WO2008093008A2 - Procédé de fabrication de couches minces de gan par implantation et recyclage d'un substrat de départ - Google Patents

Procédé de fabrication de couches minces de gan par implantation et recyclage d'un substrat de départ Download PDF

Info

Publication number
WO2008093008A2
WO2008093008A2 PCT/FR2007/002100 FR2007002100W WO2008093008A2 WO 2008093008 A2 WO2008093008 A2 WO 2008093008A2 FR 2007002100 W FR2007002100 W FR 2007002100W WO 2008093008 A2 WO2008093008 A2 WO 2008093008A2
Authority
WO
WIPO (PCT)
Prior art keywords
helium
implantation
substrate
starting substrate
hydrogen
Prior art date
Application number
PCT/FR2007/002100
Other languages
English (en)
Other versions
WO2008093008A3 (fr
Inventor
Aurélie Tauzin
Jérôme DECHAMP
Frédéric Mazen
Florence Madeira
Original Assignee
Commissariat A L'energie Atomique
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Commissariat A L'energie Atomique filed Critical Commissariat A L'energie Atomique
Priority to EP07872387.1A priority Critical patent/EP2102904B1/fr
Priority to JP2009542132A priority patent/JP5412289B2/ja
Priority to US12/518,198 priority patent/US8778775B2/en
Publication of WO2008093008A2 publication Critical patent/WO2008093008A2/fr
Publication of WO2008093008A3 publication Critical patent/WO2008093008A3/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/76Making of isolation regions between components
    • H01L21/762Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
    • H01L21/7624Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology
    • H01L21/76251Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques
    • H01L21/76254Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using semiconductor on insulator [SOI] technology using bonding techniques with separation/delamination along an ion implanted layer, e.g. Smart-cut, Unibond
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02002Preparing wafers
    • H01L21/02005Preparing bulk and homogeneous wafers
    • H01L21/02032Preparing bulk and homogeneous wafers by reclaiming or re-processing

Definitions

  • the invention relates to a method for manufacturing GaN thin films (also referred to as thin films) for microtechnology applications.
  • the fracture thermal budget corresponds to the duration of the annealing required to obtain the fracture, for a given annealing temperature (it is easy to understand that the fracture time depends on the annealing temperature); the fracture thermal budget depends on the implantation conditions, in particular on the nature of the ions (or atoms) implanted, their dose, their energy, the implanted substrate, etc.). Step 2 of putting the implanted substrate in close contact with the stiffener must in principle be carried out on flat and perfectly clean surfaces. The problem is that, during its implementation, this intimate contact can not be effectively performed on the entire surface of the substrates:
  • the edges of the plates forming the substrates are generally chamfered and can not be brought into contact; we encounter this problem of non-bonding at the edge of plates for all the materials (Si, Ge 1 GaAs, GaN, Sapphire, SiGe, LiTaO 3, LiNbO 3, SiC, InP, etc.) and for all the plate diameters between 5 cm and 30 cm (between 2 inches and 12 inches in practice);
  • lateral dimension ZNC lateral dimension / (film thickness) of about 10
  • ZNT non-transferred areas
  • FIG. 1 represents a substrate 1, here in sapphire, on which a layer 2, here in GaN, was deposited and then subjected to a implantation leading to the formation of an implanted zone 2A.
  • a possible bonding layer 3 On this layer 2 is shown a possible bonding layer 3.
  • This layer 2 is in intimate contact, according to an interface 9, with another substrate 4, here also in sapphire, also provided with a possible bonding layer 5, for example similar to layer 3.
  • the substrates being chamfered the peripheral zones P are not glued.
  • the reference I represents a dust (remaining after an inefficient cleaning) trapped between the bonding surfaces, and locally reducing or eliminating the mechanical strength of the bonding interface 9.
  • the initially implanted substrate can, after peeling of a thin film during the fracture step, be recycled for other similar transfer cycles.
  • the thin film remains locally secured to the substrate at the level of the non-transferred zones, thus forming steps of thickness typically between 10 and 1000 nm (corresponding to the thickness of the thin film).
  • the implantation then the fracture generally showed roughness on the exposed surface of the substrate. It follows that the recycling of the substrate from which a thin film has just been detached generally requires particular planarization steps, in particular by mechanical polishing and / or etching (this is explained in particular in documents EP-A-1 427 002 and EP-A-1427001).
  • the object of the invention is to overcome the aforementioned drawbacks in the case of gallium nitride, that is to say to allow the detachment of a thin layer of GaN, or its transfer on a host substrate, by a fracture in realistic times on an industrial scale, while forming, during this fracture, free surfaces not involving significant planarization treatment (because not having the steps described above), so that the residue of the starting substrate can then be optionally reused (recycled), substantially in the state, for a new thin film forming cycle.
  • the object of the invention is also to allow a transfer on a host substrate at sufficiently low temperatures so as not to risk delamination between the starting substrate and the host substrate due to an excessive difference between the expansion coefficients. thermal of these substrates.
  • the invention proposes a method for manufacturing a GaN thin film from a starting substrate, of which at least one thick area of surface along a free surface of the starting substrate is GaN, comprising the following steps: :
  • the conditions of the invention make it possible, in terms of the phenomenon of detachment, to obtain surfaces of low roughness (without a significant step), and this for sufficiently low temperatures so as not to risk detachment in the event of transfer. on a host substrate.
  • the method advantageously also comprises a treatment for preparing the remainder of the starting substrate, before its recycling, involving at most one polishing of at most one micron in thickness (typically of the order of 0.2 microns ), or no treatment at all, - the starting substrate is, before detachment, intimate contact with a host substrate by said free face; advantageously, this bringing into intimate contact is a molecular bonding; preferably, at least one layer is deposited on the free surface of the starting substrate before being in intimate contact with the host substrate, in particular for the protection of one or other of these surfaces or to facilitate bonding ,
  • the fracture treatment comprises the application to the starting substrate, before such an intimate contact, an embrittlement treatment comprising a heat treatment and corresponding to at least 85% of the thermomechanical budget required to obtain the fracture of this substrate starting point at the depth of implantation of hydrogen,
  • this embrittlement treatment advantageously comprises a step of depositing a layer in vapor form
  • this embrittlement treatment advantageously comprises the application of mechanical stresses (for example light tensioning, because of contact with a layer having different thermal properties but having a small thickness (typically less than about one micron); ,
  • this embrittlement heat treatment is preferably carried out at a temperature of at most 400 ° C., preferably at most equal to 300 ° C.
  • this embrittlement treatment is for example principally constituted by a heat treatment of embrittlement carried out during at least 85% of the time required to obtain a thermal fracture
  • this embrittlement treatment advantageously corresponds to a thermomechanical budget of at least 95% of the budget necessary to obtain the detachment of the thin layer; it can theoretically be chosen greater than 99% or 99.99%, but to ensure that the starting substrate retains sufficient mechanical strength for its possible intimate contact with a host substrate, this budget is preferably at most equal to 99 % of the budget needed for the fracture,
  • the residual fracture treatment is advantageously carried out at a temperature at most equal to 250 ° C., for example at room temperature,
  • this treatment advantageously comprises the application of mechanical stresses, preferably at ambient temperature
  • the residual fracture treatment comprises the application of a heat treatment and / or detachment stress, for example by applying ultrasound and / or microwaves (of carefully chosen power and frequency),
  • the helium implantation dose is preferably between 1.10 17 and 2.10 17 He + / cm 2 (preferably of the order of 2.10 17 He + / cm 2 ) and the implantation dose of hydrogen is advantageously in the same range (1.10 17 and 2.10 17 H + / cm 2 ), preferably of the order also of 2.10 17 H + / cm 2 ); thus, advantageously, the implantation doses of hydrogen and helium are each substantially equal to 2.10 17 atoms / cm 2 ,
  • the cumulative implantation dose is between 3.10 17 atoms / cm 2 and 4.5 10 17 atoms / cm 2 , preferably between 3.5 10 17 atoms / cm 2 and 4 10 17 atoms / cm 2 , approximately,
  • the implantation energy for the helium implantation step is greater than the implantation energy for the hydrogen implantation step
  • the helium implantation energy is between 90 keV and 210 keV and the hydrogen implantation energy is between 60 keV and 120 keV, -
  • the method advantageously comprises, in addition, a finishing heat treatment leading to complete detachment of the entire thin layer, including in possible unbonded areas.
  • the invention proposes a method for manufacturing a GaN thin film from a starting substrate, at least one thick surface area along a free face.
  • the starting substrate is GaN, comprising the following steps:
  • the implantation dose consists entirely of helium, in the order of 4.10 17 atoms / cm 2 approximately (that is to say between 3.5 10 17 atoms / cm 2 and 4.5 10 17 atoms / cm 2 , or even between 3.75 10 17 atoms / cm 2 and 4.25 10 17 atoms / cm 2 ).
  • the invention leads to a delamination which easily extends to the entire section of the starting substrate (even if prolonged the fracture treatment), so regardless of the existence of local gluing defects, or the absence of bonding periphery; this helps to ensure that the surface exposed on the remainder of the starting substrate is clean and clean.
  • FIG. 1 is a block diagram showing a set of a GaN substrate deposited on a sapphire substrate and having been implanted, glued to another sapphire substrate, but having unglued areas
  • FIG. 2 is a block diagram showing the whole of FIG. 1, after separation at the level of the zone implanted, but having areas not transferred
  • - Figure 3 is a diagram of a first step of implementation of a method according to the invention
  • Figure 4 is a diagram of a second step of implementation of this
  • FIG. 5 is a schematic diagram of a heat treatment step of this method
  • FIG. 6 is an intimate contacting diagram with a second substrate
  • FIG. 7 is a diagram showing separation of the deparative substrate. t in a thin layer and a residue of substrate, ready to be recycled.
  • FIGS. 3 to 7 represent the main steps of an exemplary method of manufacturing a GaN thin film according to the invention:
  • thermo- embrittlement treatment step comprising in practice a heat treatment, preferably at a low temperature, for a given duration, this treatment corresponding to the application of a thermal budget (or thermomechanical if there is a application of mechanical stresses) advantageously representing at least 85% of the thermal (or thermo-mechanical) budget which would be necessary to obtain a separation or fracture by this heat treatment alone,
  • Steps 3 to 5 together constitute a fracture treatment capable of causing the detachment, with respect to the remainder of the starting substrate, of all the part of the GaN zone situated between the free face through which the implantation has been carried out. performed and the depth of implantation of the hydrogen.
  • the method of the invention is limited, for example, to step 3 conducted until detachment of the desired thin layer.
  • the starting substrate 11 is here entirely made of GaN.
  • it may be a substrate of which only a thick area of surface, along the free face of the substrate, is in GaN, this zone being a layer carried by a support possibly made of sapphire. This zone is sufficiently thick for the implantations to be made in the thickness of this zone.
  • thermomechanical budget corresponds to the energy input, in thermal or thermomechanical form, leading to the fracture and the percentage indicated is in practice given with reference to the time that would be necessary to reach this energy, at temperature and stress (if any) constant.
  • step 3 The heat treatment of step 3, combined or not with the application of stresses, causes the defects introduced by the implantations to evolve so as to form a weakened layer 13 ", substantially at the level of the layer 13, separating the future thin layer 15 and the future residue 16.
  • the surface 14 may be covered with a protective layer 18, for example oxide, before or after the implantation steps, this layer 18 may or may not be removed before putting in contact with the second substrate (step 4).
  • the invention lies particularly in the particular choice of implantation conditions in GaN, which have the effect that stages 1 and 2 lead to the formation of defects that change in temperature according to a particular mode.
  • implantation of gaseous ions H, He, etc
  • a substrate Si, Ge, GaN, etc
  • the defects normally evolve in size and density to form, substantially at the implantation depth, microcracks containing a gas phase of the implanted ion.
  • microcracks under the effect of the pressure of the gas, then cause local deformations of the free surface of the substrate in the form of blisters, or local detachments in the form of exfoliations.
  • the implantation conditions recommended by the invention lead to the formation in GaN of defects which evolve differently in temperature. Indeed, these original conditions lead, after treatment suitable thermal, even without application of a stiffener substrate, to a total detachment of the implanted surface film 15, without blistering or local exfoliations.
  • the implantation and heat treatment conditions of the invention are capable of causing for GaN a complete fracture of the starting substrate at the hydrogen implantation zone, without the presence of an effective stiffener is necessary (as thought by the skilled person).
  • the invention teaches to conduct advantageously the heat treatment (called “surfragilisation”) without stiffener substrate, it that is to say without massive stiffener (of thickness greater than several microns), so no limit due to a possible difference in coefficient of thermal expansion between the two substrates; and this treatment can be conducted "almost to the end", so as to allow (if desired), just before separation, the attachment to a possible substrate to facilitate the handling of the thin layer after separation (it is recalled that, in practice, the separation of a thin layer from a starting substrate residue, after this starting substrate has been fixed to a second substrate, is referred to as a transfer step, since the thin layer, initially part of the starting substrate, is finally secured to the second substrate). Thanks to the invention, even the non-bonded areas of the second substrate (in particular the peripheral zones, the defect areas of the substrate, the bonding defect areas corresponding to zones P, C and I of FIG. thanks to an
  • this heat treatment may be accompanied by mechanical stresses.
  • This step of "surfragilization" must not, if one wants to make a transfer, be carried out until a fracture in the level of the microcavities layer, but it can advantageously represent at least 85%, even 85% or even at least 99% (for example 99.99%) of the heat budget (and / or thermomechanical) of fracture, although it may seem prudent, to avoid an inadvertent fracture, not to exceed 99%, for example.
  • the step of placing in intimate contact with the second substrate forming host 7 is advantageously carried out by gluing (preferably a molecular bonding), and may involve the use of a bonding layer deposited on the surface 14 of the GaN substrate in addition. or replacing the protective layer 18.
  • a heat treatment for reinforcing this bonding may be provided, which contributes or not to the evolution of the defects of the layer 13 "(the thermal budget thus comprises two steps).
  • the final fracture step consists of a thermal and / or mechanical treatment.
  • the thermo-mechanical budget to be applied is all the more reduced as the treatment of over-embrittlement has been important.
  • the step of transferring the thin film to the second substrate can be carried out at room temperature, and therefore without heat treatment, simply by applying mechanical stresses, for example by inserting a blade.
  • the thin film 15 is completely detached from the initially implanted substrate, including at the level of the locally unbonded areas such as those marked C or I in FIG. 1, and also at the periphery (reference P in Figure 1).
  • the detachment of these zones P can be simultaneous with the detachment of the useful part (it is in practice the central part of the film) transferred to the second substrate (following the appropriate heat treatment, for example ) or require a specific fracture treatment, before or after detachment of this useful part.
  • the recycling of the initial substrate 1, after complete fracture therefore requires no heavy step of mechanical and / or chemical planarization to remove non-transferred areas (as is currently the case in the context of a standard process).
  • recycling can be prepared by a simple step of light chemical mechanical polishing which reduces the surface roughness after fracture with a minimum of material removal (of at most one micron, typically of the order of a hundred nm or of the order of 0.2 microns).
  • the substrates can be recycled directly after the fracture step, without any particular surface treatment, for example to carry out other GaN transfers.
  • PECVD Pulsma Enhanced Chemical
  • an annealing of 280 0 C -1h represents ⁇ 85% of the thermal budget of fracture at 28O 0 C, since under these conditions the fracture is obtained after 280 ° C-1 h10. It was found that the implantation depths thus obtained were 390 nm for He and 450 nm for hydrogen, that is to say they were substantially equal (to 60 nm). Furthermore, the very operation of PECVD deposition of the protective layer can induce heating and thus contribute to the over-embrittlement of the substrate.
  • the GaN substrate is then bonded by molecular adhesion to a solid sapphire stiffener, according to the following steps:
  • the fracture is then caused at the level of the implanted layer by a heat treatment. Since GaN and Sapphire have different coefficients of thermal expansion (GaN: ⁇ 5.8.10 "6 / K, Sapphire: ⁇ 8.10 " 6 / K), the temperature of the fracture heat treatment must be sufficiently low to avoid a separation of the structure. It has been considered here that the fracture heat treatment must be performed at T ° ⁇ 230 ° C. Surfragilization then makes it possible to obtain a fracture at 230 ° C. in ⁇ 13h. Without the step of over-embrittlement, the fracture time (that is to say, the fracture thermal budget) would have been 88h at 230 ° C.
  • This fracture step 230 ° C-13h results in the detachment of a film (or thin layer) of GaN thickness ⁇ 480nm, in principle over the entire surface of the implanted GaN substrate.
  • a central portion of the GaN film is obtained which is transferred onto the sapphire substrate (thus obtaining a GaN / SiO 2 / Sapphire structure which can be used for example for producing diodes of the type LED).
  • Another portion located on the GaN substrate ring is detached from the substrate in the form of a crown-shaped self-bearing membrane (symbolized by the ring 15A in FIG. 7).
  • the remainder 16 of the initially implanted GaN 11 substrate can then be recycled directly after the fracture in order to carry out several successive transfers, without an intermediate step of preparation of specific surface area between each transfer cycle, the aforementioned steps being henceforth applied to this residue 6, then to the the remainder of this residue after a new transfer, and so on. It has been verified that photos representing the remainder of a classical transfer (after implantation of hydrogen) very clearly show a change of appearance in the peripheral part, as well as in localized locations (inside the central zone). ), while photographs taken under the same conditions revealed a completely homogeneous appearance after fracture following the steps described above.
  • a crystalline GaN substrate ( 70 Ga 14 N) is covered with a SiO 2 bonding layer of 500 nm thickness, deposited by LPCVD (Low Pressure Chemical Vapor Deposition) at 900 ° C.
  • An overfragmentation annealing of 300 0 C - 44 min is then applied. It is specified that an annealing of 300 ° C-44min represents -97.7% of the fracture thermal budget at 300 ° C. since, under these conditions, the fracture is obtained after 300 ° C-45min.
  • the implantation depths thus obtained were 750 nm for He and 700 nm for hydrogen, that is to say they were substantially equal (to 50 nm).
  • the GaN substrate with the bonding layer is then adhesively bonded to a sapphire substrate.
  • the fracture is then caused at the level of the implanted layer by a heat treatment at T ° ⁇ 230 ° C. Surfragilization then makes it possible to obtain a fracture at 22O 0 C in ⁇ 16h. Without the step of over-embrittlement, the fracture time (that is to say, the thermal budget of this final fracture step) would have been 30 days at 220 ° C.
  • the fracture step 220 ° C-16h results in the detachment of a GaN film with a thickness ⁇ 480nm and the SiO2 bonding layer 500nm over the entire surface of the implanted GaN substrate.
  • part of the GaN film is transferred onto the sapphire substrate; a GaN / SiO2 / Sapphire structure is thus obtained which can be used, for example, for producing LED type diodes.
  • Another part, located on the The GaN substrate 1 is detached from the substrate in the form of a self-supported membrane.
  • the initially implanted GaN substrate is then recycled for further transfers, after a step of simple re-surfacing by CMP (for example, a few seconds of chemical-mechanical polishing) in order to eliminate the roughness related to the fracture.
  • CMP chemical-mechanical polishing
  • a crystalline GaN substrate ( 70 Ga 14 N) is covered with a 250 nm thick Si ⁇ 2 bonding layer deposited by PECVD (Plasma Enhanced Chemical Vapor Deposition) at 300 ° C.
  • An overfragmentation annealing of 495 ° C - 4h10min is then applied It is specified that an annealing of 495 ° C-4h10 min represents ⁇ 98% of the fracture thermal budget at 495 ° C since under these conditions the fracture is obtained after 495 ° C-4:15.
  • the implantation depths thus obtained were 390 nm for He and 450 nm for hydrogen, that is to say that they were substantially equal (to 60 nm).
  • the GaN substrate with the bonding layer is then adhesively bonded to a sapphire substrate.
  • the bonding is then consolidated by annealing at low temperature, for example 150 ° C-2h. This type of annealing does not contribute to significantly overfragilize the implanted GaN substrate, this annealing temperature being too low; it therefore does not contribute to the energy budget already provided to the starting support.
  • the fracture is then caused at the level of the implanted layer by the application of mechanical stresses.
  • a blade is for example inserted between the two bonded substrates (see arrow L in FIG. 7).
  • Part of the GaN film is transferred onto the sapphire substrate, thus obtaining a GaN / SiO 2 / Sapphire structure which can be used for example for the production of LED type diodes.
  • the residual fracture treatment is essentially mechanical, insufficiently bonded exclusion, ZNC, ...) are not detached from the GaN substrate, but an annealing at 400 ° C-1min makes it possible to eliminate these residual zones on the GaN substrate in the form of a self-supported membrane.
  • the entire film GaN is then detached, and one obtains on the remainder of the starting substrate a flat surface, without relief. This residue of the initially implanted GaN substrate can then be recycled for other transfers.
  • Quality delamination in a GaN substrate has in fact been observed, under the aforementioned implantation conditions, for a very wide range of doses of helium and hydrogen, respectively, between 10 17 atoms / cm 2 and 4.10 17 atoms / cm 2 , in particular the following pairs which may be noted that they correspond to total doses of between 3 and 4, preferably between 3.5 and 4 (in units corresponding to 10 17 atoms / cm 2 ):

Abstract

Un procédé de fabrication d'une couche mince en GaN à partir d'un substrat de départ dont au moins une zone épaisse de surface longeant une face libre de substrat de départ est en GaN, comprend les étapes suivantes : bombardement de ladite face libre du substrat de départ avec des ions Hélium et Hydrogène, l'hélium étant implanté en premier dans l'épaisseur de ladite zone épaisse et l'hydrogène étant implanté en second, les doses d'hélium et d'hydrogène étant chacune comprise entre 1.1017 atomes/cm2 et 4.1017 atomes/cm2, application au substrat de départ d'un traitement de fracture propre à provoquer le détachement, vis-à-vis d'un reliquat du substrat de départ, de toute la partie de la zone épaisse de GaN située entre la face libre et la profondeur d'implantation de l'hélium et de l'hydrogène. L'hélium est avantageusement implanté à une dose au moins égale à celle d'hydrogène, et peut même être implanté seul.

Description

Procédé de fabrication de couches minces de GaN par implantation et recyclage d'un substrat de départ
Domaine de l'invention
L'invention concerne un procédé de fabrication de couches minces de GaN (on parle aussi de films minces) pour des applications de microtechnologie.
Le procédé connu sous la dénomination « Smart Cut ® » permet le détachement d'un film mince et son transfert sur un support parfois appelé raidisseur par les étapes suivantes :
1. bombardement d'une face d'un substrat initial avec des ions ou espèces gazeuses (H ou gaz rares), afin d'implanter ces ions (ou atomes) en concentration suffisante pour créer une couche de microcavités, 2. mise en contact intime de cette face du substrat avec un second substrat appelé support ou raidisseur (typiquement par collage moléculaire),
3. fracture au niveau de la couche de microcavités, par l'application d'un traitement thermique et/ou d'une contrainte de détachement (par exemple, l'insertion d'une lame entre les deux substrats et/ou encore des efforts de traction et/ou de flexion et/ou de cisaillement, et/ou encore l'application d'ultrasons ou de micro-ondes de puissance et de fréquence judicieusement choisies), et
4. recyclage du substrat.
Dans le cas de la réalisation d'hétérostructures, par exemple dans le cas du report d'un film mince d'un matériau A sur un substrat de matériau B, lorsque l'étape 2 de mise en contact intime des deux substrats est suivie d'un traitement thermique (consolidation de la mise en contact intime (collage), ou fracture thermique), on peut assister au décollement ou à la rupture des deux substrats collés. En effet, de par leurs propriétés intrinsèques, les matériaux différents A et B ont généralement des coefficients de dilatation thermique (CTE en abrégé) différents. Plus les CTE sont différents, moins l'intégrité de la structure collée peut être maintenue à haute température. Ainsi, dans le cas d'un substrat GaN auto-porté d'épaisseur d'environ 325 microns (notée ~325μm) collé sur un substrat saphir d'épaisseur ~330μm, les deux substrats collés ne doivent pas en pratique être portés à une température au-delà de 2300C environ (soit pas au-delà de -23O0C avec la notation précitée) : en effet, au-delà de 23O0C, on assiste au décollement des deux substrats, c'est-à-dire à leur détachement l'un par rapport à l'autre au niveau de l'interface de collage. Cette faible tenue en température est particulièrement problématique pour l'étape 3 de fracture, puisque cette étape est généralement constituée en tout ou partie d'un traitement thermique, or les traitements thermiques sont conduits en pratique à des températures bien supérieures. La tenue en température des collages limite donc le traitement thermique de fracture.
Il est connu par le document US - A - 5 877 070 (concernant principalement le silicium, le carbure de silicium, le germanium ou le diamant) qu'une étape de sensibilisation, par traitement thermique (à température élevée) de la plaque implantée avant l'étape de collage, permet de diminuer le traitement thermique ultérieur de fracture. Le problème est que cette étape de sensibilisation est d'effet limité : en effet, elle ne doit pas induire de déformation de la surface sous forme de cloques (ou « blisters »), voire de zones exfoliées. Cela implique en pratique que la sensibilisation ne peut pas représenter plus de 10% environ du budget thermique de fracture; il en résulte que le traitement de fracture proprement dit, après collage au raidisseur, doit donc être d'environ 90% du budget thermique de fracture. Cette sensibilisation limitée ne permet donc pas une diminution significative du traitement de fracture proprement dit, de sorte que la limitation imposée par la tenue au collage subsiste même après un tel traitement de sensibilisation. Il convient ici de rappeler que le budget thermique de fracture correspond à la durée du recuit nécessaire à l'obtention de la fracture, pour une température de recuit donnée (on comprend aisément que le temps de fracture dépend de la température de recuit) ; le budget thermique de fracture dépend des conditions d'implantation, notamment de la nature des ions (ou atomes) implantés, de leur dose, de leur énergie, du substrat implanté,...). L'étape 2 de mise en contact intime du substrat implanté avec le raidisseur doit en principe être réalisée sur des surfaces planes et parfaitement propres. Le problème est que, lors de sa mise en œuvre, cette mise en contact intime ne peut pas être effectivement réalisée sur toute la surface des substrats :
- tout d'abord, les bords des plaques formant les substrats sont généralement chanfreinés et ne peuvent donc pas être mis en contact ; on rencontre ce problème de non-collage en bord de plaques pour tous les matériaux (Si, Ge1 GaAs, GaN, Saphir, SiGe, LiTaO3, LiNbO3, SiC, InP, etc..) et pour tous les diamètres de plaques entre 5 cm et 30 cm (entre 2 pouces et 12 pouces en pratique);
- dans le cas de substrats ou de couches structurés volontairement (par exemple par des motifs réalisés par photolithogravure) ou involontairement (par exemple par des défauts de croissance dans le cas de couches épitaxiées, ou encore par des défauts liés au dépôt d'une couche sur le substrat initial), les motifs ou les défauts qui sont en creux sur la surface donnent lieu à des zones non collées (ZNC en abrégé) ;
- enfin, dans le cas d'un nettoyage insuffisamment efficace, la présence de particules (« poussières ») à l'interface de collage donne lieu également à des ZNC.
Lors de l'étape de fracture, lorsque la dimension des ZNC est grande par rapport à l'épaisseur du film à transférer (par exemple avec un ratio
(dimension latérale ZNC) / (épaisseur film) d'environ 10), le film mince reste localement solidaire du substrat initialement implanté. On parle alors de zones non transférées (ZNT en abrégé).
Ces défauts de collage peuvent même conduire à l'apparition de soulèvements voire de détachements très locaux (sur des dimensions de quelques microns carrés) du film mince, sous forme de cloques ou de zones exfoliées, ce qui est tout à fait à éviter.
A titre d'exemple, la figure 1 représente un substrat 1 , ici en saphir, sur lequel une couche 2, ici en GaN, a été déposée puis a fait l'objet d'une implantation ayant conduit à la formation d'une zone implantée 2A. Sur cette couche 2 est représentée une éventuelle couche de collage 3. Cette couche 2 est en contact intime, selon un interface 9, avec un autre substrat 4, ici aussi en saphir, également muni d'une éventuelle couche de collage 5, par exemple similaire à la couche 3.
On observe que, les substrats étant chanfreinés, les zones périphériques P ne sont pas collées. Par ailleurs, en raison d'un défaut intervenu lors du dépôt de la couche de GaN, il y a un creux dans la couche de collage 3, et donc une zone non collée C. Enfin, la référence I représente une poussière (subsistant après un nettoyage peu efficace) emprisonnée entre les surfaces de collage, et réduisant, voire supprimant, localement la tenue mécanique de l'interface de collage 9.
On observe sur la figure 2 que, lors de la fracture au niveau de la zone implantée, il subsiste des zones non transférées, à l'aplomb des zones périphériques, du défaut de croissance et de la poussière.
Selon un avantage notable de la technologie « Smart Cut ® », le substrat initialement implanté peut, après pelage d'un film mince lors de l'étape de fracture, être recyclé pour d'autres cycles analogues de transfert. Toutefois, on vient de voir que le film mince reste localement solidaire du substrat au niveau des zones non transférées, formant ainsi des marches d'épaisseur typiquement comprise entre 10 à 1000 nm (correspondant à l'épaisseur du film mince). En outre, l'implantation puis la fracture ont généralement fait apparaître des rugosités à la surface mise à nu du substrat. Il en découle que le recyclage du substrat dont un film mince vient d'être détaché nécessite généralement des étapes particulières de planarisation, notamment par polissage mécanique et/ou attaque chimique (cela est notamment expliqué dans les documents EP- A- 1 427 002 et EP-A-1 427 001 ).
Objet de l'invention
L'invention a pour objet de surmonter les inconvénients précités dans le cas du nitrure de gallium, c'est-à-dire de permettre le détachement d'une couche mince de GaN, ou son transfert sur un substrat-hôte, par une fracture en des temps réalistes à l'échelle industrielle, tout en formant, lors de cette fracture, des surfaces libres n'impliquant pas de traitement de planarisation significatif (car ne présentant pas les marches décrites précédemment), de manière à ce que le reliquat du substrat de départ puisse être ensuite éventuellement réutilisé (recyclé), sensiblement en l'état, pour un nouveau cycle de formation d'un film mince. L'invention a également pour objet de permettre un transfert sur un substrat-hôte à des températures suffisamment faibles pour ne pas risquer un décollement entre le substrat de départ et le substrat-hôte en raison d'une différence trop importante entre les coefficients de dilatation thermique de ces substrats.
L'invention propose à cet effet un procédé de fabrication d'une couche mince en GaN à partir d'un substrat de départ dont au moins une zone épaisse de surface longeant une face libre de substrat de départ est en GaN, comprenant les étapes suivantes :
- bombardement de ladite face libre du substrat de départ avec des ions Hélium et Hydrogène, l'hélium étant implanté en premier dans l'épaisseur de ladite zone épaisse et l'hydrogène étant implanté en second, les doses d'hélium et d'hydrogène étant chacune comprises entre 1017 et 4.1017 atomes/cm2,
- application au substrat de départ d'un traitement de fracture propre à provoquer le détachement, vis-à-vis d'un reliquat du substrat de départ, de toute la partie de la zone épaisse de GaN située entre la face libre et la profondeur d'implantation de l'hélium et de l'hydrogène. II est apparu que les conditions de l'invention permettent, au niveau du phénomène de détachement, l'obtention de surfaces de faible rugosité (sans marche significative), et ce pour des températures suffisamment faibles pour ne pas risquer de décollement en cas de transfert sur un substrat-hôte.
Il est à noter que les conditions d'implantation déterminent les profondeurs d'implantation. Selon des caractéristiques avantageuses de l'invention, éventuellement combinées :
- la dose d'implantation de l'hélium est au moins égale à la dose d'implantation de l'hydrogène, - le reliquat du substrat de départ après fracture (ou détachement) est recyclé ; dans ce cas, le procédé comporte avantageusement en outre un traitement de préparation du reliquat du substrat de départ, avant son recyclage, impliquant au plus un polissage d'au plus un micron d'épaisseur (typiquement de l'ordre de 0,2 microns), voire pas de traitement du tout, - le substrat de départ est, avant le détachement, mis en contact intime avec un substrat-hôte par ladite face libre ; de manière avantageuse, cette mise en contact intime est un collage moléculaire ; de préférence, au moins une couche est déposée sur la surface libre du substrat de départ avant mise en contact intime avec le substrat-hôte, en vue notamment de la protection de l'une ou l'autre de ces surfaces ou pour faciliter le collage,
- le traitement de fracture comporte l'application au substrat de départ, avant une telle mise en contact intime, un traitement de fragilisation comportant un traitement thermique et correspondant à au moins 85% du budget thermo-mécanique nécessaire pour obtenir la fracture de ce substrat de départ au niveau de la profondeur d'implantation de l'hydrogène,
- ce traitement de fragilisation comporte avantageusement une étape de dépôt d'une couche sous forme vapeur,
- ce traitement de fragilisation comporte avantageusement l'application de contraintes mécaniques (par exemple une mise sous tension légère, du fait du contact avec une couche ayant des propriétés thermiques différentes mais ayant une épaisseur faible (typiquement inférieure à de l'ordre du micron),
- ce traitement thermique de fragilisation est de préférence effectué à une température d'au plus 400 0C, de préférence au plus égale à 300 0C, - ce traitement de fragilisation est par exemple principalement constitué d'un traitement thermique de fragilisation effectué pendant au moins 85 % du temps nécessaire pour obtenir une fracture thermique, - ce traitement de fragilisation correspond avantageusement à un budget thermo-mécanique d'au moins 95% du budget nécessaire pour obtenir le détachement de la couche mince ; il peut théoriquement être choisi supérieur à 99%, voire 99.99%, mais pour garantir que le substrat de départ conserve une tenue mécanique suffisante pour son éventuelle mise en contact intime avec un substrat-hôte, ce budget est de préférence au plus égal à 99% du budget nécessaire pour la fracture,
- le traitement résiduel de fracture est avantageusement effectué à une température au plus égale à 250 °C, par exemple à la température ambiante,
- ce traitement comporte avantageusement l'application de contraintes mécaniques, de préférence à la température ambiante,
- le traitement résiduel de fracture comporte l'application d'un traitement thermique et/ou d'une contrainte de détachement, par exemple par application d'ultrasons et/ou de micro-ondes (de puissance et de fréquence judicieusement choisies),
- la dose d'implantation d'hélium est de préférence comprise entre 1.1017 et 2.1017 He+/cm2 (de préférence de l'ordre de 2.1017 He+/cm2) et la dose d'implantation d'hydrogène est avantageusement comprise dans la même gamme (1.1017 et 2.1017 H+/cm2), de préférence de l'ordre également de 2.1017 H+/cm2) ; ainsi, de manière avantageuse, les doses d'implantation d'hydrogène et d'hélium sont chacune sensiblement égale à 2.1017 atomes/cm2,
- la dose cumulée d'implantation est comprise entre 3.1017 atomes/cm2 et 4.5 1017 atomes/cm2, de préférence entre 3.5 1017 atomes/cm2 et 4 1017 atomes/cm2, environ,
- l'énergie d'implantation pour l'étape d'implantation d'hélium est supérieure à l'énergie d'implantation pour l'étape d'implantation d'hydrogène,
- l'énergie d'implantation d'hélium est comprise entre 90 keV et 210 keV et l'énergie d'implantation d'hydrogène est comprise entre 60 keV et 120 keV, - le procédé comporte avantageusement, en outre, un traitement thermique de finition conduisant à parfaire le détachement de toute la couche mince, y compris dans d'éventuelles zones non collées.
Il est à noter que le principe d'une co-implantation d'hydrogène et d'hélium a déjà été proposé, notamment en vue d'obtenir pour le film mince une surface libre de bonne rugosité. On peut citer à cet égard les documents WO - A - 2004/044976, WO - A - 2004/042779, WO - A - 2005/013318 et WO - A - 2005/043615. Toutefois, ces documents prévoient en pratique de profiter de la présence des deux éléments d'implantation pour diminuer autant que possible la dose d'implantation de chacun des éléments en dessous de 5.1016 at/cm2, un collage du premier substrat à un second substrat avant tout traitement thermique important, et le plus souvent des traitements thermiques à des températures élevées.
Par ailleurs, les documents US-2004/0262686 et US-2005/0269671 ont déjà proposé des étapes de transfert à partir de nitrure de gallium mettant en œuvre, dans du nitrure de gallium, une co-implantation d'hydrogène et d'hélium, mais avec des doses inférieures à celles proposées par l'invention et sans préciser l'ordre d'implantation (le second document précité ne fait que mentionner la possibilité d'une co-implantation, sans en préciser les modalités). Ces documents ne s'intéressent pas à la qualité de surface résultant du détachement de la couche mince et ne peuvent donc pas avoir identifié en quoi l'ordre et les doses d'implantation peuvent avoir des conséquences sur la qualité de cette qualité de surface.
Il faut noter à cet égard que, compte tenu de ce que l'implantation conduit à une perturbation du réseau cristallin sur une certaine épaisseur, le souci d'avoir pour le film mince une surface arrière bien nette et plane avait a priori pour conséquence que la surface du substrat de départ mise à nu du fait du détachement de la couche mince était sensiblement dégradée, surtout lorsque les doses étaient importantes. L'invention est pourtant fondée sur la constatation que des choix appropriés des conditions d'implantation permettent d'obtenir les avantages mentionnés ci-dessus. Sans que les mécanismes physiques aient été élucidés, il semble que les atomes d'hélium diffusent vers les défauts créés par l'hydrogène pour les mettre sous tension ; compte tenu de la forte dose d'implantation d' l'hydrogène, comparable à celle couramment utilisée pour provoquer une fracture par elle seule, l'implantation additionnelle d'hélium permet de conférer aux défauts générés par l'implantation d'hydrogène une efficacité optimale, de sorte que leur coalescence se produit de manière bien nette, d'où la formation d'un interface de séparation bien propre.
Il est même apparu que, dès lors de la dose cumulée d'implantation est importante, c'est-à-dire au moins égale à 3.1017 atomes/cm2, la présence d'hydrogène n'était pas nécessaire.
C'est ainsi que, selon un autre aspect de l'invention, celle-ci propose un procédé de fabrication d'une couche mince en GaN à partir d'un substrat de départ dont au moins une zone épaisse de surface longeant une face libre du substrat de départ est en GaN, comprenant les étapes suivantes :
- bombardement de ladite face libre du substrat de départ avec des ions Hélium puis, optionnellement, des ions Hydrogène, l'Hélium étant implanté en premier dans l'épaisseur de ladite zone épaisse, la dose cumulée d'implantation étant comprise entre 3.1017 atomes/cm2 et 4.5 1017 atomes/cm2 en étant constituée au moins en majorité en Hélium,
- application au substrat de départ d'un traitement de fracture propre à provoquer le détachement, vis-à-vis d'un reliquat du substrat de départ, de toute la partie de la zone épaisse de GaN située entre la face libre et la profondeur d'implantation de l'hélium. De manière avantageuse, la dose d'implantation est entièrement constituée d'Hélium, à de l'ordre de 4.1017 atomes/cm2 environ (c'est-à-dire entre 3.5 1017 atomes/cm2 et 4.5 1017 atomes/cm2, voire entre 3.75 1017 atomes/cm2 et 4.25 1017 atomes/cm2).
En fait qu'il y ait une co-implantation d'hélium et d'hydrogène ou une implantation d'hélium seul, l'invention conduit à une délamination qui s'étend aisément à toute la section du substrat de départ (quitte à prolonger le traitement de fracture), donc indépendamment de l'existence de défauts locaux de collage, ou de l'absence de collage en périphérie ; cela contribue à garantir que la surface mise à nu sur le reliquat du substrat de départ est propre et nette.
Des objets, caractéristiques et avantages de l'invention ressortent de la description qui suit, donnée en regard des dessins annexés, sur lesquels : la figure 1 est un schéma de principe représentant un ensemble d'un substrat en GaN déposé sur un substrat en saphir et ayant fait l'objet d'une implantation, collé à un autre substrat en saphir, mais présentant des zones non collées, la figure 2 est un schéma de principe représentant l'ensemble de la figure 1 , après séparation au niveau de la zone implantée, mais présentant des zones non transférées, - la figure 3 est un schéma d'une première étape d'implantation d'un procédé conforme à l'invention, la figure 4 est un schéma d'une seconde étape d'implantation de ce procédé, la figure 5 est un schéma d'une étape de traitement thermique de ce procédé, la figure 6 est un schéma de mise en contact intime avec un second substrat, et la figure 7 est un schéma représentant la séparation du substrat de départ en une couche mince et un reliquat de substrat, prêt à être recyclé.
Les figures 3 à 7 représentent les principales étapes d'un exemple de procédé de fabrication d'une couche mince de GaN conforme à l'invention :
1 ) - première implantation d'un substrat de départ 11 en GaN, au moyen d'un bombardement d'hélium, schématisé par des flèches 12, en sorte de former une couche implantée notée 13, cette implantation étant faite à une dose comprise entre de l'ordre de 1017/cm2 et de l'ordre de 4.1017 /cm2,
2) - seconde implantation de ce substrat de départ 11 , au moyen d'un bombardement d'hydrogène, schématisé par les flèches 12', cette implantation étant faite à une dose comprise entre de l'ordre de 1017/cm2 et 4.1017/cm2,
3) - étape de traitement de fragilisation, comportant en pratique un traitement thermique, de préférence à température basse, pendant une durée donnée, ce traitement correspondant à l'application d'un budget thermique (ou thermo-mécanique s'il y a une application de contraintes mécaniques) représentant avantageusement au moins 85% du budget thermique (ou thermo-mécanique) qui serait nécessaire pour obtenir une séparation ou fracture par ce seul traitement thermique,
4) - mise en contact intime de ce substrat implanté avec un second substrat 17, aussi appelé substrat-hôte,
5) - application d'un traitement résiduel de fracture, en sorte de séparer le substrat de départ en une couche mince 15 (y compris des éventuels morceaux résiduels 15A) et en un reliquat 16 de substrat, prêt à être recyclé et à subir à nouveau les étapes d'implantation précitées.
Les étapes 3 à 5 constituent conjointement un traitement de fracture propre à provoquer le détachement, vis-à-vis du reliquat du substrat de départ, de toute la partie de la zone de GaN située entre la face libre par laquelle l'implantation a été effectuée et la profondeur d'implantation de l'hydrogène. Dans une version particulièrement simple, le procédé de l'invention se limite, par exemple, à l'étape 3 conduite jusqu'au détachement de la couche mince désirée. Le substrat de départ 11 est ici entièrement constitué de GaN. En variante, comme dans le cas de la figure 1 , il peut s'agir d'un substrat dont seulement une zone épaisse de surface, longeant la face libre du substrat, est en GaN, cette zone étant une couche portée par un support éventuellement constitué en saphir. Cette zone est suffisamment épaisse pour que les implantations soient réalisées dans l'épaisseur de cette zone.
La notion de budget thermique (ou de budget thermo-mécanique) correspond à l'énergie apportée, sous forme thermique, ou thermo-mécanique, conduisant à la fracture et le pourcentage indiqué est en pratique donné en référence au temps qui serait nécessaire pour atteindre cette énergie, à température et à contrainte (s'il y en a) constantes.
Le traitement thermique de l'étape 3, combiné ou non à l'application de contraintes, provoque l'évolution des défauts introduits par les implantations en sorte de former une couche fragilisée 13", sensiblement au niveau de la couche 13, séparant la future couche mince 15 et le futur reliquat 16. La surface 14 peut être recouverte d'une couche de protection 18, par exemple en oxyde, avant ou après les étapes d'implantation, cette couche 18 pouvant être, ou non, retirée avant la mise en contact avec le second substrat (étape 4).
L'invention réside notamment dans le choix particulier des conditions d'implantation dans le GaN, qui ont pour effet que les étapes 1 et 2 conduisent à la formation de défauts qui évoluent en température selon un mode particulier. Ainsi, il est connu de l'homme du métier qu'une implantation d'ions gazeux (H, He,...) dans un substrat (Si, Ge, GaN,...) entraîne la formation de défauts et microcavités à une profondeur qui dépend principalement des ions implantés, du substrat et de l'énergie d'implantation. Lorsqu'on applique un traitement thermique au substrat implanté (sans collage préalable à un raidisseur), les défauts évoluent normalement en taille et en densité jusqu'à former, sensiblement à la profondeur d'implantation, des microfissures contenant une phase gazeuse de l'ion implanté. Ces microfissures, sous l'effet de la pression du gaz, entraînent alors des déformations locales de la surface libre du substrat sous forme de cloques, voire des détachements locaux sous forme d'exfoliations. Par contre, les conditions d'implantation préconisées par l'invention entraînent la formation dans du GaN de défauts qui évoluent différemment en température. En effet, ces conditions originales conduisent, après un traitement thermique approprié, même sans application d'un substrat raidisseur, à un détachement total du film superficiel implanté 15, sans formation de cloques ou d'exfoliations locales. Cette délamination est apparue être liée à la particularité des défauts d'implantation générés par les conditions prévues par l'invention, et non pas à une énergie d'implantation limite (voir le document WO-A- 2003/063213 qui enseigne une relation entre dose et énergie d'implantation pour obtenir, au cours d'un traitement de fracture entièrement exécuté après collage à un raidisseur, à une exfoliation sensiblement complète).
Il en découle que les conditions d'implantation et de traitement thermique de l'invention sont capables de provoquer pour le GaN une fracture complète du substrat de départ au niveau de la zone d'implantation de l'hydrogène, sans que la présence d'un raidisseur efficace soit nécessaire (ainsi que le pensait l'homme de métier).
Puisque la présence d'un raidisseur n'est pas nécessaire pour éviter des exfoliations locales ou pour maintenir la planéité de la couche délaminée, l'invention enseigne de conduire avantageusement le traitement thermique (dit de « surfragilisation ») sans substrat raidisseur, c'est-à-dire sans raidisseur massif (d'épaisseur supérieure à plusieurs microns), donc sans limite due à une éventuelle différence de coefficient de dilatation thermique entre les deux substrats ; et ce traitement peut être conduit « presque jusqu'au bout », de manière à permettre (si cela est souhaité), juste avant la séparation, la fixation à un éventuel substrat devant faciliter la manipulation de la couche mince après séparation (il est rappelé que, en pratique, la séparation d'une couche mince vis-à-vis d'un reliquat de substrat de départ, après que ce substrat de départ a été fixé à un second substrat, est qualifiée d'étape de transfert, puisque la couche mince, faisant initialement partie du substrat de départ, est finalement solidaire du second substrat). Grâce à l'invention, même les zones non collées au second substrat (en particulier les zones périphériques, les zones de défaut du substrat, les zones de défaut de collage correspondant aux de zones P, C et I de la figure 1 ) se détachent grâce à un traitement de fracture approprié.
Selon un aspect de l'invention, ce traitement thermique peut être accompagné de contraintes mécaniques. Cette étape de « surfragilisation », ne doit pas, si l'on veut effectuer un transfert, être effectuée jusqu'à aboutir à une fracture au niveau de la couche de microcavités, mais il peut avantageusement représenter au moins 85%, voire 85% ou même au moins 99% (par exemple 99.99%) du budget thermique (et/ou thermo-mécanique) de fracture, même s'il peut paraître prudent, pour éviter une fracture intempestive, de ne pas dépasser 99%, par exemple.
L'étape de mise en contact intime avec le second substrat 7 formant hôte est avantageusement réalisée par collage (de préférence un collage moléculaire), et peut impliquer l'utilisation d'une couche de collage déposée sur la surface 14 du substrat GaN en complément ou en remplacement de la couche de protection 18.
Un traitement thermique de renforcement de ce collage peut être prévu, qui participe ou non à l'évolution des défauts de la couche 13" (le budget thermique comporte ainsi deux étapes).
L'étape finale de fracture consiste en un traitement thermique et/ou mécanique. Le budget thermo-mécanique à appliquer est d'autant plus réduit que le traitement de surfragilisation a été important. L'étape de transfert du film mince sur le second substrat peut être réalisée à la température ambiante, donc sans traitement thermique, par simple application de contraintes mécaniques, par exemple par insertion d'une lame.
Toutefois, comme il peut s'avérer difficile d'appliquer un traitement mécanique au niveau de certaines zones non collées, on choisit avantageusement un traitement thermique pour le détachement des zones à l'aplomb de ces zones non collées.
En conséquence de l'étape de fracture, le film mince 15 se détache entièrement du substrat initialement implanté, y compris au niveau des zones localement non collées telles que celles repérées C ou I à la figure 1 , et y compris au niveau de la périphérie (référence P à la figure 1 ). Le détachement de ces zones P (voire des zones C ou I) peut être simultané au détachement de la partie utile (il s'agit en pratique de la partie centrale du film) transférée sur le second substrat (suite au traitement thermique approprié par exemple) ou nécessiter un traitement de fracture spécifique, avant ou après détachement de cette partie utile. Le recyclage du substrat initial 1 , après fracture complète, ne nécessite donc aucune étape lourde de planarisation mécanique et/ou chimique pour retirer des zones non transférées (comme c'est actuellement le cas dans le cadre d'un procédé standard).
Selon les applications, le recyclage peut faire l'objet d'une préparation consistant en une simple étape de polissage mécano-chimique léger qui permet de diminuer la rugosité de surface après fracture avec un minimum d'enlèvement de matière (d'au plus un micron, typiquement de l'ordre de la centaine de nm ou de l'ordre de 0.2 microns). Selon les besoins, les substrats peuvent être recyclés directement après l'étape de fracture, sans aucun traitement de surface particulier, par exemple pour réaliser d'autres transferts de GaN.
Des exemples particuliers de mise en oeuvre du procédé de l'invention sont décrits ci-dessous.
Exemple 1 :
Un substrat GaN (70Ga 14N) cristallin est implanté avec des ions He dans les conditions suivantes : énergie = 90keV, dose = 2.1017 cm"2, puis avec des ions H dans les conditions suivantes : énergie = 60keV, dose = 2.1017 cm"2.
Une couche de protection de Siθ2 d'épaisseur pouvant être choisie entre
500nm et 1 μm est ensuite déposée par PECVD (Plasma Enhanced Chemical
Vapor Déposition) sur le substrat implanté. Un recuit de surfragilisation de 2800C - 1h (c'est-à-dire pendant 1 heure à 2800C sans contrainte mécanique additionnelle) est ensuite appliqué.
Il est précisé qu'un recuit de 2800C -1h représente ~85% du budget thermique de fracture à 28O0C, puisque dans ces conditions la fracture est obtenue après 280°C-1 h10. II a été constaté que les profondeurs d'implantation ainsi obtenues étaient de 390 nm pour He et de 450 nm pour l'hydrogène, c'est-à-dire qu'elles étaient sensiblement égales (à 60 nm près). Par ailleurs, l'opération même de dépôt PECVD de la couche de protection peut induire un échauffement et donc contribuer à la surfragilisation du substrat.
Le substrat GaN est ensuite collé par adhésion moléculaire sur un raidisseur massif en saphir, selon les étapes suivantes :
• nettoyage chimique des substrats GaN et Saphir,
• polissage mécano-chimique,
• mise en contact des substrats.
La fracture est ensuite provoquée au niveau de la couche implantée par un traitement thermique. Le GaN et le Saphir ayant des coefficients de dilatation thermique différents (GaN : ~5.8.10"6/K, Saphir : ~8.10"6/K), la température du traitement thermique de fracture doit être suffisamment faible pour éviter un décollement de la structure. Il a été ici considéré que le traitement thermique de fracture doit être réalisé à T°<230°C. La surfragilisation permet alors d'obtenir une fracture à 2300C en ~13h. Sans l'étape de surfragilisation, le temps de fracture (c'est-à-dire le budget thermique de fracture) aurait été de 88h à 2300C.
Cette étape de fracture 230°C-13h entraîne le détachement d'un film (ou couche mince) de GaN d'épaisseur ~480nm, en principe sur toute la surface du substrat GaN implanté. Toutefois, il arrive qu'on obtienne d'abord une partie centrale du film de GaN qui est transférée sur le substrat saphir (on obtient ainsi une structure GaN/Siθ2/Saphir qui peut être utilisée par exemple pour la réalisation de diodes de type LED). Une autre partie localisée sur la couronne du substrat GaN est détachée du substrat sous forme d'une membrane auto-portée en forme de couronne (symbolisée par la couronne 15A à la figure 7). Le reliquat 16 du substrat GaN 11 initialement implanté peut alors être recyclé directement après la fracture pour effectuer plusieurs transferts successifs, sans étape intermédiaire de préparation de surface spécifique entre chaque cycle de transfert, les étapes précitées étant désormais appliquées à ce reliquat 6, puis au reliquat de ce reliquat après un nouveau transfert, et ainsi de suite. II a été vérifié que des photos représentant le reliquat d'un transfert classique (après implantation d'hydrogène) montrent très clairement un changement d'apparence en partie périphérique, ainsi qu'en des endroits localisés (à l'intérieur de la zone centrale), alors que des photos prises dans les mêmes conditions ont révélé une apparence tout à fait homogène après fracture suivant les étapes décrites ci-dessus.
Exemple 2 :
Un substrat GaN (70Ga 14N) cristallin est recouvert d'une couche de collage Siθ2 d'épaisseur 500nm, déposée par LPCVD (Low Pressure Chemical Vapor Déposition) à 9000C. Ce substrat est implanté avec des ions He dans les conditions suivantes : énergie = 210keV, dose = 2.1017 cm"2, puis avec des ions H dans les conditions suivantes : énergie = 120keV, dose = 2.1017 cm"2. Un recuit de surfragilisation de 3000C - 44min est ensuite appliqué. II est précisé qu'un recuit de 300°C-44min représente -97.7% du budget thermique de fracture à 3000C puisque, dans ces conditions, la fracture est obtenue après 300°C-45min.
Il a été constaté que les profondeurs d'implantation ainsi obtenues étaient de 750 nm pour He et de 700 nm pour l'hydrogène, c'est-à-dire qu'elles étaient sensiblement égales (à 50 nm près).
Le substrat GaN avec la couche de collage est ensuite collé par adhésion moléculaire sur un substrat saphir. La fracture est ensuite provoquée au niveau de la couche implantée par un traitement thermique à T°<230°C. La surfragilisation permet alors d'obtenir une fracture à 22O0C en ~ 16h. Sans l'étape de surfragilisation, le temps de fracture (c'est-à-dire le budget thermique de cette étape finale de fracture) aurait été de 30 jours à 2200C.
L'étape de fracture 220°C-16h entraîne le détachement d'un film de GaN d'épaisseur ~480nm et de la couche de collage SiO2 500nm sur toute la surface du substrat GaN implanté. Comme indiqué ci-dessus à propos de l'exemple 1 , une partie du film de GaN est transférée sur le substrat saphir ; on obtient ainsi une structure GaN/SiO2/Saphir qui peut être utilisée par exemple pour la réalisation de diodes de type LED. Une autre partie, localisée sur la couronne du substrat GaN1 est détachée du substrat sous forme d'une membrane auto-portée. Le substrat GaN initialement implanté est alors recyclé pour d'autres transferts, après une étape de simple re-surfaçage par CMP (par exemple, quelques secondes de polissage mécano-chimique) afin d'éliminer la rugosité liée à la fracture.
Exemple 3 :
Un substrat GaN (70Ga 14N) cristallin est recouvert d'une couche de collage Siθ2 d'épaisseur 250nm, déposée par PECVD (Plasma Enhanced Chemical Vapor Déposition) à 3000C. Ce substrat est implanté avec des ions He dans les conditions suivantes : énergie = 90keV, dose = 3.1017 cm'2, puis avec des ions H dans les conditions suivantes : énergie = 60keV, dose = 1017 cm"2. Un recuit de surfragilisation de 495°C - 4h10min est ensuite appliqué. Il est précisé qu'un recuit de 495°C-4h10min représente ~98% du budget thermique de fracture à 495°C puisque dans ces conditions la fracture est obtenue après 495°C-4h15.
Il a été constaté que les profondeurs d'implantation ainsi obtenues étaient de 390 nm pour He et de 450 nm pour l'hydrogène, c'est-à-dire qu'elles étaient sensiblement égales (à 60 nm près). Le substrat GaN avec la couche de collage est ensuite collé par adhésion moléculaire sur un substrat saphir. Le collage est ensuite consolidé par un recuit à basse température, par exemple 150°C-2h. Ce type de recuit ne contribue pas à surfragiliser de manière significative le substrat GaN implanté, cette température de recuit étant trop basse ; il n'apporte donc pas de contribution au budget énergétique déjà apporté au support de départ.
La fracture est ensuite provoquée au niveau de la couche implantée par l'application de contraintes mécaniques. Pour cela une lame est par exemple insérée entre les deux substrats collés (voir la flèche L à la figure 7). Une partie du film de GaN est transférée sur le substrat saphir, on obtient ainsi une structure GaN/SiO2/Saphir qui peut être utilisée par exemple pour la réalisation de diodes de type LED. Puisque le traitement résiduel de fracture est essentiellement mécanique, des parties non suffisamment collées (zones d'exclusion, ZNC,...) ne sont pas détachées du substrat GaN, mais un recuit à 400°C-1min permet d'éliminer ces zones résiduelles sur le substrat GaN sous forme d'une membrane auto-portée. L'intégralité du film GaN est donc alors détachée, et on obtient sur le reliquat du substrat de départ une surface plane, sans relief. Ce reliquat du substrat GaN initialement implanté peut alors être recyclé pour d'autres transferts.
Des délaminations de qualité dans un substrat de GaN ont en fait été constatées, dans les conditions d'implantation précitées, pour des couples très variés de doses en hélium et en hydrogène, respectivement, entre 1017 atomes/cm2 et 4.1017 atomes/cm2, notamment les couples suivants dont on peut noter qu'ils correspondent à des doses totales comprises entre 3 et 4, préférentiellement entre 3.5 et 4 (en unités correspondant à 1017 atomes/cm2) :
- He = 2 H = 1 soit un total de 3, -- HHee == 22 HH == 11..55 soit un total de 3.5,
- He = 1.75 H = 2 soit un total de 3.75,
- He = 2 H = 2 soit un total de 4, et
- He = 3 H = 1 soit un total de 4.
On a même constaté une délamination de qualité avec, dans les mêmes conditions d'implantation que précédemment, une implantation de hélium seul, c'est-à-dire avec He=4 et H=O.
Cela permet de conclure que, dans cette gamme de doses d'implantation, si la dose d'implantation de l'hélium est suffisamment élevée, (au moins égale à 3.1017 atomes/cm2 environ, typiquement entre 3.5 1017 atomes/cm2 et 4.5 1017 atomes/cm2, voire entre 3.75 1017 atomes/cm2 et 4.25 1017 atomes/cm2, on obtient également une très bonne délamination, avec une bonne qualité de surface sur les faces obtenues par la fracture, en l'absence d'implantation complémentaire d'hydrogène.

