WO2008071722A1 - Measuring apparatus for measuring an electrical current - Google Patents

Measuring apparatus for measuring an electrical current Download PDF

Info

Publication number
WO2008071722A1
WO2008071722A1 PCT/EP2007/063752 EP2007063752W WO2008071722A1 WO 2008071722 A1 WO2008071722 A1 WO 2008071722A1 EP 2007063752 W EP2007063752 W EP 2007063752W WO 2008071722 A1 WO2008071722 A1 WO 2008071722A1
Authority
WO
WIPO (PCT)
Prior art keywords
measuring
measuring device
current
network
voltage
Prior art date
Application number
PCT/EP2007/063752
Other languages
German (de)
French (fr)
Inventor
Reinhard Maier
Heinz Mitlehner
Jürgen RUPP
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Publication of WO2008071722A1 publication Critical patent/WO2008071722A1/en

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/20Modifications of basic electric elements for use in electric measuring instruments; Structural combinations of such elements with such instruments
    • G01R1/203Resistors used for electric measuring, e.g. decade resistors standards, resistors for comparators, series resistors, shunts
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only

Definitions

  • the invention relates to a measuring device for measuring an electric current.
  • a current flowing in an electrical conductor of electric current I can be determined for example by measuring the voltage U via a so-called shunt resistor R S h u n t, where the shunt resistor is connected to the conductor in series and is thus flowed through by the current to be measured I.
  • the influence of contact voltages on the terminals of the shunt resistor leading to the current I to be measured in the so-called four-point measurement is avoided by tapping the voltage U at two further, almost no-current terminals.
  • thermal influences are reduced by suitable dimensioning of the shunt resistor Rshunt specifically for the measuring range I meS s.
  • a Shuntwi ⁇ resistor R shunt for current measurement can therefore be assumed hereinafter for the operation principle of the power measurement to be constant and thus as a linear component.
  • the current I can also be measured with current clamps via a magnetic coupling of the magnetic flux generated by the current to be measured and conducted and detected by means of a permeable core to form a sensor circuit.
  • Alternating currents can be measured by means of a coil wound around the core, eg a ferrite core.
  • a current clamp with a Hall be equipped sensor. The current measuring range of such current clamps depends inter alia on the technical data (in particular the saturation induction) of the permeable core.
  • the power loss P v should not exceed an upper limit P V m a ⁇ .
  • the measurable voltage U is superimposed on a noise as noise voltage U N and can reduce the measuring accuracy for low currents I.
  • the lower limit I min of the current measuring range is therefore predetermined at least by a minimum required measuring accuracy and the upper limit I ma ⁇ approximately by a maximum tolerable electrical power loss Pv.
  • the object of the invention is to specify an improved measuring device for measuring an electric current I.
  • the object is achieved according to claim 1 by a measuring device for measuring an electric current (I), which is flowed through by the current to be measured via two connection nodes. Between the connection nodes a measuring network is interconnected. This is at least passed through by a partial flow (Ii) of the stream (I). The proportion (Ii) of (I) is known here, so that the unknown current is known when (Ii) is determined.
  • an element (10) which has a total resistance (R) dependent on the partial flow (Ii), flows through it.
  • the measuring network comprises two measuring nodes (13, 14) for tapping a measuring voltage (U) dependent on the current to be measured (I). This dependence is at least in a measuring range, for example, the above-mentioned I me ss, unique and known.
  • the measuring voltage is thus dependent on the current I in a different way than the known current measuring method, namely, virtually any desired current-measuring voltage characteristic can be realized by the nonlinear element. As a result, for example, signal compression, power loss reduction, etc. possible.
  • the measuring device according to the invention is thus versatile. It is particularly advantageous, for example, for use in contactors, which can carry high peak currents I pea k, but sometimes have to be switched even with comparatively small currents I min , wherein these limit values can exceed, for example, a peak ratio of 1000: 1 NEN.
  • the measuring device then has a measuring range including the limit values with consistently high accuracy, and works non-destructively and reliably in the measuring range and possibly consumes only a small power loss P v .
  • the measurement network can have several non-linear elements. By suitable interconnection, these may be considered in their entirety as a single non-linear element.
  • the partial flow (Ii) may be the total current to be measured (I), so that the nonlinear element is traversed by the total current to be measured (I).
  • One or two of the measuring network measuring terminals may be short-circuited to one terminal each of the non-linear element.
  • the non-linear element may have a decreasing total resistance (R) as the partial current (Ii) increases. In this way, an extension of the measuring range can be achieved compared to an ordinary measuring device with constant shunt resistor (R S h u n t).
  • the non-linear element may have an increasing total resistance (R) with increasing partial current (I 1 ).
  • R total resistance
  • I 1 partial current
  • a nonlinear element may contain a diode or, in the simplest case, consist of only a single diode.
  • the non-linear element consists of a parallel connection of a diode and an ohmic resistor.
  • the measuring range can be extended by anti-parallel connection of an additional diode by, for example, both the anode of the first diode with the cathode of the second diode is short-circuited at a first terminal of the non-linear element as well as at the second terminal of the non- linear element, the anode of the second diode to the cathode of the first diode.
  • the two terminals of the element can also be connected to each other via an ohmic resistance, which is thus connected in parallel to the two diodes.
  • the non-linear element includes a transistor, wherein also an anti-parallel connection of a plurality of transistors can be used. For example, at a first terminal of the element the source terminal of a first MOS-FET is short-circuited to the drain terminal of a second MOS-FET and at a second terminal of the element the drain terminal of the first MOS-FET is connected to the source terminal Connection of the second MOS-FET short-circuited.
  • the gate terminal of the MOS FETs may be fed back to one of the terminals of the nonlinear element via a suitable element.
  • the measuring network can be an active electrical network to which electrical energy is supplied via a further connection.
  • the measurement network may include an amplifier or a regulator.
  • the controller can be connected in particular for controlling the total resistance (R) of the non-linear element in the measurement network.
  • the non-linear characteristic of the total resistance (R) can thus be dimensioned accordingly for complex applications.
  • the measuring device can be equipped with a computing device which detects and processes the measuring voltage (U).
  • This can be a digital computer with a microcontroller.
  • the measuring device contains a sensor which detects the temperature in the region of the measuring device.
  • a suitable compensation means may be provided. be present, for example in the form of interconnected in the measurement network components or a suitable, including the temperature detecting equipment of the computing device.
  • the computing device for determining the value of the current to be measured (I) from the measurement voltage (U) may be equipped in such a way that the current (I) from the measurement voltage (U) is actually calculated for each measurement or a table for this calculation is used.
  • a table for this calculation is used.
  • Temperature dependence can be considered or compensated
  • Fig. 1 is an electrical network, with current to be measured
  • FIG. 7 shows an element with MOS FETs
  • FIG. 8 shows an alternative element with MOS FETs
  • FIG. 7 shows an element with MOS FETs
  • FIG. 8 shows an alternative element with MOS FETs
  • FIG 9 shows a measuring network with a controller.
  • FIG. 1 shows an arbitrary electrical network (1), which may be part of a device or a machine, not shown here.
  • a single path (2) of the electrical network (1) carries an electrical current (I), which is to be detected metrologically.
  • the path (2) can in this case be any electrical conductor, for example a conductor track on a circuit board or a cable, and extends through two nodes (3) and (4), which in FIG. 1 have a direct connection (5) and both flows through the current to be measured (I).
  • the direct connection (5) between the nodes (3) and (4) of the path (2) in the network (1) of Figure 1 is separated and by a measuring device (6) according to Figure 2 in series connection replaced.
  • the measuring device (6) is connected to a connection node (7) to the node (3) of the path (2) and to a further connection node (8) to the node (4) of the path (2).
  • an electrical measuring network (9) with its at least two terminals (11) and (12) connected, which in Figure 2 from only a single nonlinear element (10) according to the invention.
  • the element (10) may contain, for example, a hot or a cold conductor (negative temperature coefficient resistor, NTC resistor, positive temperature coefficient resistor, PTC resistor).
  • the element (10) can also be a passive or active electrical network from the interconnection of individual components. As is usual in electrical block diagrams, supply lines of a possibly configured as an active network element (10) are not shown for the functioning principle of the current measurement irrelevant, only required for power supply.
  • the measuring network (9) has two measuring nodes (13) and (14), which are electrically conductively connected to the terminals (7) and (8) of the measuring device (6).
  • the measuring node (13) is connected via an electrical short circuit (15) to the terminal (7) and the measuring node (14) in the same way to the terminal (8).
  • a measuring voltage (U) which can be measured with a detection device, not shown, for example, a voltmeter, oscilloscope or similar.
  • the measuring voltage (U) is at least in a measuring range, for example (I mess ) / so, in a clear relationship with the current to be measured in the path (2) current (I).
  • Figure 3 shows an alternative measuring device (6), wherein between a measuring node (13) and a terminal (7) of the measuring device (6) instead of a short-circuit connection (15), the element (10) is connected. Furthermore, in the measuring device (6) shown, although the entire current (I) to be measured flows through the measuring network (9), but not entirely through the element (10). The element (10) is traversed only by a partial flow (Ii), whose connection to the current (I) to be measured is impressed by the current divider circuit formed by the components (Ri, R 2 ), so that the
  • FIGS. 4 to 8 show embodiments of electrical networks for implementing a respective non-linear element (10).
  • the element (10) in FIG. 4 consists of the parallel connection of a diode (Di) and an ohmic resistor (Ri) and can be used primarily for positive currents flowing in the direction from the node (11) to the node (12).
  • the element can also be used for negative currents or alternating currents.
  • FIG. 6 shows an element (10) which comprises a self-blocking n-channel metal oxide layer field-effect transistor (MOS-FET) (Ti). Its drain terminal (16) is connected to the terminal (11) and the source terminal (17) to the terminal (12). The voltage (U G s) between the gate (18) and the source terminal (17) of the MOS-FET (T x ) is set via an element (20) which here on the one hand to gate terminal (18) and on the other hand connected to the terminal (12).
  • the element (20) may be a passive or an active element or a regulator and possibly further, not shown connections for supplying electrical energy, but which have no indirect, functional influence on the current measuring principle of the device according to the invention.
  • the element shown in Figure 6 (10) is usable for positive currents flowing in the direction from the node (11) to the node (12).
  • the antiparallel circuit shown in FIG. 7 of two elements designed according to FIG. 6 with two MOS FETs (Ti) and (T 2 ) produces an alternative element (10) which can also be used for negative or alternating currents.
  • a series circuit of self-conducting n-channel MOS-FETs (T 3 ) and (T 4 ) oriented in the opposite direction to FIG. 8 can also be integrated into the measuring device 6 according to the invention to form an alternative element (10).
  • Figure 9 shows an embodiment of a measuring device (6) with an alternative element (10) between the terminals (11, 12).
  • the electrical network (1) Between the current flowing through the measuring node (7) and (8) of the measuring network to the electrical network (1) are antiparallel to each other two MOS-FETs (Ti) and (T 2 ) connected so that the source terminal (17 ) of (Ti) and drain terminal (16) of (T 2 ) to terminal node (7) and drain terminal (16) of (Ti) and source terminal (17) of (T 2 ) to terminal node (8) connected to the measurement network.
  • a voltage (U A ) which is coupled to two inputs (21) and (22) of a controller (23).
  • the gate terminals (18) of both MOS-FETs (Ti) and (T 2 ) are also connected to the regulator (23), for example to its terminal (24).
  • a measuring node (13) is connected to the connection (24) of the controller (23) and the other measuring node (14) is short-circuited directly to the connection node (8) of the measuring device.
  • the voltage (U A ) between the connection nodes (7) and (8) is determined by the appropriately designed regulator (23) setting an electrical potential at its terminal (24) or the gate terminals (18) of the MOS FETs ( Ti), (T 2 ) regulated in the manner so that between the measuring node (13) and (14) the voltage to be measured (U) drops, which in the measuring range (I meSs ) clearly assignable to a current to be measured (I) ,
  • This also corresponds to a regulation of the total Stand (R) of the illustrated element (10), which is connected with its terminals (11, 12) to the terminals (7, 8) of the measuring network (9).
  • a particularly advantageously dimensioned controller (23) adjusts a reciprocal ratio of the voltage (U A ) to the current (I) in the measuring range: U A ⁇ 1 / I. This corresponds to the regulation of a total resistance (R) of the element (10), which is reciprocal to the square of the current (I) according to Rl / I 2 .

Abstract

A measuring apparatus for measuring an electrical current (I) comprises: two connecting nodes (7, 8) for feeding in and discharging the current (I), a measuring network (9) which is arranged between the connecting nodes (7, 8) and contains: an element (10), through which at least one known partial current (I<SUB>1</SUB>) of the current (I) can flow and which has a total resistance (R) which is dependent on the partial current (I<SUB>1</SUB>), and two measuring nodes (13, 14) for tapping off a measuring voltage (U), wherein the latter has a dependence on the current (I) that can be predefined by configuring the measuring network (9).

Description

Beschreibungdescription
Messvorrichtung zur Messung eines elektrischen StromesMeasuring device for measuring an electric current
Die Erfindung betrifft eine Messvorrichtung zur Messung eines elektrischen Stromes.The invention relates to a measuring device for measuring an electric current.
Ein in einem elektrischen Leiter fließender elektrischer Strom I kann beispielsweise durch Messung der Spannung U über einem sogenannten Shuntwiderstand RShunt ermittelt werden, wobei der Shuntwiderstand dem Leiter in Reihe geschaltet wird und somit vom zu messenden Strom I durchflössen wird. Der Strom Iv, der ein dem Shuntwiderstand RShunt parallel geschal¬ tetes Spannungsmessgerät durchfließt, wird als vernachlässig- bar klein (Iv<< I) und der Shuntwiderstand RShunt im Messbe¬ reich (ImeSs: Imin≤I≤Imaχ) als konstant angenommen, so dass die gemessene Spannung U gemäß dem Ohmschen Gesetz proportional zu dem zu messenden Strom I ist: U= RShunt I- Shuntwiderstände werden speziell für die Strommessung so hergestellt, dass diese Proportionalität gemäß dem Ohmschen Gesetz sehr gut erfüllt ist. So wird beispielsweise der Einfluss von Kontaktspannungen an den, den zu messenden Strom I führenden Anschlüssen des Shuntwiderstands bei der sogenannten Vierpunktmessung durch Abgriff der Spannung U an zwei weiteren, nahezu unbestromten Klemmen vermieden. Auch thermische Einflüsse werden durch geeignete Dimensionierung des Shuntwiderstands Rshunt gezielt für den Messbereich ImeSs reduziert. Ein Shuntwi¬ derstand Rshunt zur Strommessung kann daher nachfolgend für das Funktionsprinzip der Strommessung als konstant und damit als ein lineares Bauelement angenommen werden.A current flowing in an electrical conductor of electric current I can be determined for example by measuring the voltage U via a so-called shunt resistor R S h u n t, where the shunt resistor is connected to the conductor in series and is thus flowed through by the current to be measured I. The current Iv which is a shunt resistor R S hunt parallel geschal ¬ tetes voltmeter flows through, as is negligibly small (I v << I) and the shunt resistor R S in the hunt Messbe ¬ rich (I MES s: I min ≤ i ≤I m aχ) is assumed to be constant, so that the measured voltage U is proportional to the current I to be measured according to Ohm's law: U = R S hunt I shunt resistors are produced specifically for the current measurement so that this proportionality according to the ohmic Law is very well met. Thus, for example, the influence of contact voltages on the terminals of the shunt resistor leading to the current I to be measured in the so-called four-point measurement is avoided by tapping the voltage U at two further, almost no-current terminals. Also, thermal influences are reduced by suitable dimensioning of the shunt resistor Rshunt specifically for the measuring range I meS s. A Shuntwi ¬ resistor R shunt for current measurement can therefore be assumed hereinafter for the operation principle of the power measurement to be constant and thus as a linear component.
Alternativ kann der Strom I auch mit einer Stromzange über eine magnetische Kopplung des vom zu messenden Strom erzeugten und mittels eines permeablen Kerns zu einer Sensorschal- tung geführten und detektierten magnetischen Flusses gemessen werden. Wechselströme können mittels einer um den Kern, z.B. einen Ferritkern gewickelten Spule gemessen werden. Zur Messung von Gleichströmen kann eine Stromzange mit einem Hall- sensor ausgestattet sein. Der Strommessbereich solcher Stromzangen ist u.a. abhängig von den technischen Daten (insbesondere der Sättigungsinduktion) des permeablen Kerns.Alternatively, the current I can also be measured with current clamps via a magnetic coupling of the magnetic flux generated by the current to be measured and conducted and detected by means of a permeable core to form a sensor circuit. Alternating currents can be measured by means of a coil wound around the core, eg a ferrite core. For measuring direct currents, a current clamp with a Hall be equipped sensor. The current measuring range of such current clamps depends inter alia on the technical data (in particular the saturation induction) of the permeable core.
Bei der Strommessung mit Shunt steigt für hohe Ströme I die elektrische Verlustleistung Pv in der Messvorrichtung, insbesondere im Shuntwiderstand RShunt und beträgt Pv= Rstumt I2. Um die Wärmeentwicklung im Messshunt gering zu halten, sollte die Verlustleistung Pv einen oberen Grenzwert PVmaχ nicht überschreiten. Abgesehen davon führt eine übermäßige Erwärmung des Shuntwiderstands RShunt durch die Verlustleistung gegebenenfalls zur Zerstörung des Shuntwiderstands. Des Weiteren ist der messbaren Spannung U ein Rauschen als Rauschspannung UN überlagert und kann für geringe Ströme I die Messge- nauigkeit verringern.In the current measurement with shunt increases for high currents I, the electrical power loss P v in the measuring device, in particular in the shunt resistor R S hunt and P v = Rstumt I 2 . In order to keep the heat development in the shunt shunt, the power loss P v should not exceed an upper limit P V m a χ. Apart from this excessive heating of the shunt resistor R S h u n t performs the power loss, if appropriate, to the destruction of the shunt resistor. Furthermore, the measurable voltage U is superimposed on a noise as noise voltage U N and can reduce the measuring accuracy for low currents I.
Neben weiteren Einflüssen durch verwendete Signalverstärker und Sensoren ist für eine Strommessung die untere Grenze Imin des Strommessbereichs folglich zumindest durch eine minimale geforderte Messgenauigkeit und die obere Grenze Imaχ etwa durch eine maximal tolerierbare elektrische Verlustleistung Pv vorgegeben.In addition to further influences by signal amplifiers and sensors used for current measurement, the lower limit I min of the current measuring range is therefore predetermined at least by a minimum required measuring accuracy and the upper limit I ma χ approximately by a maximum tolerable electrical power loss Pv.
Aufgabe der Erfindung ist es, eine verbesserte Messvorrich- tung zur Messung eines elektrischen Stroms I anzugeben.The object of the invention is to specify an improved measuring device for measuring an electric current I.
Die Aufgabe wird gemäß dem Anspruch 1 gelöst durch eine Messvorrichtung zum Messen eines elektrischen Stromes (I), welcher vom zu messenden Strom über zwei Anschlussknoten durch- strömt wird. Zwischen den Anschlussknoten ist ein Messnetzwerk verschaltet. Dieses wird zumindest von einem Teilstrom (Ii) des Stromes (I) durchströmt. Der Anteil (Ii) von (I) ist hierbei bekannt, so dass der unbekannte Strom dann bekannt ist, wenn (Ii) bestimmt ist. Im Messnetzwerk wird ein Element (10), das einen vom Teilstrom (Ii) abhängigen Gesamtwiderstand (R) aufweist, von diesem durchströmt. Des Weiteren um- fasst das Messnetzwerk zwei Messknoten (13, 14) zum Abgriff einer vom zu messenden Strom (I) abhängigen Messspannung (U) . Diese Abhängigkeit ist zumindest in einem Messbereich, beispielsweise dem o.g. Imess, eindeutig und bekannt.The object is achieved according to claim 1 by a measuring device for measuring an electric current (I), which is flowed through by the current to be measured via two connection nodes. Between the connection nodes a measuring network is interconnected. This is at least passed through by a partial flow (Ii) of the stream (I). The proportion (Ii) of (I) is known here, so that the unknown current is known when (Ii) is determined. In the measurement network, an element (10), which has a total resistance (R) dependent on the partial flow (Ii), flows through it. Furthermore, the measuring network comprises two measuring nodes (13, 14) for tapping a measuring voltage (U) dependent on the current to be measured (I). This dependence is at least in a measuring range, for example, the above-mentioned I me ss, unique and known.
Die Messspannung ist damit gegenüber dem bekannten Strommess- verfahren in anderer Weise vom Strom I abhängig, nämlich lassen sich durch das nichtlineare Element nahezu beliebige Strom-Messspannungskennlinien realisieren. Hierdurch ist z.B, Signalkompression, Verlustleistungsreduktion etc. möglich.The measuring voltage is thus dependent on the current I in a different way than the known current measuring method, namely, virtually any desired current-measuring voltage characteristic can be realized by the nonlinear element. As a result, for example, signal compression, power loss reduction, etc. possible.
Die erfindungsgemäße Messvorrichtung ist dadurch vielseitig einsetzbar. Besonders vorteilhaft ist sie z.B. für den Einsatz in Schützen, welche hohe Spitzenströme Ipeak führen können, mitunter aber bereits bei vergleichsweise kleinen Strömen Imin geschaltet werden müssen, wobei diese Grenzwerte bei- spielsweise ein Verhältnis peak von 1000:1 übersteigen kön- mm nen. Die Messvorrichtung weist dann einen die Grenzwerte einschließenden Messbereich mit durchgehend hoher Genauigkeit auf, und arbeitet im Messbereich zerstörungsfrei und zuverlässig und verbraucht ggf. nur geringe Verlustleistung Pv.The measuring device according to the invention is thus versatile. It is particularly advantageous, for example, for use in contactors, which can carry high peak currents I pea k, but sometimes have to be switched even with comparatively small currents I min , wherein these limit values can exceed, for example, a peak ratio of 1000: 1 NEN. The measuring device then has a measuring range including the limit values with consistently high accuracy, and works non-destructively and reliably in the measuring range and possibly consumes only a small power loss P v .
Das Messnetzwerk kann mehrere nichtlineare Elemente aufweisen. Durch geeignete Verschaltung können diese in ihrer Gesamtheit etwa als ein einzelnes nichtlineares Element betrachtet werden.The measurement network can have several non-linear elements. By suitable interconnection, these may be considered in their entirety as a single non-linear element.
Der Teilstrom (Ii) kann der gesamt zu messende Strom (I) sein, so dass das nichtlineare Element vom gesamten zu messenden Strom (I) durchströmt wird.The partial flow (Ii) may be the total current to be measured (I), so that the nonlinear element is traversed by the total current to be measured (I).
Eine oder zwei der Messklemmen des Messnetzwerks können zu jeweils einer Klemme des nichtlinearen Elements kurzgeschlossen sein. So kann beispielsweise die Messspannung (U) in einem dem Ohmschen Gesetz entsprechenden Zusammenhang U=R Ii mit dem Teilstrom (Ii) und dem Gesamtwiderstand (R) des nichtlinearen Elements stehen. Das nichtlineare Element kann einen mit zunehmendem Teilstrom (Ii) abnehmenden Gesamtwiderstand (R) aufweisen. Hierdurch kann im Vergleich zu einer gewöhnlichen Messvorrichtung mit konstantem Shuntwiderstand (RShunt) eine Erweiterung des Mess- bereichs erreicht werden. Dies beruht insbesondere auch darauf, dass die Verlustleistung der erfindungsgemäßen Messvorrichtung für steigenden Strombetrag | I | aufgrund des sinkenden Gesamtwiderstandes (R) schwächer als mit dem Quadrat I2 des Stromes ansteigt PV=R I2, wie etwa die Verlustleistung
Figure imgf000006_0001
einer Messvorrichtung mit konstantem Shuntwider¬ stand Rshunt • Besonders vorteilhaft ist ein Messnetzwerk aus¬ gelegt, dessen elektrische Verlustleistung zumindest abschnittsweise keine Abhängigkeit vom zu messenden Strom aufweist. Auf diese Weise können thermische Einflüsse auf das Messergebnis bzw. die Messspannung (U) dadurch reduziert werden, dass die Temperatur im Bereich des Messnetzwerks sehr konstant bleibt. Dies kann beispielsweise durch Verschaltung eines nichtlinearen Elements mit einem Gesamtwiderstand (R) erfolgen, welcher sich zumindest abschnittsweise reziprok zum Quadrat des Teilstroms (Ii) verhält gemäß R —- .
One or two of the measuring network measuring terminals may be short-circuited to one terminal each of the non-linear element. Thus, for example, the measuring voltage (U) in a context corresponding to Ohm's law U = R Ii with the partial current (Ii) and the total resistance (R) of the non-linear element. The non-linear element may have a decreasing total resistance (R) as the partial current (Ii) increases. In this way, an extension of the measuring range can be achieved compared to an ordinary measuring device with constant shunt resistor (R S h u n t). This is based, in particular, on the fact that the power loss of the measuring device according to the invention for increasing the amount of current | I | due to the decreasing total resistance (R) weaker than the square I 2 of the current increases P V = RI 2 , such as the power loss
Figure imgf000006_0001
a measuring device with constant Shuntwider ¬ was Rshunt • particularly advantageous a measurement network is laid out ¬, the electrical power loss in sections, has at least no dependence on the current to be measured. In this way, thermal influences on the measurement result or the measurement voltage (U) can be reduced by keeping the temperature in the area of the measurement network very constant. This can be done, for example, by interconnecting a nonlinear element with a total resistance (R), which at least partially reciprocally to the square of the partial flow (Ii) behaves according to R -.
Alternativ kann das nichtlineare Element einen mit zunehmendem Teilstrom (I1) zunehmenden Gesamtwiderstand (R) aufweisen. Auf diese Weise kann die Verlustleistung in der Messvor- richtung zwar nicht verringert werden, jedoch für geringe Ströme (I) eine Verbesserung der Messgenauigkeit erreicht werden .Alternatively, the non-linear element may have an increasing total resistance (R) with increasing partial current (I 1 ). Although the power loss in the measuring device can not be reduced in this way, an improvement in the measuring accuracy can be achieved for low currents (I).
Ein nichtlineares Element kann eine Diode enthalten oder im einfachsten Fall aus nur einer einzigen Diode bestehen. In einer Ausführung besteht das nichtlineare Element aus einer Parallelschaltung einer Diode und eines ohmschen Widerstandes. Der Messbereich kann durch Antiparallelschaltung einer zusätzlichen Diode erweitert werden, indem an einem ersten Anschluss des nichtlinearen Elements beispielsweise sowohl die Anode der ersten Diode mit der Kathode der zweiten Diode kurzgeschlossen ist als auch am zweiten Anschluss des nicht- linearen Elements die Anode der zweiten Diode mit der Kathode der ersten Diode. Die beiden Anschlüsse des Elements können zusätzlich über einen ohmschen Widerstand miteinander verbunden sein, der somit den beiden Dioden parallel geschaltet ist .A nonlinear element may contain a diode or, in the simplest case, consist of only a single diode. In one embodiment, the non-linear element consists of a parallel connection of a diode and an ohmic resistor. The measuring range can be extended by anti-parallel connection of an additional diode by, for example, both the anode of the first diode with the cathode of the second diode is short-circuited at a first terminal of the non-linear element as well as at the second terminal of the non- linear element, the anode of the second diode to the cathode of the first diode. The two terminals of the element can also be connected to each other via an ohmic resistance, which is thus connected in parallel to the two diodes.
In einer weiteren Ausführung enthält das nichtlineare Element einen Transistor, wobei auch eine Antiparallelschaltung mehrerer Transistoren einsetzbar ist. Beispielsweise ist an ei- nem ersten Anschluss des Elements der Source-Anschluss eines ersten MOS-FET mit dem Drain-Anschluss eines zweiten MOS-FET kurzgeschlossen und an einem zweiten Anschluss des Elements der Drain-Anschluss des ersten MOS-FET mit dem Source-Anschluss des zweiten MOS-FET kurzgeschlossen. Der Gate-An- Schluss der MOS-FETs kann über ein geeignetes Element zu einem der Anschlüsse des nichtlinearen Elements rückgekoppelt sein .In a further embodiment, the non-linear element includes a transistor, wherein also an anti-parallel connection of a plurality of transistors can be used. For example, at a first terminal of the element the source terminal of a first MOS-FET is short-circuited to the drain terminal of a second MOS-FET and at a second terminal of the element the drain terminal of the first MOS-FET is connected to the source terminal Connection of the second MOS-FET short-circuited. The gate terminal of the MOS FETs may be fed back to one of the terminals of the nonlinear element via a suitable element.
Das Messnetzwerk kann ein aktives elektrisches Netzwerk sein, dem über einen weiteren Anschluss elektrische Energie zugeführt wird.The measuring network can be an active electrical network to which electrical energy is supplied via a further connection.
Das Messnetzwerk kann einen Verstärker oder einen Regler enthalten. Der Regler kann insbesondere zur Regelung des Gesamt- Widerstands (R) des nichtlinearen Elements im Messnetzwerk verschaltet sein. Die nichtlineare Charakteristik des Gesamtwiderstands (R) ist somit komplexen Anwendungen entsprechend dimensionierbar .The measurement network may include an amplifier or a regulator. The controller can be connected in particular for controlling the total resistance (R) of the non-linear element in the measurement network. The non-linear characteristic of the total resistance (R) can thus be dimensioned accordingly for complex applications.
Die Messvorrichtung kann mit einer die Messspannung (U) erfassenden und verarbeitenden Rechenvorrichtung ausgestattet sein. Dies kann ein digitaler Rechner mit einem Microcontroller sein.The measuring device can be equipped with a computing device which detects and processes the measuring voltage (U). This can be a digital computer with a microcontroller.
In einer weiteren Ausführungsform enthält die Messvorrichtung einen die Temperatur im Bereich der Messvorrichtung erfassenden Sensor. Zur Reduktion der Temperaturabhängigkeit der Messspannung (U) kann ein geeignetes Kompensationsmittel vor- handen sein, etwa in Form im Messnetzwerk verschalteter Bauelemente oder auch einer geeigneten, auch die Temperatur erfassenden Ausstattung der Rechenvorrichtung.In a further embodiment, the measuring device contains a sensor which detects the temperature in the region of the measuring device. In order to reduce the temperature dependence of the measuring voltage (U), a suitable compensation means may be provided. be present, for example in the form of interconnected in the measurement network components or a suitable, including the temperature detecting equipment of the computing device.
Die Rechenvorrichtung zur Ermittlung des Wertes des zu messenden Stromes (I) aus der Messspannung (U) kann in der Art ausgestattet sein, dass der Strom (I) aus der Messspannung (U) tatsächlich bei jeder Messung berechnet wird oder für diese Berechnung eine Tabelle verwendet wird. Hierbei kann z.B. Temperaturabhängigkeit berücksichtigt bzw. kompensiert werdenThe computing device for determining the value of the current to be measured (I) from the measurement voltage (U) may be equipped in such a way that the current (I) from the measurement voltage (U) is actually calculated for each measurement or a table for this calculation is used. Here, e.g. Temperature dependence can be considered or compensated
Die Erfindung wird nun unter Bezugnahme auf die beigefügtenThe invention will now be described with reference to the appended drawings
Zeichnungen näher erläutert. Es zeigenDrawings explained in more detail. Show it
Fig. 1 ein elektrisches Netzwerk, mit zu messenden StromFig. 1 is an electrical network, with current to be measured
Fig. 2 ein Messnetzwerk mit einem einzigen, nichtlinearen elektrischen Bauelement,2 shows a measuring network with a single, non-linear electrical component,
Fig. 3 ein Messnetzwerk mit einem nichtlinearen elektri- sehen Bauelement,3 shows a measuring network with a non-linear electrical see component,
Fig. 4 ein Element mit Diode,4 shows an element with diode,
Fig. 5 ein Element mit Dioden,5 shows an element with diodes,
Fig. 6 ein Element mit MOS-FET,6 shows an element with MOS-FET,
Fig. 7 ein Element mit MOS-FETs, Fig. 8 ein alternatives Element mit MOS-FETs,7 shows an element with MOS FETs, FIG. 8 shows an alternative element with MOS FETs, FIG.
Fig. 9 ein Messnetzwerk mit einem Regler.9 shows a measuring network with a controller.
In Figur 1 ist ein beliebiges elektrisches Netzwerk (1) dargestellt, welches Bestandteil eines hier nicht dargestellten Gerätes bzw. einer Maschine sein kann. Ein einzelner Pfad (2) des elektrischen Netzwerks (1) führt einen elektrischen Strom (I), welcher messtechnisch erfasst werden soll. Der Pfad (2) kann hierbei ein beliebiger elektrischer Leiter sein, beispielsweise eine Leiterbahn auf einer Platine oder ein Kabel, und erstreckt sich durch zwei Knoten (3) und (4), welche in Figur 1 eine direkte Verbindung (5) aufweisen und beide vom zu messenden Strom (I) durchflössen werden. Zur Messung des Stromes (I) wird die direkte Verbindung (5) zwischen den Knoten (3) und (4) des Pfades (2) im Netzwerk (1) der Figur 1 aufgetrennt und durch eine Messvorrichtung (6) gemäß Figur 2 in Serienverschaltung ersetzt. Die Messvor- richtung (6) ist hierbei mit einem Anschlussknoten (7) zum Knoten (3) des Pfades (2) und mit einem weiteren Anschlussknoten (8) zum Knoten (4) des Pfades (2) verbunden.FIG. 1 shows an arbitrary electrical network (1), which may be part of a device or a machine, not shown here. A single path (2) of the electrical network (1) carries an electrical current (I), which is to be detected metrologically. The path (2) can in this case be any electrical conductor, for example a conductor track on a circuit board or a cable, and extends through two nodes (3) and (4), which in FIG. 1 have a direct connection (5) and both flows through the current to be measured (I). For measuring the current (I), the direct connection (5) between the nodes (3) and (4) of the path (2) in the network (1) of Figure 1 is separated and by a measuring device (6) according to Figure 2 in series connection replaced. In this case, the measuring device (6) is connected to a connection node (7) to the node (3) of the path (2) and to a further connection node (8) to the node (4) of the path (2).
Zwischen den Knoten (7) und (8) der Messvorrichtung ist e- lektrisch leitfähig ein elektrisches Messnetzwerk (9) mit seinen zumindest zwei Anschlüssen (11) und (12) verbunden, welches in Figur 2 aus nur einem einzigen nichtlinearen Element (10) gemäß der Erfindung besteht. Das Element (10) kann beispielsweise einen Heiß- oder ein Kaltleiter enthalten (ne- gative temperature coefficient resistor, NTC-Widerstand, positive temperature coefficient resistor, PTC-Widerstand) . Das Element (10) kann auch ein passives oder aktives elektrisches Netzwerk aus der Verschaltung einzelner Bauelemente sein. Wie in elektrischen Prinzipschaltbildern üblich, sind für das Funktionsprinzip der Strommessung irrelevante, lediglich zur Energieversorgung erforderliche Zuleitungen eines evtl. als aktives Netzwerk ausgeführten Elements (10) nicht dargestellt.Between the nodes (7) and (8) of the measuring device is electrically conductive an electrical measuring network (9) with its at least two terminals (11) and (12) connected, which in Figure 2 from only a single nonlinear element (10) according to the invention. The element (10) may contain, for example, a hot or a cold conductor (negative temperature coefficient resistor, NTC resistor, positive temperature coefficient resistor, PTC resistor). The element (10) can also be a passive or active electrical network from the interconnection of individual components. As is usual in electrical block diagrams, supply lines of a possibly configured as an active network element (10) are not shown for the functioning principle of the current measurement irrelevant, only required for power supply.
Das Messnetzwerk (9) weist zwei Messknoten (13) und (14) auf, welche elektrisch leitfähig zu den Anschlüssen (7) und (8) der Messvorrichtung (6) verbunden sind. Im vorliegenden Fall ist der Messknoten (13) über einen elektrischen Kurzschluss (15) mit dem Anschluss (7) verbunden und der Messknoten (14) auf gleiche Weise mit dem Anschluss (8) . Zwischen den Messknoten (13) und (14) fällt eine Messspannung (U) ab, welche mit einer nicht dargestellten Erfassungsvorrichtung, z.B. einem Voltmeter, Oszilloskop o.a. gemessen werden kann. Die Messspannung (U) steht zumindest in einem Messbereich, bei- spielsweise (Imess)/ s.o., in einem eindeutigen Zusammenhang mit dem zu messenden, im Pfad (2) fließenden Strom (I) . Figur 3 zeigt eine alternative Messvorrichtung (6), wobei zwischen einem Messknoten (13) und einem Anschluss (7) der Messvorrichtung (6) anstelle einer Kurzschlussverbindung (15) das Element (10) verschaltet ist. Desweiteren fließt in der gezeigten Messvorrichtung (6) zwar der gesamte zu messende Strom (I) durch das Messnetzwerk (9), aber nicht gänzlich durch das Element (10) . Das Element (10) wird nur von einem Teilstrom (Ii) durchströmt, dessen Zusammenhang zum zu messenden Strom (I) durch die mit den Bauelementen (Ri, R2) ge- bildete Stromteilerschaltung eingeprägt ist, so dass dieThe measuring network (9) has two measuring nodes (13) and (14), which are electrically conductively connected to the terminals (7) and (8) of the measuring device (6). In the present case, the measuring node (13) is connected via an electrical short circuit (15) to the terminal (7) and the measuring node (14) in the same way to the terminal (8). Between the measuring nodes (13) and (14) drops a measuring voltage (U), which can be measured with a detection device, not shown, for example, a voltmeter, oscilloscope or similar. The measuring voltage (U) is at least in a measuring range, for example (I mess ) / so, in a clear relationship with the current to be measured in the path (2) current (I). Figure 3 shows an alternative measuring device (6), wherein between a measuring node (13) and a terminal (7) of the measuring device (6) instead of a short-circuit connection (15), the element (10) is connected. Furthermore, in the measuring device (6) shown, although the entire current (I) to be measured flows through the measuring network (9), but not entirely through the element (10). The element (10) is traversed only by a partial flow (Ii), whose connection to the current (I) to be measured is impressed by the current divider circuit formed by the components (Ri, R 2 ), so that the
Spannung (U) und der zu messende Strom (I) wie oben beschrieben zumindest in einem Messbereich (Imess) in einem eindeutigen Zusammenhang stehen.Voltage (U) and the current to be measured (I) as described above, at least in a measuring range (I mess ) are in a clear relationship.
Die Figuren 4 bis 8 zeigen Ausführungsformen von elektrischen Netzwerken zur Realisierung jeweils eines nichtlinearen Elements (10) . Das Element (10) in Figur 4 besteht aus der Parallelschaltung einer Diode (Di) und eines ohmschen Widerstands (Ri) und ist vornehmlich für positive, in Richtung vom Knoten (11) zum Knoten (12) fließende Ströme einsetzbar.FIGS. 4 to 8 show embodiments of electrical networks for implementing a respective non-linear element (10). The element (10) in FIG. 4 consists of the parallel connection of a diode (Di) and an ohmic resistor (Ri) and can be used primarily for positive currents flowing in the direction from the node (11) to the node (12).
Durch Antiparallelschaltung einer weiteren Diode (D2) , wie in Figur 5 gezeigt, ist das Element auch für negative Ströme bzw. Wechselströme einsetzbar.By antiparallel connection of another diode (D 2 ), as shown in Figure 5, the element can also be used for negative currents or alternating currents.
In Figur 6 ist ein Element (10) dargestellt, welches einen selbstsperrenden n-Kanal Metalloxydschicht-Feldeffekttransistor (MOS-FET) (Ti) umfasst. Sein Drain-Anschluss (16) ist zum Anschluss (11) und der Source-Anschluss (17) zum Anschluss (12) verbunden. Die Spannung (UGs) zwischen dem Gate (18) und dem Source-Anschluss (17) des MOS-FET (Tx) wird über ein Element (20) eingestellt, welches hier einerseits zum Ga- te-Anschluss (18) und andererseits zum Anschluss (12) verbunden ist. Das Element (20) kann ein passives oder auch ein aktives Element oder ein Regler sein und eventuell weitere, nicht dargestellte Anschlüsse zur Versorgung mit elektrischer Energie aufweisen, welche jedoch keinen mittelbaren, funktionellen Einfluss auf das Strommessprinzip der erfindungsgemäßen Vorrichtung haben. Das in Figur 6 dargestellte Element (10) ist für positive, in Richtung vom Knoten (11) zum Knoten (12) fließende Ströme einsetzbar. Durch die in Figur 7 dargestellte Antiparallelschaltung zweier gemäß Figur 6 entworfener Elemente mit zwei MOS-FETs (Ti) und (T2) entsteht ein al- ternatives Element (10), welches auch für negative bzw. Wechselströme einsetzbar ist.FIG. 6 shows an element (10) which comprises a self-blocking n-channel metal oxide layer field-effect transistor (MOS-FET) (Ti). Its drain terminal (16) is connected to the terminal (11) and the source terminal (17) to the terminal (12). The voltage (U G s) between the gate (18) and the source terminal (17) of the MOS-FET (T x ) is set via an element (20) which here on the one hand to gate terminal (18) and on the other hand connected to the terminal (12). The element (20) may be a passive or an active element or a regulator and possibly further, not shown connections for supplying electrical energy, but which have no indirect, functional influence on the current measuring principle of the device according to the invention. The element shown in Figure 6 (10) is usable for positive currents flowing in the direction from the node (11) to the node (12). The antiparallel circuit shown in FIG. 7 of two elements designed according to FIG. 6 with two MOS FETs (Ti) and (T 2 ) produces an alternative element (10) which can also be used for negative or alternating currents.
Entsprechend ist auch eine gemäß Figur 8 entgegengesetzt orientierte Serienschaltung von selbstleitenden n-Kanal MOS-FETs (T3) und (T4) zu einem alternativen Element (10) in die erfindungsgemäße Messvorrichtung 6 integrierbar.Correspondingly, a series circuit of self-conducting n-channel MOS-FETs (T 3 ) and (T 4 ) oriented in the opposite direction to FIG. 8 can also be integrated into the measuring device 6 according to the invention to form an alternative element (10).
Figur 9 zeigt eine Ausführung einer Messvorrichtung (6) mit einem alternativen Element (10) zwischen den Anschlüssen (11, 12) . Zwischen den vom zu messenden Strom (I) durchflossenen Anschlussknoten (7) und (8) des Messnetzwerks zum elektrischen Netzwerk (1) sind antiparallel zueinander zwei MOS-FETs (Ti) und (T2) so verschaltet, dass Source-Anschluss (17) von (Ti) und Drain-Anschluss (16) von (T2) zum Anschlussknoten (7) sowie Drain-Anschluss (16) von (Ti) und Source-Anschluss (17) von (T2) zum Anschlussknoten (8) des Messnetzwerks verbunden sind. Zwischen den Anschlussklemmen (7) und (8) fällt eine Spannung (UA) ab, welche auf zwei Eingänge (21) und (22) eines Reglers (23) gekoppelt wird. Die Gate-Anschlüsse (18) beider MOS-FETs (Ti) und (T2) sind ebenfalls zum Regler (23) verbunden, beispielsweise an dessen Anschluss (24) . Ein Messknoten (13) ist zum Anschluss (24) des Reglers (23) verbunden und der andere Messknoten (14) ist direkt zum Anschlussknoten (8) der Messvorrichtung kurzgeschlossen.Figure 9 shows an embodiment of a measuring device (6) with an alternative element (10) between the terminals (11, 12). Between the current flowing through the measuring node (7) and (8) of the measuring network to the electrical network (1) are antiparallel to each other two MOS-FETs (Ti) and (T 2 ) connected so that the source terminal (17 ) of (Ti) and drain terminal (16) of (T 2 ) to terminal node (7) and drain terminal (16) of (Ti) and source terminal (17) of (T 2 ) to terminal node (8) connected to the measurement network. Between the terminals (7) and (8) drops a voltage (U A ), which is coupled to two inputs (21) and (22) of a controller (23). The gate terminals (18) of both MOS-FETs (Ti) and (T 2 ) are also connected to the regulator (23), for example to its terminal (24). A measuring node (13) is connected to the connection (24) of the controller (23) and the other measuring node (14) is short-circuited directly to the connection node (8) of the measuring device.
Die Spannung (UA) zwischen den Anschlussknoten (7) und (8) wird durch den geeignet ausgelegten Regler (23) unter Einstellung eines elektrischen Potentials an seinem Anschluss (24) bzw. den Gate-Anschlüssen (18) der MOS-FETs (Ti), (T2) in der Art geregelt, so dass zwischen den Messknoten (13) und (14) die zu messende Spannung (U) abfällt, welche im Messbereich (ImeSs) eindeutig einem zu messenden Strom (I) zuweisbar ist. Dies entspricht auch einer Regelung des Gesamtwider- Stands (R) des gezeigten Elements (10), welches mit seinen Klemmen (11, 12) zu den Anschlussklemmen (7, 8) des Messnetzwerks (9) verbunden ist. Ein besonders vorteilhaft dimensionierter Regler (23) stellt im Messbereich ein reziprokes Ver- hältnis der Spannung (UA) zum Strom (I) ein: UA~1/I. Dies entspricht der Regelung eines Gesamtwiderstands (R) des Elements (10), der sich reziprok zum Quadrat des Stromes (I) verhält gemäß R-l/I2.The voltage (U A ) between the connection nodes (7) and (8) is determined by the appropriately designed regulator (23) setting an electrical potential at its terminal (24) or the gate terminals (18) of the MOS FETs ( Ti), (T 2 ) regulated in the manner so that between the measuring node (13) and (14) the voltage to be measured (U) drops, which in the measuring range (I meSs ) clearly assignable to a current to be measured (I) , This also corresponds to a regulation of the total Stand (R) of the illustrated element (10), which is connected with its terminals (11, 12) to the terminals (7, 8) of the measuring network (9). A particularly advantageously dimensioned controller (23) adjusts a reciprocal ratio of the voltage (U A ) to the current (I) in the measuring range: U A ~ 1 / I. This corresponds to the regulation of a total resistance (R) of the element (10), which is reciprocal to the square of the current (I) according to Rl / I 2 .
Alternativ kann auch so geregelt werden, dass die Spannung zwischen den Knoten 7 und 8 stets konstant bleibt. Alternatively, it can also be regulated so that the voltage between the nodes 7 and 8 always remains constant.

Claims

Patentansprüche claims
1. Messvorrichtung zum Messen eines elektrischen Stromes (I), umfassend: - zwei Anschlussknoten (7, 8) zum Einspeisen und Ausleiten des Stromes (I) ,A measuring device for measuring an electric current (I), comprising: - two connection nodes (7, 8) for feeding and discharging the current (I),
- ein zwischen den Anschlussknoten (7, 8) angeordnetes Messnetzwerk ( 9) , dasa measuring network (9) arranged between the connection nodes (7, 8)
- ein von zumindest einem bekannten Teilstrom (Ii) des Stro- mes (I) durchströmbares Element (10) mit einem vom Teilstrom- One of at least a known partial flow (Ii) of the flow (I) through-flow element (10) with one of the partial flow
(Ii) abhängigen Gesamtwiderstand (R) , und(Ii) dependent total resistance (R), and
- zwei Messknoten (13, 14) zum Abgriff einer Messspannung (U), wobei diese eine durch Gestaltung des Messnetzwerks (9) vorgebbare Abhängigkeit vom Strom (I) aufweist, enthält.- Two measuring nodes (13, 14) for tapping a measuring voltage (U), this one by design of the measuring network (9) predeterminable dependence on the current (I) contains.
2. Messvorrichtung nach Anspruch 1, bei dem der Teilstrom (Ii) der zu messende Strom (I) ist.2. Measuring device according to claim 1, wherein the partial flow (Ii) is the current to be measured (I).
3. Messvorrichtung nach Anspruch 1 oder 2, bei dem die Messknoten (13,14) zu jeweils einem Knoten eines nichtlinearen Bauteils des Elements kurzgeschlossen sind.3. Measuring device according to claim 1 or 2, wherein the measuring nodes (13,14) are short-circuited to each node of a non-linear component of the element.
4. Messvorrichtung nach einem der Ansprüche 1 bis 3, bei dem die elektrische Verlustleistung (Pv) des Messnetzwerks (9) zumindest abschnittsweise vom Strom (I) unabhängig ist.4. Measuring device according to one of claims 1 to 3, wherein the electrical power loss (P v ) of the measuring network (9) is at least partially independent of the current (I).
5. Messvorrichtung nach einem der Ansprüche 1 bis 4, bei der das nichtlineare Element (10) einen mit zunehmendem Teilstrom (Ii) abnehmenden Gesamtwiderstand (R) aufweist. 5. Measuring device according to one of claims 1 to 4, wherein the non-linear element (10) has a decreasing with increasing partial current (Ii) total resistance (R).
6. Messvorrichtung nach Anspruch 5, bei der das nichtlineare Element (10) einen zumindest abschnittsweise gemäß R —- ab-6. Measuring device according to claim 5, in which the non-linear element (10) has an at least sectionally in accordance with R - ab-
nehmenden Gesamtwiderstand (R) aufweisthaving total resistance (R)
7. Messvorrichtung nach einem der Ansprüche 1 bis 4, bei der das nichtlineare Element (10) einen mit zunehmendem Teilstrom (Ii) zunehmenden Gesamtwiderstand (R) aufweist.7. Measuring device according to one of claims 1 to 4, wherein the non-linear element (10) having an increasing partial flow (Ii) increasing total resistance (R).
8. Messvorrichtung nach einem der Ansprüche 1 bis 7, bei der das Element (10) eine Diode und/oder einen Transistor enthält.8. Measuring device according to one of claims 1 to 7, wherein the element (10) includes a diode and / or a transistor.
9. Messvorrichtung nach Anspruch 8, bei der das Element (10) eine Parallelschaltung einer Diode und eines ohmschen Wider- Standes enthält.9. Measuring device according to claim 8, wherein the element (10) includes a parallel connection of a diode and an ohmic resistance.
10. Messvorrichtung nach einem der Ansprüche 1 bis 9, bei der das Element (10) einen rückgekoppelten MOS-FET enthält.10. Measuring device according to one of claims 1 to 9, wherein the element (10) includes a feedback MOS-FET.
11. Messvorrichtung nach einem der Ansprüche 1 bis 10, bei der das Messnetzwerk einen Verstärker und/oder einen Regler enthält .11. Measuring device according to one of claims 1 to 10, wherein the measuring network includes an amplifier and / or a regulator.
12. Messvorrichtung nach Anspruch 11, mit einem den Gesamtwi- derstand (R) des Elements (10) regelnden Regler.12. Measuring device according to claim 11, with a total resistance (R) of the element (10) regulating controller.
13. Messvorrichtung nach einem der Ansprüche 1 bis 12, mit einer Rechenvorrichtung zur Weiterverarbeitung der Messspannung (U) .13. Measuring device according to one of claims 1 to 12, with a computing device for further processing of the measuring voltage (U).
14. Messvorrichtung nach einem der Ansprüche 1 bis 13, mit einem die Temperatur der Messvorrichtung erfassenden Sensor.14. Measuring device according to one of claims 1 to 13, with a temperature of the measuring device detecting sensor.
15. Messvorrichtung nach einem der Ansprüche 1 bis 14, mit einem Kompensationsmittel zur Reduktion der Temperaturabhängigkeit der Messspannung (U) . 15. Measuring device according to one of claims 1 to 14, with a compensation means for reducing the temperature dependence of the measuring voltage (U).
PCT/EP2007/063752 2006-12-13 2007-12-12 Measuring apparatus for measuring an electrical current WO2008071722A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE200610058879 DE102006058879A1 (en) 2006-12-13 2006-12-13 Measuring device for measuring an electric current
DE102006058879.7 2006-12-13

Publications (1)

Publication Number Publication Date
WO2008071722A1 true WO2008071722A1 (en) 2008-06-19

Family

ID=39339128

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2007/063752 WO2008071722A1 (en) 2006-12-13 2007-12-12 Measuring apparatus for measuring an electrical current

Country Status (2)

Country Link
DE (1) DE102006058879A1 (en)
WO (1) WO2008071722A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001157A1 (en) * 2010-07-01 2012-01-05 Continental Teves Ag & Co. Ohg Current sensor
WO2012130995A1 (en) * 2011-03-29 2012-10-04 Continental Teves Ag & Co. Ohg Current sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013007834A1 (en) * 2011-07-14 2013-01-17 Continental Teves Ag & Co. Ohg Device for conducting an electric current

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5057719A (en) * 1990-06-27 1991-10-15 Sverdrup Technology, Inc. Passively forced current sharing among transistors
JPH0427877A (en) * 1990-04-20 1992-01-30 Koji Yatsuhashi Current checker
EP0581993A1 (en) * 1992-08-07 1994-02-09 Siemens Aktiengesellschaft Circuit arrangement for the control of a load and the detection of line interruption
DE19604041C1 (en) * 1996-02-05 1997-04-10 Siemens Ag High-side switch load current detection circuit
US5845275A (en) * 1996-01-11 1998-12-01 Sgs-Thomson Microelectronics S.A. Current measurement circuit
DE10041879A1 (en) * 2000-08-25 2002-03-14 Hella Kg Hueck & Co Load current measurement method in on-board power supply of vehicle, involves connecting fuse element parallel to load, where fuse element acts as shunt resistor
WO2005024444A1 (en) * 2003-09-08 2005-03-17 Texas Instruments Korea Limited Ac current sensor using triac and method thereof
DE102004062655A1 (en) * 2004-12-24 2006-07-06 Leopold Kostal Gmbh & Co. Kg Method for correcting an electrical current measurement indirectly performed by an electrical voltage measurement
WO2006087342A1 (en) * 2005-02-16 2006-08-24 Continental Teves Ag & Co. Ohg Device for detecting electric currents

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2104336A (en) * 1932-07-30 1938-01-04 Gen Radio Co Electric system
DE3824526A1 (en) * 1988-07-20 1990-01-25 Vdo Schindling CIRCUIT ARRANGEMENT FOR CONTROLLING A PULSATING CURRENT
DE19838974A1 (en) * 1998-08-27 2000-03-02 Bosch Gmbh Robert Electrical circuit with a device for detecting a current variable

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427877A (en) * 1990-04-20 1992-01-30 Koji Yatsuhashi Current checker
US5057719A (en) * 1990-06-27 1991-10-15 Sverdrup Technology, Inc. Passively forced current sharing among transistors
EP0581993A1 (en) * 1992-08-07 1994-02-09 Siemens Aktiengesellschaft Circuit arrangement for the control of a load and the detection of line interruption
US5845275A (en) * 1996-01-11 1998-12-01 Sgs-Thomson Microelectronics S.A. Current measurement circuit
DE19604041C1 (en) * 1996-02-05 1997-04-10 Siemens Ag High-side switch load current detection circuit
DE10041879A1 (en) * 2000-08-25 2002-03-14 Hella Kg Hueck & Co Load current measurement method in on-board power supply of vehicle, involves connecting fuse element parallel to load, where fuse element acts as shunt resistor
WO2005024444A1 (en) * 2003-09-08 2005-03-17 Texas Instruments Korea Limited Ac current sensor using triac and method thereof
DE102004062655A1 (en) * 2004-12-24 2006-07-06 Leopold Kostal Gmbh & Co. Kg Method for correcting an electrical current measurement indirectly performed by an electrical voltage measurement
WO2006087342A1 (en) * 2005-02-16 2006-08-24 Continental Teves Ag & Co. Ohg Device for detecting electric currents

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012001157A1 (en) * 2010-07-01 2012-01-05 Continental Teves Ag & Co. Ohg Current sensor
KR101921765B1 (en) 2010-07-01 2019-02-13 콘티넨탈 테베스 아게 운트 코. 오하게 Current sensor
WO2012130995A1 (en) * 2011-03-29 2012-10-04 Continental Teves Ag & Co. Ohg Current sensor

Also Published As

Publication number Publication date
DE102006058879A1 (en) 2008-06-26

Similar Documents

Publication Publication Date Title
DE102008059853B4 (en) Circuit arrangement with a load transistor and a measuring transistor
DE10120524B4 (en) Device for determining the current through a power semiconductor device
DE10331883B4 (en) Measuring method and measuring arrangement for measuring currents with a large dynamic range
DE102006008292B4 (en) Overload protection for controllable power consumers
DE19821195A1 (en) Control circuit for balancing steady state current in each component of electric power converter
DE102015108410A1 (en) CURRENT OR VOLTAGE MEASUREMENT
DE112009000503T5 (en) Linear sensor with two connections
DE2139999A1 (en) Status sensor circuit in bridge arrangement
DE102006030594A1 (en) Method and device for detecting a short circuit on a circuit arrangement
DE102011076651B4 (en) Current regulation with thermally matched resistors
DE2835075A1 (en) DEVICE FOR REPLACING LARGE ELECTRICAL LOADS IN AC SYSTEMS
DE102017111410A1 (en) Measurements in switching devices
DE102021212704A1 (en) ENGINE CONTROL DEVICE AND METHOD
EP3170010B1 (en) Device and method for measuring current
WO2008071722A1 (en) Measuring apparatus for measuring an electrical current
DE10013345B4 (en) Device for measuring an electrical current flowing through a conductor track and its use
DE19838657B4 (en) Circuit arrangement for detecting the load current of a power field effect semiconductor device
DE102015015479B3 (en) Circuit arrangement for determining a current intensity of an electric current
DE2651050A1 (en) CIRCUIT FOR MONITORING THE TEMPERATURE OF CONTACTS OF AN ELECTRICAL SWITCHING DEVICE
DE102020132400A1 (en) MULTIPLE RANGE CURRENT SENSOR TECHNOLOGY
DE3242316C2 (en)
DE102015222570A1 (en) CIRCUIT AND METHOD FOR POWER SUPPLY WITH HIGH ACCURACY
DE102019210652A1 (en) Method and device for current detection using an operational amplifier
DE102013210298A1 (en) Arrangement for determining characteristics of an electrochemical energy store
DE102022117871B4 (en) CURRENT SENSOR, SYSTEM WITH A CURRENT SENSOR AND METHOD FOR MEASURING A CURRENT TO BE MEASURED

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07857429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07857429

Country of ref document: EP

Kind code of ref document: A1