WO2008111666A1 - 非金属介在物数の測定方法およびそれに用いる鋳物試料採取用鋳型 - Google Patents

非金属介在物数の測定方法およびそれに用いる鋳物試料採取用鋳型 Download PDF

Info

Publication number
WO2008111666A1
WO2008111666A1 PCT/JP2008/054698 JP2008054698W WO2008111666A1 WO 2008111666 A1 WO2008111666 A1 WO 2008111666A1 JP 2008054698 W JP2008054698 W JP 2008054698W WO 2008111666 A1 WO2008111666 A1 WO 2008111666A1
Authority
WO
WIPO (PCT)
Prior art keywords
fracture surface
metallic inclusions
measuring
area
mold
Prior art date
Application number
PCT/JP2008/054698
Other languages
English (en)
French (fr)
Inventor
Mitsuyoshi Sato
Hiroshi Kawai
Yukio Kuramasu
Ryouji Abe
Original Assignee
Toyota Jidosha Kabushiki Kaisha
Nippon Light Metal Company, Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Jidosha Kabushiki Kaisha, Nippon Light Metal Company, Ltd. filed Critical Toyota Jidosha Kabushiki Kaisha
Priority to CN2008800011812A priority Critical patent/CN101568824B/zh
Priority to US12/444,724 priority patent/US8155430B2/en
Priority to KR1020097007096A priority patent/KR101122326B1/ko
Priority to EP08722094A priority patent/EP2075568A1/en
Publication of WO2008111666A1 publication Critical patent/WO2008111666A1/ja

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C9/00Moulds or cores; Moulding processes
    • B22C9/22Moulds for peculiarly-shaped castings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D2/00Arrangement of indicating or measuring devices, e.g. for temperature or viscosity of the fused mass
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D46/00Controlling, supervising, not restricted to casting covered by a single main group, e.g. for safety reasons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8851Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/94Investigating contamination, e.g. dust
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/20Metals
    • G01N33/202Constituents thereof
    • G01N33/2022Non-metallic constituents

Definitions

  • the present invention relates to a method for measuring the number of non-metallic inclusions, in particular, a rectangular fracture surface of a ceramic sample piece made of an aluminum alloy is imaged by an imaging means such as a CCD camera, and an image taken by the imaging means is obtained.
  • the present invention relates to a method for measuring the number of non-metallic inclusions in which color density processing is performed and binarization is performed with a predetermined threshold value, and the number of pixel classes having a predetermined size or more is measured, and a saddle sampling mold used for the method.
  • the K-mold method is known as a method for evaluating the quality of molten metal used in aluminum alloy products. According to this method, a relatively small amount of molten metal sample is collected at the site, inserted into a K-mold, and a measurer observes the fracture surface of the specimen, and the non-metallic inclusions such as oxide and film are observed. By measuring the number, it is possible to quickly inspect the quality (Japanese Utility Model Publication No. 5 2 — 1 7 4 4 9, hereinafter referred to as “old measurement method”).
  • the measurer measures the number of non-metallic inclusions present on the fractured surface through the naked eye or loupe, it requires skill and has a drawback that the measured value varies depending on the measurer. Therefore, the inventors have arranged the sample fracture surface in a special illumination device so that the operator can easily measure the measurement value and eliminate the variation of the measurement value by the operator, and the fracture surface is detected by the CCD camera.
  • a method of automatically measuring the number of inclusions with a predetermined particle size (for example, 100 m) or more by taking an image, processing the image with intensity contrast, and binarizing with a predetermined threshold Japanese Patent Laid-Open No. 2005-035 10: hereinafter referred to as “conventional automatic measurement method”.
  • the present invention eliminates the influence of shrinkage nests in the conventional automatic measurement method, ensures a high correlation with the measurement value by a skilled worker, and automatically measures the number of inclusions used in the method.
  • the purpose is to provide a mold. '
  • the present inventors have developed an innovative measurement method that eliminates the influence of the shrinkage nest by limiting the area of the fracture surface to be imaged in the conventional automatic measurement method. Completed the invention.
  • the edge of the fracture surface is first detected by the imaging means, and the fracture surface is detected at both ends of the fracture surface. It was decided to automatically set the measurement area with an area of 1 Z 4 to 2/3 of the area.
  • a rectangular fracture surface of a metallic specimen piece made of an aluminum alloy is imaged by an imaging means such as a CCD camera, and the image captured by the imaging means is subjected to color shading processing according to a predetermined threshold value.
  • a non-metallic inclusion measurement method that binarizes and measures the number of pixel classes of a predetermined size, detects edge edges of the fracture surface before imaging, and detects both edges of the fracture surface.
  • a method for measuring the number of non-metallic inclusions wherein a measurement region having an area of 1/4 to 23 of the fracture surface is automatically set.
  • a second invention is a saddle sample collecting saddle used in the first invention, and is composed of an upper mold having a groove and a lower mold with a gate, and the upper mold and the lower mold are assembled.
  • the bottom of the upper mold groove with the handle is provided with reverse V-shaped convex parts that extend in a direction perpendicular to the hot water flow direction at equal intervals.
  • This is a saddle sampling type characterized by the above.
  • the edge of the fracture surface is detected, and at both ends of the fracture surface, 1/4 of the area of the fracture surface.
  • a measurement area with an area of ⁇ 2-3 can be set automatically, so the image of the shrinkage nest present in the center of the fracture surface is not captured.
  • the captured image is color-shaded, binarized using a predetermined threshold, and the number of non-metallic inclusions such as oxides and films is measured by measuring the number of pixel clusters that are larger than a predetermined size. It can be measured more accurately.
  • the inner surface of the upper mold is provided with inverted V-shaped projections extending in the direction perpendicular to the flow direction of the molten metal at equal intervals. H is formed at equal intervals.
  • FIG. 1 is a perspective view showing a saddle sample collecting saddle used in the inclusion number measuring method of the present invention and a saddle sample obtained using the same.
  • Fig. 2 is a cross-sectional view taken along the center line of the bowl-shaped upper mold and bowl sample shown in Fig. 1.
  • FIG. 3 is a configuration diagram of a measuring apparatus used for performing the measuring method of the present invention.
  • FIG. 4 shows a sample in which sample pieces are combined and a measurement region in the fracture surface of each sample piece in the measurement method of the present invention.
  • FIG. 5 is a graph showing the correlation between the measurement value obtained by the automatic measurement method of the present invention and the measurement value obtained by an expert.
  • FIG. 6 is a graph showing a correlation between a value obtained by doubling a measurement value obtained by the automatic measurement method of the present invention and a measurement value obtained by a skilled person.
  • Fig. 7 is a graph showing the correlation between the measurement values obtained by the conventional automatic measurement method and the measurement values obtained by experts.
  • the image of the fractured surface area captured from the measurement area of the 1Z4 to 2Z3 area of the fractured surface is color shaded, binarized by a predetermined threshold,
  • a particle size for example, equivalent, 100 m in circular diameter
  • K value the number of non-metallic inclusions per soot specimen
  • the area of the measurement area is less than 14 of the area of the fracture surface, the probability of capturing the shrinkage nest into the image is lower, but the area of the measurement area per fracture surface becomes too small, so it is accurate.
  • it is necessary to increase the number of the soil sample pieces, and it is not preferable because it takes time to collect the soil sample pieces by K-mold and to create the soil sample pieces by the fracture.
  • the area of the measurement area exceeds 2 to 3 of the area of the fracture surface, the number of specimens can be reduced, but the probability of incorporating the shrinkage nest present at the center of the fracture surface into the image increases. It becomes difficult to accurately measure the number of non-metallic inclusions.
  • the K value is I want.
  • the value obtained by dividing by 5 the correlation between the value measured by the naked eye of an expert and the value measured by the new automatic measurement method is high, and it is possible to quickly check the quality of the molten aluminum alloy on site.
  • the pixel class “Yuichi” refers to an area where adjacent pixels are continuous. That is, the pixel may be two-dimensionally viewed and may be a long and slender thread like the cross section of the film-like inclusion, or may be an irregular triangle, rhombus, or circle. As a peculiar case, even if there is a blank area of pixels in the pixel class evening, this blank area is also used unless the blank area is surrounded by pixels and the blank area is not contiguous with the outer matrix. It will be treated as an integrated pixel class.
  • the matrix is a fractured surface area where non-metallic inclusions do not exist, and only non-metallic inclusions are detected in the area of the fractured surface to be imaged. It means the area to exclude.
  • the measurement area is
  • a plurality of surfaces are set inside the fracture surface, and the shape is rectangular.
  • a plurality of measurement areas of the area within the specified range are set inside the rectangular fracture surface at both ends of the fracture surface, and the shape thereof is rectangular. It is possible to efficiently capture the images of the fractured surfaces at both ends with a relatively low probability of the presence of shrinkage nests, while avoiding the easy central part. As a result, it has become possible to more accurately measure the number of non-metallic inclusions such as oxides and films from the fracture surface of a predetermined number of the specimen pieces while ensuring a larger area of the measurement region.
  • the area of the measurement region is 1/2 of the area of the fracture surface.
  • the area of the measurement region is 1/2 of the area of the fracture surface, it is possible to reliably avoid the central portion where the shrinkage nest is likely to occur, and to compare the probability that the shrinkage nest exists. Therefore, it is possible to efficiently capture images of the fracture surfaces at both ends.
  • a plurality of the fracture surfaces are arranged adjacent to each other on the long side and are substantially flush with each other, and a measurement region having an area within the specified range is simultaneously set on each fracture surface.
  • the fracture surfaces of a plurality of the specimen sample pieces are arranged substantially flush with each other, it becomes possible to simultaneously set the measurement area on the plurality of fracture surfaces, and to measure the number of non-metallic inclusions. Measurement efficiency can be improved while ensuring accuracy.
  • the specimen collected with the K-mold (saddle type) is smashed with a hammer or the like to break into several specimen pieces, but the flatness is high at that time. There was also a problem that the fracture surface could not be obtained.
  • a unique projection is provided on the K-mold (saddle mold) so that a notch is inserted at an appropriate location on the porcelain sample. A specimen sample with a high fracture surface is obtained.
  • the measurement area is imaged in a state where the plurality of fracture surfaces are fitted and fixed in a case.
  • the measurement area is imaged in a state where the plurality of fracture surfaces are fitted and fixed in the case, the measurement efficiency is improved while ensuring the accuracy of measurement of the number of non-metallic inclusions.
  • color shades H, S, V amount and the number of pixels are used as threshold values for binarizing and extracting the non-metallic inclusions.
  • the color density H, S, V amount and the number of pixels are used as threshold values for binarizing and extracting the non-metallic inclusions.
  • H S V is a type of model that defines a color space. Combined Used when drawing pictures in the evening or as a color sample. In this HSV, colors are expressed by hue, saturation value, and brightness value.
  • the matrix is extracted by color shades H, S, and V, so that the non-metallic inclusions are extracted. Extract the pixel cluster.
  • the matrix is colored shades H, S, By binarizing and extracting according to the V amount, the region other than the matrix is made a non-metallic inclusion region, so the non-metallic inclusion region (pixel cluster) can be extracted more stably.
  • the matrix in this case is a fracture surface area where non-metallic inclusions do not exist, and in the area of the fracture surface to be imaged, the area excluding only non-metallic inclusions. That means.
  • non-metallic inclusions When non-metallic inclusions are directly binarized and extracted by color shades of H, S, and V, the non-metallic inclusions are non-uniform in color and are a collection of many different colors. It becomes difficult to extract the pixel cluster corresponding to. As a result, the number of non-metallic inclusions (K value) by automatic measurement is smaller than the number of non-metallic inclusions (K value) measured by the naked eye.
  • the non-metallic inclusions are converted into a pixel cluster of 100 or more by converting an equivalent circle diameter of the pixel class evening from the number of pixels of the pixel class evening. Correspond.
  • FIG. 1 shows an embodiment of a saddle sample collecting saddle according to the second invention.
  • Die 1 0 0 (Fig. 1 (3)) consists of an upper die 1 1 0 (Fig. 1 (1)) having a concave groove 1 1 2 and a lower die 1 2 0 (Fig. 1 (1)). 1 (2)) and has an upper mold 1 1 0 and a lower mold 1 2 0 in an assembled state and has a substantially rectangular parallelepiped cavity 1 0 2 extending in the hot water flow direction (FIG. 1 (3))
  • the bottom of the upper groove 1 1 0 groove 1 1 2 1 1 2 A (Fig. 1 (1)) has an inverted V-shaped convex part 1 1 4 extending in the direction perpendicular to the direction of hot water flow 1 1 4 Is provided.
  • the shape of the inverted V-shaped convex portion 1 1 4 provided on the bottom surface 1 1 2 A (FIG. 1 (1)) of the concave groove 1 1 2 of the upper die 1 1 0 is As shown in Fig. 2 (1), the vertical section at line II-II in Fig. 1 (1) is an angle ⁇ at the apex of 45 ° to 90 °, and the height ⁇ is 0.3 to : L. 0 mm.
  • the porcelain sample is solidified and formed in the cavity 102.
  • the shape and dimensions of the V-notch 1 3 2 formed on the upper surface of the porcelain sample 1 30 are set within an appropriate range, so that the porcelain sample 1 3 Soil specimens S 1 to S 6 with 0 broken at V notch 1 3 2 are flat and have a relatively large fracture surface F (Fig. 2 (2): Fig. 1 (.4) Line III-1 Cross section in III).
  • the shape of the V-shaped convex part 1 1 4 (Fig. 1 (1)) of the upper die 110 is in the range of the angle ⁇ (Fig. 2 (1)) at the apex from 45 ° to 90 °. It is desirable to be within.
  • the angle ⁇ is less than 45 °, the effect of the V-notch 1 3 2 is excellent, but the melted molten metal does not adhere to the upper mold due to solidification contraction, so-called "Hugging" occurs, and it takes too much time to remove the mold, which reduces work efficiency.
  • the V-shaped convex part 1 14 of the upper mold 110 is easily damaged. If the angle ⁇ exceeds 90 °, the effect of the V-notch 1 3 2 will be reduced, the crack will be unstable, and it will be difficult to obtain a flat fracture surface F. It becomes.
  • the height H (FIG. 2 (1)) of the V-shaped convex portion 1 1 4 is 0.3 to 1.0 mm.
  • the height H is less than 0.3 mm, the effect of the V notch 1 3 2 is reduced, and it becomes difficult to obtain a flat fracture surface F.
  • the height H exceeds 1. O mm, the effect of the V-notch 1 3 2 is excellent, but the area of the fracture surface F becomes too small, which is not preferable for measurement.
  • the tilt angle of the tilting table 1 2 4 is less than 45 °, the flow of molten metal will not be vigorous, and the temperature drop of the molten metal on the tilting table 1 2 4 will increase, so the tip of the cavity 1 0 2 1 There is a possibility that the molten metal may not be filled up to 0 2 T. If the inclination angle i8 of the tilting table 1 2 4 exceeds 60 °, the molten metal flow becomes too vigorous and the film may be caught during pouring. ,
  • the upper die 110 or the lower die 120 has a gas vent groove (not shown) in the cavity tip portion 102 T.
  • the upper mold 1 1 0 or the lower mold 1 2 0 has a gas vent groove in the cavity tip 1 0 2 T, so that when air or molten metal in the cavity 1 0 2 is solidified. Efficient generation of hydrogen gas The molten metal can be filled up to the cavity tip 10 2 T while being removed from the tee 10 2.
  • the upper die 110 is preferably provided with a handle (not shown) for attaching to and detaching from the lower die 120.
  • the upper mold 1 1 0 and the lower mold 1 2 0 are provided with fitting means such as pins and pin holes on 1 1 6 XZ 1 1 6 Y and 1 2 6 X / 1 2 6 Y, respectively. It is equipped so that the vertical type 1 3 0 'can be assembled quickly and accurately.
  • fitting means such as pins and pin holes on 1 1 6 XZ 1 1 6 Y and 1 2 6 X / 1 2 6 Y, respectively. It is equipped so that the vertical type 1 3 0 'can be assembled quickly and accurately.
  • the AD C 12 alloy ingot was melted in a melting and holding furnace for 200 kg.
  • the molten metal in the holding furnace was subjected to strong agitation, so that the film on the surface of the molten metal was entrained in the molten metal, the number of films increased, and the molten metal was further agitated to precipitate at the bottom of the melting furnace.
  • non-metallic inclusions such as oxides and coatings in the molten metal are separated by floating and settling, so the cleanliness tends to increase. In this way, the number (concentration) of non-metallic inclusions such as oxides and coatings can be adjusted to some extent by using stirring and sedation.
  • a release material containing boron nitride (B N) is previously thinly applied to the inner surface of K-mold 100 by spraying or the like.
  • the upper mold 1 As shown in Fig. 1 (1), the upper mold 1
  • the upper mold has a handle for attaching to and detaching from the lower mold.
  • Fig. 2 (1) shows a partially enlarged view of the longitudinal section along line I I -I I in Fig. 1 (1).
  • the shape of the V-shaped convex portion 1 1 4 was 60 ° at the apex, and the height H was 0.6 mm.
  • the upper mold was removed by pulling the upper mold handle with the handle, and the V-notched solid sample solidified in the cavity was taken out.
  • This tilting table 1 2 4 suppresses the occurrence of film entrainment at the time of pouring, and gives an appropriate momentum to the flow of molten metal when pouring the molten metal into the pouring gate .1 2 2.
  • the molten metal is filled up to 10 2 T, and a well-shaped porcelain sample 1 3 0 can be obtained.
  • the upper die 110 has two vent holes (not shown) in the cavity tip portion 102 T.
  • the gas vent groove efficiently removes the hydrogen gas generated when the air and the molten metal filled in the cavity 100 solidify from the cavity 10 2, while removing the molten metal from the cavity tip 10 2. Can be easily filled up to T.
  • Hammer sample 1 30 is struck by hammering along 5 V-notches 1 3 2 with a hammer to make 6 sample samples S 1 to S 6.
  • V-notch 1 3 2 of appropriate shape and dimensions, a flat fracture surface F can be obtained by cracking the specimen.
  • the five specimens to be bundled here are one of the feeder side specimen S1 (only one fracture surface) and four of the intermediate specimens S2 to S5 (each of which has two fracture surfaces) Use one fracture surface) and set it as the first group (5 fracture surfaces). And one piece of the tip side sample piece S6 (fracture surface is only one piece) and four pieces of intermediate sample pieces S2 to S6 (of the two pieces of specimens on the opposite side of the first set) Use the fracture surface) and set the second set (5 fracture surface). Measure the total 10 fracture surfaces in the 1st set and 2nd set.
  • the measuring device 300 has a table T on which an aluminum sample S having a fracture surface F is arranged with the fracture surface F facing upward, and a cross section located above the table T and having a cross section.
  • a reflective dome D having a substantially semicircular, downwardly facing concave reflective surface 2, a light emitting diode (light source) 4 arranged along the inner edge of the concave reflective surface 2 of the reflective dome D, and a reflective dome D
  • a CCD camera (imaging means) 1 0 disposed above the opening 6 near the top.
  • the reflective dome D is attached to a support column 8 standing upright from a table T so that it can be moved up and down via a tool (not shown). Above the reflective dome D, a CCD camera 10 is attached to the camera support column 8 to be movable up and down. Yes.
  • the reflecting dome D has an outer peripheral surface 3 having a substantially semicircular cross section and a concave reflecting surface 2 having a similar shape and opening downward.
  • the concave reflecting surface 2 is a mirror surface curved with a predetermined curvature.
  • the light emitting diode 4 emits red light, for example. Also, near the top of the reflective dome D, an opening 6 having a square (square or rectangular) or circular shape is opened. A CCD camera 10 is positioned above the opening 6, and a light incident tube 12 containing the optical lens is broken through the opening 6 to break the aluminum sample S placed on the surface of the table T. Oriented to section F.
  • the total area of the measurement area is set to be 1/2 of the total area of 5 fracture surfaces (97 2 mm 2 ) (4 86 6 mm 2 ). Since the six specimens S 1 to S 6 have a total of 10 fracture surfaces as described above, two CCD camera imagings are required, and the total area of the 10 fracture surfaces (1 9 4 4 The area of 1 mm 2 (97 2 mm 2 ) is the total measurement area.
  • the image obtained by the two CCD camera images is binarized using the color shades H, S, V, and the number of pixels (n).
  • the threshold of V amount was found. Specifically, as described above. Power color density, H (color tone): 40 to 100, S (saturation): 0 to 40, V (lightness): 19 0 to 25 5
  • H color tone
  • S saturation
  • V lightness
  • a pixel cluster with a size of 0.1 mm or more existing on the 10 fracture surface was measured. Therefore, in the present invention, among the pixel clusters binarized and extracted by the threshold values of the color shades H, S, and V, a pixel cluster having an equivalent circle diameter (D) of 100 m or more is further extracted. As a result, consistency with the measurement values obtained by the old measurement method was ensured. At the same time, by removing the fine pixel class, we were able to remove the minute shadows on the fracture surface as noise.
  • pixel class Yuichi is a region where adjacent pixels are continuous. Refers to the area. Even if the pixels themselves are aligned vertically, horizontally, or diagonally on the screen, they are recognized as one rate class. In other words, the pixel may be two-dimensionally viewed and may be a long and slender thread like the cross section of a film-like inclusion, or may be an irregular triangle, rhombus, or circle. As a peculiar case, even if there is a blank area of pixels in the pixel class evening, this blank will be used as long as the blank area is surrounded by pixels and the blank area is not continuous with the outer matrix. It is treated as a single pixel cluster including the area.
  • the matrix is a fracture surface area where non-metallic inclusions do not exist, and means a region excluding only non-metallic inclusions in the area of the fracture surface to be imaged.
  • n is the number of pixels in one pixel class
  • s is the actual area per pixel
  • D is the equivalent circle diameter of one pixel cluster.
  • S is the actual area of the fracture surface per pixel. This is a value determined by the lens magnification used for the imaging of the C C D camera and the number of C C D elements.
  • the number of non-metallic inclusions in the entire area of the 10 fracture surface of five porcelain specimens was measured by an expert.
  • the expert uses a magnifying glass (magnifying glass) with a magnification of 10x to observe the entire area of the 10 fracture surface and remove the shrinkage nest, while the number of nonmetallic inclusions with a size of 0.1 mm or more ( K 1 Q value) was measured.
  • Table 1 shows the results of measurement of the number of non-metallic inclusions by the old measurement method and the number of non-metallic inclusions at both ends of the fracture surface (1 Z 2 of the total fracture surface area) by the image processing device. In this table, data of 45 samples from sample No. 1 to sample No. 45 are displayed.
  • the new automatic measurement method uses an image processing device to restrict the measurement area of each specimen to both ends of the fractured surface.
  • a two-area image was captured by a CCD camera and captured, and the image was processed with color shading, and the matrix was binarized and extracted according to the specified H, S, and V values, resulting in a non-metallic inclusion region. (Pixel cluster) was extracted and the number of pixel classes with an equivalent circular diameter of 100 m or more was measured. This operation was repeated twice on the front and back sides of the specimen, and the total number of non-metallic inclusions on the 10 fracture surfaces was counted. Since the measurement area is 1/2 of the total fracture surface area of the 10 fracture surface, Table 1 also shows the value obtained by doubling this measurement number (count).
  • Figure 5 shows the correlation between the number of skilled workers and the number of images measured by the image processing device (one count).
  • Figure 6 shows the correlation between the number of skilled workers and the number of images measured by the image processor (double the number of counts). From Fig. 5 and Fig. 6, the measured value of the number of non-metallic inclusions (K 1 Q value) by an expert who observes the entire fracture surface with a 10X magnifier, and the image processing device of the present invention. It has been found that there is a strong positive correlation with the measured value by the new automatic measurement method.
  • Table 2 shows the results of measuring the number of non-metallic inclusions using the old measurement method and the number of non-metallic inclusions for all fracture surfaces (total area of 10 fracture surfaces) using the image processing device. In this table, data from sample No. 1 to sample No. 25 Evening is displayed.
  • an expert uses a magnifying glass of 10 times, and observes the total area of the fracture surface for each of the specimens (a specimen in which five pieces of specimens are bundled).
  • the number of non-metallic inclusions such as oxides and coatings with a size of 100 / m or more was measured.
  • an image processing device is used to detect the edge of each specimen specimen (the entire fracture surface), set a rectangular measurement area, and capture the image of that area with a CCD camera.
  • the captured image is subjected to color shading and binarized with predetermined H, S, and V values, and the number of pixel classes with an equivalent circular diameter of 100 xm or more is measured.
  • H, S, and V values predetermined H, S, and V values
  • Figure 7 shows the correlation between the number of skilled workers measured and the number of images measured by the image processing device (one count). From Fig. 7, the measured value of the number of non-metallic inclusions (K 1 Q value) by an expert observing the entire fractured surface with a 10X magnifier and the conventional automatic measurement method using an image processing device It was found that there was no correlation with the measured values, or that there was a very weak correlation. This is because, in the case of an expert, a fine nest that tends to occur at the center of the fracture surface can be eliminated instantaneously. In the conventional automatic measurement method using an image processing device, Since the image is taken and binarized at a predetermined threshold to measure the number of pixel classes, the measured value is affected by a fine nest that tends to occur at the center of the fracture surface. Industrial applicability
  • the influence of shrinkage nest in the conventional automatic measurement method is eliminated.
  • a method for automatically measuring the number of inclusions while ensuring a high correlation with the measurement value by an expert, and a saddle sampling sampling mold used therefor are provided.

Abstract

従来法における引け巣の影響を排除し熟練者による測定値と高い相関性を確保して介在物数を自動計測する方法およびそれに用いる鋳物試料採取用鋳型を提供する。アルミニウム合金からなる鋳物試料片の矩形の破面をCCDカメラなどの撮像手段で撮像して、前記撮像手段により撮像された画像をカラー濃淡処理し、所定の閾値によって2値化して、所定サイズの画素クラスターの数を計測する非金属介在物の測定方法であって、前記撮像前に前記破面の端部エッジを検出し、前記破面の両端部に該破面の1/4~2/3の面積の測定領域を自動的に設定する非金属介在物数の測定方法。凹溝を有する上型と、湯口付き下型とから構成され、前記上型と前記下型とを組み立てた状態で、湯流れ方向に伸びる略直方体のキャビティを有し、前記取手付き上型の凹溝の底面には、湯流れ方向とは垂直な方向に伸びる逆V字型凸部を等間隔に設けた鋳物試料採取用鋳型。

Description

明 細 書 非金属介在物数の測定方法およびそれに用いる铸物試料採取用铸型 技術分野
本発明は、 非金属介在物数の測定方法、 特にアルミニウム合金か らなる铸物試料片の矩形の破面を C C Dカメラなどの撮像手段で撮 像して、 前記撮像手段により撮像された画像をカラー濃淡処理し、 所定の閾値によつて 2値化して、 所定サイズ以上の画素クラス夕一 の数を計測する非金属介在物数の測定方法およびそれに用いる铸物 試料採取用鍀型に関する。 背景技術
アルミニウム合金铸物に使用される溶湯の品質を.評価する方法と して、 K -モールド法が知られている。 この方法によると、 現場で 比較的少量の溶湯サンプルを採取して、 K -モールドに铸込み、 铸 物試料片の破面を測定者が観察し、 酸化物、 皮膜などの非金属介在 物の個数を計測することで、 迅速に品質を検査することができる ( 実公昭 5 2 — 1 7 4 4 9号公報 : 以下 「旧計測法」 と呼ぶ) 。
しかしながら、 測定者が肉眼またはルーペを通して、 破面に存在 する非金属介在物の個数を計測するため、 熟練を要するとともに、 測定者によって測定値にバラツキが生ずるという欠点があった。 そこで、 本発明者らは、 測定者による測定値のバラツキを無く し 、 現場で作業者が容易に測定できるよう、 特殊な照明装置に試料破 面を配置して、 C C Dカメラによってその破面を撮像し、 画像を力 ラー濃淡処理し所定の閾値によって 2値化処理して、 所定の粒径 ( 例えば 1 0 0 m ) 以上のサイズの介在物個数を自動計測する方法 を開発した (特開 2 0 0 5— 3 5 1 0号公報 : 以下 「従来の自動計 測法」 と呼ぶ) 。
しかし、 この従来の自動計測法による介在物個数の計測において も、 試料破面の全面を撮像するために、 破面に存在する細かな引け 巣による影も画像に取り込んでしまう。 このため、 熟練者が計測す る介在物個数と従来の自動計測法による介在物個数が著しく乖離す るケースが頻発していた。 発明の開示
本発明は、 従来の自動計測法における引け巣の影響を排除して、 熟練者による測定値と高い相関性を確保して介在物数を自動計測す る方法およびそれに用いる铸物試料採取用铸型を提供することを目 的とする。 '
本発明者らは、 鋭意研究した結果、 従来の自動計測法において、 撮像する破面の領域を限定することで、 前記引け巣の影響を除去す る画期的な測定方法を開発し、 本発明を完成させた。
アルミニウム合金溶湯が K -モールド中で凝固する際、 铸型冷却 によって試料の表面から凝固が始まり最終凝固部は試料中央となる ため、 前記引け巣の大半は、 試料破面の中央部に集中しやすい。 従 来の自動計測法では、 試料の破面の全領域から撮像された画像を使 用していたため、 試料中央部に存在する引け巣と酸化物、 皮膜など の非金属介在物の両方が検出されていた。 このため、 熟練者の肉眼 による測定値と従来の自動計測法による測定値の間の相関性は低く 、 現場で迅速なアルミニウム合金溶湯品質チェックを行う ことが困 難であった。
そこで、 これら引け巣の影響を除去するため、 まず撮像手段によ つて前記破面の端部エッジを検出し、 前記破面の両端部に該破面の 面積の 1 Z 4〜 2 / 3の面積の測定領域を自動的に設定することと した。
すなわち第 1発明は、 アルミニウム合金からなる铸物試料片の矩 形の破面を C C Dカメラなどの撮像手段で撮像して、 前記撮像手段 により撮像された画像をカラー濃淡処理し、 所定の閾値によって 2 値化して、 所定サイズの画素クラス夕一の数を計測する非金属介在 物の測定方法であって、 前記撮像前に前記破面の端部エッジを検出 し、 前記破面の両端部に該破面の 1 / 4〜 2 3の面積の測定領域 を自動的に設定することを特徴とする非金属介在物数の測定方法で ある。
第 2発明は、 第 1発明に用いる铸物試料採取用踌型であって、 凹 溝を有する上型と、 湯口付き下型とから構成され、 前記上型と前記 下型とを組み立てた状態で、 湯流れ方向に伸びる略直方体のキヤビ ティ を有し、 前記取手付き上型の凹溝の底面には、 湯流れ方向とは 垂直な方向に伸びる逆 V字型凸部を等間隔に設けたことを特徴とす る铸物試料採取用铸型である。
第 1発明によると、 C C Dカメラによって铸物試料片の破面を撮 像する前に、 前記破面の端部エッジを検出し、 前記破面の両端部に 該破面の面積の 1 / 4〜 2ノ 3の面積の測定領域を自動的に設定で きるので、 破面中央部に存在する引け巣の画像を取り込むことがな い。 この結果、 撮像された画像をカラ一濃淡処理し、 所定の閾値に よって 2値化して、 所定サイズ以上の画素クラスターの数を計測す ることにより、 酸化物や皮膜など非金属介在物数をより正確に測定 できる。
第 2発明によると、 前記上型の内面には、 湯流れ方向とは垂直な 方向に伸びる逆 V字型の凸部を等間隔に設けているので、 銬物試料 の上面には Vノ ッチが等間隔で形成される。 当該 Vノ ッチの部分で铸物試料を破断すると、 平坦な破面を有す るほぼ同一のサイズの铸物試料片を複数得ることができる。 このた め、 本発明の非金属介在物数の測定方法において、 正確な非金属介 在物数の測定を行う.ことが可能となる。 図面の簡単な説明
図 1 は、 本発明の介在物数測定方法に用いる铸物試料採取用铸型 およびそれを用いて得られる铸物試料を示す斜視図である。
図 2 は、 図 1 に示した踌型の上型および铸物試料の中心線におけ る断面図である。
図 3 は、 本発明の測定方法を行なうために用いる測定装置の構成 図である。
図 4は、 本発明の測定方法において、 試料片を組み合わせたサン プルおよび各試料片の破面内の測定領域を示す。
図 5 は、 本発明の自動測定方法による測定値と熟練者による測定 値との相関性を示すグラフである。
図 6 は、 本発明の自動測定方法による測定値を 2倍した値と、 熟 練者による測定値との相関性を示すグラフである。
図 7 は、 従来の自動測定方法による測定値と熟練者による測定値 との相関性を示すグラフである。 発明を実施するための最良の形態
上述のとおり、 破面の面積の 1 Z 4〜 2 Z 3の面積の測定領域か ら撮像された破面領域の画像をカラー濃淡処理し、 所定の閾値によ つて 2値化し、 さらに所定の粒径 (例えば、 等価,円直径で 1 0 0 m ) 以上の非金属介在物個数を計測することで、 铸物試料片 1個当 たりの非金属介在物個数 (以下 「K値」 と呼ぶ) の自動計測が可能 となった。
前記測定領域の面積が前記破面の面積の 1 4未満である場合、 引け巣を画像に取り込む確率はより低くなるが、 一破面当たりの測 定領域の面積が小さくなりすぎるため、 正確な測定をするために铸 物試料片の数を増やす必要があり、 K -モールドによる铸物試料の 採取、 破断による铸物試料片の作成に手間が掛かり好ましくない。 前記測定領域の面積が前記破面の面積の 2ノ 3 を超える場合、 铸物 試料片の数は少なくて済むが、 破面の中央部に存在する引け巣を画 像に取り込む確率が高くなり、 正確な非金属介在物数の測定をする ことが困難となる。
具体的には、 铸物試料片 5個 (= 1 0破面) の範囲内において測 定者が直接肉眼で計測した介在物数を铸物試料片 5で割ることによ り、 K値が求まる。 また、 K 1 Q値とは、 铸物試料片 5個 (= 1 0破 面) の範囲内において測定者が 1 0倍のルーペを介して計測した介 在物数を同様に铸物試料片 5で割ることにより求めた値である。 本 発明によると、 熟練者の肉眼による測定値と新自動計測法による測 定値の間の相関性は高くなり、 現場で迅速なアルミニウム合金溶湯 品質チェックを行う ことが可能となった。
ここに画素クラス夕一とは、 隣り合う画素同士が連続している領 域のことをいう。 すなわち、 画素を二次元的に見て、 皮膜状介在物 の断面のように細長い糸状のものであってもよいし、 不規則な三角 形、 菱形、 円形であってもよい。 特異な場合として、 画素クラス夕 一中に画素の空白領域があっても、 空白領域の周囲が画素に取り囲 まれていて空白領域が外側のマトリ ックスと連続していない限り、 この空白領域も含めて一体の画素クラス夕一として取り扱う ことと する。 ここでマ トリ ックスとは、 非金属介在物の存在しない破面領 域のことであり、 撮像される破面の領域中で、 非金属介在物のみを 除く領域のことを意味する。
第 1発明の 1つの望ましい実施形態においては、 前記測定領域は
、 前記破面の内側に複数設定され、 その形状が矩形である。
この望ましい実施形態においては、 前記規定範囲内の面積の測定 領域は、 矩形の破面の内側に前記破面の両端部に複数設定され、 そ の形状が矩形であるため、 引け巣の発生しやすい中央部を確実に回 避しつつ、 引け巣が存在する確率の比較的低い両端部の破面の画像 を効率的に撮像することが可能となる。 この結果、 前記測定領域の 面積をより大きく確保しつつ、 所定数の铸物試料片の破面から酸化 物や皮膜など非金属介在物数をより正確に測定することが可能とな つた。
第 1発明の別の望ましい実施形態においては、 前記測定領域の面 積は、 前記破面の面積の 1 / 2 とする。
この実施形態によると、 前記測定領域の面積は、 前記破面の面積 の 1 / 2であるため、 引け巣の発生しやすい中央部を確実に回避し つつ、 引け巣が存在する'確率の比較的低い両端部の破面の画像を効 率的に撮像することが可能となる。
第 1発明の別の望ましい実施形態においては、 複数の前記破面を 互いに長辺側で隣接させて略面一に並べ、 それぞれの破面に前記規 定範囲内の面積の測定領域を同時に設定する。
この実施形態によると、 複数の前記铸物試料片の破面を略面一に 並べているため、 複数の破面において、 前記測定領域を同時に設定 することが可能となり、 非金属介在物数の測定の正確度を確保しつ つ、 測定の効率化を図ることができる。 旧 K -モールド法において は、 K -モールド (铸型) で採取された铸物試料をハンマーなどに て叩き割って数個の铸物試料片に破断するが、 その際に平面度の高 い破面が得られないという問題点もあった。 この点について、 新 K-モールド法では、 K-モールド (铸型) に 独自の凸部を設けて、 铸物試料の適切な箇所にノ ッチが入るように 工夫がされているため、 平面度の高い破面を有する铸物試料片が得 られる。
第 1発明の別の望ましい実施形態においては、 前記複数の破面を ケースに嵌め込んで固定した状態で、 前記測定領域を撮像する。
この実施形態によると、 前記複数の破面をケースに嵌め込んで固 定した状態で、 前記測定領域を撮像するため、 非金属介在物数の測 定の正確度を確保しつつ、 測定を効率化することができる。
第 1発明の別の望ましい実施形態においては、 前記非金属介在物 を 2値化抽出する閾値として、 カラー濃淡 H、 S、 V量および画素 数を使用する。
この実施形態によると、 前記非金属介在物を 2値化抽出する閾値 として、 カ ラー濃淡 H、 S、 V量および画素数を使用する。 铸物試 料片の破面を C C Dカメラなどの撮像手段で撮像した後に画像を処 理することで、 色とサイズによる非金属介在物の識別が可能となり 、 測定者が肉眼で識別する非金属介在物数の測定に近い測定を行う ことが可能となる。
H S Vとは、 色空間を定義するモデルの一種である。 コンビユ ー 夕で絵を書く場合や、 色見本として使われる。 この H S Vでは、 色 を色相 (hue) 、 彩度 (saturation value) , 明度 (brightness val ue)によって表現する。
第 1発明の別の望ましい実施形態においては、 前記非金属介在物 を 2値化抽出する際に、 マ トリ ックスをカラー濃淡 H、 S、 V量に て抽出することにより、 前記非金属介在物の前記画素クラスターを 抽出する。
この実施形態によると、 まずマ トリ ックスをカラー濃淡 H、 S、 V量によって 2値化抽出して、 マ ト リ ックス以外の領域を非金属介 在物の領域とするため、 より安定して非金属介在物の領域 (画素ク ラスター) を抽出することができる。 この場合のマ 卜リ ックスとは 、 前述したように、 非金属介在物の存在しない破面領域のことであ り、 撮像される破面の領域中で、 非金属介在物のみを除く領域のこ とを意味する。
非金属介在物を直接カラー濃淡 H、 S、 V量によって 2値化抽出 すると、 非金属介在物の色は不均一であり、 多種類の色の集合体と なっているため、 非金属介在物に対応する画素クラスターを抽出す ることが困難となる。 結果的に自動計測による非金属介在物数 (K 値) は、 測定者が肉眼で計測する非金属介在物数 (K値) よりも小 さい値となる。
具体的には、 カラ一濃淡、 H (色相) : 4 0〜 1 0 5、 S (彩度 ) : 0〜 4 0、 V (明度) : 1 9 0〜 2 5 5の閾値によって、 まず マ ト リ ックスのみを 2値化抽出して、 それ以外の領域を非金属介在 物の領域 (画素クラスター) として抽出する。
第 1発明の別の望ましい実施形態においては、 前記非金属介在物 は、 前記画素クラス夕一の画素数から前記画素クラス夕一の等価円 直径を換算して、 1 0 0 以上の画素クラスターに対応する。
この実施形態によると、 画像に取り込まれる 1 0 0 / m未満の非 常に細かい引け巣をノイズとして除去することが可能となり、 測定 者が肉眼で識別する非金属介在物数の測定に更に近い測定ができる 。 旧計測法において、 測定者が肉眼で認識できる非金属介在物の大 きさ力 およそ 1 0 0 z m程度であることから、 新自動計測法にお いても、 同様の基準を採用することで、 デ一夕の整合性を確保でき る。
次に、 図 1 に第 2発明の铸物試料採取用铸型の一実施形態を示す 。 铸.型 1 0 0 (図 1 ( 3 ) ) は、 凹溝 1 1 2を有する上型 1 1 0 ( 図 1 ( 1 ) ) と、 湯口 1 2 2を備えた下型 1 2 0 (図 1 ( 2 ) ) と から構成され、 上型 1 1 0 と下型 1 2 0 とを組み立てた状態で、 湯 流れ方向に伸びる略直方体のキヤビティ 1 0 2を有し (図 1 ( 3 ) ) 、 上型 1 1 0の凹溝 1 1 2の底面 1 1 2 A (図 1 ( 1 ) ) には、 湯流れ方向とは垂直な方向に伸びる逆 V字型凸部 1 1 4が等間隔に 設けられている。
第 2発明の望ましい実施形態においては、 上型 1 1 0の凹溝 1 1 2の底面 1 1 2 A (図 1 ( 1 ) ) に設けた逆 V字型凸部 1 1 4の形 状は、 図 1 ( 1 ) の線 I I — I I における縦断面を図 2 ( 1 ) に示 したように、 頂点における角度 αが 4 5 ° 〜 9 0 ° であり、 高さ Η は、 0. 3〜 : L . 0 mmである。
この実施形態によると、 キヤビティ 1 0 2に铸物試料が凝固形成 される。 図 1 (4 ) に示すように、 铸物試料 1 3 0の上面に形成さ れる Vノ ッチ 1 3 2の形状、 寸法が適切な範囲内に設定されること により、 铸物試料 1 3 0を Vノ ッチ 1 3 2で破断した铸物試料片 S 1〜 S 6は平坦で比較的広い面積の破面 Fを有することになる (図 2 ( 2 ) : 図 1 (.4 ) の線 III一 IIIにおける断面) 。
そのために、 上型 1 1 0の V字型凸部 1 1 4 (図 1 ( 1 ) ) の形 状は、 頂点における角度 α (図 2 ( 1 ) ) が 4 5 ° 〜 9 0 ° の範囲 内であることが望ましい。 角度 αが 4 5 ° 未満である場合には、 V ノ ッチ 1 3 2の効果は優れているものの、 铸込まれた溶湯が凝固収 縮によって、 上型に凝着して外れなくなる、 いわゆる "抱きつき" が起こ り、 型外しに時間が掛かり過ぎて作業効率が低下する。 さ ら に上型 1 1 0の V字型凸部 1 1 4が破損し易くなるという欠点もあ る。 角度 αが 9 0 ° を超えると、 Vノ ッチ 1 3 2の効果が低下し、 割れ発生箇所が不安定になり易く、 平坦な破面 Fを得ることが困難 となる。
V字型凸部 1 1 4の高さ H (図 2 ( 1 ) ) は、 0. 3〜 1. 0 m mであることが望ましい。 高さ Hが 0. 3 mm未満の場合、 Vノ ッ チ 1 3 2の効果が低下し、 平坦な破面 Fを得ることが困難となる。 高さ Hが 1. O mmを超える場合、 Vノ ッチ 1 3 2の効果は優れて いるが、 破面 Fの面積が小さくなりすぎるため、 測定上好ましくな い。
第 2発明の別の望ましい実施形態においては、 下型 1 2 0 (図 1 ( 2 ) ) は、 铸型 1 0 0の湯口 1 2 2を構成するために傾斜角度 ;6 が 4 5 ° 〜 6 0 ° の傾斜台 1 2 4を備える。 - この実施形態によると、 下型 1 2 0は、 湯口に傾斜角度 ) 3 = 4 5 ° 〜 6 0 ° の傾斜台 1 2 4を備えるため、 採取された溶湯を湯口 1 2 2 に注ぎ込む際に溶湯の流れに適切な勢いがつき、 キヤビティ 1 0 2の先端部 1 0 2 Tまで溶湯が充填され、 形状の整った铸物試料 1 3 0 (図 1 ( 4 ) .) を得ることができる。
傾斜台 1 2 4の傾斜角度 が 4 5 ° 未満であると、 溶湯の流れに 勢いがつかず、 傾斜台 1 2 4での溶湯の温度低下も大きくなるため 、 キヤビティ 1 0 2の先端部 1 0 2 Tまで溶湯が充填されない虞が ある。 傾斜台 1 2 4の傾斜角度 i8が 6 0 ° を超えると、 溶湯の流れ に勢いがつきすぎて、 注湯時に皮膜を巻き込む虞があり好ましくな い。 、
第 2発明の別の望ましい実施形態においては、 上型 1 1 0または 下型 1 2 0は、 キヤ ビティ先端部 1 0 2 Tにガス抜き溝 (図示せず ) を有する。
この実施形態によると、 上型 1 1 0または下型 1 2 0は、 キヤビ ティ 先端部 1 0 2 Tにガス抜き溝を有するため、 キヤ ビティ 1 0 2 内の空気や溶湯が凝固する際に発生する水素ガスを効率的にキヤビ ティ 1 0 2から除去しつつ、 溶湯をキヤビティ先端 1 0 2 Tまで充 填させることができる。 なお、 上型 1 1 0は下型 1 2 0 との着脱用 に取手 (図示せず) を備えていることが望ましい。
また、 一般に上型 1 1 0 と下型 1 2 0にはそれぞれ 1 1 6 XZ 1 1 6 Yと 1 2 6 X/ 1 2 6 Yにピンとピン穴のような位置合わせ用 の嵌め合い手段を備えていて、 铸型 1 3 0'の組み立てを迅速かつ正 確に行なえるようになつている。 実施例
く試料の作製〉
AD C 1 2合金地金を 2 0 0 k g用の溶解兼保持炉で溶解した。 保持炉の溶湯は強撹拌を加えることで、 溶湯表面の皮膜が溶湯中に 巻き込まれ、 皮膜数は増加し、 さ らに溶湯が撹拌されることで、 溶 解炉の底に沈殿していた A 1203 , MgO, スピネル等酸化物粒子が溶湯 中に舞い上がることにより、 清浄度は低下する。 一方、 鎮静保持時 間を長く取ることで、 溶湯中の酸化物や皮膜などの非金属介在物は 浮上 , 沈降により分離するため、 清浄度は高くなる傾向にある。 こ のように撹拌、 鎮静作用を利用して、 適宜、 酸化物や皮膜などの非 金属介在物数 (濃度) をある程度調節することができる。
保持炉内の溶湯から柄杓にて約 2 0 0 gの溶湯を採取し図 1 ( 3 ) に示すような铸鉄製の K-モールド 1 0 0に適宜铸込んだ。 なお 、 予め K-モールド 1 0 0の内面には、 窒化硼素 (B N) を含む離 型材をスプレーなどによって薄く塗布する。 さ らに铸型 1 0 0を 1
5 0で程度に予熱することで、. 離型材の溶媒や水分を蒸発させて乾 燥させることが望ましい。
図 1 ( 1 ) に示しように、 K -モールド (铸型) 1 0 0の上型 1
1 0の凹溝 1 1 2の底部 1 1 2 Aには、 湯流れ方向とは垂直な方向 に伸びる逆 V字型凸部 1 1 4を等間隔に設けている。 図示はしてい ないが、 上型には下型との着脱用に取手が設けてある。
図 2 ( 1 ) に、 図 1 ( 1 ) の線 I I 一 I I における縦断面の部分 拡大図を示す。 V字型凸部 1 1 4の形状は、 頂点における角度ひが 6 0 ° であり、 高さ Hは、 0. 6 mmであった。 溶湯を铸込んだ後 、 取手付き上型の取手を手で引っ張ることによって、 上型を取り外 し、 キヤ ビティ 内で凝固した Vノ ッチ付きの铸物試料を取り出した
K-モールド (铸型) 1 0 0の下型 1 2 0は、 湯口 1 2 2に傾斜 角度 jS = 5 0 ° の傾斜台 1 2 4を備えて.いた。 この傾斜台 1 2 4に よって、 注湯時の皮膜巻き込みの発生も抑えつつ、 採取された溶湯 を湯口 .1 2 2に注ぎ込む際に溶湯の流れに適切な勢いがつき、 キヤ ビティ 1 0 2の先端部 1 0 2 Tまで溶湯が充填され、 形状の整った 铸物試料 1 3 0を得ることができる。
さらに上型 1 1 0は、 キヤビティ先端部 1 0 2 Tにガス抜き溝 ( 図示せず) を 2本備えている。 このガス抜き溝によって、 キヤビテ ィ 1 0 2内に充満していた空気や溶湯が凝固する際に発生する水素 ガスを効率的にキヤビティ 1 0 2から除去しつつ、 溶湯をキヤビテ ィ先端 1 0 2 Tまで容易に充填させることができる。
铸物試料 1 3 0を 5箇所の Vノ ッチ 1 3 2に沿ってハンマーにて 叩いて破断させ、 6個の铸物試料片 S 1〜 S 6 とする。 内訳は、 铸 物試料 1 3 0の押湯 R側の試料片 S 1 (破面 1つ : 押湯 Rは切り捨 てて他の試料片と同様の形状に調整) 、 先端 1 0 2 T側の試料片 S 6 (破面 1つ) 、 これらの中間の試料片 S 2〜 S 5 (計 4個、 各破 面 2つ) であり、 合計破面数 = 1 + 4 X 2 + 1 = 1 0破面となる。 適切な形状、 寸法の Vノ ッチ 1 3 2によって、 铸物試料を割って平 坦な破面 Fを得ることができる。 これら 6つの铸物試料片 S 1〜 S 6のうち 5つを、 互いに铸肌が接するように長辺側で重ねて束ね 5 破面を略面一に並べ、 ケースに嵌め込んで固定した。 ここで束ねる 5つの銬物試料片は、 押湯側試料片 S 1 の 1個 (破面は 1破面のみ ) と中間の試料片 S 2〜 S 5の 4個 (各 2破面あるうち一方の破面 を使用) で第 1組 ( 5破面) とする。 そして、 先端側試料片 S 6の 1個 (破面は 1 破面のみ) と中間の試料片 S 2〜 S 6の 4個 (各試 料 2破面のうち第 1組とは反対側の破面を使用) で第 2組 ( 5破面 ) とする。 第 1組と第 2組とで合計 1 0破面を測定する。
<破面の測定 >
測定には、 前述した本出願人の先願である特許文献 2 に開示した 測定装置を用いる。 ,
図 3 に示すように、 測定装置 3 0 0 は、 破断面 Fを有するアルミ 二ゥムのサンプル S を破断面 Fを上向きにして配置するテーブル T と、 このテーブル Tの上方に位置し断面がほぼ半円形で下向きの凹 形反射面 2 を有する反射ドーム Dと、 反射ドーム Dの凹形反射面 2 の内側縁に沿って配置された発光ダイオード (光源) 4 と、 反射ド —ム Dの頂部付近に明けた開口部 6の上方に配置した C C Dカメラ (撮像手段) 1 0 とを含む。
反射ドーム Dは、 テーブル Tから立設する支柱 8 に図示しない金 具を介して昇降可能に取り付けられ、 反射ドーム Dの上方には C C Dカメ ラ 1 0がカメラ支柱 8 に昇降可能に取り付けられている。 反 射ドーム D .は、 断面ほぼ半円形の外周面 3およびこれと相似形で下 向きに開口する凹形反射面 2 を有する。 凹形反射面 2は、 所定の曲 率でカーブした鏡面である。 この凹形反射面 2の内周縁に沿って取 り付けたリ ング 5 には、 上向き且つ内外 2列で突出する多数の発光 ダイオー ド 4がリ ング状に配置されている。 発光ダイオー ド 4は、 例えば赤色光を発光する。 また、 反射ドーム Dの頂部付近には、 平面形状が四角形 (正方形 または長方形) あるいは円形の開口部 6が開設されている。 開口部 6の上方には、 C C Dカメラ 1 0が位置し、 その光学レンズを内蔵 する入光筒 1 2は、 開口部 6を介して、 テーブル Tの表面上に配置 したアルミニウムのサンプル Sの破断面 Fに指向している。
図 4に示すように、 ケース 2 0 0内に上記第 1組のように銬物試 料片 5個 (例えば S 1〜 S 5 ) を嵌めこんでネジ 2 0 2でケース 2 0 0に固定してサンプル Sと し、 測定破面側を上に向けて、 図 4に 示す測定装置 3 0 0の反射ドーム Dの下に固定し、 上部に備えられ た C C Dカメラ 1 0によって、 5個の破面 Fを同時に撮像した。 次に、 ケース 2 0 0内に上記第 2組のように铸物試料片 5個 (本 実施例では S 2〜 S 6 ) を嵌め込んでネジ 2 0 2でケース 2 0 0に 固定し別のサンプル Sとし、 測定破面側を上に向けて、 図 4の測定 装置 3 0 0の反射ドーム Dの下に固定し、 上部に備えられた C C D カメラ 1 0によって、 5個の破面 Fを同時に撮像した。 すなわち、 1回の撮像で、 5破面の ®像が取り込まれ、 第 1組と第 2組の铸物 試料片では合計 1 0破面が存在するため、 C C Dカメラによる撮像 は 2回必要となる。
上記 C C Dカメラ 1 0で撮像する際、 モー ドが 2種類用意ざれて おり、 一方のモー ドは破面全面が撮像される場合 (比較例 : 従来の 自動計測法) であり、 他方のモー ドは撮像前に破面の端部エッジを 検出し、 各破面の両端部に適切な測定領域を自動的に設定すること ができる場合 (実施例 : 本発明の自動計測法) である。 後者の場合 、 図 4に示すように 1破面 F (断面積 : 3 6 mmX 5. 4 mm= 1 9 4. 4 mm2 ) の両端部にそれぞれ 1箇所、 計 2箇所の測定領域 M (総断面積 : 1 2. 1 5 mmX 4 mmX 2箇所 = 9 7:. 2 mm 2 ) を設けており、 この場合 C C Dカメラ 1 0 による撮像 1 回当たり の全測定領域の面積は、 5破面の合計面積 ( 9 7 2 mm2 ) の 1 / 2の面積 ( 4 8 6 mm2 ) となるように設定されている。 6個の铸 物試料片 S 1〜 S 6は、 前述のように合計で 1 0破面を有するため 、 2回の C C Dカメラ撮像が必要となり、 1 0破面の合計面積 ( 1 9 4 4 mm2 ) の 1 2の面積 ( 9 7 2 mm2 ) が全測定領域とな る。
次に 2回の C C Dカメラ撮像によって得られた画像をカラー濃淡 H、 S、 V量および画素数 (n ) を使用することで 2値化する。 本 発明者は、 多数の破面画像における非金属介在物像の色を解析する' ことで、 非金属介在物像と破面マ ト リ ックスとを色で区別するため のカラー濃淡 H、 S、 V量の閾値を見出した。 具体的には、 前述し たように.力ラー濃淡、 H (色調) : 4 0〜 1 0 5、 S (彩度) : 0 〜 4 0、 V (明度) : 1 9 0〜 2 5 5の閾値によって、 まずマト リ ックスのみを 2値化抽出して、 それ以外の領域を非金属介在物の領 域 (画素クラス夕一) として抽出する。 その後、 全測定領域 ( 9 7 2 mm2 ) において画素クラス夕一中の画素数が 1 0画素以上 (等 価円直径に換算して 1 0 0 以上) の画素クラスターの数を算出 した。
旧計測法において、 熟練者が非金属介在物数を計測する際、 1 0 破面に存在する 0. 1 mm以上のサイズの画素クラスターを計測し ていた。 そこで、 本発明においても前記カラー濃淡 H、 S、 V量の . 閾値によって 2値化抽出された画素クラスターのうち、 更に等価円 直径 (D) が 1 0 0 m以上の画素クラスターを抽出することによ り、 旧計測法による計測値との整合性を確保した。 同時に、 微細な 画素クラス夕一を除去することにより、 破面にできる微小な影をノ ィズとして除去することができた。
ここに画素クラス夕一とは、 隣り合う画素同士が連続している領 域のことをいう。 画素そのものが画面の縦、 横或いは斜めに一直線 に並んでいる場合であっても 1 つの画率クラス夕一と認識する。 す なわち、 画素を二次元的に見て、 皮膜状介在物の断面ように細長い 糸状のものであってもよいし、 不規則な三角形、 菱形、 円形であつ てもよい。 特異な場合と して、 画素クラス夕一中に画素の空白領域 があっても、 空白領域の周囲が画素に取り囲まれていて空白領域が 外側のマ トリ ックスと連続していない限り、 この空白領域も含めて 一体の画素クラスタ一と して取り扱う こととする。 ここでマ 卜 リ ツ クスどは、 非金属介在物の存在じない破面領域のことであり、 撮像 される破面の領域中で、 非金属介在物のみを除く領域のことを意味 する。 ここで、 n : 1 つの画素クラス夕一中の画素数、 s : ー画素 当たりの実面積、 D : 1 つの画素クラスタ一の等価円直径は下記の 関係にある。
n X s = π ( D / 2 ) 2
Sは一画素当たりの破面における実面積であるが、 これは C C D カメラの撮像に使用されるレンズ倍率と C C D素子の素子数によつ て決まる値である。
さ らに熟練者によって、 5つの铸物試料片の 1 0破面全領域にお ける非金属介在物の個数が計測された。 熟練者は 1 0倍の拡大鏡 ( ルーペ) を使用して、 1 0破面の全領域を観察しながら引け巣を排 除しつつ、 0 . 1 m m以上のサイズの非金属介在物数 (K 1 Q値) を 計測した。
く測定結果〉
〔実施例 : 本発明法による自動計測結果〕 表 1
Figure imgf000019_0001
表 1 に旧計測法による非金属介在物数測定結果および画像処理装 置による破面両端部 ( 1 0破面全面積の 1 Z 2 ) の非金属介在物数 測定結果を示す。 この表において、 試料 No. 1から試料 No. 45まで 4 5試料のデータが表示されている。
旧計測法では熟練者が 1 0倍のルーペを用いて、 それぞれの铸物 試料 (錶物片を 5片束ねた試料) について 1 0破面全面積を観察し てサイズ 1 0 0 / m以上の酸化物、 皮膜などの非金属介在物数 (K 1 0値) を計測した。
本発明による新規な自動計測法では画像処理装置を用いて、 それ ぞれの錶物試料について測定領域を破面両端部に絞り、 铸物試料片 5個の片側 5破面について、 その 1 Z 2面積の画像を C C Dカメラ で取り込み、 撮像された.画像をカラー濃淡処理し、 所定の H、 S 、 V値によってマ ト リ ックスを 2値化抽出することにより、 非金属介 在物の領域 (画素クラスター) を抽出し、 等価円直径 1 0 0 m以 上の画素クラス夕一の数を計測した。 この操作を铸物試料片の裏表 分 2回繰り返して、 合計 1 0破面の非金属介在物数を計測した。 計 測領域は 1 0破面の全破面面積の 1 / 2であるため、 この計測数 ( カウン ト数) を 2倍した値についても表 1 に記載している。
図 5 に熟練者計測数と画像処理装置による計測数 (カウント数 1 倍) との相関図を示す。 さらに図 6 に熟練者計測数と画像処理装置 による計測数 (カウン ト数 2倍) との相関図を示す。 図 5、 図 6か ら、 熟練者が 1 0倍のルーペで全破面を観察することによる非金属 介在物数の計測値 (K 1 Q値) と、 画像処理装置を用いた本発明の新 自動計測法による計測値との間に、 強い正の相関性の存在すること が判明した。 このことは、 熟練者の場合、 破面中央部に発生し易い 微細な巣を瞬時に排除することが可能であり、 画像処理装置を用い た新自動計測法において、 微細な巣の発生が少ない破面両端部の領 域のみの画像を撮像して、 所定の閾値で 2値化し画素クラス夕一数 を計測するため、 その計測値は微細な巣の影響を受け難いことを示 している。
〔比較例 : 従来法による自動計測結果〕
表 2
Figure imgf000021_0001
表 2 に旧計測法による非金属介在物数測定結果および画像処理装 置による全破面 ( 1 0破面全面積) の非金属介在物数測定結果を示 す。 この表において、 試料 No. 1から試料 No. 25まで 2 5試料のデー 夕が表示されている。
実施例の場合と同じく、 旧計測法では熟練者が 1 0倍のルーペを 用いて、 それぞれの铸物試料 (铸物片を 5片束ねた試料) について 1 0破面全面積を観察してサイズ 1 0 0 / m以上の酸化物、 皮膜な どの非金属介在物数を計測した。
従来の自動計測法では画像処理装置を用いて、 それぞれの铸物試 料片 (一破面全域) についてエッジを検出して、 矩形の測定領域を 設定し、 その領域の画像を C C Dカメラで取り込み、 撮像された画 像をカラー濃淡処理し、 所定の H、 S 、 V値によって 2値化して、 等価円直径 1 0 0 x m以上の画素クラス夕一の数を計測する。 この 操作を 1 0回繰り返すことにより、 1 0破面全域の非金属介在物数 の計測を行った。 撮像された破面面積は、 全破面面積であるため、 この計測数 (カウン ト数) について表 2 に記載している。
図 7 に熟練者計測数と画像処理装置による計測数 (カウント数 1 倍) との相関図を示す。 図 7から、 熟練者が 1 0倍のルーペで全破 面を観察することによる非金属介在物数の計測値 (K 1 Q値) と、 画 像処理装置を用いた従来の自動計測法による計測値との間に、 相関 性は認められないか、 あるいは非常に弱い相関性の存在することが 判明した。 このことは、 熟練者の場合、 破面中央部に発生し易い微 細な巣を瞬時に排除することが可能であり、 画像処理装置を用いた 従来の自動計測法において、 全破面領域の画像を撮像して、 所定の 閾値で 2値化し画素クラス夕一数を計測するため、 その計測値は破 面中央部に発生し易い微細な巣の影響を受けていることを示してい る。 産業上の利用可能性
本発明によれば、 従来の自動計測法における引け巣の影響を排除 して、 熟練者による測定値と高い相関性を確保して介在物数を自動 計測する方法およびそれに用いる铸物試料採取用铸型が提供される

Claims

1 . アルミニウム合金からなる铸物試料片の矩形の破面を C C D カメラなどの撮像手段で撮像して、 前記撮像手段により撮像された 画像をカラー濃淡処理し、 所定の閾値によって 2値化して、 所定サ ィズ以上の画素クラスターの数を計測する非金属介在物数の測定方 請
法であって、 前記撮像前に前記矩形の破面の短辺側の端部エッジ を検出し、 前記破面の両端部に該破面の面積の 1 4 〜 2 3の.面 積の測定領域を自動的に設定することを特徴とする非金属介在物数 の測定方法。
2 . 前記測定領域は、 前記破面の内側に囲複数設定され、 その形状 が矩形であることを特徴とする請求項 1 に記載の非金属介在物数の 測定方法。
3 . 前記測定領域の面積は、 前記破面の面積の 1 Z 2 とすること を特徴とする請求項 1 または請求項 2 に記載の非金属介在物数の測 定方法。
4 . 複数の前記破面を互いに長辺側で隣接させて略面一に並べ、 それぞれの破面に前記測定領域を同時に設定することを特徴とする 請求項 1 から請求項 3のうちいずれか 1項に記載の非金属介在物数 の測定方法。
5 . 前記複数の破面をケースに嵌め込んで固定した状態で、 前記 測定領域を撮像することを特徴とする請求項 4に記載の非金属介在 物数の測定方法。
6 . 前記非金属介在物を 2値化抽出する閾値として、 カラー濃淡 H、 S 、 V量および画素数を使用することを特徴とする請求項 1か ら請求項 5のうちいずれか 1項に記載の非金属介在物数の測定方法
7 . 前記非金属介在物を 2値化抽出する際に、 マ ト リ ックスを力 ラー濃淡 H、 S、 V量にて抽出することにより、 前記非金属介在物 の前記画素クラスターを抽出することを特徴とする請求項 6 に記載 の非金属介在物数の測定方法。
8 . 前記非金属介在物は、 前記画素クラスターの画素数から前記 画素クラス夕一の等価円直径を換算して、 1 0 0 ; m以上の画素ク ラスターに対応することを特徴とする請求項 6 または請求項 7 に記 載の非金属介在物数の測定方法。
9 . アルミニウム合金の溶湯品質を検査するための铸物試料採取 用铸型であって、 凹溝を有する上型と、 湯口付き下型とから構成さ れ、 前記上型と前記下型とを組み立てた状態で、 湯流れ方向に伸び る略直方体のキヤビティ を有し、 前記上型の凹溝の底面には、 湯流. れ方向とは垂直な方向に伸びる逆 V字型凸部を等間隔に設けたこと を特徴とする铸物試料採取用铸型。
1 0 . 前記 V字型凸部の形状は、 頂点における角度が 4 5 ° 〜 9 0 ° の範囲内にあり、 且つ前記 V字型凸部の高さは、 0 . 3 〜 1 .
0 m mであることを特徴とする請求項 9 に記載の铸物試料採取用铸 型。
1 1 . 前記湯口付き下型は、 湯口に傾斜角度 4 5 ° 〜 6 0 ° の傾 斜台を備えることを特徴とする請求項 9 または請求項 1 0 【こ記載の 铸物試料採取用铸型。
1 2' . 前記取手付き上型または前記湯口付き下型は、 キヤビティ 先端部にガス抜き溝を有することを特徴とする請求項 9から請求項 1 1 のうちいずれか 1項に記載の铸物試料採取用铸型。
PCT/JP2008/054698 2007-03-08 2008-03-07 非金属介在物数の測定方法およびそれに用いる鋳物試料採取用鋳型 WO2008111666A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN2008800011812A CN101568824B (zh) 2007-03-08 2008-03-07 非金属夹杂物数量的测定方法及用于该方法的铸件样品取得用铸模
US12/444,724 US8155430B2 (en) 2007-03-08 2008-03-07 Method of measurement of number of nonmetallic inclusions and casting mold for obtaining cast sample used for same
KR1020097007096A KR101122326B1 (ko) 2007-03-08 2008-03-07 비금속 개재물수의 측정 방법 및 그것에 사용하는 주물 시료 채취용 주형
EP08722094A EP2075568A1 (en) 2007-03-08 2008-03-07 Method of measuring number of nonmetallic inclusions and mold for taking of casting sample for use therein

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007058423A JP4859713B2 (ja) 2007-03-08 2007-03-08 非金属介在物数の測定方法
JP2007-058423 2007-03-08

Publications (1)

Publication Number Publication Date
WO2008111666A1 true WO2008111666A1 (ja) 2008-09-18

Family

ID=39759594

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2008/054698 WO2008111666A1 (ja) 2007-03-08 2008-03-07 非金属介在物数の測定方法およびそれに用いる鋳物試料採取用鋳型

Country Status (8)

Country Link
US (1) US8155430B2 (ja)
EP (1) EP2075568A1 (ja)
JP (1) JP4859713B2 (ja)
KR (1) KR101122326B1 (ja)
CN (1) CN101568824B (ja)
MY (1) MY148539A (ja)
TW (1) TWI391659B (ja)
WO (1) WO2008111666A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013189588A1 (en) 2012-06-19 2013-12-27 Laboratorios Del Dr. Esteve S.A. Heterocyclyl-substituted-phenyl derivatives for the treatment of erectile dysfunction
CN107167487A (zh) * 2017-06-26 2017-09-15 北京科技大学 一种电解提取钢中第二相粒子的集成装置及方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010036188A (ja) * 2008-07-31 2010-02-18 Nakanihon Diecast Kogyo Kk 被検査片成形用金型
TWI476398B (zh) * 2013-05-22 2015-03-11 China Steel Corp Correction Method of Water Heat and Heat Transfer Coefficient
CN110646580A (zh) * 2019-05-22 2020-01-03 广东韶钢松山股份有限公司 一种弹簧钢盘条非金属夹杂物的检测方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217449Y2 (ja) * 1973-02-06 1977-04-20
JPS5217449B2 (ja) 1972-08-03 1977-05-16
JPS5515033A (en) * 1978-07-20 1980-02-01 Toshiba Corp Testing method of bronze melt performed in front of furnace
JPS5835461A (ja) * 1981-08-27 1983-03-02 Dowa Mining Co Ltd 溶融金属のサンプラ−およびその製造法
JPH07193709A (ja) * 1993-12-27 1995-07-28 Canon Inc 画像評価方法及び装置
JPH10110211A (ja) * 1996-10-02 1998-04-28 Kitagawa Iron Works Co Ltd 炉前検査方法及びその装置
JPH10170502A (ja) * 1996-12-16 1998-06-26 Nippon Steel Corp 薄鋼板製品の評価方法
WO2004111619A1 (ja) * 2003-06-12 2004-12-23 Nippon Light Metal Company,Ltd. 不純物測定方法および装置
JP2005189089A (ja) * 2003-12-25 2005-07-14 Yamamoto Co Ltd 粒状被検査物状態判別装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7366344B2 (en) * 2003-07-14 2008-04-29 Rudolph Technologies, Inc. Edge normal process
US6947588B2 (en) * 2003-07-14 2005-09-20 August Technology Corp. Edge normal process
JP4707605B2 (ja) * 2006-05-16 2011-06-22 三菱電機株式会社 画像検査方法およびその方法を用いた画像検査装置
JP5086563B2 (ja) * 2006-05-26 2012-11-28 オリンパス株式会社 画像処理装置及び画像処理プログラム

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5217449B2 (ja) 1972-08-03 1977-05-16
JPS5217449Y2 (ja) * 1973-02-06 1977-04-20
JPS5515033A (en) * 1978-07-20 1980-02-01 Toshiba Corp Testing method of bronze melt performed in front of furnace
JPS5835461A (ja) * 1981-08-27 1983-03-02 Dowa Mining Co Ltd 溶融金属のサンプラ−およびその製造法
JPH07193709A (ja) * 1993-12-27 1995-07-28 Canon Inc 画像評価方法及び装置
JPH10110211A (ja) * 1996-10-02 1998-04-28 Kitagawa Iron Works Co Ltd 炉前検査方法及びその装置
JPH10170502A (ja) * 1996-12-16 1998-06-26 Nippon Steel Corp 薄鋼板製品の評価方法
WO2004111619A1 (ja) * 2003-06-12 2004-12-23 Nippon Light Metal Company,Ltd. 不純物測定方法および装置
JP2005003510A (ja) 2003-06-12 2005-01-06 Nippon Light Metal Co Ltd アルミニウムなどにおける非金属介在物などの測定方法およびこれに用いる測定装置
JP2005189089A (ja) * 2003-12-25 2005-07-14 Yamamoto Co Ltd 粒状被検査物状態判別装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013189588A1 (en) 2012-06-19 2013-12-27 Laboratorios Del Dr. Esteve S.A. Heterocyclyl-substituted-phenyl derivatives for the treatment of erectile dysfunction
CN107167487A (zh) * 2017-06-26 2017-09-15 北京科技大学 一种电解提取钢中第二相粒子的集成装置及方法

Also Published As

Publication number Publication date
KR20090068232A (ko) 2009-06-25
CN101568824A (zh) 2009-10-28
KR101122326B1 (ko) 2012-03-23
MY148539A (en) 2013-04-30
JP2008224220A (ja) 2008-09-25
CN101568824B (zh) 2013-05-15
US20100119145A1 (en) 2010-05-13
TWI391659B (zh) 2013-04-01
US8155430B2 (en) 2012-04-10
EP2075568A1 (en) 2009-07-01
JP4859713B2 (ja) 2012-01-25
TW200909806A (en) 2009-03-01

Similar Documents

Publication Publication Date Title
US20090263005A1 (en) Impurity measuring method and device
WO2008111666A1 (ja) 非金属介在物数の測定方法およびそれに用いる鋳物試料採取用鋳型
KR100903704B1 (ko) 쌀 및 현미의 외관 품위 측정장치 및 그 방법
JP2010210318A (ja) 粉塵の測定装置および発生源の推定方法
JP5706233B2 (ja) 鋼材成分識別装置及びそのプログラム
JP6414102B2 (ja) 精錬炉排出流の判定装置、精錬炉排出流の判定方法及び溶融金属の精錬方法
KR101143038B1 (ko) 전기로의 내부 영상을 이용한 용강량 측정 장치
CN1112587C (zh) 金属纯净度评价装置及其方法
CN107671013B (zh) 基于色选技术的大尺寸物料剔除工艺
JPH11337469A (ja) 画像解析による花粉計数方法および花粉計数装置
JP6795046B2 (ja) 溶鋼流中のスラグ検出のためのヒストグラム作成方法
US6432718B1 (en) Evaluation apparatus for cleanliness of metal and method thereof
JP2006349378A (ja) 汚染監視システム
KR20190075696A (ko) 미세 조류 세포수 측정 방법 및 장치
JP3853485B2 (ja) グラビア版セル面積率測定方法
JPH11306362A (ja) 画像解析装置
US9109531B2 (en) Method for testing casting quality and apparatus therefor
JP6614944B2 (ja) 金属製品の品質検査方法
JP3322824B2 (ja) 鋳型の湯面高さ計測方法
RU73068U1 (ru) Установка для измерения линейных размеров объектов
CN108838105A (zh) 一种铝锭质检及转移运输装置
KR20100066141A (ko) 금속의 미세조직 내 크랙유무 검출장치 및 검출방법
JP2005043260A (ja) 米粒の外観検査装置
TH95533B (th) วิธีของการวัดจำนวนของส่วนประกอบอโลหะและแม่พิมพ์การหล่อสำหรับการทำให้ได้ตัวอย่างการหล่อที่ถูกใช้สำหรับสิ่งเดียวกัน
TH95533A (th) วิธีของการวัดจำนวนของส่วนประกอบอโลหะและแม่พิมพ์การหล่อสำหรับการทำให้ได้ตัวอย่างการหล่อที่ถูกใช้สำหรับสิ่งเดียวกัน

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 200880001181.2

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 08722094

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008722094

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 1020097007096

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 12444724

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE