WO2008157400A1 - Methods and devices for treating tissue - Google Patents

Methods and devices for treating tissue Download PDF

Info

Publication number
WO2008157400A1
WO2008157400A1 PCT/US2008/066980 US2008066980W WO2008157400A1 WO 2008157400 A1 WO2008157400 A1 WO 2008157400A1 US 2008066980 W US2008066980 W US 2008066980W WO 2008157400 A1 WO2008157400 A1 WO 2008157400A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
electrodes
electrode
energy
region
Prior art date
Application number
PCT/US2008/066980
Other languages
French (fr)
Inventor
Bankim H. Mehta
Peter G. Knopp
Original Assignee
Primaeva Medical, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US11/764,032 external-priority patent/US20080312647A1/en
Priority claimed from US11/832,544 external-priority patent/US20090036958A1/en
Application filed by Primaeva Medical, Inc. filed Critical Primaeva Medical, Inc.
Priority to EP08771073A priority Critical patent/EP2162084A4/en
Publication of WO2008157400A1 publication Critical patent/WO2008157400A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • A61B18/1477Needle-like probes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • A61B18/203Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser applying laser energy to the outside of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/18Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves
    • A61B18/20Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by applying electromagnetic radiation, e.g. microwaves using laser
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • A61B2018/00023Cooling or heating of the probe or tissue immediately surrounding the probe with fluids closed, i.e. without wound contact by the fluid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00315Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for treatment of particular body parts
    • A61B2018/00452Skin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00702Power or energy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00696Controlled or regulated parameters
    • A61B2018/00744Fluid flow
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00994Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body combining two or more different kinds of non-mechanical energy or combining one or more non-mechanical energies with ultrasound
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/02Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by cooling, e.g. cryogenic techniques
    • A61B2018/0231Characteristics of handpieces or probes
    • A61B2018/0237Characteristics of handpieces or probes with a thermoelectric element in the probe for cooling purposes

Definitions

  • the devices and methods described herein may provide electrode arrays that penetrate tissue at an oblique angle or at a normal angle as discussed below.
  • the device may include a cooling surface that directly cools the surface area of tissue adjacent to the treated region of tissue.
  • the cooling methods and apparatus described herein may be implemented regardless of whether the electrodes penetrate at an oblique angle or not.
  • the cooling surface pre-cools the skin and underlying epidermis prior to delivering the therapeutic treatment. Additional variations include application of cooling during and/or subsequent to the energy delivery where such cooling is intended to maintain the epidermis.
  • the energy supply unit 114 may also include an input/output (I/O) device that allows the physician to input control and processing variables, to enable the controller 114 to generate appropriate command signals.
  • the I/O device can also receive real time processing feedback information from one or more sensors 98 associated with the device, for processing by the controller 114, e.g., to govern the application of energy and the delivery of processing fluid.
  • the I/O device may also include a display, to graphically present processing information to the physician for viewing or analysis.
  • the electrodes 106 can be configured to individually rotate, vibrate (e.g., via ultrasonic energy), or cycle in an axial direction, where such actions are intended to lower the overall insertion force required by the medical practitioner to place the electrodes within tissue.
  • the electrodes 106 are arranged in a pair configuration. In a bi-polar configuration one electrode 120 serves a first pole, while the second electrode 122 serves as the second pole (it is also common to refer to such electrodes as the active and return electrodes).
  • the spacing of electrode pairs 106 is sufficient so that the pair of electrodes 120, 122 is able to establish a treatment current path therebetween for the treatment of tissue. However, adjacent electrode pairs 106 will be spaced sufficiently to minimize the tendency of current flowing between the adjacent pairs.
  • each electrode pair 106 is coupled to a separate power supply or to a single power supply having multiple channels for each electrode pair.
  • each electrode pair may include a thermocouple to separately monitor each treatment site; the duration of the energy treatment may be controlled depending on the characteristics of the surrounding tissue; selective electrode pairs may be fired rather than all of the electrode pairs firing at once (e.g., by firing electrode pairs that are located on opposite ends of the electrode plate one can further minimize the chance that a significant amount of current flows between the separate electrode pairs.)
  • a number of additional configurations are also available depending on the application. Additional variations of the device may include electrode pairs that are coupled to a single channel of a power supply as well.
  • the mere act of inserting the electrode array into tissue can also yield therapeutic benefits.
  • the mechanical damage caused by placement of the electrodes also produces an adjunct healing response.
  • the healing response to injury in the skin tissue can contribute to the production of new collagen (collagenesis) that can further improve the tone or appearance of the skin.
  • a medical practitioner may opt to use the methods and systems to create mechanical injury to tissue by placing electrodes into target areas without RF treatment to induce a healing response in the targeted area.
  • the invention is not limited to application of energy via the electrodes.
  • the tissue first elastically deforms as shown. Eventually, the tissue can no longer deflect and is placed in traction by the introducer members 134. As a result, the electrodes 120, 122 more readily penetrate the tissue.
  • FIG. 4B illustrates the first and second electrodes 120,122 within tissue.
  • the depth of insertion of these electrodes may be controlled by selecting a proper combination of electrode length and radius of curvature.
  • FIG. 8D illustrates an example of the benefit of oblique entry when the device is used to treat the dermis 18.
  • the length of the dermis 18 along the active region 214 is greater than a depth of the dermis 18. Accordingly, when trying to insert the electrode in a perpendicular manner, the shorter depth provides less of a margin for error when trying to selectively treat the dermis region 18.
  • the device and methods may be used to affect skin anomalies 153 such as acne, warts or other structures or blemishes.
  • FIG. 9C also shows a Peltier cooling device 234 coupled to the cooling surface
  • FIG. 13B illustrates a situation where the farthest electrode pairs 264, 266 within the array 262 are triggered to form a current path 268.
  • a single electrode array may form a number of patterns based on various combinations of pairs that may be formed in the array.
  • the array may be able to provide a denser treatment or more uniform tissue heating.
  • the treatment can deliver targeted therapy to key areas of tissue.
  • various pairs of the electrode array may be triggered sequentially during a single insertion.

Abstract

The invention provides a system and method for achieving the cosmetically beneficial effects of shrinking collagen tissue in the dermis or other areas of tissue in an effective, non-invasive manner using an array of electrodes. Systems described herein allow for improved treatment of tissue. Additional variations of the system include array of electrodes configured to minimize the energy required to produce the desired effect.

Description

METHODS AND DEVICES FOR TREATING TISSUE
BACKGROUND OF THE INVENTION
[0001] The systems and method discussed herein treat tissue in the human body. In a particular variation, systems and methods described below treat cosmetic conditions affecting the skin of various body parts, including face, neck, and other areas traditionally prone to wrinkling, lines, sagging and other distortions of the skin. [0002] Exposure of the skin to environmental forces can, over time, cause the skin to sag, wrinkle, form lines, or develop other undesirable distortions. Even normal contraction of facial and neck muscles, e.g. by frowning or squinting, can also over time form furrows or bands in the face and neck region. These and other effects of the normal aging process can present an aesthetically unpleasing cosmetic appearance. [0003] Accordingly, there is well known demand for cosmetic procedures to reduce the visible effects of such skin distortions. There remains a large demand for "tightening" skin to remove sags and wrinkles especially in the regions of the face and neck. [0004] One method surgically resurfaces facial skin by ablating the outer layer of the skin (from 200 μm to 600 μm), using laser or chemicals. In time, a new skin surface develops. The laser and chemicals used to resurface the skin also irritate or heat the collagen tissue present in the dermis. When irritated or heated in prescribed ways, the collagen tissue partially dissociates and, in doing so, shrinks. The shrinkage of collagen also leads to a desirable "tightened" look. Still, laser or chemical resurfacing leads to prolonged redness of the skin, infection risk, increased or decreased pigmentation, and scarring.
[0005] Lax et al. U.S. Pat. No. 5,458,596 describes the use of radio frequency energy to shrink collagen tissue. This cosmetically beneficial effect can be achieved in facial and neck areas of the body in a minimally intrusive manner, without requiring the surgical removal of the outer layers of skin and the attendant problems just listed. [0006] Utely et al . U. S. Pat. No. 6,277, 116 also teaches a system for shrinking collagen for cosmetically beneficial purposes by using an electrode array configuration. [0007] However, areas of improvement remain with the previously known systems. In one example, fabrication of an electrode array may cause undesired cross-current paths forming between adjacent electrodes resulting in an increase in the amount of energy applied to tissue. [0008] In another example, when applying the array to tissue, the medical practitioner experiences a "bed-of-nails". In other words, the number of electrodes and their configuration in the array effectively increases the total surface area of the electrode array. The increase in effective surface area then requires the medical practitioner to apply a greater force to the electrode array in order to penetrate tissue. Such a drawback may create collateral damage as one or more electrode may be placed too far within the skin. Additionally, the patient may experience the excessive force as the medical practitioner increases the applied force to insert the array within tissue. [0009] Thermage, Inc. of Hay ward California also holds patents and sells devices for systems for capacitive coupling of electrodes to deliver a controlled amount of radiofrequency energy. This controlled delivery of RF energy creates an electric field through the epidermis that generates "resistive heating" in the skin to produce cosmetic effects while simultaneously attempting to cool the epidermis with a second energy source to prevent external burning of the epidermis.
[0010] In such systems that treat in a non-invasive manner, generation of energy to produce a result at the dermis results in unwanted energy passing to the epidermis. Accordingly, excessive energy production creates the risk of unwanted collateral damage to the skin.
[0011] In view of the above, there remains a need for an improved energy delivery system. Such systems may be applied to create improved electrode array delivery system for cosmetic treatment of tissue. In particular, such an electrode array may provide deep uniform heating by applying energy to tissue below the epidermis to cause deep structures in the skin to immediately tighten. Over time, new and remodeled collagen may further produce a tightening of the skin, resulting in a desirable visual appearance at the skin's surface.
[0012] Moreover, the features and principles used to improve these energy delivery systems can be applied to other areas, whether cosmetic applications outside of reduction of skin distortions or other medical applications.
SUMMARY OF THE INVENTION
[0013] The invention provides improved systems and methods of achieving the cosmetically beneficial effects of using energy to shrink collagen tissue in the dermis in an effective manner that prevents the energy from affecting the outer layer of skin. [0014] One aspect of the invention provides systems and methods for applying electromagnetic energy to skin. The systems and methods include a carrier and an array of electrodes on the carrier, which are connectable to a source of electromagnetic energy to apply the electromagnetic energy. The devices and methods described herein can also be used to treat tissue masses such as tumors, varicose veins, or other tissue adjacent to the surface of tissue.
[0015] The devices and methods described herein may provide electrode arrays that penetrate tissue at an oblique angle or at a normal angle as discussed below. In addition, in those variations where the electrode array enters at an oblique angle, the device may include a cooling surface that directly cools the surface area of tissue adjacent to the treated region of tissue. The cooling methods and apparatus described herein may be implemented regardless of whether the electrodes penetrate at an oblique angle or not. [0016] In some variations, the cooling surface pre-cools the skin and underlying epidermis prior to delivering the therapeutic treatment. Additional variations include application of cooling during and/or subsequent to the energy delivery where such cooling is intended to maintain the epidermis.
[0017] According to this aspect of the invention, a faceplate on the carrier or treatment unit covers the array of electrodes. Faceplate can be a non-conducting material and may or may not conform to the outer surface of tissue.
[0018] An interior chamber is formed behind the faceplate and contains an electrode plate. The electrode plate can move within the chamber to allow movement of the electrodes through openings in the faceplate. It is noted however, that variations of the invention may or may not have a faceplate and/or an electrode plate. [0019] Methods described herein include methods for applying energy to tissue located beneath a surface layer of the tissue by providing an energy transfer unit having a faceplate with a plurality of openings and a plurality of electrodes moveable through the faceplate. In operation a medical practitioner can place the faceplate in contact with the surface layer of tissue then draw and maintain the surface layer of tissue against the openings in the faceplate. Subsequently, or simultaneously to this act, the medical practitioner can advance the electrodes through the surface tissue and into the tissue and apply energy with a portion of the electrode beneath the skin to create a thermal injury to tissue beneath the skin.
[0020] The number of openings may match the number of electrodes. Alternatively, there may be additional openings in the treatment unit to maintain a vacuum with the tissue and/or allow movement of the electrodes within the chamber. [0021] Variations of the invention include movement of the electrodes by use of a spring. The spring provides a spring force to move the electrodes at a velocity that allows for easier insertion of the electrode array into tissue.
[0022] Alternatively, or in combination, the electrodes may be coupled to an additional source of energy that imparts vibration in the electrodes (e.g., an ultrasound energy generator). The same energy source may be used to generate the thermal effect in the dermis.
[0023] The methods and devices described herein may also use features to facilitate entry of the electrodes into tissue. For example, the surface tissue may be placed in traction prior to advancing electrodes through the surface tissue. The electrodes can comprise a curved shape. Where advancing the curved electrodes through tissue comprises rotating the electrodes into tissue.
[0024] The power supply for use with the systems and methods described herein may comprise a plurality of electrode pairs, each electrode pair comprising a mono-polar or bipolar configuration. Each electrode pair of the system may be coupled to an independent channel of a power supply or independent power supplies. Such configurations permit improved controlled delivery of energy to the treatment site.
[0025] Another variation that controls delivery of energy may include spacing where each electrode pair is at a sufficient distance from an adjacent electrode pair to minimize formation of a cross-current path between adjacent electrode pairs. Moreover, the independent power supply can be configured to energize adjacent electrode pairs at different times.
[0026] Devices according to the principles of the present invention include an electrode array for treating a dermis layer of tissue, the array comprising a faceplate comprising a plurality of openings, a plurality of electrode pairs each pair comprising an active and a return electrode, where the electrode pairs extend through openings in the faceplate, at least one electrode plate carrying the plurality of electrode pairs, where the electrode plate and face plate are moveable relative to each other to allow for axial movement of the electrode pairs through the openings.
[0027] It is expressly intended that, wherever possible, the invention includes combinations of aspects of the various embodiments described herein or even combinations of the embodiments themselves. BRIEF DESCRIPTION OF THE DRAWINGS
[0028] FIG. 1 shows a representative sectional view of skin and underlying subcutaneous tissue;
[0029] FIG. 2A shows a sample variation of a system according to the principles of the invention;
[0030] FIG. 2B illustrates a partial cross-sectional view of an exemplary treatment unit where the electrode array is retained proximal to a faceplate of the device; [0031] FIGS. 2C-2D respectively illustrates a partial cross sectional view of an exemplary treatment unit after tissue is drawn against the unit and the unit after the electrodes deploy into tissue;
[0032] FIG. 2E illustrates a variation of a sensor disposed on an electrode; [0033] FIG. 2F shows an example of spacing of electrode pairs in the electrode array to minimize current flow between adjacent electrode pairs;
[0034] FIG. 2G shows a graph representing pulsed energy delivery and temperature measurements between pulses of energy;
[0035] FIGS. 3 A to 3B show variations of introducer members that assist in placing electrodes within tissue;
[0036] FIGS. 4 A to 4C show variations of curved electrodes that pivot or rotate into tissue;
[0037] FIGS. 5A to 5D show variations of electrodes placed at oblique angles; [0038] FIGS. 6A to 6C show additional variations of electrode configurations; [0039] FIGS. 7A to 7B show additional modes of contouring the treatment unit to varying skin geometries; and
[0040] FIG. 8 A shows an additional variation of a device having an array of electrodes adjacent to a tissue engaging surface;
[0041] FIG. 8 B shows a magnified view of the electrodes and tissue engaging surface of the device of FIG. 8 A;
[0042] FIGS. 8C to 8D show an example of an electrode entering tissue at an oblique angle adjacent to a tissue engaging surface;
[0043] FIG. 8E to 8F show cooling surfaces adjacent to the electrodes; [0044] FIG. 8G shows a variation of a device having a marking assembly; [0045] FIGS. 9A to 9D show another variation of an electrode device with a cooling system that can be placed adjacent to the electrodes; [0046] FIGS. 1OA to 1OB show an additional variation of an electrode device; [0047] FIG. 11 shows a variation of an electrode device which incorporates a user interface;
[0048] FIGS. 12A-12D illustrate variations of electrodes having varying resistance or impedance along the length of the electrode; and
[0049] FIGS. 13A to 13B show an example of an array of electrodes where any number of pairs of electrodes can be triggered to apply therapeutic energy to tissue.
DESCRIPTION OF THE PREFERRED EMBODIMENT
[0050] The systems and method discussed herein treat tissue in the human body. In one variation, the systems and methods treat cosmetic conditions affecting the skin of various body parts, including face, neck, and other areas traditionally prone to wrinkling, lines, sagging and other distortions of the skin. The methods and systems described herein may also have application in other surgical fields apart from cosmetic applications. [0051] The inventive device and methods also include treatment of skin anomalies such as warts (Verruca plana, Verruca vulgaris) or acne (Acne vulgaris). The methods and devices can be used for the removal of unwanted hair (i.e., epilation) by applying energy or heat to permanently damage hair follicles thereby removing the skins ability to grow hair. Such treatment may be applied on areas of facial skin as well as other areas of the body.
[0052] In addition to therapeutic surface treatments of the skin, the current invention can be targeted to the underlying layer adipose tissue or fat for lipolysis or the breakdown of fat cells. Selecting electrodes having sufficient length to reach the subcutaneous fat layer allows for such electrodes to apply energy in the subcutaneous fat layer. Application of the energy can break down the fat cells in that layer allowing the body to absorb the resulting free fatty acids into the blood stream. Such a process can allow for contouring of the body surface for improved appearance. Naturally, such an approach can be used in the reduction of cellulite.
[0053] Other possible uses include pain management (both in the use of heat to reduce pain in muscle tissue and by directly ablating nociceptive pain fibers), stimulation of cellular healing cascade via heat, reproductive control by elevated heating of the testicles, and body modification such as scarification.
[0054] As FIG. 1 shows, the skin 10 covers subcutaneous tissue 12 and muscle tissue cross sectional depth.
[0055] The skin 10 includes an external, non-vascular covering called the epidermis 16. In the face and neck regions, the epidermis measures about 100 μm in cross sectional depth. The skin 10 also includes a dermis 18 layer that contains a layer of vascular tissue. In the face and neck regions, the dermis 18 measures about 1900 μm in cross sectional depth.
[0056] The dermis 18 includes a papillary (upper) layer and a reticular (lower) layer. Most of the dermis 18 comprises collagen fibers. However, the dermis also includes various hair bulbs, sweat ducts, and other glands. The subcutaneous tissue 12 region below the dermis 18 contains fat deposits as well as vessels and other tissue. [0057] In most cases, when applying cosmetic treatment to the skin for tightening or removal of wrinkles, it is desirable to deliver energy to the dermis layer rather than the epidermis, the subcutaneous tissue region 12 or the muscle 14 tissue. In fact, delivery of energy to the subcutaneous tissue region 12 or muscle 14 may produce pockets or other voids leading to further visible imperfections in the skin of a patient. Also, delivery of excessive energy to the epidermis can cause burns and/or scars leading to further visible imperfections.
[0058] The application of heat to the fibrous collagen structure in the dermis 18 causes the collagen to dissociate and contract along its length. It is believed that such disassociation and contraction occur when the collagen is heated to about 65 degree C. The contraction of collagen tissue causes the dermis 18 to reduce in size, which has an observable tightening effect. As the collagen contacts, wrinkles, lines, and other distortions become less visible. As a result, the outward cosmetic appearance of the skin 10 improves. Furthermore, the eventual wound healing response may further cause additional collagen production. This latter effect may further serve to tighten and bulk up the skin 10.
[0059] FIG. 2A illustrates a variation of a treatment system according the principles described herein. The treatment system 100 generally includes a treatment unit 102 having a hand-piece 110 (or other member/feature that allows for manipulation of the system to treat tissue 10). The treatment unit 102 shown includes a faceplate 104 having a plurality of electrodes 106 (generally formed in an array) that extend from openings 108 in the faceplate 104. The devices may comprise electrode arrays of only a single electrode pair up to considerably larger arrays. Currently, the size of the array is determined by the target region that is intended for treatment. For example, a treatment unit 102 designed for relatively small treatment areas may only have a single pair of electrodes. On the other hand, a treatment unit 102 designed for use on the cheek or neck may have up to 10 electrode pairs. However, estimates on the size of the electrode array are for illustrative purposes only. In addition, the electrodes on any given array may be the same shape and profile. Alternatively, a single array may have electrodes of varying shapes, profiles, and/or sizes depending upon the intended application. [0060] The electrodes 106 can be fabricated from any number of materials, e.g., from stainless steel, platinum, and other noble metals, or combinations thereof. Additionally, the electrode may be placed on a non-conductive member (such as a polymeric member). In any case, the electrode 106 may be fastened to the electrode plate by various means, e.g., by adhesives, by painting, or by other coating or deposition techniques. [0061] Additionally, the treatment unit 102 may or may not include an actuator 128 for driving the electrode array 126 from the faceplate 104. Alternative variations of the system 100 include actuators driven by the control system/energy supply unit 114. [0062] The number of electrodes 106 in the array may vary as needed for the particular application. Furthermore, the array defined by the electrodes 106 may have any number of shapes or profiles depending on the particular application. As described in additional detail herein, in those variations of the system 100 intended for skin resurfacing, the length of the electrodes 106 is generally selected so that the energy delivery occurs in the dermis layer of the skin 10 while the spacing of electrodes 106 may be selected to minimize flow of current between adjacent pairs of electrodes. [0063] When treating the skin, it is believed that the dermis should be heated to a predetermined temperature condition, at or about 65 degree C, without increasing the temperature of the epidermis beyond 42 degree C. Since the active area of the electrode designed to remain beneath the epidermis, the present system applies energy to the dermis in a targeted, selective fashion, to dissociate and contract collagen tissue. By attempting to limit energy delivery to the dermis, the configuration of the present system also minimizes damage to the epidermis.
[0064] The system 10 also includes an energy supply unit 114 coupled to the treatment unit 102 via a cable 112 or other means. The energy supply unit 114 may contain the software and hardware required to control energy delivery. Alternatively, the CPU, software and other hardware control systems may reside in the hand piece 110 and/or cable 112. It is also noted that the cable 112 may be permanently affixed to the supply unit 114 and/or the treatment unit 102. The energy supply unit may be a RF energy unit. Additional variations of energy supply units may include power supplies to provide thermal energy, ultrasound energy, laser energy, and infrared energy. Furthermore, the systems may include combinations of such energy modalities. [0065] For example, in addition to the use of RF energy, other therapeutic methods and devices can be used in combination with RF energy to provide additional or more efficacious treatments. For example, as shown in Fig. 2A, additional energy supplies 115 can be delivered via energy transfer elements 105 located at the working end of a treatment unit 102. Alternatively, the radiant energy may be supplied by the energy source/supply 114 that is coupled to a diode, fiber, or other emitter at the distal end of the treatment unit 102. In one variation, the energy source/supply 115 and energy transfer element 105 may comprise laser, light or other similar types of radiant energy (e.g., visible, ultraviolet, or infrared light). For example, intense pulsed light having a wavelength between 300 and 12000 nm can also be used in conjunction with RF current to heat a targeted tissue. As show, the transfer elements 105 may comprise sources of light at the distal end of the treatment unit 102. More specifically a coherent light source or laser energy can be used in conjunction with RF to heat a targeted tissue. Examples of lasers that can be used include erbium fiber, CO2, diode, flashlamp pumped, Nd:YAG, dye, argon, ytterbium, and ErYAG among others. More than one laser or light source can be used in combination with RF to further enhance the effect. For example, a pulsed infra-red light source can be used to heat the skin surface, an Nd: YAG laser can be used to heat specific chromophores or dark matter below the surface of the skin, and RF current can be applied to a specific layer within or below the skin; the combination of which provides the optimal results for skin tightening, acne treatment, lipolysis, wart removal or any combination of these treatments.
[0066] Other energy modes besides or in addition to the optical energy described above can also be used in conjunction with RF current for these treatments. Ultrasound energy can be delivered either through the RF electrodes, through a face plate on the surface of the skin, or through a separate device. The ultrasound energy can be used to thermally treat the targeted tissue and/or it can be used to sense the temperature of the tissue being heated. A larger pulse of pressure can also be applied to the surface of the skin in addition to RF current to disrupt adipose tissue. Fat cells are larger and their membranes are not as strong as those of other tissue types so such a pulse can be generated to selectively destroy fat cells. In some cases, the multiple focused pressure pulses or shock waves can be directed at the target tissue to disrupt the cell membranes. Each individual pulse can have from 0.1 to 2.5 Joules of energy. [0067] The energy supply unit 114 may also include an input/output (I/O) device that allows the physician to input control and processing variables, to enable the controller 114 to generate appropriate command signals. The I/O device can also receive real time processing feedback information from one or more sensors 98 associated with the device, for processing by the controller 114, e.g., to govern the application of energy and the delivery of processing fluid. The I/O device may also include a display, to graphically present processing information to the physician for viewing or analysis. [0068] In some variations, the system 100 may also include an auxiliary unit 116 (where the auxiliary unit may be a vacuum source, fluid source, ultrasound generator, medication source, etc.) Although the auxiliary unit is shown to be connected to the energy supply, variations of the system 100 may include one or more auxiliary units 116 where each unit may be coupled to the power supply 114 and/or the treatment unit 102. [0069] FIG. 2B illustrates a cross sectional view of a variation of a treatment unit 102 according to the systems described herein. As shown, the treatment unit 102 includes the hand piece body 110 that houses the electrode array 126 on an electrode plate 118. Naturally, the hand piece 110 or treatment unit 102 may have any shape that accommodates ease of use.
[0070] FIG. 2B also shows the electrode array 126 being withdrawn behind the faceplate 104. In the illustrated variation, the treatment unit 102 includes a spring release lever or trigger 124. As described below, the spring release trigger 124 can be used to actuate a spring 130 (a coiled spring or other similar structure) to drive the electrode array 126 through openings 108 in the faceplate 104. Driving the electrode array 126 with the spring-force increases the force of the electrodes as they approach tissue and facilitates improved penetration of the tissue by the electrodes. Although the inventive system may not include such a spring force, the absence of such a feature may require the medical practitioner to apply excessive force to the entire treatment unit 102 when trying to insert the electrodes due to a "bed-of-nails" effect.
[0071] FIG. 2C illustrates the treatment unit 102 as it is placed against tissue 10. In this variation, a vacuum source (not shown) may be applied to the unit 102 to draw the tissue 10 against the faceplate 104. Typically, the vacuum pulls the tissue in through the openings 108 on the faceplate 104. Variations of the device include additional openings in the faceplate in addition to openings that allow passage of the electrodes. This latter configuration permits application of a vacuum as the electrodes penetrate the tissue. Other variations include the vacuum being applied to openings in the face plate which are proximal to the electrode passage openings such that the drawn tissue is separate from but proximal to the penetrated tissue which provides good tissue stability. Further the vacuum can be applied through another proximate portion of the device rather than the faceplate with the same effect.
[0072] By drawing tissue against the device or faceplate, the medical practitioner may better gauge the depth of the treatment. For example, given the relatively small sectional regions of the epidermis, dermis, and subcutaneous tissue, if a device is placed over an uneven contour of tissue, one electrode pair may be not be placed at the sufficient depth. Accordingly, application of energy in such a case may cause a burn on the epidermis. Therefore, drawing tissue to the faceplate of the device increases the likelihood of driving the electrodes to a uniform depth in the tissue.
[0073] Although not shown, the electrode plate 118 may contain apertures or other features to allow distal movement of the plate 118 and electrodes 106 during the application of a vacuum.
[0074] FIG. 2D illustrates deployment of the electrode array 126 into the tissue 10. Although not shown, in variations of the device suited for cosmetic applications, the length of the electrodes 106 will be chose to place the active region of the electrode (i.e., the region that conducts electricity) within the dermis. Again, the depth of the electrodes may vary depending upon the region of the body intended for treatment. In one variation, the electrodes 106 may be driven into the tissue as far as possible to ensure complete contact between the faceplate 104 and the surface of the skin. Subsequently, the electrode may be withdrawn a predetermined distance to place the active portion of the electrode in the proper location.
[0075] FIG. 2E illustrates an example of an electrode 106 having a sensor 98. The sensor may be any device that monitors temperature of the tissue, impedance, or other characteristic. Additionally, more than one sensor 98 may be used on a single electrode, on an electrode array, on the faceplate or any combination thereof. In additional variations, the temperature sensor 98 can be used on a probe that is similar in structure to an electrode 106 but where the probe does not contain any active region for energy delivery. In such a case, one or more probes can be placed within the electrode array to measure regions within the tissue being treated.
[0076] In variations of the present system, the electrodes 106 can be configured to individually rotate, vibrate (e.g., via ultrasonic energy), or cycle in an axial direction, where such actions are intended to lower the overall insertion force required by the medical practitioner to place the electrodes within tissue. [0077] The electrodes 106 are arranged in a pair configuration. In a bi-polar configuration one electrode 120 serves a first pole, while the second electrode 122 serves as the second pole (it is also common to refer to such electrodes as the active and return electrodes). The spacing of electrode pairs 106 is sufficient so that the pair of electrodes 120, 122 is able to establish a treatment current path therebetween for the treatment of tissue. However, adjacent electrode pairs 106 will be spaced sufficiently to minimize the tendency of current flowing between the adjacent pairs. Typically, each electrode pair 106 is coupled to a separate power supply or to a single power supply having multiple channels for each electrode pair.
[0078] The benefit of such a configuration is that, when compared to conventional treatments, the amount of power required to induce heating in the target tissue is much reduced. For example, because the electrodes are spaced to provide heating across the electrode pairs at the target tissue, each channel of the system may provide as little as 1 watt of energy to produce the desired temperature increase at the site. In additional variations, the amount of energy may be no more than 3 or 5 watts. However, any amount of energy necessary to accomplish the desired effect is within the scope of this invention. In contrast, if a treatment system delivered energy over the entire electrode array, a much greater amount of energy is required to generate the desired temperature over the larger surface area of tissue. Moreover, the energy demand is less because the treatment applies energy directly to the target tissue rather than though additional layers of tissue.
[0079] In one variation of the device, it is believed that a desirable spacing of the first and second electrode poles is between 1 and 3 mm, while a desirable spacing of electrode pairs is between 5 and 6 mm. In one example, the described configuration allowed for each independent channel to deliver no more than 1 watt, 3 watts, 5, watts or any other amount of energy to deliver acceptable tissue treatment results. Obviously, the power supply may be configured to deliver greater amounts of energy as needed depending on the application.
[0080] FIG. 2F illustrates the electrode array 126 when deployed within tissue 10. As noted above, variations of the device include electrode pairs 120, 122 provided in a bipolar configuration where each pair is coupled to a separate power supply or separate channel of a power supply. As shown, this configuration permits flow of current 132 between the two electrodes in the electrode pair rather than between adjacent pairs. Again, the invention is not limited to such a configuration and may be monopolar, and/or have electrode spacing that permits flow of current between several electrodes on the electrode array.
[0081] The ability to control each electrode pair on a separate channel from the power supply provides additional benefits based on the impedance or other characteristic of the tissue being treated. For example, each electrode pair may include a thermocouple to separately monitor each treatment site; the duration of the energy treatment may be controlled depending on the characteristics of the surrounding tissue; selective electrode pairs may be fired rather than all of the electrode pairs firing at once (e.g., by firing electrode pairs that are located on opposite ends of the electrode plate one can further minimize the chance that a significant amount of current flows between the separate electrode pairs.) Naturally, a number of additional configurations are also available depending on the application. Additional variations of the device may include electrode pairs that are coupled to a single channel of a power supply as well. [0082] The present systems may deliver energy based upon sensing tissue temperature conditions as a form of active process feedback control. Alternatively, the systems may monitor changes in impedance of the tissue being treated and ultimately stop the treatment when a desired value is obtained. In another variation, the delivery of energy can depend on whether impedance is within a certain range. Such impedance monitoring can occur during energy delivery and attenuate power if the dynamically measured impedance starts to exceed a given value or if the rate of increase is undesirably high. Yet another mode of energy delivery is to provide a total maximum energy over a duration of time.
[0083] As noted herein, temperature or other sensing may be measured beneath the epidermis in the dermis region. Each probe or electrode may include a sensor or the sensor may be placed on a structure that penetrates the tissue but does not function as an energy delivery electrode. In yet another variation, the sensors may be a vertically stacked array (i.e. along the length of the electrode) of sensors to provide data along a depth or length of tissue.
[0084] Energizing the RF electrodes in the dermal layer produces a healing response caused by thermally denaturing the collagen in the dermal layer of a target area. As noted herein, systems according to the present invention are able to provide a desirable effect in the target area though they use a relatively low amount of energy when compared to systems that treat through the epidermis. Accordingly, systems of the present invention can apply energy in various modes to improve the desired effect at the target area. [0085] In one mode, the system can simply monitor the amount of energy being applied to the target site. This process involves applying energy and maintaining that energy at a certain pre-determined level. This treatment can be based on a total amount of energy applied and/or application of a specific amount of energy over a set period of time. In addition, the system can measure a temperature of the target site during the treatment cycle and hold that temperature for a pre-determined amount of time. However, in each of these situations, the system does not separate the time or amount of energy required to place the target site in the desired state from the time or amount of energy required to hold the target site in the desired state. As a result, the time or amount of energy used to place the target in a desired state (e.g., at a pre-determined temperature) is included in the total treatment cycle. In some applications, it may be desirable to separate the portion of the treatment cycle required to elevate the target to a predetermined condition from the portion of the treatment cycle that maintains the target site at the pre-determined conditions.
[0086] For example, in one variation, the system can maintain a temperature of the target site at a pre-determined treatment temperature during a pre-determined cycle or dwell time. The system then delivers energy to maintain the target site at the treatment temperature. Once the target site reaches the treatment temperature, the system then maintains this condition for the cycle or dwell time. This variation allows for precise control in maintaining the target site at the pre-determined temperature. In another variation, the system can monitor the amount of power applied to the target site for a specific dwell time. By continuously measuring current and output voltage, the system can calculate both the impedance changes and the delivered power levels. With this method a specific amount of power can be delivered to the target tissue for a specified amount of time. In addition, the above variations can be combined with various methods to control time, temperature or energy parameters to place the tissue in the desired state. For example, the system can employ a specified ramp time or maximum energy to achieve the pre-determined treatment temperature. Such a variation can create a faster or slower ramp to the treatment temperature.
[0087] Although the treatment of tissue generally relies on energy to affect the tissue, the mere act of inserting the electrode array into tissue can also yield therapeutic benefits. For instance, the mechanical damage caused by placement of the electrodes also produces an adjunct healing response. The healing response to injury in the skin tissue can contribute to the production of new collagen (collagenesis) that can further improve the tone or appearance of the skin. Accordingly, in one variation a medical practitioner may opt to use the methods and systems to create mechanical injury to tissue by placing electrodes into target areas without RF treatment to induce a healing response in the targeted area. Accordingly, the invention is not limited to application of energy via the electrodes.
[0088] The low energy requirements of the system present an additional advantage since the components on the system undergo less stress than those systems needing higher amounts of energy. In those systems requiring higher energy, RF energy is often delivered in a pulsed fashion or for a specific duty cycle to prevent stressing the components of that system. In contrast, the reduced energy requirements of the present system allow for continual delivery of RF energy during a treatment cycle. In another variation, the duty cycle of variations of the present system can be pulsed so that temperature measurements can be taken between the pulsed deliveries of energy. Pulsing the energy delivery allows for an improved temperature measurement in the period between energy deliveries and provides precise control of energy delivery when the goal of the energy delivery is to reach a pre-determined temperature for a pre-determined time. [0089] FIG. 2G illustrates a graph of energy delivery and temperature versus time. As shown, the pulses or cycles of energy are represented by the bars 302, 304, 306, 308, 310, 312. Each pulse has a parameter, including amount of energy, duration, maximum energy delivered, energy wave form or profile (square wave, sinusoidal, triangular, etc), current, voltage, amplitude, frequency, etc. As shown in the graph, measurements are taken between pulses of energy. Accordingly, between each pulse of energy delivery one or more temperature sensor(s) near the electrode obtains a temperature measurement 402, 404, 406, 408, 410, 412. The controller compares the measured temperature to a desired temperature (illustrated by 400). Based on the difference, the energy parameters are adjusted for the subsequent energy pulse. Measuring temperature between pulses of energy allows for a temperature measurement that is generally more accurate than measuring during the energy delivery pulse. Moreover, measuring between pulses allows for minimizing the amount of energy applied to obtain the desired temperature at the target region.
[0090] FIG. 3 A illustrates an aspect for use with the variations of the devices described herein. In this example, the electrodes 120, 122 include an introducer member 134 that places tissue 10 in a state of tension (also called "traction"). In this variation the introducer 134 is located about each opening 108 in the faceplate 104. However, alternate variations of the device include introducer members placed directly on the electrode.
[0091] As shown, once the introducer member 134 engages tissue 10, the tissue first elastically deforms as shown. Eventually, the tissue can no longer deflect and is placed in traction by the introducer members 134. As a result, the electrodes 120, 122 more readily penetrate the tissue.
[0092] FIG. 3B illustrates another variation of the introducer member 134 that is tapered inwards toward the electrodes so that the opening at the distal end closely fits around the electrode.
[0093] As noted herein, variations of the device may include application of a vacuum to the surface of the targeted area of skin to hold it in place during electrode insertion or minimize movement of the skin as a result of pressure caused by electrode or device insertion in a lateral manner as previously described herein. Furthermore, the skin can be mechanically deformed such that it protrudes and is held stable between at least two surfaces to further enable electrode placement. One such example of this is found in Figs. 3 A and 3B where surfaces of the introducer members actually serve to pinch or hold skin for improved electrode 120 122 placement.
[0094] In those variations of systems according to the present invention, if the electrodes engage the tissue without the introducer members, then the electrodes themselves may cause plastic deformation of the surface tissue. Such an occurrence increases the force a medical practitioner must apply to the device to deploy the electrodes in tissue.
[0095] FIG. 4A shows another variation of an aspect for use with variations of the inventive device where the electrodes 120, 122 in the array have a curved or arcuate profile. When actuated, the electrodes 120, 122 rotate into the tissue 10. Such a configuration may rely on a cam type mechanism (e.g., where the electrode plate and electrode rely on a cam-follower type motion to produce rotation of the electrodes). [0096] The electrodes 120, 122 may have a curved shape similar to that of suture needles, and/or may be fabricated from a shape memory alloy that is set in a desired curve. As shown in FIG. 4B, as the electrodes 120, 122 rotate into tissue, the rotational movement substantially causes a transverse force within the tissue rather than a normal force to the tissue. Accordingly, there is less tissue deformation as the electrodes penetrate the tissue allowing for ease of insertion.
[0097] FIG. 4B illustrates the first and second electrodes 120,122 within tissue. The depth of insertion of these electrodes may be controlled by selecting a proper combination of electrode length and radius of curvature.
[0098] FIG. 4C illustrates another variation of curved electrodes. In this variation, the electrodes may be configured to overlap. Such overlap results in the active electrode area being close in proximity to better control the current path between electrodes.
[0099] FIG. 5 A shows another electrode configuration for use with variations of the inventive device. As illustrated, the electrodes 120, 122 may be placed at an oblique angle A relative to the face plate 104 or treatment unit 102. FIG. 5A illustrates the condition as the electrodes 120, 122 approach the tissue 10. FIG. 5B shows the electrodes
120, 122 being advanced towards each other as are placed in tissue 10. The angle of the electrodes 120, 122 creates a lateral or transverse force on the tissue 10 that serves to place a portion of the tissue in a state of traction.
[0100] FIG. 5C shows a variation in which the electrodes 120, 122 approach the tissue at an oblique angle A but where the electrodes are directed away from one another.
Again, this configuration provides an opposing force on the tissue 10 between the electrodes as the electrodes 120, 122 penetrate the tissue. FIG. 5D shows the electrodes after they are inserted. Again, such a configuration reduces the force required to place the electrodes within tissue.
[0101] In the above configuration, it may be necessary to have one or more electrode plates 104 as an electrode moves along two or more dimensions. However, various additional configurations may be employed to produce the desired effects.
[0102] FIGS . 6A-6C illustrate additional variations of electrodes 106 for use within the current devices. In these cases, the electrode 106 rotates as it penetrates tissue. FIG.
6 A shows a rotating blade-type configuration where part or all of the blade may have an exposed conductive surface for establishing a current path. Alternatively, a single blade may have both the poles of the circuit such that the electrode pair is on a single electrode.
[0103] FIG. 6B illustrates a cork-screw or helical type electrode. Fig. 6C shows an electrode 106 having a threaded portion 132.
[0104] Variations of the present device may include treatment units having features to allow for treatment of contoured surfaces. For example, FIG. 7A illustrates a contoured faceplate 104. The contour of the faceplate 104 may be selected depending on the intended area of treatment. For example, a medical practitioner may have a range of contoured surfaces and could choose one depending on the shape of patient's face. In the illustrated variation, the electrode plate 118 may also be contoured (e.g., to match the faceplate or otherwise). As shown, the electrodes 120, 122 can be sized such that a uniform length extends beyond the faceplate. However, variations also include electrodes having varying lengths that extend from the faceplate.
[0105] FIG. 7B illustrates a variation having a double spring configuration. The first spring 134 is placed between the faceplate 104 and the electrode plate 118. One or more additional springs are placed on the electrodes 120, 122. Again, such a configuration assists in placing the faceplate 104 against tissue as well as adjusting for contours in the skin surface.
[0106] FIG. SA illustrates another variation of a treatment unit 200 for use in accordance with the principles discussed herein. In this variation, the unit 200 includes a body portion 202 from which a cannula or introducer member 204 extend at an oblique angle relative to a tissue engagement surface 206. As described below, the ability to insert the electrodes (not shown) into the tissue at an oblique angle increases the treatment area and allows for improved cooling at the tissue surface. Although the variation only shows a single array of introducers for electrodes, variations of the invention may include multiple arrays of electrodes. In addition, the devices and systems described below may be combined with the features described herein to allow for improved penetration of tissue. The devices of the present invention may have an angle A of 15 degrees. However, the angle may be anywhere from ranging between 5 and 85 degrees. [0107] Although the introducer member 204 is shown as being stationary, variations of the device include introducer members that are slidable on the electrodes. For example, to ease insertion of the electrode, the electrode may be advanced into the tissue. After the electrode is in the tissue, the introducer member slides over the electrode to a desired location. Typically, the introducer member is insulated and effectively determines the active region of the electrode. In another variation using RF energy, the introducer member may have a return electrode on its tip. Accordingly, after it advances into the tissue, application of energy creates current path between the electrode and the return electrode on the introducer.
[0108] The body 202 of the electrode device 200 may also include a handle portion 208 that allows the user to manipulate the device 200. In this variation, the handle portion 208 includes a lever or lever means 210 that actuates the electrodes into the tissue (as discussed in further detail below). [0109] As discussed above, the electrode device 200 can be coupled to a power supply 114 with or without an auxiliary unit 116 via a connector or coupling member 112. In some variations of the device, a display or user interface can be located on the body of the device 200 as discussed below.
[0110] Fig. 8B illustrates a partial side view of the electrodes 212 and tissue engaging surface 206 of the electrode device of Fig. 8A. As shown, the electrodes 212 extend from the device 200 through the introducer 204. In alternate variations, the electrodes can extend directly from the body of the device or through extensions on the device. [0111] As shown, the electrodes 212 are advanceable from the body 202 (in this case through the introducers 204) at an oblique angle A as measured relative to the tissue engagement surface 206. The tissue engagement surface 206 allows a user to place the device on the surface of tissue and advance the electrodes 212 to the desired depth of tissue. Because the tissue engagement surface 206 provides a consistent starting point for the electrodes, as the electrodes 212 advance from the device 202 they are driven to a uniform depth in the tissue.
[0112] For instance, without a tissue engagement surface, the electrode 212 may be advanced too far or may not be advanced far enough such that they would partially extend out of the skin. As discussed above, either case presents undesirable outcomes when attempting to treat the dermis layer for cosmetic affects. In cases where the device is used for tumor ablation, inaccurate placement may result in insufficient treatment of the target area.
[0113] Fig. 8C illustrates a magnified view of the electrode entering tissue 20 at an oblique angle A with the tissue engaging surface 206 resting on the surface of the tissue 20. As is shown, the electrode 212 can include an active area 214. Generally, the term "active area" refers to the part of the electrode through which energy is transferred to or from the tissue. For example, the active area could be a conductive portion of an electrode, it can be a resistively heated portion of the electrode, or even comprise a window through which energy transmits to the tissue. Although this variation shows the active area 214 as extending over a portion of the electrode, variations of the device include electrodes 212 having larger or smaller active areas 214. [0114] In any case, because the electrodes 212 enter the tissue at an angle A, the resulting region of treatment 152, corresponding to the active area 214 of the electrode is larger than if the needle were driven perpendicular to the tissue surface. This configuration permits a larger treatment area with fewer electrodes 212. In addition, the margin for error of locating the active region 214 in the desired tissue region is greater since the length of the desired tissue region is greater at angle A than if the electrode were deployed perpendicularly to the tissue.
[0115] As noted herein, the electrodes 212 may be inserted into the tissue in either a single motion where penetration of the tissue and advancement into the tissue are part of the same movement or act. However, variations include the use of a spring mechanism or impact mechanism to drive the electrodes 212 into the tissue. Driving the electrodes 212 with such a spring-force increases the momentum of the electrodes as they approach tissue and facilitates improved penetration into the tissue. As shown below, variations of the devices discussed herein may be fabricated to provide for a dual action to insert the electrodes. For example, the first action may comprise use of a spring or impact mechanism to initially drive the electrodes to simply penetrate the tissue. Use of the spring force or impact mechanism to drive the electrodes may overcome the initial resistance in puncturing the tissue. The next action would then be an advancement of the electrodes so that they reach their intended target site. The impact mechanism may be spring driven, fluid driven or via other means known by those skilled in the art. One possible configuration is to use an impact or spring mechanism to fully drive the electrodes to their intended depth.
[0116] FIG. 8D illustrates an example of the benefit of oblique entry when the device is used to treat the dermis 18. As shown, the length of the dermis 18 along the active region 214 is greater than a depth of the dermis 18. Accordingly, when trying to insert the electrode in a perpendicular manner, the shorter depth provides less of a margin for error when trying to selectively treat the dermis region 18. As discussed herein, although the figure illustrates treatment of the dermis to tighten skin or reduce winkles, the device and methods may be used to affect skin anomalies 153 such as acne, warts or other structures or blemishes. In addition, the electrode may be inserted to apply energy to a tumor, a hair follicle, a fat layer, adipose tissue, a nerve or a pain fiber or a blood vessel. [0117] Inserting the electrode at angle A also allows for direct cooling of the surface tissue. As shown in FIG. 8C, the area of tissue on the surface 156 that is directly adjacent or above the treated region 152 (i.e., the region treated by the active area 214 of the electrode 212) is spaced from the entry point by a distance or gap 154. This gap 154 allows for direct cooling of the entire surface 156 adjacent to the treated region 152 without interference by the electrode or the electrode mounting structure. In contrast, if the electrode were driven perpendicularly to the tissue surface, then cooling must occur at or around the perpendicular entry point.
[0118] FIG. SE illustrates one example of a cooling surface 216 placed on body structure or tissue 20. As shown, the electrode 212 enters at an oblique angle A such that the active region 214 of the electrode 212 is directly adjacent or below the cooling surface 216. In certain variations, the cooling surface 216 may extend to the entry point (or beyond) of the electrode 212. However, it is desirable to have the cooling surface 216 over the electrode's active region 214 because the heat generated by the active region 214 will be greatest at the surface 156. In some variations, devices and methods described herein may also incorporate a cooling source in the tissue engagement surface. [0119] The cooling surface 216 may be any cooling mechanism known by those skilled in the art. For example, it may be a manifold type block having liquid or gas flowing through for convective cooling. Alternatively, the cooling surface 216 may be cooled by a thermoelectric cooling device (such as a fan or a Peltier-type cooling device). In such a case, the cooling may be driven by energy from the electrode device thus eliminating the need for additional fluid supplies. One variation of a device includes a cooling surface 216 having a temperature detector 218 (thermocouple, RTD, optical measurement, or other such temperature measurement device) placed within the cooling surface. The device may have one or more temperature detectors 218 placed anywhere throughout the cooling surface 216 or even at the surface that contacts the tissue. [0120] In one application, the cooling surface 216 is maintained at or near body temperature. Accordingly, as the energy transfer occurs causing the temperature of the surface 156 to increase, contact between the cooling surface 216 and the tissue 20 shall cause the cooling surface to increase in temperature as the interface reaches a temperature equilibrium. Accordingly, as the device's control system senses an increase in temperature of the cooling surface 216 additional cooling can be applied thereto via increased fluid flow or increased energy supplied to the Peltier device. The cooling surface can pre-cool the skin and underlying epidermis prior to delivering the therapeutic treatment. Alternatively, or in combination, the cooling surface can cool the surface and underlying epidermis during and/or subsequent to the energy delivery where such cooling is intended to maintain the epidermis at a specific temperature below that of the treatment temperature. For example the epidermis can be kept at 30 degrees C when the target tissue is raised to 65 degrees C.
[0121] While the cooling surface may comprise any commonly known thermally conductive material, metal, or compound (e.g., copper, steel, aluminum, etc.). Variations of the devices described herein may incorporate a translucent or even transparent cooling surface. In such cases, the cooling device will be situated so that it does not obscure a view of the surface tissue above the region of treatment.
[0122] In one variation, the cooling surface can include a single crystal aluminum oxide (AI2O3). The benefit of the single crystal aluminum oxide is a high thermal conductivity optical clarity, ability to withstand a large temperature range, and the ability to fabricate the single crystal aluminum oxide into various shapes. A number of other optically transparent or translucent substances could be used as well (e.g., diamond, other crystals or glass).
[0123] FIG. 8F illustrates another aspect for use with variations of the devices and methods described herein. In this variation, the device 200 includes two arrays of electrodes 212, 222. As shown, the first plurality 212 is spaced evenly apart from and parallel to the second plurality 222 of electrodes. In addition, as shown, the first set of electrodes 212 has a first length while the second set of electrodes 222 has a second length, where the length of each electrode is chosen such that the sets of electrodes 212, 222 extend into the tissue 20 by the same vertical distance or length 158. Although only two arrays of electrodes are shown, variations of the invention include any number of arrays as required by the particular application. In some variations, the lengths of the electrodes 212, 222 are the same. However, the electrodes will be inserted or advanced by different amounts so that their active regions penetrate a uniform amount into the tissue. As shown, the cooling surface may include more than one temperature detecting element 218
[0124] FIG. 8F also illustrates a cooling surface 216 located above the active regions 214, 224 of the electrodes. In such a variation, it may be necessary for one or more of the electrode arrays to pass through a portion of the cooling surface 216. Alternative variations of the device include electrodes that pass through a portion of the cooling device (such as the Peltier device described below).
[0125] FIG. SF also shows a variation of the device having additional energy transfer elements 105 located in the cooling surface 216. As noted above, these energy transfer elements can include sources of radiant energy that can be applied either prior to the cooling surface contacting the skin, during energy treatment or cooling, or after energy treatment
[0126] FIG. 8G shows an aspect for use with methods and devices of the invention that allows marking of the treatment site. As shown, the device 200 may include one or more marking lumens 226, 228 that are coupled to a marking ink 220. During use, a medical practitioner may be unable to see areas once treated. The use of marking allows the practitioner to place a mark at the treatment location to avoid excessive treatments. As shown, a marking lumen 226 may be placed proximate to the electrode 212. Alternatively, or in combination, marking may occur at or near the cooling surface 216 since the cooling surface is directly above the treated region of tissue. The marking lumens may be combined with or replaced by marking pads. Furthermore, any type of medically approved dye may be used to mark. Alternatively, the dye may comprise a substance that is visible under certain wavelengths of light. Naturally, such a feature permits marking and visualization by the practitioner given illumination by the proper light source but prevents the patient from seeing the dye subsequent to the treatment. [0127] FIG. 9A illustrates a variation of a device 200 that may incorporate the aspects described herein. As shown, the device 200 includes a body portion 202 having a handle 208 and an actuating trigger or lever 210. The device 200 couples power supply and other necessary auxiliary components though they are not illustrated. In this variation, the electrodes may be placed behind an electrode covering 230. The covering 230 may be purely cosmetic or may function as the introducers or tissue engagement surface discussed above. In the illustrated variation, the cooling surface 216 is coupled to a Peltier cooling device 234. Although the cooling surface 216 is shown as being retracted from the tissue engagement surface 206, the cooling surface may be lowered when necessary to maintain the surface tissue during treatment. As noted above, variations of the device may include an impact means to drive the electrodes into tissue. In this variation, the device 200 includes a reset knob 232 so that the practitioner may re-engage the impact mechanism or spring mechanism between treatments. Alternatively, the reset- knob may be configured to withdraw the electrodes from the tissue and into the device after treatment.
[0128] FIG. 9B illustrates a cross-sectional side view of the device 200 of Fig. 9A. As shown, the lever 210 is coupled to an electrode base or electrode plate 228 to drive the electrodes 212 into tissue. In this variation, the actuating assembly also includes an impact mechanism 236 that, at least, initially drives the electrodes 212 into tissue to overcome the resistance when penetrating the surface of tissue.
[0129] FIG. 9C illustrates a side view of the device 200 of FIG. 9A when the cooling surface 216 is parallel to the tissue engaging surface 206 and directly above the electrodes 212 when advanced from the device body 202. In this variation, the electrodes 212 at least partially extend through the cooling surface 216. However, the cooling surface 216 is still able to make direct contact with a surface of tissue directly above the active area of the electrodes.
[0130] FIG. 9C also shows a Peltier cooling device 234 coupled to the cooling surface
216. As noted herein, any number of cooling sources may be used. However, in this variation, the Peltier cooling device 234 eliminates the need for a fluid source. In some cases, the cooling device 234 can be powered using the same power supply that energizes the electrodes 212. Such a configuration provides a more compact design that is easier for a medical practitioner to manipulate.
[0131] FIG. 9D illustrates a bottom view of the device 200 of Fig. 9C. As shown the electrodes 212 directly below the cooling surface 216 when extended from the body of the device 202.
[0132] FIG. 1OA illustrates another variation of an electrode device 200. In this variation, the lever 210 or actuator is on the top of the handle portion 208. The lever 210 may be manually operated in that the medical practitioner advances the lever 210 to advance the electrodes 212 into tissue. Alternatively, or in combination a spring mechanism or even a source of compressed gas (stored in the body 202 or coupled via a connector 112) may be used to drive the electrodes 212 from the introducers 204 and into the tissue.
[0133] FIG. 1OB illustrates a side view of the device 200 of FIG. 1OA. As shown, the tissue engaging surface 206 is parallel to the ends of the introducers 204. Accordingly, to deliver the electrodes 212, 222 to a uniform depth, the lengths of the electrodes 212, 222 may vary accordingly.
[0134] FIG. 11 shows a variation of a device 200 having additional aspects for combination with the methods and devices described herein. As shown, the device 200 may include an electrode covering 230 to shield the electrodes from damage or view. In the latter case, hiding the electrodes from view may be desirable for additional patient comfort. FIG. 11 also illustrates a user interface 240. The user interface 240 may display such information as whether the system is ready for treatment, the temperature of the cooling surface, the duration of the particular treatment, the number of treatments or any other information regarding the procedure or patient.
[0135] The variations in FIGS. lOA-11 are shown without a cooling surface.
However, incorporating cooling surfaces with the respective device bodies is within the scope of this disclosure. [0136] FIGS. 12A-12D illustrate variations of electrodes for use with the systems and methods described herein. Depending upon the application, it may be desirable to provide an electrode 212 that has a variable resistance along the active region of the electrode 212. FIGS. 12A-12D illustrate a partial example of such electrodes. As shown in FIG. 12A and 12B, an electrode may have concentric or spiral bands that create varying ranges of impedance 242, 244, 246, 248, and 250 along the electrode 212. In addition, as shown in FIG. 12C, the electrode 212 may have regions 242, 244, 246, and 248 along the electrode of varying resistance. FIG. 12D illustrates a similar concept where the regions of resistance 242, 244, 246 run in longitudinal stripes along the electrode 212. These configurations may be fabricated through spraying, dipping, plating, anodizing, plasma treating, electro-discharge, chemical applications, etching, etc. [0137] FIGS. 13A-13B illustrate examples of system configurations that can be incorporated into any conventional electrode array or into the devices described above using RF energy. As shown, in this example the electrode array 262 comprises a 3x6 array of electrode. Each electrode in the array 262 is configured to energize separately. This configuration provides the ability of any given pair of electrodes to form a circuit for treating tissue. In one example, in the variation of FIG. 13A, the power supply energizes adjacent electrode pairs 264, 266. This configuration generates the smallest treatment area in the electrode array 262. FIG. 13B illustrates a situation where the farthest electrode pairs 264, 266 within the array 262 are triggered to form a current path 268. One benefit of this configuration is that a single electrode array may form a number of patterns based on various combinations of pairs that may be formed in the array. The array may be able to provide a denser treatment or more uniform tissue heating. The treatment can deliver targeted therapy to key areas of tissue. In one variation, various pairs of the electrode array may be triggered sequentially during a single insertion. [0138] Although the systems described herein may be used by themselves, the invention includes the methods and devices described above in combination with substances such as moisturizers, ointments, etc. that increase the resistivity of the epidermis. Accordingly, prior to the treatment, the medical practitioner can prepare the patient by increasing the resistivity of the epidermis. During the treatment, because of the increased resistivity of the epidermis, energy would tend to flow in the dermis. [0139] In addition, such substances can be combined with various other energy delivery modalities to provide enhanced collagen production in the targeted tissue or other affects as described herein. [0140] In one example, example, 5-aminolevulinic acid (ALA) or other photolabile compounds that generate a biologically active agent when present in the skin upon exposure to sunlight or other applied spectrums of activating light. Coatings or ointments can also be applied to the skin surface in order to stabilize the soft tissue. Temporarily firming or stabilizing the skin surface will reduce skin compliance and facilitate the insertions of the electrodes of the current device. An agent such as cyanoacrylate, spirit gum, latex, a facial mask or other substance that cures into a rigid or semi-rigid layer can be used to temporarily stabilize the skin. The topical ointments or coatings can be applied to enhance collagen production or to stabilize the skin for ease of electrode insertion or both. Furthermore, topical agents can be applied to alter the electrical properties of the skin. Applying an agent which increases the impedance of the epidermal layer will reduce the conductance of RF current through that layer and enhance the conductance in the preferred dermal layer. A topical agent that penetrates the epidermal layer and is absorbed by the dermal layer can be applied that lowers the impedance of the dermal layer, again to enhance the conduction of RF current in the dermal layer. A topical agent that combines both of these properties to affect both the dermal and epidermal layers conductance can also be used in combination with RF energy delivery. [0141] Another means to enhance the tissue's therapeutic response is the use of mechanical energy through massage. Such an application of mechanical energy can be combined with the methods and systems described herein. Previously, devices have used massaging techniques to treat adipose tissue. For example, Patent No 5,961,475 discloses a massaging device that applies negative pressure as well as massage to the skin. Massage both increases blood circulation to the tissue and breaks done connections between the adipose and surrounding tissue. For example, these effects combined with energy treatment of the tissue to enhance the removal of fat cells. [0142] The above variations are intended to demonstrate the various examples of embodiments of the methods and devices of the invention. It is understood that the embodiments described above may be combined or the aspects of the embodiments may be combined in the claims.

Claims

CLAIMS What is claimed is:
1. An electrode array for treating a dermis layer of tissue, the array comprising: a faceplate comprising a plurality of openings; a plurality of electrode pairs each pair comprising an active and a return electrode, where the electrode pairs extend through openings in the faceplate; at least one electrode plate carrying the plurality of electrode pairs, where the electrode plate and face plate are moveable relative to each other to allow for axial movement of the electrode pairs through the openings; and at least one radiant energy source located at the face plate such that the radiant energy source can apply radiant energy to a surface of the tissue.
2. The electrode array of claim 1 , further comprising a power supply having a plurality of independent channels where each channel is adapted to be coupled to one electrode pair.
3. The electrode array of claim 2, where the power supply is configured to energize adjacent electrode pairs at different times.
4. The electrode array of claim 2, where each independent channel of the power supply provides no more than 1 watt of energy to each electrode pair.
5. The electrode array of claim 2, where each independent channel of the power supply provides no more than 3 watts of energy to each electrode pair.
6. The electrode array of claim 2, where each independent channel of the power supply provides no more than 5 watts of energy to each electrode pair.
7. The electrode array of claim 2, where each electrode is moveable through an opening in an introducer member, where pressing the introducer member against the surface tissue places the surface tissue in traction.
8. The electrode array of claim 2, where adjacent electrodes are placed at an oblique angle such that as the electrodes engage tissue, the tissue is placed in traction.
9. The electrode array of claim 8, where the adjacent electrodes are diverging.
10. The electrode array of claim 8, where the adjacent electrodes are converging.
11. The electrode array of claim 1, where each electrode pair is spaced a sufficient distance from an adjacent electrode pair to minimize formation of a cross-current path between adjacent electrode pairs.
12. The electrode array of claim 1, where each active and return electrode is spaced sufficiently close to form a treatment-current path between active and return electrodes and minimizes formation of the cross-current path between adjacent electrode pairs.
13. The electrode array of claim 12, where spacing between active and return electrodes is between 1 and 3 mm, and spacing between adjacent electrode pairs is at least 3 mm.
14. The electrode array of claim 2, where the power supply is configured to prevent energizing any electrode pair until the electrodes advance distally to the faceplate.
15. The electrode array of claim 1, where the at least one radiant energy source comprises a light emitting diode coupled to the face plate.
16. The electrode array of claim 1, where the at least one radiant energy source comprises a fiber extending through the face plate.
17. The electrode array of claim 1, where the radiant energy source supplies pulsed light having a wavelength between 300 and 12000 nm.
18. The electrode array of claim 1, where the radiant energy source supplies coherent or laser light.
19. An electrode device for treating a target region beneath a surface of tissue, the array comprising: a device body having a handle portion, and a tissue engaging surface, where the tissue engaging surface allows orientation of the device body on the surface of tissue; a first plurality of electrodes being advanceable from the device body at an oblique angle relative to the tissue engaging surface from a first position at least adjacent to the tissue engaging surface to beyond the tissue engaging surface; where each electrode includes an active region located at a distal portion thereof; a connector adapted to couple an energy supply to the plurality of electrodes; a cooling surface adjacent to the tissue engaging surface and being spaced from the plurality of electrodes such that the cooling surface is adapted to engage an area of the tissue surface directly above the active region of the electrodes when the electrodes are advanced from the device body, and where the cooling surface is adapted to maintain a temperature at, below, or slightly above body temperature; and at least one radiant energy source located in the cooling surface.
20. The electrode device of claim 19, where the at least one radiant energy source comprises a light emitting diode coupled to the face plate.
21. The electrode device of claim 19, where the at least one radiant energy source comprises a fiber extending through the face plate.
22. The electrode device of claim 19, where the radiant energy source supplies pulsed light having a wavelength between 300 and 12000 nm.
23. The electrode device of claim 19, where the radiant energy source supplies coherent or laser light.
24. The electrode device of claim 19, where the cooling surface is visually transparent.
25. The electrode device of claim 19, where the cooling surface is visually translucent.
26. The electrode device of claim 19, where the cooling surface comprises a material selected from the group consisting of a silica based glass, single crystal aluminum oxide material, steel, aluminum, or copper.
27. The electrode device of claim 19, where the plurality of electrodes pass through a portion of the cooling surface when advanced from the device body.
28. The electrode device of claim 19, further comprising a thermoelectric cooling device coupled to a power supply and in contact with the cooling surface, where the thermoelectric cooling device maintains or lowers the temperature.
29. The electrode device of claim 28, where the plurality of electrodes pass through a portion of the thermoelectric cooling device when advanced from the device body.
30. The electrode device of claim 28, where the thermoelectric cooling device comprises a Peltier cooling device.
31. The electrode device of claim 19, further comprising a fluid source coupled to the cooling surface, where the fluid source is adapted to maintain or lower the temperature.
32. The electrode device of claim 31, where the first and second plurality of electrodes comprise a first length, and the second plurality of electrodes comprise a second length, where the first and second length are not equal such that upon insertion into tissue, each plurality of needles extends a same vertical length into the tissue.
33. The electrode device of claim 31, where the first plurality of electrodes are axially moveable along the oblique angle.
34. The electrode device of claim 31, where the first plurality of electrodes is spring loaded for actuation into and out of tissue.
35. The electrode device of claim 31, where the first plurality of electrodes is coupled to a lever for actuation into and out of tissue.
36. The electrode device of claim 31, where the first plurality of electrodes is coupled to a compressed gas cylinder, having a valve for driving the electrodes into tissue.
37. The electrode device of claim 19, where the plurality of electrodes extends from a plurality of cannulae extending from the device body at the oblique angle.
38. The electrode device of claim 19, where the device body further comprises a marking lumen for spraying an ink on an exterior surface of the tissue.
39. A method for inserting applying energy to a region of tissue, comprising: placing a tissue engaging surface of an electrode device against a surface of the tissue, where the electrode device comprises a plurality of electrodes extending at an oblique angle relative to the tissue engaging surface, each electrodes including an active region; inserting the plurality of electrodes obliquely into the tissue at an entry point such that a surface of the tissue directly above the active region is spaced from the entry point of each electrode; applying energy to tissue at the active region of the electrode; and applying radiant energy to the surface of the tissue.
40. The method of claim 39, further comprising placing a cooling surface adjacent to the entry point, where the cooling surface directly cools the exterior surface of the tissue directly above the active region of the electrode.
41. The method of claim 39, where the cooling surface is visually transparent.
42. The method of claim 39, where the cooling surface is visually translucent.
43. The method of claim 39, where the cooling surface comprises a material selected from a group consisting of a silica based glass, a single crystal aluminum oxide material, steel, aluminum, or copper.
44. The method of claim 39, where the plurality of electrodes pass through a portion of the cooling surface when inserting the electrodes into the tissue.
45. The method of claim 44, where inserting the plurality of electrodes comprises first applying an impact force to the electrodes such that the electrodes penetrate the tissue and subsequently, advancing the electrodes farther into the tissue.
46. The method of claim 44, further comprising: placing a portion of the surface of the tissue that is adjacent to each electrode in a state of traction as the electrodes are inserted into the tissue; advancing at least one of the electrodes through the surface layer; applying energy to at least one of the electrodes to create a thermal injury to tissue beneath the surface layer.
47. The method of claim 44, where each electrode extends through an opening in an introducer member, where pressing the introducer member against the surface layer places the surface layer in traction.
48. The method of claim 44, further comprising a power supply configured to energize adjacent electrodes at different times.
49. The method of claim 39, where the region of tissue comprises tissue selected from the group of dermis, a tumor, a hair follicle, a fat layer, adipose tissue, a nerve or a pain fiber or a blood vessel..
50. A method for applying energy to a region of tissue, comprising: maintaining a cooling surface at or below body temperature; placing the cooling surface against a tissue surface; advancing a plurality of electrodes at an oblique angle relative to the tissue surface, each electrodes including an active region, such that the active region is directly below the cooling surface; applying energy to the active region of the electrodes to a region of tissue beneath the tissue surface to cause a change in the region of tissue; and applying a radiant source of energy to the surface of tissue.
51. The method of claim 50, further comprising monitoring the cooling surface for an increase in temperature.
52. The method of claim 50, where inserting the plurality of electrodes comprises first applying an impact force to the electrodes such that the electrodes penetrate the tissue and subsequently, advancing the electrodes farther into the tissue.
53. The method of claim 50, further comprising: placing a portion of the surface of the tissue that is adjacent to each electrode in a state of traction as the electrodes are inserted into the tissue; and advancing at least one of the electrodes through the surface layer.
54. The method of claim 50, where each electrode extends through an opening in an introducer member, where pressing the introducer member against the surface layer places the surface layer in traction.
55. The method of claim 50, further comprising a power supply configured to energize adjacent electrodes at different times.
56. The method of claim 50, further comprising placing a thermoelectric cooling device coupled to the cooling surface.
57. The method of claim 50, further comprising delivering a fluid through the cooling surface.
58. The method of claim 50, where the region of tissue comprises tissue selected from the group of dermis, a tumor, a hair follicle, a fat layer, adipose tissue, a nerve or a pain fiber or a blood vessel..
59. The method of claim 50, where the cooling surface is visually transparent.
60. The method of claim 50, where the cooling surface is visually translucent.
61. The method of claim 50, further comprising marking the tissue surface.
62. The method of claim 61, where marking the tissue surface marking the tissue surface with an ink or dye.
63. The method of claim 62, where the ink or dye is not visible unless illuminated by a light source.
64. A method for treating a skin anomaly by applying energy to a region of tissue beneath the skin anomaly, comprising: placing a tissue engaging surface of an electrode device against a surface of the tissue adjacent to the skin anomaly, where the electrode device comprises a plurality of electrodes extending at an oblique angle relative to the tissue engaging surface, each electrodes including an active region at; inserting the plurality of electrodes obliquely into the tissue at an entry point such that the skin anomaly is directly above the active region and is spaced from the entry point of each electrode; and applying energy to tissue at the active region of the electrode.
65. The method of claim 64, further comprising placing a cooling surface over the anomaly, where the cooling surface directly cools the anomaly directly above the active region of the electrode.
66. The method of claim 64, where the skin anomaly comprises acne, a wart, a tissue structure, or blemish.
67. A method for applying energy to a region of tissue based on a temperature of the region, the method comprising: advancing a plurality of electrodes into the tissue surface, each electrodes including an active region towards a distal portion thereof, advancing at least one temperature detecting element into the tissue surface to or near one active region of one electrode; delivering pulses of energy through the active region of the electrodes to a region of tissue beneath the tissue surface to cause a change in the region of tissue, where the pulses of energy are delivered under a plurality of energy parameters; determining a temperature reading with the at least one temperature detecting element between pulses of energy; and adjusting at least one of the energy parameters based on the temperature reading and reapply pulses of energy at the adjusted energy parameters.
68. The method of claim 67, where the energy parameters include at least one parameter selected from the group of energy delivery time, amount of energy delivered, maximum energy delivered, energy wave form or profile, current, amplitude, voltage, and frequency.
69. The method of claim 67, where the at least one temperature detecting element is located on one of the electrodes.
70. The method of claim 67, where the at least one temperature detecting element comprises a plurality of temperature detecting elements located on more than one of the electrodes.
71. The method of claim 67, where the at least one temperature detecting element is located on a probe separate from the electrodes.
72. The method of claim 71, where more than one probe includes at least one temperature detecting element, where each probe is separate from the electrodes.
73. The method of claim 67, further comprising: placing a tissue engaging surface against the tissue surface, where the plurality of electrodes extends at an oblique angle relative to the tissue engaging surface; where advancing the plurality of electrodes into the tissue surface comprises advancing the plurality of electrodes obliquely into the tissue surface at an entry point such that a vertical surface of the tissue directly above the active region is longitudinally spaced from the entry point of each electrode.
74. The method of claim 67, further comprising applying radiant energy to the tissue surface.
75. The method of claim 73, further comprising placing a cooling surface adjacent to the entry point, where the cooling surface directly cools the vertical surface of the tissue directly above the active region of the electrode.
76. The method of claim 75, where the cooling surface is visually transparent.
77. The method of claim 75, where the cooling surface is visually translucent.
78. The method of claim 75, where the cooling surface comprises a material selected from a group consisting of a silica based glass, a single crystal aluminum oxide material, steel, aluminum, or copper.
79. The method of claim 75, where the plurality of electrodes pass through a portion of the cooling surface when advancing the electrodes into the tissue surface.
80. A method for applying energy to a region of tissue, comprising: maintaining a cooling surface at or below body temperature; advancing a plurality of electrodes an oblique angle relative to the tissue surface, each electrodes including an active region at a distal portion thereof, such that the active region is directly below the cooling surface, where the plurality of electrodes further comprises at least one temperature detecting element; and applying energy through the active region of the electrodes to a region of tissue beneath the tissue surface to cause a change in the region of tissue by raising the region of tissue to a treatment temperature and maintaining the region of tissue at the treatment temperature for a pre-determined duration of time.
81. A method for applying energy to a region of tissue, comprising: maintaining a cooling surface at or below body temperature; advancing a plurality of electrodes an oblique angle relative to the tissue surface, each electrodes including an active region at a distal portion thereof, such that the active region is directly below the cooling surface; and applying energy to the active region of the electrodes to a region of tissue beneath the tissue surface to cause a change in the region of tissue by applying the energy at a pre-determined rate to the region of tissue for a pre-determined duration of time.
PCT/US2008/066980 2007-06-15 2008-06-13 Methods and devices for treating tissue WO2008157400A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP08771073A EP2162084A4 (en) 2007-06-15 2008-06-13 Methods and devices for treating tissue

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US11/764,032 US20080312647A1 (en) 2007-06-15 2007-06-15 Methods and devices for treating tissue
US11/764,032 2007-06-15
US11/832,544 2007-08-01
US11/832,544 US20090036958A1 (en) 2007-08-01 2007-08-01 Methods and devices for treating tissue

Publications (1)

Publication Number Publication Date
WO2008157400A1 true WO2008157400A1 (en) 2008-12-24

Family

ID=40156637

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/066980 WO2008157400A1 (en) 2007-06-15 2008-06-13 Methods and devices for treating tissue

Country Status (2)

Country Link
EP (1) EP2162084A4 (en)
WO (1) WO2008157400A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091008A1 (en) * 2009-02-06 2010-08-12 Primaeva Medical, Inc. Devices and methods for percutaneous energy delivery

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020128641A1 (en) * 1999-08-30 2002-09-12 Arthrocare Corporation Systems and methods for intradermal collagen stimulation
US20020156471A1 (en) * 1999-03-09 2002-10-24 Stern Roger A. Method for treatment of tissue
US6579288B1 (en) * 1997-10-10 2003-06-17 Scimed Life Systems, Inc. Fluid cooled apparatus for supporting diagnostic and therapeutic elements in contact with tissue
US20040162474A1 (en) * 2001-06-12 2004-08-19 Ernest Kiser Percutaneous biological fluid sampling and analyte measurement devices and methods
US20050137662A1 (en) * 2001-02-28 2005-06-23 Rita Medical Systems, Inc. Tissue surface treatment apparatus and method
US20060095103A1 (en) * 2003-12-11 2006-05-04 Apsara Medical Corporation Aesthetic thermal sculpting of skin
US20060106375A1 (en) * 2004-11-15 2006-05-18 Werneth Randell L Ablation system with feedback

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6530922B2 (en) * 1993-12-15 2003-03-11 Sherwood Services Ag Cluster ablation electrode system
US6918907B2 (en) * 2003-03-13 2005-07-19 Boston Scientific Scimed, Inc. Surface electrode multiple mode operation
JP5065005B2 (en) * 2004-04-01 2012-10-31 ザ ジェネラル ホスピタル コーポレイション Method and apparatus for dermatological treatment and tissue remodeling

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6579288B1 (en) * 1997-10-10 2003-06-17 Scimed Life Systems, Inc. Fluid cooled apparatus for supporting diagnostic and therapeutic elements in contact with tissue
US20020156471A1 (en) * 1999-03-09 2002-10-24 Stern Roger A. Method for treatment of tissue
US20020128641A1 (en) * 1999-08-30 2002-09-12 Arthrocare Corporation Systems and methods for intradermal collagen stimulation
US20050137662A1 (en) * 2001-02-28 2005-06-23 Rita Medical Systems, Inc. Tissue surface treatment apparatus and method
US20040162474A1 (en) * 2001-06-12 2004-08-19 Ernest Kiser Percutaneous biological fluid sampling and analyte measurement devices and methods
US20060095103A1 (en) * 2003-12-11 2006-05-04 Apsara Medical Corporation Aesthetic thermal sculpting of skin
US20060106375A1 (en) * 2004-11-15 2006-05-18 Werneth Randell L Ablation system with feedback

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2162084A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010091008A1 (en) * 2009-02-06 2010-08-12 Primaeva Medical, Inc. Devices and methods for percutaneous energy delivery
EP2393444A1 (en) * 2009-02-06 2011-12-14 Primaeva Medical, Inc. Devices and methods for percutaneous energy delivery
EP2393444A4 (en) * 2009-02-06 2012-07-18 Primaeva Medical Inc Devices and methods for percutaneous energy delivery
US8608737B2 (en) 2009-02-06 2013-12-17 Syneron Medical Ltd. Methods for applying energy to tissue using a graphical interface

Also Published As

Publication number Publication date
EP2162084A4 (en) 2011-02-02
EP2162084A1 (en) 2010-03-17

Similar Documents

Publication Publication Date Title
US20090036958A1 (en) Methods and devices for treating tissue
US20080312647A1 (en) Methods and devices for treating tissue
US8273080B2 (en) Methods and devices for treating tissue
US8979833B2 (en) Methods and devices for treating tissue
US8133216B2 (en) Methods and devices for treating tissue
US8585693B2 (en) Methods and devices for treating tissue
US20090112205A1 (en) Cartridge electrode device
US9066738B2 (en) Devices and methods for percutaneous energy delivery
EP2393444B1 (en) Devices for percutaneous energy delivery
US20080281389A1 (en) Methods and devices for treating tissue
US20090156958A1 (en) Devices and methods for percutaneous energy delivery
EP2312997B1 (en) Device for percutaneous energy delivery
EP2401025B1 (en) System for percutaneous energy delivery
US20100249772A1 (en) Treatment of skin deformation
EP2209432B1 (en) Energy delivery device comprising an electrode cartridge
EP2162084A1 (en) Methods and devices for treating tissue

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08771073

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008771073

Country of ref document: EP