WO2008076267A2 - A process in a (d) stage bleaching of softwood pulps in a presence of mg(oh)2 - Google Patents

A process in a (d) stage bleaching of softwood pulps in a presence of mg(oh)2 Download PDF

Info

Publication number
WO2008076267A2
WO2008076267A2 PCT/US2007/025373 US2007025373W WO2008076267A2 WO 2008076267 A2 WO2008076267 A2 WO 2008076267A2 US 2007025373 W US2007025373 W US 2007025373W WO 2008076267 A2 WO2008076267 A2 WO 2008076267A2
Authority
WO
WIPO (PCT)
Prior art keywords
bleaching
pulp
stage
bleaching process
same
Prior art date
Application number
PCT/US2007/025373
Other languages
French (fr)
Other versions
WO2008076267A3 (en
Inventor
Caifang Yin
Kent Witherspoon
Original Assignee
International Paper Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Paper Company filed Critical International Paper Company
Priority to EP07862784A priority Critical patent/EP2122048A2/en
Priority to CA2671826A priority patent/CA2671826C/en
Publication of WO2008076267A2 publication Critical patent/WO2008076267A2/en
Publication of WO2008076267A3 publication Critical patent/WO2008076267A3/en

Links

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/12Bleaching ; Apparatus therefor with halogens or halogen-containing compounds
    • D21C9/14Bleaching ; Apparatus therefor with halogens or halogen-containing compounds with ClO2 or chlorites
    • D21C9/144Bleaching ; Apparatus therefor with halogens or halogen-containing compounds with ClO2 or chlorites with ClO2/Cl2 and other bleaching agents in a multistage process
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/147Bleaching ; Apparatus therefor with oxygen or its allotropic modifications
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/147Bleaching ; Apparatus therefor with oxygen or its allotropic modifications
    • D21C9/153Bleaching ; Apparatus therefor with oxygen or its allotropic modifications with ozone
    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21CPRODUCTION OF CELLULOSE BY REMOVING NON-CELLULOSE SUBSTANCES FROM CELLULOSE-CONTAINING MATERIALS; REGENERATION OF PULPING LIQUORS; APPARATUS THEREFOR
    • D21C9/00After-treatment of cellulose pulp, e.g. of wood pulp, or cotton linters ; Treatment of dilute or dewatered pulp or process improvement taking place after obtaining the raw cellulosic material and not provided for elsewhere
    • D21C9/10Bleaching ; Apparatus therefor
    • D21C9/16Bleaching ; Apparatus therefor with per compounds

Definitions

  • This invention relates to the bleaching of softwood pulp. More particularly, the invention relates to improvements of bleaching a pulp in D stage bleaching in presence Of Mg(OH) 2 .
  • the bleaching pH plays a key role in C102 bleaching/brightening in the Dl and D2 stages.
  • Our current understanding of optimum C102 bleaching pH is largely credited to the earlier work done by Raspon in 1956.
  • the maximum brightness corresponds to the minimum formation of two unproductive products, chlorite and chlorate, during C102 bleaching.
  • Mill practice usually controls the Dl end pH at 3-3.5, a compromise between brightness development and dirt bleaching. In the absence of dirt bleaching requirement, mill usually controls the D2 pH at 4-4.5. Mills make no distinction between optimum bleaching pH requirements for SW or HW pulp. While these pHs are largely true for softwood pulp, the optimum bleaching pHs for softwood species are much higher than 3.8 recommended by Rapson.
  • One aspect of this invention relates to an improved bleaching process for bleaching pulp comprising at least one bleaching stage which comprises treating a softwood pulp with a bleaching agent comprising C1O2 in the presence of a weak base such as, for example, Mg(OH) 2 preferably at pH from about 3.5 to about 6.5.
  • a weak base such as, for example, Mg(OH) 2 preferably at pH from about 3.5 to about 6.5.
  • Another aspect of this invention relates to an improved bleaching process comprising at least one extraction stage and at least one bleaching stage wherein the least one bleaching stage comprises bleaching bleaching a softwood pulp with a bleaching agent comprising C1O2 in the presence of a weak base, as for example, Mg(OH) 2 preferably at pH of about 3.5 to about 6.5.
  • a weak base as for example, Mg(OH) 2 preferably at pH of about 3.5 to about 6.5.
  • a further aspect of the present invention relates to an improved bleaching process for bleaching pulp having two or more bleaching stages, at least one of which and preferably two of which comprises treating a pulp with a bleaching agent comprising C1O2 in the presence of a weak base such as Mg(OH) 2 .
  • Yet another aspect of this invention relates to an improved bleaching process for bleaching pulp comprising a bleaching sequence selected from the group consisting of the formula: Three-stage bleaching sequence: D 0 EDi where E can be E, Eo, Ep, or Eop
  • D Five-stage bleaching sequence: D 0 EiDiE 2 D 0 where Ei can be E, Eo, Ep, or Eop and E 2 can be Ep with interstage washing and wherein: D is a stage in which a pulp is treated with a bleaching agent comprising C102.
  • the first D 0 stage is a delignification stage.
  • the second and third Dj and D 2 stages are the bleaching stages comprising C1O2 in the presence OfMg(OH) 2 at pH from about 3.5 to about 6.5.
  • E is an extraction stage, where E can be E, Eo, Ep, Eop.
  • the extraction stage Eo is defined as treating the pulp with oxygen in presence of a base.
  • the extraction stage E is defined as treating the pulp in the presence of a base.
  • the extraction stage Ep is defined as treating the pulp with peroxide in presence of a base.
  • the extraction stage Eop is defined as treating the pulp with oxygen and peroxide in presence of a base.
  • the process of the present invention provides one or more advantages over prior processes for brightening bleached pulps.
  • advantages of some of the embodiments of the process of this invention include 1) improve bleaching efficiency which is defined as brightness development per unit of ClO 2 , 2) reducing the bleaching cost, 3) high pulp brightness and brightness stability, 4) improve pulp cleanliness, 5) a combination of two or more of the aforementioned advantages.
  • Mg(OH) 2 is more effective than NaOH in raising Di pH and gives better results in both brightness development and dirt removal in the D 1 stage at the same pH basis.
  • Mg(OH) 2 is a weaker base and provides a pH buffer effect, which helps pH uniformity and stability in the Dl tower compared with NaOH.
  • the ability Of Mg(OH) 2 to achieve a higher pH and better pH uniformity and stability than NaOH is the basis for the improved Di performance with Mg(OH) 2 .
  • Fig. 1 is a schematic illustration of the overall pulp making in accordance to the present invention.
  • Fig. 2 is a graph showing the effect of Di pH and caustic source on Di Brightness for softwood pulp.
  • One aspect of this invention relates to an improved bleaching process for bleaching pulp comprising at least one (D) bleaching stage which comprises treating a softwood pulp with a bleaching agent comprising ClO 2 in the presence of a weak base, for example, Mg(OH) 2 preferably at pH from about 3.5 to about 6.5.
  • a bleaching agent comprising ClO 2 in the presence of a weak base, for example, Mg(OH) 2 preferably at pH from about 3.5 to about 6.5.
  • the pH of the at least one (D) bleaching stage is in the range from greater than 3 to about 6.5. Any pH within this range can be used.
  • the pH can be as high as about 6 or 6.5 and as low as about 3 to about 3.5.
  • the pH is from about 3 to about 5.
  • the pH is from about 3.5 to about 4.5 and in the most preferred embodiments of the invention, the pH is from about 4.0 to about 4.5.
  • the pH in the at least one (D) bleaching stage of the present invention is higher than the pH of the conventional D bleaching stage.
  • the advantages of higher pH are higher bleaching efficiency, higher dirt removal efficiency, and higher brightness, less reverted brightness which means higher brightness stability or a combination of two or more thereof.
  • a weak base is used in the at least one bleaching stage to control pH.
  • a weak base is defined as a chemical base in which protonation is incomplete. This result in a relatively low pH level compared to strong bases. While we do not wish to be bound by any theory, it is believed that the weak base is any compounds that can continuously supply basic species, such as (OH " ) to neutralize the protons (H + ) produced in organic reactions such as pulp bleaching to buffer the pH at a relatively constant value or within a narrow range.
  • Mg(OH) 2 is a preferred weak base because in addition to its partial dissociation to release base (OH-), partial solubility of Mg(OH) 2 allows continuously solubilizing Mg(OH) 2 in response to the produced acids or protons in bleaching reactions as the Mg(OH) 2 solubility increases with decreasing in solution pH.
  • the amount and type of weak base used is dictated by the target pH at the end of bleaching reaction.
  • the bleaching agent used in the process of this invention comprises ClO 2 .
  • the bleaching agent may include other ingredients in admixture with the ClO 2, for example, elemental chlorine and inert gases such as air.
  • the amount of ClO 2 used in the at least one bleaching stage can vary widely and is an amount sufficient to bleach the softwood pulp to the desired brightness.
  • the amount of ClO 2 is typically equal to or greater than about 0.1% based on the total weight of pulp (an oven dried basis), preferably the amount of ClO 2 is from about 0.2% to about 1% and more preferably the amount of ClO 2 is from about 0.2% to about 0.8%, and most preferably the amount of ClO 2 is from about 0.3% to about 0.5%.
  • the consistency (CSC) of the at least one bleaching stage of the pulp may vary widely and any consistency that provides the desired increase in pulp brightness may be used.
  • the pulp may be bleached under low consistency conditions (i.e. from about 3 to about 4 based on the total weight of the mixture of pulp and bleaching chemicals), medium consistency conditions (i.e. from about 8 % to about 14 % based on the total weight of the mixture of pulp and bleaching chemicals) or high consistency conditions (i.e. from about 25 to about 30 based on the total weight of the mixture of pulp and bleaching chemicals).
  • the consistency is preferably from about 5 to 15, more preferably from about 8 to 15, and most preferably from about 10% to about 12%.
  • the retention times of the at least one bleaching stage of pulp will vary widely and times used in conventional bleaching stages may be used. Usually, retention times will be at least about 180 minutes. Retention times are preferably from about 60 min. to about 240 min., and are more preferably from about 120 minutes to about 200 min. and most preferably from about 150 min. to about 180 min.
  • the bleaching temperatures employed in the at least one bleaching stage of the pulp may vary widely and temperatures employed in conventional bleaching stages may be used. For example, useful temperatures can be as low as about 55 0 C or lower and as high as about 85 0 C or higher.
  • the bleaching temperature is usually from about 60 0 C to about 80 0 C, preferably from about 6O 0 C to about 75 0 C, more preferably from about 65 0 C to about 75 0 C and most preferably from about 65 0 C to about 70 0 C.
  • one of the advantages of a preferred embodiment of this invention is the enhanced bleaching efficiency in the at least one bleaching stage.
  • the bleaching efficiency is defined as brightness developed per unit ClO 2 .
  • the bleaching efficiency of the preferred embodiment of this invention is preferably at least about 0.3, more preferably at least about 0.35, and most preferably at least about 0.37.
  • the bleaching efficiency of the preferred embodiment is greater than that of the same or substantially the same bleaching processes in which NaOH is used in the at least one bleaching rather than Mg(OH) 2 .
  • Another advantage a preferred embodiment of this invention is the reduction of dirt resulting from the at least one bleaching stage as compared to the same or substantially the same bleaching processes which do not include the Mg(OH) 2 .
  • the reduction in the amount of dirt is typically at least about 0.1 %, preferably at least about 0.1%, more preferably at least about 0.015 % and most preferably at least about 012 % less than the amount of dirt produced in the same or substantially the same bleaching processes which do not include the Mg(OH) 2 to obtain the same or substantially the same level of pulp brightness in the Eop and/or Ep stages.
  • the viscosity is typically at least about 1.5 %, preferably at least about 2 %, more preferably at least about 2.5 % and most preferably at least about 3 % greater than the viscosity of the pulp made by the same or substantially the same bleaching processes which do not include Mg(OH) 2 .
  • the brightness is typically at least about 0.5 brightness points, preferably at least about 0.75 brightness points, more preferably from about 1.0 and most preferably at least about 1.5 greater than the brightness of the pulp made by the same or substantially the same bleaching processes which do not include the Mg(OH) 2 .
  • the bleaching process will also comprise at least one extraction stage prior to the at least one bleaching stage.
  • one of the advantages of a preferred embodiment of this invention is the reduction of bleaching chemicals such as ClO 2 in the Dj stage as compared to the same or substantially the same bleaching processes which do not include Mg(OH) 2 .
  • the reduction in the amount of ClO 2 is typically at least about 5 %, preferably at least about 10 %, more preferably from about 15 % to about 50 % and most preferably from about 20 % to about 25 % less than the amount of ClO 2 used in the same or substantially the same bleaching processes which do not include Mg(OH) 2 to obtain the same or substantially the same level of pulp brightness in the Eop and or Ep stages.
  • Another advantage a preferred embodiment of this invention is the reduction of the amount of Dirt count resulting from the at least on bleaching stage as compared to the same or substantially the same bleaching processes which do not include the Mg(OH) 2 .
  • the reduction in the amount of Dirt count is typically at least about 4 %, preferably at least about 5 %, more preferably from about 7 % to about 20 % and most preferably from about 8 % to about 15 % less than the amount of Dirt count produced in the same or substantially the same bleaching processes which do not include the Mg(OH) 2 to obtain the same or substantially level of pulp brightness in the Do stage.
  • Another aspect of this invention relates to an improved bleaching process comprising at least one extraction stage and at least one bleaching stage wherein the least one bleaching stage comprises bleaching a softwood pulp with a bleaching agent comprising ClO 2 in the presence of a weak base, as for example, Mg(OH) 2 preferably at pH of about 3.5 to about 6.5.
  • a weak base as for example, Mg(OH) 2 preferably at pH of about 3.5 to about 6.5.
  • the at least one extraction stage is carried out prior to the at least one bleaching stage and any type of extraction or delignification can be used.
  • the extraction stage is carried out in a D 0 stage, E stage, Eo stage, Ep stage, and Eop stage or combination thereof, where D 0 , Eo, Ep, Eop, are defined above.
  • Conventional processes and apparatus can be used in the D 0 , E, Eo, Ep, or Eop stage. See for example "Pulp Bleaching Principles and Practice of Pulp Bleaching" Carlton W. Dence and Douglas W. Reeve, TAPPI Press, 1996 and references cited therein.
  • the pulp is extracted in a D 0 stage and a Eop stage.
  • the process can also include one or more additional stages.
  • a bleaching sequence include DoEopD n , ODoEopD n , DoEopDiD 2 , ODoEopD,D 2 , DoEopD]EpD 2 , ODoEopDiEpD 2 , DoEopDiP, O(D 0 /C)EopDi, DoEopD,, D 0 EOPDi, D 0 EopEDi, D 0 EDiEpEopD 2 , ZED 0 EOp, ZD o EopDi, D 0 EpZEop , D 0 EpZDiZ, D 0 D,EopPP, D 0 DiEOpZ, DoEopD,, ODoEopD], DoEopDi, ODoEOpD 1 , DoEopDiE
  • the amount of extraction agent used can vary widely and any amount sufficient to provide the desired lignin extraction efficiency and the desired degree of brightness can be used.
  • the amount of extraction agent used is usually at least about 0.1 % based on the dry weight of the pulp.
  • the amount of extraction agent is from about 0.2 % to about 0.5 %, more preferably from about 0.15 % to about 0.35 % and most preferably about 0.25 % on the aforementioned basis.
  • the plant source of softwood pulp for use in this invention is not critical provided that it forms softwood pulp, and may be any fibrous plant which can be subjected to chemical pulp bleaching.
  • fibrous plants are softwood fibrous trees such as spruce, pine, cedar, including mixtures thereof.
  • at least a portion of the pulp fibers may be provided from non-woody herbaceous plants including, but not limited to, kenaf, hemp, jute, flax, sisal, or abaca although legal restrictions and other considerations may make the utilization of hemp and other fiber sources impractical or impossible.
  • the source of pulp for use in the practice of this invention is softwood fibrous trees such as spruce, pine, cedar, including mixtures thereof.
  • the pulp used in the process of this invention can be obtained by subjecting the fibrous plant to any chemical pulping process. Following the wood digestion process, pulp is separated from the spent pulping liquor. The spent pulping liquor is then recovered and regenerated for recycling. The pulp is then bleached and purified in a bleach plant operation.
  • the pulp of this invention can also be used in the manufacture of paper and packaging products such as printing, writing, publication and cover papers and paperboard products. Illustrative of these products and processes for their manufacture are those described in USP Nos. 5,902,454 and 6,464,832.
  • the bleached pulp of this invention or pulp mixtures comprising the bleached pulp of this invention is formulated into an aqueous paper making stock furnish which also comprises one of more additives which impart or enhance specific sheet properties or which control other process parameters.
  • alum which is used to control pH, fix additives onto pulp fibers and improve retention of the pulp fibers on the paper making machine.
  • Other aluminum based chemicals which may be added to furnish are sodium aluminate, poly aluminum silicate sulfate and poly aluminum chloride.
  • wet end chemicals which may be included in the paper making stock furnish for conventional purposes are acid and bases, sizing agents, dry-strength resins, wet strength resins, fillers, coloring materials, retention aids, fiber flocculants, defoamers, drainage aids, optical brighteners, pitch control chemicals, slimicides, biocides, specialty chemicals such as corrosion inhibitors, flame proofing and anti-tarnish chemicals, and the like.
  • the aqueous paper making stock furnish comprising the bleached pulp and the aluminum based compounds is deposited onto the forming wire of a conventional paper making machine to form a wet deposited web of paper or paperboard and the wet deposited web of paper or paperboard is dried to form a dried web of paper or paperboard.
  • Paper making machines and the use of same to make paper are well known in the art and will not be described in any great detail. See for example, Pulp and Paper Chemistry and Handbook for Pulp & Paper Technologies, supra.
  • the aqueous paper making stock furnish containing pulp, aluminum based and other optional additives and usually having a consistency of from about 0.3% to about 1% is deposited from the head box of a suitable paper making machine as for example a twin or single wire Fourdrinier machine.
  • the deposited paper making stock furnish is dewatered by vacuum in the forming section.
  • the dewatered furnish is conveyed from the forming section to the press section on specially-constructed felts through a series of roll press nips which removes water and consolidates the wet web of paper and thereafter to the dryer section where the wet web of paper is dried to form the dried web of paper of this invention.
  • the dried web of paper may be optionally subjected to several dry end operations such as and various surface treatments such as coating, and sizing and calendering.
  • the paper manufactured in accordance with this invention can be used for conventional purposes.
  • the paper is useful as printing paper, publication paper, newsprint and the like.
  • the present invention is described in more detail by referring to the following examples and comparative examples which are intended to more practically illustrate the invention and not to be a limitation thereon.
  • FIG. 1 illustrates a portion of a bleach plant 10 that is used to produce bleached pulp in accordance with the preferred embodiment of the invention.
  • the unbleached pulp 12 is conveyed to a low density chest 14 via line 16.
  • the unbleached pulp 12 is further diluted with water and then the pulp is mixed with ClO 2 in the mixer 18 before the pulp 12 is transferred to Do delignification 22 tower via line 20.
  • Do delignification 22 tower lignin is oxidized and then the pulp 12 is transferred to washer 24 via lines 26 to remove oxidized lignin and inorganic materials.
  • the pulp preferably has a consistency of from about 8 % to about 15 %.
  • the pulp 12 is then transferred to the extraction with peroxide (Eop). After, the Eop stage, the pulp 12 can be stored in a storage tank (not depicted) until required for the first acidic bleaching stage 40. In the preferred embodiment of the invention, the pulp 12 is transferred to a second washer 32 via line 31. After the second washer 32, Mg(OH) 2 is added to the pulp before the pulp is transferred to a first acidic bleaching stage 40. In first acidic bleaching stage 40, the pulp 12 is bleached under acidic conditions with a bleaching agent comprising chlorine dioxide.
  • a bleaching agent comprising chlorine dioxide.
  • the bleaching agent is chlorine dioxide comprising less than about 1.5 %, preferably less than about 1 %, more preferably less than about 0.5% and most preferably less than about 0.3 % of the active bleaching agent is elemental chlorine.
  • the active bleaching agent is chlorine dioxide which contains no or substantially no elemental chlorine (i.e. less than about 1% to about 5%).
  • the application rates, pHs, times and temperatures used in the acidic bleaching stage may vary widely and any known to the art can be used.
  • the bleached pulp 12 is conveyed via line 42 to at least one post first acidic bleaching stage washer or decker 44.
  • the final pH of the first acidic bleaching stage is critical for the advantages of this invention.
  • the pH is greater than 3.5 and is preferably equal to or greater than about 6.5.
  • the end point pH is from about 3.0 to about 5.0 and in the most preferred embodiments of the invention is from about 4.0 to about 4.5.
  • the pulp can be processed from system and used for conventional purposes or the pulp can be subjected to one or more additional acidic and/or alkaline bleaching stages either before or after the first acidic bleaching, alkaline bleaching stage and/or second acidic bleaching stage.
  • additional pulp bleaching with one or more bleaching agents selected from the group consisting of peroxide, chlorine dioxide and ozone Such additional bleaching stages may be without subsequent washing or may be followed by subsequent wash stage or stage(s).
  • pulp can be conveyed from stage 40 via line 42 to at the post acidic bleaching washing stage 44 where the pulp is washed.
  • the washed pulp exits the bleaching sequence via line 46 for conventional use as for example in a paper making process.
  • Example 2
  • the pulp was made from southern hardwood cooked by the Kraft process.
  • the unbleached Eop pulp had 4.9 Permanganate number, 52.2% brightness, and 25 cP viscosity.
  • the procedure for Permanganate or P number, brightness, and viscosity are shown below.
  • Bleaching was conducted in sealed plastic bags. All pulp samples were preheated to the bleaching temperature, and all the chemicals were added sequentially and mixed thoroughly with the pulp before addition of another chemical.
  • the chemical addition sequence in the D stages are deionized water, caustic (for pH control), and ClO 2 .
  • the pulp was squeezed to collect filtrate for pH, residual, and COD measurement.
  • the pulp was repulped at 1% consistency with deionized water and dewatered on a Buchner funnel and repeat a couple of time to simulate a pulp washing stage in mills.
  • the washed pulp was analyzed for brightness, viscosity, and pulp dirt. The procedures are set forth below: Brightness
  • Reverted brightness a standard lab test for pulp brightness stability, was conducted by placing the pulp brightness pad (after brightness reading) in an oven at 105 C for 60 min. After that, the brightness pad is read for brightness as reverted brightness. Viscosity
  • the viscosity is a measurement used to compare a relative strength property of the pulp. This property is used to determine the percentage of hardwood/softwood for making different grades of paper.
  • the Permanganate Number indicates the amount of lignin that is in the pulp. (The Kappa number is generally used only on the brownstock, while the value for the Permanganate Number is comparative to the bleached pulp.)
  • the procedure for determining the Permanganate Number is:
  • Pulp dirt count is done by a visual count of all the dirt spots on the brightness pad and is the size weighted sum of the total dirt spots according to a Tappi temperature rate.
  • Example 2 Using the process and the pulp of Example 2, Mg(OH) 2 was substituted for NaOH, and brightness, viscosity, dirt were determined using the procedure in Example 2.

Abstract

This invention relates to an improved bleaching process for bleaching pulp comprising at least one bleaching stage which comprises treating a softwood pulp with a bleaching agent comprising CIO2 in the presence of a weak base such as, for example, Mg(OH)2 preferably at pH from about 3.5 to about 6.5. The invention is also relates a bleaching process for bleaching pulp having two or more bleaching stages, at least one of which and preferably two of which comprises treating a pulp with a bleaching agent comprising CIO2 in the presence of a weak base such as, for example, Mg(OH)2 preferably at pH from about 3.5 to about 4.5.

Description

A PROCESS IN A (D) STAGE BLEACHING OF SOFTWOOD PULPS IN A PRESENCE
OF Mg(OH)2
FIELD OF THE INVENTION
This invention relates to the bleaching of softwood pulp. More particularly, the invention relates to improvements of bleaching a pulp in D stage bleaching in presence Of Mg(OH)2.
BACKGROUND OF THE INVENTION
The bleaching pH plays a key role in C102 bleaching/brightening in the Dl and D2 stages. Our current understanding of optimum C102 bleaching pH is largely credited to the earlier work done by Raspon in 1956. Studying on Eastern Canadian softwood kraft pulp at kappa 28 with conventional chlorine based bleaching, Rapson showed an optimum Dl stage of 3.8 for maximum brightness. The maximum brightness corresponds to the minimum formation of two unproductive products, chlorite and chlorate, during C102 bleaching. Mill practice usually controls the Dl end pH at 3-3.5, a compromise between brightness development and dirt bleaching. In the absence of dirt bleaching requirement, mill usually controls the D2 pH at 4-4.5. Mills make no distinction between optimum bleaching pH requirements for SW or HW pulp. While these pHs are largely true for softwood pulp, the optimum bleaching pHs for softwood species are much higher than 3.8 recommended by Rapson. SUMMARY OF THE INVENTION
One aspect of this invention relates to an improved bleaching process for bleaching pulp comprising at least one bleaching stage which comprises treating a softwood pulp with a bleaching agent comprising C1O2 in the presence of a weak base such as, for example, Mg(OH)2 preferably at pH from about 3.5 to about 6.5.
Another aspect of this invention relates to an improved bleaching process comprising at least one extraction stage and at least one bleaching stage wherein the least one bleaching stage comprises bleaching bleaching a softwood pulp with a bleaching agent comprising C1O2 in the presence of a weak base, as for example, Mg(OH)2 preferably at pH of about 3.5 to about 6.5.
A further aspect of the present invention relates to an improved bleaching process for bleaching pulp having two or more bleaching stages, at least one of which and preferably two of which comprises treating a pulp with a bleaching agent comprising C1O2 in the presence of a weak base such as Mg(OH)2 .
Yet another aspect of this invention relates to an improved bleaching process for bleaching pulp comprising a bleaching sequence selected from the group consisting of the formula: Three-stage bleaching sequence: D0EDi where E can be E, Eo, Ep, or Eop
Four-stage bleaching sequence: D0EDiD2 where E can be E, Eo, Ep, or Eop
Four-stage bleaching sequence: D0ED]P where E can be E, Eo, Ep, or Eop
Five-stage bleaching sequence: D0EiDiE2D0 where Ei can be E, Eo, Ep, or Eop and E2 can be Ep with interstage washing and wherein: D is a stage in which a pulp is treated with a bleaching agent comprising C102. The first D0 stage is a delignification stage. The second and third Dj and D2 stages are the bleaching stages comprising C1O2 in the presence OfMg(OH)2 at pH from about 3.5 to about 6.5.
E is an extraction stage, where E can be E, Eo, Ep, Eop. The extraction stage Eo is defined as treating the pulp with oxygen in presence of a base. The extraction stage E is defined as treating the pulp in the presence of a base. The extraction stage Ep is defined as treating the pulp with peroxide in presence of a base. The extraction stage Eop is defined as treating the pulp with oxygen and peroxide in presence of a base.
The process of the present invention provides one or more advantages over prior processes for brightening bleached pulps. For example, advantages of some of the embodiments of the process of this invention include 1) improve bleaching efficiency which is defined as brightness development per unit of ClO2, 2) reducing the bleaching cost, 3) high pulp brightness and brightness stability, 4) improve pulp cleanliness, 5) a combination of two or more of the aforementioned advantages. Mg(OH)2 is more effective than NaOH in raising Di pH and gives better results in both brightness development and dirt removal in the D 1 stage at the same pH basis. Unlike NaOH, Mg(OH)2 is a weaker base and provides a pH buffer effect, which helps pH uniformity and stability in the Dl tower compared with NaOH. The ability Of Mg(OH)2 to achieve a higher pH and better pH uniformity and stability than NaOH is the basis for the improved Di performance with Mg(OH)2.
Some embodiments of this invention may exhibit one of the aforementioned advantages while other preferred embodiments may exhibit two or more of the foregoing advantages in any combination. BRIEF DESCRIPTION OF THE DRAWINGS
A full understanding of the invention can be gained from the following description of the preferred embodiments when read in conjunction with the accompanying drawings in which:
Fig. 1 is a schematic illustration of the overall pulp making in accordance to the present invention; and
Fig. 2 is a graph showing the effect of Di pH and caustic source on Di Brightness for softwood pulp.
DETAILED DESCRIPTION OF THE INVENTION
While this invention is susceptible of embodiment in many different forms, there is shown and described in drawing, figures, and examples and will herein be described in detail preferred embodiments of the invention with the understanding that the present disclosure is to be considered as an exemplification of the principles of the invention and is not intended to limit the broad aspect of the invention to the embodiments illustrated.
One aspect of this invention relates to an improved bleaching process for bleaching pulp comprising at least one (D) bleaching stage which comprises treating a softwood pulp with a bleaching agent comprising ClO2 in the presence of a weak base, for example, Mg(OH)2 preferably at pH from about 3.5 to about 6.5.
The pH of the at least one (D) bleaching stage is in the range from greater than 3 to about 6.5. Any pH within this range can be used. For example, the pH can be as high as about 6 or 6.5 and as low as about 3 to about 3.5. In the preferred embodiments of the invention, the pH is from about 3 to about 5. In the more preferred embodiments of the invention, the pH is from about 3.5 to about 4.5 and in the most preferred embodiments of the invention, the pH is from about 4.0 to about 4.5.
In the preferred embodiment of this invention, the pH in the at least one (D) bleaching stage of the present invention is higher than the pH of the conventional D bleaching stage. The advantages of higher pH are higher bleaching efficiency, higher dirt removal efficiency, and higher brightness, less reverted brightness which means higher brightness stability or a combination of two or more thereof.
A weak base is used in the at least one bleaching stage to control pH. As used herein, a weak base is defined as a chemical base in which protonation is incomplete. This result in a relatively low pH level compared to strong bases. While we do not wish to be bound by any theory, it is believed that the weak base is any compounds that can continuously supply basic species, such as (OH") to neutralize the protons (H+) produced in organic reactions such as pulp bleaching to buffer the pH at a relatively constant value or within a narrow range.
Illustrative of the weak bases that can be used in the presence of this invention are NaH2PO3, Ca(OH)2, NH4OH, NaHCO3, HOCCH3- and Mg(OH)2. Mg(OH)2 is a preferred weak base because in addition to its partial dissociation to release base (OH-), partial solubility of Mg(OH)2 allows continuously solubilizing Mg(OH)2 in response to the produced acids or protons in bleaching reactions as the Mg(OH)2 solubility increases with decreasing in solution pH.
The amount and type of weak base used is dictated by the target pH at the end of bleaching reaction. The bleaching agent used in the process of this invention comprises ClO2. The bleaching agent may include other ingredients in admixture with the ClO2, for example, elemental chlorine and inert gases such as air.
The amount of ClO2 used in the at least one bleaching stage can vary widely and is an amount sufficient to bleach the softwood pulp to the desired brightness. The amount of ClO2 is typically equal to or greater than about 0.1% based on the total weight of pulp (an oven dried basis), preferably the amount of ClO2 is from about 0.2% to about 1% and more preferably the amount of ClO2 is from about 0.2% to about 0.8%, and most preferably the amount of ClO2 is from about 0.3% to about 0.5%.
The consistency (CSC) of the at least one bleaching stage of the pulp may vary widely and any consistency that provides the desired increase in pulp brightness may be used. The pulp may be bleached under low consistency conditions (i.e. from about 3 to about 4 based on the total weight of the mixture of pulp and bleaching chemicals), medium consistency conditions (i.e. from about 8 % to about 14 % based on the total weight of the mixture of pulp and bleaching chemicals) or high consistency conditions (i.e. from about 25 to about 30 based on the total weight of the mixture of pulp and bleaching chemicals). The consistency is preferably from about 5 to 15, more preferably from about 8 to 15, and most preferably from about 10% to about 12%.
The retention times of the at least one bleaching stage of pulp will vary widely and times used in conventional bleaching stages may be used. Usually, retention times will be at least about 180 minutes. Retention times are preferably from about 60 min. to about 240 min., and are more preferably from about 120 minutes to about 200 min. and most preferably from about 150 min. to about 180 min. Similarly, the bleaching temperatures employed in the at least one bleaching stage of the pulp may vary widely and temperatures employed in conventional bleaching stages may be used. For example, useful temperatures can be as low as about 55 0C or lower and as high as about 85 0C or higher. In the process of this invention, the bleaching temperature is usually from about 60 0C to about 80 0C, preferably from about 6O0C to about 75 0C, more preferably from about 65 0C to about 75 0C and most preferably from about 65 0C to about 70 0C.
However, one of the advantages of a preferred embodiment of this invention is the enhanced bleaching efficiency in the at least one bleaching stage. The bleaching efficiency is defined as brightness developed per unit ClO2. The bleaching efficiency of the preferred embodiment of this invention is preferably at least about 0.3, more preferably at least about 0.35, and most preferably at least about 0.37. The bleaching efficiency of the preferred embodiment is greater than that of the same or substantially the same bleaching processes in which NaOH is used in the at least one bleaching rather than Mg(OH)2.
Another advantage a preferred embodiment of this invention is the reduction of dirt resulting from the at least one bleaching stage as compared to the same or substantially the same bleaching processes which do not include the Mg(OH)2. For example, the reduction in the amount of dirt is typically at least about 0.1 %, preferably at least about 0.1%, more preferably at least about 0.015 % and most preferably at least about 012 % less than the amount of dirt produced in the same or substantially the same bleaching processes which do not include the Mg(OH)2 to obtain the same or substantially the same level of pulp brightness in the Eop and/or Ep stages.
In addition, the pulp brightness and viscosity were higher than those treatments with
NaOH, which indicates the positive impact of Mg(OH)2 used in treatment, on the bleaching efficiency. For example, the viscosity is typically at least about 1.5 %, preferably at least about 2 %, more preferably at least about 2.5 % and most preferably at least about 3 % greater than the viscosity of the pulp made by the same or substantially the same bleaching processes which do not include Mg(OH)2. For example, the brightness is typically at least about 0.5 brightness points, preferably at least about 0.75 brightness points, more preferably from about 1.0 and most preferably at least about 1.5 greater than the brightness of the pulp made by the same or substantially the same bleaching processes which do not include the Mg(OH)2.
In the preferred embodiment of this invention, the bleaching process will also comprise at least one extraction stage prior to the at least one bleaching stage.
Conventional process parameters employed in these extraction stages are well known in the art as for example "Pulp Bleaching Principles and Practice of Pulp Bleaching" Carlton W. Dence and Douglas W. Reeve, TAPPI Press, 1996 and references cited therein. Accordingly, they will not be described in greater detail.
However, one of the advantages of a preferred embodiment of this invention is the reduction of bleaching chemicals such as ClO2 in the Dj stage as compared to the same or substantially the same bleaching processes which do not include Mg(OH)2. For example, the reduction in the amount of ClO2 is typically at least about 5 %, preferably at least about 10 %, more preferably from about 15 % to about 50 % and most preferably from about 20 % to about 25 % less than the amount of ClO2 used in the same or substantially the same bleaching processes which do not include Mg(OH)2 to obtain the same or substantially the same level of pulp brightness in the Eop and or Ep stages. Another advantage a preferred embodiment of this invention is the reduction of the amount of Dirt count resulting from the at least on bleaching stage as compared to the same or substantially the same bleaching processes which do not include the Mg(OH)2. For example, the reduction in the amount of Dirt count is typically at least about 4 %, preferably at least about 5 %, more preferably from about 7 % to about 20 % and most preferably from about 8 % to about 15 % less than the amount of Dirt count produced in the same or substantially the same bleaching processes which do not include the Mg(OH)2 to obtain the same or substantially level of pulp brightness in the Do stage.
Another aspect of this invention relates to an improved bleaching process comprising at least one extraction stage and at least one bleaching stage wherein the least one bleaching stage comprises bleaching a softwood pulp with a bleaching agent comprising ClO2 in the presence of a weak base, as for example, Mg(OH)2 preferably at pH of about 3.5 to about 6.5.
The at least one extraction stage is carried out prior to the at least one bleaching stage and any type of extraction or delignification can be used. In the preferred embodiment of the invention the extraction stage is carried out in a D0 stage, E stage, Eo stage, Ep stage, and Eop stage or combination thereof, where D0, Eo, Ep, Eop, are defined above. Conventional processes and apparatus can be used in the D0, E, Eo, Ep, or Eop stage. See for example "Pulp Bleaching Principles and Practice of Pulp Bleaching" Carlton W. Dence and Douglas W. Reeve, TAPPI Press, 1996 and references cited therein. In the most preferred embodiment of the invention, the pulp is extracted in a D0 stage and a Eop stage.
In addition to the at least one bleaching stage and the extraction stage, the process can also include one or more additional stages. Such a bleaching sequence include DoEopDn, ODoEopDn, DoEopDiD2, ODoEopD,D2, DoEopD]EpD2, ODoEopDiEpD2, DoEopDiP, O(D0/C)EopDi, DoEopD,, D0EOPDi, D0EopEDi, D0EDiEpEopD2, ZED0EOp, ZDoEopDi, D0EpZEop , D0EpZDiZ, D0D,EopPP, D0DiEOpZ, DoEopD,, ODoEopD], DoEopDi, ODoEOpD1, DoEopDiEpD2, ODoEopDiEpD2, DEopDjP and the like in which D, Dj, D2, Eo, E, Ep and Eop are is as described above and Z is ozone, O is oxygen, P is peroxide, D/C is a mixture of chlorine dioxide and elemental chlorine and two or more symbols in parenthesis indicate an absence of an intermediate washing stage. The processes and apparatus used in the D, Z, E, Eo, Ep, Eop, O, P, D/C are conventional and there are well known in art. See for example, "Pulp Bleaching Principles and Practice of Pulp Bleaching" Carlton W. Dence and Douglas W. Reeve, TAPPI Press, 1996 and references cited therein.
The amount of extraction agent used (e.g. potassium hydroxide, etc.) used in the practice of the process of this invention can vary widely and any amount sufficient to provide the desired lignin extraction efficiency and the desired degree of brightness can be used. The amount of extraction agent used is usually at least about 0.1 % based on the dry weight of the pulp. Preferably the amount of extraction agent is from about 0.2 % to about 0.5 %, more preferably from about 0.15 % to about 0.35 % and most preferably about 0.25 % on the aforementioned basis.
The plant source of softwood pulp for use in this invention is not critical provided that it forms softwood pulp, and may be any fibrous plant which can be subjected to chemical pulp bleaching. Examples of such fibrous plants are softwood fibrous trees such as spruce, pine, cedar, including mixtures thereof. In certain embodiments, at least a portion of the pulp fibers may be provided from non-woody herbaceous plants including, but not limited to, kenaf, hemp, jute, flax, sisal, or abaca although legal restrictions and other considerations may make the utilization of hemp and other fiber sources impractical or impossible. The source of pulp for use in the practice of this invention is softwood fibrous trees such as spruce, pine, cedar, including mixtures thereof.
The pulp used in the process of this invention can be obtained by subjecting the fibrous plant to any chemical pulping process. Following the wood digestion process, pulp is separated from the spent pulping liquor. The spent pulping liquor is then recovered and regenerated for recycling. The pulp is then bleached and purified in a bleach plant operation.
The pulp of this invention can also be used in the manufacture of paper and packaging products such as printing, writing, publication and cover papers and paperboard products. Illustrative of these products and processes for their manufacture are those described in USP Nos. 5,902,454 and 6,464,832.
For example, in the paper or paperboard making process, the bleached pulp of this invention or pulp mixtures comprising the bleached pulp of this invention is formulated into an aqueous paper making stock furnish which also comprises one of more additives which impart or enhance specific sheet properties or which control other process parameters. Illustrative of such additives is alum which is used to control pH, fix additives onto pulp fibers and improve retention of the pulp fibers on the paper making machine. Other aluminum based chemicals which may be added to furnish are sodium aluminate, poly aluminum silicate sulfate and poly aluminum chloride. Other wet end chemicals which may be included in the paper making stock furnish for conventional purposes are acid and bases, sizing agents, dry-strength resins, wet strength resins, fillers, coloring materials, retention aids, fiber flocculants, defoamers, drainage aids, optical brighteners, pitch control chemicals, slimicides, biocides, specialty chemicals such as corrosion inhibitors, flame proofing and anti-tarnish chemicals, and the like.
The aqueous paper making stock furnish comprising the bleached pulp and the aluminum based compounds is deposited onto the forming wire of a conventional paper making machine to form a wet deposited web of paper or paperboard and the wet deposited web of paper or paperboard is dried to form a dried web of paper or paperboard. Paper making machines and the use of same to make paper are well known in the art and will not be described in any great detail. See for example, Pulp and Paper Chemistry and Handbook for Pulp & Paper Technologies, supra. By way of example, the aqueous paper making stock furnish containing pulp, aluminum based and other optional additives and usually having a consistency of from about 0.3% to about 1% is deposited from the head box of a suitable paper making machine as for example a twin or single wire Fourdrinier machine. The deposited paper making stock furnish is dewatered by vacuum in the forming section. The dewatered furnish is conveyed from the forming section to the press section on specially-constructed felts through a series of roll press nips which removes water and consolidates the wet web of paper and thereafter to the dryer section where the wet web of paper is dried to form the dried web of paper of this invention. After drying, the dried web of paper may be optionally subjected to several dry end operations such as and various surface treatments such as coating, and sizing and calendering.
The paper manufactured in accordance with this invention can be used for conventional purposes. For example, the paper is useful as printing paper, publication paper, newsprint and the like. The present invention is described in more detail by referring to the following examples and comparative examples which are intended to more practically illustrate the invention and not to be a limitation thereon.
Example 1
Figure 1 illustrates a portion of a bleach plant 10 that is used to produce bleached pulp in accordance with the preferred embodiment of the invention. The unbleached pulp 12 is conveyed to a low density chest 14 via line 16. In the low density chest 14, the unbleached pulp 12 is further diluted with water and then the pulp is mixed with ClO2 in the mixer 18 before the pulp 12 is transferred to Do delignification 22 tower via line 20. In the Do delignification 22 tower, lignin is oxidized and then the pulp 12 is transferred to washer 24 via lines 26 to remove oxidized lignin and inorganic materials. After the last Do washing stage 28, the pulp preferably has a consistency of from about 8 % to about 15 %. The pulp 12 is then transferred to the extraction with peroxide (Eop). After, the Eop stage, the pulp 12 can be stored in a storage tank (not depicted) until required for the first acidic bleaching stage 40. In the preferred embodiment of the invention, the pulp 12 is transferred to a second washer 32 via line 31. After the second washer 32, Mg(OH)2 is added to the pulp before the pulp is transferred to a first acidic bleaching stage 40. In first acidic bleaching stage 40, the pulp 12 is bleached under acidic conditions with a bleaching agent comprising chlorine dioxide. In the preferred embodiments of the invention as depicted in the figure 1, the bleaching agent is chlorine dioxide comprising less than about 1.5 %, preferably less than about 1 %, more preferably less than about 0.5% and most preferably less than about 0.3 % of the active bleaching agent is elemental chlorine. In the embodiments of the invention of choice, the active bleaching agent is chlorine dioxide which contains no or substantially no elemental chlorine (i.e. less than about 1% to about 5%). The application rates, pHs, times and temperatures used in the acidic bleaching stage may vary widely and any known to the art can be used.
The bleached pulp 12 is conveyed via line 42 to at least one post first acidic bleaching stage washer or decker 44.
The final pH of the first acidic bleaching stage is critical for the advantages of this invention. The pH is greater than 3.5 and is preferably equal to or greater than about 6.5. In the preferred embodiments of this invention, the end point pH is from about 3.0 to about 5.0 and in the most preferred embodiments of the invention is from about 4.0 to about 4.5.
The pulp can be processed from system and used for conventional purposes or the pulp can be subjected to one or more additional acidic and/or alkaline bleaching stages either before or after the first acidic bleaching, alkaline bleaching stage and/or second acidic bleaching stage. As for example, further pulp bleaching with one or more bleaching agents selected from the group consisting of peroxide, chlorine dioxide and ozone. Such additional bleaching stages may be without subsequent washing or may be followed by subsequent wash stage or stage(s). As depicted in Figure 3, pulp can be conveyed from stage 40 via line 42 to at the post acidic bleaching washing stage 44 where the pulp is washed. The washed pulp exits the bleaching sequence via line 46 for conventional use as for example in a paper making process. Example 2
The pulp was made from southern hardwood cooked by the Kraft process. The unbleached Eop pulp had 4.9 Permanganate number, 52.2% brightness, and 25 cP viscosity. The procedure for Permanganate or P number, brightness, and viscosity are shown below.
Bleaching was conducted in sealed plastic bags. All pulp samples were preheated to the bleaching temperature, and all the chemicals were added sequentially and mixed thoroughly with the pulp before addition of another chemical. The chemical addition sequence in the D stages are deionized water, caustic (for pH control), and ClO2.
After completing the Di bleaching stage, the pulp was squeezed to collect filtrate for pH, residual, and COD measurement. The pulp was repulped at 1% consistency with deionized water and dewatered on a Buchner funnel and repeat a couple of time to simulate a pulp washing stage in mills. The washed pulp was analyzed for brightness, viscosity, and pulp dirt. The procedures are set forth below: Brightness
Approximately 5 grams of pulp is rolled or pressed on a disc and is permitted to completely dry. The brightness is measured on both sides of the brightness pad, at least four readings per side and then the average is calculated. These readings are performed on a GE brightness meter which reads a directional brightness or on an ISO brightness meter which reads a diffused brightness. Both instruments are made by Technidyne Corp. Reverted Brightness
Reverted brightness, a standard lab test for pulp brightness stability, was conducted by placing the pulp brightness pad (after brightness reading) in an oven at 105 C for 60 min. After that, the brightness pad is read for brightness as reverted brightness. Viscosity
The viscosity is a measurement used to compare a relative strength property of the pulp. This property is used to determine the percentage of hardwood/softwood for making different grades of paper. A Cannon-Fenske (200) viscometer tube, calibrated for 25 C, is used for testing bleached pulps. The sample size is 0.2000 grams, using 20 ml, 1.0 molar CED and 20ml DI water mixed thoroughly to break down the pulp fiber. Permanganate Number
The Permanganate Number indicates the amount of lignin that is in the pulp. (The Kappa number is generally used only on the brownstock, while the value for the Permanganate Number is comparative to the bleached pulp.) The procedure for determining the Permanganate Number is:
1. Weigh exactly 1.00 gram sample.
2. Put the sample in a blender with 700 ml DI water and blend about 45 seconds, pour the sample into a battery jar on a stir plate.
3. Add exactly 25 ml of 0.1 N Potassium Permanganate and 25 ml 4N H2SO4, starting a timer set for 5 min.
4. When the timer stops, add 6 ml 1 Molar KI and allow it to mix thoroughly to kill the reaction. 5. Titrate to a starch end point with 0. IN Sodium Thiosulfate. Record mis titrated.
6. In 700ml DI water without the pulp sample, use the same reagents and titrate to use as a blank. Using an accurately prepared Potassium Permanganate, the blank should be 25.0
7. Subtract the mis titrated with the sample from the mis titrated for the blank and the result will be the P Number.
Dirt
Pulp dirt count is done by a visual count of all the dirt spots on the brightness pad and is the size weighted sum of the total dirt spots according to a Tappi temperature rate.
All the filtrate and pulp analysis was done with the standard published procedures understood by all the people working in the field. The lab Dl bleaching was conducted at 0.8% C1O2 and 60 0C for 150 min.
The results are shown in Table 1 and Figure 2.
Figure imgf000018_0001
Example 3
Using the process and the pulp of Example 2, Mg(OH)2 was substituted for NaOH, and brightness, viscosity, dirt were determined using the procedure in Example 2.
The results are summarized in Table 2.
Figure imgf000019_0001
Various modifications and variations may be devised given the above-described embodiments of the invention. It is intended that all embodiments and modifications and variations thereof be included within the scope of the invention as it is defined in the following claims.

Claims

What is claimed is:
1. An improved bleaching process for bleaching pulp comprising: at least one bleaching stage which comprises treating a softwood pulp with a bleaching agent comprising C1O2 in the presence of a weak base at pH from about 3.5 to about 6.5.
2. The bleaching process of claim 1 wherein the weak base is selected from the group consisting OfNaH2PO3, Ca(OH)2, NH4OH, NaHCO3, HOCCH3-and Mg(OH)2.
3. The bleaching process of claim 1 wherein the weak base is Mg(OH)2
4. The bleaching process of claim 1 wherein the pulp pH is from about 3.5 to about 4.50.
5. The bleaching process of claim 1 wherein the pulp consistency is from about 10% to about 20%.
6. The bleaching process of claim 1 wherein the retention time is from about 10 min. to about 300 min.
7. The bleaching process of claim 1 wherein the temperature is from about 55 0C to about 85 0C.
8. The bleaching process of claim 1 wherein the pulp beaching efficiency is about 5 % greater than the same bleaching process in which NaOH is used in at least one bleaching rather than Mg(OH)2.
9. The bleaching process of claim 1 wherein an amount of dirt resulting from the at least one bleaching stage is at least 15% greater than the same or substantially the same bleaching processes which do not include the Mg(OH)2.
10. The bleaching process of claim 1 wherein pulp viscosity is at least about 3 % greater than the viscosity of the pulp made by the same or substantially the same bleaching processes using NaOH.
11. The bleaching process of claim 1 wherein pulp brightness is at least about 10 % greater than the brightness of the pulp made by the same or substantially the same bleaching processes using NaOH.
12. The bleaching process of claim 1 wherein the amount of ClO2 used in the at least one bleaching stage is from about 0.1% to about 0.5%.
13. The bleaching process of claim 1 further comprising at least one extraction stage carried out in a D0 stage, E stage, Eo stage, Ep stage, and Eop stage and combination thereof.
14. The bleaching process of claim 13 having a bleaching sequence selected from the group consisting of DoEopDn, ODoEopDn, DoEopD]D2, ODoEopD]D2, DoEopDjEpD2, ODoEopDiEpD2, DoEopDiP, 0(Do/C)EopDl 5 D0EopDi, D0EOPD1, D0EopEDi, D0EDiEpEopD2, ZED0EoP, ZDoEopDi, D0EpZEop , D0EpZD1Z, D0DiEopPP, D0DiEopZ, DoEOpD1, ODoEopDi, DoEopD,, ODoEopDi, DoEopDiEpD2, ODoEopDiEpD2, and DEopDiP, wherein E, Eo, Ep, Eop, Z, O are defined as: Eo is defined as treating the pulp with oxygen in presence of a base, E is defined as treating the pulp in the presence of a base, Ep is defined as treating the pulp with peroxide in presence of a base, Eop is defined as treating the pulp with oxygen and peroxide in presence of a base, Z is ozone, and O is Oxygen.
15. An improved bleaching process for bleaching pulp comprising: at least one extraction stage and at least one bleaching stage wherein the least one bleaching stage comprises bleaching a hardwood pulp with a bleaching agent comprising C1O2 in the presence of a weak base at pH of about 3.5 to about 6.5.
16. The bleaching process of claim 1 wherein the weak base is selected from the group consisting OfNaH2PO3, Ca(OH)2, NH4OH, NaHC03, H0CCH3-and Mg(OH)2
17. The bleaching process of claim 15 wherein the weak base is Mg(OH)2
18. An improved bleaching process for bleaching pulp having two or more bleaching stages, at least one of which comprises treating a pulp with a bleaching agent comprising C102 in the presence of a weak base.
19. The bleaching process of claim 17 wherein the weak base is Mg(OH)2
20. The bleaching process of claim 17 wherein the pulp pH is from about 3.5 to about 4.50.
PCT/US2007/025373 2006-12-18 2007-12-12 A process in a (d) stage bleaching of softwood pulps in a presence of mg(oh)2 WO2008076267A2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP07862784A EP2122048A2 (en) 2006-12-18 2007-12-12 A process in a (d) stage bleaching of softwood pulps in a presence of mg(oh)2
CA2671826A CA2671826C (en) 2006-12-18 2007-12-12 A process in a (d) stage bleaching of softwood pulps in a presence of mg(oh)2

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/640,822 2006-12-18
US11/640,822 US7976676B2 (en) 2006-12-18 2006-12-18 Process of bleaching softwood pulps in a D1 or D2 stage in a presence of a weak base

Publications (2)

Publication Number Publication Date
WO2008076267A2 true WO2008076267A2 (en) 2008-06-26
WO2008076267A3 WO2008076267A3 (en) 2008-08-14

Family

ID=39315131

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2007/025373 WO2008076267A2 (en) 2006-12-18 2007-12-12 A process in a (d) stage bleaching of softwood pulps in a presence of mg(oh)2

Country Status (4)

Country Link
US (2) US7976676B2 (en)
EP (1) EP2122048A2 (en)
CA (1) CA2671826C (en)
WO (1) WO2008076267A2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BRPI0520253B1 (en) * 2005-05-04 2016-09-06 Novozymes As methods for delignifying and / or bleaching a pulp, and for treating tailings and / or sludge water
WO2009117818A1 (en) * 2008-03-25 2009-10-01 University Of New Brunswick Process of chlorine dioxide bleaching of chemical pulps using magnesium hydroxide or magnesium oxide
US9511167B2 (en) 2009-05-28 2016-12-06 Gp Cellulose Gmbh Modified cellulose from chemical kraft fiber and methods of making and using the same
US9512563B2 (en) 2009-05-28 2016-12-06 Gp Cellulose Gmbh Surface treated modified cellulose from chemical kraft fiber and methods of making and using same
US9512237B2 (en) 2009-05-28 2016-12-06 Gp Cellulose Gmbh Method for inhibiting the growth of microbes with a modified cellulose fiber
KR101728910B1 (en) 2009-05-28 2017-04-20 게페 첼루로제 게엠베하 Modified cellulose from chemical kraft fiber and methods of making and using the same
KR101918470B1 (en) 2011-05-23 2018-11-14 게페 첼루로제 게엠베하 Softwood kraft fiber having improved whiteness and brightness and methods of making and using the same
BR112014017164A8 (en) 2012-01-12 2017-07-04 Gp Cellulose Gmbh method for producing oxidized kraft pulp and softwood kraft fibers
PL2839071T3 (en) 2012-04-18 2019-05-31 Gp Cellulose Gmbh The use of surfactant to treat pulp and improve the incorporation of kraft pulp into fiber for the production of viscose and other secondary fiber products
PL2954115T3 (en) 2013-02-08 2022-05-02 Gp Cellulose Gmbh Softwood kraft fiber having an improved a-cellulose content and its use in the production of chemical cellulose products
AU2014229520B2 (en) 2013-03-14 2017-09-21 Gp Cellulose Gmbh A method of making highly functional, low viscosity kraft fiber using an acidic bleaching sequence and a fiber made by the process
RU2661836C2 (en) 2013-03-15 2018-07-19 ДжиПи СЕЛЛЬЮЛОУС ГМБХ Low viscosity kraft fibre having higher carboxyl content and methods of making and using same
CA3040734A1 (en) 2016-11-16 2018-05-24 Gp Cellulose Gmbh Modified cellulose from chemical fiber and methods of making and using the same

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1505076A (en) * 1974-06-11 1978-03-22 Canadian Ind Strenghening of mechanical pulp by chemical treatment
US5441603A (en) * 1990-05-17 1995-08-15 Union Camp Patent Holding, Inc. Method for chelation of pulp prior to ozone delignification
EP0716182A2 (en) * 1994-11-23 1996-06-12 Alcell Technologies Inc. Chlorine-free organosolv pulps
US6398908B1 (en) * 1991-04-30 2002-06-04 Eka Nobel Ab Process for acid bleaching of lignocellulose-containing pulp with a magnesium compound
WO2002075046A1 (en) * 2001-03-20 2002-09-26 Metso Paper, Inc Bleaching of pulp with chlorine dioxide
US20040112555A1 (en) * 2002-12-03 2004-06-17 Jeffrey Tolan Bleaching stage using xylanase with hydrogen peroxide, peracids, or a combination thereof
WO2006121634A2 (en) * 2005-05-09 2006-11-16 Amidon Thomas E New product and processes from an integrated forest biorefinery

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA756967A (en) * 1967-04-18 Anglo Paper Products Neutral chlorine dioxide pulp bleaching process
US2639987A (en) * 1947-07-09 1953-05-26 Ass Pulp & Paper Mills Two-stage pulping process
GB815247A (en) * 1955-07-19 1959-06-24 Columbia Cellulose Company Ltd Bleaching woob pulps
SE363138B (en) * 1968-06-13 1974-01-07 Air Liquide Sa Etude Exploit P
USRE28777E (en) * 1969-02-06 1976-04-20 Ethyl Corporation Refining of vegetable matter and delignification of the refined matter with chlorine dioxide
EP0279845A4 (en) 1986-08-28 1991-01-09 James River-Norwalk, Inc. Pulp bleaching process
US4859283A (en) * 1988-04-15 1989-08-22 E. I. Du Pont De Nemours And Company Magnesium ions in a process for alkaline peroxide treatment of nonwoody lignocellulosic substrates
US5179021A (en) * 1989-02-10 1993-01-12 Gil Inc. (Now Ici Canada Inc.) Pulp bleaching process comprising oxygen delignification and xylanase enzyme treatment
US5091054A (en) * 1989-08-18 1992-02-25 Degussa Corporation Process for bleaching and delignification of lignocellulosic
EP0472820B1 (en) * 1990-08-17 1997-10-29 Alcell Technologies Inc. Continuous solvent pulping process
SE502706E (en) * 1994-04-05 1999-06-18 Mo Och Domsjoe Ab Preparation of bleached cellulose pulp by bleaching with chlorine dioxide and treatment of complexing agents in the same step
US5641385A (en) * 1995-01-17 1997-06-24 The Dow Chemical Company Use of ethyleneamine for washing pulp containing lignin
US6056853A (en) * 1996-06-13 2000-05-02 Orica Australia Pty. Ltd. Process for peroxide bleaching of pulp using MgO particles
US6569284B1 (en) * 1996-09-24 2003-05-27 International Paper Company Elemental-chlorine-free bleaching process having an initial Eo or Eop stage
US5902454A (en) * 1996-12-13 1999-05-11 Ciba Specialty Chemicals Corporation Method of whitening lignin-containing paper pulps
NZ331438A (en) * 1997-09-16 2000-01-28 Ciba Sc Holding Ag A method of increasing the whiteness of paper by using a formulation containing a swellale layered silicate and an optical brightener 4,4-bis-(triazinylamino)-stilbene-2,2-disulphonic acid
CA2321683C (en) * 1998-03-16 2005-09-27 Pulp And Paper Research Institute Of Canada Additives to chlorine dioxide bleaching
US6245196B1 (en) * 1999-02-02 2001-06-12 Praxair Technology, Inc. Method and apparatus for pulp yield enhancement
US7052578B2 (en) * 2000-01-28 2006-05-30 Martin Marietta Magnesia Specialties, Inc. Process employing magnesium hydroxide in peroxide bleaching of mechanical pulp
FI108234B (en) * 2000-02-28 2001-12-14 Chempolis Oy Process for making pulp
US6881299B2 (en) * 2001-05-16 2005-04-19 North American Paper Corporation Refiner bleaching with magnesium oxide and hydrogen peroxide
US6743332B2 (en) * 2001-05-16 2004-06-01 Weyerhaeuser Company High temperature peroxide bleaching of mechanical pulps
CA2477847A1 (en) 2002-03-06 2003-09-12 Iogen Bio-Products Corporation Xylanase treatment of chemical pulp
JP2004124265A (en) * 2002-03-28 2004-04-22 Nippon Paper Industries Co Ltd Method for improving chlorine dioxide bleaching efficiency
SE521780C2 (en) * 2003-01-31 2003-12-09 Kvaerner Pulping Tech Method for bleaching cellulose pulp and bleaching line for this
SE524896C2 (en) 2003-03-07 2004-10-19 Kvaerner Pulping Tech Bleaching of cellulose pulp with chlorine dioxide in two phases with heating between the phases
US8317975B2 (en) * 2004-04-20 2012-11-27 The Research Foundation Of The State University Of New York Product and processes from an integrated forest biorefinery

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1505076A (en) * 1974-06-11 1978-03-22 Canadian Ind Strenghening of mechanical pulp by chemical treatment
US5441603A (en) * 1990-05-17 1995-08-15 Union Camp Patent Holding, Inc. Method for chelation of pulp prior to ozone delignification
US6398908B1 (en) * 1991-04-30 2002-06-04 Eka Nobel Ab Process for acid bleaching of lignocellulose-containing pulp with a magnesium compound
EP0716182A2 (en) * 1994-11-23 1996-06-12 Alcell Technologies Inc. Chlorine-free organosolv pulps
WO2002075046A1 (en) * 2001-03-20 2002-09-26 Metso Paper, Inc Bleaching of pulp with chlorine dioxide
US20040112555A1 (en) * 2002-12-03 2004-06-17 Jeffrey Tolan Bleaching stage using xylanase with hydrogen peroxide, peracids, or a combination thereof
WO2006121634A2 (en) * 2005-05-09 2006-11-16 Amidon Thomas E New product and processes from an integrated forest biorefinery

Also Published As

Publication number Publication date
CA2671826A1 (en) 2008-06-26
US20080142174A1 (en) 2008-06-19
US7976676B2 (en) 2011-07-12
CA2671826C (en) 2013-03-19
US20110265964A1 (en) 2011-11-03
WO2008076267A3 (en) 2008-08-14
EP2122048A2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
CA2671826C (en) A process in a (d) stage bleaching of softwood pulps in a presence of mg(oh)2
RU2126862C1 (en) Method of removing groups of hexenuronic acids from cellulose by heat treatment
CA2067296C (en) Process for bleaching of lignocellulose-containing pulp
US20150240423A1 (en) Effect of low dose xylanase on pulp in prebleach treatment process
US20110240238A1 (en) Process of bleaching hardwood pulps in a D1 or D2 stage in a presence of a weak base
CA2669032C (en) An improved bleaching process with at least one extraction stage
EP0789798B1 (en) Process for delignification and bleaching of chemical wood pulps
US20090000751A1 (en) Bleaching process with at least one extraction stage
USH1690H (en) Process for bleaching kraft pulp
US11384480B2 (en) Method for bleaching paper pulp
EP0770157A1 (en) Improved bleaching of high consistency lignocellulosic pulp
JP2011001636A (en) Method for producing bleached pulp
JP2011001637A (en) Method for producing bleached pulp
Ragnar et al. Towards environmentally sustainable bleaching of kraft pulp-evaluating the possible role of ozone
Alajoutsijärvi Replacing sulfuric acid in pulp bleaching with internally formed organic acids
JPH0819631B2 (en) Bleaching method for lignocellulosic material
JPH08260370A (en) Bleaching of lignocellulosic substance
JP2005076150A (en) Method for bleaching kraft pulp
CA2490390A1 (en) Improved process for bleaching kraft pulp

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07862784

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2007862784

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2671826

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE