WO2009046696A2 - Materialsystem und verfahren zum verändern von eigenschaften eines kunststoffbauteiles - Google Patents

Materialsystem und verfahren zum verändern von eigenschaften eines kunststoffbauteiles Download PDF

Info

Publication number
WO2009046696A2
WO2009046696A2 PCT/DE2008/001593 DE2008001593W WO2009046696A2 WO 2009046696 A2 WO2009046696 A2 WO 2009046696A2 DE 2008001593 W DE2008001593 W DE 2008001593W WO 2009046696 A2 WO2009046696 A2 WO 2009046696A2
Authority
WO
WIPO (PCT)
Prior art keywords
medium
component
plastic component
material system
plastic
Prior art date
Application number
PCT/DE2008/001593
Other languages
English (en)
French (fr)
Other versions
WO2009046696A3 (de
Inventor
Ingo Ederer
Daniel GÜNTHER
Johannes Franz GÜNTHER
Original Assignee
Voxeljet Technology Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Voxeljet Technology Gmbh filed Critical Voxeljet Technology Gmbh
Priority to US12/681,194 priority Critical patent/US8349233B2/en
Priority to DE502008002970T priority patent/DE502008002970D1/de
Priority to EP08801346A priority patent/EP2200813B1/de
Priority to AT08801346T priority patent/ATE502760T1/de
Publication of WO2009046696A2 publication Critical patent/WO2009046696A2/de
Publication of WO2009046696A3 publication Critical patent/WO2009046696A3/de
Priority to US13/706,756 priority patent/US20130092082A1/en
Priority to US14/665,474 priority patent/US20150210822A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/36After-treatment
    • C08J9/40Impregnation
    • C08J9/405Impregnation with polymerisable compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C3/00Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material
    • B05C3/005Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material incorporating means for heating or cooling the liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C3/00Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material
    • B05C3/02Apparatus in which the work is brought into contact with a bulk quantity of liquid or other fluent material the work being immersed in the liquid or other fluent material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C5/00Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work
    • B05C5/02Apparatus in which liquid or other fluent material is projected, poured or allowed to flow on to the surface of the work the liquid or other fluent material being discharged through an outlet orifice by pressure, e.g. from an outlet device in contact or almost in contact, with the work
    • B05C5/0283Flat jet coaters, i.e. apparatus in which the liquid or other fluent material is projected from the outlet as a cohesive flat jet in direction of the work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/0009After-treatment of articles without altering their shape; Apparatus therefor using liquids, e.g. solvents, swelling agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y10/00Processes of additive manufacturing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y70/00Materials specially adapted for additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/02Chemical treatment or coating of shaped articles made of macromolecular substances with solvents, e.g. swelling agents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J7/00Chemical treatment or coating of shaped articles made of macromolecular substances
    • C08J7/12Chemical modification
    • C08J7/16Chemical modification with polymerisable compounds
    • C08J7/18Chemical modification with polymerisable compounds using wave energy or particle radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B33ADDITIVE MANUFACTURING TECHNOLOGY
    • B33YADDITIVE MANUFACTURING, i.e. MANUFACTURING OF THREE-DIMENSIONAL [3-D] OBJECTS BY ADDITIVE DEPOSITION, ADDITIVE AGGLOMERATION OR ADDITIVE LAYERING, e.g. BY 3-D PRINTING, STEREOLITHOGRAPHY OR SELECTIVE LASER SINTERING
    • B33Y80/00Products made by additive manufacturing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2351/00Characterised by the use of graft polymers in which the grafted component is obtained by reactions only involving carbon-to-carbon unsaturated bonds; Derivatives of such polymers

Definitions

  • the invention relates to a material system and a method for changing the properties of a plastic component.
  • a thin layer of powdered component is applied to a build platform. Subsequently, a portion of the powder is selectively bound, for example by applying binder. This selection corresponds to a section through the component to be achieved.
  • the construction platform is lowered by one layer thickness and provided with a new layer of particulate material, which is also solidified as described above. These steps are repeated until a certain desired height of the object is reached.
  • the printed and solidified areas create a three-dimensional object.
  • Such a method is known for example from DE 69634921.
  • other powder-based rapid prototyping processes such as electron beam sintering, in which each a loose particulate material also applied in layers and selectively solidified using a controlled physical radiation source work in a similar manner.
  • the components produced by means of generative 3D processes often have a certain porosity.
  • the porosity of the components is mostly due to the method of selective bonding.
  • the connection by a laser beam corresponds to the well-known sintering.
  • the grains of the powder combine at their points of contact by melting together.
  • the space between the grains remains free.
  • the situation is similar in the case of components in which the selective hardening is achieved by metering in a liquid (SD printing). If the smallest possible amount of liquid is metered in compared to the powder mass per unit of space, a porous body is formed. This is known, for example, from DE 60008778.
  • the absorbency of porous parts makes it possible, similar to the known method for the production of fiber composites, to introduce liquid media into the component.
  • DE 195 45 167 A1 discloses coating a model produced by selective laser sintering with wax so that a closed surface is formed. subsequent Immersion processes in liquid molding material require a liquid-tight part to ensure the dimensional accuracy of the mold. The strength properties are in the background here. The process uses the thermal phase transition from solid to liquid and vice versa.
  • a disadvantage of a generalization of this procedure is that, depending on the infiltration material, the component must be exposed to considerable temperatures.
  • infiltration materials with a low melting point usually also have low strength values.
  • infiltration resins which are introduced liquid into the porous body and solidify in the form of dispersions with evaporation of the solvent or as resin mixtures by a polymerization in the component.
  • Such processes are known, for example, from WO 2005/82603 A1, US Pat. No. 6,375,874 and US Pat. No. 5,616,294.
  • Such dispersions described in these documents are suitable only for thin-walled components due to the need to evaporate the solvent.
  • Thermal processes based on the model of wax infiltration are not very suitable for increasing the strength due to the temperature sensitivity for porous plastic components.
  • Polymerizing mixtures for infiltration are usually 2-component systems, such as epoxy resins. Such mixtures achieve high strength values. To the properties however, they are not sufficient for industrially polymerized products, such as PE, PET, PMMA.
  • Polymerizing mixtures as known in the art, have the following limits.
  • the polymerizing infiltrate forms with the porous component or the matrix a composite material which is weakened by the phase boundaries in the interior.
  • the strength values of the components are therefore always below the values of the pure infiltrate.
  • a binder component and a resin component are mixed together prior to introduction into the component.
  • the polymerization then starts with a time delay.
  • a disadvantage of this method is that a once set mixture must be processed within a short period of time.
  • An immersion method that enables high quantities and a high degree of automation can not be realized economically. The job is usually done by painting with a brush. This method can not be automated and is a complex task for complex geometries.
  • This object is achieved by a method for modifying properties of a plastic component, in which medium is introduced into the plastic component having a porosity and the medium makes a homogeneous connection with it by at least partially releasing the plastic component. Furthermore, the object is achieved by a material system comprising a medium for introduction into a plastic component having a porosity, in which the medium has at least one substance which at least partially dissolves the plastic component and forms a homogeneous connection therewith.
  • the properties of the components can be specifically improved.
  • the creation of porous components, which are subsequently infiltrated is much less time-consuming than the creation of components with very high fluid input, which is necessary to directly create dense parts in the generative process.
  • materials are now used for infiltration, which can dissolve the generatively produced matrix and thus lead to a particularly homogeneous material. dissolve means, therefore, that a homogeneous connection between the matrix and the medium, in particular infiltrate arises.
  • the solidification of the introduced medium takes place by polymerization.
  • an edge layer of the plastic component is accelerated accelerated by chemical and / or physical measures compared to the other plastic component.
  • the component is accelerated in the peripheral layer, in contrast to the rest of the component volume, accelerated and produced in this way a stable framework.
  • the softening by the dissolution of the matrix can thus not influence the geometry.
  • the surface layer solidification could, for example, be carried out by additional application of accelerators and the use of polymerization media with radiation initiation.
  • Accelerated could be defined in such a way that solidification of an edge layer takes place noticeably faster than solidification of the rest of the body. And solidification is not to understand that a complete consolidation has taken place.
  • a dimensional stability that is to say a stability bearing the dead weight, is often sufficient.
  • the faster solidification of the surface layer could be done in accordance with an embodiment of the present invention by the use of two Polymerisationssyteme with different reaction times.
  • the faster solidification of the surface layer is achieved by the entry of high-energy radiation, such as UV radiation or microwave radiation.
  • Another embodiment of the method according to the invention represents the possibility of introducing the medium into the plastic component by means of immersion in a bath of the medium.
  • the porous component could now be automatically infiltrated in a dipping bath.
  • the immersion bath itself does not harden, so that a lasting and economical use of the immersion bath is guaranteed.
  • the liquids of the immersion bath give high strength properties after the polymerization.
  • the material of the porous component makes a connection with the infiltrate, which is similar to a homogeneous material.
  • the curing of the resin should be carried out in an advantageous manner in the time range of a few minutes.
  • the plastic component can further be immersed in a bath with an accelerator. Furthermore, according to the present invention, it may be advantageous if the component is rotated at least during the introduction of medium and / or high-energy radiation.
  • This rotation could be done by one or more axes.
  • a turntable with one or more degrees of freedom could be provided for moving the component.
  • the component In order to ensure the access of the radiation when using the radiation curing, the component is held in as little as possible shielding the radiation holder, for example wires.
  • a simple embodiment is a grate, which is connected to a rotation axis.
  • a material system according to the present invention comprises a medium for introduction into a porosity-having plastic component.
  • the medium has at least one substance which at least partially dissolves the plastic component and forms a homogeneous connection with it.
  • the medium is a monomer.
  • the medium has at least one constituent which is of the same class of substance as a plastic constituent of the plastic component.
  • the material in the medium preferably contains a monomer which is also a constituent of the bridges or the grains of the matrix, ie of the plastic component, or a foreign monomer which dissolves the generatively produced body. Due to the resolution by the liquid solidifies the generatively produced body in a homogeneous manner.
  • the material system further comprises a catalyst and / or a crosslinker.
  • a photoinitiator is also provided.
  • the photoinitiator is provided in the medium.
  • the plastic component and the medium have a methacrylate.
  • Both the material system according to the invention and the method according to the invention can preferably be used for infiltrating porous plastic components, in particular plastic components produced by means of 3-D printing methods.
  • FIG. 1 shows an uninfiltrated and an infiltrated matrix
  • Figure 2 illustrates an infiltrated matrix according to one embodiment of a method and material system of the present invention
  • Figure 3 is a surface hardening according to a preferred embodiment of the present invention.
  • Figure 4 is a dip according to a preferred embodiment of the present invention.
  • Figure 5 is a dip according to another preferred embodiment of the present invention.
  • FIG. 6 shows the irradiation of the component according to a preferred embodiment of the present invention and a spray application method for liquid application according to a preferred embodiment of the present invention
  • Figure 7 shows a holder according to a preferred embodiment of the present invention.
  • a medium 5 is to be introduced into a plastic component 10.
  • the basis for this is a porous component 10.
  • a porous component 10 or the matrix 4 is formed by grains 1 and connecting bridges 2, and between the grains 1 are the cavities 3 or pores of the matrix 4.
  • the present invention relates to bodies whose grains are made of plastic.
  • the bridges 2 of the matrix 4 may consist of a material similar or similar to the grains 1.
  • the connecting bridges 2 between the grains 1 can be produced during the formation of the plastic component 10 or matrix 4 by means of various methods.
  • the bridges 2 are formed from molten material which is produced by the action of heat by the laser beam. This means that the bridges 2 are formed from the material of the grains 1.
  • porous plastic components are used, in which the bridges 2 and the material of the grains 1 belong to a chemically similar plastic system.
  • the temperature control in the laser sintering process and the metered amount of the binder material in 3D printing, the porosity of the component can be controlled within certain limits.
  • a liquid medium which corresponds in its chemical composition to the material system of grains 1 and 2 bridges.
  • the medium 5 penetrates into the cavities 3 by capillary action.
  • the solidification of the medium or infiltrate 5 forms a dense body. Excess material 5 drips off from the surface 6 of the component 10 and, after solidification, the plastic component has a smoother surface than in the uninfiltrated state.
  • FIG. 2 shows that, in accordance with the present invention, in order to achieve high strengths, it has proved advantageous if the medium 5 has a dissolving force with respect to the matrix 4, which should preferably not be insignificant. As part of such a medium 5, it is possible to dissolve the grains 1 and bridges 2 7 and thereby form a homogeneous bond during solidification.
  • the medium comprises 5 monomers which, if appropriate with the addition of auxiliaries, become solidified in or with the component 10 by the formation of molecular chains / structures.
  • the polymerization can take place by the reaction types polyaddition, polycondensation, free-radical and ionic polymerization or ring-opening polymerization.
  • homopolymers, as a chain of a monomer, or copolymers can be used by the polymerization of different monomers.
  • the monomers used preferably have a low viscosity.
  • the medium 5 in addition to various monomers, further constituents.
  • initiators initiating the reaction accelerating catalysts and strength-increasing, crosslinking constituents can be added to the medium 5.
  • These substances can also be used to control the reaction process.
  • reaction inhibiting substances inhibitors may be included.
  • the components necessary for the formation of a polymerizing substance can be introduced in separate phases of the production of the workpiece. Initiating components or catalysts may be incorporated in the powder or grains 1 or bridges 2 of the component 10 during the generative build process. These components can either perform a chemical function during the building process and during infiltration, or two separate systems are realized.
  • a matrix solution is carried out in the method according to the invention and a stabilization of the surface layer 8 of the component 10 is produced.
  • This is preferably achieved by means of two polymerization systems which react with a time delay.
  • the fast system produces a thin, firm edge layer 8 in preferably a few seconds.
  • the second reaction which solidifies the bulk or "inner" part of the material volume 9 (main reaction), takes place in a larger time frame.
  • an initiating system which is bound in the powdery material or is present on its surface, that is to say during the generative production of the component.
  • This system can for example start a radical polymerization.
  • the powdery material constituting the porous member is made of polymethyl methacrylate (PMMA) or Polyethy ⁇ metacrylat (PEMA) consists.
  • the grain contains the initiator dibenzoyl peroxide (BPO).
  • BPO can be made accessible to the reaction via the dissolution action of the monomer in the infiltration fluid.
  • the medium 5 is missing in the preferred method, a necessary for a self-curing component (initiator or catalyst / accelerator).
  • the infiltrate 5 thus cures only in contact with the component 10. This allows it to be kept in a bath for automated dipping infiltration.
  • Preferred for infiltration is a mixture of a monomer or a monomer mixture and a catalyst.
  • a crosslinker may be added.
  • Low viscosity monomers are particularly suitable here. Together with the initiator in the component results in a polymerizable mixture.
  • HEMA 2-hydroxyethyl methacrylate
  • DMPT N, N-dimethyl-p-toluidine
  • Crosslinkers are added to control the heat of reaction in the main consolidation.
  • ethylene glycol dimethyl methacrylate ELDMA
  • HEMA ethylene glycol dimethyl methacrylate
  • CuAA copper acetyl acetonate
  • a liquid component can be used. This may contain an initiator or catalyst in a large amount, compared to the actual infiltration mixture.
  • the infiltration mixture can be admixed with a component which can be activated by radiation.
  • a component can be present in gaseous form and thus come into uniform contact with all edges of the component.
  • the use of a liquid component takes place in an additional immersion step, which is followed by the actual infiltration.
  • the additional liquid may use a catalyst or initiator.
  • the catalyst DMPT is immersed in a grain having BPO and / or CuAA in an ethyl barbituric acid system in which the component is immersed. Due to the low diffusion in the component, only one surface layer is solidified during this procedure.
  • the wetting of the surface layer 8 may be carried out as shown in FIG. 6, rather than by a dipping process with a spray mist system.
  • the component 10 is rotated, for example, on a turntable 19.
  • One or more spray nozzles 21 generate a mist of the liquid component to activate the polymerization of the surface layer.
  • Polymerization system can be used with multiple independent initiator systems.
  • One embodiment is a grain coated with ethylbarbituric acid which contains BPO inside.
  • ethylbarbituric acid which contains BPO inside.
  • a photoinitiator can serve as a second initiation system.
  • a photoinitiator of the type diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide (TPO) is preferred.
  • TPO diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide
  • UV radiation radicals for the polymerization. All radiation types from UVA, UVB to UVC can be used. UVA radiation is preferred for curing.
  • the component 10 is immersed in a bath 12 with the liquid components 11.
  • this bath are all the components that form a reactive and polymerizable mixture with the component in the component 10.
  • the essential requirement of the mixture is that the components in the bath do not react or solidify very slowly without the component in the component.
  • an infiltration mixture of 79% HEMA, 20% EGDMA, 0.5% DMPT, 0.5% TPO is particularly preferred.
  • the device for immersion infiltration includes a bath 12, a liquid-permeable holder 16 for immersion and a hold-down device 17, 18 which prevents the component from floating in the immersion bath (see FIGS. 4 and 5).
  • the immersion bath consists of a chemically resistant container 12. Preference is given to stainless steel. Depending on the infiltration medium, it can be heated to lower the viscosity of the infiltrate.
  • a closure 14 protects the bath from contamination and entry of radiation which can lead to undesired polymerization.
  • An extension represents a cooling device 13, which allows a particularly good preservation of the infiltration fluid.
  • Preferred for the liquid-permeable holder 16 is a basket made of wire. On this is for holding down the component brackets 17 or a weight 18. An axis for lowering 15 allows an automatable and uniform dipping of the components.
  • FIG. 6 shows the hardening of the surface layer with UV radiation 20.
  • the choice of the process parameters therefore takes place in such a way that only a very thin layer is solidified in the edge region. This avoids distortion due to strong residual stresses.
  • the monomer mixture contains 0.5% by weight TPO.
  • the exposure takes place with UVA radiant tubes with an input power of 75 W at a distance of 10 cm.
  • the component is moved in the radiation field.
  • the movement allows the entry of UV radiation to otherwise shadowed areas.
  • the movement can be done by rotation around all spatial axes. A rotational movement about only one axis is preferred.
  • a turntable 19 with one or more degrees of freedom is preferred.
  • the component is held in a holder made of wires, which have the smallest possible cross-section.
  • a simple design represents a rust, which is connected to a rotation axis.
  • a special device can be provided. By movement while the support points of the component 10 are changed in a time sequence.
  • a simple embodiment illustrated in FIG. 7 illustrates two grate grates 22, 23, which are installed inside one another. A rust is shifted against the second in its height. As a result, the component is taken over by the higher grate and the contact points change 24,25.

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zum Verändern von Eigenschaften eines Kunststoffbauteiles, wobei Medium in das eine Porosität aufweisende Kunststoffbauteil eingebracht wird und das Medium durch zumindest teilweise Lösen des Kunststoffbauteils mit diesem eine homogene Verbindung eingeht.

Description

VoxelJet Technology GmbH Augsburg
Materialsystem und Verfahren zum Verändern von Eigenschaften eines
Ku nststoff ba utei les
Die Erfindung betrifft ein Materialsystem sowie ein Verfahren zum Verändern der Eigenschaften eines Kunststoffbauteiles.
Bei der Verwendung generativer dreidimensionaler Prozesse, wie beispielsweise dem selektiven Lasersintern oder dem 3D- Druckverfahren, werden häufig eine gewisse Porosität aufweisende Kunststoffbauteile geschaffen.
Sowohl beim selektiven Lasersintern als auch bei einem SD- Druckverfahren wird eine dünne Schicht einer pulverförmigen Komponente auf eine Bauplattform aufgetragen wird. Im Anschluss daran wird ein Teil des Pulvers selektiv, beispielsweise durch Aufbringen von Bindemittel, gebunden. Diese Selektion entspricht einem Schnitt durch das zu erzielende Bauteil.
Anschließend wird die Bauplattform um eine Schichtdicke abgesenkt und mit einer neuen Schicht Partikelmaterial versehen, die ebenfalls, wie oben beschrieben, verfestigt wird. Diese Schritte werden wiederholt, bis eine gewisse, erwünschte Höhe des Objektes erreicht ist. Aus den bedruckten und verfestigten Bereichen entsteht so ein dreidimensionales Objekt. Ein solches Verfahren ist beispielsweise aus der DE 69634921 bekannt. In ähnlicher Weise arbeiten auch andere Pulver-gestützte Rapid- Prototyping-Prozesse, wie z.B. das Elektron-Beam-Sintern bei denen jeweils ebenso ein loses Partikelmaterial schichtweise ausgebracht und mit Hilfe einer gesteuerten physikalischen Strahlungsquelle selektiv verfestigt wird.
Im Folgenden werden alle diese Verfahren unter dem Begriff „generative 3D-ProzesseΛλ zusammengefasst.
Die mittels generativer 3D-Prozesse hergestellten Bauteile weisen häufig eine gewisse Porosität auf. Die Porosität der Bauteile ist meist durch das Verfahren des selektiven Bindens bedingt. Die Verbindung durch einen Laserstrahl entspricht dem hinlänglich bekannten Sintern. Die Körner des Pulvers verbinden sich an ihren Berührpunkten durch Zusammenschmelzen. Der Raum zwischen den Körnern bleibt frei. Ähnlich sind die Verhältnisse bei Bauteilen, bei denen die selektive Aushärtung durch Eindosieren einer Flüssigkeit realisiert wird (SD- Drucken). Wird im Vergleich zur Pulvermasse pro Raumeinheit eine möglichst geringe Flüssigkeitsmenge eindosiert, entsteht ein poröser Körper. Dies ist beispielsweise aus der DE 60008778 bekannt.
Problematisch für den Einsatz solcher poröser Bauteile sind oft mangelhafte Festigkeitswerte und ungünstige
Oberflächeneigenschaften.
Die Saugfähigkeit poröser Teile ermöglicht es, ähnlich dem bekannten Verfahren zur Erzeugung von Faserverbundwerkstoffen, flüssige Medien in das Bauteil einzubringen.
So ist beispielsweise aus der DE 195 45 167 Al bekannt, ein durch selektives Lasersintern hergestelltes Modell mit Wachs zu überziehen, damit eine geschlossene Oberfläche entsteht. Anschließende Tauchprozesse in flüssigem Formmaterial erfordern ein flüssigkeitsdichtes Teil, um die Formtreue der Gussform zu gewährleisten. Die Festigkeitseigenschaften stehen hier im Hintergrund. Das Verfahren nutzt den thermischen Phasenübergang von fest zu flüssig und umgekehrt.
Nachteilig für eine Verallgemeinerung dieses Vorgehens ist, dass, je nach Infiltrationsmaterial, das Bauteil erheblichen Temperaturen ausgesetzt werden muss. Zudem weisen Infiltrationswerkstoffe mit einem niedrigen Schmelzpunkt zu meist auch niedrige Festigkeitswerte auf.
Beim Aufbau von Prototypen mit den oben genannten, generativen Verfahren müssen insbesondere die Eigenschaften der verwendeten Materialien beachtet werden.
Beispielsweise ist es bekannt, zur Infiltration Harze einzusetzen, die flüssig in den porösen Körper eingebracht werden und in Form von Dispersionen unter Abdampfen des Lösungsmittels oder als Harzgemische durch eine Polymerisierung im Bauteil verfestigen. Solche Verfahren sind beispielsweise aus der WO 2005/82603 Al, der US 6,375,874 und der US 5,616,294 bekannt. Solche in diesen Dokumenten beschriebenen Dispersionen sind auf Grund der Notwendigkeit des Ausdampfens des Lösemittels nur für Bauteile mit dünnen Wandstärken geeignet. Thermische Verfahren nach dem Vorbild der Wachsinfiltration sind für die Festigkeitssteigerung, auf Grund der Temperaturempfindlichkeit für poröse Kunststoffbauteile, wenig geeignet.
Polymerisierende Gemische zum Infiltrieren sind meist 2- Kompenentensysteme, wie beispielsweise Epoxidharze. Solche Gemische erreichen hohe Festigkeitswerte. An die Eigenschaften großtechnisch polymerisierter Produkte, wie beispielsweise PE, PET, PMMA, ... reichen sie jedoch nicht heran.
Polymerisierende Gemische, wie sie aus dem Stand der Technik bekannt sind, haben folgende Grenzen.
Das polymerisierende Infiltrat bildet mit dem porösen Bauteil oder auch der Matrix einen Verbundwerkstoff, der durch die Phasengrenzen im Inneren geschwächt ist. Die Festigkeitswerte der Bauteile liegen deshalb immer unter Werten des reinen Infiltrats.
Ferner werden bei der Verwendung eines Zwei-Komponentensystem üblicherweise eine Binderkomponente und eine Harzkomponente vor dem Einbringen in das Bauteil miteinander vermischt. Die Polymerisation setzt dann zeitlich verzögert ein. Nachteilig an diesem Verfahren ist, dass ein einmal angesetztes Gemisch innerhalb einer kurzen Zeitspanne verarbeitet werden muss. Ein Tauch verfahren, das hohe Stückzahlen und einen hohen Automatisierungsgrad ermöglicht, kann somit nicht wirtschaftlich realisiert werden. Der Auftrag erfolgt meist durch Aufstreichen mit einem Pinsel. Dieses Verfahren ist nicht automatisierbar und stellt bei komplexen Geometrien einen hohen Aufwand dar.
Es ist daher Aufgabe der vorliegenden Erfindung ein Verfahren und ein Materialsystem bereitzustellen, durch die bei einem porösen Kunststoffbauteil höhere Festigkeitswerte erreicht werden können.
Diese Aufgabe wird durch ein Verfahren zum Verändern von Eigenschaften eines Kunststoffbauteiles gelöst, bei dem Medium in das eine Porosität aufweisendes Kunststoffbauteil eingebracht wird und das Medium durch zumindest teilweises Lösen des Kunststoffbauteils mit ihm eine homogene Verbindung eingeht. Ferner wird die Aufgabe durch ein Materialsystem umfassend ein Medium zum Einbringen in ein eine Porosität aufweisendes Kunststoffbauteil gelöst, bei dem das Medium mindestens einen Stoff aufweist, der das Kunststoffbauteil zumindest teilweise anlöst und mit diesem eine homogene Verbindung eingeht.
Besonders bei generativen dreidimensionalen Verfahren, wie dem 3D- Druckverfahren können hohe Volumenleistungen erzielt werden, wenn bewusst poröse Bauteile aufgebaut werden.
Durch eine Infiltration nach dem dreidimensionalen Aufbau, wie beispielsweise dem Drucken, können die Eigenschaften der Bauteile gezielt verbessert werden. Zudem ist die Erstellung poröser Bauteile, die anschließend infiltriert werden, deutlich weniger zeitintensiv als die Erstellung von Bauteilen mit sehr hohem Flüssigkeitseintrag, der notwendig ist, um dichte Teile im generativen Verfahren direkt zu erstellen.
Die erreichbaren Festigkeitswerte infiltrierter Bauteile nach Verfahren des Standes der Technik sind für Prototypen oft zu niedrig, da hierbei das poröse Bauteil eine Art Matrix bildet und das Infiltrat die Hohlräume ausfüllt. Hierbei entsteht eine so genannte innere Kerbwirkung zwischen der Matrix und dem Infiltrat an den Grenzflächen, was zudem einen erheblichen Unsicherheitsfaktor darstellt. Die Festigkeiten der Bauteile streuen daher sehr stark. Zusätzlich sind aus dem Stand Technik bekannte Infiltrationsverfahren sehr arbeitsintensiv und stellen daher einen gravierenden Produktionsengpass dar.
Gemäß der vorliegenden Erfindung werden zur Infiltration nun Materialien benutzt, die die generativ erzeugte Matrix anlösen können und damit zu einem besonders homogenen Werkstoff führen. Anlösen meint also, dass eine homogene Verbindung zwischen der Matrix und dem Medium, insbesondere Infiltrat entsteht.
Gemäß einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens erfolgt die Verfestigung des eingebrachten Mediums durch Polymerisation.
Gemäß einer besonders bevorzugten Ausführungsform der vorliegenden Erfindung kann es sinnvoll sein, dass eine Randschicht des Kunststoffbauteils im Vergleich zum übrigen Kunststoffbauteil durch chemische und/oder physikalische Maßnahmen beschleunigt verfestigt wird.
Hierdurch kann ein eventuell auftretender geometrischer Formverlust durch eine Erweichung der Bauteile bei der Verbindung des Bauteiles mit dem Medium wirksam verhindert werden.
Das Bauteil wird dabei in der Randschicht, im Gegensatz zum restlichen Bauteilvolumen, beschleunigt verfestigt und auf diese Weise ein stabiles Gerüst erzeugt. Die Erweichung durch die Anlösung der Matrix kann damit nicht die Geometrie beeinflussen. Die Randschichtverfestigung könnte beispielsweise durch zusätzliches Aufbringen von Beschleunigern und dem Einsatz von Polymerisationsmedien mit Strahlungsinitiation erfolgen.
Unter Randschicht ist gemäß der vorliegenden Erfindung der äußere Bereich des Bauteiles zu verstehen.
Beschleunigt könnte derart definiert sein, dass eine Verfestigung einer Randschicht merklich schneller erfolgt als eine Verfestigung des restlichen Körpers. Und unter Verfestigung ist nicht zu verstehen, dass eine vollständige Verfestigung stattgefunden hat. Im Sinne der Erfindung ist eine die Formstabilität, das heißt eine das Eigengewicht tragende Stabilität, gewährende Verfestigung häufig ausreichend.
Die schnellere Verfestigung der Randschicht könnte gemäß einer Ausgestaltung der vorliegenden Erfindung durch die Verwendung zweier Polymerisationssyteme mit unterschiedlichen Reaktionszeiten erfolgen.
Daneben könnte es auch vorteilhaft sein, wenn die schnellere Verfestigung der Randschicht durch den Eintrag energiereicher Strahlung, wie beispielsweise UV-Strahlung oder Mikrowellenstrahlung erreicht wird.
Eine weitere Ausgestaltung des erfindungsgemäßen Verfahrens stellt die Möglichkeit des Einbringens des Mediums in das Kunststoffbauteil mittels Eintauchen in ein Bad des Mediums dar.
Dabei könnte nun das poröse Bauteil automatisch in einem Tauchbad infiltriert werden. Das Tauchbad selbst härtet nicht aus, so dass ein dauerhafter und wirtschaftlicher Einsatz des Tauchbades gewährleistet ist.
Die Flüssigkeiten des Tauchbades ergeben aber nach der Polymerisation hohe Festigkeitseigenschaften. Das Material des porösen Bauteils geht mit dem Infiltrat eine Verbindung ein, die einem homogenen Werkstoff gleicht. Die Aushärtung des Harzes sollte in vorteilhafter Weise im Zeitbereich von wenigen Minuten erfolgen.
Bei dem erfindungsgemäßen Verfahren kann gemäß einer bevorzugten Ausführungsform zur Härtung der Randschicht das Kunststoffbauteil ferner in ein Bad mit einem Beschleuniger eingetaucht werden. Ferner kann es gemäß der vorliegenden Erfindung vorteilhaft sein, wenn das Bauteil zumindest beim Einbringen von Medium und/oder energiereicher Strahlung gedreht wird.
Dieses Drehen könnte dabei um eine oder mehrere Achsen erfolgen.
Gemäß einer besonders bevorzugten Ausführungsform könnte zur Bewegung des Bauteils ein Drehtisch mit einem oder mehreren Freiheitsgraden vorgesehen sein. Um beim Einsatz der Strahlungshärtung den Zutritt der Strahlung zu gewährleisten, wird das Bauteil in einer möglichst wenig die Strahlung abschirmenden Halterung, beispielsweise aus Drähten gehalten. Eine einfache Ausführung stellt ein Rost dar, der mit einer Drehachse verbunden ist.
Ein Materialsystem gemäß der vorliegenden Erfindung umfasst ein Medium zum Einbringen in ein eine Porosität aufweisendes Kunststoffbauteil. Das Medium weist dabei mindestens einen Stoff auf, der das Kunststoffbauteil zumindest teilweise löst und mit diesem eine homogene Verbindung eingeht.
Vorzugsweise ist das Medium hierbei ein Monomer.
Gemäß einer besonders bevorzugten Ausführungsform weist das Medium zumindest einen Bestandteil auf, der aus der gleichen Substanzklasse ist wie ein Kunststoffbestandteil des Kunststoffbauteiles.
Als Werkstoff in dem Medium ist vorzugsweise ein Monomer enthalten, das auch ein Bestandteil der Brücken oder der Körner der Matrix, also des Kunststoffbauteiles, ist, oder ein fremdartiges Monomer, das aber den generativ erzeugten Körper anlöst. Auf Grund der Anlösung durch die Flüssigkeit verfestigt sich der generativ erzeugte Körper in homogener Weise.
Ein derartiges Medium oder Infiltrat kann bedingt durch die Ähnlichkeit seiner Eigenschaften mit dem Grundwerkstoff des Kunststoffbauteiles besonders tief in das Bauteil eindringen. Überschüssiges Material tropft vom Bauteil ab und hinterlässt keine Oberflächenfehler. Wird eine Komponente des polymerisierenden Materials während der generativen Erstellung des Bauteils eingebracht, könnte vorzugsweise auch ein Tauch verfahren mit einem langzeitständigen Tauchbad realisiert werden.
Gemäß einer Ausführungsform der vorliegenden Erfindung weißt das Materialsystem ferner einen Katalysator oder/und einen Vernetzer auf.
Darüberhinaus kann es vorteilhaft sein, wenn ferner ein Photoinitiator vorgesehen ist.
Dabei könnte es sein, dass der Photoinitiator im Medium vorgesehen ist.
Gemäß einer Ausführungsform des Materialsystems weisen das Kunststoffbauteil und das Medium ein Metacrylat auf.
Sowohl das erfindungsgemäße Materialsystem als auch das erfindungsgemäße Verfahren können vorzugsweise zum Infiltrieren von porösen Kunststoffbauteilen, insbesondere von mittels 3-d- Druckverfahren hergestellten Kunststoffbauteilen verwendet werden.
Zur näheren Erläuterung wird die Erfindung anhand bevorzugter Ausführungsbeispiele nachfolgend unter Bezugnahme auf die Zeichnung näher beschrieben. In der Zeichnung zeigt dabei:
Figur 1 eine uninfiltrierte und eine infiltrierte Matrix;
Figur 2 eine infiltrierte Matrix gemäß einer Ausführungsform eines Verfahren und eines Materialsystems der vorliegenden Erfindung;
Figur 3 eine Randschichthärtung gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung;
Figur 4 ein Tauchbad gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung;
Figur 5 ein Tauchbad gemäß einer weiteren bevorzugten Ausführungsform der vorliegenden Erfindung;
Figur 6 das Bestrahlen des Bauteiles gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung und ein Sprühverfahren zum Flüssigkeitsauftrag gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung;
Figur 7 eine Halterung gemäß einer bevorzugten Ausführungsform der vorliegenden Erfindung.
Gemäß der vorliegenden Erfindung soll ein Medium 5 in ein Kunststoffbauteil 10 eingebracht werden. Grundlage hierfür ist ein poröses Bauteil 10.
Wie der Figur 1 zu entnehmen ist, ist ein poröses Bauteil 10, bzw. die Matrix 4 durch Körner 1 und Verbindungsbrücken 2 gebildet und zwischen den Körnern 1 befinden sich die Hohlräume 3 bzw. Poren der Matrix 4. Die vorliegende Erfindung bezieht sich auf Körper deren Körner aus Kunststoff bestehen. Die Brücken 2 der Matrix 4 können aus einem den Körnern 1 ähnlichen oder nicht ähnlichen Material bestehen.
Die Verbindungsbrücken 2 zwischen den Körnern 1 können bei der Bildung des Kunststoffbauteils 10, bzw. Matrix 4 mittels verschiedenen Verfahren erzeugt werden. Bei Bauteilen, die mit Hilfe des Lasersinterprozess hergestellt wurden, entstehen die Brücken 2 aus geschmolzenem Material, das durch Wärmeeinwirkung des Laserstrahles entsteht. Das bedeutet, dass die Brücken 2 aus dem Material der Körner 1 gebildet werden.
Durch 3D-Druckverfahren können Brücken 2 sowohl aus dem Werkstoff der Körner I7 beispielsweise durch Eindosieren eines Lösungsmittels, als auch aus einem weiteren Werkstoff, beispielsweise durch Einbringen einer polymerisierenden Flüssigkeit, gebildet werden.
Vorzugsweise werden poröse Kunststoffbauteile verwendet, bei denen die Brücken 2 und der Werkstoff der Körner 1 einem chemisch ähnlichen Kunststoffsystem angehören.
Über die Temperaturführung beim Lasersinterprozess und die eindosierte Menge des Bindermaterials beim 3D-Drucken kann die Porosität des Bauteils in gewissen Grenzen gesteuert werden.
Vorzugsweise wird gemäß der Erfindung ein flüssiges Medium verwendet, das in seiner chemischen Zusammensetzung dem Werkstoffsystem von Körnern 1 und Brücken 2 entspricht. Nach dem Benetzen des porösen Körpers dringt das Medium 5 durch Kapillarwirkung in die Hohlräume 3 ein. Durch die Verfestigung des Mediums bzw. Infiltrats 5 bildet sich ein dichter Körper. Von der Oberfläche 6 des Bauteils 10 tropft überschüssiges Material 5 ab und nach Verfestigung besitzt das Kunststoffbauteil eine glattere Oberfläche als im uninfiltrierten Zustand.
In Figur 2 ist dargestellt, dass gemäß der vorliegenden Erfindung zum Erreichen hoher Festigkeiten es sich als vorteilhaft erwiesen hat, wenn das Medium 5 bezüglich der Matrix 4 eine Lösekraft aufweist, die vorzugsweise nicht unerheblich sein sollte. Mitteils eines solchen Mediums 5 ist es möglich die Körner 1 und Brücken 2 anzulösen 7 und dadurch beim Verfestigen einen homogenen Verbund zu bilden.
Bevorzugt weist das Medium 5 Monomere auf, die gegebenenfalls unter Zusatz von Hilfsstoffen durch die Bildung von Molekül ketten/Strukturen im bzw. mit dem Bauteil 10 verfestigen.
Die Polymerisation kann dabei durch die Reaktionstypen Polyaddition, Polykondensation, radikalische und ionische Polymerisation oder Ringöffnungspolymerisation stattfinden. Je nach Anwendungszweck können Homopolymere, als Kette eines Monomers, oder Copolymere durch die Polymerisation unterschiedlicher Monomere eingesetzt werden.
Die eingesetzten Monomere weisen bevorzugt eine niedrige Viskosität auf. Je nach Reaktionstyp enthält das Medium 5, neben verschiedenen Monomeren, weitere Bestandteile. Unter anderem können reaktionsstartende Initiatoren, beschleunigende Katalysatoren und festig keitssteigernde, vernetzende Bestandteile dem Medium 5 zugesetzt werden. Diese Stoffe können des Weiteren zur Steuerung des Reaktionsablaufes genutzt werden. Zusätzlich können reaktionshemmende Stoffe- Inhibitoren- enthalten sein. Die zur Bildung eines polymerisierenden Stoffes notwendigen Komponenten können in getrennten Phasen der Werkstückerstellung eingebracht werden. Es können initiierende Komponenten oder Katalysatoren im Pulver bzw. den Körnern 1 oder den Brücken 2 des Bauteils 10 beim generativen Bauprozess eingebracht werden. Diese Komponenten können entweder im Bauprozess und bei der Infiltration eine chemische Funktion erfüllen, oder es werden zwei getrennte Systeme realisiert.
Gemäß einer bevorzugten Ausführungsform der Erfindung wird, wie in Figur 3 gezeigt, bei dem erfindungsgemäßen Verfahren eine Matrixanlösung durchgeführt und eine Stabilisierung der Randschicht 8 des Bauteils 10 erzeugt. Vorzugsweise wird dies durch zwei zeitlich getrennt reagierende Polymerisationssysteme erreicht. Das schnelle System erzeugt eine dünne, feste Randschicht 8 in vorzugsweise wenigen Sekunden.
Da die Reaktionswärme bei einer schnellen, kompletten Aushärtung des Bauteiles 10 die Temperatur im Bauteil stark ansteigen lässt, kann es zu einer thermischen Erweichung des Bauteils kommen. Deshalb findet die zweite Reaktion, die den Großteil bzw. „inneren" Teil des Werkstoffvolumens 9 verfestigt (Hauptreaktion), in einem zeitlich größeren Rahmen statt.
Bevorzugt für die zweite Polymerisierungsreaktion wird ein Initiierungssystem, das im pulverförmigen Material gebunden ist oder auf dessen Oberfläche vorhanden ist, also während der generativen Erzeugung des Bauteils eingebracht wird. Dieses System kann beispielsweise eine radikalische Polymerisation starten.
Besonders bevorzugt wird ein System bei dem das pulverförmige Material, das das poröse Bauteil bildet, aus Polymethylmetacrylat (PMMA) oder Polyethyϊmetacrylat (PEMA) besteht. Im Korn ist der Initiator Dibenzolperoxid (BPO) enthalten. Das BPO kann über die Lösewirkung des Monomers in der Infiltrationsflüssigkeit gegenüber dem Korn der Reaktion zugänglich gemacht werden.
Ebenso bevorzugt wird ein System zur Initiierung mit Ethylbarbitursäure. Mit dieser wird ein PMMA- oder PEMA- Korn ummantelt.
In der Flüssigkeit zur Infiltration, dem Medium 5 fehlt beim bevorzugten Verfahren eine zur einer eigenständigen Aushärtung notwendige Komponente (Initiator oder Katalysator/Beschleuniger). Das Infiltrat 5 härtet also nur im Kontakt mit dem Bauteil 10 aus. Dadurch kann es in einem Bad für eine automatisierte Tauchinfiltration bereitgehalten werden.
Bevorzugt zur Infiltration wird ein Gemisch aus einem Monomer oder einer Monomermischung und einem Katalysator. Zusätzlich kann ein Vernetzer zugegeben werden. Monomere mit niedriger Viskosität sind hier besonders geeignet. Zusammen mit dem Initiator im Bauteil ergibt sich ein polymerisationsfähiges Gemisch.
Besonders bevorzugt wird ein Gemisch aus 2-Hydroxyethylmethacrylat (HEMA) und N,N-Dimethyl-p-Toluidin (DMPT). Dabei wirkt HEMA als Monomer und DMPT als Katalysator der die Initiierung durch das BPO aus dem Korn beschleunigt.
Zur Steuerung der Reaktionswärme bei der Hauptverfestigung werden Vernetzer zugegeben. Bevorzugt wird Ethylenglykol-Dimethylmetacrylat (EGDMA) verwendet, das die Reaktionsgeschwindigkeit unter bestimmtem Reaktionsbedingungen herabsetzt. Ebenso bevorzugt ist ein Gemisch aus HEMA und Kupfer-Acetyl- Acetonat (CuAA). Hiermit kann ein System mit ethylbarbitursäureumantelten Körnern initiiert werden.
Die beschleunigte Verfestigung des Randbereichs 8 kann über unterschiedliche Wege erreicht werden. Zum Einen kann eine flüssige Komponente verwendet werden. Diese kann einen Initiator oder Katalysator in hoher Menge, im Vergleich zum eigentlichen Infiltrationsgemisch, enthalten. Zum Anderen kann dem Infiltrationsgemisch eine durch Strahlung aktivierbare Komponente beigemischt werden. Weiterhin kann eine Komponente gasförmig vorliegen und somit mit allen Rändern des Bauteils gleichmäßig in Kontakt kommen.
Der Einsatz einer flüssigen Komponente erfolgt in einem zusätzlichem Tauchschritt, der sich an die eigentliche Infiltration anschliesst. Bei der zusätzlichen Flüssigkeit kann ein Katalysator oder ein Initiator verwendet werden. Bevorzugt zur Randschichthärtung durch eine Flüssigkeit wird der Katalysator DMPT bei einem Korn mit BPO und oder CuAA bei einem Ethylbarbitursäuresystem in den das Bauteil getaucht wird. Durch die niedrige Diffusion im Bauteil wird bei diesem Vorgehen nur eine Randschicht verfestigt.
Die Benetzung der Randschicht 8 kann, wie in Figur 6 gezeigt, anstatt mit einem Tauchverfahren mit einem Sprühnebelsystem durchgeführt werden. Dazu wird das Bauteil 10 beispielsweise auf einem Drehtisch 19 gedreht. Eine oder mehrere Spritzdüsen 21 erzeugen einen Nebel aus der Flüssigkomponente zur Aktivierung der Polymerisation der Randschicht.
Zur besseren Kontrolle der einzelnen gewünschten Reaktionen kann erweiternd zum oben genannten System (Polymerisationssystem mit zwei unterschiedlichen Initiatorkonzentrationen) ein
Polymerisationssystem mit mehreren unabhängigen Initiatorsystemen verwendet werden. Ein Ausführungsbeispiel stellt ein mit Ethylbarbitursäure ummanteltes Korn dar, das im Inneren BPO enthält. Durch Zusatz der Katalysatoren CuAA oder DMPT kann jetzt gezielt ein System zur Reaktion gebracht werden. Zudem kann auch ein Photoinitiator als zweites Initiationssystem dienen.
Bevorzugt wird für die Strahlungshärtung der Randschicht ein Photoinitiator des Typs Diphenyl (2,4,6-Trimethylbenzoyl) Phosphin Oxid (TPO). Mit Hilfe dieses Initiators können durch UV-Strahlung Radikale für die Polymerisation erzeugt werden. Es können alle Strahlungstypen von UVA, UVB bis UVC eingesetzt werden. Bevorzugt für die Härtung wird UVA-Strahlung.
Zur Infiltration, siehe Figur 4, wird das Bauteil 10 in ein Bad 12 mit den flüssigen Komponenten 11 getaucht. In diesem Bad befinden sich alle Komponenten die mit der Komponente im Bauteil 10 ein reaktions- und polymerisationsfähiges Gemisch bilden. Die wesentliche Anforderung an die Mischung ist, dass die Komponenten im Bad ohne die Komponente im Bauteil nicht oder nur sehr langsam reagieren und verfestigen.
Besonders bevorzugt wird gemäß obiger Ausführungen ein Infiltrationsgemisch aus 79 % HEMA, 20% EGDMA, 0,5 % DMPT, 0,5 % TPO.
Die Vorrichtung zur Tauchinfiltration beinhaltet ein Bad 12, eine flüssigkeitsdurchlässige Halterung 16 zum Tauchen und eine Niederhaltevorrichtung 17,18, die das Aufschwimmen des Bauteils im Tauchbad verhindert (siehe Figur 4 und 5). Das Tauchbad besteht aus einem chemisch beständigen Behälter 12. Bevorzugt wird Edelstahl. Je nach Infiltrationsmedium kann es für eine Senkung der Viskosität des Infiltrats beheizt 13 werden. Ein Verschluss 14 schützt das Bad vor Verschmutzung und Eintritt von Strahlung die zu einer unerwünschten Polymerisierung führen kann. Eine Erweiterung stellt eine Kühlvorrichtung 13 dar, die eine besonders gute Konservierung der Infiltrationsflüssigkeit ermöglicht.
Bevorzugt für die flüssigkeitsdurchlässige Halterung 16 wird ein Korb aus Draht. Auf diesem befindet sich zum Niederhalten des Bauteils Klammern 17 oder ein Gewicht 18. Eine Achse zur Absenkung 15 ermöglicht ein automatisierbares und gleichmäßiges Tauchen der Bauteile.
Die Figur 6 zeigt die Aushärtung der Randschicht mit UV-Strahlung 20. Die Wahl der Prozessparameter erfolgt daher derart, dass nur eine sehr dünne Schicht im Randbereich verfestigt wird. Dadurch wird ein Verzug durch starke Eigenspannungen vermieden. In der Monomermischung befinden sich dazu 0,5 % Gew. TPO. Die Belichtung erfolgt mit UVA- Strahlungsröhren mit einer Eingangsleistung von 75 W in einem Abstand von 10 cm.
Um Inhomogenitäten der UV-Strahlungsquelle auszugleichen wird das Bauteil im Strahlungsfeld bewegt. Die Bewegung ermöglicht den Zutritt von UV-Strahlung an ansonsten abgeschattete Bereiche. Die Bewegung kann durch Rotation um alle Raumachsen erfolgen. Bevorzugt wird eine Drehbewegung um nur eine Achse.
Zur Bewegung des Bauteils wird ein Drehtisch 19 mit einem oder mehreren Freiheitsgraden bevorzugt. Um den Zutritt der Strahlung zu gewährleisten, wird das Bauteil in einer Halterung aus Drähten gehalten, die einen möglichst kleinen Querschnitt ausweisen. Eine einfache Ausführung stellt ein Rost dar, der mit einer Drehachse verbunden ist.
Um ein Verkleben der Bauteile mit dem Drahtgitter zu verhindern, kann eine besondere Vorrichtung vorgesehen werden. Durch Bewegung werden dabei die Auflagepunkte des Bauteils 10 in einer zeitlichen Abfolge verändert. Eine einfache, in Figur 7 dargestellte Ausführung stellt zwei Rostgitter 22, 23 dar, die ineinander verbaut sind. Ein Rost wird gegen den zweiten dabei in seiner Höhe verschoben. Dadurch wird das Bauteil vom jeweils höheren Rost übernommen und die Auflagepunkte ändern sich 24,25.

Claims

VoxelJet Technology GmbH AugsburgPatentansprüche
1. Verfahren zum Verändern von Eigenschaften eines Kunststoffbauteiles, wobei Medium in das eine Porosität aufweisende Kunststoffbauteil eingebracht wird und das Medium durch zumindest teilweise Lösen des Kunststoffbauteils mit diesem eine homogene Verbindung eingeht.
2. Verfahren nach Anspruch 1, wobei eine Verfestigung des eingebrachten Mediums durch Polymerisation erfolgt.
3. Verfahren nach einem der vorhergehenden Ansprüche, wobei eine Randschicht des Kunststoffbauteils im Vergleich zum übrigen Kunststoffbauteil durch chemische und/oder Maßnahmen beschleunigt verfestigt wird.
4. Verfahren nach Anspruch 3, wobei die schnellere Verfestigung der Randschicht durch Verwendung zweier Polymerisationssyteme mit unterschiedlichen Reaktionszeiten erfolgt.
5. Verfahren nach einem der vorhergehenden Ansprüche 3 oder 4, wobei die schnellere Verfestigung der Randschicht durch den Eintrag energiereicher Strahlung erfolgt.
6. Verfahren nach Anspruch 5, wobei als energiereiche Strahlung UV-Strahlung verwendet wird.
7. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Einbringen des Mediums in das Kunststoffbauteil mittels Eintauchen in ein Bad des Mediums erfolgt.
8. Verfahren nach einem der vorhergehenden Ansprüche, wobei zur Härtung der Randschicht das Kunststoffbauteil ferner in ein Bad mit einem Beschleuniger eingetaucht wird.
9. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Bauteil zumindest beim Einbringen von Medium und/oder energiereicher Strahlung gedreht wird.
10. Verfahren nach Anspruch 9, wobei das Drehen um eine oder mehrere Achsen erfolgen kann.
11. Materialsystem umfassend ein Medium zum Einbringen in ein eine Porosität aufweisendes Kunststoffbauteil, wobei das Medium mindestens einen Stoff aufweist, der das Kunststoffbauteil zumindest teilweise „löst" und mit diesem eine „homogene" Verbindung eingeht.
12. Materialsystem nach Anspruch 11, wobei das Medium ein Monomer ist.
13. Materialsystem nach Anspruch 11 oder 12, wobei das Medium zumindest einen Bestandteil aufweist, der aus der gleichen Substanzklasse wie ein Kunststoffbestandteil des Kunststoffbauteiles ist.
14. Materialsystem nach einem der Ansprüche 11 bis 13, wobei ferner ein Katalysator oder/und ein Vernetzer vorgesehen ist.
15. Materialsystem nach einem der Ansprüche 11 bis 14, wobei ferner ein Photoinitiator vorgesehen ist.
16. Materialsystem nach Anspruch 15, wobei der Photoinitiator im Medium vorgesehen ist.
17. Materialsystem nach einem der Ansprüche 13 bis 16, wobei das Kunststoffbauteil und das Medium ein Metacrylat aufweisen.
18. Verwendung des Materialsystems nach einem der Ansprüche 13 bis 17 zum Infiltrieren von porösen Kunststoffbauteilen.
19. Verwendung des Materialsystems nach einem der Ansprüche 13 bis 17 zum Infiltrieren von mittels 3-d-Druckverfahren hergestellten Kunststoffbauteilen.
PCT/DE2008/001593 2007-10-11 2008-10-01 Materialsystem und verfahren zum verändern von eigenschaften eines kunststoffbauteiles WO2009046696A2 (de)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US12/681,194 US8349233B2 (en) 2007-10-11 2008-10-01 Material system and method for changing properties of a plastic component
DE502008002970T DE502008002970D1 (de) 2007-10-11 2008-10-01 Verfahren zum steigern von festigkeit eines porösen kunststoffbauteiles
EP08801346A EP2200813B1 (de) 2007-10-11 2008-10-01 Verfahren zum steigern von festigkeit eines porösen kunststoffbauteiles
AT08801346T ATE502760T1 (de) 2007-10-11 2008-10-01 Verfahren zum steigern von festigkeit eines porösen kunststoffbauteiles
US13/706,756 US20130092082A1 (en) 2007-10-11 2012-12-06 Material system and method for changing properties of a plactic component
US14/665,474 US20150210822A1 (en) 2007-10-11 2015-03-23 Material system and method for changing properties of a plastic component

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102007049058A DE102007049058A1 (de) 2007-10-11 2007-10-11 Materialsystem und Verfahren zum Verändern von Eigenschaften eines Kunststoffbauteils
DE102007049058.7 2007-10-11

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US12/681,194 A-371-Of-International US8349233B2 (en) 2007-10-11 2008-10-01 Material system and method for changing properties of a plastic component
US13/706,756 Division US20130092082A1 (en) 2007-10-11 2012-12-06 Material system and method for changing properties of a plactic component

Publications (2)

Publication Number Publication Date
WO2009046696A2 true WO2009046696A2 (de) 2009-04-16
WO2009046696A3 WO2009046696A3 (de) 2009-12-23

Family

ID=40433748

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2008/001593 WO2009046696A2 (de) 2007-10-11 2008-10-01 Materialsystem und verfahren zum verändern von eigenschaften eines kunststoffbauteiles

Country Status (6)

Country Link
US (3) US8349233B2 (de)
EP (1) EP2200813B1 (de)
AT (1) ATE502760T1 (de)
DE (2) DE102007049058A1 (de)
ES (1) ES2363113T3 (de)
WO (1) WO2009046696A2 (de)

Families Citing this family (51)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10085198D2 (de) 2000-09-25 2003-08-21 Generis Gmbh Verfahren zum Herstellen eines Bauteils in Ablagerungstechnik
DE102006038858A1 (de) 2006-08-20 2008-02-21 Voxeljet Technology Gmbh Selbstaushärtendes Material und Verfahren zum schichtweisen Aufbau von Modellen
US10226919B2 (en) 2007-07-18 2019-03-12 Voxeljet Ag Articles and structures prepared by three-dimensional printing method
DE102007050679A1 (de) 2007-10-21 2009-04-23 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Fördern von Partikelmaterial beim schichtweisen Aufbau von Modellen
DE102007050953A1 (de) 2007-10-23 2009-04-30 Voxeljet Technology Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
DE102009040582A1 (de) * 2009-09-08 2011-03-10 Christoph Heiland Verfahren zum Herstellen eines lasergesinterten Körpers mit der Eigenschaft einen Stoff zu absorbieren, adsorbieren oder emittieren
DE102010006939A1 (de) 2010-02-04 2011-08-04 Voxeljet Technology GmbH, 86167 Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010013732A1 (de) 2010-03-31 2011-10-06 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010014969A1 (de) 2010-04-14 2011-10-20 Voxeljet Technology Gmbh Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102010015451A1 (de) 2010-04-17 2011-10-20 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Objekte
DE102010056346A1 (de) 2010-12-29 2012-07-05 Technische Universität München Verfahren zum schichtweisen Aufbau von Modellen
DE102011007957A1 (de) 2011-01-05 2012-07-05 Voxeljet Technology Gmbh Vorrichtung und Verfahren zum Aufbauen eines Schichtenkörpers mit wenigstens einem das Baufeld begrenzenden und hinsichtlich seiner Lage einstellbaren Körper
DE102011105688A1 (de) 2011-06-22 2012-12-27 Hüttenes-Albertus Chemische Werke GmbH Verfahren zum schichtweisen Aufbau von Modellen
DE102011111498A1 (de) 2011-08-31 2013-02-28 Voxeljet Technology Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
DE102012004213A1 (de) 2012-03-06 2013-09-12 Voxeljet Technology Gmbh Verfahren und Vorrichtung zum Herstellen dreidimensionaler Modelle
DE102012010272A1 (de) 2012-05-25 2013-11-28 Voxeljet Technology Gmbh Verfahren zum Herstellen dreidimensionaler Modelle mit speziellen Bauplattformen und Antriebssystemen
DE102012012363A1 (de) 2012-06-22 2013-12-24 Voxeljet Technology Gmbh Vorrichtung zum Aufbauen eines Schichtenkörpers mit entlang des Austragbehälters bewegbarem Vorrats- oder Befüllbehälter
DE102012020000A1 (de) 2012-10-12 2014-04-17 Voxeljet Ag 3D-Mehrstufenverfahren
DE102013004940A1 (de) 2012-10-15 2014-04-17 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit temperiertem Druckkopf
DE102012022859A1 (de) 2012-11-25 2014-05-28 Voxeljet Ag Aufbau eines 3D-Druckgerätes zur Herstellung von Bauteilen
DE102013003303A1 (de) 2013-02-28 2014-08-28 FluidSolids AG Verfahren zum Herstellen eines Formteils mit einer wasserlöslichen Gussform sowie Materialsystem zu deren Herstellung
GB2512355B (en) * 2013-03-27 2016-06-01 Warwick Tim Infused additive manufactured objects
ITTO20130284A1 (it) * 2013-04-09 2014-10-10 Fond Istituto Italiano Di Tecnologia Procedimento per la produzione di microparticelle polimeriche sagomate
US10086537B2 (en) * 2013-05-08 2018-10-02 Minipumps, Llc Flexible manufacture of polymeric tubing
DE102013018182A1 (de) 2013-10-30 2015-04-30 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von dreidimensionalen Modellen mit Bindersystem
DE102013018031A1 (de) 2013-12-02 2015-06-03 Voxeljet Ag Wechselbehälter mit verfahrbarer Seitenwand
DE102013020491A1 (de) 2013-12-11 2015-06-11 Voxeljet Ag 3D-Infiltrationsverfahren
DE102013021091A1 (de) 2013-12-18 2015-06-18 Voxeljet Ag 3D-Druckverfahren mit Schnelltrockenschritt
EP2886307A1 (de) 2013-12-20 2015-06-24 Voxeljet AG Vorrichtung, Spezialpapier und Verfahren zum Herstellen von Formteilen
DE102013021891A1 (de) 2013-12-23 2015-06-25 Voxeljet Ag Vorrichtung und Verfahren mit beschleunigter Verfahrensführung für 3D-Druckverfahren
DE102014004692A1 (de) 2014-03-31 2015-10-15 Voxeljet Ag Verfahren und Vorrichtung für den 3D-Druck mit klimatisierter Verfahrensführung
CN106163334B (zh) * 2014-05-09 2020-02-21 约翰逊控制技术公司 通过增量制造形成的座椅框架
DE102014007584A1 (de) 2014-05-26 2015-11-26 Voxeljet Ag 3D-Umkehrdruckverfahren und Vorrichtung
US10946556B2 (en) 2014-08-02 2021-03-16 Voxeljet Ag Method and casting mold, in particular for use in cold casting methods
DE102015006533A1 (de) 2014-12-22 2016-06-23 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Schichtaufbautechnik
DE102015003372A1 (de) 2015-03-17 2016-09-22 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Doppelrecoater
US20180169947A1 (en) * 2015-05-19 2018-06-21 Addifab Aps Additive manufacturing apparatus with recoat unit and process using the same
DE102015006363A1 (de) 2015-05-20 2016-12-15 Voxeljet Ag Phenolharzverfahren
DE102015011503A1 (de) 2015-09-09 2017-03-09 Voxeljet Ag Verfahren zum Auftragen von Fluiden
DE102015011790A1 (de) 2015-09-16 2017-03-16 Voxeljet Ag Vorrichtung und Verfahren zum Herstellen dreidimensionaler Formteile
DE102015115821A1 (de) * 2015-09-18 2017-03-23 Dyemansion Gmbh Verfahren zum Herstellen und zur Oberflächenbehandlung eines Formteils
DE102015015353A1 (de) 2015-12-01 2017-06-01 Voxeljet Ag Verfahren und Vorrichtung zur Herstellung von dreidimensionalen Bauteilen mittels Überschussmengensensor
DE102016013610A1 (de) 2016-11-15 2018-05-17 Voxeljet Ag Intregierte Druckkopfwartungsstation für das pulverbettbasierte 3D-Drucken
WO2018094131A1 (en) * 2016-11-21 2018-05-24 Carbon, Inc. Method of making three-dimensional object by delivering reactive component for subsequent cure
JP7134971B2 (ja) 2016-12-23 2022-09-12 スリーエム イノベイティブ プロパティズ カンパニー ポリマーボンド研磨物品及びそれらの製造方法
DE102017006860A1 (de) 2017-07-21 2019-01-24 Voxeljet Ag Verfahren und Vorrichtung zum Herstellen von 3D-Formteilen mit Spektrumswandler
DE102019000796A1 (de) 2019-02-05 2020-08-06 Voxeljet Ag Wechselbare Prozesseinheit
DE102019007595A1 (de) 2019-11-01 2021-05-06 Voxeljet Ag 3d-druckverfahren und damit hergestelltes formteil unter verwendung von ligninsulfat
CN112892998B (zh) * 2020-04-07 2023-12-22 重庆讯格工业设计研究院有限公司 一种汽车挡风玻璃自动涂胶的涂胶系统
US11504879B2 (en) 2020-04-17 2022-11-22 Beehive Industries, LLC Powder spreading apparatus and system
US11110650B1 (en) 2020-10-02 2021-09-07 Intrepid Automation Vat-based additive manufacturing with dispensed material

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049275A (en) * 1990-06-15 1991-09-17 Hoechst Celanese Corp. Modified microporous structures
WO1995016563A1 (en) * 1993-12-14 1995-06-22 Ferrari Importing Company Process for enhancing string properties
US20010043990A1 (en) * 2000-03-21 2001-11-22 Chong Kong Fok Plastic components with improved surface appearance and method of making the same
WO2003089218A1 (en) * 2002-04-17 2003-10-30 Stratasys, Inc. Smoothing method for layered deposition modeling

Family Cites Families (125)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2118795A (en) * 1931-09-21 1938-05-24 Corning Glass Works Insulator
US2133947A (en) * 1933-10-26 1938-10-25 Boecler Albert Dipping machine for producing seamless articles from substances in solution
US3666695A (en) * 1970-10-06 1972-05-30 Gen Mills Chem Inc An epoxy resin adhesive containing a polymeric fatty-amido amine and monomeric fatty-amido amine mixture as the curing agent
US3804753A (en) * 1971-06-29 1974-04-16 Calspan Corp Process of dewatering sewage sludge and converting the same to a useable product
CH621597A5 (de) 1978-02-13 1981-02-13 Epsi Brevets & Participations
US4247508B1 (en) 1979-12-03 1996-10-01 Dtm Corp Molding process
US4352723A (en) * 1980-08-13 1982-10-05 W. R. Grace & Co. Method of curing a dual UV/thermally curable acrylate composition
US4572850A (en) * 1984-06-25 1986-02-25 Outboard Marine Corporation Method and apparatus for dip coating foam patterns
US4665492A (en) 1984-07-02 1987-05-12 Masters William E Computer automated manufacturing process and system
US4575330A (en) 1984-08-08 1986-03-11 Uvp, Inc. Apparatus for production of three-dimensional objects by stereolithography
US4663072A (en) * 1984-12-24 1987-05-05 Ford Motor Company Acid anhydride mixtures in paste form useful for curing epoxy resins and a dual catalyst system therefor
US4752352A (en) 1986-06-06 1988-06-21 Michael Feygin Apparatus and method for forming an integral object from laminations
US5017753A (en) 1986-10-17 1991-05-21 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US5147587A (en) 1986-10-17 1992-09-15 Board Of Regents, The University Of Texas System Method of producing parts and molds using composite ceramic powders
US4944817A (en) 1986-10-17 1990-07-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
US5155324A (en) 1986-10-17 1992-10-13 Deckard Carl R Method for selective laser sintering with layerwise cross-scanning
US4863538A (en) 1986-10-17 1989-09-05 Board Of Regents, The University Of Texas System Method and apparatus for producing parts by selective sintering
US5296062A (en) 1986-10-17 1994-03-22 The Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
US5076869A (en) 1986-10-17 1991-12-31 Board Of Regents, The University Of Texas System Multiple material systems for selective beam sintering
DE3750931T3 (de) 1986-10-17 1999-12-02 Univ Texas Verfahren und vorrichtung zur herstellung von formkörpern durch teilsinterung.
US5772947A (en) 1988-04-18 1998-06-30 3D Systems Inc Stereolithographic curl reduction
CA1337955C (en) 1988-09-26 1996-01-23 Thomas A. Almquist Recoating of stereolithographic layers
AU4504089A (en) 1988-10-05 1990-05-01 Michael Feygin An improved apparatus and method for forming an integral object from laminations
GB2233928B (en) 1989-05-23 1992-12-23 Brother Ind Ltd Apparatus and method for forming three-dimensional article
JP2738017B2 (ja) 1989-05-23 1998-04-08 ブラザー工業株式会社 三次元成形装置
US5248456A (en) 1989-06-12 1993-09-28 3D Systems, Inc. Method and apparatus for cleaning stereolithographically produced objects
US5134569A (en) 1989-06-26 1992-07-28 Masters William E System and method for computer automated manufacturing using fluent material
US5216616A (en) 1989-06-26 1993-06-01 Masters William E System and method for computer automated manufacture with reduced object shape distortion
JPH0336019A (ja) 1989-07-03 1991-02-15 Brother Ind Ltd 三次元成形方法およびその装置
US5431967A (en) 1989-09-05 1995-07-11 Board Of Regents, The University Of Texas System Selective laser sintering using nanocomposite materials
US5284695A (en) 1989-09-05 1994-02-08 Board Of Regents, The University Of Texas System Method of producing high-temperature parts by way of low-temperature sintering
US5156697A (en) 1989-09-05 1992-10-20 Board Of Regents, The University Of Texas System Selective laser sintering of parts by compound formation of precursor powders
US5182170A (en) 1989-09-05 1993-01-26 Board Of Regents, The University Of Texas System Method of producing parts by selective beam interaction of powder with gas phase reactant
US5053090A (en) 1989-09-05 1991-10-01 Board Of Regents, The University Of Texas System Selective laser sintering with assisted powder handling
US5136515A (en) 1989-11-07 1992-08-04 Richard Helinski Method and means for constructing three-dimensional articles by particle deposition
US5204055A (en) 1989-12-08 1993-04-20 Massachusetts Institute Of Technology Three-dimensional printing techniques
US5387380A (en) 1989-12-08 1995-02-07 Massachusetts Institute Of Technology Three-dimensional printing techniques
JPH0482703A (ja) * 1990-07-25 1992-03-16 Matsushita Electric Works Ltd 改質木材の製法
US5127037A (en) 1990-08-15 1992-06-30 Bynum David K Apparatus for forming a three-dimensional reproduction of an object from laminations
GB9022754D0 (en) 1990-10-19 1990-12-05 Pilkington Controlled Release Improvements in or relating to water dispersible moulds
US5740051A (en) 1991-01-25 1998-04-14 Sanders Prototypes, Inc. 3-D model making
US5506607A (en) 1991-01-25 1996-04-09 Sanders Prototypes Inc. 3-D model maker
US5252264A (en) 1991-11-08 1993-10-12 Dtm Corporation Apparatus and method for producing parts with multi-directional powder delivery
US5342919A (en) 1992-11-23 1994-08-30 Dtm Corporation Sinterable semi-crystalline powder and near-fully dense article formed therewith
US5352405A (en) 1992-12-18 1994-10-04 Dtm Corporation Thermal control of selective laser sintering via control of the laser scan
DE4300478C2 (de) 1993-01-11 1998-05-20 Eos Electro Optical Syst Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts
US6146567A (en) 1993-02-18 2000-11-14 Massachusetts Institute Of Technology Three dimensional printing methods
JPH06345906A (ja) * 1993-06-14 1994-12-20 Matsui Shikiso Kagaku Kogyosho:Kk 合成樹脂成形体用可逆変色性着色模様材料
US5490962A (en) 1993-10-18 1996-02-13 Massachusetts Institute Of Technology Preparation of medical devices by solid free-form fabrication methods
DE4400523C2 (de) 1994-01-11 1996-07-11 Eos Electro Optical Syst Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Objekts
ATE192367T1 (de) 1994-05-27 2000-05-15 Eos Electro Optical Syst Verfahren für den einsatz in der giessereitechnik
DE4440397C2 (de) 1994-11-11 2001-04-26 Eos Electro Optical Syst Verfahren zum Herstellen von Gußformen
US5639402A (en) 1994-08-08 1997-06-17 Barlow; Joel W. Method for fabricating artificial bone implant green parts
US5555176A (en) 1994-10-19 1996-09-10 Bpm Technology, Inc. Apparatus and method for making three-dimensional articles using bursts of droplets
US5482659A (en) 1994-12-22 1996-01-09 United Technologies Corporation Method of post processing stereolithographically produced objects
EP0807014B1 (de) 1995-02-01 2002-05-02 3D Systems, Inc. Schnelles glättungsverfahren für schichtweise hergestellte dreidimensionale gegenstände
DE19511772C2 (de) 1995-03-30 1997-09-04 Eos Electro Optical Syst Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes
DE19514740C1 (de) 1995-04-21 1996-04-11 Eos Electro Optical Syst Vorrichtung und Verfahren zum Herstellen eines dreidimensionalen Objektes
US5582231A (en) 1995-04-28 1996-12-10 General Motors Corporation Sand mold member and method
JP2951233B2 (ja) 1995-05-16 1999-09-20 不二製油株式会社 無機質成形体の製造方法
US5943235A (en) 1995-09-27 1999-08-24 3D Systems, Inc. Rapid prototyping system and method with support region data processing
BR9610663A (pt) 1995-09-27 1999-07-13 3D Systems Inc Método e aparelho para manipulação de dados e controle de sistema em um sistema de modelagem de depósito seletivo
US6305769B1 (en) 1995-09-27 2001-10-23 3D Systems, Inc. Selective deposition modeling system and method
DE19545167A1 (de) 1995-12-04 1997-06-05 Bayerische Motoren Werke Ag Verfahren zum Herstellen von Bauteilen oder Werkzeugen
US5660621A (en) 1995-12-29 1997-08-26 Massachusetts Institute Of Technology Binder composition for use in three dimensional printing
AU720255B2 (en) 1996-03-06 2000-05-25 BioZ, L.L.C Method for formation of a three-dimensional body
DE19626428A1 (de) 1996-07-01 1998-01-15 Heinzl Joachim Tröpfchenwolkenerzeuger
US5902441A (en) 1996-09-04 1999-05-11 Z Corporation Method of three dimensional printing
US7037382B2 (en) 1996-12-20 2006-05-02 Z Corporation Three-dimensional printer
US6989115B2 (en) 1996-12-20 2006-01-24 Z Corporation Method and apparatus for prototyping a three-dimensional object
US6007318A (en) 1996-12-20 1999-12-28 Z Corporation Method and apparatus for prototyping a three-dimensional object
DE69735938T2 (de) * 1997-01-10 2007-01-25 Nippon Valqua Industries, Ltd. Oberflächenmodifiziertes fluorokautschukdichtungsmaterial
JPH10204151A (ja) * 1997-01-21 1998-08-04 Yuka Shell Epoxy Kk 変性エポキシ樹脂と変性エポキシ樹脂組成物および変性エポキシ樹脂の製造方法
DE19715582B4 (de) 1997-04-15 2009-02-12 Ederer, Ingo, Dr. Verfahren und System zur Erzeugung dreidimensionaler Körper aus Computerdaten
NL1006059C2 (nl) 1997-05-14 1998-11-17 Geest Adrianus F Van Der Werkwijze en inrichting voor het vervaardigen van een vormlichaam.
DE19723892C1 (de) 1997-06-06 1998-09-03 Rainer Hoechsmann Verfahren zum Herstellen von Bauteilen durch Auftragstechnik
US6406770B1 (en) * 1997-12-26 2002-06-18 Dainippon Ink And Chemicals, Inc. Optical disk and method of manufacturing optical disk
US6355196B1 (en) 1998-03-16 2002-03-12 Vantico Inc. Process for producing direct tooling mold and method for using the same
US5989476A (en) * 1998-06-12 1999-11-23 3D Systems, Inc. Process of making a molded refractory article
US6322728B1 (en) 1998-07-10 2001-11-27 Jeneric/Pentron, Inc. Mass production of dental restorations by solid free-form fabrication methods
US6476122B1 (en) 1998-08-20 2002-11-05 Vantico Inc. Selective deposition modeling material
DE19846478C5 (de) 1998-10-09 2004-10-14 Eos Gmbh Electro Optical Systems Laser-Sintermaschine
US20030114936A1 (en) 1998-10-12 2003-06-19 Therics, Inc. Complex three-dimensional composite scaffold resistant to delimination
DE19853834A1 (de) 1998-11-21 2000-05-31 Ingo Ederer Verfahren zum Herstellen von Bauteilen durch Auftragstechnik
FR2790418B1 (fr) 1999-03-01 2001-05-11 Optoform Sarl Procedes De Prot Procede de prototypage rapide permettant l'utilisation de materiaux pateux, et dispositif pour sa mise en oeuvre
US6259962B1 (en) 1999-03-01 2001-07-10 Objet Geometries Ltd. Apparatus and method for three dimensional model printing
US6165406A (en) 1999-05-27 2000-12-26 Nanotek Instruments, Inc. 3-D color model making apparatus and process
US6401001B1 (en) 1999-07-22 2002-06-04 Nanotek Instruments, Inc. Layer manufacturing using deposition of fused droplets
DE19948591A1 (de) 1999-10-08 2001-04-19 Generis Gmbh Rapid-Prototyping - Verfahren und - Vorrichtung
WO2001034371A2 (en) 1999-11-05 2001-05-17 Z Corporation Material systems and methods of three-dimensional printing
EP1415792B1 (de) 1999-11-05 2014-04-30 3D Systems Incorporated Verfahren und Zusammenstellungen für dreidimensionales Drucken
US6133353A (en) 1999-11-11 2000-10-17 3D Systems, Inc. Phase change solid imaging material
US6395811B1 (en) 1999-11-11 2002-05-28 3D Systems, Inc. Phase change solid imaging material
TWI228114B (en) 1999-12-24 2005-02-21 Nat Science Council Method and equipment for making ceramic work piece
ES2230086T3 (es) 2000-03-24 2005-05-01 Voxeljet Technology Gmbh Metodo y aparato para fabricar una pieza estructural mediante la tecnica de deposicion multi-capa y moldeo macho fabricado con el metodo.
US20010050031A1 (en) 2000-04-14 2001-12-13 Z Corporation Compositions for three-dimensional printing of solid objects
DE10026955A1 (de) 2000-05-30 2001-12-13 Daimler Chrysler Ag Materialsystem zur Verwendung beim 3D-Drucken
US6500378B1 (en) 2000-07-13 2002-12-31 Eom Technologies, L.L.C. Method and apparatus for creating three-dimensional objects by cross-sectional lithography
US6467525B2 (en) 2000-07-24 2002-10-22 Hormel Foods, Llc Gelatin coated sand core and method of making same
DE10085198D2 (de) 2000-09-25 2003-08-21 Generis Gmbh Verfahren zum Herstellen eines Bauteils in Ablagerungstechnik
DE10047614C2 (de) 2000-09-26 2003-03-27 Generis Gmbh Vorrichtung zum schichtweisen Aufbau von Modellen
DE10047615A1 (de) 2000-09-26 2002-04-25 Generis Gmbh Wechselbehälter
US20020111707A1 (en) 2000-12-20 2002-08-15 Zhimin Li Droplet deposition method for rapid formation of 3-D objects from non-cross-linking reactive polymers
GB0103754D0 (en) 2001-02-15 2001-04-04 Vantico Ltd Three-dimensional structured printing
GB0103752D0 (en) 2001-02-15 2001-04-04 Vantico Ltd Three-Dimensional printing
GB0112675D0 (en) 2001-05-24 2001-07-18 Vantico Ltd Three-dimensional structured printing
JP2003052804A (ja) 2001-08-09 2003-02-25 Ichiro Ono インプラントの製造方法およびインプラント
CN100343315C (zh) * 2001-09-12 2007-10-17 日立化成工业株式会社 再生发泡性苯乙烯系树脂粒子、发泡珠粒料以及发泡模塑制品
US6841116B2 (en) 2001-10-03 2005-01-11 3D Systems, Inc. Selective deposition modeling with curable phase change materials
GB2382798A (en) 2001-12-04 2003-06-11 Qinetiq Ltd Inkjet printer which deposits at least two fluids on a substrate such that the fluids react chemically to form a product thereon
US6713125B1 (en) * 2002-03-13 2004-03-30 3D Systems, Inc. Infiltration of three-dimensional objects formed by solid freeform fabrication
DE10224981B4 (de) 2002-06-05 2004-08-19 Generis Gmbh Verfahren zum schichtweisen Aufbau von Modellen
US7087109B2 (en) 2002-09-25 2006-08-08 Z Corporation Three dimensional printing material system and method
US6742456B1 (en) 2002-11-14 2004-06-01 Hewlett-Packard Development Company, L.P. Rapid prototyping material systems
US7497977B2 (en) 2003-01-29 2009-03-03 Hewlett-Packard Development Company, L.P. Methods and systems for producing an object through solid freeform fabrication by varying a concentration of ejected material applied to an object layer
US7807077B2 (en) 2003-06-16 2010-10-05 Voxeljet Technology Gmbh Methods and systems for the manufacture of layered three-dimensional forms
DE10327272A1 (de) 2003-06-17 2005-03-03 Generis Gmbh Verfahren zum schichtweisen Aufbau von Modellen
US7608672B2 (en) 2004-02-12 2009-10-27 Illinois Tool Works Inc. Infiltrant system for rapid prototyping process
DE102004025374A1 (de) 2004-05-24 2006-02-09 Technische Universität Berlin Verfahren und Vorrichtung zum Herstellen eines dreidimensionalen Artikels
US7331948B2 (en) * 2004-06-18 2008-02-19 Medtronic, Inc. Catheter and catheter fabrication method
KR20080030581A (ko) * 2005-05-31 2008-04-04 스미토모 베이클리트 컴퍼니 리미티드 프리어플리케이션용 봉지 수지 조성물, 이를 이용한반도체장치 및 그 제조방법
WO2007024856A2 (en) * 2005-08-23 2007-03-01 Valspar Sourcing, Inc. Infiltrated articles prepared by laser sintering method and method of manufacturing the same
DE102006016500A1 (de) * 2006-04-07 2007-10-11 Linde Ag Verfahren und Vorrichtung zum Strahlungshärten
DE102006030350A1 (de) 2006-06-30 2008-01-03 Voxeljet Technology Gmbh Verfahren zum Aufbauen eines Schichtenkörpers
US20100003493A1 (en) * 2007-10-10 2010-01-07 Ppg Industries Ohio, Inc. Radiation curable coating compositions, related coatings and methods

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5049275A (en) * 1990-06-15 1991-09-17 Hoechst Celanese Corp. Modified microporous structures
WO1995016563A1 (en) * 1993-12-14 1995-06-22 Ferrari Importing Company Process for enhancing string properties
US20010043990A1 (en) * 2000-03-21 2001-11-22 Chong Kong Fok Plastic components with improved surface appearance and method of making the same
WO2003089218A1 (en) * 2002-04-17 2003-10-30 Stratasys, Inc. Smoothing method for layered deposition modeling

Also Published As

Publication number Publication date
ES2363113T3 (es) 2011-07-20
US20150210822A1 (en) 2015-07-30
WO2009046696A3 (de) 2009-12-23
US20130092082A1 (en) 2013-04-18
DE102007049058A1 (de) 2009-04-16
ATE502760T1 (de) 2011-04-15
DE502008002970D1 (de) 2011-05-05
EP2200813A2 (de) 2010-06-30
EP2200813B1 (de) 2011-03-23
US8349233B2 (en) 2013-01-08
US20100244301A1 (en) 2010-09-30

Similar Documents

Publication Publication Date Title
EP2200813B1 (de) Verfahren zum steigern von festigkeit eines porösen kunststoffbauteiles
EP1982816B1 (de) Komposit-Pulver, Verwendung in einem formgebenden Verfahren und Formkörper, hergestellt aus diesem Pulver
EP2961581B1 (de) Verfahren zum herstellen eines formteils mit einer wasserlöslichen gussform sowie materialsystem zu deren herstellung
EP3074208B1 (de) 3d-druckverfahren mit schlicker
DE102011053205B4 (de) Verfahren zum herstellen eines bauteils in ablagerungstechnik
EP3028842B1 (de) Pulverförmige zusammensetzungen aus thermoplastischen kunststoffen und verwendung der zusammensetzungen
DE102016209933A1 (de) Vorrichtung und Verfahren zum generativen Herstellen eines dreidimensionalen Objekts
DE102004003485B4 (de) Schichtaufbauendes Verfahren zur Herstellung eines dreidimensionalen Gegenstandes sowie dafür geeignete Materialsysteme
WO2015062784A1 (de) Verfahren zur herstellung eines bauteils sowie optische bestrahlungsvorrichtung
EP1513670A1 (de) Lasersinterverfahren mit erh hter prozessgenauigkeit und par tikel zur verwendung dabei
EP1274559A1 (de) Vorrichtung und verfahren zum herstellen von dreidimensionalen objekten
DE102009016881A1 (de) Verfahren zum Herstellen eines dreidimensionalen Objekts unter Verwendung eines Kunststoffpulvers mit antimikrobiellen Eigenschaften und Kunststoffpulver mit antimikrobiellen Eigenschaften für ein derartiges Verfahren
EP3085519A1 (de) Verfahren und vorrichtung zum herstellen eines dreidimensionalen objekts
EP3342583B1 (de) Verfahren und vorrichtung zum generativen herstellen eines dreidimensionalen objekts
EP0755321B2 (de) Verfahren zur herstellung eines dreidimensionalen objektes
DE102017211381A1 (de) Verfahren zum Abkühlen und Abkühlvorrichtung
EP3335858A1 (de) Verfahren zur additiven herstellung eines dreidimensionalen objekts
DE102012207609A1 (de) Verfahren zur schichtweisen herstelluing von dreidimensionalen objekten
DE10129305A1 (de) Verfahren zur Herstellung von dreidimensionalen Mustern
EP3560713B1 (de) Verfahren zum aufbau von kunststoff-bauteilen
WO2015177128A1 (de) Verfahren zur herstellung keramischer und/oder metallischer bauteile
EP3352702B1 (de) Verfahren zur herstellung zahnmedizinischer restaurationen mit einem dentalpulver
WO2023072928A1 (de) Metallgefüllte harzformulierung, 3d-druckverfahren und additiv gefertigtes bauteil
DE102020122773A1 (de) Vorrichtung zur additiven Herstellung dreidimensionaler Objekte
CH719575A2 (de) Verfahren zur additiven Fertigung eines dreidimensionalen Formkörpers.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08801346

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12681194

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2008801346

Country of ref document: EP