un procédé de cristallisation par voie liquide, dans le cadre de l'invention, le faisceau laser ne chauffe pas directement la couche mince à cristalliser, mais la partie supérieure du substrat. Ainsi, la couche mince à cristalliser ne passe pas dans un état liquide, mais reste dans un état solide. Ainsi, bien qu'utilisant avantageusement un faisceau laser, le procédé de cristallisation est un procédé de cristallisation par voie solide.
L'apport de chaleur du faisceau laser est, en effet, suffisant pour que la partie supérieure du substrat passe de l'état solide à l'état de liquide ou de liquide surfondu. Par contre, la couche mince à cristalliser reste, avantageusement, « froide », afin que le flux thermique soit initialement le plus intense possible, entre la partie supérieure du substrat et la couche mince à cristalliser. Autrement dit, la couche mince à cristalliser n'absorbe pratiquement pas l'énergie émise par le faisceau laser.
Pour obtenir une montée rapide de la température de la partie supérieure du substrat, sans chauffer directement la couche mince à cristalliser, le faisceau laser utilisé lors de l'étape de traitement thermique présente, avantageusement, une gamme de longueurs d'onde d'émission correspondant : - à la gamme de longueurs d'onde d'absorption de la partie supérieure du substrat
- et à la gamme de longueurs d'onde de transparence du matériau amorphe ou polycristallin à cristalliser.
Par ailleurs, le faisceau laser peut également être continu ou puisé et il peut être un laser CO2 ou YAG.
De plus, l'étape de traitement thermique doit provoquer, simultanément le passage de la partie supérieure du substrat en phase liquide ou liquide surfondu, et un transfert thermique dans la couche mince à cristalliser, depuis l'interface de ladite couche avec le substrat vers l'interface de ladite couche et la couche métallique.
Or, pour obtenir un flux thermique le plus intense possible, le coefficient d'absorption de la partie supérieure du substrat est, avantageusement, trois fois supérieur à celui de la couche mince à cristalliser, dans la gamme de longueurs d'onde d'émission du faisceau laser. Le temps de transfert thermique entre l'interface entre la partie supérieure du substrat et la couche mince à cristalliser et l'interface entre la couche mince à cristalliser et la couche métallique est, en particulier, de l'ordre de 25ps pour une couche mince de 100nm. En effet, il a été trouvé, de manière surprenante, que le transfert thermique de la chaleur depuis la partie supérieure du substrat vers la couche mince à cristalliser provoque une mise en contrainte de la couche mince à cristalliser. Or, cette mise en contrainte est d'autant plus intense que la rampe thermique est rapide et que la différence de température instantanée entre le substrat et la couche est importante. De plus, cette mise en contrainte initiale favorise thermodynamiquement la cristallisation, puisqu'il y a alors réduction du volume molaire de la couche mince à cristalliser, qui tend vers celui de la phase cristalline.
Le flux thermique doit être maintenu, afin que la croissance cristalline « à l'état solide» puisse se poursuivre. Pour cela, la chaleur issue de la partie supérieure du substrat ainsi que l'enthalpie de cristallisation doivent pouvoir être évacuées en surface de la couche mince en train de cristalliser. Cette évacuation est réalisée de manière radiative par la couche métallique.
De la même manière, lors de la redescente en température, la zone surfondue du substrat s'adapte à la densification de la couche cristallisée, avant de passer à l'état solide.
Selon un premier mode de réalisation, représenté sur les figures 1 à 7, la cristallisation d'un matériau est obtenue à partir d'un substrat 1 formé, par exemple, par un matériau cristallin qui, rendu amorphe, présente un phénomène de transition vitreuse. Le substrat 1 est, en particulier, traité pour former une partie supérieure 2 amorphe dans le substrat 1. Les flèches F1 représentent, sur la figure 2, l'étape de traitement permettant de rendre la partie supérieure 2 du substrat 1 amorphe. À titre d'exemple, la partie supérieure 2 du substrat 1 peut être rendue amorphe par polissage ou par implantation ionique.
Comme illustré sur la figure 4, une couche mince 3 constituée par un matériau à cristalliser est, ensuite, déposée sur la surface libre de la partie supérieure 2 du substrat 1. La surface libre de la partie supérieure du substrat peut être préalablement nettoyée, avant le dépôt de la couche mince 3. De plus, sur la figure 4, la couche mince 3 est déposée sur la totalité de la surface libre de la partie supérieure 2 du substrat 1.
Le matériau à cristalliser est, plus particulièrement, déposé sous une forme amorphe ou polychstalline. Il peut être de tout type dès lors qu'il est apte à cristalliser en phase solide. À titre d'exemple, il est un matériau semiconducteur tel que le silicium, le germanium, l'arséniure de gallium (AsGa), l'arséniure de gallium et d'indium (InGaAs), l'antimoniure d'indium (InSb). Il peut également être un matériau isolant tel qu'un oxyde, par exemple l'oxyde de silicium (Siθ2), l'oxyde de bore (B2O3), l'oxyde de titane (TÏO2), l'oxyde de tantale (Ta2θs) ou bien il peut être du séléniure d'arsenic (As23).
De plus, le dépôt de la couche mince 3 peut être de tout type connu. Par exemple, la couche mince 3 peut être déposée par évaporation, par pulvérisation éventuellement assistée par canon à ions ou par magnétron.
Puis, comme représenté sur la figure 5, une couche métallique 4 est déposée sur une zone de la surface libre de la couche mince 3. L'épaisseur de ladite couche métallique 4 est comprise entre 1 nm et 20nm, avantageusement entre 5nm et 10nm.
La couche métallique 4 est, en particulier, constituée par un métal tel qu'un métal utilisé en catalyse (Ni, Pd, Pt), mais pas seulement. Il peut également être choisi parmi Cu, Ag, Cr, Au, Fe.... De plus, la couche métallique 4 peut être constituée par un métal pur, un alliage métallique ou un mélange de métaux (Ni+Cr, Ni+Au...).
Par ailleurs, contrairement à l'enseignement du document US-A-5994164, la couche métallique 4 n'est pas, dans le cadre de l'invention, destinée à jouer le rôle de catalyseur pour ajuster de manière contrôlée la taille des grains. C'est l'association de ladite couche métallique avec un traitement thermique particulier permettant à la partie supérieure du substrat de passer dans un état liquide ou de liquide surfondu, avantageusement sans chauffer directement la couche mince à cristalliser qui permet, selon l'invention, d'obtenir la cristallisation en phase solide. Plus particulièrement, la couche métallique 4 sert de radiateur pour évacuer la chaleur se trouvant dans la couche mince à cristalliser. Sans cette couche métallique, la couche à cristalliser passe à l'état liquide et le procédé n'est plus un procédé en « phase solide ».
Puis, comme représenté sur les figures 6 et 7, une fois la couche mince 3 et la couche métallique 4 déposées, l'ensemble, constitué par le substrat 1 , la couche mince 3 et la couche métallique 4, subit un traitement thermique. Le traitement thermique est destiné à apporter de la chaleur à la partie supérieure 2 du substrat 1 et à provoquer une montée rapide de la température dans la partie supérieure 2 du substrat 1 et plus généralement dans le substrat 1. La température de la partie supérieure 2 du substrat 1 monte, ainsi, au moins jusqu'à la zone de transition vitreuse, de sorte que ladite partie supérieure 2 passe au moins à l'état de liquide surfondu. La montée en température de la partie supérieure 2 du substrat doit être rapide, avec une vitesse supérieure à 100K/s.
Une telle montée en température peut être obtenue en faisant interagir, par exemple, un faisceau laser continu ou puisé sur la partie supérieure 2 du substrat 1 , à travers la couche métallique 4 et la couche mince 3. Dans ce cas, la gamme de longueurs d'onde d'émission du faisceau laser correspond à la gamme de longueurs d'onde d'absorption de la partie supérieure 2 du substrat 1. Ainsi, l'émission du faisceau laser est en partie ou totalement absorbée par la partie supérieure 2 du substrat 1. Par contre, la gamme de longueurs d'onde d'émission du faisceau laser correspond également à la gamme de longueurs d'onde de transparence de la couche mince 3. La couche mince 3 n'absorbant pas ou peu les longueurs d'onde du faisceau laser, elle n'est pas chauffée directement. Sur la figure 5, le faisceau laser est représenté par la flèche F2 et il est appliqué de manière à traverser la couche métallique 4 et la couche mince 3 avant d'atteindre la partie supérieure 2 du substrat.
À titre d'exemple, pour une partie supérieure 2 en silice et une couche mince 3 à cristalliser en germanium, le faisceau laser peut être un laser CO2 émettant à 10,6μm. Selon un autre exemple, pour une partie supérieure 2 métallique et une couche mince 3 à cristalliser en silicium, le faisceau laser peut être un laser CO2 ou un laser YAG, émettant à 1 ,064 μm. À cette longueur d'onde, le silicium amorphe absorbe peu (quelques centaines de cm'1) par rapport au métal.
Ainsi, pendant le traitement thermique, la partie supérieure 2 du substrat passe de l'état solide à un état de liquide surfondu et permet la cristallisation d'une zone 5 de la couche mince 3, par transfert thermique. La zone 5 correspond à la zone de la couche mince 3, disposée sous la couche métallique 4, tandis que le reste de la couche mince 3, non recouvert par la couche mince métallique, n'est pas cristallisé (figure 7). De plus, si la couche métallique 4 recouvre la totalité de la couche mince 3 à cristalliser, celle-ci peut être entièrement cristallisée.
À titre d'exemple, la figure 8 représente le cycle en température appliqué à la partie supérieure 2 du substrat 1 en fonction du temps, dans le mode de réalisation représenté sur les figures 1 à 7. La température de la partie supérieure 2 du substrat 1 reste, par exemple, constante pendant le dépôt de la couche mince 3, puis elle augmente rapidement pendant l'étape de traitement thermique. L'augmentation de la température de la partie supérieure 2 du substrat 1 est, par exemple, linéaire et elle va au-delà de la température de transition vitreuse du matériau de la partie supérieure 2 du substrat 1. La partie supérieure 2 du substrat 1 peut être en tout type de matériau solide, amorphe ou apte à le devenir par traitement, dès lors que le matériau est apte à passer à l'état liquide ou de liquide surfondu. Ainsi, la partie supérieure 2 du substrat 1 ou même la totalité du substrat 1 peut être amorphe avant le procédé de cristallisation. Le substrat ou au moins une partie supérieure du substrat peut, par exemple, être constitué par un verre, tel qu'un oxyde amorphe, un élément ou un matériau semi-conducteur amorphe ou par un polymère non cristallin. Comme l'illustre le mode de réalisation représenté par les figures 1 à 7, la partie supérieure du substrat ou même la totalité du substrat peut également être, en début de procédé, sous une forme cristalline. Dans ce cas, elle peut subir, avant le traitement thermique, un traitement permettant d'obtenir au moins une partie supérieure sous forme amorphe. La partie supérieure du substrat ou la totalité du substrat peut, ainsi, être rendue amorphe avant le dépôt de la couche mince à cristalliser 3, avant ou après le dépôt de la couche métallique 4.
Ainsi, comme illustré dans une variante de réalisation représentée sur les figures 9 à 12, le substrat 1 peut rester cristallin pendant le dépôt de la couche mince 3. Un traitement, illustré par les flèches F1 sur la figure 11 , peut, alors, être réalisé après le dépôt de la couche mince 3 et avant le traitement thermique. Ce traitement permet d'obtenir une partie supérieure 2 amorphe. Enfin, même si le substrat 1 ou tout du moins une partie supérieure 2 du substrat est sous forme amorphe avant le dépôt de la couche mince 3, le substrat ou ladite partie supérieure 2 du substrat 1 peut subir un traitement apte à renforcer l'état de contrainte en surface, avant le traitement thermique. Un tel traitement peut être réalisé avant le dépôt ou après le dépôt de la couche mince 3. À titre d'exemple, le traitement peut être :
- un traitement mécanique tel qu'un polissage, un sablage, - un traitement thermique tel qu'une fusion suivie d'une trempe,
- un traitement physico-chimique tel qu'un dépôt en phase vapeur ou une implantation ionique. Dans un autre mode de réalisation illustré sur les figures 13 à 16, plusieurs couche minces, respectivement constituées par des matériaux distincts à cristalliser, par exemple sous forme monocristalline sont successivement déposées sur la surface de la partie supérieure 2 du substrat 1. À titre d'exemple, sur la figure 13, une couche mince supplémentaire 6 est déposée sur la couche mince 3 à cristalliser, de manière à obtenir deux couches minces superposées. Une couche métallique 4 est, ensuite, déposée sur une zone de la couche mince supplémentaire 6. L'ensemble, formé par le substrat 1 , les deux couches minces superposées 6, 3 et la couche métallique 4, subit ensuite un traitement thermique (flèche F2 sur la figure 15) destiné à cristalliser non seulement le matériau de la couche mince 3 mais également celui de la couche mince supplémentaire 6. Une fois le traitement thermique terminé, deux zones 5 et 7, superposées et chacune cristallisées, par exemple sous forme monocristalline sont, alors obtenues respectivement dans les couches minces 3 et 6, sous la couche métallique 4.
Il est, ainsi, possible de cristalliser, par une étape unique de traitement thermique, une pluralité de couches minces superposées en matériaux distincts et cristallins. Un tel mode de réalisation est également appelé cristallisation en mode série et il peut notamment être utilisé pour réaliser des hétérostructures. La cristallisation peut même inclure la couche métallique. De plus, la cristallisation a lieu sous la couche métallique 4 et à ses abords. De plus, si la couche métallique 4 recouvre la totalité de la surface libre de la couche mince supplémentaire 6, les couches 3 et 6 peuvent être totalement cristallisées.
Dans une variante représentée sur les figures 17 à 20, une pluralité de couches minces peut être déposée sur une pluralité de zones de la surface de la partie supérieure 2 du substrat 1 , avant le traitement thermique. Ainsi, sur la figure 17, la surface de la partie supérieure 2 est recouverte par deux couches minces 8 et 9, adjacentes et respectivement constituées par des matériaux distincts à cristalliser, par exemple sous forme monocristalline. Une couche métallique 4, d'une épaisseur comprise entre 1 nm et 20nm est, ensuite, déposée sur l'empilement, de manière à avantageusement recouvrir une partie de la couche mince 8 et une partie de la couche mince 9 (figure 18). L'ensemble formé par le substrat, les deux couches minces adjacentes 8 et 9 et la couche métallique 4 subit ensuite un traitement thermique (flèche F2 sur la figure 19) destiné à cristalliser en même temps les matériaux respectifs des couches minces 8 et 9 disposés sous la couche métallique 4. Une fois le traitement thermique terminé, on obtient alors, dans les couches minces 8 et 9, des zones 10 et 11 adjacentes, cristallisées et correspondant aux zones respectives des couches minces 8 et 9 disposées sous la couche métallique 4.
Il est, alors, possible de cristalliser, en une seule étape de traitement thermique, une pluralité de couches minces adjacentes. Plus particulièrement, les deux couches minces 8 et 9 peuvent être successivement déposées sur la surface de la partie supérieure 2 du substrat. Ainsi, la couche mince 8 peut être préalablement déposée sur une zone de la surface de la partie supérieure 2 du substrat, à travers un masque cachant la zone destinée à être recouverte par la deuxième couche mince 8.
Puis, la deuxième couche mince est déposée sur la zone libre du substrat, à travers un masque cachant la couche mince 8 déjà déposée. Une telle variante est, également appelée cristallisation en mode parallèle et elle est, particulièrement, adaptée pour associer les fonctionnalités de plusieurs matériaux sur un même substrat.
Un procédé de cristallisation selon l'invention permet donc de cristalliser un matériau d'épaisseur nanométrique. Contrairement au procédé de Czochralski, il est, alors, possible d'obtenir des couches minces cristallines de très faible épaisseur, par exemple d'une épaisseur de l'ordre d'une centaine de nanomètres, sans nécessiter d'étapes supplémentaires de conditionnement. De plus, un tel procédé permet d'obtenir des couches minces cristallines de très grande surface et avantageusement monocristallines, avec des propriétés homogènes sur toute ladite surface.
Un tel procédé est relativement peu coûteux, car il ne nécessite pas de creuset et il présente un budget thermique relativement faible puisque l'apport de chaleur nécessaire à la cristallisation n'a pas besoin d'atteindre la température de fusion du matériau à cristalliser.
Enfin, la couche mince cristallisée peut être dans une phase cristalline différente, avec des propriétés physiques différentes de celles synthétisées par les procédés de cristallisation existants. Un tel procédé de réalisation peut être utilisé dans le domaine des procédés nanotechnologiques, mais également dans le domaine énergétique et plus particulièrement dans le domaine des cellules photovoltaïques.
A titre d'exemple, un dispositif de mise en œuvre du procédé de cristallisation peut comporter : - une source laser CO2 émettant un faisceau laser continu
- un dispositif de contrôle et de stabilité de la puissance du faisceau laser
- une lentille de focalisation destinée à focaliser le faisceau laser sur le substrat muni d'une couche mince à cristalliser et d'une couche métallique, préalablement déposées sur ledit substrat - et un dispositif de déplacement dudit substrat ou du faisceau laser, de manière à pouvoir traiter thermiquement l'ensemble de la surface du substrat.
Le substrat est, par exemple, formé par de la silice S2 commercialisée par la société Heraeus, de 1mm d'épaisseur. La couche mince à cristalliser est, par exemple, en silicium amorphe déposé par pulvérisation par faisceau d'ions ou IBS (« Ion Beam Sputtering ») et présente, plus particulièrement, une épaisseur de 100 nm. La couche métallique, qui permet le transfert thermique, est une couche de 5nm en argent. Elle est déposée dans la même enceinte que celle utilisée pour déposer la couche mince à cristalliser.
Le faisceau laser CO2 continu permet de réaliser un traitement thermique de la couche supérieure du substrat. La longueur d'onde d'émission dudit laser est de l'ordre de 10,59 μm, ce qui correspond à la raie d'émission du laser la plus puissante. Cette longueur d'onde d'excitation est adaptée à la gamme d'absorption de la couche supérieure du substrat, ce qui permet une montée en température de ladite couche supérieure. En effet, dans la silice amorphe, toutes les raies d'émission du faisceau laser CO2, (9,2 - 10,8 μm) peuvent être utilisées. La stabilité en puissance de la source d'excitation est standard, typiquement de l'ordre de ±3%, sur la durée du traitement thermique. De plus, le mode d'émission laser peut être quelconque (gaussien, plat, annulaire ...), mais il doit être stable. Il est, avantageusement, plat. Enfin, la puissance nécessaire pour effectuer le traitement thermique est une puissance linéique qui dépend des dimensions caractéristiques du faisceau laser et des propriétés physiques de la couche supérieure amorphe du substrat (absorption, conductivité thermique ...), ainsi que de la vitesse de balayage dudit faisceau. Pour un faisceau laser gaussien de diamètre à 1/e de 300 μm, la puissance laser incidente pour réussir la cristallisation est typiquement de 8 Watts, à la vitesse de 1 cm/s, en interaction avec le dispositif de mise en œuvre décrit ci-dessus.
Ainsi, le rayonnement du faisceau laser CO2 est incident en face avant de l'empilement formé par la couche métallique, la couche mince à cristalliser et le substrat. Il traverse le métal et la couche mince à cristalliser, avant d'être absorbé dans le substrat et provoquer une montée rapide de la température dudit substrat, avec passage dans la zone de transition vitreuse, ce qui provoque la cristallisation de la couche mince en silicium. Le dispositif de contrôle et de stabilité de la puissance du laser comprend, de préférence, plusieurs éléments : un variateur de puissance laser qui peut être constitué d'une lame demi onde suivie d'un polariseur. Un tel dispositif permet d'ajuster la puissance d'excitation à une consigne et donc de faire varier la puissance appliquée au substrat à traiter thermiquement. Ce dispositif peut être complété par un obturateur et par un dispositif de mesure de la puissance laser destiné à vérifier que la consigne de puissance est bien atteinte. Il peut même inclure un dispositif de stabilisation en temps réel de la puissance du laser de recuit. L'obturateur pourrait être remplacé par un dispositif de commutation « éteint-allumé » de la source laser elle-même.
La lentille de focalisation est, par exemple, en ZnSe et elle peut être traitée pour être anti-reflet à la longueur d'onde d'émission du faisceau laser. Sa distance focale peut être adaptée à la tache focale souhaitée sur la couche mince à cristalliser. De plus, les dimensions de la tache focale, à la surface de l'empilement, peuvent être déterminées par une méthode dite du couteau. La lentille peut également être cylindrique, afin de produire un pinceau lumineux plus étendu dans une direction perpendiculaire au sens de balayage. Ceci permet de couvrir une plus grande surface de substrat par ligne de passage.
L'invention n'est pas limitée aux modes de réalisation décrits ci-dessus. La surface de la partie supérieure 2 du substrat 1 n'est pas nécessairement plane. Elle peut, par exemple, être sphérique, concave ou convexe, ou bien elle peut comporter des zones en creux et/ou des zones en relief. De plus, ladite surface peut être structurée lors de son passage à l'état liquide ou de liquide surfondu. Cette structuration peut être induite par différents procédés mécaniques, acoustiques, lasers, ...
Un tel procédé de cristallisation peut être appliqué à des dispositifs qui nécessitent des couches cristallines, tels que des dispositifs électroniques (diode, transistor, ...). des dispositifs optiques (miroir, optique sphérique,...), des dispositifs photoniques (guide d'onde,...),...
Le procédé de cristallisation est, en effet, intrinsèquement favorable à la cristallisation des couches ayant une épaisseur allant de l'ordre du nanomètre jusqu'à quelques centaines de nanomètres. Cependant, pour cristalliser une couche plus épaisse ou obtenir de nouvelles phases cristallines, il peut être avantageux de refroidir initialement l'empilement formé par le substrat, la couche mince à cristalliser et la couche métallique, afin de faciliter le transfert thermique du substrat à travers la couche amorphe que l'on désire cristalliser jusqu'à la couche métallique de surface.