Claims

REVENDICATIONS
1. Procédé de fabrication d'une couche mince en GaN à partir d'un substrat de départ dont au moins une zone épaisse de surface longeant une face libre de substrat de départ est en GaN, comprenant les étapes suivantes : - bombardement de ladite face libre du substrat de départ avec des ions
Hélium et Hydrogène, l'hélium étant implanté en premier dans l'épaisseur de ladite zone épaisse et l'hydrogène étant implanté en second, les doses d'hélium et d'hydrogène étant chacune comprise entre 1.1017 atomes/cm2 et 4.1017 atomes/cm2, - application au substrat de départ d'un traitement de fracture propre à provoquer le détachement, vis-à-vis d'un reliquat du substrat de départ, de toute la partie de la zone épaisse de GaN située entre la face libre et la profondeur d'implantation de l'hélium et de l'hydrogène.
2. Procédé selon la revendication 1 , caractérisé en ce que la dose d'implantation de l'hélium est au moins égale à la dose d'implantation de l'hydrogène,
3. Procédé selon la revendication 1 ou la revendication 2, caractérisé en ce que le reliquat du substrat de départ après fracture est recyclé.
4. Procédé selon la revendication 3, caractérisé en ce qu'il comporte en outre un traitement de préparation du reliquat du substrat de départ, avant son recyclage, impliquant au plus un polissage d'au plus 1 micron d'épaisseur.
5. Procédé selon l'une quelconque des revendications 1 à 4, caractérisé en ce que le substrat de départ est, avant le détachement, mis en contact intime avec un substrat-hôte par ladite face libre.
6. Procédé selon la revendication 5, caractérisé en ce que la mise en contact intime est un collage moléculaire.
7. Procédé selon la revendication 5 ou la revendication 6, caractérisé en ce qu'au moins une couche est déposée sur la surface libre du substrat de départ avant mise en contact intime avec le substrat-hôte.
8. Procédé selon l'une quelconque des revendications 5 à 7, caractérisé en ce que le traitement de fracture comporte l'application au substrat de départ, avant cette mise en contact intime, un traitement de fragilisation comportant un traitement thermique et correspondant à au moins 85% du budget thermomécanique nécessaire pour obtenir la fracture de ce substrat de départ au niveau de la profondeur d'implantation de l'hydrogène, puis après cette mise en contact intime, l'application d'un traitement résiduel de fracture.
9. Procédé selon la revendication 8, caractérisé en ce que le traitement thermique de fragilisation comporte une étape de dépôt d'une couche sous forme vapeur.
10. Procédé selon la revendication 8 ou la revendication 9, caractérisé en ce que le traitement de fragilisation comporte l'application de contraintes mécaniques.
11. Procédé selon l'une quelconque des revendications 8 à 10, caractérisé en ce que le traitement thermique de fragilisation est effectué à une température d'au plus 400 0C.
12. Procédé selon l'une quelconque des revendications 8 à 11 , caractérisé en ce que le traitement de fragilisation fournit un budget thermomécanique d'au moins 95% du budget nécessaire pour obtenir le détachement.
13. Procédé selon l'une quelconque des revendications 8 à 12, caractérisé en ce que le traitement résiduel de fracture comporte un traitement thermique.
14. Procédé selon la revendication 13, caractérisé en ce que le traitement résiduel de fracture est effectué à une température au plus égale à 25O0C.
15. Procédé selon la revendication 8 à 14, caractérisé en ce que le traitement résiduel de fracture comporte l'application de contraintes mécaniques.
16. Procédé selon la revendication 15, caractérisé en ce que le traitement résiduel de fracture est effectué à la température ambiante.
17. Procédé selon la revendication 15 ou la revendication 16, caractérisé en ce que le traitement résiduel de fracture comporte l'application d'ultrasons.
18. Procédé selon la revendication 15 ou la revendication 16, caractérisé en ce que le traitement résiduel de fracture comporte l'application de micro-ondes.
19. Procédé selon l'une quelconque des revendications 1 à 18, caractérisé en ce que la dose d'implantation d'hélium est comprise entre 1.1017 et 2.1017 He+/cm2 .
20. Procédé selon l'une quelconque des revendications 1 à 19, caractérisé en ce que la dose d'implantation d'hydrogène est comprise dans la gamme de 1.1017 et 2.1017 H+/cm2.
21. Procédé selon l'une quelconque des revendications 1 à 20, caractérisé en ce que la dose cumulée d'implantation est comprise entre 3.1017 atomes/cm2 et 4.5 1017 atomes/cm2, environ.
22. Procédé selon l'une quelconque des revendications 1 à 21 , caractérisé en ce que l'énergie d'implantation pour l'étape d'implantation d'hélium est supérieure à l'énergie d'implantation d'hydrogène.
23. Procédé selon l'une quelconque des revendications 1 à 22, caractérisé en ce que l'énergie d'implantation d'hélium est comprise entre 90 keV et 210 keV et l'énergie d'implantation d'hydrogène est comprise entre 60 keV et 120 keV.
24. Procédé selon l'une quelconque des revendications 1 à 23, caractérisé en ce qu'il comporte un traitement thermique de finition conduisant à parfaire le détachement de toute la couche mince, y compris dans d'éventuelles zones non collées.
25. Procédé de fabrication d'une couche mince en GaN à partir d'un substrat de départ dont au moins une zone épaisse de surface longeant une face libre du substrat de départ est en GaN, comprenant les étapes suivantes :
- bombardement de ladite face libre du substrat de départ avec des ions Hélium puis, optionnellement, des ions Hydrogène, l'hélium étant implanté en premier dans l'épaisseur de ladite zone épaisse, la dose cumulée d'implantation étant comprise entre 3.1017 atomes/cm2 et 4.5 1017 atomes/cm2 en étant constituée au moins en majorité en Hélium, - application au substrat de départ d'un traitement de fracture propre à provoquer le détachement, vis-à-vis d'un reliquat du substrat de départ, de toute la partie de la zone épaisse de GaN située entre la face libre et la profondeur d'implantation de l'hélium.
26. Procédé selon la revendication 25, caractérisé en ce que la dose d'implantation est entièrement constituée d'hélium, à de l'ordre de 4.1017/cm2 environ
PCT/FR2007/002100 2006-12-19 2007-12-18 Procédé de fabrication de couches minces de gan par implantation et recyclage d'un substrat de départ WO2008093008A2 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP07872387.1A EP2102904B1 (fr) 2006-12-19 2007-12-18 Procede de fabrication de couches minces de gan par implantation et recyclage d'un substrat de depart
JP2009542132A JP5412289B2 (ja) 2006-12-19 2007-12-18 注入によってGaN薄層を調製および出発基板を再利用するための方法
US12/518,198 US8778775B2 (en) 2006-12-19 2007-12-18 Method for preparing thin GaN layers by implantation and recycling of a starting substrate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0655664 2006-12-19
FR0655664A FR2910179B1 (fr) 2006-12-19 2006-12-19 PROCEDE DE FABRICATION DE COUCHES MINCES DE GaN PAR IMPLANTATION ET RECYCLAGE D'UN SUBSTRAT DE DEPART

Publications (2)

Publication Number Publication Date
WO2008093008A2 true WO2008093008A2 (fr) 2008-08-07
WO2008093008A3 WO2008093008A3 (fr) 2009-03-19

Family

ID=37857092

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2007/002100 WO2008093008A2 (fr) 2006-12-19 2007-12-18 Procédé de fabrication de couches minces de gan par implantation et recyclage d'un substrat de départ

Country Status (5)

Country Link
US (1) US8778775B2 (fr)
EP (1) EP2102904B1 (fr)
JP (1) JP5412289B2 (fr)
FR (1) FR2910179B1 (fr)
WO (1) WO2008093008A2 (fr)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100190000A1 (en) * 2008-01-21 2010-07-29 S.O.I.Tec Silicon On Insulator Technologies Method of fabricating a composite structure with a stable bonding layer of oxide
JP2011071518A (ja) * 2009-09-25 2011-04-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives 埋め込み型脆化層が分割によって暴露された表面から基板を超音波平坦化する方法
US8048766B2 (en) 2003-06-24 2011-11-01 Commissariat A L'energie Atomique Integrated circuit on high performance chip
US8252663B2 (en) 2009-06-18 2012-08-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of transferring a thin layer onto a target substrate having a coefficient of thermal expansion different from that of the thin layer
US8389379B2 (en) 2002-12-09 2013-03-05 Commissariat A L'energie Atomique Method for making a stressed structure designed to be dissociated
US8470712B2 (en) 1997-12-30 2013-06-25 Commissariat A L'energie Atomique Process for the transfer of a thin film comprising an inclusion creation step
US8664084B2 (en) 2005-09-28 2014-03-04 Commissariat A L'energie Atomique Method for making a thin-film element
US8778775B2 (en) 2006-12-19 2014-07-15 Commissariat A L'energie Atomique Method for preparing thin GaN layers by implantation and recycling of a starting substrate

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2748851B1 (fr) 1996-05-15 1998-08-07 Commissariat Energie Atomique Procede de realisation d'une couche mince de materiau semiconducteur
FR2861497B1 (fr) * 2003-10-28 2006-02-10 Soitec Silicon On Insulator Procede de transfert catastrophique d'une couche fine apres co-implantation
FR2922359B1 (fr) * 2007-10-12 2009-12-18 Commissariat Energie Atomique Procede de fabrication d'une structure micro-electronique impliquant un collage moleculaire
FR2961948B1 (fr) * 2010-06-23 2012-08-03 Soitec Silicon On Insulator Procede de traitement d'une piece en materiau compose
KR101717670B1 (ko) 2011-06-15 2017-03-17 삼성전자주식회사 반도체 발광소자 제조방법
FR2984597B1 (fr) * 2011-12-20 2016-07-29 Commissariat Energie Atomique Fabrication d’une structure souple par transfert de couches
JP6130995B2 (ja) * 2012-02-20 2017-05-17 サンケン電気株式会社 エピタキシャル基板及び半導体装置
US9917004B2 (en) * 2012-10-12 2018-03-13 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, and method for manufacturing group III nitride semiconductor device
US9136337B2 (en) 2012-10-12 2015-09-15 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, and group III nitride semiconductor device and method for manufacturing the same
JP6322890B2 (ja) * 2013-02-18 2018-05-16 住友電気工業株式会社 Iii族窒化物複合基板およびその製造方法、ならびにiii族窒化物半導体デバイスの製造方法
EP2946410A4 (fr) * 2013-01-16 2016-08-03 Qmat Inc Techniques pour former des dispositifs optoélectroniques
US9923063B2 (en) 2013-02-18 2018-03-20 Sumitomo Electric Industries, Ltd. Group III nitride composite substrate and method for manufacturing the same, laminated group III nitride composite substrate, and group III nitride semiconductor device and method for manufacturing the same
FR3007891B1 (fr) * 2013-06-28 2016-11-25 Soitec Silicon On Insulator Procede de fabrication d'une structure composite
JP6176069B2 (ja) * 2013-11-13 2017-08-09 住友電気工業株式会社 Iii族窒化物複合基板およびその製造方法、積層iii族窒化物複合基板、ならびにiii族窒化物半導体デバイスおよびその製造方法
WO2015130189A1 (fr) * 2014-02-28 2015-09-03 Nokia Technologies Oy Procédé et appareillage pour l'oxydation de matériaux bidimensionnels
CN117198983A (zh) * 2015-11-20 2023-12-08 环球晶圆股份有限公司 使半导体表面平整的制造方法
KR102435523B1 (ko) 2016-03-10 2022-08-23 삼성전자주식회사 발광 소자 및 이의 제조 방법
US20180019169A1 (en) * 2016-07-12 2018-01-18 QMAT, Inc. Backing substrate stabilizing donor substrate for implant or reclamation
US20180033609A1 (en) * 2016-07-28 2018-02-01 QMAT, Inc. Removal of non-cleaved/non-transferred material from donor substrate
CN113130307B (zh) * 2021-03-15 2024-01-30 深圳市思坦科技有限公司 外延片处理方法、外延片和Micro-LED阵列
CN115922109B (zh) * 2023-01-05 2023-07-25 成都功成半导体有限公司 一种晶圆背面激光切割方法及晶圆

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013563A (en) * 1997-05-12 2000-01-11 Silicon Genesis Corporation Controlled cleaning process
WO2004061944A1 (fr) * 2003-01-07 2004-07-22 S.O.I.Tec Silicon On Insulator Technologies Recyclage d'une tranche comprenant une structure multicouches apres l'enlevement d'une couche mince
US20040262686A1 (en) * 2003-06-26 2004-12-30 Mohamad Shaheen Layer transfer technique
US20050269671A1 (en) * 2004-06-03 2005-12-08 Bruce Faure Support for hybrid epitaxy and method of fabrication

Family Cites Families (286)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3915757A (en) 1972-08-09 1975-10-28 Niels N Engel Ion plating method and product therefrom
US3913520A (en) 1972-08-14 1975-10-21 Precision Thin Film Corp High vacuum deposition apparatus
US3993909A (en) 1973-03-16 1976-11-23 U.S. Philips Corporation Substrate holder for etching thin films
FR2245779B1 (fr) 1973-09-28 1978-02-10 Cit Alcatel
US3901423A (en) 1973-11-26 1975-08-26 Purdue Research Foundation Method for fracturing crystalline materials
US4170662A (en) 1974-11-05 1979-10-09 Eastman Kodak Company Plasma plating
US4121334A (en) 1974-12-17 1978-10-24 P. R. Mallory & Co. Inc. Application of field-assisted bonding to the mass production of silicon type pressure transducers
US3957107A (en) 1975-02-27 1976-05-18 The United States Of America As Represented By The Secretary Of The Air Force Thermal switch
US4039416A (en) 1975-04-21 1977-08-02 White Gerald W Gasless ion plating
GB1542299A (en) 1976-03-23 1979-03-14 Warner Lambert Co Blade shields
US4028149A (en) 1976-06-30 1977-06-07 Ibm Corporation Process for forming monocrystalline silicon carbide on silicon substrates
US4074139A (en) 1976-12-27 1978-02-14 Rca Corporation Apparatus and method for maskless ion implantation
US4108751A (en) 1977-06-06 1978-08-22 King William J Ion beam implantation-sputtering
US4179324A (en) 1977-11-28 1979-12-18 Spire Corporation Process for fabricating thin film and glass sheet laminate
DE2849184A1 (de) 1978-11-13 1980-05-22 Bbc Brown Boveri & Cie Verfahren zur herstellung eines scheibenfoermigen silizium-halbleiterbauelementes mit negativer anschraegung
JPS55104057A (en) 1979-02-02 1980-08-09 Hitachi Ltd Ion implantation device
US4324631A (en) * 1979-07-23 1982-04-13 Spin Physics, Inc. Magnetron sputtering of magnetic materials
CH640886A5 (de) 1979-08-02 1984-01-31 Balzers Hochvakuum Verfahren zum aufbringen harter verschleissfester ueberzuege auf unterlagen.
US4244348A (en) 1979-09-10 1981-01-13 Atlantic Richfield Company Process for cleaving crystalline materials
FR2506344B2 (fr) 1980-02-01 1986-07-11 Commissariat Energie Atomique Procede de dopage de semi-conducteurs
FR2475068B1 (fr) 1980-02-01 1986-05-16 Commissariat Energie Atomique Procede de dopage de semi-conducteurs
US4342631A (en) 1980-06-16 1982-08-03 Illinois Tool Works Inc. Gasless ion plating process and apparatus
US4471003A (en) 1980-11-25 1984-09-11 Cann Gordon L Magnetoplasmadynamic apparatus and process for the separation and deposition of materials
FR2501727A1 (fr) 1981-03-13 1982-09-17 Vide Traitement Procede de traitements thermochimiques de metaux par bombardement ionique
US4361600A (en) 1981-11-12 1982-11-30 General Electric Company Method of making integrated circuits
US4412868A (en) 1981-12-23 1983-11-01 General Electric Company Method of making integrated circuits utilizing ion implantation and selective epitaxial growth
US4486247A (en) 1982-06-21 1984-12-04 Westinghouse Electric Corp. Wear resistant steel articles with carbon, oxygen and nitrogen implanted in the surface thereof
FR2529383A1 (fr) 1982-06-24 1983-12-30 Commissariat Energie Atomique Porte-cible a balayage mecanique utilisable notamment pour l'implantation d'ioris
FR2537768A1 (fr) 1982-12-08 1984-06-15 Commissariat Energie Atomique Procede et dispositif d'obtention de faisceaux de particules de densite spatialement modulee, application a la gravure et a l'implantation ioniques
FR2537777A1 (fr) 1982-12-10 1984-06-15 Commissariat Energie Atomique Procede et dispositif d'implantation de particules dans un solide
DE3246480A1 (de) 1982-12-15 1984-06-20 Wacker-Chemitronic Gesellschaft für Elektronik-Grundstoffe mbH, 8263 Burghausen Verfahren zur herstellung von halbleiterscheiben mit getternder scheibenrueckseite
US4500563A (en) 1982-12-15 1985-02-19 Pacific Western Systems, Inc. Independently variably controlled pulsed R.F. plasma chemical vapor processing
US4468309A (en) 1983-04-22 1984-08-28 White Engineering Corporation Method for resisting galling
GB2144343A (en) 1983-08-02 1985-03-06 Standard Telephones Cables Ltd Optical fibre manufacture
US4567505A (en) 1983-10-27 1986-01-28 The Board Of Trustees Of The Leland Stanford Junior University Heat sink and method of attaching heat sink to a semiconductor integrated circuit and the like
JPS6088535U (ja) 1983-11-24 1985-06-18 住友電気工業株式会社 半導体ウエハ
FR2558263B1 (fr) 1984-01-12 1986-04-25 Commissariat Energie Atomique Accelerometre directif et son procede de fabrication par microlithographie
GB2155024A (en) 1984-03-03 1985-09-18 Standard Telephones Cables Ltd Surface treatment of plastics materials
FR2563377B1 (fr) 1984-04-19 1987-01-23 Commissariat Energie Atomique Procede de fabrication d'une couche isolante enterree dans un substrat semi-conducteur, par implantation ionique
US4542863A (en) 1984-07-23 1985-09-24 Larson Edwin L Pipe-thread sealing tape reel with tape retarding element
US4566403A (en) 1985-01-30 1986-01-28 Sovonics Solar Systems Apparatus for microwave glow discharge deposition
US4837172A (en) 1986-07-18 1989-06-06 Matsushita Electric Industrial Co., Ltd. Method for removing impurities existing in semiconductor substrate
US4717683A (en) 1986-09-23 1988-01-05 Motorola Inc. CMOS process
US4764394A (en) 1987-01-20 1988-08-16 Wisconsin Alumni Research Foundation Method and apparatus for plasma source ion implantation
EP0284818A1 (fr) 1987-04-03 1988-10-05 BBC Brown Boveri AG Procédé et dispositif pour lier des couches
JPS63254762A (ja) 1987-04-13 1988-10-21 Nissan Motor Co Ltd Cmos半導体装置
US4847792A (en) 1987-05-04 1989-07-11 Texas Instruments Incorporated Process and apparatus for detecting aberrations in production process operations
SE458398B (sv) 1987-05-27 1989-03-20 H Biverot Ljusdetekterande och ljusriktningsbestaemmande anordning
FR2616590B1 (fr) 1987-06-15 1990-03-02 Commissariat Energie Atomique Procede de fabrication d'une couche d'isolant enterree dans un substrat semi-conducteur par implantation ionique et structure semi-conductrice comportant cette couche
US4956698A (en) 1987-07-29 1990-09-11 The United States Of America As Represented By The Department Of Commerce Group III-V compound semiconductor device having p-region formed by Be and Group V ions
US4846928A (en) 1987-08-04 1989-07-11 Texas Instruments, Incorporated Process and apparatus for detecting aberrations in production process operations
US4887005A (en) 1987-09-15 1989-12-12 Rough J Kirkwood H Multiple electrode plasma reactor power distribution system
US5015353A (en) 1987-09-30 1991-05-14 The United States Of America As Represented By The Secretary Of The Navy Method for producing substoichiometric silicon nitride of preselected proportions
US5138422A (en) 1987-10-27 1992-08-11 Nippondenso Co., Ltd. Semiconductor device which includes multiple isolated semiconductor segments on one chip
GB8725497D0 (en) 1987-10-30 1987-12-02 Atomic Energy Authority Uk Isolation of silicon
US5200805A (en) 1987-12-28 1993-04-06 Hughes Aircraft Company Silicon carbide:metal carbide alloy semiconductor and method of making the same
US4904610A (en) 1988-01-27 1990-02-27 General Instrument Corporation Wafer level process for fabricating passivated semiconductor devices
DE3803424C2 (de) 1988-02-05 1995-05-18 Gsf Forschungszentrum Umwelt Verfahren zur quantitativen, tiefendifferentiellen Analyse fester Proben
JP2666945B2 (ja) 1988-02-08 1997-10-22 株式会社東芝 半導体装置の製造方法
US4894709A (en) 1988-03-09 1990-01-16 Massachusetts Institute Of Technology Forced-convection, liquid-cooled, microchannel heat sinks
US4853250A (en) 1988-05-11 1989-08-01 Universite De Sherbrooke Process of depositing particulate material on a substrate
NL8802028A (nl) 1988-08-16 1990-03-16 Philips Nv Werkwijze voor het vervaardigen van een inrichting.
JP2670623B2 (ja) 1988-09-19 1997-10-29 アネルバ株式会社 マイクロ波プラズマ処理装置
US4952273A (en) 1988-09-21 1990-08-28 Microscience, Inc. Plasma generation in electron cyclotron resonance
US4996077A (en) 1988-10-07 1991-02-26 Texas Instruments Incorporated Distributed ECR remote plasma processing and apparatus
US4891329A (en) 1988-11-29 1990-01-02 University Of North Carolina Method of forming a nonsilicon semiconductor on insulator structure
NL8900388A (nl) 1989-02-17 1990-09-17 Philips Nv Werkwijze voor het verbinden van twee voorwerpen.
JPH02302044A (ja) 1989-05-16 1990-12-14 Fujitsu Ltd 半導体装置の製造方法
US4929566A (en) 1989-07-06 1990-05-29 Harris Corporation Method of making dielectrically isolated integrated circuits using oxygen implantation and expitaxial growth
JPH0355822A (ja) 1989-07-25 1991-03-11 Shin Etsu Handotai Co Ltd 半導体素子形成用基板の製造方法
US4948458A (en) 1989-08-14 1990-08-14 Lam Research Corporation Method and apparatus for producing magnetically-coupled planar plasma
US5036023A (en) 1989-08-16 1991-07-30 At&T Bell Laboratories Rapid thermal processing method of making a semiconductor device
US5013681A (en) 1989-09-29 1991-05-07 The United States Of America As Represented By The Secretary Of The Navy Method of producing a thin silicon-on-insulator layer
US5310446A (en) 1990-01-10 1994-05-10 Ricoh Company, Ltd. Method for producing semiconductor film
JPH0650738B2 (ja) 1990-01-11 1994-06-29 株式会社東芝 半導体装置及びその製造方法
US5034343A (en) 1990-03-08 1991-07-23 Harris Corporation Manufacturing ultra-thin wafer using a handle wafer
EP0527948B1 (fr) 1990-05-09 1996-11-13 Lanxide Technology Company, Lp Composites minces a matrice metallique et leurs procedes de production
CN1018844B (zh) 1990-06-02 1992-10-28 中国科学院兰州化学物理研究所 防锈干膜润滑剂
US5131968A (en) 1990-07-31 1992-07-21 Motorola, Inc. Gradient chuck method for wafer bonding employing a convex pressure
JPH0719739B2 (ja) 1990-09-10 1995-03-06 信越半導体株式会社 接合ウェーハの製造方法
US5198371A (en) 1990-09-24 1993-03-30 Biota Corp. Method of making silicon material with enhanced surface mobility by hydrogen ion implantation
US5618739A (en) 1990-11-15 1997-04-08 Seiko Instruments Inc. Method of making light valve device using semiconductive composite substrate
US5300788A (en) 1991-01-18 1994-04-05 Kopin Corporation Light emitting diode bars and arrays and method of making same
GB2251546B (en) 1991-01-11 1994-05-11 Philips Electronic Associated An electrical kettle
DE4106288C2 (de) 1991-02-28 2001-05-31 Bosch Gmbh Robert Sensor zur Messung von Drücken oder Beschleunigungen
JP2812405B2 (ja) 1991-03-15 1998-10-22 信越半導体株式会社 半導体基板の製造方法
US5110748A (en) 1991-03-28 1992-05-05 Honeywell Inc. Method for fabricating high mobility thin film transistors as integrated drivers for active matrix display
US5442205A (en) 1991-04-24 1995-08-15 At&T Corp. Semiconductor heterostructure devices with strained semiconductor layers
US5256581A (en) 1991-08-28 1993-10-26 Motorola, Inc. Silicon film with improved thickness control
FR2681472B1 (fr) 1991-09-18 1993-10-29 Commissariat Energie Atomique Procede de fabrication de films minces de materiau semiconducteur.
JP3416163B2 (ja) 1992-01-31 2003-06-16 キヤノン株式会社 半導体基板及びその作製方法
JPH05235312A (ja) 1992-02-19 1993-09-10 Fujitsu Ltd 半導体基板及びその製造方法
US5614019A (en) 1992-06-08 1997-03-25 Air Products And Chemicals, Inc. Method for the growth of industrial crystals
US5234535A (en) 1992-12-10 1993-08-10 International Business Machines Corporation Method of producing a thin silicon-on-insulator layer
WO1994017558A1 (fr) 1993-01-29 1994-08-04 The Regents Of The University Of California Composant monolithique passif
US5400458A (en) 1993-03-31 1995-03-28 Minnesota Mining And Manufacturing Company Brush segment for industrial brushes
FR2714524B1 (fr) 1993-12-23 1996-01-26 Commissariat Energie Atomique Procede de realisation d'une structure en relief sur un support en materiau semiconducteur
DE69423594T2 (de) 1993-12-28 2000-07-20 Honda Motor Co Ltd Gaszufuhrmechanismus für Gasbrennkraftmaschine
DE4400985C1 (de) 1994-01-14 1995-05-11 Siemens Ag Verfahren zur Herstellung einer dreidimensionalen Schaltungsanordnung
FR2715502B1 (fr) 1994-01-26 1996-04-05 Commissariat Energie Atomique Structure présentant des cavités et procédé de réalisation d'une telle structure.
FR2715501B1 (fr) 1994-01-26 1996-04-05 Commissariat Energie Atomique Procédé de dépôt de lames semiconductrices sur un support.
FR2715503B1 (fr) 1994-01-26 1996-04-05 Commissariat Energie Atomique Substrat pour composants intégrés comportant une couche mince et son procédé de réalisation.
JP3352340B2 (ja) 1995-10-06 2002-12-03 キヤノン株式会社 半導体基体とその製造方法
JP3293736B2 (ja) 1996-02-28 2002-06-17 キヤノン株式会社 半導体基板の作製方法および貼り合わせ基体
US5880010A (en) 1994-07-12 1999-03-09 Sun Microsystems, Inc. Ultrathin electronics
JPH0851103A (ja) 1994-08-08 1996-02-20 Fuji Electric Co Ltd 薄膜の生成方法
US5524339A (en) 1994-09-19 1996-06-11 Martin Marietta Corporation Method for protecting gallium arsenide mmic air bridge structures
FR2725074B1 (fr) 1994-09-22 1996-12-20 Commissariat Energie Atomique Procede de fabrication d'une structure comportant une couche mince semi-conductrice sur un substrat
US5567654A (en) 1994-09-28 1996-10-22 International Business Machines Corporation Method and workpiece for connecting a thin layer to a monolithic electronic module's surface and associated module packaging
EP0749500B1 (fr) 1994-10-18 1998-05-27 Koninklijke Philips Electronics N.V. Procede de fabrication d'une couche mince en oxyde de silicium
WO1996015550A1 (fr) 1994-11-10 1996-05-23 Lawrence Semiconductor Research Laboratory, Inc. Compositions silicium-germanium-carbone et processus associes
EP0717437B1 (fr) 1994-12-12 2002-04-24 Advanced Micro Devices, Inc. Méthode pour former des couches enterrées d'oxide
JP3381443B2 (ja) 1995-02-02 2003-02-24 ソニー株式会社 基体から半導体層を分離する方法、半導体素子の製造方法およびsoi基板の製造方法
FR2736934B1 (fr) 1995-07-21 1997-08-22 Commissariat Energie Atomique Procede de fabrication d'une structure avec une couche utile maintenue a distance d'un substrat par des butees, et de desolidarisation d'une telle couche
FR2738671B1 (fr) 1995-09-13 1997-10-10 Commissariat Energie Atomique Procede de fabrication de films minces a materiau semiconducteur
FR2744285B1 (fr) 1996-01-25 1998-03-06 Commissariat Energie Atomique Procede de transfert d'une couche mince d'un substrat initial sur un substrat final
FR2747506B1 (fr) 1996-04-11 1998-05-15 Commissariat Energie Atomique Procede d'obtention d'un film mince de materiau semiconducteur comprenant notamment des composants electroniques
FR2748850B1 (fr) 1996-05-15 1998-07-24 Commissariat Energie Atomique Procede de realisation d'un film mince de materiau solide et applications de ce procede
FR2748851B1 (fr) 1996-05-15 1998-08-07 Commissariat Energie Atomique Procede de realisation d'une couche mince de materiau semiconducteur
US5863832A (en) 1996-06-28 1999-01-26 Intel Corporation Capping layer in interconnect system and method for bonding the capping layer onto the interconnect system
US5897331A (en) 1996-11-08 1999-04-27 Midwest Research Institute High efficiency low cost thin film silicon solar cell design and method for making
US6127199A (en) 1996-11-12 2000-10-03 Seiko Epson Corporation Manufacturing method of active matrix substrate, active matrix substrate and liquid crystal display device
SG65697A1 (en) 1996-11-15 1999-06-22 Canon Kk Process for producing semiconductor article
US6054363A (en) 1996-11-15 2000-04-25 Canon Kabushiki Kaisha Method of manufacturing semiconductor article
DE19648501A1 (de) 1996-11-22 1998-05-28 Max Planck Gesellschaft Verfahren für die lösbare Verbindung und anschließende Trennung reversibel gebondeter und polierter Scheiben sowie eine Waferstruktur und Wafer
KR100232886B1 (ko) 1996-11-23 1999-12-01 김영환 Soi 웨이퍼 제조방법
DE19648759A1 (de) 1996-11-25 1998-05-28 Max Planck Gesellschaft Verfahren zur Herstellung von Mikrostrukturen sowie Mikrostruktur
FR2756847B1 (fr) 1996-12-09 1999-01-08 Commissariat Energie Atomique Procede de separation d'au moins deux elements d'une structure en contact entre eux par implantation ionique
EP0849788B1 (fr) 1996-12-18 2004-03-10 Canon Kabushiki Kaisha Procédé de fabrication d'un article semiconducteur utilisant un substrat ayant une couche d'un semiconducteur poreux
FR2758907B1 (fr) 1997-01-27 1999-05-07 Commissariat Energie Atomique Procede d'obtention d'un film mince, notamment semiconducteur, comportant une zone protegee des ions, et impliquant une etape d'implantation ionique
JP3114643B2 (ja) 1997-02-20 2000-12-04 日本電気株式会社 半導体基板の構造および製造方法
JPH10275752A (ja) 1997-03-28 1998-10-13 Ube Ind Ltd 張合わせウエハ−及びその製造方法、基板
US6013954A (en) 1997-03-31 2000-01-11 Nec Corporation Semiconductor wafer having distortion-free alignment regions
US6251754B1 (en) 1997-05-09 2001-06-26 Denso Corporation Semiconductor substrate manufacturing method
US6033974A (en) 1997-05-12 2000-03-07 Silicon Genesis Corporation Method for controlled cleaving process
US5877070A (en) 1997-05-31 1999-03-02 Max-Planck Society Method for the transfer of thin layers of monocrystalline material to a desirable substrate
US6150239A (en) 1997-05-31 2000-11-21 Max Planck Society Method for the transfer of thin layers monocrystalline material onto a desirable substrate
US6054369A (en) 1997-06-30 2000-04-25 Intersil Corporation Lifetime control for semiconductor devices
US6645833B2 (en) 1997-06-30 2003-11-11 Max-Planck-Gesellschaft Zur Foerderung Der Wissenschaften E. V. Method for producing layered structures on a substrate, substrate and semiconductor components produced according to said method
US6097096A (en) 1997-07-11 2000-08-01 Advanced Micro Devices Metal attachment method and structure for attaching substrates at low temperatures
US6534380B1 (en) 1997-07-18 2003-03-18 Denso Corporation Semiconductor substrate and method of manufacturing the same
US6103599A (en) 1997-07-25 2000-08-15 Silicon Genesis Corporation Planarizing technique for multilayered substrates
US6316820B1 (en) 1997-07-25 2001-11-13 Hughes Electronics Corporation Passivation layer and process for semiconductor devices
US6255731B1 (en) 1997-07-30 2001-07-03 Canon Kabushiki Kaisha SOI bonding structure
FR2767416B1 (fr) 1997-08-12 1999-10-01 Commissariat Energie Atomique Procede de fabrication d'un film mince de materiau solide
FR2767604B1 (fr) 1997-08-19 2000-12-01 Commissariat Energie Atomique Procede de traitement pour le collage moleculaire et le decollage de deux structures
US5882987A (en) 1997-08-26 1999-03-16 International Business Machines Corporation Smart-cut process for the production of thin semiconductor material films
JP3697034B2 (ja) 1997-08-26 2005-09-21 キヤノン株式会社 微小開口を有する突起の製造方法、及びそれらによるプローブまたはマルチプローブ
US5981400A (en) 1997-09-18 1999-11-09 Cornell Research Foundation, Inc. Compliant universal substrate for epitaxial growth
US5920764A (en) 1997-09-30 1999-07-06 International Business Machines Corporation Process for restoring rejected wafers in line for reuse as new
JP2998724B2 (ja) 1997-11-10 2000-01-11 日本電気株式会社 張り合わせsoi基板の製造方法
FR2771852B1 (fr) 1997-12-02 1999-12-31 Commissariat Energie Atomique Procede de transfert selectif d'une microstructure, formee sur un substrat initial, vers un substrat final
JP4173573B2 (ja) 1997-12-03 2008-10-29 株式会社ナノテム 多孔質砥粒砥石の製造方法
FR2773261B1 (fr) 1997-12-30 2000-01-28 Commissariat Energie Atomique Procede pour le transfert d'un film mince comportant une etape de creation d'inclusions
SG87916A1 (en) 1997-12-26 2002-04-16 Canon Kk Sample separating apparatus and method, and substrate manufacturing method
JP3501642B2 (ja) 1997-12-26 2004-03-02 キヤノン株式会社 基板処理方法
US6071795A (en) 1998-01-23 2000-06-06 The Regents Of The University Of California Separation of thin films from transparent substrates by selective optical processing
JPH11288858A (ja) * 1998-01-30 1999-10-19 Canon Inc Soi基板の再生方法及び再生基板
FR2774510B1 (fr) 1998-02-02 2001-10-26 Soitec Silicon On Insulator Procede de traitement de substrats, notamment semi-conducteurs
FR2774797B1 (fr) 1998-02-11 2000-03-10 Commissariat Energie Atomique Procede de realisation d'un ensemble a plusieurs tetes magnetiques et ensemble a tetes multiples obtenu par ce procede
TW437078B (en) 1998-02-18 2001-05-28 Canon Kk Composite member, its separation method, and preparation method of semiconductor substrate by utilization thereof
JP3809733B2 (ja) 1998-02-25 2006-08-16 セイコーエプソン株式会社 薄膜トランジスタの剥離方法
JPH11307747A (ja) 1998-04-17 1999-11-05 Nec Corp Soi基板およびその製造方法
US6057212A (en) 1998-05-04 2000-05-02 International Business Machines Corporation Method for making bonded metal back-plane substrates
US5909627A (en) 1998-05-18 1999-06-01 Philips Electronics North America Corporation Process for production of thin layers of semiconductor material
DE19840421C2 (de) 1998-06-22 2000-05-31 Fraunhofer Ges Forschung Verfahren zur Fertigung von dünnen Substratschichten und eine dafür geeignete Substratanordnung
US6054370A (en) 1998-06-30 2000-04-25 Intel Corporation Method of delaminating a pre-fabricated transistor layer from a substrate for placement on another wafer
US6271101B1 (en) 1998-07-29 2001-08-07 Semiconductor Energy Laboratory Co., Ltd. Process for production of SOI substrate and process for production of semiconductor device
US6118181A (en) 1998-07-29 2000-09-12 Agilent Technologies, Inc. System and method for bonding wafers
FR2781925B1 (fr) 1998-07-30 2001-11-23 Commissariat Energie Atomique Transfert selectif d'elements d'un support vers un autre support
JP3668647B2 (ja) * 1998-08-28 2005-07-06 コウベ プレシジョン インク 半導体ウエハ基板の再生法および半導体ウエハ基板再生用研磨液
EP0989593A3 (fr) 1998-09-25 2002-01-02 Canon Kabushiki Kaisha Dispositif et procédé de séparation de substrat, et procédé de fabrication de susbtrat
FR2784795B1 (fr) 1998-10-16 2000-12-01 Commissariat Energie Atomique Structure comportant une couche mince de materiau composee de zones conductrices et de zones isolantes et procede de fabrication d'une telle structure
FR2784800B1 (fr) 1998-10-20 2000-12-01 Commissariat Energie Atomique Procede de realisation de composants passifs et actifs sur un meme substrat isolant
CA2293040C (fr) 1998-12-23 2006-10-24 Kohler Co. Systeme bicombustible pour moteur a combustion interne
US6346458B1 (en) 1998-12-31 2002-02-12 Robert W. Bower Transposed split of ion cut materials
FR2789518B1 (fr) 1999-02-10 2003-06-20 Commissariat Energie Atomique Structure multicouche a contraintes internes controlees et procede de realisation d'une telle structure
GB2347230B (en) 1999-02-23 2003-04-16 Marconi Electronic Syst Ltd Optical slow-wave modulator
JP3532788B2 (ja) 1999-04-13 2004-05-31 唯知 須賀 半導体装置及びその製造方法
AU4481100A (en) 1999-04-21 2000-11-02 Silicon Genesis Corporation Treatment method of cleaved film for the manufacture of substrates
JP2001015721A (ja) 1999-04-30 2001-01-19 Canon Inc 複合部材の分離方法及び薄膜の製造方法
US6310387B1 (en) 1999-05-03 2001-10-30 Silicon Wave, Inc. Integrated circuit inductor with high self-resonance frequency
US6664169B1 (en) 1999-06-08 2003-12-16 Canon Kabushiki Kaisha Process for producing semiconductor member, process for producing solar cell, and anodizing apparatus
US6362082B1 (en) 1999-06-28 2002-03-26 Intel Corporation Methodology for control of short channel effects in MOS transistors
FR2796491B1 (fr) 1999-07-12 2001-08-31 Commissariat Energie Atomique Procede de decollement de deux elements et dispositif pour sa mise en oeuvre
US6323108B1 (en) 1999-07-27 2001-11-27 The United States Of America As Represented By The Secretary Of The Navy Fabrication ultra-thin bonded semiconductor layers
US6287940B1 (en) 1999-08-02 2001-09-11 Honeywell International Inc. Dual wafer attachment process
FR2797347B1 (fr) 1999-08-04 2001-11-23 Commissariat Energie Atomique Procede de transfert d'une couche mince comportant une etape de surfragililisation
US6263941B1 (en) 1999-08-10 2001-07-24 Silicon Genesis Corporation Nozzle for cleaving substrates
JP2003506883A (ja) 1999-08-10 2003-02-18 シリコン ジェネシス コーポレイション 低打ち込みドーズ量を用いて多層基板を製造するための劈開プロセス
EP1077475A3 (fr) 1999-08-11 2003-04-02 Applied Materials, Inc. Méthode pour la microfabrication d'une cavité à profil complexe
US6500694B1 (en) 2000-03-22 2002-12-31 Ziptronix, Inc. Three dimensional device integration method and integrated device
KR100413789B1 (ko) 1999-11-01 2003-12-31 삼성전자주식회사 고진공 패키징 마이크로자이로스코프 및 그 제조방법
DE19958803C1 (de) 1999-12-07 2001-08-30 Fraunhofer Ges Forschung Verfahren und Vorrichtung zum Handhaben von Halbleitersubstraten bei der Prozessierung und/oder Bearbeitung
JP2001196566A (ja) 2000-01-07 2001-07-19 Sony Corp 半導体基板およびその製造方法
US6306720B1 (en) 2000-01-10 2001-10-23 United Microelectronics Corp. Method for forming capacitor of mixed-mode device
JP3975634B2 (ja) 2000-01-25 2007-09-12 信越半導体株式会社 半導体ウェハの製作法
US6521477B1 (en) 2000-02-02 2003-02-18 Raytheon Company Vacuum package fabrication of integrated circuit components
US6902987B1 (en) 2000-02-16 2005-06-07 Ziptronix, Inc. Method for low temperature bonding and bonded structure
US6586841B1 (en) 2000-02-23 2003-07-01 Onix Microsystems, Inc. Mechanical landing pad formed on the underside of a MEMS device
US6548375B1 (en) 2000-03-16 2003-04-15 Hughes Electronics Corporation Method of preparing silicon-on-insulator substrates particularly suited for microwave applications
WO2001080308A2 (fr) 2000-04-14 2001-10-25 S.O.I.Tec Silicon On Insulator Technologies Procede pour la decoupe d'au moins une couche mince dans un substrat ou lingot, notamment en materiau(x) semi-conducteur(s)
FR2809867B1 (fr) 2000-05-30 2003-10-24 Commissariat Energie Atomique Substrat fragilise et procede de fabrication d'un tel substrat
JP2002016150A (ja) 2000-06-29 2002-01-18 Nec Corp 半導体記憶装置及びその製造方法
US6407929B1 (en) 2000-06-29 2002-06-18 Intel Corporation Electronic package having embedded capacitors and method of fabrication therefor
JP3440057B2 (ja) 2000-07-05 2003-08-25 唯知 須賀 半導体装置およびその製造方法
FR2811807B1 (fr) 2000-07-12 2003-07-04 Commissariat Energie Atomique Procede de decoupage d'un bloc de materiau et de formation d'un film mince
KR100414479B1 (ko) 2000-08-09 2004-01-07 주식회사 코스타트반도체 반도체 패키징 공정의 이식성 도전패턴을 갖는 테이프 및그 제조방법
US6600173B2 (en) 2000-08-30 2003-07-29 Cornell Research Foundation, Inc. Low temperature semiconductor layering and three-dimensional electronic circuits using the layering
FR2816445B1 (fr) 2000-11-06 2003-07-25 Commissariat Energie Atomique Procede de fabrication d'une structure empilee comprenant une couche mince adherant a un substrat cible
FR2818010B1 (fr) 2000-12-08 2003-09-05 Commissariat Energie Atomique Procede de realisation d'une couche mince impliquant l'introduction d'especes gazeuses
US7139947B2 (en) 2000-12-22 2006-11-21 Intel Corporation Test access port
FR2819099B1 (fr) 2000-12-28 2003-09-26 Commissariat Energie Atomique Procede de realisation d'une structure empilee
US6774010B2 (en) 2001-01-25 2004-08-10 International Business Machines Corporation Transferable device-containing layer for silicon-on-insulator applications
JP2002270553A (ja) 2001-03-13 2002-09-20 Mitsubishi Gas Chem Co Inc 電子部品の製造法
JP2002305293A (ja) 2001-04-06 2002-10-18 Canon Inc 半導体部材の製造方法及び半導体装置の製造方法
US6734762B2 (en) 2001-04-09 2004-05-11 Motorola, Inc. MEMS resonators and method for manufacturing MEMS resonators
FR2823373B1 (fr) 2001-04-10 2005-02-04 Soitec Silicon On Insulator Dispositif de coupe de couche d'un substrat, et procede associe
FR2823596B1 (fr) 2001-04-13 2004-08-20 Commissariat Energie Atomique Substrat ou structure demontable et procede de realisation
FR2823599B1 (fr) 2001-04-13 2004-12-17 Commissariat Energie Atomique Substrat demomtable a tenue mecanique controlee et procede de realisation
US6759282B2 (en) 2001-06-12 2004-07-06 International Business Machines Corporation Method and structure for buried circuits and devices
FR2828428B1 (fr) 2001-08-07 2003-10-17 Soitec Silicon On Insulator Dispositif de decollement de substrats et procede associe
US6744114B2 (en) 2001-08-29 2004-06-01 Honeywell International Inc. Package with integrated inductor and/or capacitor
FR2830983B1 (fr) 2001-10-11 2004-05-14 Commissariat Energie Atomique Procede de fabrication de couches minces contenant des microcomposants
DE10153319B4 (de) 2001-10-29 2011-02-17 austriamicrosystems AG, Schloss Premstätten Mikrosensor
US6593212B1 (en) 2001-10-29 2003-07-15 The United States Of America As Represented By The Secretary Of The Navy Method for making electro-optical devices using a hydrogenion splitting technique
TWI251813B (en) 2001-11-09 2006-03-21 Via Tech Inc Method for protecting phase lock loop in optical data-reading system
KR100442105B1 (ko) 2001-12-03 2004-07-27 삼성전자주식회사 소이형 기판 형성 방법
FR2833106B1 (fr) 2001-12-03 2005-02-25 St Microelectronics Sa Circuit integre comportant un composant auxiliaire, par exemple un composant passif ou un microsysteme electromecanique, dispose au-dessus d'une puce electronique, et procede de fabrication correspondant
US6953735B2 (en) 2001-12-28 2005-10-11 Semiconductor Energy Laboratory Co., Ltd. Method for fabricating a semiconductor device by transferring a layer to a support with curvature
FR2834820B1 (fr) 2002-01-16 2005-03-18 Procede de clivage de couches d'une tranche de materiau
FR2835097B1 (fr) 2002-01-23 2005-10-14 Procede optimise de report d'une couche mince de carbure de silicium sur un substrat d'accueil
US6887769B2 (en) 2002-02-06 2005-05-03 Intel Corporation Dielectric recess for wafer-to-wafer and die-to-die metal bonding and method of fabricating the same
US6762076B2 (en) 2002-02-20 2004-07-13 Intel Corporation Process of vertically stacking multiple wafers supporting different active integrated circuit (IC) devices
US6596569B1 (en) 2002-03-15 2003-07-22 Lucent Technologies Inc. Thin film transistors
US6607969B1 (en) 2002-03-18 2003-08-19 The United States Of America As Represented By The Secretary Of The Navy Method for making pyroelectric, electro-optical and decoupling capacitors using thin film transfer and hydrogen ion splitting techniques
US6767749B2 (en) 2002-04-22 2004-07-27 The United States Of America As Represented By The Secretary Of The Navy Method for making piezoelectric resonator and surface acoustic wave device using hydrogen implant layer splitting
US6632082B1 (en) 2002-05-01 2003-10-14 Colibri Corporation Lighter and method of use
US6645831B1 (en) 2002-05-07 2003-11-11 Intel Corporation Thermally stable crystalline defect-free germanium bonded to silicon and silicon dioxide
US7157119B2 (en) 2002-06-25 2007-01-02 Ppg Industries Ohio, Inc. Method and compositions for applying multiple overlying organic pigmented decorations on ceramic substrates
FR2842349B1 (fr) 2002-07-09 2005-02-18 Transfert d'une couche mince a partir d'une plaquette comprenant une couche tampon
US7018910B2 (en) 2002-07-09 2006-03-28 S.O.I.Tec Silicon On Insulator Technologies S.A. Transfer of a thin layer from a wafer comprising a buffer layer
US7535100B2 (en) 2002-07-12 2009-05-19 The United States Of America As Represented By The Secretary Of The Navy Wafer bonding of thinned electronic materials and circuits to high performance substrates
KR100511656B1 (ko) 2002-08-10 2005-09-07 주식회사 실트론 나노 에스오아이 웨이퍼의 제조방법 및 그에 따라 제조된나노 에스오아이 웨이퍼
FR2844634B1 (fr) * 2002-09-18 2005-05-27 Soitec Silicon On Insulator Formation d'une couche utile relaxee a partir d'une plaquette sans couche tampon
JP4199504B2 (ja) 2002-09-24 2008-12-17 イーグル工業株式会社 摺動部品及びその製造方法
EP1403684A1 (fr) 2002-09-30 2004-03-31 Corning Incorporated Modulateur optique à grande vitesse
FR2847076B1 (fr) 2002-11-07 2005-02-18 Soitec Silicon On Insulator Procede de detachement d'une couche mince a temperature moderee apres co-implantation
FR2847075B1 (fr) 2002-11-07 2005-02-18 Commissariat Energie Atomique Procede de formation d'une zone fragile dans un substrat par co-implantation
US7176108B2 (en) 2002-11-07 2007-02-13 Soitec Silicon On Insulator Method of detaching a thin film at moderate temperature after co-implantation
FR2848336B1 (fr) 2002-12-09 2005-10-28 Commissariat Energie Atomique Procede de realisation d'une structure contrainte destinee a etre dissociee
FR2848337B1 (fr) 2002-12-09 2005-09-09 Commissariat Energie Atomique Procede de realisation d'une structure complexe par assemblage de structures contraintes
FR2850487B1 (fr) 2002-12-24 2005-12-09 Commissariat Energie Atomique Procede de realisation de substrats mixtes et structure ainsi obtenue
US20040126708A1 (en) 2002-12-31 2004-07-01 3M Innovative Properties Company Method for modifying the surface of a polymeric substrate
US6995427B2 (en) 2003-01-29 2006-02-07 S.O.I.Tec Silicon On Insulator Technologies S.A. Semiconductor structure for providing strained crystalline layer on insulator and method for fabricating same
US7018909B2 (en) 2003-02-28 2006-03-28 S.O.I.Tec Silicon On Insulator Technologies S.A. Forming structures that include a relaxed or pseudo-relaxed layer on a substrate
US7348260B2 (en) 2003-02-28 2008-03-25 S.O.I.Tec Silicon On Insulator Technologies Method for forming a relaxed or pseudo-relaxed useful layer on a substrate
US7071077B2 (en) 2003-03-26 2006-07-04 S.O.I.Tec Silicon On Insulator Technologies S.A. Method for preparing a bonding surface of a semiconductor layer of a wafer
JP2004335642A (ja) 2003-05-06 2004-11-25 Canon Inc 基板およびその製造方法
US7109092B2 (en) 2003-05-19 2006-09-19 Ziptronix, Inc. Method of room temperature covalent bonding
FR2856841A1 (fr) 2003-06-24 2004-12-31 Commissariat Energie Atomique Procede de realisation d'une structure empilee par transfert de couche mince.
FR2856844B1 (fr) 2003-06-24 2006-02-17 Commissariat Energie Atomique Circuit integre sur puce de hautes performances
FR2857953B1 (fr) 2003-07-21 2006-01-13 Commissariat Energie Atomique Structure empilee, et procede pour la fabriquer
EP1652230A2 (fr) 2003-07-29 2006-05-03 S.O.I.Tec Silicon on Insulator Technologies Procede d' obtention d' une couche mince de qualite accrue par co-implantation et recuit thermique
US7279369B2 (en) 2003-08-21 2007-10-09 Intel Corporation Germanium on insulator fabrication via epitaxial germanium bonding
US7052978B2 (en) 2003-08-28 2006-05-30 Intel Corporation Arrangements incorporating laser-induced cleaving
US7029980B2 (en) 2003-09-25 2006-04-18 Freescale Semiconductor Inc. Method of manufacturing SOI template layer
US20050067377A1 (en) 2003-09-25 2005-03-31 Ryan Lei Germanium-on-insulator fabrication utilizing wafer bonding
FR2861497B1 (fr) 2003-10-28 2006-02-10 Soitec Silicon On Insulator Procede de transfert catastrophique d'une couche fine apres co-implantation
US6975562B2 (en) 2003-12-05 2005-12-13 Timex Group B.V. Wearable electronic device with mode operation indicator
US7772087B2 (en) 2003-12-19 2010-08-10 Commissariat A L'energie Atomique Method of catastrophic transfer of a thin film after co-implantation
FR2868202B1 (fr) 2004-03-25 2006-05-26 Commissariat Energie Atomique Procede de preparation d'une couche de dioxyde de silicium par oxydation a haute temperature sur un substrat presentant au moins en surface du germanium ou un alliage sicicium- germanium.
US6893936B1 (en) 2004-06-29 2005-05-17 International Business Machines Corporation Method of Forming strained SI/SIGE on insulator with silicon germanium buffer
CN101027768B (zh) * 2004-09-21 2010-11-03 S.O.I.Tec绝缘体上硅技术公司 根据避免气泡形成和限制粗糙度的条件来进行共注入步骤的薄层转移方法
US7772088B2 (en) * 2005-02-28 2010-08-10 Silicon Genesis Corporation Method for manufacturing devices on a multi-layered substrate utilizing a stiffening backing substrate
TW200707799A (en) * 2005-04-21 2007-02-16 Aonex Technologies Inc Bonded intermediate substrate and method of making same
US20100112780A1 (en) * 2005-07-12 2010-05-06 The Arizona Board Of Regents, A Body Corporate Acting On Behalf Of Arizona State University Microwave-Induced Ion Cleaving and Patternless Transfer of Semiconductor Films
FR2889887B1 (fr) 2005-08-16 2007-11-09 Commissariat Energie Atomique Procede de report d'une couche mince sur un support
FR2891281B1 (fr) 2005-09-28 2007-12-28 Commissariat Energie Atomique Procede de fabrication d'un element en couches minces.
FR2899378B1 (fr) 2006-03-29 2008-06-27 Commissariat Energie Atomique Procede de detachement d'un film mince par fusion de precipites
US20070277874A1 (en) * 2006-05-31 2007-12-06 David Francis Dawson-Elli Thin film photovoltaic structure
FR2910179B1 (fr) 2006-12-19 2009-03-13 Commissariat Energie Atomique PROCEDE DE FABRICATION DE COUCHES MINCES DE GaN PAR IMPLANTATION ET RECYCLAGE D'UN SUBSTRAT DE DEPART
FR2922359B1 (fr) 2007-10-12 2009-12-18 Commissariat Energie Atomique Procede de fabrication d'une structure micro-electronique impliquant un collage moleculaire
FR2925221B1 (fr) 2007-12-17 2010-02-19 Commissariat Energie Atomique Procede de transfert d'une couche mince
FR2947098A1 (fr) 2009-06-18 2010-12-24 Commissariat Energie Atomique Procede de transfert d'une couche mince sur un substrat cible ayant un coefficient de dilatation thermique different de celui de la couche mince
RU128757U1 (ru) 2012-12-18 2013-05-27 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Нижегородский государственный технический университет им. Р.Е. Алексеева" НГТУ Система контроля состояния дискретных источников сигналов

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6013563A (en) * 1997-05-12 2000-01-11 Silicon Genesis Corporation Controlled cleaning process
WO2004061944A1 (fr) * 2003-01-07 2004-07-22 S.O.I.Tec Silicon On Insulator Technologies Recyclage d'une tranche comprenant une structure multicouches apres l'enlevement d'une couche mince
US20040262686A1 (en) * 2003-06-26 2004-12-30 Mohamad Shaheen Layer transfer technique
US20050269671A1 (en) * 2004-06-03 2005-12-08 Bruce Faure Support for hybrid epitaxy and method of fabrication

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8609514B2 (en) 1997-12-10 2013-12-17 Commissariat A L'energie Atomique Process for the transfer of a thin film comprising an inclusion creation step
US8470712B2 (en) 1997-12-30 2013-06-25 Commissariat A L'energie Atomique Process for the transfer of a thin film comprising an inclusion creation step
US8389379B2 (en) 2002-12-09 2013-03-05 Commissariat A L'energie Atomique Method for making a stressed structure designed to be dissociated
US8048766B2 (en) 2003-06-24 2011-11-01 Commissariat A L'energie Atomique Integrated circuit on high performance chip
US8664084B2 (en) 2005-09-28 2014-03-04 Commissariat A L'energie Atomique Method for making a thin-film element
US8778775B2 (en) 2006-12-19 2014-07-15 Commissariat A L'energie Atomique Method for preparing thin GaN layers by implantation and recycling of a starting substrate
US20100190000A1 (en) * 2008-01-21 2010-07-29 S.O.I.Tec Silicon On Insulator Technologies Method of fabricating a composite structure with a stable bonding layer of oxide
US9242444B2 (en) 2008-01-21 2016-01-26 Soitec Method of fabricating a composite structure with a stable bonding layer of oxide
US8252663B2 (en) 2009-06-18 2012-08-28 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method of transferring a thin layer onto a target substrate having a coefficient of thermal expansion different from that of the thin layer
JP2011071518A (ja) * 2009-09-25 2011-04-07 Commissariat A L'energie Atomique Et Aux Energies Alternatives 埋め込み型脆化層が分割によって暴露された表面から基板を超音波平坦化する方法

Also Published As

Publication number Publication date
US8778775B2 (en) 2014-07-15
FR2910179A1 (fr) 2008-06-20
JP5412289B2 (ja) 2014-02-12
FR2910179B1 (fr) 2009-03-13
JP2010514185A (ja) 2010-04-30
EP2102904B1 (fr) 2017-12-06
WO2008093008A3 (fr) 2009-03-19
EP2102904A2 (fr) 2009-09-23
US20100025228A1 (en) 2010-02-04

Similar Documents

Publication Publication Date Title
EP2102904B1 (fr) Procede de fabrication de couches minces de gan par implantation et recyclage d&#39;un substrat de depart
EP1559138B1 (fr) Procede de formation d&#39;une zone fragile dans un substrat par co-implantation
EP1285461B1 (fr) Procede de fabrication d&#39;une couche mince
EP2073260B1 (fr) Procédé de transfer d&#39;une couche mince
EP1570509B1 (fr) Procede de realisation d&#39; une structure complexe par assemblage de structures contraintes
FR2835097A1 (fr) Procede optimise de report d&#39;une couche mince de carbure de silicium sur un substrat d&#39;accueil
WO2005086227A1 (fr) Technique d’amelioration de la qualite d’une couche mince prelevee
FR2861497A1 (fr) Procede de transfert catastrophique d&#39;une couche fine apres co-implantation
FR2889887A1 (fr) Procede de report d&#39;une couche mince sur un support
EP2608252B1 (fr) Méthode de fabrication d&#39;une structure souple par transfert de couches et stucture correspondante
EP2342745B1 (fr) Procede d&#39;elaboration d&#39;un substrat hybride ayant une couche continue electriquement isolante enterree
FR2855909A1 (fr) Procede d&#39;obtention concomitante d&#39;au moins une paire de structures comprenant au moins une couche utile reportee sur un substrat
FR2938702A1 (fr) Preparation de surface d&#39;un substrat saphir pour la realisation d&#39;heterostructures
EP1487012A2 (fr) Procédé de réalisation de structure hétérogène et structure obtenue par un tel procédé
FR2842650A1 (fr) Procede de fabrication de substrats notamment pour l&#39;optique, l&#39;electronique ou l&#39;opto-electronique
FR2905801A1 (fr) Procede de transfert d&#39;une couche a haute temperature
EP2842155B1 (fr) Procede de collage dans une atmosphere de gaz presentant un coefficient de joule-thomson negatif
FR2926674A1 (fr) Procede de fabrication d&#39;une structure composite avec couche d&#39;oxyde de collage stable
EP1777735A2 (fr) Procédé de récyclage d&#39;une plaquette donneuse épitaxiée
EP2302666B1 (fr) Procédé de planarisation par ultrasons d&#39;un substrat dont une surface a été libérée par fracture d&#39;une couche enterrée fragilisée
FR3042649B1 (fr) Procede de fabrication d&#39;une structure hybride
FR2866982A1 (fr) Procede de fabrication de composants electroniques
WO2023144496A1 (fr) Procédé de fabrication d&#39;une structure de type double semi-conducteur sur isolant
FR2873235A1 (fr) Procede d&#39;obtention d&#39;un substrat demontable a energie de collage controlee
FR3059149A1 (fr) Procede de fabrication d&#39;un film mince a base d&#39;inp ou de gaas

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07872387

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 12518198

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2007872387

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2009542132

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE