WO2008141288A1 - Devices and methods for stomach partitioning - Google Patents

Devices and methods for stomach partitioning Download PDF

Info

Publication number
WO2008141288A1
WO2008141288A1 PCT/US2008/063440 US2008063440W WO2008141288A1 WO 2008141288 A1 WO2008141288 A1 WO 2008141288A1 US 2008063440 W US2008063440 W US 2008063440W WO 2008141288 A1 WO2008141288 A1 WO 2008141288A1
Authority
WO
WIPO (PCT)
Prior art keywords
tissue
pinch
engager
members
pinches
Prior art date
Application number
PCT/US2008/063440
Other languages
French (fr)
Inventor
Daniel J. Balbierz
Dave Cole
Samuel T. Crews
Brett Swope
Original Assignee
Barosense, Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barosense, Inc. filed Critical Barosense, Inc.
Priority to CA2691269A priority Critical patent/CA2691269C/en
Priority to EP08755318.6A priority patent/EP2157918B1/en
Priority to JP2010508523A priority patent/JP5331104B2/en
Priority to AU2008251300A priority patent/AU2008251300B2/en
Publication of WO2008141288A1 publication Critical patent/WO2008141288A1/en

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/0003Apparatus for the treatment of obesity; Anti-eating devices
    • A61F5/0013Implantable devices or invasive measures
    • A61F5/0083Reducing the size of the stomach, e.g. gastroplasty
    • A61F5/0086Reducing the size of the stomach, e.g. gastroplasty using clamps, folding means or the like
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B17/0643Surgical staples, i.e. penetrating the tissue with separate closing member, e.g. for interlocking with staple
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B17/07207Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously the staples being applied sequentially
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/10Surgical instruments, devices or methods, e.g. tourniquets for applying or removing wound clamps, e.g. containing only one clamp or staple; Wound clamp magazines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/11Surgical instruments, devices or methods, e.g. tourniquets for performing anastomosis; Buttons for anastomosis
    • A61B17/115Staplers for performing anastomosis in a single operation
    • A61B17/1155Circular staplers comprising a plurality of staples
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/0003Apparatus for the treatment of obesity; Anti-eating devices
    • A61F5/0013Implantable devices or invasive measures
    • A61F5/0083Reducing the size of the stomach, e.g. gastroplasty
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61FFILTERS IMPLANTABLE INTO BLOOD VESSELS; PROSTHESES; DEVICES PROVIDING PATENCY TO, OR PREVENTING COLLAPSING OF, TUBULAR STRUCTURES OF THE BODY, e.g. STENTS; ORTHOPAEDIC, NURSING OR CONTRACEPTIVE DEVICES; FOMENTATION; TREATMENT OR PROTECTION OF EYES OR EARS; BANDAGES, DRESSINGS OR ABSORBENT PADS; FIRST-AID KITS
    • A61F5/00Orthopaedic methods or devices for non-surgical treatment of bones or joints; Nursing devices; Anti-rape devices
    • A61F5/0003Apparatus for the treatment of obesity; Anti-eating devices
    • A61F5/0089Instruments for placement or removal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/00234Surgical instruments, devices or methods, e.g. tourniquets for minimally invasive surgery
    • A61B2017/00349Needle-like instruments having hook or barb-like gripping means, e.g. for grasping suture or tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/064Surgical staples, i.e. penetrating the tissue
    • A61B2017/0647Surgical staples, i.e. penetrating the tissue having one single leg, e.g. tacks
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/068Surgical staplers, e.g. containing multiple staples or clamps
    • A61B17/072Surgical staplers, e.g. containing multiple staples or clamps for applying a row of staples in a single action, e.g. the staples being applied simultaneously
    • A61B2017/07214Stapler heads
    • A61B2017/07228Arrangement of the staples
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/28Surgical forceps
    • A61B17/29Forceps for use in minimally invasive surgery
    • A61B2017/2901Details of shaft
    • A61B2017/2905Details of shaft flexible
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/30Surgical pincettes without pivotal connections
    • A61B2017/306Surgical pincettes without pivotal connections holding by means of suction

Definitions

  • Surgical procedures used to modify the shape and/or size of a stomach are effective in reducing weight and resolving associated co morbidities. Unfortunately these surgical procedures are invasive and are associated with high levels of peri-operative and post operative complications.
  • Natural orifices include, but are not limited to the esophagus, anus and vagina. These procedures are less invasive by nature but have limitations as will be described below.
  • stomach modification is by the use of surgical or laparoscopic staplers. These devices are able to surgically or laparoscopically appose multiple layers of tissue and connect them by use of multiple staple rows.
  • Figs. IA- 1C There was, and is, a high rate of failure of these staple lines due to the nature of the GI tract. Staple line dehiscence was common and resulted in inadequate clinical results.
  • the solution was to surgically staple the tissue and cut between the staple lines. This enabled edge to edge healing to occur, and provided for a robust tissue bridge.
  • Fig. 1C illustrates two section of stomach wall tissue joined according to the method of Figs. IA and IB.
  • FIG. 2A schematically illustrates a prior art stomach partitioning method.
  • Fig. 2B illustrates two section of stomach wall tissue joined and transected according to the method of Fig. 2A.
  • Fig. 3 A is a perspective view of a partitioning tool.
  • Fig. 3B schematically shows the staple holder of the partitioning tool of Fig. 3 A.
  • Figs. 4A - 4C are plan views showing three examples of suitable staple holders.
  • Fig. 5 A is a plan view of the partitioning tool of Fig. 3 A with the arms expanded.
  • Fig. 5B is an end view of the partitioning tool of Fig. 5 A.
  • Fig. 5C shows the partitioning tool of Fig. 3 A with the arms extended for streamlined advancement of the tool through the esophagus into the stomach.
  • Figs. 5D and 5E are similar to Figs. 5A and 5B but show a modification in which the arms are spaced by an alternate angle.
  • Fig. 6A is a perspective view of the partitioning tool illustrating extension of the graspers along intersecting paths.
  • Fig. 6B is a perspective view of the partitioning tool illustrating extension of the graspers along parallel paths.
  • Figs. 6C - 6D are perspective views of the distal shaft and stapler head of an alternative embodiment in which the direction of relative movement of the stapler head and anvil is transverse to the orientation of the distal portion of the shaft.
  • Figs. 7A - 7G illustrate various forms of graspers.
  • Fig. 7H is a plan view of a staple holder and illustrates a grasper drawing tissue across the surface of the staple holder.
  • Figs. 71 - 7K are similar to Fig. 7H and show alternative staple holder shapes and grasper arrangements.
  • Figs. 8 A - 8F are a series of drawings illustrating a first method of using the disclosed partitioning system.
  • Figs. 9A - 9F are a series of drawings illustrating a second method of using the disclosed partitioning system.
  • Figs. 9G - 9J are a series of drawings illustrating use of a modified partitioning system.
  • Figs. 9K - 9N are a series of drawings illustrating use of yet another modified partitioning system.
  • Figs. 90 - 9P illustrate an alternate of using the disclosed partitioning system.
  • Figs. 9Q - 9S disclose exemplary methods for advancing the graspers in the method of Figs. 90 - 9P.
  • Fig. 1OA is a plan view of a stomach illustrating a stomach wall partition formed in the stomach wall tissue.
  • Figs. 1OB - 1OC illustrate a first orientation of plications forming a partition or tissue structure within the stomach.
  • Figs. 1OD - 1OF illustrate a second orientation of plications forming a partition or tissue structure within the stomach.
  • Figs. 1 IA - 1 IE illustrate various arrangements of plications to form plications in a stomach.
  • Figs. 1 IF - I U illustrate formation of a partition by forming tissue plications around the shaft of an instrument disposed in the stomach.
  • Fig. 12 schematically shows a stomach and illustrates various partition locations that can be formed by creating partitions or tissue structures as disclosed herein.
  • Figs. 13A - 13E are a sequence of steps illustrating reversal of a stomach partition.
  • Figs. 14A - 14D illustrate the use of plugs to close gaps between plications formed in tissue or to close cut holes formed in plications.
  • Figs. 15A through 15D illustrate the use of plugs within holes cut into plications to hold two or more two-layer plications together, such as to form a partition.
  • Figs. 16A and 16B illustrate the use of plugs positioned within holes cut into plications to restrict flow of food towards the distal stomach
  • Fig. 17 illustrates plug designs having anchoring features to restrain the anchors within holes through tissue.
  • Fig. 18 illustrates heads or lids for plugs.
  • Fig. 19A is a perspective view of an alternative partitioning tool.
  • Fig. 19B is a plan view of the jaws of the partitioning tool of Fig. 19A.
  • Fig. 19C shows the jaws of the partitioning tool of Fig. 19A in the closed position.
  • Fig. 19D is a perspective view illustrating use of the grasper to draw tissue through the partitioning tool of Fig. 19A, and use of the partitioning tool for tissue compression, stapling and optioning cutting.
  • Fig. 19E illustrates a partition formed in a stomach using multiple plications formed according to the method shown in Fig. 19D.
  • Figs. 2OA - 2OG illustrate use of a system comprising an alternate grasper and the partitioning tool of Fig. 3 A to close an opening in a body wall.
  • Figs. 21 A - 21D show a stapler head of a partitioning tool and illustrate articulation and rotation features.
  • Figs. 2 IE - 21 G illustrates use of the articulation and rotation features of Figs. 21A - 21D to access tissue within a stomach.
  • the present application describes a device and method for forming tissue structures within, remodeling, or partitioning a body cavity, hollow organ or tissue tract.
  • the application will discuss the device and method in connection with use in the stomach for formation of plications such as for stomach partitioning or other purposes, although they may be used for applications other than stomach remodeling or partitioning.
  • stomach wall When an area of the stomach wall is drawn inwardly (bringing a two-layer "pinch” or fold of tissue toward the stomach exterior), corresponding regions of serosal tissue on the exterior of the stomach are positioned facing one another.
  • two or more such areas or pinches of the stomach wall are engaged/grasped and drawn inwardly using instruments passed into the stomach via the mouth.
  • the two or more pinches of tissue are held in complete or partial alignment with one another as staples or other fasteners are driven through the pinches, thus forming a four-layer tissue plication.
  • adhesions formed between the opposed serosal layers create strong bonds that can facilitate retention of the plication over extended durations, despite the forces imparted on them by stomach movement.
  • a cut or cut-out may be formed in the plication during or separate from the stapling step to promote edge- to-edge healing effects that will enhance tissue knitting/adhesion and will ultimately contribute to the durability of the plication, despite the fact that mucosal tissue of one tissue pinch is positioned in apposition with the mucosal tissue of the other tissue pinch.
  • plications may be formed for a variety of purposes.
  • plications may be used to induce weight loss by creating a barrier or narrowing within the stomach that will restrict the flow of food from the proximal stomach towards the distal stomach.
  • a partition or barrier may be oriented as in Fig. 15 C or 15D to extend across the stomach, leaving only a narrow exit orifice through which food can flow from the proximal stomach to the distal stomach, or a similar antral barrier (Fig. 15C) may be formed that will slow stomach emptying of stomach contents into the pylorus.
  • partitions or plications may be used to form a proximal pouch in the stomach or to reduce stomach volume to cause sensations of fullness after a patient eats relatively small quantities.
  • Plications might also be used as a treatment for GERD to create a shield between the stomach and esophagus that will minimize reflux. Plications might also be used to close perforations in the stomach wall.
  • an exemplary embodiment of a partitioning system includes a partitioning tool 10.
  • the partitioning tool may include various mechanisms for applying a fastening element (e.g. clips, sutures, staplers etc.) to tissue
  • the disclosed embodiment utilizes a stapler head 12 positioned at the distal end of an elongate shaft 14.
  • the shaft is of sufficient length to allow it to be advanced into the target body cavity (e.g. stomach) through a natural orifice (e.g. the mouth).
  • Stapler head 12 includes an anvil 16 having recesses 17 for holding staples, and a staple holder 18 (Fig. 3B).
  • the staple holder is a removeable/replaceable cartridge and/or it may be refillable by inserting additional staples into it. In other embodiments, the staple holder may be neither replaceable nor refillable.
  • a preferred stapler is a circular stapler which preferably contains multiple concentric rows of staples 20, surrounding a circular cutter 22.
  • the cutter is not mandatory, and can be omitted if cutting of tissue is not desired.
  • Applications for a plication tool that lacks a cutting element might include those involving the creation of a simple plication (e.g. a single pinch rather than a plication formed of two tissue pinches), apposition of multiple tissue layers, the closing of a stomach wall perforation, or the resection of a targeted tissue (i.e. appendix), etc.
  • a circular staple arrangement may be preferable other configurations of staples are also suitable.
  • the staples can be positioned to surround a central cutter of any shape when one is included.
  • Suitable cutter shapes include the round cutter 22 of Fig. 4A, the rectangular cutter 22a Fig. 4C, a linear cutting blade 22b of the type shown in Fig. 4B, or an oval cutter etc..
  • the cutter can be configured to simply cut layers of tissue (e.g. see the cutting blade 22b of Fig. 4B) or to remove a portion of tissue internal to the cutter (see the punch-type cutters 22, 22a of Figs. 4A and 4C).
  • the staple holder 18 and anvil 16 are connected by an arm assembly having collapsible arms 24.
  • the arms are collapsed into a generally elongate position (Fig. 5C) for insertion into the lumen of the body, but are opened to the expanded position
  • the arms 24 include proximal and distal sections coupled by hinges 25.
  • the arms are pivoted relative to the hinges for expansion and collapse of the arms.
  • the arms can be linear, curved or oriented at varying angles relative to the staple cartridge.
  • the arms 24 can be spaced by an angle of 180° as shown in Fig. 5B, or by a larger/smaller angle as shown in Fig. 5E.
  • tissue acquisition devices coupled to or provided with the stapler are one or more, preferably two, three or more, tissue acquisition devices, which will also be referred to as "engagers” or “graspers” 26 which are designed to engage tissue and draw the tissue into position between the stapler anvil and cartridge.
  • the graspers are positioned to pass from one side of the "window” bounded by the stapler arms, through the window, and used to grasp tissue on the opposite side of the window. These graspers are then withdrawn back through the window to draw the grasped tissue between the cartridge and anvil.
  • the arms can engage tissue and draw it between the cartridge and anvil without necessarily passing through the window.
  • Such embodiments include those similar to the Fig. 5E embodiment, in which the arms are oriented angularly relative to one another when viewed along the longitudinal axis of the device shaft.
  • the graspers can be simple alligator or forceps type graspers 26, vacuum chambers 28, corkscrews which can be traditional corkscrews 30a or gear-driven perpendicular cork-screws 30b, hooks 32, or any combination thereof, such as a corkscrew 30 in combination with a vacuum chamber as shown in Fig. 7B.
  • Fig. 7G shows corkscrew 30 longitudinally advanceable within a vacuum chamber 28 having a side facing opening, such that tissue can be drawn into vacuum chamber using suction, and such that the corkscrew 30 can then be moved in a longitudinal direction and screwed into the tissue within the vacuum chamber.
  • a similar design using a longitudinally advanceable barb rather than a corkscrew may also be configured.
  • Other alternative designs which are capable of acquiring the targeted tissue may instead be used.
  • the term “grasper” is used to refer generally to any type of tool that can be used to engage or acquire tissue via any means (grasping, hooking, penetration, suction, adhesion, etc.) so the acquired tissue can be positioned between the staple holder and anvil.
  • the term “pinch of tissue” may be used in this disclosure to refer to a fold, area, or tab of tissue acquired using a grasper for positioning of that fold, area ,or tab between the staple holder and anvil.
  • Figs. 7H and 71 schematically illustrate use of a grasper 26 to draw acquired tissue into position between a staple holder 18 and an anvil (not shown).
  • tissue that can be acquired by a single grasper 26 lacks the width to extend fully across the staple holder or anvil as shown
  • an alternate grasper arrangement may be used in which each individual grasper is replaced by a pair of side-by-side graspers 26 as shown in Fig. 7J, or by a type of grasper that can acquire a broader area of tissue, such as the Alice clamp-type grasper 33 shown in Fig. 7K. Doing so can ensure that each acquired piece of tissue can be positioned to receive the full array of staples from the stapler holder.
  • These arrangements give the pinch of tissue a leading edge that is more rectangular, as opposed to the more triangularly shaped pinch created using a single grasper.
  • the graspers need not be integral to the stapler but could be separate tools used in conjunction with the stapler.
  • the graspers are advanced to the target tissue site through guide tubes 34 on the stapler shaft 14, under direct visualization or fluoroscopy.
  • the device shaft itself can be articulated to bring the tools into contact with the desired tissue.
  • the guide tubes 34 may include articulation features (e.g. pullwires) to facilitate positioning of the graspers.
  • the tissue graspers can additionally be equipped with articulation means to aid in grasper positioning and/or withdrawal of tissue into position between the cartridge and anvil. Grasping tools are passed from one side of the window W created by the arms 24 of the device. In the Fig.
  • the graspers 26 extend non parallel to each other such that when retracted, the tissue acquired by each grasper overlaps the tissue acquired by the other grasper as illustrated in the sequence of steps shown in Figs. 8A - 8E.
  • Graspers can instead be positioned parallel to one another and staggered slightly as in the Fig. 6B embodiment.
  • This configuration allows tissue to be pulled in a relatively perpendicular orientation to the stapler head as illustrated in the sequence of steps shown in Figs. 9A - 9C.
  • the device is activated thereby compressing tissue, firing staples, and in the preferred embodiment, cutting a central piece of tissue bounded by the staple lines. This cut enables the body to duplicate the strong edge to edge healing which occurs in durable surgical procedures.
  • tissue plicators having features that may be used in the partitioning tool 10 to effect tissue compression, stapling firing, staple reinforcement, and/or cutting.
  • U.S. Application No. 11/542,457 (U.S. 2007-0219571), Endoscopic Plication Device and Method, filed October 3, 2006
  • U.S. Application No. 11/900,757 Endoscopic Plication Device and Method, filed September 13, 2007, and/or U.S. Application No.
  • the proximal end of the shaft 14 remains outside the body.
  • the tissue graspers 26 are passed through the guide tubes 34 on the stapler shaft.
  • the graspers are passed from one side of the shaft, through the window W defined by the stapler arms 24, and used to grasp regions of stomach wall tissue as shown in Figs. 8B and 8C.
  • the stapler head 12, shaft 14, guide tubes 34, and/or graspers 26 can be manipulated (e.g. deflected, articulated or rotated) to reach the desired tissue.
  • the graspers are oriented to cross each other between the staple holder 18 and anvil 16.
  • each of the individual graspers 26 may be replaced with a pair of spaced-apart graspers, so as to acquire a broader pinch of tissue.
  • Fig. 8E The pinches of tissue are compressed between the staple holder and anvil, and staples are driven through the pinches of tissue as shown in Fig. 8E.
  • at least two concentric rings of staples 20 are formed through the tissue, with a central core CC cut through the tissue by the cutter 22.
  • the plicated tissue (Fig. 8F) is released from the tool 10, and the arms are pivoted to the elongated position of Fig. 5C.
  • the plication comprises four layers of tissue (two from each tissue pinch), with the staples and the cut extending through all of the four layers.
  • the plications may be reinforced using reinforcing rings and/or buttressing materials or substances as disclosed on Applicants' prior applications referred to above.
  • the staple head 12 is mounted to the shaft in a position that is rotated (e.g. 90°) from the position shown in Fig. 6A.
  • the staple holder and anvil may be moveable relatively towards one another in a direction that is transverse to the distal portion of the shaft, rather than generally parallel to the shaft.
  • the staple head may be coupled to a pivot member 27 having a first end 29a pivotally coupled to the shaft 14, and a second end 29b pivotally coupled to the staple head at the hinge 25 of one of the arms 25.
  • the stapler head 12, pivot member 27, and shaft 14 extend generally longitudinally as in Fig. 6D.
  • the stapler head 12 is pivoted to a position generally transverse to the shaft 14.
  • Optimal stapler head position is achieved by pivoting the stapler head relative to the pivot member 27 and/or pivoting the pivot member 27 relative to the shaft 14.
  • the arms 24 are pivoted relative to the hinges 25 to decrease the relative separation between the anvil 16 and staple holder 18 for tissue compression.
  • Figs. 6C - 6E include additional features useful for tissue compression and staple firing which are disclosed in greater detail in U.S. Application No. 12/050,169, Endoscopic Stapling Devices and Methods, filed March 18, 2008 (Attorney Docket No. BARO- 1900) which is incorporated herein by reference.
  • the partitioning tool may be equipped to reorient the graspers as they withdraw the pinches of tissue towards the window, so as to ensure the pinches are properly aligned with one another and with the staple housing and anvil.
  • Figs. 9A through 9F illustrate a second exemplary method for forming a plication in the stomach.
  • This method is largely similar to that shown in Figs. 8A through 8E, but differs in that it is performed using the configuration of Fig. 6B in which the graspers 26 extend parallel to one another.
  • each one of the parallel graspers 26 may be replaced with a pair of side-by-side graspers to allow acquisition of a broader pinch of tissue.
  • the parallel graspers 26 are passed through the window W of the stapler head 12 and used to engage regions of tissue.
  • the regions or pinches of tissue Tl, T2 are withdrawn through the window W as shown in Figs.
  • Figs. 9G - 9J show a modification to the Fig. 9A embodiment in which the graspers 26 are coupled to a pivot member 38.
  • Pivot member 38 may be a plate pivotally coupled to the stapler head 12 at its proximal end.
  • the graspers extend through holes 40 in the pivot member. Once the graspers have engaged pinches of tissue Tl, T2, the pivot member is pivoted away from the window W, carrying the graspers and the acquired tissue and thereby drawing the pinches of tissue through the window.
  • the stapler is activated to compress the tissue pinches between the cartridge and anvil, and to drive staples through the compressed tissue (Figs. 91 and 9J).
  • an elongate support 42 having a partition 44 extends through a hole 40 in the pivot member 38 such that it extends through the window W.
  • the partition is disposed between the pinches.
  • Compression of the pinches between the cartridge and anvil sandwiches the partition 44 between the pinches.
  • the partition is formed of a flexible material that is less slippery than the surface of the tissue. Its presence during compression will minimize the likelihood that the slippery nature of the tissue will cause one of both of the pinches Tl, T2 to slip or "squirt" out of alignment with the staple holder/anvil before or during compression.
  • the partition 44 may be retracted between the steps of tissue compression and tissue stapling by pivoting the pivot member away from the window W as shown in Fig. 9N.
  • the partition 44 may be cut or released from its support (prior to or after staple firing), leaving it in place between the tissue pinches.
  • staples advanced through the tissue pinches pass through the partition 44, maintaining the position of the partition.
  • the partition may be formed of a material that will absorb, degrade, or erode within the body over a period of time.
  • Figs. 90 and 9P illustrate another alternative system in which the graspers 26 are used to engage stomach wall tissue, and in which the window of the partitioning tool 10 is slipped over the proximal ends of the graspers (outside the body) and guided into the stomach over the shafts of the graspers.
  • an articulating grasper 26a Fig. 9R
  • one or both of the graspers 26 may be passed down the channel of an articulating endoscope 50.
  • a separately positioned endoscope 50a may be positioned independent of the graspers and retroflexed to allow visualization of the grasping and stapling steps.
  • the tissue acquired for stapling can be tissue accessible by the graspers while the stapler head remains in a fixed position, or it can be from distinctly different areas of the organ. This latter technique may require acquiring tissue from one area of an organ or target tissue in one grasper, moving the stapler head to another target area and then acquiring second tissue for stapling from said target area.
  • one area of tissue may be from the posterior side of the stomach and it may be anchored to tissue on the anterior side as illustrated in Fig. 1 IA.
  • Figs. 1OB - 1OD illustrate that the pinches of tissue forming plications may have a number of different relative orientations.
  • Figs. 1OB and 1OC shows that the plications may be formed by attaching pinches P of tissue pulled towards one another such that the apexes of the folds formed by each pinch extend in opposite directions.
  • Figs. 1OC - 1OE show that the pinches of tissue may instead be pulled in the same direction such that the apexes of each tissue pinch are more or less aligned with one another.
  • Devices using the disclosed principles may be used to form a single plication (Fig. 10A) within the stomach, or the device might be fired multiple times to create a line of plications partitioning the stomach in the desired configuration and location.
  • Some of these locations which are identified by letters A - D in Fig. 12, include, but are not limited to horizontal at the GE junction (A) partially across the stomach, vertical along the lesser curvature (B), transverse across the antrum (C) and transverse across the fundus (D).
  • Fig. 1 IB shows a partition formed of three plications, where each plication is formed such that the tissue pinch from the anterior wall is positioned under the pinch from the posterior wall, whereas in Fig. 11C the plications are alternated such that in the center plication the pinch from the posterior wall is on top of the pinch from the anterior wall.
  • partitions may be formed using plications of the type disclosed above in connection with Fig. 1OC, in which the pinches of tissue forming each plication have a common orientation.
  • Figs. 1 IF - 1 IJ show an alternative partitioning method in which the guide tube 48 that receives the partitioning tool 10 (or, alternatively, the shaft 14 itself) is used as a guide for formation of the plications.
  • the graspers (not shown) are used to acquire areas of tissue on opposite sides of the guide tube 48, such that when the acquired tissue is drawn through the window, it wraps partially around the guide tube as shown in Figs.1 IG - 1 IH. Compression and stapling are performed as described above to secure the pinches Tl , T2 to one another.
  • the stapler head may be repositioned multiple times to form several such plications as shown in Fig. 111.
  • the partitioning tool 10 is straightened and withdrawn, leaving the stomach partitioned to form a chute C (Fig. 1 IJ) within the stomach.
  • a partition can be reversed utilizing a conventional linear stapler 100 of a type that applies parallel rows of staples while forming a central cut between the staple rows.
  • the stapler 100 is inserted through gap in or adjacent to the partition formed by plications P.
  • the partition serves to define a narrow exit orifice for flow of food from the proximal stomach to the distal stomach
  • the stapler is inserted into the exit orifice and clamped across one or more of the plications (Fig. 13C).
  • the stapler is activated and plications are separated by forming cuts C and forming staple lines SL.
  • the process is repeated until the entire "partition" or collection of partitions are separated (Fig. 13D), restoring the natural geometry of the stomach (Fig. 13E).
  • Plugs or pledgets 102 can be inserted into the gaps between plications to increase the amount of restriction to flow of ingested food provided by the partition.
  • each plication can have a pledget/plug inserted into the hole cut into the plication (Fig. 14C) to ensure robust edge to edge healing of tissue; the pledget can be permanent or transitory in nature (e.g. biodegradable/bioerodible).
  • the pledget can have a configuration on the top of the pledget which helps separate the newly created portions of the stomach as well, and can be modified to allow more or less food passage through gaps between plications.
  • a plug placed in the hole cut into the plication has an overlapping flange 104 that will extend to cover adjacent gaps between the plications.
  • Figs. 15A through 15D illustrate that plugs/pledgets within the cut holes may be used to hold two or more two-layer plications together.
  • the stapler may be used to separately staple and cut each pinch, forming a plurality of two-layer plications as shown in Fig. 15 A.
  • pairs (or larger groups) of the two-layer plications may be joined together to position the cut holes into alignment, and the plugs/pledgets may be inserted through the aligned holes to retain the plications as shown in Fig. 15B.
  • Figs. 15A through 15D illustrate that plugs/pledgets within the cut holes may be used to hold two or more two-layer plications together.
  • FIG. 16A and 16B illustrate that plugs/pledgets 102 passed through the hole in one or more two- or four-layer plication can function as restrictive devices themselves, and be used to restrict flow of food towards the distal stomach.
  • Various types of plugs/anchors are shown in Fig. 17 and Fig. 18.
  • plugs/anchors may have fasteners 106 similar to zip ties, or moly-bolt type anchors 108.
  • Other plugs/anchors may have inflatable portions 110 to anchor them in place (inflatable using air, liquid, or solids such as granular elements or miniature bearings.
  • Still other plugs may have expandable anchors 112a, 112b that are insertable through the cut hole in the plication in a folded or collapsed shape, and that expand when released.
  • a locking ring 114 having a catch 116 may be opened into a "c", looped through the cut hole in the plication and then engaged at the catch to form a ring.
  • lid designs may be used as shown in Fig. 18. These include the bulbous lid 118 which might also serve as a gastric space occupier, a tapered lid 120 that facilitates shedding of fluid and food material, an off-set lid 122 for restricting a tissue food orifice. Large lids can be used to facilitate sealing of a sectioned stomach.
  • the plug is manufactured out of a very compliant material (e.g. silicone, sartoprene, urethane, etc) which maintains alignment of holds but allows for movement of the stomach wall plications relative to one another.
  • the tissue graspers can utilize any of a number of means for acquiring tissue including but not limited to vacuum, hooks, cork screws, or combinations of the above.
  • the graspers 126 may have a dual action which is helpful in closure of a perforation of a tissue wall, such as the stomach or other organ.
  • the graspers have a central "tongue" with graspers on each side. This embodiment allows each side of a perforation to be grasped independently and pulled between the stapler cartridge and anvil to ensure that the perforation is adequately closed. More specifically, the grasper is extended through the window in the stapler head as shown in Fig. 2OB, and positioned with the tongue of the grasper within the perforation.
  • the tongue is pivoted towards one jaw of the grasper as shown in Fig. 2OD, to pinch one edge of the perforation between the tongue and that jaw.
  • the second jaw is moved towards the tongue to pinch the other edge of the perforation between the tongue and second jaw.
  • the grasper is withdrawn, pulling the engaged tissue through the stapler window.
  • the stapler is compressed to form a two- layer plication in the tissue with a row of staples SL extending through the plication. See Figs. 2OF and 2OG.
  • the cartridge 18a and anvil 16a as positioned on jaw members 200, 202 slidably positioned on a rod 204.
  • a grasper 26 is used to draw tissue between the cartridge and anvil, and the cartridge and anvil are closed by advancing the jaw carrying the cartridge along the rod, thereby moving the jaws into the closed position (Fig. 19C) and compressing the tissue (Fig. 19D..
  • the tissue is stapled to produce a linear staple line.
  • the tissue may additionally be cut by a blade 206 that is driven through the staple head. Hydraulic fluid driven through cable 208 is employed to drive the staples and may also be used to advance blade 206.
  • the device would be capable of excising intussusceptions, removing polyps, close perforations (holes) of the stomach or other body tissue, resolution of internal or external hemorrhoids, ulcers, perform tubal ligations, remove cervical lesions, produce pyloric tightening, and perform the removal of organs or tissue outside the GI tract.
  • this stapler design may be used to form a plurality of plications Pl which have had the "lips" or apexes of the plications cut off by the stapling element.
  • Staple line SL maintains apposition of the plicated tissue.
  • the partitioning tools described herein 10 may include a number of features that allow the stapler head 12 to be oriented as needed to ensure that the tissue pinches drawn into the window are properly aligned with one another and with the staple housing and anvil for optimal compression and stapling of the targeted tissue.
  • the head 12 may be articulatable in one or more directions using pull cables or other appropriate methods.
  • shaft 14 may formable using into a predetermined shape using locking spine technology, to give the shaft an operative end having one or multiple bends, such as bend B 1 and bend B 1.
  • Bends B 1 and B2 may be within a single plane, or bend B2 may be within the plane of the straight section of the shaft while bend Bl extends out of the plane shared by B2 and the shaft. Additionally, the head 12 may be rotatable relative to its longitudinal axis by a wrist-type joint coupling the head 12 to the shaft 14. For example, see Fig. 21 A in which the opening to window faces perpendicular to the shaft 14, whereas in Fig. 21 B the window faces the shaft 14. Arrow Al in Figs. 21 C and 21 C represents rotation of the head 12 relative to the shaft 14.
  • the shaft may be articulatable at the bends or other locations to allow adjustment of the head orientation, as indicated by arrows A2 (lateral articulation relative to the longitudinal section of shaft 14), arrows A3 (articulation towards/away from the longitudinal section of the shaft 14), and arrows A4 (articulation into/out of the page in a plane shared by the longitudinal section of the shaft, as also shown in Fig. 2 IE.
  • Fig. 2 IF shows this same articulation but with the stapler head rotated to a different orientation to give access to a different area of the stomach wall.
  • the bends of the shaft remain within a single plane, which is the plane occupied by the longitudinal section of the shaft.
  • Fig. 21G illustrates the shaft articulated in directions A2 and A3, but not in direction A4, such that the entire shaft is disposed within the plane of its longitudinal section.
  • the staple head may be both articulatable and moveable into a laterally-offset position relative to its shaft.

Abstract

A device and method for remodeling or partitioning a body cavity, hollow organ or tissue tract includes graspers operable to engage two or more sections of tissue within a body cavity and to draw the engaged tissue between a first and second members of a tissue remodeling tool. The two or more pinches of tissue are held in complete or partial alignment with one another as staples or other fasteners are driven through the pinches, thus forming a four-layer tissue plication. Over time, adhesions formed between the opposed serosal layers create strong bonds that can facilitate retention of the plication over extended durations, despite the forces imparted on them by stomach movement. A cut or cut-out may be formed in the plication during or separate from the stapling step to promote edge-to-edge healing effects that will enhance tissue knitting/adhesion.

Description

DEVICES AND METHODS FOR STOMACH PARTITIONING
BACKGROUND OF THE INVENTION
Surgical procedures used to modify the shape and/or size of a stomach are effective in reducing weight and resolving associated co morbidities. Unfortunately these surgical procedures are invasive and are associated with high levels of peri-operative and post operative complications.
Some procedures have been introduced which utilize natural body orifices for surgery to reduce the invasiveness of these procedures. Natural orifices include, but are not limited to the esophagus, anus and vagina. These procedures are less invasive by nature but have limitations as will be described below.
Natural orifice procedures have largely been directed at the Gastrointestinal (GI) Tract, but also include procedures which exit the GI tract, and perform surgeries normally done laparoscopically. Access to the peritoneal space for example can be accomplished by penetrating the stomach wall.
One primary means of stomach modification is by the use of surgical or laparoscopic staplers. These devices are able to surgically or laparoscopically appose multiple layers of tissue and connect them by use of multiple staple rows. Early procedures stapled across the outside of the stomach, which brought the mucosa of two sides of the stomach into apposition. (Figs. IA- 1C) There was, and is, a high rate of failure of these staple lines due to the nature of the GI tract. Staple line dehiscence was common and resulted in inadequate clinical results. The solution was to surgically staple the tissue and cut between the staple lines. This enabled edge to edge healing to occur, and provided for a robust tissue bridge. (Figs. 2 A - 2B) The separation/cutting of tissues is now common for surgical procedures such as Roux-En-Y Gastric Bypass, Sleeve Gastrectomy, and Vertical Banded Gastroplasty. However, less invasive procedures allowing stomach partitioning using natural orifice access are highly desirable. Other devices and methods for modifying stomach tissue, including fastening and/or cutting tissue, are shown and described in published PCT Application WO 2005/037152, which is incorporated herein by reference.
Some existing procedures attempt to partition the stomach from the inside by connecting tissue within the stomach. To date these procedures have demonstrated a high failure rate. Improved devices and methods for creating robust stomach partitions using natural orifice access would be beneficial. Another problem with current stapling procedures is they are permanent in nature, or designed to be so. In a Roux en Y Gastric Bypass, no provision exists for reversing the procedure. If a patient wished to return to his normal stomach function, it would be impossible to do so. Thus it would also be beneficial to have a procedure that was reversible, also by means of a natural orifice.
Tools as designed and described on the following pages address both deficiencies of current technology.
BRIEF DESCRIPTION OF THE DRAWINGS Figs. IA - IB schematically illustrate a prior art stomach partitioning method.
Fig. 1C illustrates two section of stomach wall tissue joined according to the method of Figs. IA and IB.
Fig. 2A schematically illustrates a prior art stomach partitioning method. Fig. 2B illustrates two section of stomach wall tissue joined and transected according to the method of Fig. 2A.
Fig. 3 A is a perspective view of a partitioning tool.
Fig. 3B schematically shows the staple holder of the partitioning tool of Fig. 3 A.
Figs. 4A - 4C are plan views showing three examples of suitable staple holders.
Fig. 5 A is a plan view of the partitioning tool of Fig. 3 A with the arms expanded. Fig. 5B is an end view of the partitioning tool of Fig. 5 A.
Fig. 5C shows the partitioning tool of Fig. 3 A with the arms extended for streamlined advancement of the tool through the esophagus into the stomach.
Figs. 5D and 5E are similar to Figs. 5A and 5B but show a modification in which the arms are spaced by an alternate angle. Fig. 6A is a perspective view of the partitioning tool illustrating extension of the graspers along intersecting paths.
Fig. 6B is a perspective view of the partitioning tool illustrating extension of the graspers along parallel paths.
Figs. 6C - 6D are perspective views of the distal shaft and stapler head of an alternative embodiment in which the direction of relative movement of the stapler head and anvil is transverse to the orientation of the distal portion of the shaft.
Figs. 7A - 7G illustrate various forms of graspers.
Fig. 7H is a plan view of a staple holder and illustrates a grasper drawing tissue across the surface of the staple holder. Figs. 71 - 7K are similar to Fig. 7H and show alternative staple holder shapes and grasper arrangements.
Figs. 8 A - 8F are a series of drawings illustrating a first method of using the disclosed partitioning system. Figs. 9A - 9F are a series of drawings illustrating a second method of using the disclosed partitioning system.
Figs. 9G - 9J are a series of drawings illustrating use of a modified partitioning system.
Figs. 9K - 9N are a series of drawings illustrating use of yet another modified partitioning system.
Figs. 90 - 9P illustrate an alternate of using the disclosed partitioning system.
Figs. 9Q - 9S disclose exemplary methods for advancing the graspers in the method of Figs. 90 - 9P.
Fig. 1OA is a plan view of a stomach illustrating a stomach wall partition formed in the stomach wall tissue.
Figs. 1OB - 1OC illustrate a first orientation of plications forming a partition or tissue structure within the stomach.
Figs. 1OD - 1OF illustrate a second orientation of plications forming a partition or tissue structure within the stomach. Figs. 1 IA - 1 IE illustrate various arrangements of plications to form plications in a stomach.
Figs. 1 IF - I U illustrate formation of a partition by forming tissue plications around the shaft of an instrument disposed in the stomach.
Fig. 12 schematically shows a stomach and illustrates various partition locations that can be formed by creating partitions or tissue structures as disclosed herein.
Figs. 13A - 13E are a sequence of steps illustrating reversal of a stomach partition.
Figs. 14A - 14D illustrate the use of plugs to close gaps between plications formed in tissue or to close cut holes formed in plications. Figs. 15A through 15D illustrate the use of plugs within holes cut into plications to hold two or more two-layer plications together, such as to form a partition.
Figs. 16A and 16B illustrate the use of plugs positioned within holes cut into plications to restrict flow of food towards the distal stomach Fig. 17 illustrates plug designs having anchoring features to restrain the anchors within holes through tissue.
Fig. 18 illustrates heads or lids for plugs.
Fig. 19A is a perspective view of an alternative partitioning tool. Fig. 19B is a plan view of the jaws of the partitioning tool of Fig. 19A.
Fig. 19C shows the jaws of the partitioning tool of Fig. 19A in the closed position.
Fig. 19D is a perspective view illustrating use of the grasper to draw tissue through the partitioning tool of Fig. 19A, and use of the partitioning tool for tissue compression, stapling and optioning cutting. Fig. 19E illustrates a partition formed in a stomach using multiple plications formed according to the method shown in Fig. 19D.
Figs. 2OA - 2OG illustrate use of a system comprising an alternate grasper and the partitioning tool of Fig. 3 A to close an opening in a body wall.
Figs. 21 A - 21D show a stapler head of a partitioning tool and illustrate articulation and rotation features.
Figs. 2 IE - 21 G illustrates use of the articulation and rotation features of Figs. 21A - 21D to access tissue within a stomach.
DETAILED DESCRIPTION
The present application describes a device and method for forming tissue structures within, remodeling, or partitioning a body cavity, hollow organ or tissue tract. The application will discuss the device and method in connection with use in the stomach for formation of plications such as for stomach partitioning or other purposes, although they may be used for applications other than stomach remodeling or partitioning.
When an area of the stomach wall is drawn inwardly (bringing a two-layer "pinch" or fold of tissue toward the stomach exterior), corresponding regions of serosal tissue on the exterior of the stomach are positioned facing one another. According to a preferred method disclosed herein, two or more such areas or pinches of the stomach wall are engaged/grasped and drawn inwardly using instruments passed into the stomach via the mouth. The two or more pinches of tissue are held in complete or partial alignment with one another as staples or other fasteners are driven through the pinches, thus forming a four-layer tissue plication. Over time, adhesions formed between the opposed serosal layers create strong bonds that can facilitate retention of the plication over extended durations, despite the forces imparted on them by stomach movement. A cut or cut-out may be formed in the plication during or separate from the stapling step to promote edge- to-edge healing effects that will enhance tissue knitting/adhesion and will ultimately contribute to the durability of the plication, despite the fact that mucosal tissue of one tissue pinch is positioned in apposition with the mucosal tissue of the other tissue pinch.
One or more such plications may be formed for a variety of purposes. For example, plications may be used to induce weight loss by creating a barrier or narrowing within the stomach that will restrict the flow of food from the proximal stomach towards the distal stomach. For example, a partition or barrier may be oriented as in Fig. 15 C or 15D to extend across the stomach, leaving only a narrow exit orifice through which food can flow from the proximal stomach to the distal stomach, or a similar antral barrier (Fig. 15C) may be formed that will slow stomach emptying of stomach contents into the pylorus. In other cases, partitions or plications may be used to form a proximal pouch in the stomach or to reduce stomach volume to cause sensations of fullness after a patient eats relatively small quantities. Plications might also be used as a treatment for GERD to create a shield between the stomach and esophagus that will minimize reflux. Plications might also be used to close perforations in the stomach wall.
Referring to Fig. 3 A, an exemplary embodiment of a partitioning system includes a partitioning tool 10. Although the partitioning tool may include various mechanisms for applying a fastening element (e.g. clips, sutures, staplers etc.) to tissue, the disclosed embodiment utilizes a stapler head 12 positioned at the distal end of an elongate shaft 14. The shaft is of sufficient length to allow it to be advanced into the target body cavity (e.g. stomach) through a natural orifice (e.g. the mouth). Stapler head 12 includes an anvil 16 having recesses 17 for holding staples, and a staple holder 18 (Fig. 3B). In the preferred embodiment, the staple holder is a removeable/replaceable cartridge and/or it may be refillable by inserting additional staples into it. In other embodiments, the staple holder may be neither replaceable nor refillable.
A preferred stapler is a circular stapler which preferably contains multiple concentric rows of staples 20, surrounding a circular cutter 22. The cutter is not mandatory, and can be omitted if cutting of tissue is not desired. Applications for a plication tool that lacks a cutting element might include those involving the creation of a simple plication (e.g. a single pinch rather than a plication formed of two tissue pinches), apposition of multiple tissue layers, the closing of a stomach wall perforation, or the resection of a targeted tissue (i.e. appendix), etc. While a circular staple arrangement may be preferable other configurations of staples are also suitable. The staples can be positioned to surround a central cutter of any shape when one is included. Suitable cutter shapes include the round cutter 22 of Fig. 4A, the rectangular cutter 22a Fig. 4C, a linear cutting blade 22b of the type shown in Fig. 4B, or an oval cutter etc.. The cutter can be configured to simply cut layers of tissue (e.g. see the cutting blade 22b of Fig. 4B) or to remove a portion of tissue internal to the cutter (see the punch-type cutters 22, 22a of Figs. 4A and 4C).
The staple holder 18 and anvil 16 are connected by an arm assembly having collapsible arms 24. The arms are collapsed into a generally elongate position (Fig. 5C) for insertion into the lumen of the body, but are opened to the expanded position
(Fig. 5A) once in a hollow organ or tract. Moving the arms to the expanded position moves the stapler holder and anvil relatively towards one another while increasing the lateral dimension of the window W bounded by the arms 24, staple holder 18 and anvil 16. This motion can be continued following tissue acquisition to compress the acquired tissue between the staple holder and anvil. In the illustrated examples, the arms 24 include proximal and distal sections coupled by hinges 25. In these embodiments, the arms are pivoted relative to the hinges for expansion and collapse of the arms. The arms can be linear, curved or oriented at varying angles relative to the staple cartridge. Moreover, the arms 24 can be spaced by an angle of 180° as shown in Fig. 5B, or by a larger/smaller angle as shown in Fig. 5E.
Referring to Fig. 6A, coupled to or provided with the stapler are one or more, preferably two, three or more, tissue acquisition devices, which will also be referred to as "engagers" or "graspers" 26 which are designed to engage tissue and draw the tissue into position between the stapler anvil and cartridge. In the embodiments shown in Figs. 6A and 6B, the graspers are positioned to pass from one side of the "window" bounded by the stapler arms, through the window, and used to grasp tissue on the opposite side of the window. These graspers are then withdrawn back through the window to draw the grasped tissue between the cartridge and anvil. In other embodiments, the arms can engage tissue and draw it between the cartridge and anvil without necessarily passing through the window. Such embodiments include those similar to the Fig. 5E embodiment, in which the arms are oriented angularly relative to one another when viewed along the longitudinal axis of the device shaft.
Referring to Figs. 7A - 7G, the graspers can be simple alligator or forceps type graspers 26, vacuum chambers 28, corkscrews which can be traditional corkscrews 30a or gear-driven perpendicular cork-screws 30b, hooks 32, or any combination thereof, such as a corkscrew 30 in combination with a vacuum chamber as shown in Fig. 7B. Fig. 7G shows corkscrew 30 longitudinally advanceable within a vacuum chamber 28 having a side facing opening, such that tissue can be drawn into vacuum chamber using suction, and such that the corkscrew 30 can then be moved in a longitudinal direction and screwed into the tissue within the vacuum chamber. A similar design using a longitudinally advanceable barb rather than a corkscrew may also be configured. Other alternative designs which are capable of acquiring the targeted tissue may instead be used.
In this disclosure, the term "grasper" is used to refer generally to any type of tool that can be used to engage or acquire tissue via any means (grasping, hooking, penetration, suction, adhesion, etc.) so the acquired tissue can be positioned between the staple holder and anvil. Similarly, even though some of the disclosed graspers do not physically "pinch" tissue, the term "pinch of tissue" may be used in this disclosure to refer to a fold, area, or tab of tissue acquired using a grasper for positioning of that fold, area ,or tab between the staple holder and anvil.
Figs. 7H and 71 schematically illustrate use of a grasper 26 to draw acquired tissue into position between a staple holder 18 and an anvil (not shown). If the tissue that can be acquired by a single grasper 26 lacks the width to extend fully across the staple holder or anvil as shown, an alternate grasper arrangement may be used in which each individual grasper is replaced by a pair of side-by-side graspers 26 as shown in Fig. 7J, or by a type of grasper that can acquire a broader area of tissue, such as the Alice clamp-type grasper 33 shown in Fig. 7K. Doing so can ensure that each acquired piece of tissue can be positioned to receive the full array of staples from the stapler holder. These arrangements give the pinch of tissue a leading edge that is more rectangular, as opposed to the more triangularly shaped pinch created using a single grasper.
The graspers need not be integral to the stapler but could be separate tools used in conjunction with the stapler. In use of the Fig. 6A and 6B embodiments, the graspers are advanced to the target tissue site through guide tubes 34 on the stapler shaft 14, under direct visualization or fluoroscopy. Alternatively or additionally, the device shaft itself can be articulated to bring the tools into contact with the desired tissue. The guide tubes 34 may include articulation features (e.g. pullwires) to facilitate positioning of the graspers. The tissue graspers can additionally be equipped with articulation means to aid in grasper positioning and/or withdrawal of tissue into position between the cartridge and anvil. Grasping tools are passed from one side of the window W created by the arms 24 of the device. In the Fig. 6A embodiment, the graspers 26 extend non parallel to each other such that when retracted, the tissue acquired by each grasper overlaps the tissue acquired by the other grasper as illustrated in the sequence of steps shown in Figs. 8A - 8E. Graspers can instead be positioned parallel to one another and staggered slightly as in the Fig. 6B embodiment. This configuration allows tissue to be pulled in a relatively perpendicular orientation to the stapler head as illustrated in the sequence of steps shown in Figs. 9A - 9C. In either case, when desired tissues are acquired and are positioned between the cartridge and anvil of the stapler, the device is activated thereby compressing tissue, firing staples, and in the preferred embodiment, cutting a central piece of tissue bounded by the staple lines. This cut enables the body to duplicate the strong edge to edge healing which occurs in durable surgical procedures.
Several of Applicants' prior applications include embodiments of tissue plicators having features that may be used in the partitioning tool 10 to effect tissue compression, stapling firing, staple reinforcement, and/or cutting. In particular, U.S. Application No. 11/542,457 (U.S. 2007-0219571), Endoscopic Plication Device and Method, filed October 3, 2006, U.S. Application No. 11/900,757, Endoscopic Plication Device and Method, filed September 13, 2007, and/or U.S. Application No. 12/050,169, Endoscopic Stapling Devices and Methods, filed March 18, 2008, disclose mechanisms for achieving tissue compression (using hydraulics or other means) by decreasing the relative separation between the staple holder and anvil, for hydraulically driving staples, for articulating the stapler head, for cutting tissue, and for reinforcing staple lines with buttressing material. Each of these application is incorporated herein by reference. One exemplary method of tissue remodeling in accordance with the disclosed embodiments will next be described in connection with Figs. 8A through 8F. In preparation for use of the device, the stapler head 12 is positioned in the collapsed position shown in Fig. 5C and the stapler head is advanced through the mouth and esophagus into the stomach (Fig. 8A). The proximal end of the shaft 14 remains outside the body. Next, the tissue graspers 26 are passed through the guide tubes 34 on the stapler shaft. The graspers are passed from one side of the shaft, through the window W defined by the stapler arms 24, and used to grasp regions of stomach wall tissue as shown in Figs. 8B and 8C. The stapler head 12, shaft 14, guide tubes 34, and/or graspers 26 can be manipulated (e.g. deflected, articulated or rotated) to reach the desired tissue. As illustrated in Fig. 8B, in this embodiment the graspers are oriented to cross each other between the staple holder 18 and anvil 16. This causes the grasped pinches of tissue Tl, T2 to overlap one another as shown as the graspers are withdrawn or manipulated to draw the engaged tissue between the staple holder (cartridge) and anvil. As discussed in connection with Figs. 7F - 71, each of the individual graspers 26 may be replaced with a pair of spaced-apart graspers, so as to acquire a broader pinch of tissue.
The pinches of tissue are compressed between the staple holder and anvil, and staples are driven through the pinches of tissue as shown in Fig. 8E. In a preferred form of device, at least two concentric rings of staples 20 are formed through the tissue, with a central core CC cut through the tissue by the cutter 22. The plicated tissue (Fig. 8F) is released from the tool 10, and the arms are pivoted to the elongated position of Fig. 5C. As best seen in Fig. 8G, the plication comprises four layers of tissue (two from each tissue pinch), with the staples and the cut extending through all of the four layers. The plications may be reinforced using reinforcing rings and/or buttressing materials or substances as disclosed on Applicants' prior applications referred to above.
Referring to Figs. 6C - 6E, in still another embodiment, the staple head 12 is mounted to the shaft in a position that is rotated (e.g. 90°) from the position shown in Fig. 6A. In other words, the staple holder and anvil may be moveable relatively towards one another in a direction that is transverse to the distal portion of the shaft, rather than generally parallel to the shaft. For example, the staple head may be coupled to a pivot member 27 having a first end 29a pivotally coupled to the shaft 14, and a second end 29b pivotally coupled to the staple head at the hinge 25 of one of the arms 25. For insertion into the body, the stapler head 12, pivot member 27, and shaft 14 extend generally longitudinally as in Fig. 6D. Once the stapler head 12 is in the stomach, the stapler head 12 is pivoted to a position generally transverse to the shaft 14. Optimal stapler head position is achieved by pivoting the stapler head relative to the pivot member 27 and/or pivoting the pivot member 27 relative to the shaft 14. As with other embodiments, the arms 24 are pivoted relative to the hinges 25 to decrease the relative separation between the anvil 16 and staple holder 18 for tissue compression. Figs. 6C - 6E include additional features useful for tissue compression and staple firing which are disclosed in greater detail in U.S. Application No. 12/050,169, Endoscopic Stapling Devices and Methods, filed March 18, 2008 (Attorney Docket No. BARO- 1900) which is incorporated herein by reference. In other embodiments, the partitioning tool may be equipped to reorient the graspers as they withdraw the pinches of tissue towards the window, so as to ensure the pinches are properly aligned with one another and with the staple housing and anvil.
Figs. 9A through 9F illustrate a second exemplary method for forming a plication in the stomach. This method is largely similar to that shown in Figs. 8A through 8E, but differs in that it is performed using the configuration of Fig. 6B in which the graspers 26 extend parallel to one another. As discussed in connection with Fig. 7F - 71, each one of the parallel graspers 26 may be replaced with a pair of side-by-side graspers to allow acquisition of a broader pinch of tissue. As shown in Fig. 9A, the parallel graspers 26 are passed through the window W of the stapler head 12 and used to engage regions of tissue. The regions or pinches of tissue Tl, T2 are withdrawn through the window W as shown in Figs. 9B, 9D and 9E, and the device is activated to compress and staple the pinches to form a plication, and to preferably form a cutout CC surrounded by the rings of staples 20. Figs. 9G - 9J show a modification to the Fig. 9A embodiment in which the graspers 26 are coupled to a pivot member 38. Pivot member 38 may be a plate pivotally coupled to the stapler head 12 at its proximal end. The graspers extend through holes 40 in the pivot member. Once the graspers have engaged pinches of tissue Tl, T2, the pivot member is pivoted away from the window W, carrying the graspers and the acquired tissue and thereby drawing the pinches of tissue through the window. As with prior embodiments, the stapler is activated to compress the tissue pinches between the cartridge and anvil, and to drive staples through the compressed tissue (Figs. 91 and 9J).
In a further modification shown in Figs. 9K - 9M, an elongate support 42 having a partition 44 extends through a hole 40 in the pivot member 38 such that it extends through the window W. When tissue pinches Tl, T2 are acquired by the graspers, the partition is disposed between the pinches. (Figs. 9K and 9L) Compression of the pinches between the cartridge and anvil sandwiches the partition 44 between the pinches. The partition is formed of a flexible material that is less slippery than the surface of the tissue. Its presence during compression will minimize the likelihood that the slippery nature of the tissue will cause one of both of the pinches Tl, T2 to slip or "squirt" out of alignment with the staple holder/anvil before or during compression.
The partition 44 may be retracted between the steps of tissue compression and tissue stapling by pivoting the pivot member away from the window W as shown in Fig. 9N. Alternatively, the partition 44 may be cut or released from its support (prior to or after staple firing), leaving it in place between the tissue pinches. According to this latter method, staples advanced through the tissue pinches pass through the partition 44, maintaining the position of the partition. For this embodiment, the partition may be formed of a material that will absorb, degrade, or erode within the body over a period of time.
Figs. 90 and 9P illustrate another alternative system in which the graspers 26 are used to engage stomach wall tissue, and in which the window of the partitioning tool 10 is slipped over the proximal ends of the graspers (outside the body) and guided into the stomach over the shafts of the graspers. As illustrated in Figs. 9Q - 9S, during this procedure, an articulating grasper 26a (Fig. 9R) may be used, and one or both of the graspers 26 may be passed down the channel of an articulating endoscope 50. A separately positioned endoscope 50a may be positioned independent of the graspers and retroflexed to allow visualization of the grasping and stapling steps.
Once the partitioning tool has been advanced into position over the graspers, tension is then applied to the graspers 26 to withdraw the pinches of acquired tissue through the window as described in prior embodiments. In this embodiment, the grasper shafts may extend only through the window, or the stapler head 12 might include a plate (similar to the pivot member 38) having guide holes for receiving the shafts of the graspers. According to the disclosed embodiments, the tissue acquired for stapling can be tissue accessible by the graspers while the stapler head remains in a fixed position, or it can be from distinctly different areas of the organ. This latter technique may require acquiring tissue from one area of an organ or target tissue in one grasper, moving the stapler head to another target area and then acquiring second tissue for stapling from said target area. For example one area of tissue may be from the posterior side of the stomach and it may be anchored to tissue on the anterior side as illustrated in Fig. 1 IA. Figs. 1OB - 1OD illustrate that the pinches of tissue forming plications may have a number of different relative orientations. For example, Figs. 1OB and 1OC shows that the plications may be formed by attaching pinches P of tissue pulled towards one another such that the apexes of the folds formed by each pinch extend in opposite directions. Figs. 1OC - 1OE show that the pinches of tissue may instead be pulled in the same direction such that the apexes of each tissue pinch are more or less aligned with one another. Devices using the disclosed principles may be used to form a single plication (Fig. 10A) within the stomach, or the device might be fired multiple times to create a line of plications partitioning the stomach in the desired configuration and location. Some of these locations, which are identified by letters A - D in Fig. 12, include, but are not limited to horizontal at the GE junction (A) partially across the stomach, vertical along the lesser curvature (B), transverse across the antrum (C) and transverse across the fundus (D).
The distance between adjacent plications in a partition can be selected to allow gaps between each plication or to tightly space the placations to eliminate gaps virtually all together. The arrangement of the tissue pinches in each plication can be selected to give desired properties to the plication. For example, Fig. 1 IB shows a partition formed of three plications, where each plication is formed such that the tissue pinch from the anterior wall is positioned under the pinch from the posterior wall, whereas in Fig. 11C the plications are alternated such that in the center plication the pinch from the posterior wall is on top of the pinch from the anterior wall. Also, as shown in Figs. 1 ID and 1 IE, partitions may be formed using plications of the type disclosed above in connection with Fig. 1OC, in which the pinches of tissue forming each plication have a common orientation.
Figs. 1 IF - 1 IJ show an alternative partitioning method in which the guide tube 48 that receives the partitioning tool 10 (or, alternatively, the shaft 14 itself) is used as a guide for formation of the plications. Once the stapler head is in position within the stomach, the graspers (not shown) are used to acquire areas of tissue on opposite sides of the guide tube 48, such that when the acquired tissue is drawn through the window, it wraps partially around the guide tube as shown in Figs.1 IG - 1 IH. Compression and stapling are performed as described above to secure the pinches Tl , T2 to one another. The stapler head may be repositioned multiple times to form several such plications as shown in Fig. 111. Afterwards, the partitioning tool 10 is straightened and withdrawn, leaving the stomach partitioned to form a chute C (Fig. 1 IJ) within the stomach.
The partitions formed as described above may be reversed if at some point it is determined that it would be beneficial to do so. Referring to Figs. 13A through 13E, a partition can be reversed utilizing a conventional linear stapler 100 of a type that applies parallel rows of staples while forming a central cut between the staple rows. Referring to Fig. 13B, the stapler 100 is inserted through gap in or adjacent to the partition formed by plications P. For example, if the partition serves to define a narrow exit orifice for flow of food from the proximal stomach to the distal stomach, the stapler is inserted into the exit orifice and clamped across one or more of the plications (Fig. 13C). The stapler is activated and plications are separated by forming cuts C and forming staple lines SL. The process is repeated until the entire "partition" or collection of partitions are separated (Fig. 13D), restoring the natural geometry of the stomach (Fig. 13E).
Partitions formed using the disclosed methods may be enhanced using plugs or pledgets. Plugs or pledgets 102 (Fig. 14A) can be inserted into the gaps between plications to increase the amount of restriction to flow of ingested food provided by the partition. Additionally, each plication can have a pledget/plug inserted into the hole cut into the plication (Fig. 14C) to ensure robust edge to edge healing of tissue; the pledget can be permanent or transitory in nature (e.g. biodegradable/bioerodible). The pledget can have a configuration on the top of the pledget which helps separate the newly created portions of the stomach as well, and can be modified to allow more or less food passage through gaps between plications. (Figure 14B). In one embodiment, a plug placed in the hole cut into the plication has an overlapping flange 104 that will extend to cover adjacent gaps between the plications.
Figs. 15A through 15D illustrate that plugs/pledgets within the cut holes may be used to hold two or more two-layer plications together. For example, rather than joining two pinches of tissue as disclosed above to form a four-layer plication, the stapler may be used to separately staple and cut each pinch, forming a plurality of two-layer plications as shown in Fig. 15 A. Afterwards, pairs (or larger groups) of the two-layer plications may be joined together to position the cut holes into alignment, and the plugs/pledgets may be inserted through the aligned holes to retain the plications as shown in Fig. 15B. Figs. 16A and 16B illustrate that plugs/pledgets 102 passed through the hole in one or more two- or four-layer plication can function as restrictive devices themselves, and be used to restrict flow of food towards the distal stomach. Various types of plugs/anchors are shown in Fig. 17 and Fig. 18.
Referring to Fig. 17, plugs/anchors may have fasteners 106 similar to zip ties, or moly-bolt type anchors 108. Other plugs/anchors may have inflatable portions 110 to anchor them in place (inflatable using air, liquid, or solids such as granular elements or miniature bearings. Still other plugs may have expandable anchors 112a, 112b that are insertable through the cut hole in the plication in a folded or collapsed shape, and that expand when released. In other embodiments, a locking ring 114 having a catch 116 may be opened into a "c", looped through the cut hole in the plication and then engaged at the catch to form a ring.
For plugs/anchors that have "lids" to prevent flow of material through a nearby hole cut into the plications, various lid designs may be used as shown in Fig. 18. These include the bulbous lid 118 which might also serve as a gastric space occupier, a tapered lid 120 that facilitates shedding of fluid and food material, an off-set lid 122 for restricting a tissue food orifice. Large lids can be used to facilitate sealing of a sectioned stomach. Ideally, the plug is manufactured out of a very compliant material (e.g. silicone, sartoprene, urethane, etc) which maintains alignment of holds but allows for movement of the stomach wall plications relative to one another.
As discussed above, the tissue graspers can utilize any of a number of means for acquiring tissue including but not limited to vacuum, hooks, cork screws, or combinations of the above. In an alternate embodiment, the graspers 126 may have a dual action which is helpful in closure of a perforation of a tissue wall, such as the stomach or other organ. As shown in Fig. 1OA, the graspers have a central "tongue" with graspers on each side. This embodiment allows each side of a perforation to be grasped independently and pulled between the stapler cartridge and anvil to ensure that the perforation is adequately closed. More specifically, the grasper is extended through the window in the stapler head as shown in Fig. 2OB, and positioned with the tongue of the grasper within the perforation. The tongue is pivoted towards one jaw of the grasper as shown in Fig. 2OD, to pinch one edge of the perforation between the tongue and that jaw. Next, as shown in 2OE, the second jaw is moved towards the tongue to pinch the other edge of the perforation between the tongue and second jaw. The grasper is withdrawn, pulling the engaged tissue through the stapler window. The stapler is compressed to form a two- layer plication in the tissue with a row of staples SL extending through the plication. See Figs. 2OF and 2OG.
In an alternative stapler design shown in Figs. 19A - 19C, the cartridge 18a and anvil 16a as positioned on jaw members 200, 202 slidably positioned on a rod 204. A grasper 26 is used to draw tissue between the cartridge and anvil, and the cartridge and anvil are closed by advancing the jaw carrying the cartridge along the rod, thereby moving the jaws into the closed position (Fig. 19C) and compressing the tissue (Fig. 19D.. The tissue is stapled to produce a linear staple line. The tissue may additionally be cut by a blade 206 that is driven through the staple head. Hydraulic fluid driven through cable 208 is employed to drive the staples and may also be used to advance blade 206. With the variety of mechanisms and combinations possible, the device would be capable of excising intussusceptions, removing polyps, close perforations (holes) of the stomach or other body tissue, resolution of internal or external hemorrhoids, ulcers, perform tubal ligations, remove cervical lesions, produce pyloric tightening, and perform the removal of organs or tissue outside the GI tract. Referring to Fig. 19E, this stapler design may be used to form a plurality of plications Pl which have had the "lips" or apexes of the plications cut off by the stapling element. Staple line SL maintains apposition of the plicated tissue.
The partitioning tools described herein 10 may include a number of features that allow the stapler head 12 to be oriented as needed to ensure that the tissue pinches drawn into the window are properly aligned with one another and with the staple housing and anvil for optimal compression and stapling of the targeted tissue. As discussed, the head 12 may be articulatable in one or more directions using pull cables or other appropriate methods. Referring to Fig. 21a, shaft 14 may formable using into a predetermined shape using locking spine technology, to give the shaft an operative end having one or multiple bends, such as bend B 1 and bend B 1. Bends B 1 and B2 may be within a single plane, or bend B2 may be within the plane of the straight section of the shaft while bend Bl extends out of the plane shared by B2 and the shaft. Additionally, the head 12 may be rotatable relative to its longitudinal axis by a wrist-type joint coupling the head 12 to the shaft 14. For example, see Fig. 21 A in which the opening to window faces perpendicular to the shaft 14, whereas in Fig. 21 B the window faces the shaft 14. Arrow Al in Figs. 21 C and 21 C represents rotation of the head 12 relative to the shaft 14. Further, the shaft may be articulatable at the bends or other locations to allow adjustment of the head orientation, as indicated by arrows A2 (lateral articulation relative to the longitudinal section of shaft 14), arrows A3 (articulation towards/away from the longitudinal section of the shaft 14), and arrows A4 (articulation into/out of the page in a plane shared by the longitudinal section of the shaft, as also shown in Fig. 2 IE. Fig. 2 IF shows this same articulation but with the stapler head rotated to a different orientation to give access to a different area of the stomach wall. In the illustrated embodiment, during articulation in directions A2 and A3 the bends of the shaft remain within a single plane, which is the plane occupied by the longitudinal section of the shaft. Fig. 21G illustrates the shaft articulated in directions A2 and A3, but not in direction A4, such that the entire shaft is disposed within the plane of its longitudinal section.
In these drawings, only the ends of the graspers are shown for purposes of clarity. In another embodiment, the staple head may be both articulatable and moveable into a laterally-offset position relative to its shaft.
It should be recognized that a number of variations of the above-identified embodiments will be obvious to one of ordinary skill in the art in view of the foregoing description. Moreover, features of the disclosed embodiments may be combined with one another and with other features (including those taught in the prior applications referenced herein) in varying ways to produce additional embodiments. Accordingly, the invention is not to be limited by those specific embodiments and methods of the present invention shown and described herein. The applications and methods listed are not limited to the treatment of diseases or procedures listed. Modifications of the above described methods and tools and variations of this invention that are obvious to those of skill in the art are intended to be within the scope of this disclosure.
Any and all patents, patent applications and printed publications referred to above, including those relied upon for purposes of priority, are incorporated herein by reference.

Claims

What is claimed is:
1. A method of forming a tissue structure in body tissue, the method comprising the steps of: introducing a head having a first member and a second member into a body cavity; using a first tissue engager to engage a first pinch of body tissue within the body cavity; using a second tissue engager to engage a second pinch of body tissue within the body cavity; withdrawing the first tissue engager and the second tissue engager to withdraw the first and second pinches between the first and second members; compressing at least a portion of the first pinch and at least a portion of the second pinch between the first and second members; and advancing a fastener from the first member through the first and second pinches to form a tissue structure.
2. The method according to claim 1, wherein advancing a fastener includes advancing a staple from the first member through the first and second pinches.
3. The method according to claim 1, further including the step of forming a cut through the first and second pinches.
4. The method of claim 1 wherein passing the first tissue engager includes advancing the first tissue engager from the head.
5. The method of claim 1, wherein the method includes passing the first tissue engager between the first and second members prior to using the first engager to engage the first pinch, and passing the second tissue engager between the first and second members prior to using second tissue engager to engage the second pinch.
6. The method of claim 1, wherein the first and second tissue engagers include shafts having proximal ends, and wherein the method includes: passing the head over the proximal ends of the first and second tissue engagers; and advancing the head over the shafts into the body cavity.
7. The method of claim 6, wherein: the method includes, after engaging the first and second pinches, advancing the head over the shafts into proximity with the first and second pinches, and with the head in proximity with the first and second pinches, the first tissue engager and the second tissue engager are withdrawn to draw the first and second pinches between the first and second members.
8. The method of claim 1, further include the step of positioning a partition between the first and second pinches, wherein compressing at least a portion of the first pinch and at least a portion of the second pinch between the first and second members is performed with the partition between the first and second pinches.
9. The method of claim 1 , wherein the method includes using at least two first tissue engagers to engage the first pinch of body tissue, and withdrawing the at least two first tissue engagers to withdraw the first pinch between the first and second members.
10. A system for forming a tissue structure in body tissue, the system comprising: a head having a first member and a second member; a first tissue engager extendable between the first and second members to engage a first pinch of body tissue within the body cavity and retractable to withdraw the first pinch between the first and second members; a second tissue engager extendable between the first and second members to engage a second pinch of body tissue within the body cavity and retractable to withdraw the second pinch between the first and second members adjacent to the first pinch of body tissue; wherein the first and second members are moveable relatively towards one another into a tissue compression position in which the first and second members are positioned to compress at least a portion of the first pinch and at least a portion of the second pinch between the first and second members; and a fastener advanceable from the first member through the first and second pinches.
11. The system according to claim 10, wherein the head includes an arm assembly having a first section pivotally coupled to the first member and a second section pivotally coupled to the second member, wherein the arm assembly is pivotable to move the first and second members to the tissue compression position.
12. The system according to claim 10, wherein the first engager includes a forceps.
13. The system according to claim 10, wherein the first engager includes a vacuum device.
14. The system according to claim 10 wherein the first engager includes a helical piercing element.
15. The system according to claim 10 wherein the first engager includes a hook.
16. The system according to claim 10, further include a guide tube coupled to the head, wherein the first engager is slidable within the guide tube.
17. The system according to claim 10, wherein the first engager includes a pair of engagers.
18. The system according to claim 10 wherein the first engager includes an Alice-type grasper.
19. The system according to claim 10 wherein each of the first and second engagers is advanceable from a first position on a first side of the head, between the first and second members, to a second position on a second side of the head, and retractable from the second position to the first position to withdraw tissue between the first and second members.
20. The system according to claim 19, wherein the first and second engagers are advanceable between the first and second positions along non-parallel paths.
21. The system according to claim 19, wherein the first and second engagers are advanceable between the first and second positions along parallel paths.
22. A method of closing a hole in body tissue, comprising the steps of; providing a grasper including a first jaw member, a second jaw member, and a third member between the first and second jaw members; advancing the grasper to a hole in body tissue; engaging a first edge of the hole between the first jaw member and the third member; engaging a second edge of the hole between the second jaw member and the third member; with the first and second edges of the hole engaged by the grasper, manipulating the grasper to draw the first and second edges and an adjacent pinch of tissue between first and second elements of a fastening tool; compressing the pinch of tissue between the first and second elements of the fastening tool; and advancing a fastener from the first element through the pinch of tissue.
PCT/US2008/063440 2007-05-12 2008-05-12 Devices and methods for stomach partitioning WO2008141288A1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CA2691269A CA2691269C (en) 2007-05-12 2008-05-12 Devices and methods for stomach partitioning
EP08755318.6A EP2157918B1 (en) 2007-05-12 2008-05-12 Devices for stomach partitioning
JP2010508523A JP5331104B2 (en) 2007-05-12 2008-05-12 Apparatus and method for gastric segmentation
AU2008251300A AU2008251300B2 (en) 2007-05-12 2008-05-12 Devices and methods for stomach partitioning

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US91764407P 2007-05-12 2007-05-12
US60/917,644 2007-05-12

Publications (1)

Publication Number Publication Date
WO2008141288A1 true WO2008141288A1 (en) 2008-11-20

Family

ID=39580680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2008/063440 WO2008141288A1 (en) 2007-05-12 2008-05-12 Devices and methods for stomach partitioning

Country Status (6)

Country Link
US (3) US20080294179A1 (en)
EP (1) EP2157918B1 (en)
JP (1) JP5331104B2 (en)
AU (1) AU2008251300B2 (en)
CA (1) CA2691269C (en)
WO (1) WO2008141288A1 (en)

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009117533A2 (en) * 2008-03-18 2009-09-24 Barosense, Inc. Endoscopic stapling devices and methods
WO2014008289A2 (en) 2012-07-02 2014-01-09 Barosense, Inc. Stapler for forming multiple tissue plications
US8702642B2 (en) 2009-07-10 2014-04-22 Metamodix, Inc. External anchoring configurations for modular gastrointestinal prostheses
US8845753B2 (en) 2001-08-27 2014-09-30 Boston Scientific Scimed, Inc. Satiation devices and methods
US8945167B2 (en) 2007-12-31 2015-02-03 Boston Scientific Scimed, Inc. Gastric space occupier systems and methods of use
US9044300B2 (en) 2009-04-03 2015-06-02 Metamodix, Inc. Gastrointestinal prostheses
US9107727B2 (en) 2001-08-27 2015-08-18 Boston Scientific Scimed, Inc. Satiation devices and methods
US9173760B2 (en) 2009-04-03 2015-11-03 Metamodix, Inc. Delivery devices and methods for gastrointestinal implants
US9180035B2 (en) 2003-10-10 2015-11-10 Boston Scientific Scimed, Inc. Devices and methods for retaining a gastro-esophageal implant
US9180036B2 (en) 2001-08-27 2015-11-10 Boston Scientific Scimed, Inc. Methods for implanting medical devices
US9278019B2 (en) 2009-04-03 2016-03-08 Metamodix, Inc Anchors and methods for intestinal bypass sleeves
US9314361B2 (en) 2006-09-15 2016-04-19 Boston Scientific Scimed, Inc. System and method for anchoring stomach implant
US9445791B2 (en) 2003-10-10 2016-09-20 Boston Scientific Scimed, Inc. Systems and methods related to gastro-esophageal implants
US9451956B2 (en) 2008-11-10 2016-09-27 Boston Scientific Scimed, Inc. Multi-fire stapling systems
US9456825B2 (en) 2007-07-18 2016-10-04 Boston Scientific Scimed, Inc. Endoscopic implant system and method
US9545249B2 (en) 2007-07-18 2017-01-17 Boston Scientific Scimed, Inc. Overtube introducer for use in endoscopic bariatric surgery
US9622897B1 (en) 2016-03-03 2017-04-18 Metamodix, Inc. Pyloric anchors and methods for intestinal bypass sleeves
EP3189792A1 (en) * 2016-01-07 2017-07-12 Covidien LP Surgical fastener apparatus
US10098773B2 (en) 2004-04-26 2018-10-16 Boston Scientific Scimed, Inc. Restrictive and/or obstructive implant for inducing weight loss
US10159699B2 (en) 2013-01-15 2018-12-25 Metamodix, Inc. System and method for affecting intestinal microbial flora
EP3289989A4 (en) * 2015-04-20 2019-05-01 Olympus Corporation Tissue removal system
US10542986B2 (en) 2014-03-29 2020-01-28 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US10548597B2 (en) 2017-08-14 2020-02-04 Standard Bariatrics, Inc. Surgical stapling devices and methods of using same
US10624638B2 (en) 2014-03-29 2020-04-21 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
CN111565649A (en) * 2017-12-21 2020-08-21 爱惜康有限责任公司 Stapling instrument comprising a tissue driving device
US10751209B2 (en) 2016-05-19 2020-08-25 Metamodix, Inc. Pyloric anchor retrieval tools and methods
US10987108B2 (en) 2013-12-17 2021-04-27 Standard Bariatrics, Inc. Resection line guide for a medical procedure and method of using same
US11173060B2 (en) 2019-11-04 2021-11-16 Standard Bariatrics, Inc. Systems and methods of performing surgery using Laplace's law tension retraction during surgery
EP3964139A1 (en) * 2020-09-08 2022-03-09 Covidien LP Laparoscopic transverse surgical stapling system
US11324620B2 (en) 2015-09-16 2022-05-10 Standard Bariatrics, Inc. Systems and methods for measuring volume of potential sleeve in a sleeve gastrectomy
US11452574B1 (en) 2021-03-23 2022-09-27 Standard Bariatrics, Inc. Systems and methods for preventing tissue migration in surgical staplers
US11653926B2 (en) 2021-08-13 2023-05-23 Cilag Gmbh International Circular surgical stapler for forming pattern of non-tangential staples
US11666339B2 (en) 2021-08-13 2023-06-06 Cilag Gmbh International Circular surgical stapler for forming cross-pattern of staples
US11819212B2 (en) 2021-08-13 2023-11-21 Cilag Gmbh International Staple forming features for circular surgical stapler
US11911039B2 (en) 2021-08-13 2024-02-27 Cilag Gmbh International Circular surgical stapler having staples with expandable crowns
US11944310B2 (en) 2021-08-13 2024-04-02 Cilag Gmbh International Non-circular end effector features for surgical stapler
US11950778B2 (en) 2010-05-21 2024-04-09 Boston Scientific Scimed, Inc. Tissue-acquisition and fastening devices and methods

Families Citing this family (510)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7146984B2 (en) 2002-04-08 2006-12-12 Synecor, Llc Method and apparatus for modifying the exit orifice of a satiation pouch
US9060844B2 (en) 2002-11-01 2015-06-23 Valentx, Inc. Apparatus and methods for treatment of morbid obesity
US20040143342A1 (en) 2003-01-16 2004-07-22 Stack Richard S. Satiation pouches and methods of use
US8714429B2 (en) 2003-04-29 2014-05-06 Covidien Lp Dissecting tip for surgical stapler
US9060770B2 (en) 2003-05-20 2015-06-23 Ethicon Endo-Surgery, Inc. Robotically-driven surgical instrument with E-beam driver
US20070084897A1 (en) 2003-05-20 2007-04-19 Shelton Frederick E Iv Articulating surgical stapling instrument incorporating a two-piece e-beam firing mechanism
US20050187565A1 (en) 2004-02-20 2005-08-25 Baker Steve G. Tissue fixation devices and a transoral endoscopic gastroesophageal flap valve restoration device and assembly using same
US7632287B2 (en) 2004-02-20 2009-12-15 Endogastric Solutions, Inc. Tissue fixation devices and assemblies for deploying the same
WO2005110280A2 (en) 2004-05-07 2005-11-24 Valentx, Inc. Devices and methods for attaching an endolumenal gastrointestinal implant
US8215531B2 (en) 2004-07-28 2012-07-10 Ethicon Endo-Surgery, Inc. Surgical stapling instrument having a medical substance dispenser
US11890012B2 (en) 2004-07-28 2024-02-06 Cilag Gmbh International Staple cartridge comprising cartridge body and attached support
US20060116697A1 (en) 2004-11-30 2006-06-01 Esophyx, Inc. Flexible transoral endoscopic gastroesophageal flap valve restoration device and method
US20060167481A1 (en) 2005-01-25 2006-07-27 Esophyx, Inc. Slitted tissue fixation devices and assemblies for deploying the same
US20070005082A1 (en) 2005-06-29 2007-01-04 Esophyx, Inc. Apparatus and method for manipulating stomach tissue and treating gastroesophageal reflux disease
US20070038232A1 (en) 2005-08-12 2007-02-15 Kraemer Stefan J M Apparatus and method for securing the stomach to the diaphragm for use, for example, in treating hiatal hernias and gastroesophageal reflux disease
US9237891B2 (en) 2005-08-31 2016-01-19 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical stapling devices that produce formed staples having different lengths
US10159482B2 (en) 2005-08-31 2018-12-25 Ethicon Llc Fastener cartridge assembly comprising a fixed anvil and different staple heights
US11246590B2 (en) 2005-08-31 2022-02-15 Cilag Gmbh International Staple cartridge including staple drivers having different unfired heights
US20070194079A1 (en) 2005-08-31 2007-08-23 Hueil Joseph C Surgical stapling device with staple drivers of different height
US11484312B2 (en) 2005-08-31 2022-11-01 Cilag Gmbh International Staple cartridge comprising a staple driver arrangement
US7934630B2 (en) 2005-08-31 2011-05-03 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US7669746B2 (en) 2005-08-31 2010-03-02 Ethicon Endo-Surgery, Inc. Staple cartridges for forming staples having differing formed staple heights
US9055942B2 (en) 2005-10-03 2015-06-16 Boston Scienctific Scimed, Inc. Endoscopic plication devices and methods
US20070088373A1 (en) 2005-10-18 2007-04-19 Endogastric Solutions, Inc. Invaginator for gastroesophageal flap valve restoration device
US20070106317A1 (en) 2005-11-09 2007-05-10 Shelton Frederick E Iv Hydraulically and electrically actuated articulation joints for surgical instruments
US9161754B2 (en) 2012-12-14 2015-10-20 Endogastric Solutions, Inc. Apparatus and method for concurrently forming a gastroesophageal valve and tightening the lower esophageal sphincter
US11278279B2 (en) 2006-01-31 2022-03-22 Cilag Gmbh International Surgical instrument assembly
US20110006101A1 (en) 2009-02-06 2011-01-13 EthiconEndo-Surgery, Inc. Motor driven surgical fastener device with cutting member lockout arrangements
US11793518B2 (en) 2006-01-31 2023-10-24 Cilag Gmbh International Powered surgical instruments with firing system lockout arrangements
US9861359B2 (en) 2006-01-31 2018-01-09 Ethicon Llc Powered surgical instruments with firing system lockout arrangements
US20110024477A1 (en) 2009-02-06 2011-02-03 Hall Steven G Driven Surgical Stapler Improvements
US20120292367A1 (en) 2006-01-31 2012-11-22 Ethicon Endo-Surgery, Inc. Robotically-controlled end effector
US7753904B2 (en) 2006-01-31 2010-07-13 Ethicon Endo-Surgery, Inc. Endoscopic surgical instrument with a handle that can articulate with respect to the shaft
US8708213B2 (en) 2006-01-31 2014-04-29 Ethicon Endo-Surgery, Inc. Surgical instrument having a feedback system
US20110290856A1 (en) 2006-01-31 2011-12-01 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical instrument with force-feedback capabilities
US8186555B2 (en) 2006-01-31 2012-05-29 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting and fastening instrument with mechanical closure system
US11224427B2 (en) 2006-01-31 2022-01-18 Cilag Gmbh International Surgical stapling system including a console and retraction assembly
US7845537B2 (en) 2006-01-31 2010-12-07 Ethicon Endo-Surgery, Inc. Surgical instrument having recording capabilities
US8820603B2 (en) 2006-01-31 2014-09-02 Ethicon Endo-Surgery, Inc. Accessing data stored in a memory of a surgical instrument
US8992422B2 (en) 2006-03-23 2015-03-31 Ethicon Endo-Surgery, Inc. Robotically-controlled endoscopic accessory channel
US20070225562A1 (en) 2006-03-23 2007-09-27 Ethicon Endo-Surgery, Inc. Articulating endoscopic accessory channel
EP2015681B1 (en) 2006-05-03 2018-03-28 Datascope Corp. Tissue closure device
US8322455B2 (en) 2006-06-27 2012-12-04 Ethicon Endo-Surgery, Inc. Manually driven surgical cutting and fastening instrument
US8109895B2 (en) 2006-09-02 2012-02-07 Barosense, Inc. Intestinal sleeves and associated deployment systems and methods
US10568652B2 (en) 2006-09-29 2020-02-25 Ethicon Llc Surgical staples having attached drivers of different heights and stapling instruments for deploying the same
US7506791B2 (en) 2006-09-29 2009-03-24 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with mechanical mechanism for limiting maximum tissue compression
US10130359B2 (en) 2006-09-29 2018-11-20 Ethicon Llc Method for forming a staple
EP2104458A4 (en) 2007-01-08 2014-12-31 Endogastric Solutions Connected fasteners, delivery device and method
US11291441B2 (en) 2007-01-10 2022-04-05 Cilag Gmbh International Surgical instrument with wireless communication between control unit and remote sensor
US8684253B2 (en) 2007-01-10 2014-04-01 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between a control unit of a robotic system and remote sensor
US8652120B2 (en) 2007-01-10 2014-02-18 Ethicon Endo-Surgery, Inc. Surgical instrument with wireless communication between control unit and sensor transponders
US11039836B2 (en) 2007-01-11 2021-06-22 Cilag Gmbh International Staple cartridge for use with a surgical stapling instrument
US8540128B2 (en) 2007-01-11 2013-09-24 Ethicon Endo-Surgery, Inc. Surgical stapling device with a curved end effector
US8727197B2 (en) 2007-03-15 2014-05-20 Ethicon Endo-Surgery, Inc. Staple cartridge cavity configuration with cooperative surgical staple
US8893946B2 (en) 2007-03-28 2014-11-25 Ethicon Endo-Surgery, Inc. Laparoscopic tissue thickness and clamp load measuring devices
US11857181B2 (en) 2007-06-04 2024-01-02 Cilag Gmbh International Robotically-controlled shaft based rotary drive systems for surgical instruments
US8931682B2 (en) 2007-06-04 2015-01-13 Ethicon Endo-Surgery, Inc. Robotically-controlled shaft based rotary drive systems for surgical instruments
US8308040B2 (en) 2007-06-22 2012-11-13 Ethicon Endo-Surgery, Inc. Surgical stapling instrument with an articulatable end effector
US7753245B2 (en) 2007-06-22 2010-07-13 Ethicon Endo-Surgery, Inc. Surgical stapling instruments
US11849941B2 (en) 2007-06-29 2023-12-26 Cilag Gmbh International Staple cartridge having staple cavities extending at a transverse angle relative to a longitudinal cartridge axis
US8561870B2 (en) 2008-02-13 2013-10-22 Ethicon Endo-Surgery, Inc. Surgical stapling instrument
US9179912B2 (en) 2008-02-14 2015-11-10 Ethicon Endo-Surgery, Inc. Robotically-controlled motorized surgical cutting and fastening instrument
US8573465B2 (en) 2008-02-14 2013-11-05 Ethicon Endo-Surgery, Inc. Robotically-controlled surgical end effector system with rotary actuated closure systems
US7866527B2 (en) 2008-02-14 2011-01-11 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with interlockable firing system
US8657174B2 (en) 2008-02-14 2014-02-25 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument having handle based power source
US7819298B2 (en) 2008-02-14 2010-10-26 Ethicon Endo-Surgery, Inc. Surgical stapling apparatus with control features operable with one hand
US8636736B2 (en) 2008-02-14 2014-01-28 Ethicon Endo-Surgery, Inc. Motorized surgical cutting and fastening instrument
US8758391B2 (en) 2008-02-14 2014-06-24 Ethicon Endo-Surgery, Inc. Interchangeable tools for surgical instruments
BRPI0901282A2 (en) 2008-02-14 2009-11-17 Ethicon Endo Surgery Inc surgical cutting and fixation instrument with rf electrodes
US9770245B2 (en) 2008-02-15 2017-09-26 Ethicon Llc Layer arrangements for surgical staple cartridges
US11272927B2 (en) 2008-02-15 2022-03-15 Cilag Gmbh International Layer arrangements for surgical staple cartridges
US8870049B2 (en) 2008-03-14 2014-10-28 Transenterix, Inc. Hernia stapler
WO2009114779A2 (en) * 2008-03-14 2009-09-17 Safestitch Medical, Inc. Hernia stapler with integrated mesh manipulator
US7857186B2 (en) 2008-09-19 2010-12-28 Ethicon Endo-Surgery, Inc. Surgical stapler having an intermediate closing position
PL3476312T3 (en) 2008-09-19 2024-03-11 Ethicon Llc Surgical stapler with apparatus for adjusting staple height
US9386983B2 (en) 2008-09-23 2016-07-12 Ethicon Endo-Surgery, Llc Robotically-controlled motorized surgical instrument
US11648005B2 (en) 2008-09-23 2023-05-16 Cilag Gmbh International Robotically-controlled motorized surgical instrument with an end effector
US9005230B2 (en) 2008-09-23 2015-04-14 Ethicon Endo-Surgery, Inc. Motorized surgical instrument
US8210411B2 (en) 2008-09-23 2012-07-03 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument
US8608045B2 (en) 2008-10-10 2013-12-17 Ethicon Endo-Sugery, Inc. Powered surgical cutting and stapling apparatus with manually retractable firing system
WO2010075569A1 (en) * 2008-12-24 2010-07-01 Boston Scientific Scimed, Inc. Methods of surgically modifying the duodenum
EP2648625A4 (en) * 2009-01-29 2017-06-07 Kirk Promotion LTD. Stomach instrument and method
US8517239B2 (en) 2009-02-05 2013-08-27 Ethicon Endo-Surgery, Inc. Surgical stapling instrument comprising a magnetic element driver
US8444036B2 (en) 2009-02-06 2013-05-21 Ethicon Endo-Surgery, Inc. Motor driven surgical fastener device with mechanisms for adjusting a tissue gap within the end effector
CN102341048A (en) 2009-02-06 2012-02-01 伊西康内外科公司 Driven surgical stapler improvements
US8906037B2 (en) * 2009-03-18 2014-12-09 Endogastric Solutions, Inc. Methods and devices for forming a tissue fold
US8961539B2 (en) 2009-05-04 2015-02-24 Boston Scientific Scimed, Inc. Endoscopic implant system and method
CA2774768C (en) 2009-09-25 2018-04-24 Boston Scientific Scimed, Inc. Devices for approximating tissue and related methods of use
US8851354B2 (en) 2009-12-24 2014-10-07 Ethicon Endo-Surgery, Inc. Surgical cutting instrument that analyzes tissue thickness
US8220688B2 (en) 2009-12-24 2012-07-17 Ethicon Endo-Surgery, Inc. Motor-driven surgical cutting instrument with electric actuator directional control assembly
US8783543B2 (en) 2010-07-30 2014-07-22 Ethicon Endo-Surgery, Inc. Tissue acquisition arrangements and methods for surgical stapling devices
US8360296B2 (en) 2010-09-09 2013-01-29 Ethicon Endo-Surgery, Inc. Surgical stapling head assembly with firing lockout for a surgical stapler
WO2012036914A1 (en) 2010-09-15 2012-03-22 Icecure Medical Ltd. Cryosurgical instrument for treating large volume of tissue
US11812965B2 (en) 2010-09-30 2023-11-14 Cilag Gmbh International Layer of material for a surgical end effector
US9282962B2 (en) 2010-09-30 2016-03-15 Ethicon Endo-Surgery, Llc Adhesive film laminate
US11849952B2 (en) 2010-09-30 2023-12-26 Cilag Gmbh International Staple cartridge comprising staples positioned within a compressible portion thereof
EP2621356B1 (en) 2010-09-30 2018-03-07 Ethicon LLC Fastener system comprising a retention matrix and an alignment matrix
US9307989B2 (en) 2012-03-28 2016-04-12 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorportating a hydrophobic agent
US9629814B2 (en) 2010-09-30 2017-04-25 Ethicon Endo-Surgery, Llc Tissue thickness compensator configured to redistribute compressive forces
US9016542B2 (en) 2010-09-30 2015-04-28 Ethicon Endo-Surgery, Inc. Staple cartridge comprising compressible distortion resistant components
US9332974B2 (en) 2010-09-30 2016-05-10 Ethicon Endo-Surgery, Llc Layered tissue thickness compensator
US9220501B2 (en) 2010-09-30 2015-12-29 Ethicon Endo-Surgery, Inc. Tissue thickness compensators
US9517063B2 (en) 2012-03-28 2016-12-13 Ethicon Endo-Surgery, Llc Movable member for use with a tissue thickness compensator
US9414838B2 (en) 2012-03-28 2016-08-16 Ethicon Endo-Surgery, Llc Tissue thickness compensator comprised of a plurality of materials
US9204880B2 (en) 2012-03-28 2015-12-08 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising capsules defining a low pressure environment
US10945731B2 (en) 2010-09-30 2021-03-16 Ethicon Llc Tissue thickness compensator comprising controlled release and expansion
US9364233B2 (en) 2010-09-30 2016-06-14 Ethicon Endo-Surgery, Llc Tissue thickness compensators for circular surgical staplers
US9055941B2 (en) 2011-09-23 2015-06-16 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck
US9314246B2 (en) 2010-09-30 2016-04-19 Ethicon Endo-Surgery, Llc Tissue stapler having a thickness compensator incorporating an anti-inflammatory agent
US9386988B2 (en) 2010-09-30 2016-07-12 Ethicon End-Surgery, LLC Retainer assembly including a tissue thickness compensator
US11298125B2 (en) 2010-09-30 2022-04-12 Cilag Gmbh International Tissue stapler having a thickness compensator
US9211120B2 (en) 2011-04-29 2015-12-15 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of medicaments
US9433419B2 (en) 2010-09-30 2016-09-06 Ethicon Endo-Surgery, Inc. Tissue thickness compensator comprising a plurality of layers
US8695866B2 (en) 2010-10-01 2014-04-15 Ethicon Endo-Surgery, Inc. Surgical instrument having a power control circuit
US8632462B2 (en) 2011-03-14 2014-01-21 Ethicon Endo-Surgery, Inc. Trans-rectum universal ports
CA2834649C (en) 2011-04-29 2021-02-16 Ethicon Endo-Surgery, Inc. Staple cartridge comprising staples positioned within a compressible portion thereof
US9072535B2 (en) 2011-05-27 2015-07-07 Ethicon Endo-Surgery, Inc. Surgical stapling instruments with rotatable staple deployment arrangements
US11207064B2 (en) 2011-05-27 2021-12-28 Cilag Gmbh International Automated end effector component reloading system for use with a robotic system
US9572571B2 (en) * 2011-09-09 2017-02-21 Endogastric Solutions, Inc. Methods and devices for manipulating and fastening tissue
US8915929B2 (en) 2011-09-09 2014-12-23 Endogastric Solutions, Inc. Methods and devices for manipulating and fastening tissue
US9955957B2 (en) 2011-09-09 2018-05-01 Endogastric Solutions, Inc. Methods and devices for manipulating and fastening tissue
US9050084B2 (en) 2011-09-23 2015-06-09 Ethicon Endo-Surgery, Inc. Staple cartridge including collapsible deck arrangement
US9113866B2 (en) * 2011-12-15 2015-08-25 Ethicon Endo-Surgery, Inc. Devices and methods for endoluminal plication
US9113879B2 (en) 2011-12-15 2015-08-25 Ethicon Endo-Surgery, Inc. Devices and methods for endoluminal plication
US9044230B2 (en) 2012-02-13 2015-06-02 Ethicon Endo-Surgery, Inc. Surgical cutting and fastening instrument with apparatus for determining cartridge and firing motion status
US8992547B2 (en) 2012-03-21 2015-03-31 Ethicon Endo-Surgery, Inc. Methods and devices for creating tissue plications
US9198662B2 (en) 2012-03-28 2015-12-01 Ethicon Endo-Surgery, Inc. Tissue thickness compensator having improved visibility
BR112014024098B1 (en) 2012-03-28 2021-05-25 Ethicon Endo-Surgery, Inc. staple cartridge
BR112014024102B1 (en) 2012-03-28 2022-03-03 Ethicon Endo-Surgery, Inc CLAMP CARTRIDGE ASSEMBLY FOR A SURGICAL INSTRUMENT AND END ACTUATOR ASSEMBLY FOR A SURGICAL INSTRUMENT
CN104379068B (en) 2012-03-28 2017-09-22 伊西康内外科公司 Holding device assembly including tissue thickness compensation part
US8956318B2 (en) 2012-05-31 2015-02-17 Valentx, Inc. Devices and methods for gastrointestinal bypass
US9681975B2 (en) 2012-05-31 2017-06-20 Valentx, Inc. Devices and methods for gastrointestinal bypass
US9451960B2 (en) 2012-05-31 2016-09-27 Valentx, Inc. Devices and methods for gastrointestinal bypass
US9101358B2 (en) 2012-06-15 2015-08-11 Ethicon Endo-Surgery, Inc. Articulatable surgical instrument comprising a firing drive
US9204879B2 (en) 2012-06-28 2015-12-08 Ethicon Endo-Surgery, Inc. Flexible drive member
US9028494B2 (en) 2012-06-28 2015-05-12 Ethicon Endo-Surgery, Inc. Interchangeable end effector coupling arrangement
US9072536B2 (en) 2012-06-28 2015-07-07 Ethicon Endo-Surgery, Inc. Differential locking arrangements for rotary powered surgical instruments
BR112014032776B1 (en) 2012-06-28 2021-09-08 Ethicon Endo-Surgery, Inc SURGICAL INSTRUMENT SYSTEM AND SURGICAL KIT FOR USE WITH A SURGICAL INSTRUMENT SYSTEM
JP6290201B2 (en) 2012-06-28 2018-03-07 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Lockout for empty clip cartridge
US9125662B2 (en) 2012-06-28 2015-09-08 Ethicon Endo-Surgery, Inc. Multi-axis articulating and rotating surgical tools
US9289256B2 (en) 2012-06-28 2016-03-22 Ethicon Endo-Surgery, Llc Surgical end effectors having angled tissue-contacting surfaces
US11278284B2 (en) 2012-06-28 2022-03-22 Cilag Gmbh International Rotary drive arrangements for surgical instruments
US20140001231A1 (en) 2012-06-28 2014-01-02 Ethicon Endo-Surgery, Inc. Firing system lockout arrangements for surgical instruments
US9282974B2 (en) 2012-06-28 2016-03-15 Ethicon Endo-Surgery, Llc Empty clip cartridge lockout
US9561038B2 (en) 2012-06-28 2017-02-07 Ethicon Endo-Surgery, Llc Interchangeable clip applier
US9226751B2 (en) 2012-06-28 2016-01-05 Ethicon Endo-Surgery, Inc. Surgical instrument system including replaceable end effectors
US9101385B2 (en) 2012-06-28 2015-08-11 Ethicon Endo-Surgery, Inc. Electrode connections for rotary driven surgical tools
US9119657B2 (en) 2012-06-28 2015-09-01 Ethicon Endo-Surgery, Inc. Rotary actuatable closure arrangement for surgical end effector
US9386984B2 (en) 2013-02-08 2016-07-12 Ethicon Endo-Surgery, Llc Staple cartridge comprising a releasable cover
US20140246475A1 (en) 2013-03-01 2014-09-04 Ethicon Endo-Surgery, Inc. Control methods for surgical instruments with removable implement portions
JP6382235B2 (en) 2013-03-01 2018-08-29 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Articulatable surgical instrument with a conductive path for signal communication
JP6345707B2 (en) 2013-03-01 2018-06-20 エシコン・エンド−サージェリィ・インコーポレイテッドEthicon Endo−Surgery,Inc. Surgical instrument with soft stop
US9757264B2 (en) 2013-03-13 2017-09-12 Valentx, Inc. Devices and methods for gastrointestinal bypass
US20140263552A1 (en) 2013-03-13 2014-09-18 Ethicon Endo-Surgery, Inc. Staple cartridge tissue thickness sensor system
US9332987B2 (en) 2013-03-14 2016-05-10 Ethicon Endo-Surgery, Llc Control arrangements for a drive member of a surgical instrument
US9629629B2 (en) 2013-03-14 2017-04-25 Ethicon Endo-Surgey, LLC Control systems for surgical instruments
US9332984B2 (en) 2013-03-27 2016-05-10 Ethicon Endo-Surgery, Llc Fastener cartridge assemblies
US9572577B2 (en) 2013-03-27 2017-02-21 Ethicon Endo-Surgery, Llc Fastener cartridge comprising a tissue thickness compensator including openings therein
US9795384B2 (en) 2013-03-27 2017-10-24 Ethicon Llc Fastener cartridge comprising a tissue thickness compensator and a gap setting element
US9844368B2 (en) 2013-04-16 2017-12-19 Ethicon Llc Surgical system comprising first and second drive systems
BR112015026109B1 (en) 2013-04-16 2022-02-22 Ethicon Endo-Surgery, Inc surgical instrument
US9574644B2 (en) 2013-05-30 2017-02-21 Ethicon Endo-Surgery, Llc Power module for use with a surgical instrument
US9597074B2 (en) * 2013-08-15 2017-03-21 Ethicon Endo-Surgery, Llc Endoluminal stapler with rotating wheel cam for multi-staple firing
JP6416260B2 (en) 2013-08-23 2018-10-31 エシコン エルエルシー Firing member retractor for a powered surgical instrument
US20150053746A1 (en) 2013-08-23 2015-02-26 Ethicon Endo-Surgery, Inc. Torque optimization for surgical instruments
WO2015077356A1 (en) 2013-11-19 2015-05-28 Wheeler William K Fastener applicator with interlock
US20150173756A1 (en) 2013-12-23 2015-06-25 Ethicon Endo-Surgery, Inc. Surgical cutting and stapling methods
US9839428B2 (en) 2013-12-23 2017-12-12 Ethicon Llc Surgical cutting and stapling instruments with independent jaw control features
US9968354B2 (en) 2013-12-23 2018-05-15 Ethicon Llc Surgical staples and methods for making the same
US9724092B2 (en) 2013-12-23 2017-08-08 Ethicon Llc Modular surgical instruments
US9962161B2 (en) 2014-02-12 2018-05-08 Ethicon Llc Deliverable surgical instrument
US9839422B2 (en) 2014-02-24 2017-12-12 Ethicon Llc Implantable layers and methods for altering implantable layers for use with surgical fastening instruments
CN106232029B (en) 2014-02-24 2019-04-12 伊西康内外科有限责任公司 Fastening system including firing member locking piece
US9733663B2 (en) 2014-03-26 2017-08-15 Ethicon Llc Power management through segmented circuit and variable voltage protection
US10004497B2 (en) 2014-03-26 2018-06-26 Ethicon Llc Interface systems for use with surgical instruments
US9913642B2 (en) 2014-03-26 2018-03-13 Ethicon Llc Surgical instrument comprising a sensor system
US10201364B2 (en) 2014-03-26 2019-02-12 Ethicon Llc Surgical instrument comprising a rotatable shaft
BR112016021943B1 (en) 2014-03-26 2022-06-14 Ethicon Endo-Surgery, Llc SURGICAL INSTRUMENT FOR USE BY AN OPERATOR IN A SURGICAL PROCEDURE
BR112016023825B1 (en) 2014-04-16 2022-08-02 Ethicon Endo-Surgery, Llc STAPLE CARTRIDGE FOR USE WITH A SURGICAL STAPLER AND STAPLE CARTRIDGE FOR USE WITH A SURGICAL INSTRUMENT
US10327764B2 (en) 2014-09-26 2019-06-25 Ethicon Llc Method for creating a flexible staple line
JP6636452B2 (en) 2014-04-16 2020-01-29 エシコン エルエルシーEthicon LLC Fastener cartridge including extension having different configurations
JP6532889B2 (en) 2014-04-16 2019-06-19 エシコン エルエルシーEthicon LLC Fastener cartridge assembly and staple holder cover arrangement
US20150297223A1 (en) 2014-04-16 2015-10-22 Ethicon Endo-Surgery, Inc. Fastener cartridges including extensions having different configurations
US10561422B2 (en) 2014-04-16 2020-02-18 Ethicon Llc Fastener cartridge comprising deployable tissue engaging members
US10045781B2 (en) 2014-06-13 2018-08-14 Ethicon Llc Closure lockout systems for surgical instruments
US10111679B2 (en) 2014-09-05 2018-10-30 Ethicon Llc Circuitry and sensors for powered medical device
BR112017004361B1 (en) 2014-09-05 2023-04-11 Ethicon Llc ELECTRONIC SYSTEM FOR A SURGICAL INSTRUMENT
US11311294B2 (en) 2014-09-05 2022-04-26 Cilag Gmbh International Powered medical device including measurement of closure state of jaws
US10105142B2 (en) 2014-09-18 2018-10-23 Ethicon Llc Surgical stapler with plurality of cutting elements
JP6648119B2 (en) 2014-09-26 2020-02-14 エシコン エルエルシーEthicon LLC Surgical stapling buttress and accessory materials
US11523821B2 (en) 2014-09-26 2022-12-13 Cilag Gmbh International Method for creating a flexible staple line
US10076325B2 (en) 2014-10-13 2018-09-18 Ethicon Llc Surgical stapling apparatus comprising a tissue stop
US9924944B2 (en) 2014-10-16 2018-03-27 Ethicon Llc Staple cartridge comprising an adjunct material
US11141153B2 (en) 2014-10-29 2021-10-12 Cilag Gmbh International Staple cartridges comprising driver arrangements
US10517594B2 (en) 2014-10-29 2019-12-31 Ethicon Llc Cartridge assemblies for surgical staplers
US9844376B2 (en) 2014-11-06 2017-12-19 Ethicon Llc Staple cartridge comprising a releasable adjunct material
US10736636B2 (en) 2014-12-10 2020-08-11 Ethicon Llc Articulatable surgical instrument system
MX2017008108A (en) 2014-12-18 2018-03-06 Ethicon Llc Surgical instrument with an anvil that is selectively movable about a discrete non-movable axis relative to a staple cartridge.
US9987000B2 (en) 2014-12-18 2018-06-05 Ethicon Llc Surgical instrument assembly comprising a flexible articulation system
US10004501B2 (en) 2014-12-18 2018-06-26 Ethicon Llc Surgical instruments with improved closure arrangements
US10085748B2 (en) 2014-12-18 2018-10-02 Ethicon Llc Locking arrangements for detachable shaft assemblies with articulatable surgical end effectors
US9844374B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Surgical instrument systems comprising an articulatable end effector and means for adjusting the firing stroke of a firing member
US20190083090A1 (en) * 2014-12-18 2019-03-21 QuickRing Medical Technologies, Ltd. Surgical stabilizer
US10188385B2 (en) 2014-12-18 2019-01-29 Ethicon Llc Surgical instrument system comprising lockable systems
US9844375B2 (en) 2014-12-18 2017-12-19 Ethicon Llc Drive arrangements for articulatable surgical instruments
US10117649B2 (en) 2014-12-18 2018-11-06 Ethicon Llc Surgical instrument assembly comprising a lockable articulation system
BR112017014871B1 (en) * 2015-01-12 2022-11-29 Epygon DEVICE FOR TRANSCATHETER HEART VALVE LEAFLET REPAIR UNDER TRIANGULAR RESECTION TECHNIQUE
US10180463B2 (en) 2015-02-27 2019-01-15 Ethicon Llc Surgical apparatus configured to assess whether a performance parameter of the surgical apparatus is within an acceptable performance band
US11154301B2 (en) 2015-02-27 2021-10-26 Cilag Gmbh International Modular stapling assembly
US9993258B2 (en) 2015-02-27 2018-06-12 Ethicon Llc Adaptable surgical instrument handle
US10321907B2 (en) 2015-02-27 2019-06-18 Ethicon Llc System for monitoring whether a surgical instrument needs to be serviced
US10045776B2 (en) 2015-03-06 2018-08-14 Ethicon Llc Control techniques and sub-processor contained within modular shaft with select control processing from handle
US10687806B2 (en) 2015-03-06 2020-06-23 Ethicon Llc Adaptive tissue compression techniques to adjust closure rates for multiple tissue types
US9924961B2 (en) 2015-03-06 2018-03-27 Ethicon Endo-Surgery, Llc Interactive feedback system for powered surgical instruments
US9993248B2 (en) 2015-03-06 2018-06-12 Ethicon Endo-Surgery, Llc Smart sensors with local signal processing
US10617412B2 (en) 2015-03-06 2020-04-14 Ethicon Llc System for detecting the mis-insertion of a staple cartridge into a surgical stapler
US9901342B2 (en) 2015-03-06 2018-02-27 Ethicon Endo-Surgery, Llc Signal and power communication system positioned on a rotatable shaft
US9808246B2 (en) 2015-03-06 2017-11-07 Ethicon Endo-Surgery, Llc Method of operating a powered surgical instrument
US10548504B2 (en) 2015-03-06 2020-02-04 Ethicon Llc Overlaid multi sensor radio frequency (RF) electrode system to measure tissue compression
JP2020121162A (en) 2015-03-06 2020-08-13 エシコン エルエルシーEthicon LLC Time dependent evaluation of sensor data to determine stability element, creep element and viscoelastic element of measurement
US9895148B2 (en) 2015-03-06 2018-02-20 Ethicon Endo-Surgery, Llc Monitoring speed control and precision incrementing of motor for powered surgical instruments
US10441279B2 (en) 2015-03-06 2019-10-15 Ethicon Llc Multiple level thresholds to modify operation of powered surgical instruments
US10245033B2 (en) 2015-03-06 2019-04-02 Ethicon Llc Surgical instrument comprising a lockable battery housing
US10213201B2 (en) 2015-03-31 2019-02-26 Ethicon Llc Stapling end effector configured to compensate for an uneven gap between a first jaw and a second jaw
US10368861B2 (en) 2015-06-18 2019-08-06 Ethicon Llc Dual articulation drive system arrangements for articulatable surgical instruments
US11058425B2 (en) 2015-08-17 2021-07-13 Ethicon Llc Implantable layers for a surgical instrument
US10357251B2 (en) 2015-08-26 2019-07-23 Ethicon Llc Surgical staples comprising hardness variations for improved fastening of tissue
JP6828018B2 (en) 2015-08-26 2021-02-10 エシコン エルエルシーEthicon LLC Surgical staple strips that allow you to change the characteristics of staples and facilitate filling into cartridges
US10238390B2 (en) 2015-09-02 2019-03-26 Ethicon Llc Surgical staple cartridges with driver arrangements for establishing herringbone staple patterns
MX2022006192A (en) 2015-09-02 2022-06-16 Ethicon Llc Surgical staple configurations with camming surfaces located between portions supporting surgical staples.
US10076326B2 (en) 2015-09-23 2018-09-18 Ethicon Llc Surgical stapler having current mirror-based motor control
US10105139B2 (en) 2015-09-23 2018-10-23 Ethicon Llc Surgical stapler having downstream current-based motor control
US10363036B2 (en) 2015-09-23 2019-07-30 Ethicon Llc Surgical stapler having force-based motor control
US10238386B2 (en) 2015-09-23 2019-03-26 Ethicon Llc Surgical stapler having motor control based on an electrical parameter related to a motor current
US10085751B2 (en) 2015-09-23 2018-10-02 Ethicon Llc Surgical stapler having temperature-based motor control
US10327769B2 (en) 2015-09-23 2019-06-25 Ethicon Llc Surgical stapler having motor control based on a drive system component
US10299878B2 (en) 2015-09-25 2019-05-28 Ethicon Llc Implantable adjunct systems for determining adjunct skew
US11890015B2 (en) 2015-09-30 2024-02-06 Cilag Gmbh International Compressible adjunct with crossing spacer fibers
US10980539B2 (en) 2015-09-30 2021-04-20 Ethicon Llc Implantable adjunct comprising bonded layers
US10285699B2 (en) 2015-09-30 2019-05-14 Ethicon Llc Compressible adjunct
US10327777B2 (en) 2015-09-30 2019-06-25 Ethicon Llc Implantable layer comprising plastically deformed fibers
US10292704B2 (en) 2015-12-30 2019-05-21 Ethicon Llc Mechanisms for compensating for battery pack failure in powered surgical instruments
US10265068B2 (en) 2015-12-30 2019-04-23 Ethicon Llc Surgical instruments with separable motors and motor control circuits
US10368865B2 (en) 2015-12-30 2019-08-06 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
BR112018016098B1 (en) 2016-02-09 2023-02-23 Ethicon Llc SURGICAL INSTRUMENT
US20170224332A1 (en) 2016-02-09 2017-08-10 Ethicon Endo-Surgery, Llc Surgical instruments with non-symmetrical articulation arrangements
US11213293B2 (en) 2016-02-09 2022-01-04 Cilag Gmbh International Articulatable surgical instruments with single articulation link arrangements
US11224426B2 (en) 2016-02-12 2022-01-18 Cilag Gmbh International Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10258331B2 (en) 2016-02-12 2019-04-16 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10448948B2 (en) 2016-02-12 2019-10-22 Ethicon Llc Mechanisms for compensating for drivetrain failure in powered surgical instruments
US10617413B2 (en) 2016-04-01 2020-04-14 Ethicon Llc Closure system arrangements for surgical cutting and stapling devices with separate and distinct firing shafts
US10307159B2 (en) 2016-04-01 2019-06-04 Ethicon Llc Surgical instrument handle assembly with reconfigurable grip portion
US11064997B2 (en) 2016-04-01 2021-07-20 Cilag Gmbh International Surgical stapling instrument
US10271851B2 (en) 2016-04-01 2019-04-30 Ethicon Llc Modular surgical stapling system comprising a display
US11284890B2 (en) 2016-04-01 2022-03-29 Cilag Gmbh International Circular stapling system comprising an incisable tissue support
US10828028B2 (en) 2016-04-15 2020-11-10 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US11179150B2 (en) 2016-04-15 2021-11-23 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10335145B2 (en) 2016-04-15 2019-07-02 Ethicon Llc Modular surgical instrument with configurable operating mode
US10426467B2 (en) 2016-04-15 2019-10-01 Ethicon Llc Surgical instrument with detection sensors
US11607239B2 (en) 2016-04-15 2023-03-21 Cilag Gmbh International Systems and methods for controlling a surgical stapling and cutting instrument
US10357247B2 (en) 2016-04-15 2019-07-23 Ethicon Llc Surgical instrument with multiple program responses during a firing motion
US10456137B2 (en) 2016-04-15 2019-10-29 Ethicon Llc Staple formation detection mechanisms
US10405859B2 (en) 2016-04-15 2019-09-10 Ethicon Llc Surgical instrument with adjustable stop/start control during a firing motion
US10492783B2 (en) 2016-04-15 2019-12-03 Ethicon, Llc Surgical instrument with improved stop/start control during a firing motion
US20170296173A1 (en) 2016-04-18 2017-10-19 Ethicon Endo-Surgery, Llc Method for operating a surgical instrument
US11317917B2 (en) 2016-04-18 2022-05-03 Cilag Gmbh International Surgical stapling system comprising a lockable firing assembly
US10368867B2 (en) 2016-04-18 2019-08-06 Ethicon Llc Surgical instrument comprising a lockout
USD850617S1 (en) 2016-06-24 2019-06-04 Ethicon Llc Surgical fastener cartridge
US10702270B2 (en) 2016-06-24 2020-07-07 Ethicon Llc Stapling system for use with wire staples and stamped staples
JP6957532B2 (en) 2016-06-24 2021-11-02 エシコン エルエルシーEthicon LLC Staple cartridges including wire staples and punched staples
USD826405S1 (en) 2016-06-24 2018-08-21 Ethicon Llc Surgical fastener
USD847989S1 (en) 2016-06-24 2019-05-07 Ethicon Llc Surgical fastener cartridge
US10918385B2 (en) 2016-12-21 2021-02-16 Ethicon Llc Surgical system comprising a firing member rotatable into an articulation state to articulate an end effector of the surgical system
US20180168648A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Durability features for end effectors and firing assemblies of surgical stapling instruments
US20180168615A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Method of deforming staples from two different types of staple cartridges with the same surgical stapling instrument
US20180168625A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments with smart staple cartridges
US20180168633A1 (en) 2016-12-21 2018-06-21 Ethicon Endo-Surgery, Llc Surgical stapling instruments and staple-forming anvils
US10682138B2 (en) 2016-12-21 2020-06-16 Ethicon Llc Bilaterally asymmetric staple forming pocket pairs
US10568624B2 (en) 2016-12-21 2020-02-25 Ethicon Llc Surgical instruments with jaws that are pivotable about a fixed axis and include separate and distinct closure and firing systems
US10588631B2 (en) 2016-12-21 2020-03-17 Ethicon Llc Surgical instruments with positive jaw opening features
US10426471B2 (en) 2016-12-21 2019-10-01 Ethicon Llc Surgical instrument with multiple failure response modes
US11134942B2 (en) 2016-12-21 2021-10-05 Cilag Gmbh International Surgical stapling instruments and staple-forming anvils
US10695055B2 (en) 2016-12-21 2020-06-30 Ethicon Llc Firing assembly comprising a lockout
CN110099619B (en) 2016-12-21 2022-07-15 爱惜康有限责任公司 Lockout device for surgical end effector and replaceable tool assembly
US10687810B2 (en) 2016-12-21 2020-06-23 Ethicon Llc Stepped staple cartridge with tissue retention and gap setting features
US11419606B2 (en) 2016-12-21 2022-08-23 Cilag Gmbh International Shaft assembly comprising a clutch configured to adapt the output of a rotary firing member to two different systems
US11684367B2 (en) 2016-12-21 2023-06-27 Cilag Gmbh International Stepped assembly having and end-of-life indicator
US10945727B2 (en) 2016-12-21 2021-03-16 Ethicon Llc Staple cartridge with deformable driver retention features
US10856868B2 (en) 2016-12-21 2020-12-08 Ethicon Llc Firing member pin configurations
US10973516B2 (en) 2016-12-21 2021-04-13 Ethicon Llc Surgical end effectors and adaptable firing members therefor
MX2019007311A (en) 2016-12-21 2019-11-18 Ethicon Llc Surgical stapling systems.
JP7010956B2 (en) 2016-12-21 2022-01-26 エシコン エルエルシー How to staple tissue
US10959727B2 (en) 2016-12-21 2021-03-30 Ethicon Llc Articulatable surgical end effector with asymmetric shaft arrangement
US10888322B2 (en) 2016-12-21 2021-01-12 Ethicon Llc Surgical instrument comprising a cutting member
US10993715B2 (en) 2016-12-21 2021-05-04 Ethicon Llc Staple cartridge comprising staples with different clamping breadths
US11090048B2 (en) 2016-12-21 2021-08-17 Cilag Gmbh International Method for resetting a fuse of a surgical instrument shaft
US10390841B2 (en) 2017-06-20 2019-08-27 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
USD879808S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with graphical user interface
US10881399B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Techniques for adaptive control of motor velocity of a surgical stapling and cutting instrument
US10881396B2 (en) 2017-06-20 2021-01-05 Ethicon Llc Surgical instrument with variable duration trigger arrangement
US11382638B2 (en) 2017-06-20 2022-07-12 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified displacement distance
US10307170B2 (en) 2017-06-20 2019-06-04 Ethicon Llc Method for closed loop control of motor velocity of a surgical stapling and cutting instrument
US11517325B2 (en) 2017-06-20 2022-12-06 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured displacement distance traveled over a specified time interval
US10368864B2 (en) 2017-06-20 2019-08-06 Ethicon Llc Systems and methods for controlling displaying motor velocity for a surgical instrument
US10327767B2 (en) 2017-06-20 2019-06-25 Ethicon Llc Control of motor velocity of a surgical stapling and cutting instrument based on angle of articulation
US10980537B2 (en) 2017-06-20 2021-04-20 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on measured time over a specified number of shaft rotations
US11071554B2 (en) 2017-06-20 2021-07-27 Cilag Gmbh International Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on magnitude of velocity error measurements
USD890784S1 (en) 2017-06-20 2020-07-21 Ethicon Llc Display panel with changeable graphical user interface
US11653914B2 (en) 2017-06-20 2023-05-23 Cilag Gmbh International Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument according to articulation angle of end effector
US10646220B2 (en) 2017-06-20 2020-05-12 Ethicon Llc Systems and methods for controlling displacement member velocity for a surgical instrument
US10624633B2 (en) 2017-06-20 2020-04-21 Ethicon Llc Systems and methods for controlling motor velocity of a surgical stapling and cutting instrument
USD879809S1 (en) 2017-06-20 2020-03-31 Ethicon Llc Display panel with changeable graphical user interface
US10779820B2 (en) 2017-06-20 2020-09-22 Ethicon Llc Systems and methods for controlling motor speed according to user input for a surgical instrument
US10813639B2 (en) 2017-06-20 2020-10-27 Ethicon Llc Closed loop feedback control of motor velocity of a surgical stapling and cutting instrument based on system conditions
US10888321B2 (en) 2017-06-20 2021-01-12 Ethicon Llc Systems and methods for controlling velocity of a displacement member of a surgical stapling and cutting instrument
US11090046B2 (en) 2017-06-20 2021-08-17 Cilag Gmbh International Systems and methods for controlling displacement member motion of a surgical stapling and cutting instrument
US11324503B2 (en) 2017-06-27 2022-05-10 Cilag Gmbh International Surgical firing member arrangements
US11266405B2 (en) 2017-06-27 2022-03-08 Cilag Gmbh International Surgical anvil manufacturing methods
US10772629B2 (en) 2017-06-27 2020-09-15 Ethicon Llc Surgical anvil arrangements
US20180368844A1 (en) 2017-06-27 2018-12-27 Ethicon Llc Staple forming pocket arrangements
US10856869B2 (en) 2017-06-27 2020-12-08 Ethicon Llc Surgical anvil arrangements
US10993716B2 (en) 2017-06-27 2021-05-04 Ethicon Llc Surgical anvil arrangements
US10716614B2 (en) 2017-06-28 2020-07-21 Ethicon Llc Surgical shaft assemblies with slip ring assemblies with increased contact pressure
EP3420947B1 (en) 2017-06-28 2022-05-25 Cilag GmbH International Surgical instrument comprising selectively actuatable rotatable couplers
US10903685B2 (en) 2017-06-28 2021-01-26 Ethicon Llc Surgical shaft assemblies with slip ring assemblies forming capacitive channels
US10211586B2 (en) 2017-06-28 2019-02-19 Ethicon Llc Surgical shaft assemblies with watertight housings
US11564686B2 (en) 2017-06-28 2023-01-31 Cilag Gmbh International Surgical shaft assemblies with flexible interfaces
USD854151S1 (en) 2017-06-28 2019-07-16 Ethicon Llc Surgical instrument shaft
US11246592B2 (en) 2017-06-28 2022-02-15 Cilag Gmbh International Surgical instrument comprising an articulation system lockable to a frame
US11484310B2 (en) 2017-06-28 2022-11-01 Cilag Gmbh International Surgical instrument comprising a shaft including a closure tube profile
US11259805B2 (en) 2017-06-28 2022-03-01 Cilag Gmbh International Surgical instrument comprising firing member supports
USD851762S1 (en) 2017-06-28 2019-06-18 Ethicon Llc Anvil
US11478242B2 (en) 2017-06-28 2022-10-25 Cilag Gmbh International Jaw retainer arrangement for retaining a pivotable surgical instrument jaw in pivotable retaining engagement with a second surgical instrument jaw
USD906355S1 (en) 2017-06-28 2020-12-29 Ethicon Llc Display screen or portion thereof with a graphical user interface for a surgical instrument
US10765427B2 (en) 2017-06-28 2020-09-08 Ethicon Llc Method for articulating a surgical instrument
USD869655S1 (en) 2017-06-28 2019-12-10 Ethicon Llc Surgical fastener cartridge
US10258418B2 (en) 2017-06-29 2019-04-16 Ethicon Llc System for controlling articulation forces
US10398434B2 (en) 2017-06-29 2019-09-03 Ethicon Llc Closed loop velocity control of closure member for robotic surgical instrument
US10932772B2 (en) 2017-06-29 2021-03-02 Ethicon Llc Methods for closed loop velocity control for robotic surgical instrument
US10898183B2 (en) 2017-06-29 2021-01-26 Ethicon Llc Robotic surgical instrument with closed loop feedback techniques for advancement of closure member during firing
US11007022B2 (en) 2017-06-29 2021-05-18 Ethicon Llc Closed loop velocity control techniques based on sensed tissue parameters for robotic surgical instrument
US11304695B2 (en) 2017-08-03 2022-04-19 Cilag Gmbh International Surgical system shaft interconnection
US11471155B2 (en) 2017-08-03 2022-10-18 Cilag Gmbh International Surgical system bailout
US11944300B2 (en) 2017-08-03 2024-04-02 Cilag Gmbh International Method for operating a surgical system bailout
USD917500S1 (en) 2017-09-29 2021-04-27 Ethicon Llc Display screen or portion thereof with graphical user interface
US10765429B2 (en) 2017-09-29 2020-09-08 Ethicon Llc Systems and methods for providing alerts according to the operational state of a surgical instrument
US11399829B2 (en) 2017-09-29 2022-08-02 Cilag Gmbh International Systems and methods of initiating a power shutdown mode for a surgical instrument
US10796471B2 (en) 2017-09-29 2020-10-06 Ethicon Llc Systems and methods of displaying a knife position for a surgical instrument
USD907647S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
USD907648S1 (en) 2017-09-29 2021-01-12 Ethicon Llc Display screen or portion thereof with animated graphical user interface
US10729501B2 (en) 2017-09-29 2020-08-04 Ethicon Llc Systems and methods for language selection of a surgical instrument
US10743872B2 (en) 2017-09-29 2020-08-18 Ethicon Llc System and methods for controlling a display of a surgical instrument
US11090075B2 (en) 2017-10-30 2021-08-17 Cilag Gmbh International Articulation features for surgical end effector
US11134944B2 (en) 2017-10-30 2021-10-05 Cilag Gmbh International Surgical stapler knife motion controls
US10779903B2 (en) 2017-10-31 2020-09-22 Ethicon Llc Positive shaft rotation lock activated by jaw closure
US10842490B2 (en) 2017-10-31 2020-11-24 Ethicon Llc Cartridge body design with force reduction based on firing completion
US10687813B2 (en) 2017-12-15 2020-06-23 Ethicon Llc Adapters with firing stroke sensing arrangements for use in connection with electromechanical surgical instruments
US10779826B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Methods of operating surgical end effectors
US10828033B2 (en) 2017-12-15 2020-11-10 Ethicon Llc Handheld electromechanical surgical instruments with improved motor control arrangements for positioning components of an adapter coupled thereto
US11197670B2 (en) 2017-12-15 2021-12-14 Cilag Gmbh International Surgical end effectors with pivotal jaws configured to touch at their respective distal ends when fully closed
US11006955B2 (en) 2017-12-15 2021-05-18 Ethicon Llc End effectors with positive jaw opening features for use with adapters for electromechanical surgical instruments
US10743875B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Surgical end effectors with jaw stiffener arrangements configured to permit monitoring of firing member
US10743874B2 (en) 2017-12-15 2020-08-18 Ethicon Llc Sealed adapters for use with electromechanical surgical instruments
US11033267B2 (en) 2017-12-15 2021-06-15 Ethicon Llc Systems and methods of controlling a clamping member firing rate of a surgical instrument
US10966718B2 (en) 2017-12-15 2021-04-06 Ethicon Llc Dynamic clamping assemblies with improved wear characteristics for use in connection with electromechanical surgical instruments
US10779825B2 (en) 2017-12-15 2020-09-22 Ethicon Llc Adapters with end effector position sensing and control arrangements for use in connection with electromechanical surgical instruments
US11071543B2 (en) 2017-12-15 2021-07-27 Cilag Gmbh International Surgical end effectors with clamping assemblies configured to increase jaw aperture ranges
US10869666B2 (en) 2017-12-15 2020-12-22 Ethicon Llc Adapters with control systems for controlling multiple motors of an electromechanical surgical instrument
US10835330B2 (en) 2017-12-19 2020-11-17 Ethicon Llc Method for determining the position of a rotatable jaw of a surgical instrument attachment assembly
US10729509B2 (en) 2017-12-19 2020-08-04 Ethicon Llc Surgical instrument comprising closure and firing locking mechanism
US11020112B2 (en) 2017-12-19 2021-06-01 Ethicon Llc Surgical tools configured for interchangeable use with different controller interfaces
US10716565B2 (en) 2017-12-19 2020-07-21 Ethicon Llc Surgical instruments with dual articulation drivers
US11045270B2 (en) 2017-12-19 2021-06-29 Cilag Gmbh International Robotic attachment comprising exterior drive actuator
USD910847S1 (en) 2017-12-19 2021-02-16 Ethicon Llc Surgical instrument assembly
JP7438950B2 (en) * 2017-12-21 2024-02-27 エシコン エルエルシー Surgical instrument with tissue grasping system
US11076853B2 (en) 2017-12-21 2021-08-03 Cilag Gmbh International Systems and methods of displaying a knife position during transection for a surgical instrument
US11311290B2 (en) 2017-12-21 2022-04-26 Cilag Gmbh International Surgical instrument comprising an end effector dampener
US11129680B2 (en) 2017-12-21 2021-09-28 Cilag Gmbh International Surgical instrument comprising a projector
US11179152B2 (en) 2017-12-21 2021-11-23 Cilag Gmbh International Surgical instrument comprising a tissue grasping system
US11653928B2 (en) 2018-03-28 2023-05-23 Datascope Corp. Device for atrial appendage exclusion
US11253256B2 (en) 2018-08-20 2022-02-22 Cilag Gmbh International Articulatable motor powered surgical instruments with dedicated articulation motor arrangements
US11324501B2 (en) 2018-08-20 2022-05-10 Cilag Gmbh International Surgical stapling devices with improved closure members
US11083458B2 (en) 2018-08-20 2021-08-10 Cilag Gmbh International Powered surgical instruments with clutching arrangements to convert linear drive motions to rotary drive motions
USD914878S1 (en) 2018-08-20 2021-03-30 Ethicon Llc Surgical instrument anvil
US10842492B2 (en) 2018-08-20 2020-11-24 Ethicon Llc Powered articulatable surgical instruments with clutching and locking arrangements for linking an articulation drive system to a firing drive system
US11291440B2 (en) 2018-08-20 2022-04-05 Cilag Gmbh International Method for operating a powered articulatable surgical instrument
US10856870B2 (en) 2018-08-20 2020-12-08 Ethicon Llc Switching arrangements for motor powered articulatable surgical instruments
US10779821B2 (en) 2018-08-20 2020-09-22 Ethicon Llc Surgical stapler anvils with tissue stop features configured to avoid tissue pinch
US11039834B2 (en) 2018-08-20 2021-06-22 Cilag Gmbh International Surgical stapler anvils with staple directing protrusions and tissue stability features
US11207065B2 (en) 2018-08-20 2021-12-28 Cilag Gmbh International Method for fabricating surgical stapler anvils
US10912559B2 (en) 2018-08-20 2021-02-09 Ethicon Llc Reinforced deformable anvil tip for surgical stapler anvil
US11045192B2 (en) 2018-08-20 2021-06-29 Cilag Gmbh International Fabricating techniques for surgical stapler anvils
US11344297B2 (en) * 2019-02-28 2022-05-31 Covidien Lp Surgical stapling device with independently movable jaws
US11172929B2 (en) 2019-03-25 2021-11-16 Cilag Gmbh International Articulation drive arrangements for surgical systems
US11147551B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11147553B2 (en) 2019-03-25 2021-10-19 Cilag Gmbh International Firing drive arrangements for surgical systems
US11696761B2 (en) 2019-03-25 2023-07-11 Cilag Gmbh International Firing drive arrangements for surgical systems
US11253254B2 (en) 2019-04-30 2022-02-22 Cilag Gmbh International Shaft rotation actuator on a surgical instrument
US11471157B2 (en) 2019-04-30 2022-10-18 Cilag Gmbh International Articulation control mapping for a surgical instrument
US11903581B2 (en) 2019-04-30 2024-02-20 Cilag Gmbh International Methods for stapling tissue using a surgical instrument
US11648009B2 (en) 2019-04-30 2023-05-16 Cilag Gmbh International Rotatable jaw tip for a surgical instrument
US11426251B2 (en) 2019-04-30 2022-08-30 Cilag Gmbh International Articulation directional lights on a surgical instrument
US11452528B2 (en) 2019-04-30 2022-09-27 Cilag Gmbh International Articulation actuators for a surgical instrument
US11432816B2 (en) 2019-04-30 2022-09-06 Cilag Gmbh International Articulation pin for a surgical instrument
IT201900006494A1 (en) * 2019-05-02 2020-11-02 Univ Degli Studi Di Torino DEVICE FOR THE RESECTION OF A LUME, IN PARTICULAR AN INTESTINE
US11660163B2 (en) 2019-06-28 2023-05-30 Cilag Gmbh International Surgical system with RFID tags for updating motor assembly parameters
US11523822B2 (en) 2019-06-28 2022-12-13 Cilag Gmbh International Battery pack including a circuit interrupter
US11350938B2 (en) 2019-06-28 2022-06-07 Cilag Gmbh International Surgical instrument comprising an aligned rfid sensor
US11259803B2 (en) 2019-06-28 2022-03-01 Cilag Gmbh International Surgical stapling system having an information encryption protocol
US11638587B2 (en) 2019-06-28 2023-05-02 Cilag Gmbh International RFID identification systems for surgical instruments
US11684434B2 (en) 2019-06-28 2023-06-27 Cilag Gmbh International Surgical RFID assemblies for instrument operational setting control
US11553971B2 (en) 2019-06-28 2023-01-17 Cilag Gmbh International Surgical RFID assemblies for display and communication
US11376098B2 (en) 2019-06-28 2022-07-05 Cilag Gmbh International Surgical instrument system comprising an RFID system
US11051807B2 (en) 2019-06-28 2021-07-06 Cilag Gmbh International Packaging assembly including a particulate trap
US11219455B2 (en) 2019-06-28 2022-01-11 Cilag Gmbh International Surgical instrument including a lockout key
US11399837B2 (en) 2019-06-28 2022-08-02 Cilag Gmbh International Mechanisms for motor control adjustments of a motorized surgical instrument
US11298127B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Interational Surgical stapling system having a lockout mechanism for an incompatible cartridge
US11298132B2 (en) 2019-06-28 2022-04-12 Cilag GmbH Inlernational Staple cartridge including a honeycomb extension
US11478241B2 (en) 2019-06-28 2022-10-25 Cilag Gmbh International Staple cartridge including projections
US11224497B2 (en) 2019-06-28 2022-01-18 Cilag Gmbh International Surgical systems with multiple RFID tags
US11426167B2 (en) 2019-06-28 2022-08-30 Cilag Gmbh International Mechanisms for proper anvil attachment surgical stapling head assembly
US11771419B2 (en) 2019-06-28 2023-10-03 Cilag Gmbh International Packaging for a replaceable component of a surgical stapling system
US11627959B2 (en) 2019-06-28 2023-04-18 Cilag Gmbh International Surgical instruments including manual and powered system lockouts
US11291451B2 (en) 2019-06-28 2022-04-05 Cilag Gmbh International Surgical instrument with battery compatibility verification functionality
US11497492B2 (en) 2019-06-28 2022-11-15 Cilag Gmbh International Surgical instrument including an articulation lock
US11246678B2 (en) 2019-06-28 2022-02-15 Cilag Gmbh International Surgical stapling system having a frangible RFID tag
US11464601B2 (en) 2019-06-28 2022-10-11 Cilag Gmbh International Surgical instrument comprising an RFID system for tracking a movable component
CN114144125A (en) * 2019-07-24 2022-03-04 波士顿科学国际有限公司 Device for fastening tissue
US11925347B2 (en) 2019-12-13 2024-03-12 Dinesh Vyas Stapler apparatus and methods for use
US20230056943A1 (en) * 2019-12-13 2023-02-23 Dinesh Vyas Stapler apparatus and methods for use
US11701111B2 (en) 2019-12-19 2023-07-18 Cilag Gmbh International Method for operating a surgical stapling instrument
US11607219B2 (en) 2019-12-19 2023-03-21 Cilag Gmbh International Staple cartridge comprising a detachable tissue cutting knife
US11304696B2 (en) 2019-12-19 2022-04-19 Cilag Gmbh International Surgical instrument comprising a powered articulation system
US11464512B2 (en) 2019-12-19 2022-10-11 Cilag Gmbh International Staple cartridge comprising a curved deck surface
US11576672B2 (en) 2019-12-19 2023-02-14 Cilag Gmbh International Surgical instrument comprising a closure system including a closure member and an opening member driven by a drive screw
US11291447B2 (en) 2019-12-19 2022-04-05 Cilag Gmbh International Stapling instrument comprising independent jaw closing and staple firing systems
US11844520B2 (en) 2019-12-19 2023-12-19 Cilag Gmbh International Staple cartridge comprising driver retention members
US11911032B2 (en) 2019-12-19 2024-02-27 Cilag Gmbh International Staple cartridge comprising a seating cam
US11529137B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Staple cartridge comprising driver retention members
US11931033B2 (en) 2019-12-19 2024-03-19 Cilag Gmbh International Staple cartridge comprising a latch lockout
US11234698B2 (en) 2019-12-19 2022-02-01 Cilag Gmbh International Stapling system comprising a clamp lockout and a firing lockout
US11559304B2 (en) 2019-12-19 2023-01-24 Cilag Gmbh International Surgical instrument comprising a rapid closure mechanism
US11504122B2 (en) 2019-12-19 2022-11-22 Cilag Gmbh International Surgical instrument comprising a nested firing member
US11529139B2 (en) 2019-12-19 2022-12-20 Cilag Gmbh International Motor driven surgical instrument
US11446029B2 (en) 2019-12-19 2022-09-20 Cilag Gmbh International Staple cartridge comprising projections extending from a curved deck surface
USD976401S1 (en) 2020-06-02 2023-01-24 Cilag Gmbh International Staple cartridge
USD966512S1 (en) 2020-06-02 2022-10-11 Cilag Gmbh International Staple cartridge
USD967421S1 (en) 2020-06-02 2022-10-18 Cilag Gmbh International Staple cartridge
USD975851S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD975850S1 (en) 2020-06-02 2023-01-17 Cilag Gmbh International Staple cartridge
USD974560S1 (en) 2020-06-02 2023-01-03 Cilag Gmbh International Staple cartridge
USD975278S1 (en) 2020-06-02 2023-01-10 Cilag Gmbh International Staple cartridge
US20220031320A1 (en) 2020-07-28 2022-02-03 Cilag Gmbh International Surgical instruments with flexible firing member actuator constraint arrangements
US11452526B2 (en) 2020-10-29 2022-09-27 Cilag Gmbh International Surgical instrument comprising a staged voltage regulation start-up system
US11896217B2 (en) 2020-10-29 2024-02-13 Cilag Gmbh International Surgical instrument comprising an articulation lock
US11717289B2 (en) 2020-10-29 2023-08-08 Cilag Gmbh International Surgical instrument comprising an indicator which indicates that an articulation drive is actuatable
US11931025B2 (en) 2020-10-29 2024-03-19 Cilag Gmbh International Surgical instrument comprising a releasable closure drive lock
US11517390B2 (en) 2020-10-29 2022-12-06 Cilag Gmbh International Surgical instrument comprising a limited travel switch
US11779330B2 (en) 2020-10-29 2023-10-10 Cilag Gmbh International Surgical instrument comprising a jaw alignment system
US11534259B2 (en) 2020-10-29 2022-12-27 Cilag Gmbh International Surgical instrument comprising an articulation indicator
US11617577B2 (en) 2020-10-29 2023-04-04 Cilag Gmbh International Surgical instrument comprising a sensor configured to sense whether an articulation drive of the surgical instrument is actuatable
USD1013170S1 (en) 2020-10-29 2024-01-30 Cilag Gmbh International Surgical instrument assembly
USD980425S1 (en) 2020-10-29 2023-03-07 Cilag Gmbh International Surgical instrument assembly
US11844518B2 (en) 2020-10-29 2023-12-19 Cilag Gmbh International Method for operating a surgical instrument
US11944296B2 (en) 2020-12-02 2024-04-02 Cilag Gmbh International Powered surgical instruments with external connectors
US11627960B2 (en) 2020-12-02 2023-04-18 Cilag Gmbh International Powered surgical instruments with smart reload with separately attachable exteriorly mounted wiring connections
US11890010B2 (en) 2020-12-02 2024-02-06 Cllag GmbH International Dual-sided reinforced reload for surgical instruments
US11744581B2 (en) 2020-12-02 2023-09-05 Cilag Gmbh International Powered surgical instruments with multi-phase tissue treatment
US11653920B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Powered surgical instruments with communication interfaces through sterile barrier
US11653915B2 (en) 2020-12-02 2023-05-23 Cilag Gmbh International Surgical instruments with sled location detection and adjustment features
US11678882B2 (en) 2020-12-02 2023-06-20 Cilag Gmbh International Surgical instruments with interactive features to remedy incidental sled movements
US11737751B2 (en) 2020-12-02 2023-08-29 Cilag Gmbh International Devices and methods of managing energy dissipated within sterile barriers of surgical instrument housings
US11849943B2 (en) 2020-12-02 2023-12-26 Cilag Gmbh International Surgical instrument with cartridge release mechanisms
US11749877B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Stapling instrument comprising a signal antenna
US11950777B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Staple cartridge comprising an information access control system
US11701113B2 (en) 2021-02-26 2023-07-18 Cilag Gmbh International Stapling instrument comprising a separate power antenna and a data transfer antenna
US11925349B2 (en) 2021-02-26 2024-03-12 Cilag Gmbh International Adjustment to transfer parameters to improve available power
US11744583B2 (en) 2021-02-26 2023-09-05 Cilag Gmbh International Distal communication array to tune frequency of RF systems
US11950779B2 (en) 2021-02-26 2024-04-09 Cilag Gmbh International Method of powering and communicating with a staple cartridge
US11696757B2 (en) 2021-02-26 2023-07-11 Cilag Gmbh International Monitoring of internal systems to detect and track cartridge motion status
US11793514B2 (en) 2021-02-26 2023-10-24 Cilag Gmbh International Staple cartridge comprising sensor array which may be embedded in cartridge body
US11812964B2 (en) 2021-02-26 2023-11-14 Cilag Gmbh International Staple cartridge comprising a power management circuit
US11730473B2 (en) 2021-02-26 2023-08-22 Cilag Gmbh International Monitoring of manufacturing life-cycle
US11751869B2 (en) 2021-02-26 2023-09-12 Cilag Gmbh International Monitoring of multiple sensors over time to detect moving characteristics of tissue
US11723657B2 (en) 2021-02-26 2023-08-15 Cilag Gmbh International Adjustable communication based on available bandwidth and power capacity
US11737749B2 (en) 2021-03-22 2023-08-29 Cilag Gmbh International Surgical stapling instrument comprising a retraction system
US11826042B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Surgical instrument comprising a firing drive including a selectable leverage mechanism
US11723658B2 (en) 2021-03-22 2023-08-15 Cilag Gmbh International Staple cartridge comprising a firing lockout
US11717291B2 (en) 2021-03-22 2023-08-08 Cilag Gmbh International Staple cartridge comprising staples configured to apply different tissue compression
US11806011B2 (en) 2021-03-22 2023-11-07 Cilag Gmbh International Stapling instrument comprising tissue compression systems
US11759202B2 (en) 2021-03-22 2023-09-19 Cilag Gmbh International Staple cartridge comprising an implantable layer
US11826012B2 (en) 2021-03-22 2023-11-28 Cilag Gmbh International Stapling instrument comprising a pulsed motor-driven firing rack
US11832816B2 (en) 2021-03-24 2023-12-05 Cilag Gmbh International Surgical stapling assembly comprising nonplanar staples and planar staples
US11786239B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Surgical instrument articulation joint arrangements comprising multiple moving linkage features
US11849945B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Rotary-driven surgical stapling assembly comprising eccentrically driven firing member
US11903582B2 (en) 2021-03-24 2024-02-20 Cilag Gmbh International Leveraging surfaces for cartridge installation
US11786243B2 (en) 2021-03-24 2023-10-17 Cilag Gmbh International Firing members having flexible portions for adapting to a load during a surgical firing stroke
US11793516B2 (en) 2021-03-24 2023-10-24 Cilag Gmbh International Surgical staple cartridge comprising longitudinal support beam
US11857183B2 (en) 2021-03-24 2024-01-02 Cilag Gmbh International Stapling assembly components having metal substrates and plastic bodies
US11744603B2 (en) 2021-03-24 2023-09-05 Cilag Gmbh International Multi-axis pivot joints for surgical instruments and methods for manufacturing same
US11896218B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Method of using a powered stapling device
US11849944B2 (en) 2021-03-24 2023-12-26 Cilag Gmbh International Drivers for fastener cartridge assemblies having rotary drive screws
US11896219B2 (en) 2021-03-24 2024-02-13 Cilag Gmbh International Mating features between drivers and underside of a cartridge deck
US11944336B2 (en) 2021-03-24 2024-04-02 Cilag Gmbh International Joint arrangements for multi-planar alignment and support of operational drive shafts in articulatable surgical instruments
US11826047B2 (en) 2021-05-28 2023-11-28 Cilag Gmbh International Stapling instrument comprising jaw mounts
US20230000495A1 (en) * 2021-06-30 2023-01-05 Covidien Lp Circular stapling device with tissue grasping members
US20230049352A1 (en) * 2021-08-13 2023-02-16 Cilag Gmbh International Circular surgical stapler end effector having staple line alignment feature
US11877745B2 (en) 2021-10-18 2024-01-23 Cilag Gmbh International Surgical stapling assembly having longitudinally-repeating staple leg clusters
US11937816B2 (en) 2021-10-28 2024-03-26 Cilag Gmbh International Electrical lead arrangements for surgical instruments
WO2023227506A1 (en) 2022-05-23 2023-11-30 Biotronik Ag Endovascular stapling system for resection of the laa

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403326A (en) * 1993-02-01 1995-04-04 The Regents Of The University Of California Method for performing a gastric wrap of the esophagus for use in the treatment of esophageal reflux
FR2768324A1 (en) * 1997-09-12 1999-03-19 Jacques Seguin Surgical instrument for joining soft tissues through percutaneous access
WO2005037152A1 (en) * 2003-10-10 2005-04-28 Synecor, Llc Devices and methods for retaining a gastro-esophageal implant
WO2007041598A1 (en) * 2005-10-03 2007-04-12 Barosense, Inc. Endoscopic plication devices and methods

Family Cites Families (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1408865A (en) * 1921-07-13 1922-03-07 Selden S Cowell Collapsible funnel
US4315509A (en) * 1977-01-10 1982-02-16 Smit Julie A Insertion and removal catheters and intestinal tubes for restricting absorption
US4134405A (en) * 1977-01-10 1979-01-16 Smit Julie A Catheter and intestine tube and method of using the same
WO1980000007A1 (en) * 1978-06-02 1980-01-10 A Rockey Medical sleeve
US4246893A (en) * 1978-07-05 1981-01-27 Daniel Berson Inflatable gastric device for treating obesity
US4441215A (en) * 1980-11-17 1984-04-10 Kaster Robert L Vascular graft
US4899747A (en) * 1981-12-10 1990-02-13 Garren Lloyd R Method and appartus for treating obesity
US4648383A (en) * 1985-01-11 1987-03-10 Angelchik Jean P Peroral apparatus for morbid obesity treatment
US4608965A (en) * 1985-03-27 1986-09-02 Anspach Jr William E Endoscope retainer and tissue retracting device
US4723547A (en) * 1985-05-07 1988-02-09 C. R. Bard, Inc. Anti-obesity balloon placement system
US5084061A (en) * 1987-09-25 1992-01-28 Gau Fred C Intragastric balloon with improved valve locating means
US4997084A (en) * 1988-05-13 1991-03-05 Opielab, Inc. Packaging system for disposable endoscope sheaths
US4950281A (en) * 1989-02-13 1990-08-21 University Of New Mexico Everting forceps
EP0574378B1 (en) * 1989-06-28 1995-11-08 ZIMMON, David S. Balloon tamponade devices
US5454365A (en) * 1990-11-05 1995-10-03 Bonutti; Peter M. Mechanically expandable arthroscopic retractors
US5006106A (en) * 1990-10-09 1991-04-09 Angelchik Jean P Apparatus and method for laparoscopic implantation of anti-reflux prosthesis
US5088979A (en) * 1990-10-11 1992-02-18 Wilson-Cook Medical Inc. Method for esophageal invagination and devices useful therein
US5275610A (en) * 1991-05-13 1994-01-04 Cook Incorporated Surgical retractors and method of use
US5290217A (en) * 1991-10-10 1994-03-01 Earl K. Sipes Method and apparatus for hernia repair
US5203773A (en) * 1991-10-18 1993-04-20 United States Surgical Corporation Tissue gripping apparatus for use with a cannula or trocar assembly
US5497933A (en) * 1991-10-18 1996-03-12 United States Surgical Corporation Apparatus and method for applying surgical staples to attach an object to body tissue
US5720776A (en) * 1991-10-25 1998-02-24 Cook Incorporated Barb and expandable transluminal graft prosthesis for repair of aneurysm
US5197649A (en) * 1991-10-29 1993-03-30 The Trustees Of Columbia University In The City Of New York Gastrointestinal endoscoptic stapler
CA2087132A1 (en) * 1992-01-31 1993-08-01 Michael S. Williams Stent capable of attachment within a body lumen
US5405377A (en) * 1992-02-21 1995-04-11 Endotech Ltd. Intraluminal stent
US5401241A (en) * 1992-05-07 1995-03-28 Inamed Development Co. Duodenal intubation catheter
JPH0647050A (en) * 1992-06-04 1994-02-22 Olympus Optical Co Ltd Tissue suture and ligature device
US5306300A (en) * 1992-09-22 1994-04-26 Berry H Lee Tubular digestive screen
US5520704A (en) * 1992-10-09 1996-05-28 United States Surgical Corporation Everting forceps with locking mechanism
US5472439A (en) * 1993-10-06 1995-12-05 American Cyanamid Company Endoscopic surgical instrument with rotatable inner shaft
US5609624A (en) * 1993-10-08 1997-03-11 Impra, Inc. Reinforced vascular graft and method of making same
US5486187A (en) * 1994-01-04 1996-01-23 Schenck; Robert R. Anastomosis device and method
US5597107A (en) * 1994-02-03 1997-01-28 Ethicon Endo-Surgery, Inc. Surgical stapler instrument
CA2145723A1 (en) * 1994-03-30 1995-10-01 Steven W. Hamblin Surgical stapling instrument with remotely articulated stapling head assembly on rotatable support shaft
US5571116A (en) * 1994-10-02 1996-11-05 United States Surgical Corporation Non-invasive treatment of gastroesophageal reflux disease
US5484694A (en) * 1994-11-21 1996-01-16 Eastman Kodak Company Imaging element comprising an electrically-conductive layer containing antimony-doped tin oxide particles
US7235089B1 (en) * 1994-12-07 2007-06-26 Boston Scientific Corporation Surgical apparatus and method
US5868760A (en) * 1994-12-07 1999-02-09 Mcguckin, Jr.; James F. Method and apparatus for endolumenally resectioning tissue
DE19509115C2 (en) * 1995-03-16 1997-11-27 Deutsche Forsch Luft Raumfahrt Surgical device for preparing an anastomosis using minimally invasive surgical techniques
CH688174A5 (en) * 1995-03-28 1997-06-13 Norman Godin Prosthesis to oppose the gastric reflux into the esophagus.
US5706998A (en) * 1995-07-17 1998-01-13 United States Surgical Corporation Surgical stapler with alignment pin locking mechanism
US6119913A (en) * 1996-06-14 2000-09-19 Boston Scientific Corporation Endoscopic stapler
US5855601A (en) * 1996-06-21 1999-01-05 The Trustees Of Columbia University In The City Of New York Artificial heart valve and method and device for implanting the same
US6016848A (en) * 1996-07-16 2000-01-25 W. L. Gore & Associates, Inc. Fluoropolymer tubes and methods of making same
US5957920A (en) * 1997-08-28 1999-09-28 Isothermix, Inc. Medical instruments and techniques for treatment of urinary incontinence
US5856445A (en) * 1996-10-18 1999-01-05 Washington University Serine substituted mutants of BCL-XL /BCL-2 associated cell death regulator
US5846260A (en) * 1997-05-08 1998-12-08 Embol-X, Inc. Cannula with a modular filter for filtering embolic material
US5868141A (en) * 1997-05-14 1999-02-09 Ellias; Yakub A. Endoscopic stomach insert for treating obesity and method for use
US5976158A (en) * 1997-06-02 1999-11-02 Boston Scientific Corporation Method of using a textured ligating band
US5887594A (en) * 1997-09-22 1999-03-30 Beth Israel Deaconess Medical Center Inc. Methods and devices for gastroesophageal reflux reduction
US6254642B1 (en) * 1997-12-09 2001-07-03 Thomas V. Taylor Perorally insertable gastroesophageal anti-reflux valve prosthesis and tool for implantation thereof
US6126058A (en) * 1998-06-19 2000-10-03 Scimed Life Systems, Inc. Method and device for full thickness resectioning of an organ
US6601749B2 (en) * 1998-06-19 2003-08-05 Scimed Life Systems, Inc. Multi fire full thickness resectioning device
US6206930B1 (en) * 1998-08-10 2001-03-27 Charlotte-Mecklenburg Hospital Authority Absorbable tissue expander
FR2783153B1 (en) * 1998-09-14 2000-12-01 Jerome Dargent GASTRIC CONSTRICTION DEVICE
US6083241A (en) * 1998-11-23 2000-07-04 Ethicon Endo-Surgery, Inc. Method of use of a circular stapler for hemorrhoidal procedure
WO2000064357A1 (en) * 1999-04-23 2000-11-02 United States Surgical Corporation Second generation coil fastener applier with memory ring
WO2000069376A1 (en) * 1999-05-18 2000-11-23 Silhouette Medical Inc. Surgical weight control device
US8287554B2 (en) * 1999-06-22 2012-10-16 Ethicon Endo-Surgery, Inc. Method and devices for tissue reconfiguration
US6506196B1 (en) * 1999-06-22 2003-01-14 Ndo Surgical, Inc. Device and method for correction of a painful body defect
US6358197B1 (en) * 1999-08-13 2002-03-19 Enteric Medical Technologies, Inc. Apparatus for forming implants in gastrointestinal tract and kit for use therewith
US7662161B2 (en) * 1999-09-13 2010-02-16 Rex Medical, L.P Vascular hole closure device
US6231561B1 (en) * 1999-09-20 2001-05-15 Appriva Medical, Inc. Method and apparatus for closing a body lumen
EP1108400A1 (en) * 1999-12-13 2001-06-20 Biomedix S.A. Removable fixation apparatus for a prosthesis in a body vessel
US6503264B1 (en) * 2000-03-03 2003-01-07 Bioenterics Corporation Endoscopic device for removing an intragastric balloon
FR2805986B1 (en) * 2000-03-13 2002-10-11 Districlass Madical INTRA-GASTRIC DEVICE WITH VARIABLE VOLUME
US6540789B1 (en) * 2000-06-15 2003-04-01 Scimed Life Systems, Inc. Method for treating morbid obesity
US6544271B1 (en) * 2000-07-18 2003-04-08 Scimed Life Systems, Inc. Device for full-thickness resectioning of an organ
US6572629B2 (en) * 2000-08-17 2003-06-03 Johns Hopkins University Gastric reduction endoscopy
US7011094B2 (en) * 2001-03-02 2006-03-14 Emphasys Medical, Inc. Bronchial flow control devices and methods of use
US7020531B1 (en) * 2001-05-01 2006-03-28 Intrapace, Inc. Gastric device and suction assisted method for implanting a device on a stomach wall
US6558400B2 (en) * 2001-05-30 2003-05-06 Satiety, Inc. Obesity treatment tools and methods
US7083629B2 (en) * 2001-05-30 2006-08-01 Satiety, Inc. Overtube apparatus for insertion into a body
US6675809B2 (en) * 2001-08-27 2004-01-13 Richard S. Stack Satiation devices and methods
US6845776B2 (en) * 2001-08-27 2005-01-25 Richard S. Stack Satiation devices and methods
US7335210B2 (en) * 2002-04-03 2008-02-26 Julie Ann Smit Endoscope and tools for applying sealants and adhesives and intestinal lining for reducing food absorption
JP2005524485A (en) * 2002-05-09 2005-08-18 ディー.イーガン トマス Gastric bypass prosthesis
US6685079B2 (en) * 2002-05-24 2004-02-03 Scimed Life Systems, Inc. Full thickness resectioning device
US6773440B2 (en) * 2002-07-02 2004-08-10 Satiety, Inc. Method and device for use in tissue approximation and fixation
US6746460B2 (en) * 2002-08-07 2004-06-08 Satiety, Inc. Intra-gastric fastening devices
US7211114B2 (en) * 2002-08-26 2007-05-01 The Trustees Of Columbia University In The City Of New York Endoscopic gastric bypass
US7297150B2 (en) * 2002-08-29 2007-11-20 Mitralsolutions, Inc. Implantable devices for controlling the internal circumference of an anatomic orifice or lumen
US20040044364A1 (en) * 2002-08-29 2004-03-04 Devries Robert Tissue fasteners and related deployment systems and methods
US7214233B2 (en) * 2002-08-30 2007-05-08 Satiety, Inc. Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach
US7033384B2 (en) * 2002-08-30 2006-04-25 Satiety, Inc. Stented anchoring of gastric space-occupying devices
US6981978B2 (en) * 2002-08-30 2006-01-03 Satiety, Inc. Methods and devices for maintaining a space occupying device in a relatively fixed location within a stomach
US7229428B2 (en) * 2002-10-23 2007-06-12 Satiety, Inc. Method and device for use in endoscopic organ procedures
US7837669B2 (en) * 2002-11-01 2010-11-23 Valentx, Inc. Devices and methods for endolumenal gastrointestinal bypass
US7794447B2 (en) * 2002-11-01 2010-09-14 Valentx, Inc. Gastrointestinal sleeve device and methods for treatment of morbid obesity
US7025791B2 (en) * 2002-12-02 2006-04-11 Gi Dynamics, Inc. Bariatric sleeve
KR100954560B1 (en) * 2003-01-10 2010-04-23 삼성전자주식회사 Method for recovering received data error in mobile communication system serving multimedia broadcast/multicast service
US7291160B2 (en) * 2003-03-17 2007-11-06 Delegge Rebecca Intragastric catheter
US20060058829A1 (en) * 2003-03-19 2006-03-16 Sampson Douglas C Intragastric volume-occupying device
US6981980B2 (en) * 2003-03-19 2006-01-03 Phagia Technology Self-inflating intragastric volume-occupying device
US7175638B2 (en) * 2003-04-16 2007-02-13 Satiety, Inc. Method and devices for modifying the function of a body organ
BR0302240B8 (en) * 2003-06-24 2013-02-19 semi-stationary balloon in the gastric antrum with anchor rod for weight loss induction in humans.
KR20030068070A (en) * 2003-06-26 2003-08-19 이정환 The method of endoscopic ballooning for the treatment of obesity
US20090259236A2 (en) * 2003-07-28 2009-10-15 Baronova, Inc. Gastric retaining devices and methods
US20050055365A1 (en) * 2003-09-09 2005-03-10 I.V. Ramakrishnan Scalable data extraction techniques for transforming electronic documents into queriable archives
US8206456B2 (en) * 2003-10-10 2012-06-26 Barosense, Inc. Restrictive and/or obstructive implant system for inducing weight loss
US20050080444A1 (en) * 2003-10-14 2005-04-14 Kraemer Stefan J.M. Transesophageal gastric reduction device, system and method
US7147650B2 (en) * 2003-10-30 2006-12-12 Woojin Lee Surgical instrument
US7347863B2 (en) * 2004-05-07 2008-03-25 Usgi Medical, Inc. Apparatus and methods for manipulating and securing tissue
US8475476B2 (en) * 2004-06-01 2013-07-02 Cook Medical Technologies Llc System and method for accessing a body cavity
KR101259770B1 (en) * 2004-07-28 2013-05-03 에디컨인코포레이티드 Minimally invasive medical implant and insertion device and method for using the same
CA2584019C (en) * 2004-10-18 2014-09-16 Tyco Healthcare Group Lp Structure for applying sprayable wound treatment material
US7682372B2 (en) * 2004-12-22 2010-03-23 Incisive Surgical, Inc. Sequential tissue forceps for use in tissue fastening
US7896894B2 (en) * 2005-08-05 2011-03-01 Ethicon Endo-Surgery, Inc. Apparatus for single pass gastric restriction
US7771440B2 (en) * 2005-08-18 2010-08-10 Ethicon Endo-Surgery, Inc. Method and apparatus for endoscopically performing gastric reduction surgery in a single pass
US7896890B2 (en) * 2005-09-02 2011-03-01 Ethicon Endo-Surgery, Inc. Method and apparatus for endoscopically performing gastric reduction surgery in a single step
US20070213749A1 (en) * 2006-03-08 2007-09-13 Olympus Medical Systems Corp. Medical procedure performed inside abdominal cavity
US20090030284A1 (en) * 2007-07-18 2009-01-29 David Cole Overtube introducer for use in endoscopic bariatric surgery
JP5581209B2 (en) * 2007-07-18 2014-08-27 ボストン サイエンティフィック サイムド,インコーポレイテッド Endoscopic implant system
US8652150B2 (en) * 2008-05-30 2014-02-18 Ethicon Endo-Surgery, Inc. Multifunction surgical device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5403326A (en) * 1993-02-01 1995-04-04 The Regents Of The University Of California Method for performing a gastric wrap of the esophagus for use in the treatment of esophageal reflux
FR2768324A1 (en) * 1997-09-12 1999-03-19 Jacques Seguin Surgical instrument for joining soft tissues through percutaneous access
WO2005037152A1 (en) * 2003-10-10 2005-04-28 Synecor, Llc Devices and methods for retaining a gastro-esophageal implant
WO2007041598A1 (en) * 2005-10-03 2007-04-12 Barosense, Inc. Endoscopic plication devices and methods

Cited By (90)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8845753B2 (en) 2001-08-27 2014-09-30 Boston Scientific Scimed, Inc. Satiation devices and methods
US9107727B2 (en) 2001-08-27 2015-08-18 Boston Scientific Scimed, Inc. Satiation devices and methods
US10080677B2 (en) 2001-08-27 2018-09-25 Boston Scientific Scimed, Inc. Satiation devices and methods
US9872786B2 (en) 2001-08-27 2018-01-23 Boston Scientific Scimed, Inc. Gastro-esophageal implants
US9844453B2 (en) 2001-08-27 2017-12-19 Boston Scientific Scimed, Inc. Positioning tools and methods for implanting medical devices
US9788984B2 (en) 2001-08-27 2017-10-17 Boston Scientific Scimed, Inc. Satiation devices and methods
US8992457B2 (en) 2001-08-27 2015-03-31 Boston Scientific Scimed, Inc. Gastrointestinal implants
US9358144B2 (en) 2001-08-27 2016-06-07 Boston Scientific Scimed, Inc. Gastrointestinal implants
US9254214B2 (en) 2001-08-27 2016-02-09 Boston Scientific Scimed, Inc. Satiation devices and methods
US9138340B2 (en) 2001-08-27 2015-09-22 Boston Scientific Scimed, Inc. Gastro-esophageal implants
US9180036B2 (en) 2001-08-27 2015-11-10 Boston Scientific Scimed, Inc. Methods for implanting medical devices
US9445791B2 (en) 2003-10-10 2016-09-20 Boston Scientific Scimed, Inc. Systems and methods related to gastro-esophageal implants
US9180035B2 (en) 2003-10-10 2015-11-10 Boston Scientific Scimed, Inc. Devices and methods for retaining a gastro-esophageal implant
US9248038B2 (en) 2003-10-10 2016-02-02 Boston Scientific Scimed, Inc. Methods for retaining a gastro-esophageal implant
US10285836B2 (en) 2003-10-10 2019-05-14 Boston Scientific Scimed, Inc. Systems and methods related to gastro-esophageal implants
US10098773B2 (en) 2004-04-26 2018-10-16 Boston Scientific Scimed, Inc. Restrictive and/or obstructive implant for inducing weight loss
US9314361B2 (en) 2006-09-15 2016-04-19 Boston Scientific Scimed, Inc. System and method for anchoring stomach implant
US10537456B2 (en) 2007-07-18 2020-01-21 Boston Scientific Scimed, Inc. Endoscopic implant system and method
US9545249B2 (en) 2007-07-18 2017-01-17 Boston Scientific Scimed, Inc. Overtube introducer for use in endoscopic bariatric surgery
US9456825B2 (en) 2007-07-18 2016-10-04 Boston Scientific Scimed, Inc. Endoscopic implant system and method
US8945167B2 (en) 2007-12-31 2015-02-03 Boston Scientific Scimed, Inc. Gastric space occupier systems and methods of use
US7909222B2 (en) 2008-03-18 2011-03-22 Barosense, Inc. Endoscopic stapling devices and methods
US7922062B2 (en) 2008-03-18 2011-04-12 Barosense, Inc. Endoscopic stapling devices and methods
US7909219B2 (en) 2008-03-18 2011-03-22 Barosense, Inc. Endoscopic stapling devices and methods
US9636114B2 (en) 2008-03-18 2017-05-02 Boston Scientific Scimed, Inc. Endoscopic stapling devices
US8020741B2 (en) 2008-03-18 2011-09-20 Barosense, Inc. Endoscopic stapling devices and methods
WO2009117533A3 (en) * 2008-03-18 2009-11-12 Barosense, Inc. Endoscopic stapling devices and methods
AU2009225570B2 (en) * 2008-03-18 2014-07-17 Boston Scientific Scimed, Inc. Endoscopic stapling devices and methods
US7909223B2 (en) 2008-03-18 2011-03-22 Barosense, Inc. Endoscopic stapling devices and methods
US7913892B2 (en) 2008-03-18 2011-03-29 Barosense, Inc. Endoscopic stapling devices and methods
US7721932B2 (en) 2008-03-18 2010-05-25 Barosense, Inc. Endoscopic stapling devices and methods
WO2009117533A2 (en) * 2008-03-18 2009-09-24 Barosense, Inc. Endoscopic stapling devices and methods
US8864008B2 (en) 2008-03-18 2014-10-21 Boston Scientific Scimed, Inc. Endoscopic stapling devices and methods
US9451956B2 (en) 2008-11-10 2016-09-27 Boston Scientific Scimed, Inc. Multi-fire stapling systems
US10368862B2 (en) 2008-11-10 2019-08-06 Boston Scientific Scimed, Inc. Multi-fire stapling methods
US11202627B2 (en) 2008-11-10 2021-12-21 Boston Scientific Scimed, Inc. Multi-fire stapling systems and methods for delivering arrays of staples
US9962278B2 (en) 2009-04-03 2018-05-08 Metamodix, Inc. Modular gastrointestinal prostheses
US9044300B2 (en) 2009-04-03 2015-06-02 Metamodix, Inc. Gastrointestinal prostheses
US10322021B2 (en) 2009-04-03 2019-06-18 Metamodix, Inc. Delivery devices and methods for gastrointestinal implants
US9278019B2 (en) 2009-04-03 2016-03-08 Metamodix, Inc Anchors and methods for intestinal bypass sleeves
US9173760B2 (en) 2009-04-03 2015-11-03 Metamodix, Inc. Delivery devices and methods for gastrointestinal implants
US8702642B2 (en) 2009-07-10 2014-04-22 Metamodix, Inc. External anchoring configurations for modular gastrointestinal prostheses
US11950778B2 (en) 2010-05-21 2024-04-09 Boston Scientific Scimed, Inc. Tissue-acquisition and fastening devices and methods
WO2014008289A2 (en) 2012-07-02 2014-01-09 Barosense, Inc. Stapler for forming multiple tissue plications
EP2819593A4 (en) * 2012-07-02 2016-01-06 Boston Scient Scimed Inc Stapler for forming multiple tissue plications
CN104394779A (en) * 2012-07-02 2015-03-04 波士顿科学西美德公司 Stapler for forming multiple tissue plications
AU2013286733B2 (en) * 2012-07-02 2017-09-14 Boston Scientific Scimed, Inc. Stapler for forming multiple tissue plications
US10743869B2 (en) 2012-07-02 2020-08-18 Boston Scientific Scimed, Inc. Stapler for forming multiple tissue plications
US9907553B2 (en) 2012-07-02 2018-03-06 Boston Scientific Scimed, Inc. Stapler for forming multiple tissue plications
US11793839B2 (en) 2013-01-15 2023-10-24 Metamodix, Inc. System and method for affecting intestinal microbial flora
US10159699B2 (en) 2013-01-15 2018-12-25 Metamodix, Inc. System and method for affecting intestinal microbial flora
US11911044B2 (en) 2013-12-17 2024-02-27 Standard Bariatrics, Inc. Resection line guide for a medical procedure and method of using same
US10987108B2 (en) 2013-12-17 2021-04-27 Standard Bariatrics, Inc. Resection line guide for a medical procedure and method of using same
US11812962B2 (en) 2014-03-29 2023-11-14 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US10624638B2 (en) 2014-03-29 2020-04-21 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US11717295B2 (en) 2014-03-29 2023-08-08 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US10542986B2 (en) 2014-03-29 2020-01-28 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US11633184B2 (en) 2014-03-29 2023-04-25 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US11510672B2 (en) 2014-03-29 2022-11-29 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US11096686B2 (en) 2014-03-29 2021-08-24 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US10595892B2 (en) 2015-04-20 2020-03-24 Olympus Corporation Tissue removal system
EP3289989A4 (en) * 2015-04-20 2019-05-01 Olympus Corporation Tissue removal system
US11324620B2 (en) 2015-09-16 2022-05-10 Standard Bariatrics, Inc. Systems and methods for measuring volume of potential sleeve in a sleeve gastrectomy
EP3189792A1 (en) * 2016-01-07 2017-07-12 Covidien LP Surgical fastener apparatus
US10966717B2 (en) 2016-01-07 2021-04-06 Covidien Lp Surgical fastener apparatus
US9622897B1 (en) 2016-03-03 2017-04-18 Metamodix, Inc. Pyloric anchors and methods for intestinal bypass sleeves
US20170252195A1 (en) 2016-03-03 2017-09-07 Metamodix, Inc. Pyloric anchors and methods for intestinal bypass sleeves
US10729573B2 (en) 2016-03-03 2020-08-04 Metamodix, Inc. Pyloric anchors and methods for intestinal bypass sleeves
US10751209B2 (en) 2016-05-19 2020-08-25 Metamodix, Inc. Pyloric anchor retrieval tools and methods
US11666470B2 (en) 2016-05-19 2023-06-06 Metamodix, Inc Pyloric anchor retrieval tools and methods
US10548597B2 (en) 2017-08-14 2020-02-04 Standard Bariatrics, Inc. Surgical stapling devices and methods of using same
US10966721B2 (en) 2017-08-14 2021-04-06 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US10849623B2 (en) 2017-08-14 2020-12-01 Standard Bariatrics, Inc. Buttress systems and methods for surgical stapling devices and end effectors
US11559305B2 (en) 2017-08-14 2023-01-24 Standard Bariatrics, Inc. Stapling systems and methods for surgical devices and end effectors
US11911033B2 (en) 2017-08-14 2024-02-27 Standard Bariatrics, Inc. Stapling systems and methods for surgical devices and end effectors
US11197672B2 (en) 2017-08-14 2021-12-14 Standard Bariatrics, Inc. Buttress systems and methods for surgical stapling devices and end effectors
US11871927B2 (en) 2017-08-14 2024-01-16 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US10912562B2 (en) 2017-08-14 2021-02-09 Standard Bariatrics, Inc. End effectors, surgical stapling devices, and methods of using same
US10687814B2 (en) 2017-08-14 2020-06-23 Standard Bariatrics, Inc. Stapling systems and methods for surgical devices and end effectors
CN111565649A (en) * 2017-12-21 2020-08-21 爱惜康有限责任公司 Stapling instrument comprising a tissue driving device
US11602449B2 (en) 2019-11-04 2023-03-14 Standard Bariatrics, Inc. Systems and methods of performing surgery using Laplace's law tension retraction during surgery
US11173060B2 (en) 2019-11-04 2021-11-16 Standard Bariatrics, Inc. Systems and methods of performing surgery using Laplace's law tension retraction during surgery
US11672533B2 (en) 2020-09-08 2023-06-13 Covidien Lp Laparoscopic transverse surgical stapling system
EP3964139A1 (en) * 2020-09-08 2022-03-09 Covidien LP Laparoscopic transverse surgical stapling system
US11452574B1 (en) 2021-03-23 2022-09-27 Standard Bariatrics, Inc. Systems and methods for preventing tissue migration in surgical staplers
US11819212B2 (en) 2021-08-13 2023-11-21 Cilag Gmbh International Staple forming features for circular surgical stapler
US11911039B2 (en) 2021-08-13 2024-02-27 Cilag Gmbh International Circular surgical stapler having staples with expandable crowns
US11666339B2 (en) 2021-08-13 2023-06-06 Cilag Gmbh International Circular surgical stapler for forming cross-pattern of staples
US11944310B2 (en) 2021-08-13 2024-04-02 Cilag Gmbh International Non-circular end effector features for surgical stapler
US11653926B2 (en) 2021-08-13 2023-05-23 Cilag Gmbh International Circular surgical stapler for forming pattern of non-tangential staples

Also Published As

Publication number Publication date
AU2008251300B2 (en) 2014-05-29
CA2691269A1 (en) 2008-11-20
EP2157918A1 (en) 2010-03-03
US20160262921A1 (en) 2016-09-15
AU2008251300A1 (en) 2008-11-20
EP2157918B1 (en) 2014-06-11
US20130306704A1 (en) 2013-11-21
CA2691269C (en) 2016-04-12
JP2010526644A (en) 2010-08-05
US20080294179A1 (en) 2008-11-27
JP5331104B2 (en) 2013-10-30

Similar Documents

Publication Publication Date Title
AU2008251300B2 (en) Devices and methods for stomach partitioning
EP2066243B1 (en) Endoscopic plication device
US8382775B1 (en) Methods, instruments and devices for extragastric reduction of stomach volume
US9314362B2 (en) Methods, instruments and devices for extragastric reduction of stomach volume
US20130138120A1 (en) Tissue acquisition devices and methods
US9254132B2 (en) Endoscopic plication device and method
US8357174B2 (en) Single fold device for tissue fixation
US7255675B2 (en) Devices and methods to treat a patient
US8906038B2 (en) Devices and methods for laparoscopic gastric tissue reconfiguration
CA2604427A1 (en) Single fold device for tissue fixation
EP2571427B1 (en) Tissue-acquisition and fastening devices
JP2009082692A (en) Device for injecting gas into interior of gastric cavity of patient

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08755318

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010508523

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2008251300

Country of ref document: AU

Ref document number: 2691269

Country of ref document: CA

Ref document number: 2008755318

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2008251300

Country of ref document: AU

Date of ref document: 20080512

Kind code of ref document: A