Claims

Revendications
1. Procédé de cristallisation, caractérisé en ce qu'il comporte les étapes successives suivantes : a) dépôt d'au moins d'une couche mince (3) en matériau amorphe ou polycristallin, sur au moins une zone de la surface d'une partie supérieure (2) d'un substrat (1), b) dépôt d'au moins une couche métallique (4), d'une épaisseur comprise entre 1nm et 20nm, avantageusement entre 5nm et 10nm, sur une zone de ladite couche mince (3), la partie supérieure (2) du substrat (1) étant constituée, après l'étape b), par un matériau amorphe apte à passer dans un état de liquide ou de liquide surfondu, c) et traitement thermique pour permettre la croissance cristalline du matériau de la couche mince (3), en provoquant simultanément :
- une montée de la température de la partie supérieure (2) du substrat (1) à une vitesse supérieure à 100K par seconde, jusqu'à ce que le matériau de la partie supérieure du substrat passe à l'état de liquide ou à l'état de liquide surfondu - et un transfert thermique depuis l'interface entre la partie supérieure (2) du substrat (1) et la couche mince (3) vers l'interface entre la couche mince (3) et la couche métallique (4).
2. Procédé selon la revendication 1 , caractérisé en ce que l'étape c) est réalisée par application d'un faisceau laser continu ou puisé, présentant une gamme de longueurs d'onde d'émission correspondant à la gamme de longueurs d'onde d'absorption de la partie supérieure (2) du substrat (1) et à la gamme de longueurs d'onde de transparence du matériau amorphe ou polycristallin de la couche mince (3) à cristalliser.
3. Procédé selon la revendication 2, caractérisé en ce que le coefficient d'absorption de la partie supérieure du substrat est, trois fois supérieur à celui de la couche mince à cristalliser, dans la gamme de longueurs d'onde d'émission du faisceau laser.
4. Procédé selon l'une des revendications 2 et 3, caractérisé en ce que le faisceau laser est obtenu à partir d'une source laser CO2 ou YAG.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'une étape de refroidissement de l'empilement comportant le substrat, la couche mince (3) et la couche métallique (4) est réalisée entre les étapes b) et c).
6. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la partie supérieure (2) du substrat (1) est amorphe avant l'étape a).
7. Procédé selon l'une quelconque des revendications 1 à 5, caractérisé en ce que la partie supérieure (2) du substrat (1) étant cristalline avant l'étape a), elle est rendue amorphe après l'une des deux étapes a) et b).
8. Procédé selon l'une quelconque des revendications 1 à 7, caractérisé en ce que la partie supérieure (2) du substrat (1) est constituée par un matériau choisi parmi les verres, les céramiques, les polymères non cristallins, les métaux et les alliages métalliques.
9. Procédé selon l'une quelconque des revendications 1 à 8, caractérisé en ce que le substrat (1) est entièrement en matériau amorphe avant l'étape c).
10. Procédé selon l'une quelconque des revendications 1 à 9, caractérisé en ce que l'étape a) comporte le dépôt successif d'une pluralité de couches minces (3, 5) sur ladite zone de la surface de ladite partie supérieure (2) du substrat (1).
11. Procédé selon l'une quelconque des revendications 1 à 10, caractérisé en ce que l'étape a) comporte le dépôt d'une pluralité de couches minces (7, 8) sur une pluralité de zones de la surface de la partie supérieure (2) du substrat (1).
12. Procédé selon l'une quelconque des revendications 1 à 11 , caractérisé en ce que l'étape b) comporte le dépôt d'une pluralité de couches métalliques.
PCT/FR2007/001965 2007-11-28 2007-11-28 Procede de cristallisation WO2009068756A1 (fr)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/FR2007/001965 WO2009068756A1 (fr) 2007-11-28 2007-11-28 Procede de cristallisation
AT08354088T ATE516389T1 (de) 2007-11-28 2008-11-28 Kristallisierungsverfahren
JP2008305198A JP2009135501A (ja) 2007-11-28 2008-11-28 結晶化方法
ES08354088T ES2368774T3 (es) 2007-11-28 2008-11-28 Procedimiento de cristalización.
US12/292,882 US7923317B2 (en) 2007-11-28 2008-11-28 Crystallization method
EP08354088A EP2071058B1 (fr) 2007-11-28 2008-11-28 Procédé de cristallisation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/FR2007/001965 WO2009068756A1 (fr) 2007-11-28 2007-11-28 Procede de cristallisation

Publications (1)

Publication Number Publication Date
WO2009068756A1 true WO2009068756A1 (fr) 2009-06-04

Family

ID=39855108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/001965 WO2009068756A1 (fr) 2007-11-28 2007-11-28 Procede de cristallisation

Country Status (6)

Country Link
US (1) US7923317B2 (fr)
EP (1) EP2071058B1 (fr)
JP (1) JP2009135501A (fr)
AT (1) ATE516389T1 (fr)
ES (1) ES2368774T3 (fr)
WO (1) WO2009068756A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095482A (zh) * 2017-09-14 2020-05-01 爱尔兰国立高威大学 处理靶材料的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2477212A1 (fr) * 2008-06-09 2012-07-18 Dritte Patentportfolio Beteiligungsgesellschaft mbH & Co. KG Couches fines de silicium poly-cristallin fabriquées par échange de couches induit par du métal et soutenu par du titane
JP2010098003A (ja) * 2008-10-14 2010-04-30 Osaka Univ レーザー結晶化法
JP5610393B2 (ja) 2009-12-29 2014-10-22 国立大学法人 東京大学 自己組織化されたナノ構造薄膜の製造方法、ナノ構造薄膜
FR2989389B1 (fr) 2012-04-11 2015-07-17 Commissariat Energie Atomique Procede de preparation d'une couche de silicium cristallise a gros grains.
US20140065838A1 (en) * 2012-08-31 2014-03-06 Carolyn R. Ellinger Thin film dielectric layer formation
FR3008994A1 (fr) * 2013-07-25 2015-01-30 Commissariat Energie Atomique Procede de cristallisation en phase solide
CN108091708B (zh) * 2017-12-08 2020-08-14 北京通美晶体技术有限公司 锗单晶片、其制法、晶棒的制法及单晶片的用途
CN114807893A (zh) * 2021-01-19 2022-07-29 圆益Ips股份有限公司 薄膜形成方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6278130B1 (en) * 1998-05-08 2001-08-21 Seung-Ki Joo Liquid crystal display and fabricating method thereof
US20040137671A1 (en) * 2002-12-31 2004-07-15 Lg. Philips Lcd Co., Ltd. Method of crystallizing amorphous silicon for use in thin film transistor
US20040142543A1 (en) * 1994-08-26 2004-07-22 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device utilizing a catalyst material solution
US20060267073A1 (en) * 2002-03-22 2006-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory cell and semiconductor memory device
US7192818B1 (en) * 2005-09-22 2007-03-20 National Taiwan University Polysilicon thin film fabrication method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6168385A (ja) 1984-09-10 1986-04-08 Hitachi Ltd 単結晶薄膜形成方法
US5994164A (en) 1997-03-18 1999-11-30 The Penn State Research Foundation Nanostructure tailoring of material properties using controlled crystallization
JP2000208771A (ja) * 1999-01-11 2000-07-28 Hitachi Ltd 半導体装置、液晶表示装置およびこれらの製造方法
KR100577795B1 (ko) 2003-12-30 2006-05-11 비오이 하이디스 테크놀로지 주식회사 다결정 실리콘막 형성방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040142543A1 (en) * 1994-08-26 2004-07-22 Semiconductor Energy Laboratory Co., Ltd. Method of fabricating a semiconductor device utilizing a catalyst material solution
US6278130B1 (en) * 1998-05-08 2001-08-21 Seung-Ki Joo Liquid crystal display and fabricating method thereof
US20060267073A1 (en) * 2002-03-22 2006-11-30 Semiconductor Energy Laboratory Co., Ltd. Semiconductor memory cell and semiconductor memory device
US20040137671A1 (en) * 2002-12-31 2004-07-15 Lg. Philips Lcd Co., Ltd. Method of crystallizing amorphous silicon for use in thin film transistor
US7192818B1 (en) * 2005-09-22 2007-03-20 National Taiwan University Polysilicon thin film fabrication method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HU G-R ET AL: "GROWTH MECHANISM OF LASER ANNEALING OF NICKEL-INDUCED LATERAL CRYSTALLIZED SILICON FILMS", JAPANESE JOURNAL OF APPLIED PHYSICS, JAPAN SOCIETY OF APPLIED PHYSICS, TOKYO.; JP, vol. 45, no. 1A, 1 January 2006 (2006-01-01), pages 21 - 27, XP001245550, ISSN: 0021-4922 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111095482A (zh) * 2017-09-14 2020-05-01 爱尔兰国立高威大学 处理靶材料的方法

Also Published As

Publication number Publication date
ATE516389T1 (de) 2011-07-15
US20100075487A1 (en) 2010-03-25
EP2071058B1 (fr) 2011-07-13
EP2071058A1 (fr) 2009-06-17
ES2368774T3 (es) 2011-11-22
US7923317B2 (en) 2011-04-12
JP2009135501A (ja) 2009-06-18

Similar Documents

Publication Publication Date Title
EP2071058B1 (fr) Procédé de cristallisation
CA2762319C (fr) Procede de depot de couche mince et produit obtenu
EP2268587B1 (fr) Procede de dépôt de couche mince
EP0673549A1 (fr) Cellule photovoltaique et procede de fabrication d'une telle cellule
FR2969391A1 (fr) Procédé de fabrication d'un dispositif oled
FR2785897A1 (fr) Couche mince d'oxyde d'hafnium et procede de depot
WO2011107701A1 (fr) Cellule photovoltaïque incorporant une nouvelle couche tco
EP3148949B1 (fr) Materiau comprenant une couche fonctionnelle a base d'argent cristallisee sur une couche d'oxyde de nickel
Belosludtsev et al. Significant increase of UV reflectivity of SiC galvanometer mirror scanners for the high-power laser applications
EP1337683B1 (fr) Procede d'auto-organisation de microstructures ou de nanostructures et dispositif associe obtenu
FR3056580A1 (fr) Substrat revetu d'un revetement bas-emissif
FR3056579A1 (fr) Substrat revetu d'un revetement bas-emissif
FR2859820A1 (fr) Structure multi-zones apte a subir un recuit par irradiation lumineuse et procede de mise en oeuvre de ladite structure
FR2844920A1 (fr) Transistor a couche mince de silicium et son procede de fabrication
WO2017064420A1 (fr) Procede de recuit rapide d'un empilement de couches minces contenant une surcouche a base d'indium
EP3956700A1 (fr) Réseau de diffraction en réflexion résistant à un flux lumineux à impulsions ultra-courtes de forte puissance crête et son procédé de fabrication
EP3776633A1 (fr) Procédé de séparation d'une structure composite démontable au moyen d'un flux lumineux
FR2991980A1 (fr) Procede de depot de couches minces avec etape de traitement sous vide et produit obtenu
FR3008994A1 (fr) Procede de cristallisation en phase solide
EP2758560B1 (fr) Miroir a couche argent par magnetron
WO2005095296A2 (fr) Procede de preparation d’un film dope aux terres rares

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07870360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07870360

Country of ref document: EP

Kind code of ref document: A1